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A B S T R A C T

Background: COVID-19 has been associated with Interstitial Lung Disease features. The immune transcrip-
tomic overlap between Idiopathic Pulmonary Fibrosis (IPF) and COVID-19 has not been investigated.
Methods: we analyzed blood transcript levels of 50 genes known to predict IPF mortality in three COVID-19
and two IPF cohorts. The Scoring Algorithm of Molecular Subphenotypes (SAMS) was applied to distinguish
high versus low-risk profiles in all cohorts. SAMS cutoffs derived from the COVID-19 Discovery cohort were
used to predict intensive care unit (ICU) status, need for mechanical ventilation, and in-hospital mortality in
the COVID-19 Validation cohort. A COVID-19 Single-cell RNA-sequencing cohort was used to identify the cel-
lular sources of the 50-gene risk profiles. The same COVID-19 SAMS cutoffs were used to predict mortality in
the IPF cohorts.
Findings: 50-gene risk profiles discriminated severe from mild COVID-19 in the Discovery cohort (P = 0¢015)
and predicted ICU admission, need for mechanical ventilation, and in-hospital mortality (AUC: 0¢77, 0¢75,
and 0¢74, respectively, P < 0¢001) in the COVID-19 Validation cohort. In COVID-19, 50-gene expressing cells
with a high-risk profile included monocytes, dendritic cells, and neutrophils, while low-risk profile-express-
ing cells included CD4+, CD8+ T lymphocytes, IgG producing plasmablasts, B cells, NK, and gamma/delta T
cells. Same COVID-19 SAMS cutoffs were also predictive of mortality in the University of Chicago (HR:5¢26,
95%CI:1¢81�15¢27, P = 0¢0013) and Imperial College of London (HR:4¢31, 95%CI:1¢81�10¢23, P = 0¢0016) IPF
cohorts.
Interpretation: 50-gene risk profiles in peripheral blood predict COVID-19 and IPF outcomes. The cellular
sources of these gene expression changes suggest common innate and adaptive immune responses in both
diseases.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The COVID-19 pandemic has so far caused more than three mil-
lion deaths worldwide, mainly due to the development of acute
respiratory distress syndrome (ARDS). While autopsy data from
patients dying early on after ARDS development demonstrate diffuse
alveolar damage, endothelial injury, thrombosis, and angiogenesis
[1,2]; longer disease courses associate with features of Interstitial
Lung Disease (ILD) including tissue remodeling, fibroblast prolifera-
tion, airspace obliteration, micro-honeycombing and extracellular
matrix deposition [3,4]. Moreover, radiological surrogates of lung
fibrosis, including sub-pleural reticulation and fibrotic streaks have
also been described in COVID-19 [5]. While an association between
COVID-19-induced ARDS and risk for ILD development has been
recently suggested [6], no research has focused on immune gene
expression profiles shared by COVID-19 and Idiopathic Pulmonary
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Research in context

Evidence before this study

We searched the scientific literature using PubMed to identify
studies that use gene expression in peripheral blood to identify
outcome prediction in COVID-19 and Idiopathic Pulmonary
Fibrosis (IPF). We used the search terms “COVID-1900, “gene
expression”, “outcome prediction”, and “blood”, and identified
23 studies. When we added the term Idiopathic Pulmonary
Fibrosis (IPF) we found no studies investigating this association.

Added value of this study

We have previously identified a transcriptomic signature pre-
dictive of IPF mortality in peripheral blood. In this work, we
sought to determine whether genomic risk profiles based on 50
genes of this signature could be predictive of COVID-19 out-
comes. A 50-gene, high-risk profile predicted ICU admission,
need for mechanical ventilation and in-hospital mortality in
COVID-19. 50-gene expressing cells with a high-risk profile in
COVID-19 mainly included CD14+ monocytes, dendritic cells,
and neutrophils while low-risk profile-expressing cells
included CD4+, CD8+ T lymphocytes, IgG producing plasma-
blasts, B cells, NK and gamma/delta T cells

Implications of all the available evidence

The identification of 50-gene risk profiles in COVID-19, in addi-
tion to clinical variables, can facilitate healthcare utilization
such as triage of patients to the most appropriate location,
reduce hospital length-of-stay, and allow for proper allocation
of limited resources. It may also allow the identification of
patients that are more likely to respond to COVID-19 targeted
therapies.
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Fibrosis (IPF) patients. That characterization could provide patho-
physiological insight to better understand the mechanisms regulating
COVID-19-induced pulmonary injury and repair as well as facilitate
the identification of molecular predictors of long-term lung damage,
mortality, and other relevant outcomes in these patients. In this
work, we hypothesized that a peripheral blood transcriptomic signa-
ture known to predict mortality in IPF [7,8] could also be associated
with COVID-19 outcomes. To address that hypothesis, we analyzed
transcriptomic data reported by multiple centers enrolling COVID-19
and IPF patients. Using a previously established bioinformatic pipe-
line [8] we found a remarkable overlap of an outcome-predicting sig-
nature demonstrated by both diseases, and data from single-cell
RNA-sequencing (RNA-seq) analyses revealed the cell types account-
ing for the aforementioned signature in COVID-19.

