
1

Support Vector Machine Classifier via
L0/1 Soft-Margin Loss

Huajun Wang, Yuanhai Shao, Shenglong Zhou, Ce Zhang and Naihua Xiu∗

Abstract—Support vector machines (SVM) have drawn wide attention for the last two decades due to its extensive applications, so a
vast body of work has developed optimization algorithms to solve SVM with various soft-margin losses. To distinguish all, in this paper,
we aim at solving an ideal soft-margin loss SVM: L0/1 soft-margin loss SVM (dubbed as L0/1-SVM). Many of the existing (non)convex
soft-margin losses can be viewed as one of the surrogates of the L0/1 soft-margin loss. Despite its discrete nature, we manage to
establish the optimality theory for the L0/1-SVM including the existence of the optimal solutions, the relationship between them and P-
stationary points. These not only enable us to deliver a rigorous definition of L0/1 support vectors but also allow us to define a working
set. Integrating such a working set, a fast alternating direction method of multipliers is then proposed with its limit point being a locally
optimal solution to the L0/1-SVM. Finally, numerical experiments demonstrate that our proposed method outperforms some leading
classification solvers from SVM communities, in terms of faster computational speed and a fewer number of support vectors. The bigger
the data size is, the more evident its advantage appears.

Index Terms—L0/1 soft-margin loss, L0/1-SVM, L0/1 proximal operator, minimizer and P-stationary point, L0/1 support vectors,
L0/1ADMM.

F

1 INTRODUCTION

SUPPORT vector machines (SVM) were first introduced by
Vapnik and Cortes [1] and then have been extensively

applied into machine learning, statistic, pattern recognition
and so forth. The basic idea of SVM is to find a maximum
margin-type hyperplane in the input space that separates
the training dataset. In the paper, we focus on the binary
classification problem described as follows. Suppose we are
given a training set {(xi, yi) : i = 1, 2, · · · ,m}, where
xi ∈ Rn are the input vectors and yi ∈ {−1, 1} are the
output labels. The purpose of SVM is to train a hyperplane
〈w,x〉 + b = w1x1 + · · · + wnxn + b = 0 with w ∈ Rn
and b ∈ R to be estimated by the training set. For any new
input vector x′, one can predict its label y′ by y′ = 1 if
〈w,x′〉 + b > 0 and y′ = −1 otherwise. In order to find an
optimal hyperplane, there are two possible scenarios: lin-
early separable and inseparable training data. If the training
data is linearly separated in the input space, then the unique
optimal hyperplane can be obtained by solving a convex
quadratic programming:

min
w∈Rn,b∈R

1

2
‖w‖2

s.t. yi(〈w,xi〉+ b) ≥ 1, i ∈ Nm, (1)

where Nm := {1, 2, · · · ,m}. The above model is known as
the hard-margin SVM because it requires correct classifica-

• H.J. Wang, C. Zhang, N.H. Xiu are with the Department of Applied
Mathematics, Beijing Jiaotong University, Beijing, P.R. China. Email:
huajunwang@bjtu.edu.cn, czhang@bjtu.edu.cn, nhxiu@bjtu.edu.cn.

• Y.H. Shao is with the School of Management, Hainan University, Haikou,
P.R. China. Email: shaoyuanhai@hainanu.edu.cn.

• S.L. Zhou is with the Department of Electrical and Electronic Engineer-
ing, Imperial College London, London, UK. Email: slzhou2021@163.com.

• * Corresponding author

Manuscript received xx, xx; revised xx, xx.

tions of all training samples. When it comes to the train-
ing data being linearly inseparable in the input space, the
popular approach is to allow violations in the satisfaction
of the constraints in (1) and penalize such violations in the
objective function, namely,

min
w∈Rn,b∈R

1

2
‖w‖2 + C

m∑
i=1

`(1− yif(xi)), (2)

where C > 0 is a penalty parameter and f(xi) := 〈w,xi〉+
b. Here, `(·) is one of loss functions that aims at penalizing
some sufficiently incorrectly classified samples and leaving
the others. The above model is known as soft-margin SVM,
allowing misclassified training samples. Authors in [1]–[3]
have pointed out that the ideal soft-margin SVM is

min
w∈Rn,b∈R

1

2
‖w‖2 + C

m∑
i=1

`0/1(1− yif(xi)), (3)

where the soft-margin loss function `0/1(·) is given by

`0/1(ti) =

{
1, 1− ti > 0,

0, 1− ti ≤ 0,
(4)

and ti = yif(xi), i ∈ Nm. We name (3) as L0/1-SVM,
which minimizes the number of soft-margin misclassified
samples. It is worth mentioning that the `0/1(·) loss function
arises in binary-valued regression, and is useful in many
machine learning problems: candidates include those from
perceptron learning [4], deep learning [5] and distribution-
ally robust supervised learning [6]. However, the L0/1-SVM
is NP-hard [7], [8] since the `0/1(·) loss is nonconvex and
discontinuous, and up to now, it has not been fundamentally
well investigated.

As far as we know, this is the first paper that establishes
the optimality theory for the L0/1-SVM and develops an

2

effective algorithm aiming at pursuing an optimal solution
to (3). The main contributions are summarized as follows.

(C1) We prove that the globally optimal solutions to the
L0/1-SVM exist and also establish its optimality condition
aiming at finding such solutions. The condition has a close
relationship to the P-stationary point which is very practical
to solve the L0/1-SVM, even though the problem is NP-hard.

(C2) Recall that the vector w∗ that maximizes the margin
can be shown to have the form:

w∗ = α∗1y1x1 + · · ·+ α∗mymxm =
∑

i: α∗i 6=0

α∗i yixi, (5)

where α∗ = (α∗1,α
∗
2, ...,α

∗
m)> is a solution to the dual

problem of (1). The training vectors xi corresponding to
non-zero α∗i are called support vectors [1], [9]. In this
paper, the P-stationary point allows us to define the L0/1

support vectors which coincide with the non-zero elements
of the Lagrangian multiplier of (3). From the point of the
optimization, the Lagrangian multiplier can be treated as a
solution to the dual problem of (3), even though the dual
problem is difficult to be derived due to the discreteness
of `0/1(·). Therefore, L0/1 support vectors are standard
support vectors. Furthermore, we show that allL0/1 support
vectors fall into the support hyperplanes 〈w∗,x〉+ b∗ = ±1,
where (w∗, b∗) is a P-stationary point of (3). Hence, the
number of L0/1 support vectors are naturally expected to be
no greater than the number of the standard support vectors.
This is also testified by our numerical experiments.

(C3) When it comes to solving the problem (3), we
adopt the famous alternating direction method of multipli-
ers (ADMM), where one of its sub-problems is addressed
by the L0/1 proximal operator involved in the P-stationary
point, which together with the idea of L0/1 support vectors
allows us to define a working set in each step. Indices i
of vectors xi out of this working set will be discarded, so
the proposed method has a considerably low computational
complexity and thus runs super fast. We prove that the limit
point of the generated sequence is a P-stationary point and
also a locally optimal solution to the problem (3). This means
the final classifier only uses a small number of support
vectors based on the statements in C2.

(C4) Comparing with some leading classification solvers
for addressing the SVM problems on synthetic and real
datasets, extensive numerical experiments demonstrate that
our proposed method achieves better performance includ-
ing higher prediction accuracy, a fewer number of support
vectors and faster computational speed. In addition, the
numerical comparison also certifies the robustness to the
outliers of the L0/1-SVM.

The remainder of this paper is organized as follows. In
the next section, a brief overview of various soft-margin loss
functions used in (2) will be given. Section 3 establishes
the optimality theory including the existence of a globally
optimal solution to the problem (3) and the relationships
between a P-stationary point and an optimal solution. In
Section 4, we will introduce the L0/1 support vectors and
cast a fast ADMM whose each step is integrated by a
working set strategy inspired by the L0/1 support vectors.
Numerical experiments and concluding remarks are given
in the last two sections.

2 RELATED WORK

The discrete nature of `0/1(·) in L0/1-SVM (3) limits its
wide applications. Therefore, most previous work [10], [11]
focus on the continuous surrogates of (3), namely, `(·) in (2)
is a continuous approximation of `0/1(·). We mention two
typical classes of such surrogate soft-margin loss functions
[3]. The first one consists of the convex soft-margin loss
functions. An impressive body of work has designed such
kinds of functions since they make the corresponding SVM
problems easier to deal with. Here, we only review some
popular ones.

• Hinge soft-margin loss function: `hinge(t) = max{0, 1−
t}. It is non-differentiable at t = 1 and unbounded.
SVM with hinge soft-margin loss function was first
proposed by Vapnik and Cortes [1], aiming at only
penalizing the samples with t < 1. Hinge soft-
margin loss SVM is the first SVM model and is
widely studied by researchers [12].

• Pinball soft-margin loss function: `τpinball(t) = max{1−
t,−τ(1 − t)}, with 0 ≤ τ ≤ 1, which is still non-
differentiable at t = 1 and unbounded. SVM with
this soft-margin loss function was proposed in [13],
[14] to pay penalty for all training samples. There
is a quadratic programming solver embedded in
Matlab to solve the SVM with pinball soft-margin
loss function [14].

• Huberized hinge soft-margin loss function: `τHH(t) =
max{1− t− τ/2,min{max{1− t, 0}2/2τ, τ/2}} with
τ > 0. It is smooth but still unbounded function.
SVM with such soft-margin loss function was first
proposed in [15] which can be solved by proximal
gradient method [16].

• Square soft-margin loss function [17], [18]: `square(t) =
(1− t)2, a smooth but unbounded function.

• Other convex and smooth soft-margin loss functions in-
clude the squared hinge soft-margin loss function
[19] and log soft-margin loss function [20].

• Other convex and nonsmooth soft-margin loss functions
include the ε-insensitive zone pinball soft-margin
loss function [14] and φ-risk hinge soft-margin loss
function [21].

As the above loss functions are convex, their correspond-
ing SVM models are not difficult to be dealt with [12]–[24].
However, the convexity often induces the unboundedness
[25], [26], which weakens the robustness of those loss func-
tions to outliers from the training data. To overcome such a
drawback, one can set an upper bound and enforce the loss
to stop increasing after a certain point. This gives rise to the
second group: the nonconvex soft-margin loss functions.

• Ramp soft-margin loss function [27], [28]: `µramp(t) =
max{0, 1 − t} − max{0, 1 − (t + µ)} with µ > 0,
which is non-differentiable at t = 1 − µ and t = 1
but bounded between 0 and µ. It does not penalize
the case when t > 1, while pays linear penalty when
1− µ ≤ t ≤ 1 and a fixed penalty µ when t < 1− µ.
This makes such a function robust to outliers.

• Truncated pinball soft-margin loss function [29] (trun-
cated right side of pinball loss function): `τ,κTpin(t) =
max{0, (1+ τ)(1− t)}− (max{0, τ(1− t+κ)}− τκ),

3

with 0 ≤ τ ≤ 1 and κ ≥ 0. It is non-differentiable at
t = 1 and t = 1 + κ and unbounded. The penalty is
fixed at κ for t > 1 + κ and is linear otherwise.

• Asymmetrical truncated pinball soft-margin loss function
[30] (truncated two side of pinball loss function):
`τ,κ,µATpin(t) = max{0, (1 + τ)(1− t)} − (max{0, τ(1−
t + κ)} + max{0, 1 − t − µ} − τκ) with 0 ≤ τ ≤ 1
and µ, κ ≥ 0. This function is non-differentiable at
t = 1 − µ, t = 1 + κ and t = 1 but bounded. The
penalty is fixed at τκ for t > 1 + κ and at µ for
t < 1− µ but is linear otherwise.

• Sigmoid soft-margin loss function [31]: `sigmoid(t) =
1/(1 + exp(−τ(1− t)) with τ > 0. It is a smooth and
bounded function. It penalizes all training samples.

• Other nonconvex and smooth soft-margin loss functions
include the smooth ramp soft-margin loss function
[32], savage loss [10] and One-sided cauchy soft-
margin loss function [3], [33].

• Other nonconvex and nonsmooth soft-margin loss func-
tions include the truncated logistic soft-margin loss
function [34], curriculum loss [11] and ε-insensitive
truncated least square soft-margin loss function [35].

