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Abstract— Objective: Surface EMG-driven modelling has been 

proposed as a means to control assistive devices by estimating joint 

torques. Implanted EMG sensors have several advantages over 

wearable sensors but provide a more localized information on 

muscle activity, which may impact torque estimates. Here, we 

tested and compared the use of surface and intramuscular EMG 

measurements for the estimation of required assistive joint torques 

using EMG driven modelling. Methods: Four healthy subjects and 

three incomplete spinal cord injury (SCI) patients performed 

walking trials at varying speeds. Motion capture marker 

trajectories, surface and intramuscular EMG, and ground 

reaction forces were measured concurrently. Subject-specific 

musculoskeletal models were developed for all subjects, and 

inverse dynamics analysis was performed for all individual trials. 

EMG-driven modelling based joint torque estimates were 

obtained from surface and intramuscular EMG. Results: The 

correlation between the experimental and predicted joint torques 

was similar when using intramuscular or surface EMG as input to 

the EMG-driven modelling estimator in both healthy individuals 

and patients. Conclusion: We have provided the first comparison 

of non-invasive and implanted EMG sensors as input signals for 

torque estimates in healthy individuals and SCI patients. 

Significance: Implanted EMG sensors have the potential to be 

used as a reliable input for assistive exoskeleton joint torque 

actuation. 

 
Index Terms—EMG driven modelling, musculoskeletal model, 

electromyography, assistive technology, human-machine 

interface, spinal cord injury 
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I. INTRODUCTION 

HERE has been growing interest in powered wearable 

assistive devices that can increase the physical performance 

of users. One of their application is for neurorehabilitation, 

where this technology can enhance the motor capabilities of 

neurologically impaired individuals, such as stroke or spinal 

cord injury (SCI) patients, thus accelerating the recovery 

process and minimizing functional disability. Among the 

activities of daily living (ADL), walking is one of the most 

demanded and directly affects quality of life. 

Human-machine interfaces (HMI) based on myoelectric 

control provide the decoding of human motor intention from 

electromyographic (EMG) signals and translate them into high 

level commands for controlling prostheses or exoskeletons [1], 

[2].  One of the major challenges of EMG-based HMIs is to 

decode the intention to activate multiple degrees of freedom 

(DOFs) in a coordinated manner to replicate natural human 

movements [3], [4]. Among various myoelectric HMIs, EMG-

driven neuromusculoskeletal (NMS) modelling approaches 

have been developed to estimate user-intended joint moments 

[5], [6], [7], [8], [9], [10]. These systems can operate in real-

time [11] and be applied to control exoskeletons and prostheses 

[12], [13], [14]. 

In most of the existing EMG-driven model-based HMIs, 

surface EMG (sEMG) signals are typically acquired from 

multiple muscles and used to derive individual muscle 
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activation signals in order to calculate their contributions to 

joint moments. While sEMG is a non-invasive, and therefore 

convenient, interface technology, it has limitations in its 

translational potential, mainly due to the need to replace the 

electrodes at each use of the interface. This issue is associated 

to the need for recalibration of the HMI, as it has been 

extensively documented for myoelectric prostheses (e.g., [15], 

[16], [17]). On the other hand, intramuscular EMG (iEMG) 

provides recordings from implanted sensors. Human 

intramuscular implants have been developed and tested 

chronically in patients for the control of prostheses [18] but 

have not been extensively explored for the control of 

exoskeletons. Compared to sEMG, iEMG can provide a chronic 

interface. Moreover, the surgical procedures for chronic 

implants in muscles are relatively simple. 

iEMG is usually more selective than surface EMG. 

Selectivity may have the advantage of reducing crosstalk 

between multi-muscle EMG recordings [19] but also implies 

that the recording is potentially less representative of the global 

muscle activity. These characteristics of iEMG may influence 

the estimation quality of EMG-driven NMS model-based HMI. 

Some previous studies compared the control performance of 

sEMG and iEMG in the field of prosthetics. For example, 

sEMG and iEMG have been compared in the 2DOFs wrist joint 

torque estimation using an artificial neural network in healthy 

subjects [20]. Another research [21] compared the performance 

of a real-time virtual posture matching task using a 

musculoskeletal model-based control algorithm from sEMG 

and iEMG in both healthy and amputee subjects. In other 

studies, it has been shown that there is a good agreement in the 

linear envelope profiles of sEMG and iEMG recorded from 

ankle dorsi and plantar flexors during walking [22]. sEMG and 

iEMG recorded from different muscles have been used in 

combination as inputs for EMG-driven NMS models of the 

shoulder joint DOFs, but sEMG and iEMG were not recorded 

concurrently from the same muscles so that it was not possible 

to compare the performance of EMG-driven modelling between 

sEMG and iEMG [23].  

