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Abstract7

Underplatform dampers (UPD) represent an effective way to limit blade vibration in tur-8

bomachinery via frictional energy dissipation, leading to a wide range of applications. The9

design of an effective and reliable UPD is highly challenging, due to the inherently nonlinear10

nature of the contact forces, the associated computational cost for high fidelity simulation,11

and the manufacturing uncertainties in damper geometry. This paper presents a novel UPD12

optimisation approach that combines high-order, detailed nonlinear modelling of the damper13

interfaces with a surrogate model optimisation technique. The nonlinear dynamic behaviour14

of the UPD is predicted using the existing explicit damper model in combination with an15

‘in-house’ multi-harmonic balance solvers, which enables capture of the damper kinematics16

and local contact conditions. A radial basis function based surrogate model will be used17

to address the computational requirement of the high fidelity simulations for alternative18

designs. The objective function takes into account the damping performance, resonance19

frequency stability and robustness due to possible uncertain variations of design parameters20

with manufacture tolerance. The feasibility of the proposed approach is demonstrated on a21

cottage roof UPD by comparing the proposed optimisation method with conventional para-22

metric simulation method. A significantly improved solution with considerable reduction in23

computational effort is achieved by the current method.24

Keywords: Surrogate model optimisation, Underplatform damper, Nonlinear dynamics,25

Turbine blade vibration26

1. Introduction27

The optimisation of underplatform dampers (UPD) has been receiving growing interest28

in recent publications, see [1, 2]. The UPD is an established passive friction device that29
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mitigates the threat of high-cycle fatigue for gas turbine blades due to large resonance30

stresses [3]. This is achieved by reducing the resonance amplitude via frictional damping31

between adjacent blades [4]. The main design criterion is an optimal damper geometry that32

provides a maximum reduction of resonance amplitudes [5]. Due to the frictional nature of33

the problem, the dynamic response of a bladed disc with UPD is strongly nonlinear, and34

the UPD performance can be very sensitive to its interface geometry [6], often leading to35

a large variability in damper performance. Consequently the UPD design requires high-36

order nonlinear dynamic simulations of the blade-damper system to capture the nonlinear37

behaviour at the blade-damper interface, characterised by transitions between stick, slip,38

and separation. A range of high-order approaches have been developed over the years to39

predict the nonlinear dynamic behaviour of an UPD accurately [6–14] based on state-of-40

the-art strategies, such as component mode synthesis [15], multi harmonic balance [16] and41

reduced order modelling [17]. The results of these approaches show good agreement with42

experimental data, but they come at a very high computational cost due to large number of43

degrees of freedom needed to characterise the vibrational behaviour. This poses a significant44

challenge for the optimal design of UPD which can require a large range of design iterations45

due to the nonlinear nature of the problem.46

The widely adopted approach for optimisation studies of UPD designs is based on sensi-47

tivity analysis (or known as parametric simulation method [18]) of the forced resonance48

responses to a finite number of variations of the design parameters. The parametric simu-49

lation method varies the input of each variable to investigate the sensitivity on the design50

objectives while all the other variables are kept unchanged. As a result an optimal design51

can only be obtained after this procedure is repeated for all variables of interest, leading to52

a computationally expensive process. Focusing on the optimal non-geometric design param-53

eters, Petrov [4, 19] and Krack el al. [20] carried out sensitivity analysis of UPD design to54

the contact parameters at the blade-damper interface, and uncertainties in the damping and55

excitation parameters, respectively. Taking into consideration the geometry change during56

the optimisation process, Tang and Epureanu [21] carried out a parametric study on the57

effectiveness of a V-shaped friction ring damper using a reduced order modelling method.58

They investigated the sensitivity of frequency split (between sliding and sticking frequen-59

cies) by simultaneously varying two (out of four) geometric parameters at the same time.60