2. Methods

2.1. Study design and subjects

In this retrospective, multicentre cohort study, we analyzed gene
expression and clinical data from five independent cohorts: (1)
COVID-19 Discovery cohort (N = 8 subjects). Peripheral Blood Mono-
nuclear Cells (PBMC) were obtained twice from three of
these subjects at two different time points during hospitalization.
PBMC specimens from patients with COVID-19 were assigned to
severe (N = 6) or mild (N = 5) disease groups according to the National
Early Warning Score [9] (NEWS; mild < 5, severe � 5) evaluated on
the day of blood sampling [10] (PBMC, Single-cell RNA-seq data, GEO
Accession: GSE14968910); (2) COVID-19 Validation cohort (N = 100
subjects, bulk leukocyte RNA-seq data, GEO Accession:
GSE15710311). This study was designed to enroll all hospitalized
patients older than 18 years of age with COVID-19 diagnosis who
were not anticipated to die imminently (3) COVID-19 Single-cell
cohort (N = 7 subjects, N = 155 single cells , single-cell RNA-seq data,
GEO accession: GSE15072812); (4) IPF-University of Chicago cohort
(N = 45, Bulk PBMC, Affymetrix Human Exon 1.0 ST RNA Array data,
GEO Accession: GSE282217); 5) IPF-Imperial College London cohort
(N = 55, Bulk whole blood, Affymetrix Human Gene 1¢1 ST RNA Array
data, GEO Accession: GSE9360613). Transcriptomics data collection
from all cohorts have been previously described [7,10-13].

2.2. Ethics

As these are publicly available and de-identified datasets, no insti-
tutional review board’s approvals were warranted.

2.3. Data extraction, pre-processing and statistical analysis

All analyses were performed in R software (version 4¢0¢2) [14]. For
the COVID-19 Discovery cohort, we used the R package “Seurat” to
pre-process the feature-barcode matrices of the single-cell RNA-seq
data. Cells expressing less than 200 genes or more than 15% of mito-
chondrial genes of their total gene expression were excluded. Genes
expressed in less than 10 cells were also excluded from the analysis.
NormalizeData� function was used to normalize gene expression lev-
els. The subject-level expression profile was estimated using the
average expression level across all cells. For bulk RNA-seq data in the
COVID-19 validation cohort, Transcripts Per Million (TPM) matrix
was analyzed using log(1+TPM) to normalize gene expression levels.
For the COVID-19 Single-cell cohort dataset, pre-processed and nor-
malized data were provided directly according to the published
report [10].

The Scoring Algorithm of Molecular Subphenotypes (SAMS) was
used to identify genomic risk profiles as previously described [8].
SAMS, Up and Down scores were calculated in each cohort using the
product of two variables: the proportion of genes expected to be
increased or decreased per subject (or single-cells) and their median
normalized expression levels. In this study, we calculated Up and
Down scores based on the expression levels of seven increased genes
(PLBD1, TPST1, MCEMP1, IL1R2, HP, FLT3, S100A12) and 43 decreased
genes (LCK, CAMK2D, NUP43, SLAMF7, LRRC39, ICOS, CD47, LBH,
SH2D1A, CNOT6L, METTL8, ETS1, P2RY10, TRAT1, BTN3A1, LARP4, TC2N,
GPR183, MORC4, STAT4, LPAR6, CPED1, DOCK10, ARHGAP5, HLA-DPA1,
BIRC3, GPR174, CD28, UTRN, CD2, HLA-DPB1, ARL4C, BTN3A3, CXCR6,
DYNC2LI1, BTN3A2, ITK, CD96, GBP4, S1PR1, NAP1L2, KLF12, IL7R) from
a gene signature previously found to be predictive of IPF mortality
[7,8]. Two non-coding transcripts (SNHG1, C2orf27A) of the original
gene signature were excluded because they were not consistently
present across COVID-19 datasets. The Scoring Algorithm for Molecu-
lar Subphenotypes (SAMS) was applied as follows:

(1) Gene normalization: The expression of each gene was normal-
ized to the median of all the samples in each independent
cohort. This step is performed to determine whether the
expression of a gene is either increased or decreased in a sub-
ject or single-cell when compared to other subjects or single-
cells in the same cohort.

(2) Calculation of the proportion of up and down-regulated genes:
Given that 50-gene risk profiles are based on seven increased and
43 decreased genes, the proportion of genes expected to be either
increased or decreased can be estimated per subject or single-cell
to calculate up and down scores. That is if a subject or single-cell
X has five increased genes out of the seven genes expected to be
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increased, then the proportion of increased genes for this subject
or single-cell is 0¢714.

(3) Sum of the median normalized expression values of increased and
decreased genes: the sum of the median normalized expression
values is calculated per subject or single-cell for the entire set of
increased and decreased genes.

