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Abstract: Most Palaeozoic brittle stars lack the fused

arm ossicles (vertebrae) that facilitate the remarkable mode

of walking that characterizes living forms. Here we

describe a stem ophiuroid from the Herefordshire

Lagerst€atte (Silurian, Wenlock Series), which is exceptional

in preserving the body cavity uncompacted and the long

tube feet. We assign the specimen to the order Oegophi-

urida. The morphology of the arms and attitude of the

specimen suggest that locomotion may have been achieved

by arm propulsion combined with podial walking. This

ophiuroid increases the diversity of echinoderm higher

taxa with preserved soft parts represented in the Hereford-

shire Lagerst€atte.

Key words: Asterozoa, Herefordshire Lagerst€atte, Silurian,

Ophiuroidea, Soft tissues.

L IV ING representatives of the echinoderm subphylum

Asterozoa are divided into two classes: Ophiuroidea (brit-

tle stars) and Asteroidea (sea stars). A new ophiuroid

from the Silurian Herefordshire Lagerst€atte (Briggs et al.

1996; Siveter et al. 2020) preserves the body cavity in

three dimensions and retains soft tissues including the

tube feet and internal structures (Carter 2019). The body

cavity in fossil asteroids has normally collapsed through

decay and compaction (Mah & Blake 2012) and the same

applies to fossil ophiuroids, such as Palaeozoic oegophi-

urids, which possessed a large disc. Tube feet were previ-

ously described in a Herefordshire asterozoan assigned to

Bdellacoma (Sutton et al. 2005) in which they are pre-

served, as in the ophiuroid reported here, as void fills fol-

lowing soft-tissue decay. Sutton et al. (2005) assigned

Bdellacoma to Asteroidea based on the presence of a

pyloric system in the gut and the presence of pedicellar-

iae. Blake (2013), however, included Bdellacoma in Ste-

nuroidea, which he elevated to class level alongside

Somasteroidea, Ophiuroidea and Asteroidea. These reas-

signments remain the subject of discussion: Gladwell

(2018) retained Order Stenurida including Bdellacoma

within Ophiuroidea in the absence of a wider phylo-

genetic analysis. The position of Bdellacoma remains

uncertain but the discovery of an oegophiuroid clearly

establishes the occurrence of ophiuroids in the

Herefordshire Lagerst€atte. The Herefordshire biota has

yielded tube feet in other echinoderms, the edrioasteroid

Heropyrgus disterminus Briggs et al., 2017 and the ophio-

cystioid Sollasina cthulhu Rahman et al., 2019, although

those of Sollasina are covered in calcite plates.

Echinoderm fossils rarely preserve soft tissues. The first

report of preserved tube feet in a Palaeozoic asterozoan

was from the Lower Devonian Hunsr€uck Slate of Ger-

many, where the soft tissues in Bundenbachia beneckei

(Protasteridae) are replaced by pyrite (Glass & Blake

2004). Pyritized tube feet are known in other Hunsr€uck

Slate echinoderms: a crinoid (Ausich et al. 2013) and a

holothurian (Smith & Reich 2013). Pyritized tube feet are

also known in Protasterina flexuosa (Protasteridae) from

the Upper Ordovician of Kentucky (Glass 2006), which

preserves internal features of the water vascular system

(Clark et al. 2017). The ophiocistioid S. cthulhu is the

only Herefordshire echinoderm known to preserve evi-

dence of an internal canal (Rahman et al. 2019). Tube

feet reported in the stylophoran Thoralicystis sp. nov.

from the Lower Ordovician Fezouata Shale of Morocco

are preserved in iron oxide pseudomorphs of pyrite

(Lefebvre et al. 2019). The Herefordshire Lagerst€atte pro-

vides the only known Palaeozoic setting in which echino-

derm soft tissues are preserved through a taphonomic

pathway that does not involve pyritization.
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Well-preserved tube feet may provide evidence of the

nature of feeding and locomotion in fossil asterozoans

(Gale 1987; Vickery & McClintock 2000; Blake 2013).

Although rare, they are more commonly preserved than

soft internal features of the water vascular system. When

they project beyond the test they can be entombed in sed-

iment before they decay, and the exceptional taphonomic

conditions of the Herefordshire deposit have preserved

them as a calcite-filled void (Orr et al. 2000). The preser-

vation of tube feet in pyrite at other localities is also facil-

itated by their external position, which expedites diffusion

of iron (Briggs 2003).