Compared to convex soft-margin loss functions, most
nonconvex ones are less sensitive to feature noise or outliers
due to their boundedness. Apparently, nonconvexity would
lead to difficulties of computations in terms of solving the
corresponding SVM models [10], [11], [25]–[37].

3 OPTIMALITY THEORY OF L0/1-SVM

For convenience of our subsequent analysis, denote

A := [y1x1 y2x2 · · · ymxm]> ∈ Rm×n,
y := (y1, y2, · · · , ym)> ∈ Rm,
1 := (1, 1, · · · , 1)> ∈ Rm, (6)
u := 1−Aw − by ∈ Rm,

u+ := ((u1)+, · · · , (um)+)> ∈ Rm,

where t+ := max{t, 0}. Moreover, the zero-norm of the
vector u is denoted by ‖u‖0 which counts the number of its
non-zero elements. It is easy to see that ui = 1− yi〈w,xi〉−
yib = 1 − yif(xi) = 1 − ti, i ∈ Nm. Then the soft-margin
loss function `0/1(·) in (4) can be rewritten as

`0/1(ui) =

{
1, ui > 0,

0, ui ≤ 0,
i ∈ Nm. (4′)

This indicates
m∑
i=1

`0/1(1− yif(xi)) =
m∑
i=1

`0/1(ui)

= ‖u+‖0 =: L0/1(u). (7)

Hence, the function L0/1(u) = ‖u+‖0 computes the number
of all positive elements in u. We call it the L0/1 soft-margin
loss function. Borrowing these notation, the L0/1-SVM (3) is
equivalent to the following optimization problem,

min
w∈Rn,b∈R

f(w; b) :=
1

2
‖w‖2 + C‖(1−Aw − by)+‖0, (8)

or the following problem with an extra variable u,

min
w∈Rn,b∈R,u∈Rm

1

2
‖w‖2 + C‖u+‖0 (9)

s.t. u +Aw + by = 1.

Recall the sparse optimization problem minv∈Rm{g(v)+
C‖v‖0}, where C > 0 is a given penalty parameter and
g : Rm → R is smooth or nonsmooth function. Due to the
combinatorial nature of ‖v‖0, the above sparse optimization
problem is generally NP-hard. However, this problem has
wide applications in linear and nonlinear compressive sens-
ing, robust linear regression, deep learning, etc. Hence it has
been extensively studied by a lot of researchers in different
communities. More recently, by utilizing continuous opti-
mization theory, the optimality conditions and algorithms
for such a problem are successfully established by some
researchers in optimization community [38]–[43].

Observe the L0/1-SVM model (8) or (9). We found that it
has same structure as the above sparse optimization model
with difference between ‖(·)+‖0 and ‖(·)‖0. Similarly, by
utilizing continuous optimization theory, we do the opti-
mality analysis of (8) or (9) in this section.

3.1 Existence of L0/1-SVM Minimizer
Firstly, we show the existence of a global minimizer (a
minimizer is often phrased as an optimal solution) to (8),
a premise of the optimality condition of the L0/1-SVM.
Theorem 3.1. Given b ∈ I := [−M,M] with 0 < M < +∞.

Then the globally optimal solution to (8) exists and the
solution set is bounded.

The proof of Theorem 3.1 is given in Supplement S.1. For
any b ∈ I , since yi ∈ {−1, 1}, we have the following
observations

f(0; b) = C‖(1− by)+‖0 =

Cm−, b ≥ 1,
Cm+, b ≤ −1,
Cm, |b| < 1,

where m+ and m− are the number of positive and negative
yi. Therefore, let (w∗; b∗) be an optimal solution to (8) (such
a solution exists by Theorem 3.1), then

f(w∗; b∗) ≤ C min{m+,m−}.
In numerical experiments, this gives us a clue to set some
starting points (w0; b0) satisfying

f(w0; b0) ≤ C min{m+,m−}. (10)

3.2 First-Order Optimality Condition
From the perspective of optimization, establishing the opti-
mality conditions of an optimization problem is a key step
in theoretical analysis, because those conditions effectively
benefits for the algorithmic design. Now turn our attention
on the L0/1-SVM model (9).
Definition 3.1 (P-stationary point of (9)). For a given

C > 0, we say (w∗; b∗;u∗) is a proximal stationary (P-
stationary) point of (9) if there is a Lagrangian multiplier
λ∗ ∈ Rm and a constant γ > 0 such that

w∗ +A>λ∗ = 0,
〈y,λ∗〉 = 0,

u∗ +Aw∗ + b∗y = 1,
proxγC‖(·)+‖0(u∗ − γλ∗) = u∗,

(11)

4

where

[ProxγC‖(·)+‖0(z∗)]i =

{
0, 0 < z∗i ≤

√
2γC,

z∗i , z∗i >
√

2γC or z∗i ≤ 0,
(12)

and z∗ := u∗ − γλ∗. The above equation (12) is termed as
L0/1 proximal operator, whose solution has been derived in
Supplement S.2.

The L0/1 proximal operator is the key in the optimality
analysis (see Theorem 3.2 below) and algorithmic design
(see Section 4.2) of L0/1-SVM. Using the above definition,
we reveal the relationship between local/global minimizer
and a P-stationary point of L0/1-SVM. To proceed more, let

B := [A y] ∈ Rm×(n+1), H :=

[
In×n 0
0 0

]
B+, (13)

where B+ ∈ R(n+1)×m is the generalized inverse of B, and
λH := λmax(H>H) where λmax(H>H) is the maximum
eigenvalue of H>H. Thus, we have following theorem.
Theorem 3.2. The following relations hold for (9).

(i) A globally optimal solution is also a P-stationary
point with 0 < γ < 1/λH if B is full column rank.

(ii) A P-stationary point with γ > 0 is also a locally
optimal solution.

The proof of Theorem 3.2 is given in Supplement S.3. Note
that B being full column rank implies m > n, i.e., the
number of samples is greater than the number of features.
However, from Theorem 3.2 (ii), if we find a P-stationary
point of the problem (9), then it must be a locally op-
timal solution without any assumptions. No requirement
of m > n is enforced. Our numerical experiments testify
that our proposed algorithm based on the idea of the P-
stationary point works well for both cases: m > n and
m ≤ n.

3.3 Extension
In Section 3.2, we established the first-order optimality
condition for (9), i.e., (8), which is an unconstrained opti-
mization problem. This can be regarded as a special case of
the following general optimization model

min
u∈Rm

g(u) + C‖u+‖0, (14)

where C > 0 is a given penalty parameter and g : Rm → R
is a smooth function and gradient Lipschitz continuous with
a Lipschitz constant γg > 0.

Similarly, we introduce the proximal stationary point of
(14) as below.
Definition 3.2 (P-stationary point of (14)). For a given C >

0, we say u∗ is a proximal stationary (P-stationary) point
of problem (14) if there is a constant γ > 0 such that

u∗ = proxγC‖(·)+‖0(u∗ − γ∇g(u∗)), (15)

where, ∇g(·) is the gradient of g(·).

The following theorem reveals the relationship between a
local/global minimizer and a P-stationary point of (14),
whose the proof is similar to that of the Theorem 3.2 and
thus is omitted.
Theorem 3.3. For problem (14), the following relations hold.

(i) For a given C > 0, if u∗ is a global minimizer of (14)
then it is a P-stationary point with 0 < γ < 1/γg .

(ii) For a given C > 0, if g is convex and u∗ is a
P-stationary point with γ > 0, then it is a local
minimizer of (14).

The above two theorems state that under condition of
convexity, the P-stationary point must be a local minimizer,
which means that we could use the P-stationary point as a
termination rule in terms of guaranteeing the local optimal-
ity of a point generated by the algorithm proposed in next
section.

4 FAST ALGORITHM

It is well known that the classifier is decided by support
vectors, see (5). If support vectors is used to design the
solving algorithm, the fewer number of support vectors
is, the faster the computational speed will be since fewer
samples in training data are used to train the classifier.
Therefore, reducing the number of support vectors tends to
be important for datasets in extremely large sizes. Motivated
by this, we introduce L0/1 support vectors and working set
strategy based on the theory in Section 3.2 and adopt the fa-
mous alternating direction method of multipliers (ADMM)
to solve the L0/1-SVM (9).

4.1 L0/1 Support Vectors
Let (w∗; b∗;u∗) be a P-stationary point of problem (9). Then
from Definition 3.1, there is a Lagrangian multiplier λ∗ ∈
Rm and a constant γ > 0 such that (11) holds. Let

T∗ :=
{
i ∈ Nm : u∗i − γλ∗i ∈ (0,

√
2γC]

}
, (16)

and T ∗ := Nm\T∗ be its complementarity set. Let zT ∈
R|T | be the sub-vector of z indexed on T and |T | be the
cardinality of T . It follows from the last equation of (11) and
(12) that

u∗
(11)
= proxγC‖(·)+‖0(u∗ − γλ∗)

=

[
(proxγC‖(·)+‖0(u∗ − γλ∗))T∗
(proxγC‖(·)+‖0(u∗ − γλ∗))T∗

]
(12)
=

[
0T∗

(u∗ − γλ∗)T∗

]
.

which is equivalent to[
u∗T∗
λ∗
T∗

]
= 0. (17)

Then T∗ in (16) turns to

T∗ =

{
i ∈ Nm : λ∗i ∈

[
−
√

2C/γ, 0
)}

. (18)

This and (17) result in

λ∗i

{
∈ [−

√
2C/γ, 0), for i ∈ T∗,

= 0, for i ∈ T ∗.
(19)

Taking (19) into the first equation of (11) derives

w∗ = −A>T∗λ
∗
T∗ −A

>
T∗
λ∗
T∗

= −A>T∗λ
∗
T∗ =

∑
i∈T∗

− λ∗i yixi. (20)

5

Remark 4.1. Regarding the expression (20), we have the
following comments.

• Recall (5), where α∗ is a solution to the dual prob-
lem of (1). From the optimization perspective, the
Lagrangian multiplier −λ∗ actually is a solution to
the dual problem of (9). In such a sense, {xi : i ∈ T∗}
indeed are standard support vectors. While we call
them the L0/1 support vectors since they are selected
by the L0/1 proximal operator.

• Furthermore, the third equation in (11) implies 1 =
u∗T∗+(Aw∗+b∗y)T∗ = (Aw∗+b∗y)T∗ due to u∗T∗ = 0
by (17), which and the definition (6) of A yield

〈w∗,xi〉+ b∗ = ±1, for i ∈ T∗. (21)

Interestingly, the L0/1 support vectors must fall into
the support hyperplanes 〈w∗,x〉+b∗ = ±1. As far as
we know, the hard-margin SVM has such a property
for linearly separable datasets. For linearly insepa-
rable datasets, most soft-margin SVM can not guar-
antee this property. However, (21) is ensured by the
L0/1-SVM regardless of the datasets being separable
or inseparable. This phenomenon manifests that the
L0/1-SVM could render fewer support vectors than
the other soft-margin SVM models, which is also
certified by our numerical experiments.

The set T∗ in (18) gives us a clue to select support vectors,
which is very practical in the following algorithmic design.

4.2 L0/1ADMM via Selection of Working Set
In this subsection, we take advantages of ADMM and work-
ing set to solve the L0/1-SVM (9). We firstly give the frame-
work of ADMM as follows. The augmented Lagrangian
function of the problem (9) is given by

Lσ(w; b;u;λ) =
1

2
‖w‖2 + C‖u+‖0 + 〈λ,u− 1 +Aw + by〉

+
σ

2
‖u− 1 +Aw + by‖2,

where λ is the Lagrangian multiplier and σ > 0 is the
penalty parameter. Given the kth iteration (wk; bk;uk;λk),
the framework to update each component is as follows:

uk+1 = argmin
u∈Rm

Lσ(wk, bk,u,λk)

wk+1 = argmin
w∈Rn

Lσ(w, bk,uk+1,λk) + σ
2 ‖w −wk‖2Dk

bk+1 = argmin
b∈R

Lσ(wk+1, b,uk+1,λk)

λk+1 = λk + ησ(uk+1 − 1 +Awk+1 + bk+1y),

(22)

where η > 0 is the dual step-size. The proximal term is

‖w −wk‖2Dk = 〈w −wk, Dk(w −wk)〉.