(4) Calculation of the product between the sum of normalized expres-
sion values and the proportion of increased or decreased genes:
for this step, the sum of increased genes calculated in step three is
multiplied by the proportion of increased genes calculated in step
two.

To determine 50-gene risk profiles in the COVID-19 Discovery
cohort, up scores above the median and Down scores below the
median value within this cohort were classified as high-risk. Subjects
without this pattern of expression were classified as low-risk. In the
Fig. 1. 50-gene risk profiles are predictive of COVID-19 outcomes. Clustering of COVID-19
covery (a) and Validation cohorts (b). Every column represents a subject and every row rep
increase expression over the median of the sample and green denotes decrease expression.
end, the reader is referred to the web version of this article.).
50-gene, high-risk group of the COVID-19 Discovery cohort, the low-
est Up score (0¢41) and the highest Down score (�0¢41) were used as
cutoffs to identify a 50-gene, high-risk profile (subjects or single-cells
with Up score >0¢41 and Down score <�0¢41) in the COVID-19 Vali-
dation, COVID-19 Single-cell cohort, IPF-University of Chicago and
IPF-Imperial College London cohorts.

Two-sided Fisher’s exact test was used to identify differences in
disease severity between risk profiles in the COVID-19 Discovery
cohort. Categorical variables and continuous clinical variables were
analyzed using Two-sided Fisher’s exact and two-sample t-test,
respectively. The Area Under the Curve (AUC) was used to assess the
prediction accuracy of 50-gene risk profiles to determine ICU admis-
sion, use of mechanical ventilation and in-hospital mortality in the
COVID-19 Validation cohort. These patients were followed for
45 days after hospitalization. We used logistic regression to deter-
mine the relationship between 50-gene risk profiles and studied out-
comes after adjusting for Age, Charlson comorbidity index, absolute
lymphocyte count, corticosteroid therapy and convalescent plasma
subjects based on 50-gene risk profiles (High versus Low) determined by SAMS in Dis-
resents a gene. Log-based two-color scale is shown next to the heatmaps. Red denotes
M: Mild, S; Severe cases. (For interpretation of the references to color in this figure leg-



Table 1
Clinical Variables of the COVID-19 Discovery Cohort.

Patient ID C2 C4 C5 C8 C1 C3 C6 C7 C3 C6 C7

Time point Baseline Baseline Baseline Baseline Baseline Baseline Baseline Baseline Follow up Follow up Follow up

Hospital day 10 13 3 5 16 3 5 3 7 9 10

Disease group mild COVID-19 mild COVID-

19

mild COVID-19 mild COVID-19 severe COVID-19 severe COVID-19 severe COVID-19 severe COVID-19 severe

COVID-19

severe COVID-19 mild COVID-19

NEWS score 0 0 2 1 14 8 8 6 10 5 3

50-gene risk

profile

low low low low high high high high high low low

Comorbidity hypertension hypertension diabetes mellitus,

dyslipidemia

hypothyroidism,

dyslipidemia

none hypertension hypertension,

asthma, atrial

fibrillation

history of tubercu-

lous pleuritis

Absolute Lym-

phocyte

count/μL

1547 2057 1834 984 1055 763 600 647 945 644 1519

C-reactive

protein

(mg/dL)

0•05 0•19 0•59 0•83 7•58 31•41 30•52 7•07 8•2 16•6 1•53

Chest X-ray pneumonia pneumonia pneumonia no lesion pneumonia multifocal consoli-

dations in both

lungs

multifocal patchy

opacities in both

lungs

no gross change of

consolidation

and GGO in both

lungs

multifocal

consolida-

tions in

both lungs

diffuse increased

lung opacity and

multifocal

consolidation

unchanged extent

of consolidation

and GGO in both

lungs

Treatment lopinavir/ritonavir,

ceftriaxone

ciclesonide

inhalor

lopinavir/ritonavir,

hydroxychloroquine

none lopinavir/ritonavir,

hydroxychloro-

quine,

nafamostat

lopinavir/ritonavir,

levofloxacin

lopinavir/ritonavir,

linezolid, cefe-

pime, vancomy-

cin, merope-

nem, colistin,

tigecycline, ani-

dulafungin,

hydrocortisone

lopinavir/ritonavir lopinavir/rito-

navir,

levofloxacin lopinavir/ritonavir,

linezolid, cefe-

pime, vancomy-

cin, merope-

nem, colistin,

tigecycline, ani-

dulafungin,

hydrocortisone

lopinavir/

ritonavir
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use at the time of enrollment. To determine whether adding the
Charlson comorbidity index [14] to 50-gene risk profiles could
improve outcome prediction in COVID-19, we compared three AUC
models (50-gene risk profiles alone, Charlson index alone and 50-
gene risk profiles combined with Charlson index) using logistic
regression with 10-fold cross-validation. Kaplan-Meier curves were
used to evaluate the association between 50-gene risk profiles and
Mortality in IPF cohorts. Significance was defined as P < 0.05 for all
tests.