Several studies have shown that muscle activation patterns of 

SCI patients differ from those of healthy individuals. For 

examples, difference in muscle activations in incomplete SCI 

(iSCI) patients were observed for the tibialis anterior during the 

stance phase of gait cycle and for the rectus femoris during the 

swing phase [24]. Another study showed a greater number of 

motor modules (also known as muscle synergies) in healthy 

individuals than in the most affected side of iSCI patients 

during walking [25]. These differences in EMG patterns of iSCI 

patients may affect the performance of EMG-driven NMS 

modeling. To the best of our knowledge, there are no previous 

studies that tested the performance of EMG-driven NMS 

modelling when using iEMG with lower body kinematics and 

kinetics in neurologically impaired patients. 

The aim of this study is to validate the iEMG-driven NMS 

model as an implanted interface on SCI patients for assistive 

exoskeleton control. For this purpose, we used both sEMG and 

iEMG measurements to estimate the performance of iEMG-

driven NMS model's joint torque prediction compared to the 

baseline reference (sEMG-driven NMS model). We applied this 

approach in both healthy individuals and iSCI patients. 

II. EXPERIMENTS 

A. Participants 

4 healthy and 3 incomplete SCI subjects participated to the 

experiment. All subjects gave their written informed consent to 

the procedures of the study, approved by the Ethic Committee 

of the National Hospital for Spinal Cord Injury of Toledo (Ref. 

No. 724; 17/12/2018), where the experiments were conducted. 

Table I summaries the information of all subjects, and Table II 

shows the clinical information about iSCI patients in detail. All 

iSCI patients were able to walk without any external aid. 

 

B. Experimental procedure 

For both healthy and iSCI subjects, 5 static trials were 

recorded for each subject. Subjects were asked to stand with 

their arms crossed on the chest at rest. One of these static trials 

was selected randomly to create a subject-specific 

geometrically scaled human musculoskeletal model using a 

template model (gait 2392) in OpenSim version 3.3 [26]. After 

these static trials, dynamic trials were recorded. Healthy 

subjects performed self-paced walking trials at three speeds: 

normal, slow and very slow. For each speed, 4 trials were 

acquired. iSCI subjects performed 10 self-paced walking trials 

at one speed. 

 

C. Data acquisition 

We concurrently recorded kinematic and EMG data during 

the static and walking trials. We also measured ground reaction 

forces during walking. Additionally, we recorded a trigger 

signal to allow offline synchronization of the EMG and 

kinematic data. Surface and intramuscular EMG signals were 

TABLE I 
SUMMARY OF SUBJECTS 

ID GENDER AGE 

[years] 

WEIGHT 

[kg] 

HEIGHT 

[m] 

H01 F 22 66 1.64 

H02 M 27 60 1.69 
H03 F 22 60 1.69 

H04 M 21 68 1.71 

P01 M 56 63 1.63 
P02 M 56 90 1.79 

P03 M 47 74 1.83 

Summary of both healthy (H01-H04) and iSCI (P01-P03) subjects in the 
experiments. 

TABLE II 

SUMMARY OF CLINICAL INFORMATION OF ISCI SUBJECTS 

ID AIS LEVEL OF 

INJURY 

TIME SINCE 

INJURY 

[months] 

ETIOLOGY 

 

P01 D C4 6 Vascular 

P02 D L1 4 Inflammatory 

P03 D C4 7 Traumatic 

Summary of clinical information of iSCI (P01-P03) subjects. AIS stands 
for American Spinal Injury Association Impairment Scale (AIS). 
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acquired from 7 muscles of the right leg: tibialis anterior, 

gastrocnemius medialis, soleus, vastus lateralis, vastus 

medialis, rectus femoris and biceps femoris (Fig. 1). Both 

surface and intramuscular EMG signals were acquired from 

each of these muscles in bipolar derivation with a multi-channel 

amplifier (Quattrocento, OTbioelettronica, Turin, Italy) that 

provided a gain of 150 and sampled the signals at 10240 Hz 

with 16-bit resolution. Surface EMG was recorded with a pair 

of Ag/AgCl electrodes (Ambu® Neuroline 720 01-K/12, Ambu 

A/S, Ballerup, Denmark) with inter-electrode distance of 22 

mm in each muscle. Intramuscular signals were acquired with a 

pair of fine wires (Fi-Wi2, OTbioelettronica, Turin, Italy) 

inserted in the target muscle with an insertion angle of 

approximately 45°. The wires were inserted with a 25G 

hypodermic needle that was removed after the insertion, leaving 

the wires inside the muscle for the recordings. The uninsulated 

part of the wire had a length of approximately 1 cm. The skin 

was shaved, when needed, and cleansed with alcohol before the 

needle insertion. The wires were secured with tape to avoid 

their removal by an accidental tug. The surface electrodes were 

placed on the area overlying the portion of the muscle were the 

bare ends of the wire were located. A wet band was placed at 

the ankle to act as a ground electrode. After securing all 

electrodes with tape, the leg was covered with an elastic band 

to minimize motion artefacts during the recordings.  