MATERIAL AND METHOD

A single specimen was serially ground at 20 lm intervals.

The 718 exposed surfaces were submerged under a thin

layer of water and photographed with a Leica DFC420

digital camera mounted on a Leica MZ8 binocular micro-

scope. The SPIERS software suite was used to remove

extraneous material from the images to reconstruct

(Fig. 1) a three-dimensional ‘virtual fossil’ (Sutton et al.

2001, 2012, 2014; Spencer et al. 2020). Datasets from the

serial grinding, together with the final three-dimensional

model in VAXML/STL format, are held by the Oxford

University Museum of Natural History (OUMNH), and

are also available in Carter et al. (2021).

SYSTEMATIC PALAEONTOLOGY

Phylum ECHINODERMATA Brugui�ere, 1791 (ex Klein, 1734)

Class OPHIUROIDEA Gray, 1840

Order OEGOPHIURIDA Matsumoto, 1913

Suborder LYSOPHIURINA Gregory, 1896

Family PROTASTERIDAE? Miller, 1889

Genus PROTASTER? Forbes, 1849

Type species. Protaster sedgwickii Forbes, 1849, by monotypy,

from the Silurian, Ludlow Series of Kendal, Lake District, UK.

Material. OUMNH PAL-C.36516, a complete specimen recon-

structed as a virtual fossil. Three other unground specimens,

OUMNH PAL-C.36029, PAL-C.36517, and PAL-C.36518, proba-

bly belong to this taxon.

Locality and horizon. Coalbrookdale Formation, Wenlock

Series, Silurian, Herefordshire, UK.

Description. The central disc is c. 5 mm in diameter, and pen-

tagonal to subcircular in outline (Fig. 1A, B). The specimen is

unusual among Palaeozoic asterozoans in having undergone

negligible compaction and preserving the dorsal body wall of the

disc above, rather than collapsed, onto the proximal part of

the arms. The preserved height of the body is c. 40% of the

diameter of the disc (Fig. 1C, D). The oral surface is convex, but

this may be largely due to flexure of the arms dorsally (Fig. 1A, C).

The aboral (dorsal) surface of the disc is convex except in one

direction, where it is slightly depressed and perforated in places

(Fig. 1B). The arms are clearly distinguished from the disc by the

relief of the ossicles (Fig. 1A, G): c. 55% of the arm length extends

beyond the disc margin (Fig. 1A, B, G). One arm shows more pro-

nounced evidence of folding (Fig. 1C, F, H), which is interpreted,

based on the different attitude of this arm compared with the

others, as the result of flexibility in vivo rather than a taphonomic

artefact. The arms could clearly be flexed both vertically and later-

ally. There is a pentagonal space in the position of the mouth

(Fig. 1A, G) but the outlines of the plates in this region, which

are more prominent than those of the arm, are indistinct. The

arms widen slightly from the mouth to the margin of the disc

and taper gradually beyond it to terminate in a point (Fig. 1A,

G). We did not distinguish a terminal plate; it may not have

been captured by the reconstruction. Extrapolation indicates

that there are c. 18 pairs of tube feet, and therefore rows of

ossicles, in each arm (Fig. 1I, J).

The ambulacral ossicles, as viewed from the oral side, appear

to be c. 50% longer than wide and accommodate a small embay-

ment, interpreted as the podial basin, from which the tube feet

arise (Fig. 1I, J). The ambulacral ossicles are offset on either side

of the perradial suture (Fig. 1I, J); this offset is more pro-

nounced distally than proximally. The ambulacra are flanked

and partially overlapped by narrower adambulacral ossicles

(Fig. 1F). The adambulacral ossicles are thicker than those of the

ambulacra. Short, paired groove spines are preserved in the dis-

tal part of the arm inclined toward its tip at c. 20° (Fig. 1K).

A shallow ambulacral groove runs along the axis of each arm

(Fig. 1F, I), narrowing and closing as the tip is approached. This

closure is particularly obvious in the arm that is folded distally.

The tube feet (Fig. 1A, C, F–I, K) are long and thin, longest

near the mid-length of the arm and becoming shorter toward

the mouth and the arm tip. They show little morphological

detail but appear to be of constant width (Fig. 1I, K). The tube

feet were clearly subject to partial collapse (Fig. 1I, K) but there

is no clear evidence of a basal expansion or a distal sucker.

