
RESEARCH Open Access

Quantifying the short-term effects of air
pollution on health in the presence of
exposure measurement error: a simulation
study of multi-pollutant model results
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Abstract

Background: Most epidemiological studies estimate associations without considering exposure measurement error.
While some studies have estimated the impact of error in single-exposure models we aimed to quantify the effect
of measurement error in multi-exposure models, specifically in time-series analysis of PM2.5, NO2, and mortality
using simulations, under various plausible scenarios for exposure errors. Measurement error in multi-exposure
models can lead to effect transfer where the effect estimate is overestimated for the pollutant estimated with more
error to the one estimated with less error. This complicates interpretation of the independent effects of different
pollutants and thus the relative importance of reducing their concentrations in air pollution policy.

Methods: Measurement error was defined as the difference between ambient concentrations and personal
exposure from outdoor sources. Simulation inputs for error magnitude and variability were informed by the
literature. Error-free exposures with their consequent health outcome and error-prone exposures of various error
types (classical/Berkson) were generated. Bias was quantified as the relative difference in effect estimates of the
error-free and error-prone exposures.

Results: Mortality effect estimates were generally underestimated with greater bias observed when low ratios of the true
exposure variance over the error variance were assumed (27.4% underestimation for NO2). Higher ratios resulted in
smaller, but still substantial bias (up to 19% for both pollutants). Effect transfer was observed indicating that less precise
measurements for one pollutant (NO2) yield more bias, while the co-pollutant (PM2.5) associations were found closer to
the true. Interestingly, the sum of single-pollutant model effect estimates was found closer to the summed true
associations than those from multi-pollutant models, due to cancelling out of confounding and measurement error bias.

Conclusions: Our simulation study indicated an underestimation of true independent health effects of multiple
exposures due to measurement error. Using error parameter information in future epidemiological studies should provide
more accurate concentration-response functions.
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Introduction
Air pollution is the major environmental factor affecting
human health [1, 2]. Many publications report associa-
tions of morbidity and mortality outcomes with expos-
ure to air pollutants, such as PM2.5, NO2 and O3 [3, 4].
It is important to assess the independent effects of each
pollutant adjusting for potential confounding by other
pollutants in the mixture, as policies to reduce emissions
differ by targeted pollutant. Multi-pollutant models are
the most commonly used method, and, if correctly speci-
fied, provide estimates of the independent effects of each
exposure [5–7].
Most studies addressing the associations between pol-

lutants and health, or performing health impact assess-
ments (HIA), do not account for exposure measurement
error (ME), although it is a well-known problem [8–11].
ME may lead to biased concentration-response functions
(CRFs) for which the magnitude and type of bias is not
assessed or corrected. While the methodology to correct
for ME is expanding, there is a gap between theory and
practice [12, 13]. To evaluate ME we must define the
“gold standard” against which “proxy” measures are
compared. For exposure to ambient concentrations, the
most appropriate gold standard is individual exposure to
ambient sources of the pollutant of interest. However,
most epidemiological studies investigating ME in air pol-
lution exposure, measure total personal exposure, to
which indoor and personally-generated sources contrib-
ute substantially [14].
An appropriate framework describing the types of error

for exposure variables has not been discussed thoroughly
in the literature. Zeger et al. (2000) mention that “classical
and Berkson models represent two extremes of a con-
tinuum”, so the proper model combines elements of each
type [9]. Few studies have examined the impact of mixture
error [15–17]. Previous studies examining the impact of
ME in regression models either only used single-pollutant
models or addressed only spatial heterogeneity of the pol-
lutants and their errors or have made specific assumptions
for their error definition using empirical data from certain
locations which might not be generalisable [18–23].
Multi-pollutant models, in addition, provide unstable esti-
mates because of the complex relationships between pol-
lutants, both in space and time, and the differing degree
and structure of their errors - especially the variability and
correlation between errors.
In our study, we focus on multi-pollutant models

using a mixture error model of classical and Berkson
components based on the error decomposition of Zeger
and colleagues (2000). The percentages of each type de-
pend on the pollutant under investigation, i.e. fine par-
ticulate matter, PM2.5, or nitrogen dioxide, NO2. We
used simulated data to generate a wide range of plausible
scenarios of the pollutant errors under a mixture error

model, and to quantify the real impact of ME on the
multi-pollutant model effect estimates, specifically in
time-series analysis.