Considering the effect of asymmetric platform angles, Panning et al. [22] investigated the61

influence of contact geometry on damping effectiveness by parametrically varying both the62

geometry of blade platform and damper.63

It is well-known that the parametric simulation method is not efficient at finding the op-64

timal and can be time-consuming, since only partial improvement in the solution is avail-65

able from each repetition of parametric simulation. An alternative approach is to carry66

out ‘simulation-based optimisation’, which is commonly used for ‘black-box’ optimisation67

problems where analytical solutions and derivatives of variables are unknown [23]. During68

simulation-based optimisation, automated objective function evaluation and subsequent ad-69

justment of UPD parameters according to an optimisation algorithm are carried out in a70

loop manner to progressively approximate to a ‘solution’ (optimal or near the optimal) that71
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satisfies an optimality condition in the search space. Conventional optimisation algorithms –72

for example gradient based (e.g. conjugate-gradient, quasi-Newton and sequential quadratic73

programming), derivative-free (e,g, Nelder-Mead and pattern search), genetic algorithms74

and particle swarm as reviewed in [24] – require a large number of function evaluations75

that make them unsuitable for the current problem which has a computationally expensive76

objective function.77

Recently, there has been growing interest in using surrogate model based algorithms to78

address computationally expensive simulation-based optimisation problems [25–30]. A sur-79

rogate model has the advantage of yielding a satisfactory solution with relative few function80

evaluations since it is a computationally cheap approximation of the expensive objective81

functions evaluated at sample points, which is used to guide the search for improved solu-82

tions at untried points/configurations. The key contributing factor to the surrogate models’83

efficiency and affordability is that, instead of pursuing accuracy over the entire design space,84

the surrogate predictions become more accurate in the region of interest as the search pro-85

gresses [31]. Surrogate models can be either non-interpolating (for example polynomial86

regression models [32] and multivariate adaptive regression splines [33]) or interpolating (for87

example Radial basis functions [34] and Kriging [35]).88

The objective of this paper is to develop a methodology for UPD design optimisation, leading89

to an excellent and robust damping performance. The novel approach will be based on high-90

order modelling of the contact interfaces, in combination with a surrogate model to optimise91

the geometric configuration of the UPD. The objective function takes into account the92

variations of geometric configuration due to manufacture tolerance, which could significantly93

alters the dynamic behaviour of the blade as will be shown in section 4. This paper can be94

regarded as a proof-of-concept study which only deals with a few geometric design parameters95

to a cottage-roof-damper. The proposed methodology is transferable for other types of96

dampers (e.g. cylindrical, asymmetrical and ring) and can include additional geometric and97

non-geometric (e.g. contact and loading) parameters.98

2. UPD modelling99

The nonlinear dynamic analysis of the UPD is based on the explicit damper modelling100

approach recently developed by Pesaresi et al. [6]. This method has the following features:101

(1) it incorporates detailed three-dimensional finite element modelling of the blades and102

damper; (2) it considers detailed nonlinear representation of the interface with realistic103

contact pressures; and (3) it uses a Multi Harmonic Balance Solver to carry out the nonlinear104

dynamic analysis capturing both the overall dynamic response and local contact conditions105

during vibration. Validation of the explicit damper modelling approach was provided in [6]106

and consequently a short description of the methodology will be provided in this section to107

facilitate the understanding of this research work.108

2.1. UPD geometric parametrisation and uncertainty quantification109

Figure 1 shows the academic UPD test rig at Imperial College London [6], which will be110

the test case for this study. It consists of two blades with platforms on each side, and a111
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Figure 1: Three-dimensional blade-damper system developed in [6]: two blades and platforms (green) in
contact with a cottage-roof damper (red).
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Figure 2: Schematic of the three-dimensional cottage-roof damper design.

cottage-roof damper that sits between the two blades. The three-dimensional schematic112

of the cottage-roof damper can be seen in Fig. 2. The geometry of the damper can be113

characterised by the following parameters: w1 and w2 - half of the upper and lower damper114

width; h1 - the height of the base; h2 - the height of the trapezium; θ - half of the damper115

groove angle; and ld - the damper length. In this study, a constant h1=2.8 mm and ld=38116

mm will be assumed, identical to those in [6], while w2, h2 and θ will be available for design117

optimisation. The remaining parameter, w1, can be calculated as follows,118

w1 = w2 − tan(θ)h2. (1)
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In this study, the design parameters are expressed in non-dimensional forms:119

w̄ = w2

w0
, θ̄ = θ

θ0
, h̄ = h2

h0
(2)

where the reference values, w0=10.24 mm, h0=4.88 mm and θ0=60◦ represent the original120

design in [6]. Geometrical constraints (i.e. w1 > 0 and θ < 90◦) dictate the following121

inequality relationships to ensure realistic damper geometries:122

w̄w0 − tan(θ̄θ0)h̄h0 > 0 and θ̄ < 1.5. (3)