Kinematics was recorded with an active-marker type motion 

capture system (Codamotion, Charnwood Dynamics Limited, 

United Kingdom) at a sampling rate of 200 Hz. Codamotion 

uses different types of wands for pelvis, thigh and shank, and 

22 physical markers [27]. In addition to the default Codamotion 

marker set, 6 additional markers (CLAV: jugular notch where 

the clavicle meets the sternum, STRN: xiphoid process of the 

sternum, LSHO: left shoulder, RHSO: right shoulder, LHEE: 

posterior distal aspect of left heel, RHEE: posterior distal aspect 

of right heel) were included in the experimental protocol of 

dynamic trials in order to capture the kinematics of upper body 

segments and to improve the kinematics of both feet segments. 

For static trials, 10 additional markers (LTOE: location between 

second and third metatarsal heads in left foot, RTOE: location 

between second and third metatarsal heads in right foot, 

LMMA: left medial malleolus, RMMA: right medial malleolus, 

LKME: left knee medial epicondyle, RKME: right knee medial 

epicondyle, LHFB: light head of fibular, RHFB: right head of 

fibular, LTUB: left tibial tuberosity, RTUB: right tibial 

tuberosity) were included in order to improve the scaling of the 

OpenSim musculoskeletal model. Some of the additional 

markers were adapted from the Oxford Foot Model [28]. All 

lower body markers were attached bilaterally so that inverse 

kinematics and inverse dynamics were performed with both 

legs in OpenSim. Fig. 2 shows the locations of the markers used 

in the static trials of the experiments. 

Ground reaction forces were measured by two force plates 

(KISLER, Winterthur, Switzerland) at a sampling rate of 1000 

Hz. In the walking trials, subjects were instructed to contact the 

first force plate with their right foot and the second force plate 

with their left foot. 

 

D. Data processing  

The surface (intramuscular) EMG signals were band-pass 

filtered at 30-450 Hz (100-4400 Hz) with a 2nd order zero-lag 

Butterworth filter. The resulting signals were rectified and low-

pass filtered at 6 Hz (2nd order zero-lag Butterworth digital 

filter) to extract the envelopes. Envelopes were then down-

sampled to 1000 Hz to match the sampling frequency of the data 

from the force plate system. For each subject and muscle, the 

envelopes were amplitude-normalized with respect to peak-

processed values obtained from the dynamic trials. The 

resulting normalized EMG envelopes were regarded as 

experimental muscle excitations to be used as the input for the 

EMG-driven modelling pipeline.  

Due to the complexity of the experimental procedures, there 

were some dropped-out markers in the motion capture marker 

 
Fig. 2.  Representative illustration of the static trial marker set for lower and 
upper body segments in both healthy and iSCI subjects. 

 

 
Fig. 1.  Muscles were both surface and intramuscular EMG electrodes were 

positioned. 
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acquisition data. Therefore, cubic spline interpolation was 

performed for all marker trajectories so that the missing marker 

data were estimated by interpolation while the original existing 

marker data was unchanged. After this preprocessing of the 

motion capture marker dataset, both motion marker trajectories 

and force plate measurements were low-pass filtered using a 

zero-lag, 2nd order, 6-Hz Butterworth filter.  

The processed marker trajectories, EMG envelopes, and 

ground reaction forces were synchronized, and were stored in 

OpenSim compatible file formats so that they could be used in 

the EMG-driven NMS model-based joint torque estimation 

framework. The data processing was performed by custom-

made programs using Python, NumPy and SciPy libraries [29], 

[30], [31]. 

III. EMG-DRIVEN MUSCULOSKELETAL MODEL 

A. Neuromusculoskeletal (NMS) model 

A generic model (gait2392) of the software OpenSim [26] 

was scaled to match the individual subject’s anthropometry. 

This was done based on the marker trajectories from static 

motion capture trials, and the estimated locations of joint 

centers for the hip, knee and ankle. Musculoskeletal parameters 

were linearly scaled according to the change in muscle-tendon 

lengths. Body mass was also scaled to the individual while the 

relative proportions of individual segment masses were kept 

consistently. The OpenSim’s modelling pipeline, that includes 

inverse kinematics, inverse dynamics and the muscle analysis 

tool, was used to calculate joint angles, joint moments and 

musculotendon unit (MTU) kinematics (muscle lengths and 

moments arms), for each walking trial.  

 

B. EMG-driven modelling framework 

The output from OpenSim (joint angles, muscle lengths and 

moment arms) and EMG-derived muscle excitations were used 

as the input to an EMG-driven modelling framework [9]. The 

EMG-driven model was used to calculate muscle forces and 

their relevant joint moments using muscle excitations and MTU 

kinematics. Full-predictive open-loop mode [9] was used in this 

study, because this open-loop model directly calculates the 

muscle forces and their resultant joint torques by using recorded 

EMG signals and 3D joint angles. 