Note that if Dk is positive semidefinite, then the above
framework is the standard semi-proximal ADMM [44].
However, authors in papers [45], [46] have also investi-
gated ADMM with the indefinite proximal terms, namely,
Dk is indefinite. The basic principle of choosing Dk is to
guarantee the convexity of w-subproblem of (22). Since
Lσ(w; bk;uk+1;λk) is strongly convex with respect to w,
Dk is flexible to be chosen as an indefinite matrix.

Now, let’s see how T∗ in (18) instructs to select the
support vectors. Denote zk := 1−Awk−bky−λk/σ. Define
a working set Tk at the kth step by

Tk :=
{
i ∈ Nm : zki ∈

(
0,
√

2C/σ
]}

(23)

and T k := Nm\Tk. Based on which, Dk is chosen as

Dk = −A>
Tk
ATk . (24)

Here, for a given set T ⊆ Nm, AT ∈ R|T |×n denotes the sub-
matrix containing rows of A indexed on T . The working set
Tk and the choice of Dk will tremendously speed up the
whole computation in each step of ADMM. More precisely,
we calculate each sub-problem in (22) as follows.
(i) Updating uk+1: The u-subproblem in (22) is equivalent
to the following problem

uk+1

= argmin
u∈Rm

C‖u+‖0 + 〈λk,u〉+
σ

2
‖u− 1 +Awk + bky‖2

= argmin
u∈Rm

C‖u+‖0 +
σ

2
‖u− zk‖2

= ProxC
σ ‖(·)+‖0

(zk),

where the last equation is from (12) with γ = 1/σ. This
together with (12) and the working set (23) suffices to

uk+1
Tk

= 0, uk+1

Tk
= zk

Tk
. (25)

Therefore, updating uk+1 turns to be very simple and fast.
(ii) Updating wk+1. The w-subproblem in (22) is

wk+1 = arg min
w∈Rn

1

2
‖w‖2 +

σ

2
‖w −wk‖2−A>

Tk
ATk

+〈λk, Aw〉+
σ

2
‖uk+1 − 1 +Aw + bky‖2. (26)

It is a convex quadratic programming problem. To solve
(26), we only need to find a solution to the equations

0 = w − σA>
Tk
ATk(w −wk) +A>λk

+ σA>(uk+1 − 1 +Aw + bky), (27)

which is equivalent to find a solution to the equations

(I + σA>TkATk)w = σA>Tkv
k
Tk
, (28)

where vk := −(uk+1 +bky−1+λk/σ). To derive (28) from
(27), we used two facts that uk+1

Tk
= zk

Tk
by (25) and

A>TkATk = A>A−A>
Tk
ATk .

Therefore, the term ATk vanishes in (28), which means the
working set Tk and the choice of Dk discard the samples
{xj , j ∈ T k}. This would fasten the computation signifi-
cantly if the selected |Tk| is very small. In practice, (28) can
be addressed efficiently by the following rules:

• If n ≤ |Tk|, one could solve (28) directly through

wk+1 = (I + σA>TkATk)−1σA>Tkv
k
Tk
. (29)

• If n > |Tk|, the Sherman-Morrison-Woodbury for-
mula [47] enables us to calculate the inverse as

(I + σA>TkATk)−1 = I − σA>Tk(I + σATkA
>
Tk

)−1ATk .

6

Then we update wk+1 by

wk+1 = σA>Tk(I + σATkA
>
Tk

)−1vkTk . (30)

(iii) Updating bk+1. The b-subproblem in (22) is a convex
quadratic programming

bk+1 = arg min
b∈R

〈λk, by〉+
σ

2
‖uk+1 − 1 +Awk+1 + by‖2.

which is solved by

bk+1 = 〈y, rk〉/‖y‖2 = 〈y, rk〉/m, (31)

where rk := −Awk+1 + 1− uk+1 − λk/σ.
(iv) Updating λk+1. We update λk+1 in (22) as follows

λk+1
Tk

= λkTk + ησ$k+1
Tk

, λk+1

Tk
= 0, (32)

where $k+1 := uk+1 − 1 + Awk+1 + bk+1y and setting
λk+1

Tk
= 0 follows the idea in (17), namely, the part of the

Lagrangian multiplier not on the working set is removed.
Overall, updating each subproblem is summarized into

Algorithm 1, which is called L0/1ADMM, an abbreviation for
L0/1-SVM solved by ADMM.

Algorithm 1 : L0/1ADMM for solving problem (9)

Initialize (w0; b0;u0;λ0). Set C, η, σ,K > 0 and k = 0.
while The halting condition does not hold and k ≤ K do

Update Tk as in (23).
Update uk+1 by (25).
Update wk+1 by (29) if n ≤ |Tk| and by (30) otherwise.
Update bk+1 by (31).
Update λk+1 by (32).
Set k = k + 1.

end while
return the final solution (wk, bk) to (9).

4.3 Convergence and Complexity Analysis
The following theorem shows that if the sequence generated
by L0/1ADMM has a limit point, then it must be a P-stationary
point and also a locally optimal solution to (9).
Theorem 4.1. Suppose (w∗; b∗;u∗;λ∗) be the limit point of

the sequence {(wk; bk;uk;λk)} generated by L0/1ADMM.
Then (w∗; b∗;u∗) is a P-stationary point with γ = 1/σ
and also a locally optimal solution to the problem (9).

The proof of Theorem 4.1 is given in Supplement S.4.
Based on the authors’ limited knowledge, the above conver-
gence result is difficult to improve, because our L0/1ADMM
deals with L0/1-SVM directly, whose objective function in-
volves a discrete part ‖(·)+‖0. As a supplement, we mention
some works on ADMM and its convergence analysis: for
solving nonconvex nonsmooth optimization problems, see,
e.g. [48]–[51]; for solving the nonconvex soft-margin loss
SVMs, see, e.g. [52], [53].

With regard to the computational complexity in each
iteration of the proposed algorithm L0/1ADMM, we have the
following observations:

• Updating Tk by (23) needs the complexity O(m).
• The main term involved in computing uk+1 by (25)

is Awk, taking the complexity about O(mn).

• To update wk+1, we compute (29) if n ≤ |Tk| and
(30) otherwise. For the former, the dominant compu-
tations are calculating

A>TkATk and (I + σA>TkATk)−1.

Their computational complexities are O(n2|Tk|) and
O(nκ) with κ ∈ (2, 3), respectively. For the latter, the
dominant computations are from

ATkA
>
Tk

and (I + σATkA
>
Tk

)−1

with the computational complexities O(n|Tk|2) and
O(|Tk|κ) with κ ∈ (2, 3), respectively. Therefore, the
complexity to update wk+1 in each step is

O(min{n2, |Tk|2}max{n, |Tk|}).

• Similarly, Awk+1 is the most expensive computation
in (31) to derive bk+1. Again its complexity isO(mn).

• Same as that of updating bk+1, achieving λk+1 by
(32) takes O(mn) complexity.

Overall, the whole computational complexity in each step
of L0/1ADMM in Algorithm 1 is

O
(
mn+ min{n2, |Tk|2}max{n, |Tk|}

)
.

If the selected working sets have low cardinalities |Tk| or n is
very small (i.e., n� m), L0/1ADMM possesses a considerably
low computational complexity.

With regard to non-asymptotic analysis for finding sta-
tionary points of nonsmooth nonconvex functions, see, e.g.
[54].

5 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to
show the sparsity, robustness and effectiveness of the
proposed L0/1ADMM (available at https://github.com/
Huajun-Wang/L01ADMM) by using MATLAB (2018b) on a
laptop of 32GB of memory and Inter Core i7 2.7Ghz CPU,
against nine leading solvers on synthetic data and real data.

Inspired by Theorem 3.2, the P-stationary point is taken
as a stopping criteria in the experiments. In the implemen-
tation, we terminate the proposed algorithm if the point
(wk; bk;uk;λk) closely satisfies the conditions in (11), i.e.,

max{θk1 , θk2 , θk3 , θk4} < tol,

where tol is the tolerance level and

θk1 :=
‖wk +A>Tkλ

k
Tk
‖

1 + ‖wk‖
, θk2 :=

|〈yTk ,λkTk〉|
1 + |Tk|

,

θk3 :=
‖uk − 1 +Awk + bky‖√

m
,

θk4 :=
‖uk − proxC/σ‖(·)+‖0(uk − λk/σ)‖

1 + ‖uk‖
.

(a) Parameters setting. In our algorithm, the parameters
C and σ control the number of support vectors (see (23)),
so tuning good choices of these two parameters is crucial.
Hence, the standard 10-fold cross validation is employed
in training datasets to select them, where C is picked from
{2−7, 2−6, · · · , 27} and σ is tuned from {a−7, a−6, · · · , a7}

https://github.com/Huajun-Wang/L01ADMM
https://github.com/Huajun-Wang/L01ADMM

7

with a =
√

2. The parameters with the highest cross valida-
tion accuracy are picked out. In addition, we set η = 1.618,
maximum iteration numberK = 103 and the tolerance level
tol= 10−3. For the starting points, set u0 = λ0 = 0. As
mentioned in Section 3.1, we choose w0 = 1/100 and b0 = 0
if it meets (10), and w0 = 0 and b0 = 1 (or −1) otherwise.

(b) Benchmark classifiers. There is an impressive body
of algorithms that have been developed to solve classifi-
cation problems. However, to conduct fair comparisons, we
only select nine solvers that were programmed by MATLAB.
Eight of them address the SVM problem and one deals with
the L2-regularized logistic regression problem. All their
parameters are also optimized by 10-fold cross validation
to maximize accuracy.

HSVM SVM with the hinge soft-margin loss is imple-
mented by LibSVM ([55], https://www.csie.
ntu.edu.tw/˜cjlin/libsvm/), where the pa-
rameter C is selected from Ω := {2−7, 2−6, · · · , 27}.

LSVM SVM with the square soft-margin loss [17] is imple-
mented by LibLSSVM ([56], https://www.esat.
kuleuven.be/sista/lssvmlab/), where the pa-
rameter C is selected from Ω.

PSVM SVM with the pinball soft-margin loss can
be tackled by the traversal algorithm ([57],
https://www.esat.kuleuven.be/stadius/
ADB/huang/softwarePINSVM.php), where C is
turned from a union of Ω and the one in [57] and τ
is set as {−1,−0.99, · · · , 0.99} from [57].

RSVM SVM with the ramp soft-margin loss can be ad-
dressed by CCCP ([27], https://github.com/
RampSVM/RSVM), where the core subproblem of
CCCP is solved by the MATLAB built-in function
quadprog, while C and µ are selected from Ω and
{0.1, 0.2, · · · , 1}.

SSVM SVM with the one-sided Cauchy soft-margin loss
is solved by the iteratively reweighted algorithm
(IRA [3], https://www.esat.kuleuven.be/
stadius/ADB/feng/softwareRSVC.php). The
key subproblem of IRA is solved by the CVX, and
both C and ν are tuned from Ω.

LOGI L2-regularized logistic regression is addressed by
employing Newton algorithm ([58], https://
github.com/tminka/logreg/), where the pa-
rameter C is selected from Ω.

PEGA SVM with the hinge soft-margin loss is solved
by employing Pegasos algorithm ([59], https://
github.com/bruincui/Pegasos), where the pa-
rameter C is selected from Ω. The mini-batch size is
1 and the maximum number of iterations is 2m.

SVRG SVM with the squared hinge soft-margin loss is
addressed by employing SVRG algorithm ([60],
https://github.com/codes-kzhan/SVRG-1/
blob/master/SVM/svm_SVRG.m) withC selected
from Ω. The mini-batch size is 1 and the number of
“passes” is S = 1. The default epoch length is 2m.

KATY SVM with the squared hinge soft-margin loss
is addressed by Katyusha algorithm ([61],
https://github.com/codes-kzhan/SVRG-1/
blob/master/SVM/svm_Katyusha.m) with all
parameters selected the same as these for SVRG.

In addition, all other parameters of the above nine algo-
rithms are set to their default values.