2.4. 50-gene, single-cell type analysis

To determine cell types expressing either 50-gene high or low-
risk profiles in COVID-19, we conducted a cell-type-specific analysis
using eight single-cell data measurements from seven subjects with
Table 2
Clinical Variables of the COVID-19 Validation cohort.

Demographics and Baseline Characteristics of COVID-19 V
Total (n = 100)

Outcome measures
ICU Admission 50 (50%)
Mechanical Ventilation - n (%) 42 (42¢0%)
Death - n (%) 24 (24¢0%)
Ventilator-Free Days - mean (SD) 19¢8 (11¢5)
Hospital Length of Stay - mean (SD) 16¢2 (12¢7)
Sex - n (%)
Male 62 (62¢0%)
Female 38 (38¢0%)
Age and BMI - mean (SD)
Age 60¢7 (16¢1)
BMI 30¢4 (10¢3)
Ethnicity - n (%)
White 45 (45¢0%)
Black 10 (10¢0%)
Asian 2 (2¢0%)
Hispanic 21 (21¢0%)
Other 22 (22¢0%)
Comorbidities - n (%)
Smoking history 17 (17¢0%)
Myocardial infarction 11 (11¢0%)
Congestive heart failure 4 (4¢0%)
Peripheral vascular disease 1 (1¢0%)
Cerebrovascular accident 2 (2¢0%)
Dementia 6 (6¢0%)
Pulmonary disease 21 (21¢0%)
Rheumatic disease 3 (3¢0%)
Peptic ulcer disease 1 (1¢0%)
Diabetes mellitus 35 (35¢0%)
Renal disease 10 (10¢0%)
Cancer (solid) 4 (4¢0%)
HIV/AIDS 2 (2¢0%)
Severity Indexes - mean (SD)
APACHEII 21¢4 (8¢2)
SOFA 8¢1 (4¢0)
Charlson comorbidity index 3¢3 (2¢5)
Biomarkers - mean (SD)
Ferritin (ng/mL) 932¢8 (1094¢0)
C-reactive protein (mg/L) 140¢5 (103¢6)
D-dimer (mg/L FEU) 11¢7 (22¢5)
Procalcitonin (ng/mL) 3¢2 (10¢4)
Lactate (nmol/L) 1¢2 (0¢5)
Fibrinogen (mg/dL) 543¢8 (196¢9)
Albumin (mg/L) 2¢9 (0¢5)
Absolute Lymphocyte count/mL 1130 (794)
Treatment - n (%)
Hydroxychloroquine 86 (86¢0%)
Antibiotics 97 (97¢0%)
Antivirals 1 (1¢0%)
IL6 antagonist 4 (4¢0%)
Convalescent plasma 24 (24¢0%)
Steroids 44 (44¢0%)
Anticoagulation 98 (98¢0%)
COVID-19 (COVID-19 Single-cell cohort). We estimated the average
expression levels of each gene, for each cell type, producing 155 cell-
type-specific expression profiles. An Up score >0¢41 and a Down
score <�0¢41 were used to classify 50-gene risk profiles into High
and Low-risk groups. The estimated proportion of specific cell types
was compared between risk profiles (High versus Low). The cell type
definition and classification has been previously described [12]. We
tested the overall difference in cell proportions between high and
low-risk subgroups using a chi-square test.
2.5. Role of funding source

The Funders had no role in study design, data collection, data
analyses, interpretation of results, or manuscript writing.
alidation Cohort
Low Risk (n = 41) High Risk (n = 59) P-Value

7 (17¢1%) 43 (72¢9%) < 0¢001
5 (11¢9%) 37 (62¢7%) < 0¢001
1 (2¢4%) 23 (39¢0%) < 0¢001
21¢9 (6¢6) 15¢5 (12¢3) < 0¢001
9 (12¢7) 21¢1 (8¢9) < 0¢001

26 (63¢4%) 36 (61¢0%) 0¢81
15 (36¢6%) 23 (39¢0%) 0¢81

54¢8 (16¢6) 64¢9 (14¢6) 0¢002
30¢5 (7¢6) 30¢3 (11¢8) 0¢95

18 (43¢9%) 27 (45¢8%) 0¢86
4 (9¢8%) 6 (10¢2%) 0¢94
0 (0%) 2 (3¢4%) 0¢23
9 (21¢9%) 12 (20¢3%) 0¢85
10 (24¢4%) 12 (20¢3%) 0¢63

8 (19¢5%) 9 (15¢2%) 0¢58
1 (2¢4%) 10 (16¢9%) 0¢02
1 (2¢4%) 3 (5¢1%) 0¢51
0 (0¢0%) 1 (1¢7%) 0¢4
1 (2¢4%) 1 (1¢7%) 0¢79
1 (2¢4%) 5 (8¢5%) 0¢21
6 (14¢6%) 15 (25¢4%) 0¢19
1 (2¢4%) 2 (3¢4%) 0¢79
1 (2¢4%) 0 (0¢0%) 0¢23
11 (26¢8%) 24 (40¢7%) 0¢15
2 (4¢9%) 8 (13¢6%) 0¢16
1 (2¢4%) 3 (5¢1%) 0¢51
1 (2¢4%) 1 (1¢7%) 0¢79