The first step for EMG-driven modelling is the calibration. 

The aim of the calibration process is to identify a set of 

parameters for each MTU. The first parameter set is related to 

the MTU’s activation dynamics that determines the translation 

from muscle excitation to muscle activation. The neural 

activation, which is derived from the muscle excitation, was 

represented by a critically damped linear second-order 

differential system [9]:  

𝑢(𝑡) = 𝛼𝑒(𝑡 − 𝑑) − (𝐶1 + 𝐶2)𝑢(𝑡 − 1) − 𝐶1𝐶2𝑢(𝑡 − 2)   (1) 

where 𝑢(𝑡)  is the neural activation, 𝑒(𝑡)  is the muscle 

excitation at time 𝑡, 𝛼 is the muscle gain coefficient, 𝐶1 and 𝐶2 

are the recursive coefficients, and 𝑑 is the electromechanical 

delay. The neural activation and the muscle activation are 

associated by a non-linear relation: 

𝑎(𝑡) =
𝑒𝐴𝑢(𝑡) − 1

𝑒𝐴 − 1
   (2) 

where 𝑎(𝑡) is the muscle activation, and 𝐴 is a non-linear shape 

factor, constrained in the interval (−3, 0). 

The second parameter set relates to the muscle-tendon 

contraction dynamics that transforms muscle activation and 

MTU kinematics into muscle force by using a Hill-type muscle 

model. The MTU force 𝐹𝑚𝑡(𝑡) can be formulated as follows: 

𝐹𝑚𝑡(𝑡) = 𝐹𝑡(𝑡) = 𝐹𝑚(𝑡) cos(𝜑(𝑡)) 

= 𝐹𝑚𝑎𝑥[𝑎(𝑡)𝑓𝑎(𝑙𝑚(𝑡))𝑓𝑣(𝑣𝑚(𝑡))

+ 𝑓𝑝(𝑙𝑚(𝑡))] cos(𝜑(𝑡))   (3) 

where 𝐹𝑡(𝑡) is the tendon force, 𝐹𝑚(𝑡) is the fiber force, 𝐹𝑚𝑎𝑥  

is the maximum isometric fiber force, 𝑎(𝑡)  is the muscle 

activation, 𝜑(𝑡) is the pennation angle of the fibers, 𝑙𝑚(𝑡) is 

the normalized fiber length, 𝑣𝑚(𝑡)  is the normalized fiber 

velocity, 𝑓𝑎(𝑙𝑚(𝑡))  is the fiber force-length relationship, 

𝑓𝑣(𝑣𝑚(𝑡))  is the fiber force-velocity relationship, and 

𝑓𝑝(𝑙𝑚(𝑡)) is the passive force-length relationship. 

During the calibration process, a simulated annealing 

algorithm [32] was used to identify the subject-specific model 

parameters, including 𝐴, 𝐶1 , 𝐶2 , the tendon slack length, the 

optimal fiber length, and the maximum isometric fiber force [9]. 

The initial parameters were iteratively updated in order to 

minimize the mismatch between the predicted and the 

experimentally measured joint moments for the target DOFs. 

The experimental joint moments were estimated from the 

TABLE III 
RECORDED EMG SIGNALS AND RELEVANT MODEL MUSCLE BRANCHES 

Measured EMG Relevant model muscle branches 

Biceps femoris biceps femoris long head, biceps femoris short 

head 

Gastrocnemius 
medialis 

gastrocnemius lateralis, gastrocnemius medialis 

Soleus soleus 

Tibialis anterior tibialis anterior, peroneus tertius 
Vastus lateralis vastus lateralis, vastus intermedius 

Vastus medialis vastus medialis, vastus intermedius 

Rectus femoris rectus femoris 

Measured EMG signals and their corresponding muscle branches in the 
NMS model. Some muscle branches use their closest muscle’s measured EMG 

signals. For instance, the peroneus tertius muscle branch in the 

musculoskeletal model used the measured EMG signal from the tibialis 
anterior muscle and the vastus intermedius muscle branch used the average of 

the vastus lateralis and vastus medialis EMG measurements. 

 
Fig. 3. Walking speeds for healthy and iSCI subjects. Healthy subjects 

performed the walking trials at 3 speeds (normal, slow and very slow) whereas 
iSCI subjects performed only single speed walking. All walking speeds were 

self-paced. 

MKJ
Highlight
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OpenSim’s inverse dynamics analysis. The target joint 

moments that were included in the calibration process were 

ankle plantar/dorsi flexion and knee flexion/extension. 

Since the number of acquired EMG channels was smaller 

than that of the available muscle branches in the NMS model, 

there was a need to define the excitation generator mapping 

between the EMG input signals and the muscle branches in the 

NMS model. Table III shows the excitation generator mapping 

between the EMG input and the NMS model muscle branches. 