It should be noted that UPD’s volume, and its mass, would not be conserved according to123

the above parameterisation. This, however, would not affect the outcome of the current124

optimisation study since the effect of geometrical and mass variation upon the damper’s125

kinematics, the modal properties, and the static pre-load distribution due to varying cen-126

trifugal force would be captured by the aforementioned high-fidelity modelling approach127

[6].128
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(b) θ̄ = 0.8, w̄ = 0.9 and h̄ = 1.2
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(c) θ̄ = 1.2, w̄ = 0.9 and h̄ = 0.5

Figure 3: Examples of different UPD designs based on current parametrisation.

Figure 3 shows three examples of UPD designs generated by the proposed geometric parametri-129

sation. The contact condition at the interface between platform and damper depends upon130

the value of θ̄. When θ̄ = 1 (see Fig. 3a) both surfaces of damper are in full contact with131
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the platform, whereas when θ̄ , 1 the entire left surface of the damper conforms to that132

of the platform and the other side is in line contact at either the upper (see Fig. 3b), or133

lower (see Fig. 3c) part of the damper. It is assumed in this study that under centrifugal134

force the damper will rotate (in x− y plane) and eventually settles to a final position with135

one surface in full contact. The impact of this assumption was considered negligible, since136

it can be assumed that imperfection due to asymmetries in the manufactured damper or137

platforms most likely will lead to such a configuration during operation. The detailed pro-138

cess of settling to the final position is neglected in this study since the current nonlinear139

dynamic solver cannot capture large motion of the damper before the damper-blade system140

is in full contact. Nevertheless, the small-scale rolling motion of the damper during the141

vibration cycle will be captured by the nonlinear solver since the nonlinear elements can142

separate during a vibration cycle, leading to a potential rotation of the damper [6]. Due to143

the symmetry of the UPD design, all configurations with θ̄ , 1 will be rotated, clockwise,144

and translated such that the left slope is adhered to the left platform and right counterpart145

is in contact with the right platform.146

There exist statistical uncertainty quantification methods (e.g. Monte Carlo simulation [36]147

and polynomial chaos expansions [37]) to quantify variability of design parameters due to148

manufacture variability. But they demand thousands of analyses of deterministic models149

which make them unfeasible for the current computationally expensive problem. Instead, a150

nominal configuration was defined (θ̄, w̄, h̄), from which worst case variations for a minimum151

(θ̄ −∆θ̄) and maximum (θ̄ + ∆θ̄) half groove angle were defined, leading to two additional152

geometries for each damper design with θ̄+ ∆θ̄, w̄, h̄ and θ̄−∆θ̄, w̄, h̄. To keep the number153

of variations to a minimum for this proof of concept study, it was assumed that both the154

non-dimensional width w̄ and height h̄ are unaffected by the manufacturing process.155

2.2. nonlinear dynamic analysis156

Figure 4 shows the steps required to calculate the nonlinear frequency response function157

(FRF) for a given input geometry - this can be either the nominal (θ̄, w̄, h̄) or variational158

configurations (θ̄ + ∆θ̄, w̄, h̄ and θ̄ − ∆θ̄, w̄, h̄) as defined in section 2.1. It is worth159

mentioning that the steps shown here are automated using a MATLAB code, the process160

of which is indispensable to facilitate the evaluation of alternative geometry configurations161

within the optimisation loop (to be presented in section 3). The blade-damper system is162

discretised with 13632 8-noded brick elements, which is shown to be sufficient from results of163

convergence studies. Special care is taken to ensure that nodes of the platform and damper164

meshes are coincident at the interface, see Fig. 5 for an example. This is followed by detailed165

three-dimensional (3D) finite element simulations for the blade-damper system (see Fig. 1).166