(c) Evaluation criteria. To evaluate classification per-
formance, we report five evaluation criteria: the testing
accuracy (ACC), the number of support vectors (NSV), the
size of working set per iteration (SWS/ITER), the total
number of iterations (TNI) and the CPU time (CPU). Let
{(xtest

j , ytestj) : j = 1, · · · ,mt} be the testing samples data.
The testing accuracy is defined as follows

ACC := 1− 1

2mt

mt∑
j=1

∣∣∣sign(〈w∗,xtest
j 〉+ b∗)− ytestj

∣∣∣,
where sign(a) = 1 if a > 0 and sign(a) = −1 otherwise, and
(w∗, b∗) is a solution obtained by one solver. The accuracy
measures the ability of a solver to correctly predict the class
labels of new input samples. The higher ACC (or the smaller
NSV, SWS/ITER, TNI or CPU) is, the better performance of
a solver delivers.

5.1 Comparisons with Synthetic Data

For visualization, we first consider a two-dimensional ex-
ample, where the features come from Gaussian distributions
[14], [57]. One can observe that L0/1ADMM performs extraor-
dinarily in terms of delivering a considerably small number
of support vectors.

Example 5.1 (Synthetic data in R2 without outliers).
In this example, m samples xi, i ∈ Nm with positive
labels yi = +1 are drawn from N(µ1,Σ1) and sam-
ples xi with negative labels yi = −1 are drawn from
N(µ2,Σ2), where µ1 = [0.5,−3]>,µ2 = [−0.5, 3]> and

Σ1 = Σ2 =

[
0.2 0
0 3

]
. We generate 2m samples with

two classes having equal numbers, and then evenly split
all samples into a training set and a testing set.

Data generated in this way has centralized features of each
class. For this example, the corresponding Bayes classifier
is 2.5x1 − x2 + 0 = 0. We display Bayes classifier and
200 training samples in Figure 1 (a), where samples are no
extra noises contaminated. We then add outliers on the data
generated in Example 5.1 as follows.

Example 5.2 (Synthetic data in R2 with outliers). Firstly,
2m samples with two classes having equal numbers are
generated as in Example 5.1. Then in each class, we
randomly flip r percentage of labels. For instance, in m
samples with positive labels +1, we change mr labels to
−1. This means r percentage of 2m samples are flipped
their labels, namely 2rm outliers are generated. Here r
is the flapping ratio. Finally, the 2m samples are evenly
split into a training set and a testing set. In Figure 1 (b),
the training set with r=10% outliers are presented.

To solve these two examples, ten solvers are applied to
calculate the classifier w1x1 + w2x2 + b = 0. Since data
are generated randomly, to avoid randomness, we report
average results of ACC, NSV, SWS/ITER, TNI and CPU over
10 times.

(d) Synthetic data without outliers. Ten solvers are ap-
plied to solve Example 5.1 with both the training and testing
sample sizes being m ∈ {2000, 4000, · · · , 10000}. Average

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.esat.kuleuven.be/sista/lssvmlab/
https://www.esat.kuleuven.be/sista/lssvmlab/
https://www.esat.kuleuven.be/stadius/ADB/huang/softwarePINSVM.php
https://www.esat.kuleuven.be/stadius/ADB/huang/softwarePINSVM.php
https://github.com/RampSVM/RSVM
https://github.com/RampSVM/RSVM
https://www.esat.kuleuven.be/stadius/ADB/feng/softwareRSVC.php
https://www.esat.kuleuven.be/stadius/ADB/feng/softwareRSVC.php
https://github.com/tminka/logreg/
https://github.com/tminka/logreg/
https://github.com/bruincui/Pegasos
https://github.com/bruincui/Pegasos
https://github.com/codes-kzhan/SVRG-1/blob/master/SVM/svm_SVRG.m
https://github.com/codes-kzhan/SVRG-1/blob/master/SVM/svm_SVRG.m
https://github.com/codes-kzhan/SVRG-1/blob/master/SVM/svm_Katyusha.m
https://github.com/codes-kzhan/SVRG-1/blob/master/SVM/svm_Katyusha.m

8

-2 -1 0 1 2 3

x
1

-10

-5

0

5

10

x 2

Positive
Negative
Bayes

(a)

-2 -1 0 1 2 3

x
1

-10

-5

0

5

10

x 2

Positive
Negative
Noise
Bayes

(b)

Fig. 1: (a) A two dimensional training set with 200 samples.
(b) Data in (a) but with r=10% outliers. Blue stars: sampling
samples in class −1. Red crosses: sampling samples in class
+1. Red dashed lines: the Bayes classifier.

results are reported in Table 1, where ”−−” represents that
the results are not obtained if one solver takes time longer
than two hour (denote ”> 2h”) or the required memory is
out of the capacity of our laptop (denote ”∗∗”), and ”3(8)”
means the number of outer iterations (the average number
of inner subproblem iterations). It can be clearly seen that
all algorithms achieve desirable ACC and L0/1ADMM gets
slightly better ones. When it comes to NSV, the result is
significant different. Obviously, LSVM, PSVM and LOGI take
all samples as the support vectors, while HSVM, RSVM, SSVM,
PEGA, SVRG and KATY have a small number of the support
vectors. It is evidently that L0/1ADMM uses a considerably
small number of the support vectors. As for SWS/ITER and
TNI, LSVM, PSVM, RSVM, SSVM and LOGI take all samples
as the working set, while most of them use a small TNI ex-
cept for PSVM. By contrast, L0/1ADMM and others select a
very small portion of samples as the working set, and
L0/1ADMM uses a small TNI (no more than 50 for all cases).
Because of this, L0/1ADMM consumes the shortest CPU time.

(e) Synthetic data with outliers. For Example 5.2, we
fix m = 5000, n = 2 while alter the flapping ratio r
from {0, 0.05, 0.1, 0.15, 0.2} to see the robustness of each
method to outliers. Average results are presented in Table 2.
Apparently, the more outliers, the smaller ACC for each
solver. There is no big difference of ACC generated by ten
solvers. Again, L0/1ADMM gets slightly better ACC, being
more robust to outliers than the others. Similar observations
to that in Table 1 can be seen for NSV, SWS/ITER and TNI.
Moreover, the more outliers are added, the more examples
become support vectors for HSVM, SSVM, PEGA, SVRG and
KATY, and bigger values of TNI are generated by HSVM and
PSVM. By contrast, L0/1ADMM makes use of fewer support
vectors, SWS/ITER and TNIwhen more outliers are added.
Not surprisingly, L0/1ADMM again runs the fastest.

5.2 Comparisons with Real Data
We now apply these solvers to deal with 14 real datasets.
Their information are presented in Table 3, where the last
six datasets have the testing data.
Example 5.3 (Real data without outliers). We perform 10-

fold cross validation for the first eight datasets. Each one
is randomly split into ten parts, with one part being used
for testing and the rest being used for training. We then
record average results to evaluate performance. In our
experiments, all features are scaled to [−1, 1].

Example 5.4 (Real data with outliers). To see the influence
of the real data with outliers, we select six datasets from

TABLE 1: Comparisons of 10 solvers for solving Exam-
ple 5.1, where L0/1 stands for L0/1ADMM.

ACC (%)
m L0/1 HSVM LSVM PSVM RSVM SSVM LOGI PEGA SVRG KATY

2000 97.05 97.05 97.00 97.05 97.05 97.05 97.03 97.01 97.05 97.05
4000 97.35 97.25 97.30 97.30 97.33 97.32 97.25 97.26 97.33 97.35
6000 97.33 97.28 97.33 97.24 97.33 −− 97.22 97.16 97.33 97.30
8000 96.96 96.91 96.89 96.91 96.96 −− 96.96 96.93 96.94 96.96
10000 97.20 97.18 97.16 97.19 97.20 −− 97.18 97.16 97.18 97.18

NSV
2000 7 187 2000 2000 96 146 2000 198 184 192
4000 10 301 4000 4000 141 289 4000 325 332 295
6000 18 439 6000 6000 201 −− 6000 453 444 452
8000 26 571 8000 8000 223 −− 8000 566 579 563
10000 22 658 10000 10000 240 −− 10000 669 675 648

SWS/ITER
2000 22 2 2000 2000 2000 2000 2000 1 1 1
4000 31 2 4000 4000 4000 4000 4000 1 1 1
6000 35 2 6000 6000 6000 6000 6000 1 1 1
8000 38 2 8000 8000 8000 8000 8000 1 1 1
10000 46 2 10000 10000 10000 10000 10000 1 1 1

TNI
2000 20 259 14 1216 3(8) 2(13) 8 4000 4000 4000
4000 28 463 14 2325 3(16) 3(18) 9 8000 8000 8000
6000 34 639 15 3750 4(15) −− 9 12000 12000 12000
8000 40 772 16 5247 4(21) −− 9 16000 16000 16000
10000 47 961 16 6326 5(23) −− 10 20000 20000 20000

CPU (seconds)
2000 0.002 0.014 0.221 9.642 3.969 132.5 0.034 0.028 0.024 0.025
4000 0.006 0.022 0.626 67.58 16.29 2043 0.112 0.089 0.087 0.088
6000 0.008 0.036 1.200 209.9 31.44 > 2h 0.204 0.133 0.126 0.131
8000 0.013 0.069 2.342 493.2 65.25 > 2h 0.536 0.194 0.185 0.188
10000 0.018 0.094 3.951 775.3 124.7 > 2h 0.938 0.281 0.266 0.268

small sizes to moderate sizes in Table 3. They are col,
aus, two, mus, adu and a6a. Same processes as in
Example 5.3 are then applied into the first five datasets.
Finally, r percentage of training and testing samples are
randomly treated as outliers (i.e., their labels are flipped).

(f) Real data without outliers. The average results are
recorded in Table 4, where “> 3e5” represents the number
greater than 300000. It can be clearly seen that L0/1ADMM
outperforms the others in terms of the highest ACC, small-
est NSV and shortest CPU for most datasets, and uses a
small SWS/ITER and TNI. For instance, L0/1ADMM predicts
more than 90% samples correctly for col whilst HSVM and
PSVM only get less than 80% correct predictions. Compared
with those generated by the other nine solvers, NSV from
L0/1ADMM is relatively small. As for SWS/ITER, L0/1ADMM
takes a small samples as the working set, which testifies
that our constructed working set strategy is very effective to
reduce the cost of per iteration. As for TNI, L0/1ADMM uses
a few TNI compared with PSVM, PEGA, SVRG and KATY.
For the computational speed, PEGA, SVRG and KATY present
the advantage of CPU for dealing with small scale datasets.
The L0/1ADMM runs super fast for datasets in big sizes, 0.573
seconds v.s. 36.95 seconds by HSVM for data ijc. In addition,
it only needs 14.26 seconds for the dataset hig with more
than ten million samples. Overall, it seems that the bigger
m is, the more evident the advantage of L0/1ADMM becomes.

(g) Real data with outliers. Finally, we would like to
see the robustness of each solver to the outliers for real

9

TABLE 2: Comparisons of 10 solvers for solving Example 5.2
ACC (%)

r L0/1 HSVM LSVM PSVM RSVM SSVM LOGI PEGA SVRG KATY

0.00 97.16 97.08 97.10 97.16 97.16 97.12 97.08 97.03 97.16 97.16
0.05 92.65 92.46 92.50 92.60 92.65 92.57 92.58 92.54 92.30 92.35
0.10 87.98 87.78 87.78 87.90 87.90 87.90 87.70 87.68 87.46 87.45
0.15 83.06 82.86 82.80 82.98 83.06 83.04 82.93 82.98 82.88 82.88
0.20 78.30 78.16 78.12 78.28 78.28 78.20 78.16 78.21 78.17 78.18

NSV
0.00 21 364 5000 5000 184 329 5000 372 359 357
0.05 20 947 5000 5000 175 874 5000 942 953 945
0.10 17 1385 5000 5000 170 1015 5000 1365 1373 1389
0.15 16 1795 5000 5000 161 1657 5000 1790 1781 1792
0.20 13 2160 5000 5000 137 1989 5000 2177 2175 2187

SWS/ITER
0.00 34 2 5000 5000 5000 5000 5000 1 1 1
0.05 31 2 5000 5000 5000 5000 5000 1 1 1
0.10 30 2 5000 5000 5000 5000 5000 1 1 1
0.15 28 2 5000 5000 5000 5000 5000 1 1 1
0.20 27 2 5000 5000 5000 5000 5000 1 1 1

TNI
0.00 32 584 15 3042 3(25) 3(21) 9 10000 10000 10000
0.05 30 3726 15 3126 4(18) 3(21) 9 10000 10000 10000
0.10 29 5128 15 3268 4(17) 3(21) 9 10000 10000 10000
0.15 26 8423 15 3373 5(13) 3(21) 9 10000 10000 10000
0.20 25 10776 15 3443 5(13) 3(21) 9 10000 10000 10000

CPU (seconds)
0.00 0.008 0.027 0.801 93.11 22.53 4047 0.149 0.117 0.108 0.112
0.05 0.008 0.075 0.823 101.3 20.99 4069 0.131 0.119 0.114 0.115
0.10 0.006 0.123 0.853 105.4 19.43 4084 0.147 0.118 0.111 0.112
0.15 0.005 0.172 0.885 108.3 18.96 4092 0.152 0.118 0.110 0.111
0.20 0.005 0.236 0.898 110.6 18.41 4094 0.165 0.119 0.115 0.116

TABLE 3: Descriptions of 14 real datasets.