Some modeled muscle branches were assigned to the EMG 

activation recorded from their closest muscles. For instance, the 

peroneus tertius in the NMS model used the measured EMG of 

the tibialis anterior, and the vastus intermedius in the NMS 

model used the average of the vastus lateralis and vastus 

medialis EMG measurements. The biceps femoris EMG was 

used for both its long and short head in the NMS model, and the 

gastrocnemius medialis EMG was used for both gastrocnemius 

medialis and gastrocnemius lateralis. All the other muscle 

branches were removed from the NMS model, except for the 11 

muscle branches described in Table III. The fundamental 

assumption of this approach is that only the muscles for which 

an excitation is assigned (in Table III) are responsible for the 

generation of the required joint torques [9]. Since it was not 

possible to use more than 7 iEMG electrodes in order to avoid 

potential discomfort of the subjects, it was decided not to use 

iEMG electrodes around the hip joint muscles, because some of 

those are located deeply so that the measurement of 

corresponding sEMG was not possible. Thus, the hip joint 

torque prediction in the model was eliminated. 

For the healthy subjects, 3 trials (walking normal, walking 

 
Fig. 4.  Results of the joint angle estimation using inverse kinematics analysis. Mean angle trajectories for all walking speeds from individual subjects are 
displayed for ankle and knee joints. Averaged range of motion (ROM), averaged maximum and minimum of joint angles are represented with their standard 

deviation. Results are presented for (a) healthy subjects and (b) iSCI subjects.  
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slow, walking very slow) were used for the calibration of each 

subject. For the iSCI subjects, 3 walking trials were used for 

each subject. 

Two separated NMS models were calibrated for each subject, 

one for the surface EMG inputs and the other for the 

intramuscular EMG inputs. After this calibration process, 

muscle forces and joint moments were estimated from the 

remaining trials (obtained excluding the calibration trials), 3 

trials of each walking speed (9 trials in total for each subject) 

for healthy subjects, and 7 trials of walking for iSCI subjects. 

 

 
Fig. 5.  Joint torque estimation results using the EMG-driven modeling framework for all healthy subjects. Black lines show the mean of the experimental 
(reference) joint torques evaluated by inverse dynamics analysis in OpenSim. Red lines show the mean of the predicted joint torques using sEMG whereas blue 

lines show the mean of the predicted joint torques using iEMG. The shaded area shows 1 standard deviation (SD) for each time step during the entire stance 
phase of walking trials. For each walking speed of a subject, 3 trials were used for the execution of the NMS model (9 trials in total for each subject). 
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C. Data analysis 

The Pearson correlation coefficient (𝑟)  and root-mean-

square-error (RMSE) were estimated for the experimental 

(OpenSim’s inverse dynamics) and the predicted (EMG-driven 

open-loop mode) joint moments. As the performance 

parameters did not satisfy the normality assumption according 

to the Shapiro-Wilk test, a nonparametric Kruskal-Wallis test 

was used to compare the performance of joint moment 

prediction between sEMG and iEMG. 𝑃 <  0.05  was the 

threshold for significance. All the data analyses were performed 

using Python, NumPy and SciPy libraries [29], [30], [31]. 

  

 
Fig. 6.  Joint torque estimation results using the EMG-driven modeling framework for all iSCI subjects. Black lines show the mean of the experimental (reference) 

joint torques evaluated by inverse dynamics analysis in OpenSim. Red lines show the mean of the predicted joint torques using sEMG whereas blue lines show 
the mean of the predicted joint torques using iEMG. The shaded area shows 1 standard deviation (SD) for each time step during the entire stance phase of walking 
trials. For each subject, 7 trials were used for the execution of the NMS model. 

 
Fig. 7.  Performance metrics of joint torque prediction using the EMG-driven modelling framework. Pearson correlation coefficient (𝑟) values were estimated 

between the experimental (reference) and the predicted joint torques for all the trials from every subject. The heights of colored bars represent the average 𝑟  

values and the error bars the standard deviations. 
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IV. RESULTS 

Fig. 3 shows the walking speeds for healthy subjects 

(walking normal:  0.88 ± 0.09 𝑚/𝑠 , walking slow: 0.53 ±
0.08 𝑚/𝑠 , walking very slow: 0.36 ± 0.05 𝑚/𝑠 ) and iSCI 

patients (average walking speed: 0.41 ± 0.13 𝑚/𝑠 ). For all 

trials of both healthy and iSCI subjects, the speed of individual 

trials was self-paced. Healthy subjects were asked to walk at 

additional walking speeds (walking slow and walking very 

slow), in order to mimic the walking speeds of iSCI subjects. 

The average speed of iSCI subjects’ walking trials was in 

between the average speed of the walking slow and very slow 

trials of healthy subjects. 