14¢1 (3¢5) 22¢5 (8¢1) 0¢006
5¢6 (2¢3) 8¢5 (4¢1) 0¢06
2¢3 (1¢9) 4¢0 (2¢6) <0¢001

497¢0 (403¢8) 1215¢6 (1294¢6) 0¢002
101¢3 (83¢7) 165¢7 (108¢0) 0¢003
6¢7 (19¢5) 14¢3 (23¢7) 0¢14
2¢4 (7¢0) 3¢7 (12¢0) 0¢56
1¢1 (0¢4) 1¢3 (0¢5) 0¢09
545¢5 (188¢4) 542¢9 (203¢3) 0¢96
3¢2 (0¢5) 2¢8 (0¢4) <0¢001
1550 (893) 838¢2 (561) <0¢001

36 (87¢8%) 50 (84¢7%) 0¢67
39 (95¢1%) 58 (98¢3%) 0¢36
0 (0¢0%) 1 (1¢7%) 0¢4
1 (2¢4%) 3 (5¢1%) 0¢51
5 (12¢2%) 19 (32¢2%) 0¢02
6 (14¢6%) 38 (64¢4%) <0¢001
41 (100¢0%) 57 (96¢6%) 0¢23



Table 3
Prediction accuracy of 50-gene risk profiles to predict outcomes in COVID-19.

Prediction models ICU admission (AUC, 95% CI) Mechanical Ventilation (AUC, 95% CI) In-Hospital Mortality (AUC, 95%)

50-Gene Risk Profiles (High versus Low) 0¢77, 95% CI (0¢686�0¢844) 0¢75, 95% CI (0¢67�0¢827) 0¢74, 95% CI (0¢678�0¢815)
Charlson Index 0¢54, 95% CI (0¢432�0¢648) 0¢48, 95% CI (0¢37�0¢576) 0¢69, 95% CI (0¢553�0¢797)
50-Gene Risk Profiles and Charlson index 0¢78, 95% CI (0¢597�0¢847) 0¢79, 95% CI (0¢634�0¢864) 0¢77, 95% CI (0¢531�0¢866)
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3. Results

3.1. 50-gene risk profiles in peripheral blood distinguish COVID-19
severity subgroups in a discovery cohort

The COVID-19 Discovery cohort included PBMC samples from
eight subjects, three of them (Subjects C3, C6, and C7) with two
repeated measurements during hospitalization. These samples were
classified as mild (N = 5) and severe (N = 6) COVID-19, based on the
NEWS score as previously published [10]. To identify 50-gene risk
Fig. 2. Gene expression analysis of 50-genes in single cells from the COVID-19-Single ce
shows cell types with 50-gene, low versus high-risk expression profiles. Every column repre
next to heatmap; red denotes increase expression over the median of samples and green, d
axis represents cell types and X-axis represents cell proportions. B: B Cell, CD4m T: Memor
Dendritic Cell, gd T: Gamma Delta T cells, IFN-stim CD4 T: Interferon-stimulated CD4 T cell,
blast, IgM PB: IgM (Immunoglobulin-M) Plasmablast, NK: Natural Killer Cell, pDC: Plasmacyt
pretation of the references to color in this figure legend, the reader is referred to the web ver
profiles in this cohort, SAMS Up and Down scores were calculated for
each sample. All of the samples with a 50-gene, high-risk profile
were classified as severe COVID-19 while 83¢3% of samples with a
low-risk profile were classified as mild COVID-19 (P = 0¢015)
(Fig. 1A). Table 1 describes the clinical characteristics of the COVID-
19 Discovery cohort. Subjects in the low-risk profile had radiological
evidence of pneumonia while subjects from the high-risk profile had
evidence of multifocal pneumonia with ground glass opacities. 50-
gene, high-risk samples had significantly higher NEWS score (mean
of 9¢2 versus 1¢8, P < 0¢001), C-reactive protein (mean of 16¢9 mg/dl
ll cohort demonstrating differences in risk profiles between cell types. (a) Heatmap
sents a single cell and every row represents a gene. Log-based two-color scale is shown
ecrease. (b) Proportion of 50-gene expressing cells in low versus high-risk profiles. Y-
y CD4 T Cell, CD4n T: Naive CD4 T Cell, CD8m T: Memory CD8 T Cell, DC: Conventional
IgA PB: IgA (Immunoglobulin-A) Plasmablast, IgG PB: IgG (Immunoglobulin-G) Plasma-
oid Dendritic Cell, Myeloid cells, SC & Eosinophil: Stem Cells and Eosinophil. (For inter-
sion of this article.)



Table 4
Estimated percentage of 50-gene expressing cells with High
versus Low-risk profiles.