Internal features of the water vascular system are not preserved.

There is no ambital framework (Blake & Guensburg 2015) or

thickening around the margin of the disc, which is irregular

and perforated in places as a result of damage during fossiliza-

tion (Fig. 1B). On the oral side the plates in the interradial

portions of the disc lack visible boundaries; they are interpreted

as small and thin, with little relief at their boundaries. Evidence

of a madreporite has not been confirmed (contra Carter 2019).

The boundaries of the aboral plates, like those on the oral side,

are not evident; these are also interpreted as small and thin,

and lacking relief at their boundaries (Fig. 1D). There is no

evidence of an anus (Fig. 1B), which is also absent in living

ophiuroids.

Three poorly preserved apparently sac-like internal structures

are located interradially (Fig. 1E). There is no evidence that they

are part of the water vascular system or connected to the mouth.
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F IG . 1 . Protaster? sp. (OUMNH PAL-C.36516). A–C, E–F, H–I, K, virtual reconstructions as stereo-pairs. A, oral; B, aboral; C, lateral view.
D, section through disc showing body cavity. E, transparent view to highlight tube feet and internal soft tissues. F, sharply folded arm in oral

view. G, oral view with arms outlined. H, sharply folded arm (and adjacent arm) in lateral view. I, ‘posterior’ arm in oral view showing tube

feet; and J, their points of origin (podial basins: red circles) displaying the offset of ambulacral plates. K, lateral view showing extension of

tube feet and some groove spines. Abbreviations: ad, adambulacral plate; ag, ambulacral groove; amb, ambulacral plate; ao, aboral surface;

d, depressed part of aboral surface with ragged disc margins; m, mouth; mp, mouth plates; o, oral surface; pb, podial basin; per, perforations;

ps, perradial suture; s1–s3, sac-like internal structures 1–3; sp, groove spine (red); tf, tube foot (purple). Scale bars represent 1 mm.
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They show no consistency in size or shape. It is not known

whether there were other such structures, not preserved, that

would complete the pentameral symmetry. Structures flanking

one arm (Fig. 1E, s1 and s3) might be a pair, in which case their

position corresponds approximately to the expected location of

the bursae or associated gonads, which are large organs in some

asterozoans, and may be relatively decay resistant compared with

other organs (Briggs & Kear 1993).

Remarks. We assign the Herefordshire specimen to the Order

Oegophiuroida, a group of stem ophiuroids known only from the

Palaeozoic. The relationships of Palaeozoic ophiuroids remain an

area of investigation (Blake & Guensburg 2015; Blake et al. 2015;

Hunter et al. 2016; Gladwell 2018). The Herefordshire specimen

is difficult to assign to a genus, and does not contribute sufficient

data to allow a phylogenetic analysis. The diagnostic features of

asterozoans lie mainly in the detailed morphology of the arm ossi-

cles and interradial plates. The methodology and resolution of our

reconstructions are sufficient to resolve plate-boundary morphol-

ogy, if it were preserved. Plate boundaries are difficult to discern

in this case, however, as a result of the pervasive recrystallization

typical of echinoderm fossils from the Herefordshire deposit (Sut-

ton et al. 2005; Briggs et al. 2017; Rahman et al. 2019), and

because the ossicles are partially concealed by the outer body wall.

In addition, the outer (abradial) margin of the ambulacrals (and

therefore their outline), which is important for distinguishing

genera (Glass & Blake 2004; Hunter et al. 2016), is obscured by

the adambulacrals (laterals).

DISCUSSION

Systematic position

The Herefordshire specimen shares a number of charac-

ters with Protasteridae, most recently diagnosed by Dean

Shackleton (2005; see Blake et al. 2016), including an

obvious interradial disc without marginalia, elongate

gradually tapering arms, and alternating ambulacra with a

slightly zig-zag perradial suture (Spencer 1934; Dean

Shackleton 2005). The apparently light nature of the plat-

ing may be taphonomic. Similarly, the possible absence of

vertical spines is probably an artefact of taphonomy or

due to these structures not being captured in the recon-

struction. Protaster sedgwickii is the only ophiuroid taxon

recorded from the Wenlock Shales (i.e. Coalbrookdale

Formation) in the British Isles (Lewis et al. 2007). We

tentatively assign the Herefordshire specimen to Protaster

but there is insufficient information to attempt a species

assignment.