The results of the joint angle calculation using the inverse 

kinematics analysis of OpenSim are summarized in Fig. 4. For 

healthy subjects, the average range of motion (ROM) values of 

ankle joint were  21.72 ± 2.24 ° , 20.23 ± 1.13 ° , 20.50 ±
2.71 ° and the average ROM values of knee joint were 38.14 ±
3.56 ° , 33.53 ± 8.73 ° , 36.15 ± 5.59 °  for the three walking 

speeds. For iSCI subjects, the average ROM value of ankle joint 

was 21.01 ± 1.42 ° and the average ROM value of knee joint 

was 36.76 ± 4.85 °  for their single walking speed 

configuration. Fig. 4 shows that the patterns of both knee and 

ankle joint angles were similar between healthy subjects and 

iSCI patients. However, there were differences in the minimum 

and maximum values of those joint angles among the subjects 

in each group.  

Fig. 5 and Fig. 6 show the results of the joint torque 

estimation using the calibrated EMG-driven NMS models for 

the healthy and iSCI subjects, respectively. Fig. 7 shows the 

Pearson correlation coefficient (𝑟) between the experimental 

(reference) and the predicted joint torques, and Fig. 8 reports 

the root-mean-square-error (RSME) between the experimental 

and the predicted joint torques. Table IV shows the summary of 

the performance metrics comparison between sEMG and iEMG 

for all cases.  

In Fig. 5 and Fig. 6, the results of the joint torque estimation 

are reported during the stance phase between 0% (heel-strike) 

and 100% (toe-off). All joint torques were normalized by the 

masses of the subjects, for consistency with previous studies 

[7], [8], [9], [11].  The ‘body weight times height’ joint torque 

normalization approach was also tested in order to observe the 

effect of height and weight on the peak values of the joint 

torques [33]. None of the results significantly changed when we 

applied this normalization to our data, therefore the body mass 

normalization only was used for reporting the final results.  To 

create Fig. 5 and Fig. 6, 3 different B-spline curves were 

constructed in order to interpolate the experimental, the sEMG-

driven and the iEMG-driven joint torques, using the entire 

dataset from the stance phase of each trial. Then the estimation 

of these curves was performed using the same number of stance 

phase percentage points in order to replicate the stance phase in 

the range 0-100%. Because the calibration processes of EMG-

driven NMS models were performed using both ankle and knee 

DOFs, the joint torques of these 2 DOFs were estimated 

simultaneously [7]. Results show that the estimated joint 

torques are comparable with the reference (OpenSim’s inverse 

dynamics) torques for both sEMG and iEMG. For healthy 

subjects (Fig. 5), the normalized ankle plantar-flexion joint 

torque curves from all cases showed a similar trend, whereas 

the patterns of the normalized knee extension joint torque 

curves varied among subjects. A single peak was usually 

observed for the ankle plantar-flexion joint torque curves 

 
Fig. 8.  Performance metrics of joint torque prediction using the EMG-driven modelling framework. Root mean square error (RMSE) values were estimated 
between the experimental (reference) and the predicted joint torques for all the trials from every subject. The heights of colored bars represent the RMSE values 

in Nm/kg and their standard deviations are displayed with error bars. 
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whereas two peaks were detected in the knee extension joint 

torque curves during the stance phase of a gait cycle. For 

walking at normal speed, the predictions of knee joint torques 

had greater errors for the first peak than the second. Moreover, 

for each subject, the peak values of these normalized joint 

torque curves varied with walking speed.  

For iSCI subjects (Fig. 6), the trend of the normalized ankle 

plantar-flexion joint torque curves was consistent except for the 

peak magnitudes, whereas the patterns of the normalized knee 

extension joint torque curves varied substantially among 

subjects in magnitude and shape. The main reason of different 

knee extension joint torque patterns may be the different knee 

joint angle kinematics among these iSCI subjects, as seen in 

Fig. 4(b). Nevertheless, the predicted ankle and knee joint 

torques using both sEMG and iEMG driven NMS models 

showed good agreements with the reference joint torques even 

though their reference joint torque patterns were not consistent 

with those of healthy subjects, which indicates the capacity of 

EMG-driven NMS models to predict the joint torques of 

patients with pathological gait patterns. In Fig. 6, the results for 

P01 are more oscillatory than those for P02 and P03. Moreover, 

in Fig. 3, the walking speed of P01 is much slower than for any 

other healthy and iSCI subjects. Thus, the trials of P01 have 

more data points than other trials during the stance phase and 

for this reason the interpolation results in curves with more 

oscillations for this patient. 