Cell Type Low-risk (%) High-risk (%)

IgG PB 7.48 0
CD8m T 7.48 0
CD4m T 7.48 0
CD4n T 7.48 0
B 7.48 0
NK 7.48 0
Proliferative Lymphocytes 7.48 0
gd T 6.54 0
IFN-stim CD4 T 5.61 0
IgA PB 6.54 2.08
IgM PB 5.61 4.17
pDC 4.67 4.17
Platelet 4.67 6.25
CD16 Monocyte 4.67 6.25
Myeloid cells 3.74 6.25
SC & Eosinophil 3.74 8.33
Developing Neutrophil 1.87 12.5
Neutrophil 0 16.67
DC 0 16.67
CD14 Monocyte 0 16.67

B: B Cell, CD4m T: Memory CD4 T Cell, CD4n T: Naive CD4 T Cell,
CD8m T: Memory CD8 T Cell, DC: Conventional Dendritic Cell,
gd T: Gamma Delta T cells, IFN-stim CD4 T: Interferon-stimu-
lated CD4 T cell, IgA PB: IgA (Immunoglobulin-A) Plasmablast,
IgG PB: IgG (Immunoglobulin-G) Plasmablast, IgM PB: IgM
(Immunoglobulin-M) Plasmablast, NK: Natural Killer Cell, pDC:
Plasmacytoid Dendritic Cell, Myeloid cells, SC & Eosinophil:
Stem Cells and Eosinophil.
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versus 3¢3 mg/dl, P = 0¢047) and lower absolute lymphocyte counts
(mean of 802 cells/mL versus 1430 cells/mL, P = 0¢033) when com-
pared to low-risk samples. Regarding the three subjects with baseline
samples and repeated measurements, the high-risk profile remained
the same in subject C3 (Table 1) after four days of follow up which
associated with an increase in NEWS score from eight to ten. Subjects
C6 and C7 (Table 1) changed their 50-gene risk profile from High to
Low-risk during follow up (mean: 5¢5 days) which associated with a
mean decline in NEWS score from seven to four.

3.2. 50-gene risk profiles in peripheral blood predict poor COVID-19
outcomes in a validation cohort

To assess the reproducibility of our findings, we analyzed 50-gene
risk profiles in the COVID-19 Validation cohort. SAMS cutoffs derived
from the COVID-19 Discovery cohort (Up score >0¢41 and Down
score <�0¢41) distinguished High versus Low-risk subjects in the
COVID-19 Validation cohort (Fig. 1B). High-risk subjects in the vali-
dation cohort were significantly older (64¢8 versus 55 years,
P = 0¢002), had higher APACHE-II severity score (22¢5 versus 14¢1,
P = 0¢006), Charlson Comorbidity Index (4 versus 2¢3, P < 0¢001), C-
reactive protein (165¢7 mg/l versus 101¢3 mg/l, P = 0¢003), and Ferri-
tin levels (1215¢6 ng/ml versus 497 ng/ml, 0¢002) when compared to
low-risk subjects. They also had lower absolute lymphocyte counts
(838¢2 cells/ versus 1550, P < 0¢001) and albumin levels (2¢8 mg/L
versus 3¢2 mg/L, P < 0¢001) (Table 2). High-risk subjects were more
likely to have a prior history of myocardial infarction (16¢9% versus
2.4%, P = 0¢02) and were more likely to receive convalescent plasma
(32¢2% versus 12¢2%, P = 0¢02), and corticosteroid therapy (64¢4% ver-
sus 14¢6%, P < 0¢001). There was no significant difference in the inci-
dence of venous thromboembolism between risk subgroups. A 50-
gene, high-risk profile predicted ICU admission (AUC:0¢77,
95%CI:0¢686�0¢844, P < 0¢001), mechanical ventilation (AUC:0¢75,
95%CI:0¢67�0¢827, P < 0¢001) and in-hospital mortality (AUC:0¢74,
95%CI:0¢678�0¢815, P < 0¢001) in the COVID-19 Validation cohort
(Table 2). Prediction based on 50-gene risk profiles remained statisti-
cally significant (P < 0¢05) for each outcome measure after adjusting
for age, Charlson index, absolute lymphocyte count, corticosteroid
therapy and convalescent plasma use. The addition of the Charlson
index to 50-gene risk profiles modestly improved the in-hospital
mortality prediction accuracy of the genomic classifier by 3% (AUC
went from 0¢74 to 0¢77) (Table 3).

High-risk patients spent more days on mechanical ventilation
(21¢9 versus 15¢5 days, P < 0¢001) and had longer hospitalizations
(21¢1 versus 9 days, P < 0¢001) compared to low-risk patients. Only
one patient in the 50-gene, low-risk profile group died while 23
patients in the 50-gene, high-risk profile group died during hospitali-
zation (P = < 0¢001) (Table 2). All deceased patients in the validation
cohort were in severe ARDS and on mechanical ventilation. Refrac-
tory respiratory failure was the cause of death in all the patients who
died from COVID-19 in the validation cohort.