Locomotion

Extant ophiuroids have evolved a musculoskeletal

method of locomotion based on fusion of the arm

ossicles into vertebrae and coordinated movements of

the snake-like arms (Clark et al. 2018), which give the

group its name. The interpretation of locomotion in fos-

sil asterozoans, especially those outside crown group

Ophiuroidea and Asteroidea, is not straightforward;

morphology may not be a definitive guide to function

(Dean Shackleton 2005, p. 59; Clark et al. 2020).

Oegophiurids such as Protaster had offset ambulacra and

their arms were presumably less flexible than those of

living ophiuroids. Spencer & Wright (1966) regarded

oegophiurids as largely sessile and capable of only slow

locomotion. The flexure of the arms in the Hereford-

shire ophiuroid, however, probably reflects their move-

ment in life. Their arrangement (Fig. 1A, B, G)

corresponds to that in reverse rowing (Astley 2012), one

of two major modes of walking in extant ophiuroids.

Some living ophiuroids such as Ophiogeron granulatus

rely on podial walking on their large tube feet, and such

taxa may be an analogy for Palaeozoic forms (Byrne &

Hendler 1988; who refer to O. granulatus as O. supinus).

On this basis Glass & Blake (2004) inferred that podial

locomotion was likely for the Devonian protasterid Bun-

denbachia beneckei, and Clark et al. (2020) extended this

to Palaeozoic ophiuroids without fused segments. Move-

ment in the Herefordshire specimen may have been

facilitated in the same way although the tube feet are

slender, as in living ophiuroids, compared with those of

B. beneckei. Sutcliffe (1997) described a new trace fossil,

Arcichnus saltatus, from the Hunsr€uck Slate as a product

of this mode of locomotion in the protasterid Taeniaster

but it is not clear that protasterids were capable of mov-

ing in this manner (Glass & Blake 2004). Spencer (1951;

see also Spencer & Wright 1966) considered that at least

some Palaeozoic ophiuroids were infaunal but it is

doubtful that they lived permanently in burrows (Glass

& Blake 2004). The orientation of the concretion con-

taining the Herefordshire fossil relative to the host sedi-

ment is unknown. The dorsal curvature of the arms,

however, is most reminiscent of escape movements of

the asteroid Astropecten following burial (Ishida et al.

2019), rather than those of the ophiuroid Ophiophthal-

mus (Ishida & Fujita 2001), perhaps reflecting the lower

flexibility of the arms compared with those in living

ophiuroids. The Silurian ophiuroid may have moved

with some combination of arm propulsion, even in the

absence of fused ambulacrals, and podial walking, in

contrast to the musculoskeletal walking used by living

ophiuroids.

Feeding

Modern ophiuroids include detritivores and scavengers,

suspension feeders and predators. The tube feet in the
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Herefordshire protasterid are long and thin, similar to

those of the protasterid B. beneckei from the Hunsr€uck

Slate. The ampullae were presumably external and pro-

tected by the ossicles flanking the open groove or furrow.

The ability of arms to fold adorally around the ambu-

lacral groove may have provided a further protective

mechanism. The size of the mouth as preserved and the

lack of details for the mouth plate morphology (Fig. 1A,

G) provide no evidence for or against deposit feeding,

even though there is a large body cavity. The tube feet

lacked suckers, as in all ophiuroids. Such tube feet in

Palaeozoic forms may have facilitated a range of feeding

modes including trapping suspended particles and coiling

the arm to capture larger food items in scavenging or

predation (Glass & Blake 2004). Thus there is no defini-

tive evidence for the feeding strategy used by the Here-

fordshire ophiuroid.

CONCLUSION

The new Silurian ophiuroid preserves the body in three

dimensions and has arms that are flexible in any direction

and slender tube feet similar to those in living ophiuroids.

Although the lack of preserved details of the plates prevents

a definitive genus and species assignment, the fossil is

clearly an ophiuroid and, as such, increases the diversity of

taxa known from the Herefordshire Lagerst€atte. In the

absence of additional evidence of the morphology or multi-

ple specimens showing the attitude of the arms, the poten-

tial for constraining the ecology of the Silurian ophiuroid is

limited.
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