Regarding the joint torque estimation performance, for 

healthy subjects (Fig. 5, Table IV), the highest 𝑟  values for 

sEMG were 0.98 ± 0.01 (ankle) and 0.86 ± 0.08 (knee) when 

walking at slow speed, whereas the highest 𝑟 values for iEMG 

were 0.96 ± 0.05  (ankle) and 0.88 ± 0.07  (knee) when 

walking at slow speed. The smallest RMSE values for sEMG 

were 0.11 ± 0.02 Nm/kg  (ankle) and 0.09 ± 0.03 Nm/kg 

(knee) at slow speed, and the smallest RMSE values for iEMG 

were 0.15 ± 0.08 Nm/kg  (ankle) and 0.09 ± 0.03 Nm/kg 

(knee) at slow speed. For iSCI subjects (Fig. 6, Table IV), the 𝑟 

values for sEMG were 0.93 ± 0.06  (ankle) and 0.88 ± 0.09 

(knee), whereas the 𝑟  values for iEMG were 0.95 ± 0.04 

(ankle) and 0.88 ± 0.09 (knee). The RMSE values for sEMG 

were 0.11 ± 0.03 Nm/kg  (ankle) and 0.12 ± 0.04 Nm/kg 

(knee), whereas the RMSE values for iEMG were 0.12 ±
0.09 Nm/kg (ankle) and 0.13 ± 0.05 Nm/kg (knee). Table IV 

shows that the 𝑟 values of ankle joint torque predictions were 

greater than for knee joint torque prediction. On average, the 

RMSE values for ankle joint torque prediction were greater than 

for the knee joint torque prediction for healthy subjects, while 

the opposite was observed for iSCI patients.  

The statistical analysis (Fig. 7 and Fig. 8) of the joint torque 

estimation performance metrics (𝑟  and RMSE) showed that 

RMSE of the knee extension/flexion torque estimation for 

iEMG was lower than for sEMG (𝑃 = 0.04 <  0.05). 

Fig. 9 and Fig. 10 show representative cases of data from a 

healthy subject and an iSCI subject during walking trials. In 

TABLE IV 
SUMMARY OF JOINT TORQUE ESTIMATION PERFORMANCE METRICS 

 
Healthy iSCI 

Walking normal Walking slow Walking very slow Walking 

Joint Metric sEMG iEMG P sEMG iEMG P sEMG iEMG P sEMG iEMG P 

Ankle 

𝑟±SD 0.92±0.05 0.93±0.06 0.30 0.98±0.01 0.96±0.05 0.56 0.97±0.02 0.96±0.04 0.77 0.93±0.06 0.95±0.04 0.39 

RMSE±SD 
(Nm/kg) 

0.22±0.07 0.22±0.09  0.64 0.11±0.02 0.15±0.08 0.27 0.12±0.03 0.12±0.04 0.33 0.11±0.03 0.12±0.09 0.35 

Knee 

𝑟±SD 0.79±0.10 0.85±0.05 0.27 0.86±0.08 0.88±0.07 0.49 0.84±0.15 0.83±0.14 0.73 0.88±0.09 0.88±0.09 0.59 

RMSE±SD 

(Nm/kg) 

0.17±0.06 0.13±0.04 0.04 0.09±0.03 0.09±0.03 0.30 0.09±0.05 0.12±0.11 0.69 0.12±0.04 0.13±0.05 0.68 

Performance metrics of joint torque estimation using the EMG-driven NMS-model based framework with both sEMG and iEMG. 

 
Fig. 9.  Representative surface and intramuscular EMG measurements from a healthy subject’s walking trial. 
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general, EMG linear envelope curves showed good matching 

between surface and intramuscular EMGs. However, for 

instance in Fig. 10, rectus femoris, vastus lateralis and biceps 

femoris had some intermittent spikes in their iEMG 

measurements. These high spikes in iEMG may result in less 

accurate normalization of EMG amplitudes and therefore 

decrease both the accuracy of model calibration and the 

performance of joint torque prediction. 

 

V. DISCUSSION 

We have applied EMG-driven modelling to estimate ankle 

and knee joint torques from intramuscular or surface EMG 

signals recorded unilaterally from 7 leg muscles. We have 

evaluated the approach in healthy individuals and patients with 

incomplete SCI. The results showed that the correlation 

between experimental and predicted joint torques was similar 

when using intramuscular or surface EMG as input to our 

model. The only difference in performance was for the knee 

joint torque prediction in healthy subjects walking at normal 

speed where iEMG resulted in superior performance than 

sEMG. Because the target population for assistive devices 

would likely walk slower (see Fig. 3), this difference may have 

a limited impact in the EMG-driven NMS modeling for the 

control of exoskeletons.  These results show that iEMG can be 

used as a potential input for NMS model-based joint torque 

estimation, with performance similar to that of surface EMG.  

Previous studies utilized surface EMG-driven joint torque 

estimates to control either prostheses or wearable assistive 

devices [12], [13]. Among various control strategies for lower 

limb exoskeletons [34], it was previously shown that joint 

torque patterns are similar when walking with robotic 

assistance with respect to unconstrained walking [35]. For this 

reason, joint torque estimates obtained from EMG and NMS 

models can be used for HMI. 