Modal analysis and quasi-static nonlinear contact analysis, will be carried out separately to167

obtain the linear dynamic response of the system and the initial pre-load distribution σ0 at168

the interface respectively. The blade-damper system is struck by a harmonic excitation load169

at a location below the platform and the response near the tips of the blades is extracted,170

as seen in Fig. 1. The base of the blade-damper system is fully clamped.171

The damper-platform interface is discretised with a grid of three-dimensional (3D) nonlinear172
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Figure 4: Automated process to carry out the nonlinear dynamic analysis from a given set of design param-
eters.

contact elements, based on two decoupled Jenkins elements [38], as shown in Fig. 5. The173

nonlinear element allows capturing in-plane stick-slip motion, and out-of-plane separation174

during a vibration cycle, and leading to an accurate representation of the contact mechanism175

during vibration. The contact properties for the nonlinear element are characterised by the176

friction coefficient µ, the initial pre-load σ0 and the tangential Kt and normal Kn stiffness,177

and can be obtained experimentally [39, 40].178

The equation of motion for the blades and damper (i.e. contact nodes on the interface and179

selected nodes of blade, platform and damper) can be written as follows:180

Mÿ(t) + Cẏ(t) + Ky(t) + Fnl(ẏ(t),y(t)) = P(t) (4)

where M, C and K are the mass, damping and stiffness matrices; P are the external excita-181

tion forces; and Fnl are the nonlinear forces acting at the interface. The equation of motion182

can be solved using the Multi Harmonic Balance Solver, FORSE (FOrced Response SuitE)183

[10, 17, 41, 42], which permits a fast and reliable computation of the resulting nonlinear184

frequency response function (FRF) for a given input geometry.185
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Figure 5: General scheme of the contact interface discretisation.

3. Optimisation186

The current methodology combines the high-order detailed modelling approach and a sur-187

rogate model method to optimise the geometric configuration of the UPD. The surrogate188

model is highly suitable for the current problem due to its ability to emulate the expensive189

response of ‘black box’ simulation through construction of a cheap-to-evaluate surrogate190

model. The objective function targets good and robust damping performance as well as res-191

onance frequency stability, independent of typical manufacturing tolerances. In this section192

only the key aspects of the implementation procedure for a surrogate model of the current193

nonlinear dynamic problem will be discussed, since a description of the the mathematical194

details of the approach are outside the scope of this study.195

3.1. Surrogate model algorithm196

Consider the following deterministic optimisation problem for UPD design characterised by
the vector of design parameters x ∈ Rk and the resulting response behaviour (damping
performance, robustness) f(x) ∈ R as the optimisation target

min
x

[f(x)] (5a)

−∞ < xli ≤ xi ≤ xui <∞, i = 1, ..., k, (5b)

where xli and xui denote lower and upper variable bounds, respectively; k refers to the197

total number of design variables. The evaluation of objective function f(x) for UPD will be198

presented in the next subsection. It should be noted here, that if the geometrical constraints199

(see Eq. 3) are violated, the objective function will not be evaluated due to infeasible damper200

geometry, and its value will be penalised to be a substantial value. Based on the surrogate201

model, the output of the simulation model (or true model) can be approximated as the sum202

of the surrogate model’s output f̂(x) and its error ε203

f(x) = f̂(x) + ε. (6)
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The surrogate model algorithm iterates the following: gaining insights into f through discrete204

observations or samples, supervised learning that searches for a conceivable function f̂ that205

would replicate observations of f , and enhancing the accuracy of f̂ with further function206

calls.207

Initial sampling

Evaluate expensive 
objective function

Construct or update 
surrogate model

Minimum 
 distance ?

Generate candidate 
pointStop

Update candidate 
point

No

Yes

Reset 
surrogate

Yes
Terminating
Conditions ?

Start

No

Figure 6: Flow-chart of the surrogate model algorithm.