Training data Testing data Features
Datasets m mt n
Colon-cancer (col) 62 0 2000
Australian (aus) 690 0 14
Two-norm (two) 7400 0 20
Mushrooms (mus) 8124 0 112
Adult (adu) 17887 0 13
Covtype.binaty (cov) 581012 0 54
SUSY (sus) 5000000 0 18
HIGGS (hig) 11000000 0 28
Lekemia (lek) 38 34 7129
Splice (spl) 1000 2175 60
A6a (a6a) 11220 21341 123
W6a (w6a) 17188 32561 300
W8a (w8a) 49749 14951 300
ijcnn1 (ijc) 49990 91701 22

datasets in Example 5.4. Again we alter the flapping ratio r
from {0.01, 0.02, · · · , 0.1}. It is shown in Table 4 that SSVM
takes too long time for datasets: two, mus, adu and a6a.
Therefore, its results related to these datasets are omitted.
All lines of ACC shown in Figure 2 decline with r ascending,
and L0/1ADMM achieves the highest ACC. As for NSV in
Figure 3, LSVM, PSVM and LOGI always treat all samples
as support vectors. HSVM, SSVM, PEGA, SVRG and KATY
increase NSV with the rising of r. Lines from L0/1ADMM and
RSVM either decline or stabilize at a level with the rising of
r, which means they are quite robust to r, namely robust
to the outliers. What is more, L0/1ADMM always renders
the fewest NSV. As for SWS/ITER in Figure 4, with the

TABLE 4: Comparisons of 10 solvers for solving Example 5.3
ACC (%)

Data L0/1 HSVM LSVM PSVM RSVM SSVM LOGI PEGA SVRG KATY
col 90.23 64.52 85.48 77.69 89.68 85.87 86.74 89.68 89.68 89.68
aus 86.23 85.51 85.80 85.80 86.02 85.98 86.18 86.04 86.18 86.23
lek 82.35 58.82 79.41 58.82 76.47 82.35 82.35 82.35 82.35 82.35
spl 85.52 88.97 85.75 85.52 85.47 85.47 85.15 84.18 85.44 85.33
two 98.37 98.02 97.97 97.97 98.24 −− 97.78 98.10 98.37 98.24
mus 100.0 100.0 100.0 100.0 100.0 −− 100.0 100.0 100.0 100.0
adu 83.90 83.29 83.01 83.07 83.79 −− 82.95 83.29 83.34 83.90
a6a 84.90 84.18 84.55 84.69 84.72 −− 84.76 84.36 84.72 84.78
w6a 97.93 97.21 97.58 97.21 97.86 −− 95.13 97.24 97.61 97.57
w8a 98.54 98.27 −− −− −− −− −− 97.43 97.57 97.59
ijc 94.33 92.73 −− −− −− −− −− 93.49 93.35 93.56
cov 71.79 −− −− −− −− −− −− 68.93 69.83 69.77
sus 67.58 −− −− −− −− −− −− 64.28 65.62 65.86
hig 65.21 −− −− −− −− −− −− 58.12 59.13 59.46

NSV
col 34 46 54 54 38 40 54 46 45 46
aus 24 203 621 621 89 177 621 198 195 202
lek 26 31 38 38 29 31 38 33 34 31
spl 70 607 1000 1000 87 332 1000 632 615 612
two 30 758 6600 6600 108 −− 6600 783 775 788
mus 135 550 7311 7311 506 −− 7311 578 575 568
adu 113 6379 16098 16098 1247 −− 16098 6407 6386 6394
a6a 370 4346 11220 11220 1247 −− 11220 4562 4575 4582
w6a 429 1128 17188 17188 946 −− 17188 1146 1152 1138
w8a 867 2857 −− −− −− −− −− 2582 2579 2561
ijc 215 8508 −− −− −− −− −− 8535 8612 8608
cov 137 −− −− −− −− −− −− >3e5 >3e5 >3e5
sus 730 −− −− −− −− −− −− >2e6 >2e6 >2e6
hig 1338 −− −− −− −− −− −− >5e6 >5e6 >5e6

SWS/ITER
col 37 2 54 54 54 54 54 1 1 1
aus 66 2 621 621 621 621 621 1 1 1
lek 29 2 38 38 38 38 38 1 1 1
spl 94 2 1000 1000 1000 1000 1000 1 1 1
two 136 2 6600 6600 6600 −− 6600 1 1 1
mus 772 2 7311 7311 7311 −− 7311 1 1 1
adu 1105 2 16098 16098 16098 −− 16098 1 1 1
a6a 569 2 11220 11220 11220 −− 11220 1 1 1
w6a 656 2 17188 17188 17188 −− 17188 1 1 1
w8a 1284 2 −− −− −− −− −− 1 1 1
ijc 829 2 −− −− −− −− −− 1 1 1
cov 1520 −− −− −− −− −− −− 1 1 1
sus 2814 −− −− −− −− −− −− 1 1 1
hig 3225 −− −− −− −− −− −− 1 1 1

TNI
col 30 41 2 31 2(2) 2(4) 4 108 108 108
aus 25 423 17 869 2(7) 3(26) 6 1242 1242 1242
lek 18 89 2 42 2(2) 3(17) 25 76 76 76
spl 63 595 28 1276 2(9) 4(28) 9 2000 2000 2000
two 50 660 75 3417 4(11) −− 12 13200 13200 13200
mus 21 1623 106 3685 4(12) −− 18 14622 14622 14622
adu 26 4766 157 7720 5(21) −− 15 32196 32196 32196
a6a 183 3032 289 6873 5(27) −− 16 22440 22440 22440
w6a 121 1450 404 14417 7(32) −− 28 34376 34376 34376
w8a 195 8124 −− −− −− −− −− 99498 99498 99498
ijc 146 6681 −− −− −− −− −− 99980 99980 99980
cov 103 −− −− −− −− −− −− 1.05e6 1.05e6 1.05e6
sus 117 −− −− −− −− −− −− 9.0e6 9.0e6 9.0e6
hig 124 −− −− −− −− −− −− 1.98e7 1.98e7 1.98e7

CPU (seconds)
col 0.021 0.009 0.001 0.010 0.003 1.488 0.182 0.015 0.012 0.014
aus 0.005 0.014 0.033 0.874 0.650 87.23 0.021 0.004 0.004 0.004
lek 0.072 0.057 0.004 0.010 0.008 54.36 36.10 0.029 0.024 0.026
spl 0.043 0.117 0.083 7.976 0.631 384.2 0.151 0.036 0.032 0.033
two 0.054 0.265 2.506 516.7 139.2 > 2h 1.591 0.171 0.164 0.166
mus 0.074 0.997 3.419 769.5 153.4 > 2h 6.942 0.422 0.412 0.416
adu 0.576 3.775 24.58 1633.4 1013.2 > 2h 5.032 0.775 0.732 0.744
a6a 0.172 4.405 40.64 1472.5 1037.3 > 2h 6.046 1.083 1.025 1.031
w6a 0.226 1.532 170.9 5947.2 2747.4 > 2h 41.21 1.314 1.186 1.232
w8a 2.576 64.33 ∗∗ ∗∗ > 2h > 2h ∗∗ 4.863 4.227 4.316
ijc 0.573 36.95 ∗∗ ∗∗ > 2h > 2h ∗∗ 1.526 1.247 1.316
cov 3.870 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 14.37 13.88 13.91
sus 10.38 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 137.6 132.4 133.7
hig 14.26 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 281.3 269.5 270.1

10

rising of r, L0/1ADMM stabilizes at a level for all datasets. As
for TNI in Figure 5, all algorithms no big difference with
the ascending of r except for HSVM. For the computational
speed, as demonstrated in Figure 6, L0/1ADMM outperforms
the others for all datasets except for col and aus which
have a very small size.

6 CONCLUSION

In this paper, we have explored an ideal soft-margin SVM
model: L0/1-SVM, which well captures the nature of the
binary classification and guarantees a fewer number of
support vectors than the other soft-margin SVM models. De-
spite the discreteness of the L0/1-SVM, the establishment of
the optimality theory, associated with the P-stationary point,
makes it tractable numerically. Based on the idea of L0/1

support vectors inspired by the P-stationary point, a work-
ing set was cast and integrated into the proximal ADMM,
which tremendously speeds up the whole computation and
reduces the number of support vectors. Consequently, the
proposed method performed exceptionally well with fewer
support vectors and faster computational speed, especially
for datasets on large scales.

We feel that the established methodology and techniques
might be able to extend to process the nonlinear kernel
SVMs [62]–[64] and problems from perception learning [4]
and deep learning [5]. We leave these as future research.

ACKNOWLEDGEMENTS

The authors would like to thank the associate editor and
three anonymous referees for their constructive comments,
which have significantly improved the quality of the pa-
per. This work is supported by the National Natural Sci-
ence Foundation of China (11971052, 11926348-9, 61866010,
11871183), and the Natural Science Foundation of Hainan
Province (120RC449).

0 2 4 6 8 10

r (%)

0.65

0.7

0.75

0.8

0.85

0.9
Col

L
0/1
ADMM

HSVM

LSVM

PSVM

RSVM

SSVM

LOGI

PEGA

SVRG

KATY

0 2 4 6 8 10

r (%)

0.81

0.82

0.83

0.84

0.85

0.86

Aus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

0.9

0.94

0.98

Two
L

0/1
ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

0.9

0.95

1
Mus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

0.76

0.78

0.8

0.82

0.84

0.86
A6a

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

0.76

0.78

0.8

0.82

0.84
Adu

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

Fig. 2: ACC vs. r of all solvers for solving six datasets.

0 2 4 6 8 10

r (%)

30

35

40

45

50

Col

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

101

102

103
Aus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

101

102

103

104
Two

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

102

103

104
Mus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

103

104
A6a

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

102

103

104

Adu

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

Fig. 3: NSV vs. r of all solvers for solving six datasets.

0 2 4 6 8 10

r (%)

100

101

102
Col

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103
Aus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103

104
Two

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103

104
Mus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103

104

105
A6a

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103

104

105
Adu

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

Fig. 4: SWS/ITER vs. r of all solvers for solving six datasets.

REFERENCES

[1] C. Cortes and V. Vapnik, ”Support vector networks”, Mach. Learn.,
vol. 20, no. 3, pp. 273-297, 1995.

[2] J. P. Brooks, ”Support vector machines with the ramp loss and the
hard margin loss”, Oper. Res., vol. 59, no. 2, pp. 467-479, 2011.

[3] Y. L. Feng, Y. N. Yang, X. L. Huang, S. Mehrkanoon, and J. A. K.
Suykens, ”Robust support vector machines for classification with
nonconvex and smooth losses”, Neural Comput., vol. 28, no. 6, pp.
1217-1247, 2016.

[4] L. Li and H. T. Lin, ”Optimizing 0/1 loss for perceptrons by
random coordinate descent”, in Proc. IEEE Int. Joint Conf. Neural
Netw., 2007, pp. 649-654.