Methods
Simulation set-up
We previously conducted a systematic review on the dif-
ferences between ambient concentrations and personal
exposures from outdoor origins to inform our simulation
inputs and quantify the magnitude and variability of the
pollutant errors [24]. In particular, we created a simulated
daily time-series for error-free (A) and error-prone (C) ex-
posures and a health outcome over a period of 4 years,
under various scenarios for factors that drive ME bias (Fig.
S1, Supplementary material). Our focus was only on the
quantification of exposure measurement error bias, so we
did not include some features of time-series that may
introduce other forms of bias and need to be taken into
account in real data analysis, such as autocorrelation,
trends or confounders measured with error.
Each scenario was created as a combination of key pa-

rameters driving ME bias, i.e. the correlation between
the exposures, the error variability (SDðδPM2:5Þ, SDðδNO2Þ
) and the true exposure variance/error variance ratio (SD

ðAPM2:5Þ=SDðδPM2:5Þ; SDðANO2Þ=SDðδNO2Þ) [23]. The latter
was informed according to data from three different
areas, for which we had adequate information [24]. In
total, 144 scenarios were investigated, and their inputs
are summarised in Figure 1. Due to space constraints,
we expanded only one branch in the tree plot (in bold);
this was assumed to be the core scenario compared with
which all sensitivity analyses were performed. For each
scenario, 1000 simulated datasets were generated.
Briefly, we assumed:

� Variance ratios: We created scenarios separately for
Europe, Eastern and Western North America which
correspond to different ratios of the true exposure
variance over the error variance. Differences in the
ratios between these regions can be attributed to
various factors, such as the use of Diesel vehicles, air
conditioning, and legislation [25].

� Correlation between the exposures: To the best of
our knowledge, no data for the correlation between
personal exposures from outdoor sources to PM2.5

and NO2 are reported in the literature. Thus, we
assumed that it lies between published correlation
coefficients of total personal exposures and
correlations of the ambient measurements for the
same pollutants [26–28]. A range of values was
hypothesized to cover various plausible scenarios.

� Correlations between the errors: Because we did not
have real data to estimate the relationship between
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these errors, an analytical approach for their
covariance was applied using the pairwise
associations of personal and ambient concentrations
for NO2 and PM2.5 (eq. 2).

� Error structures: Little is known about the
distributions and types of exposure ME. We
assumed that the errors are additive on the
logarithmic scale [29, 30]. Moreover, we assumed
that a mixture of classical and Berkson error best
describes the type of exposure misclassification [9].
However, scenarios of entirely classical and entirely
Berkson error, alternative figures for the classical-
Berkson ratio and multiplicative error were also
assessed.

Input data
The key input parameters are summarised in Table 1.
We assumed different “true” exposures and error vari-
ability for each study area which resulted in different ex-
posure variance over error variance ratios. Three
correlation coefficients between the exposures (low =
0.25/moderate = 0.5/high = 0.75) and four values for the
error variability for each pollutant were hypothesized.
For example, for Europe (core scenario) we hypothesized
moderate error variability (5.2 μg/m3 for PM2.5 and 6.2
ppb for NO2), very low (0.5 μg/m3 and 0.6 ppb respect-
ively (0.1 × moderate)), low (2.6 μg/m3 and 3.1 ppb re-
spectively (0.5 × moderate)), and high (6.8 μg/m3 and 8.1
ppb respectively (1.3 ×moderate)). The 144 scenarios

tested derived from all the possible combinations of
these parameters.

Generating "error-free" or "true" exposures (A):
We used a bivariate log-normal distribution to generate
1461 daily measurements of the “error-free” exposures
for each scenario s, as follows:

Lognormal μs;Σsð Þ;μs ¼
μ1
μ2

� �
;Σs ¼ σ2

1 σ1;2
σ2;1 σ22

� �

where μs is the vector of pollutant means, Σs the
variance-covariance matrix and 1, 2 = NO2 and PM2.5,
respectively. For example, for the European area, we
had:

μeu ¼ 21:6
21:1

� �
;Σeu ¼ 9:02 27:6

27:6 10:92

� �
:

Generating “error-prone” or “apparent” exposures (C):
We considered a mixture of classical and Berkson ME
additive on the logarithmic scale as the most appropriate
model because the sources of error can originate from
both classical error (omitting individuals’ mobility, the
infiltration efficiency of the buildings, and instrument er-
rors) and Berkson error from unincorporated spatial het-
erogeneity [9]. Various scenarios for the errors allowed
evaluation of how the error type affects the health effect
estimates, especially in two-pollutant models where the
magnitude and direction of bias cannot easily be

Fig. 1 Diagram showing the construction of the 144 scenarios assumed in the analysis
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predicted in typical epidemiologic studies without specif-
ically investigating ME.