3.3. Single-cell analysis in COVID-19 reveals the cellular sources of the
50-gene risk profiles

A COVID-19 Single-cell cohort [11] was used to identify the cellu-
lar origin of 50-gene risk profiles. SAMS cutoffs derived from the
COVID-19 Discovery cohort (Up score>0¢41 and Down<�0¢41) clas-
sified 47 cells with a high-risk profile and 108 cells with a low-risk
profile (Fig. 2A). 50-gene expressing cells with a high-risk profile
mainly included CD14+ monocytes (16¢7%), dendritic cells (16¢7%)
and neutrophils (16¢7%), while 50-gene expressing cells with a low-
risk profile mainly included IgG producing plasmablasts (7¢48%),
mature (7¢48%) and naïve (7¢48%) CD4 T cells, CD8 mature T cells
(7¢48%), B cells (7¢48%), NK cells (7¢48%), proliferative lymphocytes
(7¢48%), gamma/delta T cells (6¢54%) and Interferon stimulated CD4-T
cells (5¢41%) (Fig. 2B). Cells with overlapping 50-gene risk profiles
included: developing neutrophils, stem cells, eosinophils, myeloid
cells, CD16 monocytes, platelets, plasmacytoid dendritic cells, IgA
and IgM producing plasmablasts. The overall difference of cell pro-
portions between 50-gene risk profiles (High versus Low) was statis-
tically significant (P < 0¢001). The full list of 50-gene expressing cells
can be seen in Table 4. These findings provide evidence of the cellular
source of 50-gene expression changes in peripheral blood and point
at specific cell types potentially associated with increased risk of
mortality, and other poor outcomes in COVID-19.

3.4. 50-gene risk profiles in COVID-19 are predictive of mortality in IPF

To determine whether the same SAMS cutoffs used to distinguish
a 50-gene, high-risk profile in COVID-19 could also be applied to pre-
dict IPF mortality, we reanalyzed peripheral blood 50-gene expres-
sion data from two independent IPF cohorts (IPF-University of
Chicago and IPF-Imperial College London). An Up Score >0¢41 and a
Down Score <�0¢41 distinguished 50-gene high versus low-risk pro-
files in both IPF cohorts (Fig. 3A and B). 50-gene risk profiles were
significantly predictive of mortality in the IPF-University of Chicago
(HR:5¢26, 95%CI:1¢81�15¢27, P = 0¢0013) and IPF-Imperial College
London (HR:4¢31, 95%CI:1¢81�10¢23, P = 0¢0016) cohorts (Fig. 3C and
D). These results confirmed our previous findings [7,8] and indicated
an overlapping outcome-associated transcriptomic signature
between COVID-19 and IPF.

4. Discussion

In this study, we show that a high-risk, 50-gene profile, previously
shown to predict IPF mortality is also predictive of worse outcomes in
COVID-19 patients. The transcriptomic overlap captured in different
cohorts and experimental settings suggests a remarkably conserved
systemic gene expression signature evoked by COVID-19 and IPF.
Moreover, this overlapping profile combined with the observed path-
ological and radiological surrogates of pulmonary fibrosis shown by



Fig. 3. 50-gene risk profile SAMS cutoffs predictive of COVID-19 outcomes are also predictive of poor IPF outcomes. (a) Clustering of IPF-University of Chicago and (b) IPF-
Imperial College London cohort based on 50-gene risk profiles (high versus low) derived from the COVID-19 Discovery cohort (Up score >0.41 and Down Score <�0.41). Every col-
umn represents a subject and every row represents a gene. Log-based two-color scale is shown next to the heatmaps. Red denotes increased expression over the median of the sam-
ple and green denotes decrease expression. (c) Mortality differs between 50-gene risk profiles in the IPF-University of Chicago and (d) IPF-Imperial College London cohort. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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some severe COVID-19 patients suggests that both diseases share, to
some extent, common host response features. The single-cell RNA-
seq data in COVID-19 subjects points at the cells expressing the 50
genes predictive of poor disease outcomes. These data suggest that
CD14+ monocytes, dendritic cells and neutrophils are critical regula-
tors of the high-risk profile. In SARS-CoV-2 infected primates,
increased circulating levels of classical and non-classical monocytes,
and neutrophilic migration to the lungs [15] was associated with
poor disease outcomes. In humans, reports have shown that severe
COVID-19 is associated with elevated numbers of neutrophil
precursors and circulating levels of CD14+monocytes with high
expression of alarmins S100A8/9/12 and low expression of HLA-DR.
[16]. The present analysis is consistent with that data. A recent report
also indicates that serum calprotectin, which belongs to the S100
protein family, is associated with IPF diagnosis and correlates with
diffusing capacity for carbon monoxide (DLCO) and the composite
physiologic index (CPI) [17]. Moreover, previous evidence indicates
that S100A9 is elevated in bronchoalveolar lavage fluid from IPF
patients in comparison with healthy controls [18] and increased cir-
culating levels of CD14+ monocytes were found to be predictive of
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mortality in IPF and other fibrotic lung diseases [19]. The single-cell
RNA sequencing data shows increased proportion of CD4 and CD8 T
lymphocytes and immunoglobulin-producing plasmablasts in indi-
viduals with a low-risk genomic profile, suggesting an association
between a strong T cell response [20,21] and better disease outcomes
[22]. This finding is consistent with recent data indicating that severe
COVID-19 infection induces a distinct inflammatory program charac-
terized by suppression of the innate immune system in the periphery
and that milder cases evoke a more robust T cell response [23].