[5] I. Goodfellow, B. Yoshua, and C. Aaron, ”Deep learning”,MIT
press, 2016.

[6] W. H. Hu, G. Niu, I. Sato, and M. Sugiyama, ”Does distributionally
robust supervised learning give robust classifiers?”, in Proc. 35th
Int. Conf. Mach. Learn., pp. 2029-2037, 2018.

11

0 2 4 6 8 10

r (%)

100

101

102
Col

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103
Aus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103

104

105
Two

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103

104

105
Mus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103

104

105
A6a

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

100

101

102

103

104

105
Adu

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

Fig. 5: TNI vs. r of all solvers for solving six datasets.

0 2 4 6 8 10

r (%)

10-3

10-2

10-1

100

Col
L

0/1
ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

10-3

10-2

10-1

100

101

102
Aus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
SSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

10-2

10-1

100

101

102

103
Two

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

10-2

10-1

100

101

102

103
Mus

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

10-1

100

101

102

103

104
A6a

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

0 2 4 6 8 10

r (%)

10-1

100

101

102

103

104
Adu

L
0/1

ADMM

HSVM
LSVM
PSVM
RSVM
LOGI
PEGA
SVRG
KATY

Fig. 6: CPU vs. r of all solvers for solving six datasets.

[7] B. K. Natarajan,” Sparse approximate solutions to linear systems”,
SIAM J. Comput., vol. 24, no. 2, pp. 227-234, 1995.

[8] E. Amaldi and V. Kann, ”On the approximability of minimizing
nonzero variables or unsatisfied relations in linear systems”, Theor.
Comput. Sci., vol. 209, no. 1, pp. 237-260, 1998.

[9] A. Cotter, S. Shalev-Shwartz, and N. Srebro, ”Learning optimally
sparse support vector machines”, in Proc. Int. Conf. Mach. Learn.,
2013, pp. 266-274.

[10] H. Masnadi-Shirazi and N. Vasconcelos, ”On the design of loss
functions for classification: theory, robustness to outliers, and
savageboost”, in Proc. Int. Conf. Neural Inf. Process. Syst., pp. 1049-
1056, 2009.

[11] Y. M. Lyu and W. I. Tsang, ”Curriculum loss: robust learn-
ing and generalization against label corruption”, arXiv preprint
arXiv:1905.10045, 2019.

[12] B. Schoelkopf and A. J. Smola,” Learning with kernels”, MIT Press,
2002.

[13] V. Jumutc, X. Huang, and J. A. K. Suykens, ”Fixed-size pegasos for

hinge and pinball loss SVM”, in Proc. IEEE Int. Joint Conf. Neural
Netw.,pp. 1-7, 2013.

[14] X. Huang, L. Shi, and J. A. K. Suykens, ”Support vector machine
classifier with pinball loss”, IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 5, pp. 984-997, 2014.

[15] L. Wang, J. Zhu, and H. Zou, ”Hybrid huberized support vector
machines for microarray classification”, Bioinformatics, vol. 24, no.
3, pp. 412-419, 2008.

[16] Y. Xu, I. Akrotirianakis, and A. Chakraborty, ”Proximal gradient
method for huberized support vector machine”, Pattern Anal.
Appl., vol. 19, no. 4, pp. 989-1005, 2016.

[17] J. A. K. Suykens and J. Vandewalle, ”Least squares support vector
machine classifiers”, Neural Process. Lett., vol. 9, no. 3, pp. 293-300,
1999.

[18] X. Yang, L. Tan, and L. F. He, ”A robust least squares support
vector machine for regression and classification with noise”, Neu-
rocomputing, vol. 140, pp. 41-52, 2014.

[19] T. Zhang and F. J. Oles, ”Text categorization based on regularized
linear classification methods”, Information Retrieval, vol. 4, no. 1,
pp. 5-31, 2008.

[20] J. Friedman, T. Hastie, and R. Tibshirani, ”Additive logistic regres-
sion: a statistical view of boosting”, Ann. Stat., vol. 28, no. 2, pp.
337-374, 2000.

[21] P. L. Bartlett and H. W. Marten, ”Classification with a reject option
using a hinge loss”, J. Mach. Learn. Res. vol. 9, no. 8, pp. 1823-1840,
2008.

[22] P. L. Bartlett, M. I. Jordan, and J. D. Mcauliffe, ”Large margin
classifiers: convex loss, low noise, and convergence rates”, in Proc.
Int. Conf. Neural Inf. Process. Syst., pp. 1173-1180, 2004.

[23] P. L. Bartlett, M. I. Jordan, and J. D. Mcauliffe, ”Convexity, classifi-
cation, and risk bounds”, J. Am. Stat. Assoc., vol. 101, no. 473, pp.
138-156, 2006.

[24] J. H. Friedman, ”On bias, variance, 0/1-loss, and the curse-of-
dimensionality”, Data Min. Knowl. Discov., vol. 1, no. 1, pp. 55-77,
1997.

[25] L. Mason, P. L. Bartlett, and J. Baxter, ”Improved generalization
through explicit optimization of margins,” Mach. Learn., vol. 38,
no. 3, pp. 243-255, 2000.

[26] F. Perez-Cruz, A. Navia-Vazquez, A. R. Figueiras-Vidal, and A.
Artes-Rodriguez, ”Empirical risk minimization for support vector
classifiers”, IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 296-303,
2003.

[27] R. Collobert, F. Sinz, J. Weston, L. Bottou, ”Trading convexity for
scalability”, in Proc. 23th Int. Conf. Mach. Learn., 2006, pp. 201-208.

[28] X. Huang, L. Shi, and J. A. K. Suykens, ”Ramp loss linear pro-
gramming support vector machine”, J. Mach. Learn. Res., vol. 15,
no. 1, pp. 2185-2211, 2014.

[29] X. Shen, L. F. Niu, Z. Qi, and Y. J. Tian, ”Support vector machine
classifier with truncated pinball loss”, Pattern Recognit., vol. 68, pp.
199-210, 2017.

[30] L. M. Yang and H. G. Dong, ”Support vector machine with
truncated pinball loss and its application in pattern recognition”,
Chemometrics Intell. Lab. Syst., vol. 177, pp. 89-99, 2018.

[31] F. Perez-Cruz, A. Navia-Vazquez, P. L. Alarcon-Diana, and A.
Artes-Rodriguez, ”Support vector classifier with hyperbolic tan-
gent penalty function”, in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., pp. 3458-3461, 2000.

[32] L. Wang, H. D. Jia, and J. Li, ”Training robust support vector ma-
chine with smooth ramp loss in the primal space”, Neurocomputing,
vol. 71, no. 13, pp. 3020-2025, 2008.

[33] I. Steinwart and A. Christmann, ”Support vector machines”, New
York: Springer, 2008.

[34] S. Y. Park and Y. F. Liu, ”Robust penalized logistic regression with
truncated loss functions”, Canadian Journal of Statistics, vol. 39, no.
2, pp. 300-323, 2011.

[35] D. L. Liu, Y. Shi, Y. J. Tian, and X. K. Huang, ”Ramp loss least
squares support vector machine”, J. Comput. Sci., vol. 14, pp. 61-
68, 2016.

[36] I. Steinwart and N. Christianini, ”Sparseness of support vector
machines”, J. Mach. Learn. Res., vol. 4, no. 6, pp. 1071-1105, 2004.

[37] S. Ertekin, L. Bottou, and C. L. Giles, ”Nonconvex online support
vector machines”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 4, pp. 368-381, 2010.

[38] T. Blumensath and M. E. Davies, ”Iterative thresholding for sparse
approximations”, J. Fourier Anal.Appli., vol. 14, no. 5-6, pp. 629-654,
2008.

12

[39] T. Blumensath and M. E. Davies, ”Iterative hard thresholding for
compressed sensing”, Appl. Comput. Harmonic Anal., vol. 27, no. 3,
pp. 265-274, 2009.

[40] Z. Lu and Y. Zhang, ”Sparse approximation via penalty decom-
position methods”, SIAM J. Optim., vol. 23, no. 4, pp. 2448-2478,
2013.

[41] Z. S. Lu, ”Iterative reweighted minimization methods for lp-
regularized unconstrained nonlinear programming”, Math. Pro-
gram., vol. 147, no.1-2, pp. 277-307, 2014.

[42] A. Beck and N. Hallak, ”Proximal mapping for symmetric penalty
and sparsity”, SIAM J. Optim., vol. 28, no. 1, pp. 496-527, 2018.

[43] H. Zhang, L. L. Pan, and N. H. Xiu, ”Optimality conditions for
locally Lipschitz optimization with l0-regularization”, Optim. Lett.,
DOI: 10.1007/s11590-020-01579-y, 2020.

[44] M. Fazel, T. K. Pong, D. F. Sun, and P. Tseng, ”Hankel matrix
rank minimization with applications to system identification and
realization”, SIAM J. Matrix Anal. Appl., vol. 34, no. 3, pp. 946-977,
2013.

[45] M. Li, D. F. Sun, and K. C. Toh, ”A majorized ADMM with in-
definite proximal terms for linearly constrained convex composite
optimization”, SIAM J. Optim., vol. 26, no. 2, pp. 922-950, 2016.

[46] X. Chang, S. Liu, P. Zhao, and D. Song, ”A generalization of
linearized alternating direction method of multipliers for solv-
ing two-block separable convex programming”, J. Comput. Appl.
Math., vol. 357, no. 2, pp. 251-272, 2019.

[47] G. Golub and C. F. Van-Loan, ”Matrix computations”, Johns Hop-
kins University Press, 1996.

[48] Y. Wang, W. T. Yin, and J. S. Zeng, ”Global convergence of ADMM
in nonconvex nonsmooth optimization”, J. Sci. Comput., vol. 78,
no. 1, pp. 29-63, 2019.

[49] G. Y. Li and T. K. Pong, ”Global convergence of splitting methods
for nonconvex composite optimization”, SIAM J. Optim., vol. 25,
no. 4, pp. 2434-2460, 2015.

[50] M. Hong, Z. Luo, and M. Razaviyayn, ”Convergence analysis
of alternating direction method of multipliers for a family of
nonconvex problems”, SIAM J. Optim., vol. 26, no. 1, pp. 337-364,
2016.

[51] R. I. Bot and D. K. Nguyen, ”The proximal alternating direction
method of multipliers in the nonconvex setting: convergence
analysis and rates”, Math. Oper. Res., vol. 45, no. 2, pp. 682-712,
2020.

[52] F. P. Nie, Y. Z. Huang, X. Q. Wang, and H. Huang, ”New primal
SVM solver with linear computational cost for big data classifica-
tions”, in Proc. 31th Int. Conf. Mach. Learn., pp. 505-513, 2014.

[53] L. Guan, L. B. Qiao, D. S. Li, T. Sun, K. S. Ge, and X. C. Lu, ”An
efficient ADMM-based algorithm to nonconvex penalized support
vector machines”, in Proc. Int. Conf. Data Mining Workshops, 1209-
1216, 2018.

[54] J. Z. Zhang, H. Z. Lin, S. Jegelka, A. Jadbabaie, and S. Sra, ”On
complexity of finding stationary points of nonsmooth nonconvex
functions”, arXiv preprint arXiv:2002.04130, 2020.

[55] C. C. Chang and C. J. Lin, ”LIBSVM: a library for support vector
machines”, ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27,
2011.

[56] K. Pelckmans, J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, L.
Lukas, B. Hamers, B. D. Moor, and J. Vandewalle, ”LSSVM lab:
a matlab/c toolbox for least squares support vector machines”,
Tutorial. KULeuven-ESAT. Leuven, Belgium, vol. 142, pp. 1-2, 2002.

[57] X. Huang, L. Shi, and J. A. K. Suykens, ”Solution path for pin-SVM
classifiers with positive and negative τ values”, IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 7, pp. 1584-1593, 2016.

[58] T. P. Minka, ”A comparison of numerical optimizers for
logistic regression”, Available on http://yaroslavvb.com/papers/
minka-comparison.pdf , 2003.

[59] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, ”Pegasos:
primal estimated sub-gradient solver for SVM”, Math. Program.,
vol. 127, no. 1, pp. 3-30, 2011.