Figure 6 shows the flow-chart to address this optimisation problem using a surrogate model208

algorithm. The algorithm comprises the following steps:209

1. Evaluate the objective function f(x) at q initial points of the domain according to210

a space-filling experimental design. Here, the initial points are taken from a quasi-211

random sequence (or known as low-discrepancy sequence) to achieve a reasonable212

uniformity. A commonly used sampling size of q = 20 [26] is adopted in this study.213

2. This is followed by constructing the surrogate model by interpolating a radial basis214

function [34] through all of the already evaluated points (this could either be initial215

points or initial points together with candidate points). The data at which the ob-216

jective function value is known (x1, f1),...,(xn, fn) are interpreted using the surrogate217

model expressed as follows218

f̂(x) =
n∑
ζ=1

λζφ(||x− xζ ||) + p(x), (7)

where || · || is the Euclidean norm; λi ∈ R are basis function weights; p(x) denotes an219

optional polynomial tail of the form bTx + a, b ∈ Rk, a ∈ R. In this work, the cubic220

radial basis function φ(r) = r3 will be used following [43]. These unknown parameters221
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are determined by solving the linear system [44]222

[
Φ P
PT 0

] [
λ
c

]
=

[
F
0

]
, where P =


xT1 1
xT2 1
...

...
xTn 1

 , λ =


λ1
λ2
...
λn

 c =



b1
b2
...
bk
a

 , F =


f1
f2
...
fn

 ,
(8)

and Φ is an n× n matrix with entries Φζν = φ(||xζ − xν ||), ζ, ν=1, ..., n. It is worth223

mentioning that while Eq. 7 is linear in terms of the basis function weights λ, yet the224

surrogate f̂ can express a highly nonlinear response of the UPD.225

3. The next function evaluation point, (referred to, hereafter, as candidate point), will be226

determined by minimising a merit function which balances minimising the surrogate227

f̂(x) and searching globally within the design space. The merit function fm(x) pro-228

posed by Regis and Shoemaker [43] is used here, which is a weighted combination of229

scaled surrogate and scaled distance:230

fm(x) = wm
f̂(x)− f̂min

f̂max − f̂min
+ (1− wm)dmax − d(x)

dmax − dmin
, (9)

where f̂max and f̂min are maxima and minima surrogate value of f̂(x) obtained through231

evaluating thousands of pseudorandom vectors with scaled length to the point that232

has the smallest objective function value evaluated since the last surrogate reset; d(x)233

is the minimum distance of the current point to the previous evaluated points (the234

points at which the objective function value is known), dmax and dmin are maximum235

and minimum of d(x). 0 < wm < 1 is the weight of the merit function that can either236

drive the search towards local minima or global exploration. For example, minimising237

the first and second term in Eq. 9 would suggest a candidate point located close to,238

and far away, from the evaluated points respectively. Following [43], the weight wm will239

cycle through these four values: 0.3, 0.5, 0.7, and 0.95, to achieve a gradual transition240

from global search to local search.241

4. The algorithm evaluates the objective function value at the candidate point, with which242

it updates the surrogate. This is followed by repetition between step 2 and 4 until the243

minimum distance between the new candidate point and its closest counterpart is less244

than a threshold value. Then, the algorithm will discard all previous candidate points245

from the surrogate, and reset the surrogate by a new round of sampling (restart from246

step 1). This helps in preventing the optimal solution found to be a local minimum.247

The entire optimisation loop stops when the terminating criterion is met. The termi-248

nating criterion could be the total number of function evaluations or total simulation249

time, or a combination of both. The final optimum design can then be selected by250

finding the minimum from all evaluated initial and candidate points.251
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3.2. Objective function evaluation252

The objective function f(x) is evaluated from the frequency response functions (FRFs) of253

the blades based on the nonlinear dynamic analysis (see section 2.2). This study is only254

concerned with the first flexural in-phase (IP) and out-of-phase (OOP) modes where large255

platform movements are expected [6]. Considering equally the contribution from both, the256

objective function is written as257

f(x) = 0.5gIP(x) + 0.5gOOP(x). (10)

In addition to the the nominal design configuration x0, we consider m possible variational258

configurations x1, ...,xm as a result of variation within manufacture tolerance. For either259