The biomarker and therapeutic implications of this discovery are
significant since the identification of 50-gene risk profiles in COVID-
19, in addition to clinical variables, can facilitate healthcare utiliza-
tion such as triage of patients to the most appropriate location
(home, ward, ICU), reduce hospital length of stay, allow for proper
allocation of limited resources including mechanical ventilators and
reduce the cost of inappropriate hospitalization. It could also allow
the early identification of patients likely to deteriorate and resolve
specific transcriptomic sub-phenotypes that are amenable to certain
treatments. For example, while corticosteroids are currently recom-
mended for hospitalized COVID-19 patients due to their positive
effect in survival [24], the use of corticosteroids in IPF has been con-
troversial due to increased risk of death and hospitalizations associ-
ated with immunosuppressive therapy [25]. Thus, the 50-gene, high-
risk profile may facilitate the identification of patients that are more
likely to respond to COVID-19 targeted therapies such as corticoste-
roids and others [26] or to identify a subgroup of IPF patients who
may benefit from a limited course of corticosteroid therapy. The use of
50-gene risk profiles could also support the rationale to investigate the
use of IPF-targeted antifibrotic medications [27,28] to prevent short-
and long-term sequela of COVID-19. Another important aspect of our
study that is worth mentioning is the remarkable ability of SAMS scores
derived from the COVID-19 Discovery cohort, to identify 50-gene risk
profiles predictive of poor outcomes across two additional COVID-19
and IPF cohorts despite using different genomic technologies and differ-
ent starting material (bulk versus single-cell RNA).

Despite the relevance and reproducibility of our findings, we need
to acknowledge some limitations of our study. COVID-19 and IPF are
diseases with different etiologies. COVID-19, the illness caused by
SARS-CoV-2 infection, is characterized by diffuse [1] and extensive
alveolar damage, dysmorphic pneumocytes and thrombosis of the
lung micro, and macro-vasculature [29]. Poor outcomes in COVID-19
are predominantly driven by the host response to the infection [22].
IPF is a specific form of chronic fibrosing interstitial pneumonia of
unknown etiology, limited to the lung and histologically character-
ized by usual interstitial pneumonia [30]. Accumulating evidence
suggests that under genetic predisposition and environmental fac-
tors, the fibrotic response seen in IPF is driven by abnormally acti-
vated alveolar epithelial cells (AECs) leading to epithelial to
mesenchymal transition and activation, proliferation, and differentia-
tion of fibroblasts to myofibroblasts [31]. While our study focuses on
predictive features of peripheral blood transcriptomic profiles in
COVID-19 and IPF, we did not study the underlying mechanisms trig-
gering this aberrant immune response and its potential relationship
to alveolar epithelial cell injury or any other molecular mechanisms
shared between COVID-19 and IPF. Future studies could be per-
formed to characterize lung autopsy findings in deceased individuals
with a 50-gene, high-risk profile or whether COVID-19 survivors
with a high-risk profile are more likely to develop chronic ILD
changes and a fibroproliferative phenotype. While this is to our
knowledge the first systematic analysis of the overlapping gene
expression signature of COVID-19 and IPF, we believe these data
needs corroboration in large, prospective trials including more
diverse patient populations to generalize our findings. That research
could be complemented with an unbiased whole-exome analysis of
circulating blood in both diseases, which could uncover other rele-
vant genes associated with poor outcomes. Also, it would be
important to determine whether the identification of 50-gene
expressing cells in COVID-19 can be replicated in single-cell RNA-seq
analyses of IPF patients, which could help define if the mentioned
overlap is driven by similar cell type distributions in both diseases.
Finally, given the retrospective nature of our study, we were limited
by the lack of a comprehensive radiological assessment of COVID-19
subjects in both cohorts. Future studies should focus on comparing
the radiological characteristics of subjects with a 50-gene high versus
low risk profile.

In conclusion, peripheral blood, 50-gene risk profiles predict ICU
admission, need for mechanical ventilation and in-hospital mortality
in COVID-19 and overlaps a signature known to predict poor IPF out-
comes. The cellular sources of these gene expression changes suggest
common mechanisms implicating innate and adaptive immune
responses in both diseases. A 50-gene, risk profile test in peripheral
blood could be a potentially useful biomarker to predict COVID-19
mortality and morbidity.
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