Compared to sEMG, iEMG is less affected by crosstalk. 

However, iEMG signals may contain intermittent spikes and 

high-frequency components, which may make the estimation of 

muscle force magnitude and timing less accurate. Moreover, 

intramuscular EMG electrodes can be highly sensitive to the 

movement of muscles, and their relative location with respect 

to muscles may vary according to the duration of the performed 

task, which may affect normalization. Despite these potential 

disadvantages, there was no substantial difference in the overall 

performance of joint torque prediction between sEMG and 

iEMG. 

The advantage of using invasive technology as a source of 

control of external devices, such as exoskeletons or prostheses, 

is that it may be applied as a chronic interface, as it has been 

shown in prosthetic control [16]. In our study we used non-

selective fine wires (approximately 1 cm of uninsulated wire) 

for recording intramuscular EMG. These recordings have 

similar selectivity to chronically implanted devices (such as the 

IMES [36]) and can be easily implanted for acute experiments. 

Previous studies compared the performance between surface 

and intramuscular EMGs to predict joint torques/kinematics, 

but their conclusions were not always consistent. In [20], wrist 

joint torques were estimated form surface and intramuscular 

EMGs with artificial neural networks. Surface EMG showed 

better performance against intramuscular EMG, which may be 

attributed to the greater selectivity of the iEMG recordings [20]. 

The main difference of this previous study with respect to ours 

is that it used untargeted intramuscular EMGs and the approach 

was based on artificial neural networks (ANN) whereas our 

study is based on NMS modeling. Another study [21] presented 

NMS model-based control of a virtual task and reported no 

differences between surface and intramuscular EMGs. 

Differently from our study, the works in [20] and [21] focused 

on the upper limb. 

There are potential limitations in this study. First, in many 

previous studies using offline EMG-driven modeling analysis, 

the number of EMG channels and NMS model’s MTUs were 

greater than in the current study [7], [8], [9]. In our study, we 

had to limit the number of channels because of the acute 

insertion of intramuscular wires. Accordingly, the number of 

 
Fig. 10.  Representative surface and intramuscular EMG measurements from an iSCI subject’s walking trial. 
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NMS model’s MTU was limited to 11. The main consequence 

was the absence of hip muscle measurements which hampered 

the estimation of the joint torques of the hip DOFs. Moreover, 

it was not possible to include all relevant knee flexor and 

extensor muscles in the NMS model. Considering that the 

cross-sectional area of the semitendinosus and 

semimembranosus is comparable with that of the biceps 

femoris [37], their omission might have resulted in less accurate 

tracking of the knee flexion/extension torque in some of the 

trials in Figs. 5 and 6.   

Regarding the muscle excitation mapping described in Table 

III, several other options of muscle excitation mappings were 

tested for the calibration of the EMG-driven NMS models but 

they did not provide significantly different results.  Moreover, 

while we used the same muscle excitation mapping for both 

healthy and iSCI subjects, a different mapping for the two 

subject groups may be more appropriate because of the 

differences in muscle activation patterns in healthy and iSCI 

subjects [24], [25].  Some recent studies tried to reduce the 

number of EMG electrodes and NMS model MTUs for 

applications such as real-time joint torque estimation or control 

of wearable robotic exoskeletons [12], [13]. Second, this study 

analyzed walking trials only. This was mainly due to the 

constraints of measurements in SCI patients. 

While the iSCI subjects that participated in this study had the 

same AIS score, their lesion levels were different, and their 

compensatory movements might have been different. This may 

explain the high standard deviation observed in Fig. 8.  

 Finally, only data from the stance phase was reported in the 

results. The main reason for this choice is that both ankle and 

knee joint torques are highest during the stance phase, whereas 

the swing phase is mainly determined by the hip joint torque. 

Moreover, the experimental setup included only two force 

plates for the detection of heel strike and toe off, thus the second 

heel strike could not be accurately detected. For similar reasons, 

many previous EMG-driven NMS studies for lower limbs did 

not report the results during the swing phase [7], [8], [9], [11]. 

However, having the results of the full gait cycle may be 

important for the control of exoskeletons, which need to 

modulate both stand and swing phases. The most effective way 

to increase the performance of EMG-driven NMS models is to 

increase the number of EMG recordings. Our EMG-driven 

NMS model runs in open-loop mode, and its main purpose is to 

estimate the user-intended joint torque for target joints. Thus, 

predictions may be in principle improved also by a multi-modal 

or a hybrid approach, with additional information, for example 

with the use of additional wearable sensors. 

VI. CONCLUSION 

We have shown that intramuscular EMG can be used as a 

proper input for NMS model based joint torque estimation. This 

study also shows the potential use of both surface and 

intramuscular EMG measurements for NMS models with a 

reduced number of EMG acquisition channels in both healthy 

and iSCI subjects. These results indicate the potential use of 

intramuscular EMG as a reliable input for HMIs. 
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