[60] R. Johnson and T. Zhang, ”Accelerating stochastic gradient de-
scent using predictive variance reduction”, in Proc. Int. Conf.
Neural Inf. Process. Syst., pp. 315-323, 2013.

[61] Z. Allen-Zhu, ”Katyusha: the first direct acceleration of stochastic
gradient methods”, J. Mach. Learn. Res., vol. 18, no. 221, pp. 1-51,
2018.

[62] H. V. Nguyen and F. Porikli, ”Support vector shape: a classifier-
based shape representation”, IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 4, pp. 970-982, 2012.

[63] Y. Tang, ”Deep learning using linear support vector machines”,
arXiv preprint arXiv:1306.0239, 2013.

[64] B. Hong, W. Z. Zhang, W. Liu, J. P. Ye, D. Cai, X. f. He, and J. Wang,
”Scaling up sparse support vector machines by simultaneous
feature and sample reduction”, J. Mach. Learn. Res., vol. 20, no.
121, pp. 1-39, 2019.

Huajun Wang received his M.Sc. degree in De-
partment of Mathematics from Guilin University
of Electronic Technology, China, in 2017. He
is currently a Ph.D. candidate of Department
of Applied Mathematics at the Beijing Jiaotong
University, China. His current research inter-
ests include large-scale classification optimiza-
tion problems, machine learning, 0-1 loss opti-
mization and numerical computing.

Yuanhai Shao received his B.Sc. degree in Col-
lege of Mathematics from Jilin University, and re-
ceived Ph.D. degree in College of Science from
China Agricultural University, China, in 2006 and
2011, respectively. Currently, he is a professor at
the Management School, Hainan University. His
research interests include optimization methods,
machine learning, and data mining. He has pub-
lished over 100 refereed papers.

Shenglong Zhou received the B.Sc. degree in
information and computing science in 2011 and
the M.Sc. degree in operational research in 2014
from Beijing Jiaotong University, China, and the
Ph.D. degree in operational research in 2018
from the University of Southampton, the United
Kingdom, where he was a Research Fellow and
Teaching Fellow from 2017 to 2021. He is cur-
rently a Research Associate at the Department
of EEE, Imperial College London. His research
interests include the theory and methods of opti-

mization in the fields of sparse, low-rank matrix and bilevel optimization.

Ce Zhang received the B.Sc. degree in infor-
mation and computing science and the M.Sc.
degree in operational research from Beijing Jiao-
tong University, Beijing, China, in 2016 and
2019, respectively. He research interests include
optimization methods, machine learning and ap-
plications in data and image processing.

Naihua Xiu received the B.Sc. degree in math-
ematics from Hebei Normal University, Shiji-
azhuang, China, in 1982, and the Ph.D. degree
in operational research and optimal control from
the Institute of Applied Mathematics, Chinese
Academy of Sciences, Beijing, China, in 1997.
From 1997 to 1999, he was a Chinese Post-
Doctoral Fellow with Beijing Jiaotong University,
Beijing, where he was an Associate Professor in
1999 and has been a Professor in operational
research since 2001. He was also a Research

Fellow with the City University of Hong Kong, Hong Kong, from 2000 to
2002 and a Visiting Scholar with the University of Waterloo, Waterloo,
ON, Canada, from 2006 to 2007.

His current research interests include machine learning, mathematical
optimization, mathematics of operations research, and complementarity
problems and variational inequalities. Dr. Xiu is the 9-10th Vice Presi-
dent of the Operations Research Society of China, and also serves as
a member of Editorial Board for several journals such as Acta Mathe-
maticae Applicatae Sinica, OR Transactions, Operations Research and
Management, and Journal of the Operations Research Society of China.

http://yaroslavvb.com/papers/minka-comparison.pdf
http://yaroslavvb.com/papers/minka-comparison.pdf

1

Support Vector Machine Classifier via
L0/1 Soft-Margin Loss

Huajun Wang, Yuanhai Shao, Shenglong Zhou, Ce Zhang and Naihua Xiu∗

Supplementary Material

The supplementary file covers technical lemmas and proofs.
F

S.1 PROOF OF THEOREM 3.1
From (8), one can easily check that

min
w∈Rn,b∈R

f(w; b) ≤ f(1; b) < n2 + Cm < +∞.

Denote

S := {(w; b) ∈ Rn × I : f(w; b) < n2 + Cm}.

Clearly, S 6= ∅ due to (1; b) ∈ S. For any (w; b) ∈ S, by

Cm+ n2 > f(w; b) ≥ ‖w‖2/2.

So w is bounded. Since b ∈ I , it is also bounded. It follows
from [1, Theorem 4.10] and the lower semicontinuity of f
that the global optimal solution to (8) exists and the solution
set is bounded, which completes the proof. �

0 𝑣

1∥ 𝑣+ ∥0

(a)

0

Prox𝛾𝐶∥(∙)+∥0 (𝑠)

2𝛾𝐶
𝑠

(b)

Fig. S.1: (a) The blue line (including the blue original) is the
value of the function ‖v+‖0. (b) the red line denotes the `0/1
proximal operator.

S.2 `0/1 AND L0/1 PROXIMAL OPERATORS

The proximal operators for nonconvex and continuous func-
tions have been well studied, see, e.g. [2]–[4]. The proximal
operators for zero norm ‖(·)‖0 and the related functions
have also been studied, see, e.g. [5]–[10]. Here, we investi-
gate the proximal operator for the soft-margin loss function
defined by (4’)

`0/1(v) =

{
1, v > 0,

0, v ≤ 0,

and its extension, which are footstone of optimality theory
for the L0/1-SVM. From the definition (7) of ‖(·)+‖0, we
know that `0/1(v) = ‖v+‖0 (see, Figure S.1 (a)). First, we
introduce the definition of `0/1 proximal operator in one
dimensional case.
Definition S.1 (`0/1 proximal operator). For any given

γ,C > 0 and s ∈ R, the proximal operator of ‖(v)+‖0
(dubbed as `0/1 proximal operator) is defined by

ProxγC‖(·)+‖0(s) = arg min
v∈R

C‖v+‖0 +
1

2γ
(v − s)2.

(S1)

The following lemma states that the `0/1 proximal oper-
ator admits a closed form solution.
Lemma S.1 (Solution to `0/1 proximal operator). For any

given γ,C > 0, the solution to `0/1 proximal operator at
s ∈ R is given by

ProxγC‖(·)+‖0(s) :=

0, 0 < s <

√
2γC,

0 or s, s =
√

2γC,

s, s >
√

2γC or s ≤ 0.

(S2)

Proof. It follows from (S1) that

ProxγC‖(·)+‖0(s) = arg min
v∈R

γC‖v+‖0 +
1

2
(v − s)2.

Let φ(v) := γC‖v+‖0 + (v − s)2/2. Since φ(v) = γC +
(v − s)2/2 =: φ1(v) for v > 0 and φ(v) = (v − s)2/2 =:
φ2(v) for v < 0 are strongly convex and twice continuously
differentiable, the unique minimal values of φ1(v) and φ2(v)
are both attained at v = s. Moreover, it follows from φ(v) :=
(v − s)2/2 =: φ3(0) for v = 0 that φ3(0) = s2/2. The rest
part is to compare the three values φ1(s) with s > 0, φ2(s)
with s < 0 and φ3(0):
(i) As s >

√
2γC ⇔ φ3(0) > φ1(s) and φ2(s) > φ1(s), the

minimal value of the φ(v) is achieved at v = s.
(ii) As 0 < s <

√
2γC ⇔ φ1(s) > φ3(0) and φ2(s) > φ3(0),

it follows v = 0.
(iii) As s = 0⇔ φ1(s) > φ3(0) and φ2(s) > φ3(0), it is easy
to check that v = s.
(iv) As s < 0⇔ φ1(s) > φ2(s) and φ3(0) > φ2(s), it is easy

2

to verify that v = s.
(v) As s =

√
2γC ⇔ φ2(s) > φ1(s) = φ3(0), then v = 0 or

s. Thus, we have (S2), which completes the proof. �
It is worth mentioning that the solution to `0/1 proximal

operator may not be unique if s =
√

2γC in (S2). To
guarantee the uniqueness, hereafter, we always choose the
`0/1 proximal operator to be zero if it is not unique. Because
of this, the solution to `0/1 proximal operator is rewritten as

ProxγC‖(·)+‖0(s) :=

{
0, 0 < s ≤

√
2γC,

s, s >
√

2γC or s ≤ 0,
(S3)

see Figure S.1 (b).
Based on the one-dimensional case, we give the defini-

tion of the proximal operator of ‖v+‖0 in Multi-dimensional
setting.

Definition S.2 (L0/1 proximal operator). For any given
γ,C > 0 and s ∈ Rm, the proximal operator of ‖v+‖0
(dubbed as L0/1 proximal operator) is defined by

ProxγC‖(·)+‖0(s) = arg min
v∈Rm

C‖v+‖0 +
1

2γ
‖v − s‖2. (S4)

The following lemma states that the L0/1 proximal operator
admits a closed form solution.

Lemma S.2 (Solution to L0/1 proximal operator). For any
given γ,C > 0, the solution to L0/1 proximal operator
at s = (s1, s2, ..., sm)> ∈ Rm is given by

[ProxγC‖(·)+‖0(s)]i :=

{
0, 0 < si ≤

√
2γC,

si, si >
√

2γC or si ≤ 0.
(S5)

Proof. It follows from (S4) that [ProxγC‖(·)+‖0(s)]i =
ProxγC‖(·)+‖0(si), where

ProxγC‖(·)+‖0(si) = arg min
v∈R

C‖v+‖0 +
1

2γ
(v − si)2.

Using (S3) completes the proof. �

S.3 PROOF OF THEOREM 3.2
(i) By assumption that B defined by (13) is full column rank,
B+ = (B>B)−1B> exists. So the constraint in (9) can be
written as (w; b) = B+(1 − u) due to 1 − u = Aw + by =
B(w; b). Because of this, (9) becomes

min
u∈Rm

1

2
‖H(u− 1)‖2 + C‖u+‖0, (S6)

where H is defined in (13). Suppose u∗ is a globally optimal
one to (9), which is also a globally optimal solution to (9)
since (9) is equivalent to (9) when B is full column rank. To
show the conclusion (namely to show (11)). We first prove
a) the globally optimal u∗ satisfying

u∗ = proxγC‖(·)+‖0(u∗ − γH>H(u∗ − 1)), (S7)

and then show b) (S7) implying (11). For simplicity, let

g(u) := ‖H(u− 1)‖2/2,
λ∗ := H>H(u∗ − 1). (S8)

To see a), it is sufficient to prove u∗ = z, where z :=
proxγC‖(·)+‖0(u∗− γλ∗), before which, we need three facts.

The first one is from the definition (S4) of the L0/1 proximal
operator that

C‖z+‖0 +
1

2γ
‖z− (u∗ − γλ∗)‖2

≤ C‖u∗+‖0 +
1

2γ
‖u∗ − (u∗ − γλ∗)‖2

= C‖u∗+‖0 +
γ

2
‖λ∗‖2. (S9)

The second fact follows from g being quadratic that

g(z)− g(u∗) ≤ 〈λ∗, z− u∗〉+
λH
2
‖z− u∗‖2. (S10)

The last fact from the global optimality of u∗ to (9) is

C‖u∗+‖0 + g(u∗) ≤ C‖z+‖0 + g(z). (S11)

Three facts lead to the following chain of inequalities,

0
(S11)
≤ C‖z+‖0 + g(z)− (C‖u∗+‖0 + g(u∗))

(S10)
≤ C‖z+‖0 + 〈λ∗, z− u∗〉+

λH
2
‖z− u∗‖2 − C‖u∗+‖0

= C‖z+‖0 + 〈λ∗, z− u∗〉+
1

2γ
‖z− u∗‖2 − C‖u∗+‖0

− 1

2γ
‖z− u∗‖2 +

λH
2
‖z− u∗‖2

= C‖z+‖0 +
1

2γ
‖z− (u∗ − γλ∗)‖2 − γ

2
‖λ∗‖2

− C‖u∗+‖0 +
λH − 1/γ

2
‖z− u∗‖2

(S9)
≤ λH − 1/γ

2
‖z− u∗‖2, (S12)

which indicates ‖z−u∗‖2 ≤ 0 due to 0 < γ < 1/λH . Hence,
we have z = u∗, as claimed.