IP or OOP modes, the objective function is expressed as a combination of dynamic per-260

formance of nominal configuration fdynamic(x0) and the measure of robustness for all tested261

configurations frobustness(x0, ...,xm)262

g(x) = wffdynamic(x0) + (1− wf )frobustness(x0, ...,xm) (11)

where wf is the weight coefficient for objective function with the extreme cases of wf = 0263

and wf = 1 denoting dominating influence by robustness and damping respectively. The264

damping performance is measured as the combination of reduction of resonance amplitude265

and frequency shift266

fdynamic(x0) = |ω
r
l (x0)− ωr

nl(x0)|
ω̄tolωr

l (x0) + δr
nl(x0)
δr

l (x0) (12)

where δr and ωr refer to resonance amplitude and frequency respectively; subscripts l and nl
denote the cases under linear and nonlinear excitation loads respectively; ω̄tol is the absolute
percentage tolerance of the frequency shift – this is used to bring the first term in Eq. 12
up to the same magnitude (between 0 and 1) of the second term in Eq. 12. The robustness
function is the summation of the coefficients of variance (standard deviation over mean)
Ĉv for both the resonance amplitude and frequencies under linear and nonlinear excitation
loads

frobustness(x0, ...,xm) = Ĉv[ωrl (x0), ..., ωrl (xm)] + Ĉv[ωrnl(x0), ..., ωrnl(xm)]
ω̄tol

+ Ĉv[δrl (x0), ..., δrl (xm)] + Ĉv[δrnl(x0), ..., δrnl(xm)]. (13)

4. Results and discussions267

To demonstrate the efficacy of the current method, a comparison between the parametric268

simulation method and the proposed surrogate model will be made under the same maximum269

number of 216 function evaluations. The blade and damper material properties were set to270

mild steel (Young’s modulus of 197 GPa and density of 7800 kg/m3), and the values for271

the contact properties were Kt = 6 × 104 N/mm3, Kn = 6 × 104 N/mm3 and µ = 0.6 for272
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the area contact [6], and Kt = 6 × 10 N/mm, Kn = 6 × 10 N/mm and µ = 0.6 for the273

line contact [40]. Following the study by Pesaresi et al. [6], two excitation forces of 0.17274

and 17 N were applied to the base of one blade to excite a typical linear and nonlinear275

response in Eqs. 12 and 13, respectively. The first three harmonics, with the harmonic276

‘zero’ (static term), were included in the Fourier truncated representation of the response277

following [6]. A weight coefficient of wf = 0.5, giving equal importance to dynamic response278

and robustness, was chosen for Eq. 11. In Eqs. 12 and 13, an absolute percentage tolerance279

of the frequency shift of w̄tol=2.5% was used as a reference value to establish the influence of280

resonance frequency shift. The value for ω̄tol should be carefully chosen, since it affects the281

weighting of the components in the objective function, and in turn, the final optimisation282

design. Results that will shown later in this section (Fig. 11a) will confirm that the current283

value of ω̄tol = 2.5% is reasonable since the optimised design, with its nominal and variation284

configurations, all display excellent damping performance and limited frequency shift (less285

than 1%). The design variables were set to:286

0.6 ≤ θ̄ ≤ 1.2, 0.8 ≤ w̄ ≤ 1.5, 0.8 ≤ h̄ ≤ 1.3. (14)

to ensure a feasible design of the damper.287

The results from the parametric simulation method are shown in Fig. 7. The design space288

defined by Eq. 14 is filled evenly by 6 × 6 × 6 = 216 configurations with the individual289

design variable being equally partitioned within its range. Figures 7a- 7f show the contour290

plot of the objective function value as a function of θ̄ and w̄ for different non-dimensional291

values of h̄. The colour bar indicates the contour value of the objective function with292

the maximum (i.e. 1.5) being the penalty for unrealistic design variables that violate the293

geometric constraints and the minimum being the local optimum solution (its value is clearly294

indicated at the lower range of the colour bar). It is unsurprising that the objective function295

(evaluated based on the nonlinear dynamic analysis of the blade-damper system) has a296

general nonlinear relationship with each design variable. In general, variations of θ̄ and w̄297

have a greater influence on objective function value than h̄. F Based on the results in Figure298

7, two configurations – θ̄=1.08, w̄=1.08, h̄=0.80 in Fig. 7a and θ̄=0.96, w̄=1.08, h̄=1.30299

in Fig. 7f – exist that have identical minimum objective function values of 0.289 out of300

the 216 parametric simulations. To better understand the behaviour of these two optimal301

cases, the corresponding UPD design and simulated FRFs are shown in Figs. 8a and 8b.302

Despite identical overall objective function values, the former design has groove angle greater303

than the platforms, while the latter one has a smaller groove angle. This leads to two very304

different blade-damper interaction mechanisms, and consequently to very different simulated305