Classical error
Apparent exposures of classical error were generated
simply by adding random error to the assumed true ex-
posures. For this type of error, we have:

Ct
i ¼ At

i þ δti ð1Þ

where i is NO2 or PM2.5, t is day, t = 1,2, …, 1461, C and
A are as defined above, and the errors, δ, of the pollut-
ants were created from a bivariate normal distribution:

δti j At
i � N μ;Σð Þ; μ ¼ 0

0

� �
;Σ

¼
Var δtNO2

� �
Cov δtNO2

; δtPM2:5

� �
Cov δtNO2

; δtPM2:5

� �
Var δtPM2:5

� �
2
4

3
5

The elements in the diagonal of Σ are the error vari-
ances as estimated from [24]. The covariance was esti-
mated analytically:

Cov δtNO2
; δtPM2:5

� �
¼ Cov Ct

NO2
−At

NO2
;Ct

PM2:5
−At

PM2:5

� �
¼ Cov Ct

NO2
;Ct

PM2:5

� �
−Cov Ct

NO2
;At

PM2:5

� �
−Cov At

NO2
;Ct

PM2:5

� �
þ Cov At

NO2
;At

PM2:5

� �
ð2Þ

There was no information in the literature for the as-
sociations between C and A, so we used covariances
from studies of total personal exposure instead [26–28].

Berkson error
In general, a Berkson error model can be described as
follows:

At
i ¼ Ct

i þ δti ; ð3Þ

We used a formula to generate Berkson error pro-
posed by Carroll et al. (2006) [11]. Briefly, if C = A + δ
(i.e. classical model) we know that the best linear pre-

dictor of A given C is (1-λ)∙E(A) + λ∙C, where λ ¼ σ2C
σ2Cþσ2δ

.

Then, the following equation (4) results in the gener-
ation of a Berksonian-type error-prone exposure. For
simplicity, we omitted the indicators i, t:

C ¼ μA þ A−μAð Þ∙ σ2
C

σ2C þ σ2
δ

þ δ� ð4Þ

where δ� � Νð0; σ2C ∙σ
2
δ

σ2Cþσ2δ
Þ and σ2

δ is the error variance
(Supplementary material).

Mixture error
Using the error decomposition from Zeger and col-
leagues [9], with data from other studies [31, 32], we
quantified the error-prone variables of the mixture type.
We estimated the error as 43% classical and 57% Berk-
son for PM2.5 and 33% classical and 67% Berkson for
NO2 in the main analysis, while in sensitivity analyses
we assumed increased percentages of classical error for
both pollutants, i.e. either (55,45%) for PM2.5 and (45,
55%) for NO2 or (70,30%) for PM2.5 and (60,40%) for
NO2. As the hypothesized true exposures are log-
normally distributed, we assumed additive error on the
log-scale for the ME models based on previous studies,
but also applied a multiplicative approach [29, 30].
The mixture model consists of the variables described

in eqs. 1 and 2, along with a latent intermediate variable
L, between A and C, that allows for mixtures of Berkson
and classical error as described elsewhere [15, 33].
Briefly, the model is:

A ¼ Lþ δb

C ¼ Lþ δc

where δb, δc denote Berkson-type and classical-type
error (Supplementary material).

Generating all-cause mortality
For each day t, the number of deaths Yt was assumed to
follow a Poisson distribution with overdispersion φ. The
mean μt of the Poisson distribution was created to be
dependent only on the simulated “true” concentrations
of both pollutants on every particular day as follows:

log μtð Þ ¼ β0 þ β1∙Α
t
NO2

þ β2∙Α
t
PM2:5

where Αt
NO2

;Αt
PM2:5

are the daily concentrations for NO2

and PM2.5, respectively.
To simulate this Poisson over-dispersed data, we as-

sumed that daily mortality followed a Negative Bino-
mial distribution, NB (μt,θ), where μt is the mean
daily number of deaths, and θ = φ/(μt-1). To get

Table 1 Simulation inputs for the assumed “true” exposures and the error variability of the “error-prone” exposures

Area of Study “True” PM2.5 - Mean (SD) (μg/m3) “True” NO2 - Mean (SD) (ppb) PM2.5 Error - SD (μg/m3) NO2 Error - SD (ppb)

Eastern North America 19.0 (8.6) 20.7 (11.6) 5.7 7.3

Europe (core scenario) 21.1 (10.9) 21.6 (8.9) 5.2 6.2

Western North America 18.7 (8.3) 22.4 (10.9) 5.6 7.3

Evangelopoulos et al. Environmental Health           (2021) 20:94 Page 4 of 13



reasonable estimates for β0, φ we used real mortality
and air pollution data during 2011–2014 in Greater
London.
For the selection of β1, β2 we reviewed the literature

for studies that reported associations between short-
term exposure to NO2 and PM2.5 and all-cause mortality
and derived their CRFs. We chose plausible CRF values
from a recent meta-analysis of time series studies despite
the fact that they are not adjusted for ME, i.e. a 0.6 and
0.54% increase in all-cause mortality per 10 units in-
crease in NO2 and PM2.5 respectively (β1 = 0.0006, β2 =
0.00054) [34]. We also tested whether the results remain
unchanged when the true coefficients were assumed to
be half or twice the above percentage increases or when
only one pollutant had a true health effect (βi = 0 for the
co-pollutant).