Next we show b). It follows from (S8) that

−λ∗ = H>H(1− u∗) = H>EB+(1− u∗) = H>E

[
w∗

b∗

]
,

where E :=

[
In×n 0

0 0

]
, which suffices to

−B>λ∗ = B>H>E

[
w∗

b∗

]
= B>(B+)>E>E

[
w∗

b∗

]
=

[
w∗

0

]
,

where we used two facts B>(B+)> = B>B(B>B)−1 = I
and E>E = E. By the definition (13) that B = [A y], the
above equation yields{

w∗ +A>λ∗ = 0,
〈y,λ∗〉 = 0.

Finally, the above conditions, the feasibility of (w∗; b∗; u∗)
and (S7) lead to (11), which completes the proof of result (i).

(ii) Suppose φ∗ := (w∗; b∗; u∗) is a P-stationary point of
(9) with γ > 0, then there is a λ∗ ∈ Rm such that (φ∗;λ∗)
satisfies (11), i.e.,

w∗ +A>λ∗ = 0,
〈y,λ∗〉 = 0,

u∗ +Aw∗ + b∗y = 1,
proxγC‖(·)+‖0(u∗ − γλ∗) = u∗,

(S13)

3

where

[ProxγC‖(·)+‖0(z∗)]i =

{
0, 0 < z∗i ≤

√
2γC,

z∗i , z∗i >
√

2γC or z∗i ≤ 0,
(S14)

and z∗ = u∗ − γλ∗. Let Θ be the feasible region of (9),
namely,

Θ := {φ := (w; b; u) : u +Aw + by = 1}. (S15)

Furthermore, the function ||u+||0 is lower semi-continuous
at φ∗ ∈ Θ, then by [1, Proposition 4.3], there is a neighbor-
hood U(φ∗, δ1) of φ∗ ∈ Θ with δ1 > 0 such that

||u+||0 > ||u∗+||0 −
1

2
,∀φ ∈ Θ ∩ U(φ∗, δ1). (S16)

In addition, since ‖w‖2 is locally lipschitz continuous in Rn,
there exists a neighborhoodU(φ∗, δ2) ofφ∗ ∈ Θ with δ2 > 0
such that

|‖w‖2 − ‖w∗‖2| ≤ 2C, ∀φ ∈ Θ ∩ U(φ∗, δ2). (S17)

Denote δ := min{δ1, δ2}. Now we show that φ∗ is a
local minimizer of (9). Namely, there exists a neighborhood
U(φ∗, δ) of φ∗ ∈ Θ with δ > 0 such that

1

2
‖w∗‖2 + C‖u∗+‖0 ≤ 1

2
‖w‖2 + C‖u+‖0, (S18)

∀φ ∈ Θ ∩ U(φ∗, δ).

For this purpose, let Γ∗ := {i : u∗i = 0} and Γ∗ := Nm\Γ∗.
It follows from the fourth equation of (S13) and (S14) that
we obtain

−
√

2C/γ ≤ λ∗i ≤ 0, u∗i = 0, ∀i ∈ Γ∗, (S19)

λ∗i = 0, u∗i 6= 0, ∀i ∈ Γ∗.

Based on these, we consider a local region Θ1 of Θ as

Θ1 := Θ ∩ {φ : ui ≤ 0, i ∈ Γ∗}. (S20)

We split the proof of the (S18) into the following two cases:
Case (i): φ ∈ Θ1 ⊆ Θ and φ ∈ U(φ∗, δ). It is easy to see

that φ∗ ∈ Θ1 by (S13). Then for any φ ∈ Θ1, we have two
facts

ui ≤ 0, i ∈ Γ∗ (S21)

and u +Aw + by = 1, which and (S13) suffice to

−A(w −w∗) = u− u∗ + (b− b∗)y. (S22)

The following chain of inequalities hold for any φ ∈ Θ1,

‖w‖2 − ‖w∗‖2

= ‖w −w∗ + w∗‖2 − ‖w∗‖2

= 2〈w −w∗,w∗〉+ ‖w −w∗‖2

≥ 2〈w −w∗,w∗〉
(S13)
= −2〈w −w∗, A>λ∗〉
= −2〈A(w −w∗),λ∗〉

(S22)
= 2〈u− u∗,λ∗〉+ 2(b− b∗)〈y,λ∗〉

(S13)
= 2〈u− u∗,λ∗〉
= 2〈uΓ∗ − u∗Γ∗

,λ∗Γ∗
〉+ 2〈uΓ∗

− u∗
Γ∗
,λ∗

Γ∗
〉

(S19)
= 2〈uΓ∗ ,λ

∗
Γ∗
〉

(S19),(S21)
≥ 0. (S23)

Since ||u+||0 can only take values from {0, 1, · · · ,m},
this together with (S16) allows us to conclude that

||u+||0 ≥ ||u∗+||0,∀φ ∈ Θ ∩ U(φ∗, δ1). (S24)

Therefore, for any φ ∈ Θ1∩U(φ∗, δ) ⊆ Θ1∩U(φ∗, δ1), then
(S23) and (S24) lead to

1

2
‖w∗‖2 + C‖u∗+‖0 ≤

1

2
‖w‖2 + C‖u+‖0. (S25)

Case (ii): φ ∈ (Θ \ Θ1) and φ ∈ U(φ∗, δ). It follows from
that φ ∈ (Θ \Θ1) that there exists i0 ∈ Γ∗ with u∗i0 = 0 but
ui0 > 0, which implies ‖(u∗i0)+‖0 = 0 but ‖(ui0)+‖0 = 1.
By φ ∈ U(φ∗, δ) and (S24), we have

‖u+‖0 ≥ ‖u∗+‖0 + 1. (S26)

This together with (S17) obtains that for any φ ∈ (Θ \
Θ1) ∩ U(φ∗, δ),

1

2
‖w∗‖2 + C‖u∗+‖0 ≤ 1

2
‖w∗‖2 + C‖u+‖0 − C

≤ 1

2
‖w‖2 + C‖u+‖0. (S27)

Summarizing (S25) and (S27), we obtain that φ∗ is a local
minimizer of (9) in a local region Θ ∩ U(φ∗, δ), which
completes the proof. �

S.4 PROOF OF THEOREM 4.1
Since Tk ⊆ Nm has finite many elements, for sufficient large
k, there is a subset J ⊆ {1, 2, 3, · · · } such that

Tj ≡: T, ∀ j ∈ J. (S28)

For notational simplicity, denote the sequence Ψk :=
(wk, bk,uk,λk) and its limit point Ψ∗ := (w∗, b∗,u∗,λ∗),
namely {Ψk} → Ψ∗. This also indicates {Ψj}j∈J → Ψ∗

and {Ψj+1}j∈J → Ψ∗. Taking the limit along with J of
(32), namely, k ∈ J, k →∞, we have{

λ∗T = λ∗T + ησ$∗T ,
λ∗
T

= 0, (S29)

which derives$∗T = 0. Taking the limit along with J of (25)
and zk respectively yields

z∗ = 1−Aw∗ − b∗y − λ∗/σ
= 1−Aw∗ − b∗y − u∗ + u∗ − λ∗/σ
= −$∗ + u∗ − λ∗/σ (S30)

and thus

u∗T = 0, (S31)
u∗
T

= z∗
T

(S32)
(S30)

= −$∗
T

+ u∗
T
− λ∗

T
/σ

(S29)
= −$∗

T
+ u∗

T
.

This proves $∗
T

= 0 and hence $∗ = 0. Again by (S30), we
obtain z∗ = u∗−λ∗/σ, which together with (S31), (S32) and
the Definition S.2 of the L0/1 proximal operator indicates

u∗ = ProxC
σ ‖(·)+‖0

(z∗) = ProxC
σ ‖(·)+‖0

(u∗ − λ∗/σ). (S33)

4

Now taking the limit along with J of (28) results in

(I + σA>TAT)w∗ = σA>T v∗T
= −σA>T (u∗T + b∗yT − 1 + λ∗T /σ)

= −σA>T ($∗T −ATw∗ + λ∗T /σ)

= −σA>T (−ATw∗ + λ∗T /σ),

where v∗ = −(u∗ + b∗y − 1 + λ∗/σ) and the last two
equations hold due to $∗ = u∗ + Aw∗ + b∗y − 1 = 0.
The last equation suffices to that

w∗ = −A>T λ∗T
(S29)

= −A>λ∗.

Finally taking the limit along with J of (31) leads to

b∗ = 〈y, r∗〉/m = −〈y, Aw∗ − 1 + u∗ + λ∗/σ〉/m
= −〈y,$∗ − b∗y + λ∗/σ〉/m
= −〈y,−b∗y + λ∗/σ〉/m
= b∗ − 〈y,λ∗〉/(mσ),

which contributes to 〈y,λ∗〉 = 0. Overall, we have
w∗ +A>λ∗ = 0,

〈y,λ∗〉 = 0,
u∗ +Aw∗ + b∗y = 1,

proxC
σ ‖(·)+‖0

(u∗ − λ∗/σ) = u∗.

Namely, (w∗; b∗; u∗) is a P-stationary point of problem (9)
where γ = 1/σ. Then by Theorem 3.2 (ii), it is a locally
optimal solution to the problem (9), which completes the
proof. �

REFERENCES

[1] B. Mordukhovich and N. Nam, ”An easy path to convex analysis
and applications”, Morgan and Claypool Pubulishers, 2014.

[2] L. Guan, L. B. Qiao, D. S. Li, T. Sun, K. S. Ge, and X. C. Lu, ”An
efficient ADMM-based algorithm to nonconvex penalized support
vector machines”, in Proc. Int. Conf. Data Mining Workshops, 2018,
1209-1216.

[3] Q. M. Yao, J. T. Kwok, F. Gao, W. Chen, and T. Y. Liu, ”Efficient
inexact proximal gradient algorithm for nonconvex problems”,
arXiv preprint arXiv:1612.09069, 2016.

[4] B. Gu, Z. Y Huo, and H. Huang, ”Inexact proximal gradient
methods for non-convex and non-smooth optimization”, in Proc.
AAAI Conf. Artif. Intell., 2018, pp. 3093-3100.

[5] T. Blumensath and M. E. Davies, ”Iterative thresholding for sparse
approximations”, J. Fourier Anal.Appli., vol. 14, no. 5-6, pp. 629-654,
2008.

[6] T. Blumensath and M. E. Davies, ”Iterative hard thresholding for
compressed sensing”, Appl. Comput. Harmonic Anal., vol. 27, no. 3,
pp. 265-274, 2009.

[7] Z. S. Lu and Y. Zhang, ”Sparse approximation via penalty decom-
position methods”, SIAM J. Optim., vol. 23, no. 4, pp. 2448-2478,
2013.

[8] Z. S. Lu, ”Iterative reweighted minimization methods for lp-
regularized unconstrained nonlinear programming”, Math. Pro-
gram., vol. 147, no.1-2, pp. 277-307, 2014.

[9] A. Beck and N. Hallak, ”Proximal mapping for symmetric penalty
and sparsity”, SIAM J. Optim., vol. 28, no. 1, pp. 496-527, 2018.

[10] H. Zhang, L. L. Pan, and N. H. Xiu, ”Optimality conditions for
locally Lipschitz optimization with l0-regularization”, Optim. Lett.,
DOI: 10.1007/s11590-020-01579-y, 2020.

	Revised Version
	Introduction
	Related work
	 Optimality Theory of L0/1-SVM
	Existence of L0/1-SVM Minimizer
	 First-Order Optimality Condition
	Extension

	Fast Algorithm
	L0/1 Support Vectors
	L0/1ADMM via Selection of Working Set
	Convergence and Complexity Analysis

	 Numerical experiments
	Comparisons with Synthetic Data
	Comparisons with Real Data

	conclusion
	References
	Biographies
	Huajun Wang
	Yuanhai Shao
	Shenglong Zhou
	Ce Zhang
	Naihua Xiu

	Supplementary Material
	Proof of Theorem 3.1
	0/1 and L0/1 Proximal Operators
	Proof of Theorem 3.2
	Proof of Theorem 4.1
	References