FRFs. In the first case the entire UPD is underneath the platform (since the UPD’s groove306

angle is greater than that of platform θ̄ > 1), with the lower edge of the right-hand damper307

side in contact with the platform, leading to a quasi-static stress concentration at the lower308

end of the UPD’s right-hand surface. For the smaller groove angle, the stress on the right309

surface of the UPD concentrates at its upper end since θ̄ < 1. Due to the nonlinear nature of310

the problem, very different dynamic response and robustness behaviour can be observed in311

Fig. 8a and 8b. The large groove angle design leads in the IP mode to a significant amount312
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Figure 7: Results of parametric simulation method for different values of θ̄, w̄ and h̄. X and O denote
respectively the local and global minimum location.

of damping and a small frequency shift due to higher excitation levels (solid and dotted313

lines), but it also shows a strong sensitivity with regards to small variations in the groove314

13



-40 -20 0 20 40
x

40

50

60

70

y

390 392 394 396 398 400
Frequency [Hz]

0

0.005

0.01

0.015

0.02

R
ec

ep
ta

nc
e 

[m
m

/N
]

415 420 425
Frequency [Hz]

0

1

2

3

4

5

6

R
ec

ep
ta

nc
e 

[m
m

/N
]

10-3

IP

OOP

(a) θ̄=1.08, w̄=1.08, h̄=0.80
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Figure 8: UPD nominal design and simulated IP and OOP FRFs for nominal and variational configurations
corresponding to the local optimal solution in (a) Fig. 7a and Fig. 7f.

angle (blue and red lines). The narrow groove angle IP mode instead is relatively insensitive315

towards groove angle variations, but leads to less damping and a slightly larger frequency316

shift. The behaviour is inverted for the OOP mode, which explains why the overall objective317

function of the two fundamentally different damper designs lead to the same minimum value318

and highlights the importance of choosing the weights correctly to ensure that the optimum319

design displays reasonable individual performance as defined in the objective function.320

Figure 9 summarises the resulting objective function for the proposed surrogate model321
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Figure 9: Trajectory of objective function value using the current surrogate model optimisation. - - - denotes
the minimum solution from the parametric simulation method (see Fig. 7).

method. As previously explained, the algorithm alternates between the phase of evalu-322

ating initial points (blue triangles) and the phase of identifying and adding candidate points323

to the surrogate model (black dot). Three rounds of full evaluations (initial together with324

candidate points) were carried out within the 216 allowed iterations. The minimum objec-325

tive function value from the previous parametric simulation method (0.289 in Fig. 7) is326

also included for comparison. The results show that the objective function value evaluated327

at initial points varies significantly, but once considerable candidate points are added it328

eventually converges towards a minimum. Interestingly in the first round of full evaluation329

the minimum solution is close to that from the parametric simulation method, while in the330

second and third iteration, lower minimum solutions were found. A close examination in331

Fig. 10 will show that the design configuration shown in Fig. 8a is, surprisingly, within the332

clustering region of the first patch of candidate points that are reaching a local minimum.333

Due to the stochastic nature of the surrogate method, it is not surprising to find that the334

objective function value for the first initial point within the third round of evaluation is335

very close to the optimum solution found in the previous round. The proposed surrogate336

model was eventually able to improve the optimal solution by 24.1% when compared to337

the parametric simulation, within 150 iterations, thereby providing a significantly improved338

solution in less than 70% of the computational effort.339

To aid the interpretation of the provided results, Figure 10 shows the dispersion of the340

initial points and candidate points within the three-dimensional design space of θ̄ − w̄ − h̄341

during the optimisation loop. The contour of the corresponding objective function value is342
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Figure 10: Contour plot of objective function solutions during the optimisation loop. H refers to initial points;
refers to candidate points; X denotes the global minimum location; refers to the design configuration in

Fig. 8a.

indicated on the colour bar. It can be seen that the initial points, which are based on quasi-343

random sequences, are uniformly distributed around the design space without clustering.344