Epidemiological analysis
In the context of this study, we are interested in the ME
bias - quantified as the difference between the health ef-
fect estimates of error-free and error-prone exposures.
The Poisson time-series model allowing for over-
dispersion used in every iteration was:

log E Y tð Þð Þ ¼ β0 þ β1∙C
t
NO2

þ β2∙C
t
PM2:5

where Yt is the death count for day t and Ct
NO2

, Ct
PM2:5

the corresponding error-prone exposure based on every
scenario. We also calculated coverage probability as the

percentage of 95% confidence intervals that include the
assumed true exposure-response association, and power
as the percentage of statistically significant estimates at
the 5% level.

Results
We confirmed that the generated exposure variables had
close to the expected mean values (Table 1) and the ex-
pected distributions for the classical, Berkson or mixed
error types (Fig. S2, Supplementary Material).
Table 2 contains the average Poisson regression esti-

mates across all scenarios by areas under investigation.
Pure Berkson error model resulted in overestimation of
the true mortality effect for all areas and pollutants by
1.5 to 8.2%, except for the NO2 coefficient for Europe (a
decrease of 7.9%), the assumed area scenario with the
lower exposure variance/error variance ratio and higher
corresponding ratio for the co-exposure. Otherwise, the
mortality effects were underestimated with greater bias
observed in Europe for NO2 (27.4%, mixture model).
Interestingly, the bias in North America was similar for
both pollutants, around 15–19% for classical error and
9–13% for mixture (area scenarios with similar, and rela-
tively low exposure variance/error variance ratios for
both pollutants). In Europe, the bias was significantly in-
creased for NO2 compared with PM2.5, 10.0 and 25.1%
for classical and 1.3 and 27.4% for mixture error respect-
ively. Coverage and power for both pollutants across all

Table 2 Summary of the true and error-prone regression coefficients, their standard errors (SE) x 10-4 and relative bias from 144,000
simulated datasets on the impact of three error models (classical, Berkson and mixture) on 2-pollutant Poisson regression by area of
study. Results presented for all scenarios (N = 48,000 in each row)

Exposure CRFsa: PM2.5: β1 = 5.4a NO2: β2 = 6a

Area β̂1 (SEW)/
(SEB)

b
Bias
(%)c

Coverage
Probability (%)

Power
(%)

β̂2 (SEW)/
(SEB)

b
Bias
(%)c

Coverage
Probability (%)

Power
(%)

True Europe 5.37 (1.48)/(3.46) – – – 6.00 (1.79)/(4.20) – – –

East NA 5.42 (1.88)/(4.41 – – – 5.98 (1.39)/(3.25) – – –

West NA 5.40 (1.95)/(4.58) – – – 5.99 (1.48)/(3.45) – – –

Classical Europe 4.86 (1.36)/(3.27) −10.0 55.3 76.0 4.49 (1.52)/(3.82) −25.1 51.1 67.6

East NA 4.58 (1.67)/(4.02) −15.1 54.6 65.2 4.97 (1.25)/(3.09) −17.2 53.9 80.4

West NA 4.52 (1.72)/(4.17) −16.3 54.3 63.7 4.85 (1.30)/(3.24) −19.2 52.8 77.2

Berkson Europe 5.84 (1.70)/(4.02) + 8.2 59.3 75.4 5.53 (2.46)/(5.89) −7.9 58.8 62.2

East NA 5.78 (2.73)/(6.43) + 7.1 59.3 62.2 6.17 (1.95)/(4.58) + 2.8 59.7 75.6

West NA 5.62 (3.29)/(7.88) + 4.1 59.3 60.2 6.09 (2.50)/(5.87) + 1.5 59.2 71.1

Mixtured Europe 5.33 (1.49)/(3.57) −1.3 57.9 76.1 4.36 (2.00)/(5.10) −27.4 55.0 60.8

East NA 4.91 (1.91)/(4.61) −9.1 57.1 63.2 5.37 (1.48)/(3.58) −10.6 58.0 76.9

West NA 4.84 (1.99)/(4.81) −10.3 57.2 61.5 5.20 (1.58)/(3.85) −13.3 57.1 72.8
aConcentration-response functions for generation of the health outcome
b SEW:Within-simulations (or model-based) standard error, SEB:Between-simulations (or empirical) standard error

c Relative bias = ðβ̂ι−βιÞ
βι

d (Classical,Berkson) percentages: (43,57%) for PM2.5, (33,67%) for NO2
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scenarios by area and error type were 51–60% and 60–
80% respectively.
The results of mixture error are illustrated in Fig. 2

showing the relationship between PM2.5 and NO2 coeffi-
cients by study area for all scenarios. No scenario re-
sulted in overestimation of the effect of both pollutants
(upper right quartile). Between pollutants, higher values

of β̂1 tend to be associated with lower values of β̂2, in an
approximate quadratic negative relationship. No clear
pattern was observed by study area, except for a group
of European results in the lower right of the graph (>
70% decrease in the NO2 effect estimate). NO2 coeffi-
cient attenuation is higher than in other scenarios be-
cause the hypothesized exposure variance/error variance
ratio was lower compared to PM2.5.
Figure 3 plots the mortality estimates for both pollut-

ants sorted in increasing order of NO2 effect size (left).
Effect transfer can clearly be observed either from NO2

to PM2.5 (upper part) or from PM2.5 to NO2 (lower part),
but also, there are some scenarios where both coeffi-
cients were attenuated (middle part). Interestingly, in the
middle and even at the top of the graph, there are sce-
narios in which the estimates for both pollutants are to
the left of the true beta line i.e. attenuated. Nonetheless,
large attenuations for both pollutant estimates did not
occur simultaneously, as can be seen from the absence
of points in the bottom left corner of Fig. 2.

Table 3 illustrates the model estimates with different
assumed values for the correlation between the expo-
sures and the error variances. Results from the most
plausible error model are reported, i.e. mixture error. Ef-
fect transfer is clearly observed, as the effect estimates
for one exposure are decreasing when its error variability
is increasing (less precise exposure), while the co-
exposure’s coefficients are increasing, and its error vari-
ability is kept fixed. For example, in the “moderate” cor-
relation scenarios, keeping the PM2.5 error variability
fixed at “low” (SD( δPM2:5 ) = 2.9 μg/m3), the bias in the
PM2.5 Poisson regression estimates range from − 3.7% in
the “very low” NO2 error variability scenario to + 17.8%
in the “high” scenario. On the contrary, the correspond-
ing bias for NO2 varies from + 0.7% to − 50.0% (“very
low” to “high” SD( δNO2 )). Bias in the effect estimates
varies highly by assumed error structure from 26.1%
overestimation to 44.0% underestimation of the true ef-
fect for PM2.5, and from + 12.1% to − 58.4% for NO2.
The highest biases are observed in the most extreme
scenarios, but in the more plausible “low”-“moderate”
error variability scenarios, bias is not negligible (values
up to approximately 30% towards the null). Correlation
between the exposures does not seem to be a driving
factor for the bias.
Comparing multi- and single-pollutant model coeffi-

cients (βM and βS respectively), Table 4 suggests that,

Fig. 2 Scatter plot of the PM2.5 and NO2 Poisson regression coefficients by area of study when mixture error was assumed. In dots are the averages of
1000 simulated datasets across the same scenario. Diamonds show the averages of all the datasets assuming the same area of study. The two lines
illustrate the assumed true mortality effect of the pollutants. Results presented for all 144 scenarios
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in the absence of ME, using βS may result in a large
overestimation of the combined effect of PM2.5 and
NO2. Thus, βS, in general, includes effects attributable
to both pollutants where both pollutants have a true
effect on mortality. For mixture error, regression coef-
ficients increased by 22.5% for PM2.5 and 17.7% for
NO2, when single- instead of multi-pollutant models
were fitted. Surprisingly, the combined effect, βS1
þβS2 , of the mixture error-prone variables was closer
to the true combined effect, i.e. 5.4 + 6.0, compared to
βM1

þ βM2
. No significant differences were observed

between the standard errors of βM and βS.
We performed sensitivity analyses with the Europe,

additive, mixture error, core scenario to check which of
the simulation inputs are driving ME bias. No difference
in the relative bias was observed when we assumed a
“true” CRF half or twice the core one. Mortality esti-
mates were attenuated even more when only one pollu-
tant had a true effect on health compared to the case
where both had an effect. Interestingly, effect transfer is
observed from the pollutant with the true effect to the
co-pollutant assumed to have no true effect. When the
classical part in the error mixture was increased for both
pollutants, the relative bias increased for PM2.5 (from 1.3
to 6.0%), while it only decreased slightly for NO2 (from
27.4 to 25.4%). Finally, multiplicative error resulted in

great underestimation of the exposure-response relation-
ship, i.e. 84.5 and 90.0% for PM2.5 and NO2 respectively
(Table 5).