This ensures the general accuracy of the surrogate model over the broad range of the design345

space. The infeasible UPD designs are plotted in red (a penalty of 1.5 is given), most of346

which are initial points. This indicates that the candidate points (which are the minimum347

solutions of the merit function) rarely violate the inequality conditions (Eq. 3) and the348

majority of the candidate points are contributing towards minimising the objective function349

value. A close examination of Fig. 10 reveals three sets of clustered candidate points,350

which respectively belong to the three round of the full evaluation in Fig. 9. The fact351
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that the regions containing the three clustering candidate points are separated illustrates352

the beneficial feature of the current method to explore global minima rather than becoming353

’trapped’ in a local minimum.354
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Figure 11: UPD nominal design and simulated IP and OOP FRFs for nominal and variational configurations
corresponding to (a) the global optimal solution and (b) an example for poor robustness in Fig. 10.

The UPD design and simulation results for the global optimum configuration in the surrogate355

model optimisation (Figs. 9 and 10) are shown in Fig. 11a. The design configuration is356

similar to that shown earlier in Fig. 8b, where quasi-static stress concentrates on the upper357

end of right-hand UPD surface. The improvement of objective function value is largely due358
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to the further reduction of resonance amplitude in the IP mode since other performance359

(robustness, frequency shift and damping performance in OOP mode) are relatively close360

when comparing Fig. 11a and Fig. 8b. Figure 11b presents an example of how sensitive the361

nonlinear dynamic response of the blade-damper system could be over only a slight change362

of design variable (i.e. ±2◦ on groove angle). In IP and OOP modes, the FRF curves363

under either low or high excitation loads, vary considerably for the nominal and variational364

configurations. This highlights the importance to consider the manufacture tolerances on365

geometrical properties when carrying out optimisation study on UPD design.366

(a) IP mode

(b) OOP mode

Figure 12: Contact conditions for each contact node at the damper interface under 17 N at resonance
frequencies for the simulations given in Fig. 11a. stuck; slip; slip-separation; gap.

To provide further insights on the local contact dynamics that drives the good and robust367

performance of the optimum design in Fig. 11a, Figure 12 shows the contact conditions at the368

IP and OOP modes under high excitation load (17 N) at resonance frequencies. The explicit369

damper model developed in [6] permits the identification of four different contact behaviours370

at the interface for the contact node during a vibration cycle: stuck condition where linear371
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Figure 13: Energy dissipation for each contact node at the damper interface under 17 N at resonance
frequencies for the simulations given in Fig. 11a.

nodes do not dissipate energy (blue dots), stick-slip transition which is beneficial for energy372

dissipation (green dots), slip-separation transition (red dots) and separation (cyan dots).373

The contact conditions under low excitation load (0.17 N) are excluded here purposefully374

since they are all under stuck condition at low excitation forces. It can be seen that the375

contact conditions for nominal and variational configurations are consistent in both IP and376

OOP mode. In IP mode the central region of the left surface of the UPD stays stuck even377

at high excitation load whereas the nodes adjacent to the boundary mostly slip (green dots)378

or slip and separates (red dots) - this is in line with the findings in [6]. In OOP mode the379

entire left surfaces stay stuck during the vibration cycle, despite the high excitation load.380

Results of energy dissipation for each contact node is shown in Fig. 13. It reveals that the381

dry friction from left and right side of the UPD always dissipate energy in IP and OOP mode382
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respectively. This explains the robust and significant reduction of resonance amplitude in383

both modes for the nominal and variational UPDs, as seen in Fig. 11a.384

5. Conclusions385

An optimisation framework for the robust design of an underplatform damper (UPD) with386

dry friction interfaces was developed. The approach combines high-order nonlinear dynamic387

models of the damper with surrogate model optimisation to provide good damping coupled388

with stable resonance frequency behaviour and small response variations due to manufac-389

turing tolerances. It was shown that the nonlinear dynamic response of the blade-damper390

system can be extremely sensitive to a slight change of geometric properties; and hence it391

is important to consider geometric uncertainty when optimising UPD. Comparison between392

the proposed surrogate model and the conventional parametric simulation method has been393

made, where the current method is shown to be more computational cost-efficient to find a394

considerably improved optimum solution. The close examinations of the contact condition395

and energy dissipation at the blade-damper interface reveal that the global optimum design396

proposed by the surrogate model is effective in dissipating energy through slipping in both397

the IP and OOP mode.398
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