Discussion
We performed a simulation study to quantify the bias in
mortality effect estimates caused by ME in multi-
pollutant, time-series models including PM2.5 and NO2.
While the impact of ME can be more easily predicted
when single exposures are measured with error, multiple
error-prone exposures of any error type (i.e. purely clas-
sical, purely Berkson or mixture) can distort the health
effect estimates. Our results can be applied to other out-
comes and exposures as well.
Mixture error model was found to attenuate the effect

of both pollutants, with higher attenuation for NO2, the
exposure variable measured with more error as found
previously [24]. ME also reduced coverage of 95% confi-
dence intervals and statistical power. The largest under-
estimations of the true effect were in North America for
PM2.5 (10.3%) and in European studies for NO2 (27.4%).
Differences by study area were observed because of the
different pollutant variability/error variability ratios in
these areas and/or potentially other unobserved parame-
ters related to ME. For example, the exposure assess-
ment method used (e.g. measured or modelled

Fig. 3 Plot for the comparison of PM2.5 and NO2 mortality estimates (with 95% CIs) for mixture error type (averages of 1000 simulated datasets across the same
scenario, sorted by the NO2 regression coefficients). Results presented for all 144 scenarios. The vertical lines illustrate the assumed true mortality effect of the
pollutants. In green: statistically significant estimates, in orange: not-statistically significant estimates, in red: significantly biased estimates
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Table 3 Summary of the regression coefficients, their standard errors (SE)(×10− 4) and relative bias of 144,000 simulated datasets on
the impact of mixture error model on 2-pollutant Poisson regression by the error variability of PM2.5 and NO2. Results presented for
all scenarios (N = 3000 in each row)

CRFsa: PM2.5: β1 = 5.4a NO2: β2 = 6a

Correlation between exposures PM2.5 error variability
b NO2 error variability

b
β̂1 (SEW)/(SEB)

c Bias (%)d β̂2 (SEW)/(SEB)
c Bias (%)d

Low Very low Very low 5.44 (1.76)/(4.15) + 0.7 5.90 (1.54)/(3.62) −1.7

Low 5.49 (1.76)/(4.00) + 1.6 5.74 (1.58)/(3.66) −4.3

Moderate 6.10 (1.74)/(4.12) + 13.0 4.45 (1.71)/(4.02) −25.8

High 6.57 (1.73)/(4.08) + 21.7 2.85 (1.88)/(4.56) −52.5

Low Very low 5.20 (1.77)/(4.23) −3.7 6.04 (1.54)/(3.62) + 0.7

Low 5.22 (1.76)/(4.16) −3.4 5.69 (1.57)/(3.72) −5.1

Moderate 5.88 (1.75)/(4.11) + 8.9 4.56 (1.70)/(4.17) −23.9

High 6.36 (1.74)/(4.05) + 17.8 3.00 (1.88)/(4.56) −50.0

Moderate Very low 4.31 (1.81)/(4.30) −20.2 6.35 (1.53)/(3.58) + 5.8

Low 4.58 (1.80)/(4.29) −15.3 6.10 (1.56)/(3.78) + 1.7

Moderate 4.94 (1.79)/(4.31) −8.5 4.88 (1.70)/(4.02) −18.7

High 5.42 (1.78)/(4.21) + 0.3 3.16 (1.88)/(4.59) −47.4

High Very low 3.46 (1.85)/(4.31) −36.0 6.64 (1.52)/(3.57) + 10.6

Low 3.72 (1.85)/(4.40) −31.1 6.37 (1.56)/(3.67) + 6.1

Moderate 4.07 (1.84)/(4.48) −24.6 5.16 (1.69)/(4.05) −14.0

High 4.32 (1.84)/(4.37) −20.1 3.21 (1.88)/(4.64) −46.5

Moderate Very low Very low 5.36 (1.77)/(4.19) −0.8 5.99 (1.56)/(3.71) −0.2

Low 5.52 (1.77)/(4.34) + 2.2 5.59 (1.60)/(3.69) −6.9

Moderate 6.12 (1.76)/(4.19) + 13.4 4.39 (1.72)/(4.07) −26.9

High 6.78 (1.74)/(4.15) + 25.5 2.82 (1.89)/(4.56) −53.0

Low Very low 5.06 (1.79)/(4.17) −6.4 6.06 (1.56)/(3.62) + 0.9

Low 5.15 (1.78)/(4.23) −4.6 5.73 (1.59)/(3.79) −4.5

Moderate 5.87 (1.76)/(4.07) + 8.6 4.53 (1.71)/(4.14) −24.6

High 6.46 (1.74)/(4.16) + 19.6 3.07 (1.89)/(4.54) −48.9

Moderate Very low 4.20 (1.83)/(4.32) −22.2 6.30 (1.55)/(3.74) + 5.1

Low 4.31 (1.81)/(4.37) −20.2 6.17 (1.57)/(3.75) + 2.9

Moderate 4.90 (1.80)/(4.26) −9.3 5.03 (1.71)/(4.13) −16.2

High 5.64 (1.79)/(4.30) + 4.4 3.11 (1.88)/(4.66) −48.2

High Very low 3.11 (1.86)/(4.42) −42.3 6.72 (1.54)/(3.60) + 12.1

Low 3.57 (1.85)/(4.40) −33.9 6.39 (1.56)/(3.67) + 6.5

Moderate 4.17 (1.84)/(4.37) −22.8 5.26 (1.70)/(4.10) −12.3

High 4.55 (1.83)/(4.39) −15.8 3.17 (1.88)/(4.64) −47.2

High Very low Very low 5.43 (1.78)/(4.15) + 0.5 5.89 (1.57)/(3.74) −1.9

Low 5.51 (1.78)/(4.21) −2.1 5.57 (1.60)/(3.86) −7.3

Moderate 6.21 (1.76)/(4.09) + 15.0 4.30 (1.73)/(4.09) −28.3

High 6.81 (1.74)/(4.08) + 26.1 2.49 (1.90)/(4.73) −58.4

Low Very low 4.90 (1.80)/(4.24) −9.3 6.16 (1.57)/(3.70) + 2.7

Low 4.99 (1.82)/(4.27) −7.5 5.46 (1.62)/(3.91) −9.0

Moderate 5.77 (1.78)/(4.19) + 6.8 4.36 (1.73)/(4.11) −27.3

High 6.35 (1.76)/(4.12) + 17.6 2.60 (1.90)/(4.67) −56.7

Moderate Very low 3.97 (1.83)/(4.32) −26.5 6.27 (1.56)/(3.79) + 4.5
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concentrations) and the exposure metric (e.g. 24-h
mean/max, ambient or personal exposure) may vary by
study area. When various values for the correlation be-
tween the exposures were assessed, mortality estimates
did not change significantly. This is important because
correlation between pollutant concentrations is the most
common factor discussed in air pollution epidemio-
logical studies as driving unreliability in multi-pollutant
models. Day et al. (2004) have reached to similar conclu-
sions for the correlations between the exposures and be-
tween the errors except for the case of high correlations
(both > 0.8), for a nutritional epidemiology study context

[35]. No change was observed in the relative bias with
different “true” CRFs, while a small, false positive effect
was observed for the pollutant assumed to have no true
effect, when both exposures are measured with error. In
contrast, when we assumed multiplicative instead of
additive error (i.e. a less likely scenario), both pollutant
health effect estimates were > 85% biased. Finally, only
the PM effect estimate underestimation increased when
varying the classical-Berkson ratio of the mixture.
Effect transfer was clearly observed concluding that

less precise measurements for one pollutant yield more
bias while the co-pollutant effect estimates were closer

Table 3 Summary of the regression coefficients, their standard errors (SE)(×10− 4) and relative bias of 144,000 simulated datasets on
the impact of mixture error model on 2-pollutant Poisson regression by the error variability of PM2.5 and NO2. Results presented for
all scenarios (N = 3000 in each row) (Continued)

CRFsa: PM2.5: β1 = 5.4a NO2: β2 = 6a

Low 4.17 (1.83)/(4.46) −22.7 6.07 (1.59)/(3.70) + 1.2

Moderate 4.87 (1.81)/(4.28) −9.8 4.87 (1.71)/(4.05) −18.9

High 5.55 (1.79)/(4.23) + 2.8 2.87 (1.89)/(4.73) −52.1

High Very low 3.03 (1.87)/(4.45) −44.0 6.61 (1.54)/(3.66) + 10.1

Low 3.30 (1.86)/(4.51) −38.9 6.38 (1.57)/(3.63) + 6.4

Moderate 4.07 (1.85)/(4.42) −24.7 5.07 (1.70)/(4.12) −15.5

High 4.54 (1.84)/(4.41) −15.8 3.39 (1.88)/(4.60) −43.4
a Concentration-response functions for the generation of the health outcome
b Moderate error variability as defined in Table 1. Very low = 0.1 x Moderate, Low = 0.5 x Moderate, High = 1.3 x Moderate
c SEW: Within-simulations (or model-based) standard error, SEB: Between-simulations (or empirical) standard error

d Relative bias = ðβ̂ι−βιÞ
βι

(Classical, Berkson) percentages: (43,57%) for PM2.5, (33,67%) for NO2

Table 4 Summary of the regression coefficients, their standard errors (SE)(x10-4) and the percentage decrease from single- to multi-
pollutant model estimates for 144,000 simulated datasets on the impact of three error models (classical, Berkson and mixture) on 2-
pollutant Poisson regression. Results presented for all scenarios (N = 144,000 in each row)

Exposure Model β̂1 (SEW)/(SEB)
a Bias (%)b Change (%)c β̂2 (SEW)/(SEB)

a Bias (%)b Change (%)c

True:

Multi-Pollutant 5.40 (1.77)/(4.18) – + 32.6 5.99 (1.55)/(3.66) – + 20.5

Single-Pollutant 7.16 (1.71)/(4.06) – 7.22 (1.50)/(3.55) –

Classical:

Multi-Pollutant 4.65 (1.57)/(3.84) −13.8 + 24.7 4.77 (1.35)/(3.40) −20.5 + 17.2

Single-Pollutant 5.80 (1.54)/(3.80) + 7.3 5.59 (1.32)/(3.38) −6.9

Berkson:

Multi-Pollutant 5.75 (2.41)/(6.32) + 6.4 + 24.7 5.93 (2.17)/(5.49) −1.2 + 18.0

Single-Pollutant 7.17 (2.36)/(6.10) + 32.8 7.00 (2.13)/(5.37) + 16.7

Mixture:

Multi-Pollutant 5.03 (1.80)/(4.37) −6.9 + 22.5 4.97 (1.68)/(4.25) −17.1 + 17.7

Single-Pollutant 6.16 (1.76)/(4.28) + 14.1 5.85 (1.62)/(4.21) −2.4
a SEW: Within-simulations (or model-based) standard error, SEB: Between-simulations (or empirical) standard error

b Relative bias = ðβ̂ι−βιÞ
βι

c Percentage change from multi- to single-pollutant estimate = ðβ̂S−β̂MÞ
β̂M

(Classical, Berkson) percentages: (43,57%) for PM2.5, (33,67%) for NO2
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to the true. This decrease in the bias of the co-pollutant,
however, can be regarded as due to the net effect of
underestimation due to ME and overestimation due to
effect transfer; the latter cancelling out the effect of the
former. Szpiro et al. (2011) showed in their simulation
study that more accurate exposure predictions do not
necessarily improve the health effect estimates [22].
They considered the effects of long-term exposure to air
pollution and on comparisons between exposures from
correctly specified and misspecified prediction models.
However, similar approaches in a multi-pollutant frame-
work have shown that measurement error bias can be
severe and correcting for it can strengthen the exposure-
response associations [36]. Time-series studies showed
that health effect estimates from modelled data are more
prone to ME than from measured concentrations [37].
Goldman et al. (2011) reported that spatial error, (only a
part of our error decomposition), attenuated the risk ra-
tios from 19 to 31% for primary pollutants (including
NO2), but only from 2 to 9% for secondary pollutants
(PM2.5 regarded as such) [30]. These values are close to
our overall bias estimates of 17 and 7% respectively, even
though their characterisation of NO2 and PM2.5 as pri-
mary and secondary pollutants respectively might be
questionable. Similarly, Dionisio et al. (2016) fitting two-
pollutant time-series models with additive and multi-
plicative error reported total effect attenuation up to
85% for NO2 (close to our estimates for multiplicative
error), indicating multi-pollutant model estimates are
even more susceptible to ME [38]. Blangiardo et al.
(2019) also found, under a Bayesian framework, that
NO2 effects were considerably biased when error-prone

concentrations were used [39]. However, they focused
on collinearity in multi-pollutant models without asses-
sing error structures/types.
When misspecified single-pollutant models were fitted,

increased effect estimates were observed compared to
two-pollutant model coefficients. Interestingly, with mix-
ture error-prone variables, the sum of the single-pollutant
model effect estimates was closer to the true combined ef-
fect compared with the corresponding sum from multi-
pollutant models (due to an accidental cancelling out of
overestimation in single-pollutant models from confound-
ing by the co-pollutant and underestimation due to ME).
These conclusions hold only when the pollutants are posi-
tively correlated. Hence, even if it is accepted that both
pollutants have a true causal effect on health [40], should
single- or multi-pollutant models be used for quantifying
the combined effects of air pollution? Clearly, multi-
pollutant models take into account the confounding ef-
fects between the pollutants, but if ME is disregarded,
biased estimates are produced. This implies that in a
“multi-pollutant air quality management framework”, ME
correction methods should not be neglected [41]. If a cor-
rection method cannot be applied, single-pollutant model
effects may not be significantly overestimated, but this
might only hold under some conditions (e.g. specific cor-
relations between pollutants and/or between errors).
Several previous studies have considered the effects of

a mixture of classical and Berkson error in exposures
other than air pollution. Mallick et al. (2002) found that
the mixture error bias in their relative risks for thyroid
disease and radiation fallout ranged from 3.2 to 42.7%
[15]. Tapsoba et al. (2019) studying medications in HIV

Table 5 Summary of the regression coefficients, their standard errors (SE)(x10-4) and relative bias of 48,000 simulated datasets on
the impact of mixture error model on 2-pollutant Poisson regression. Results presented for the core scenario (Area: Europe, Error
type: Additive-Mixture) and sensitivity analyses (N = 48,000 in each row)

Sensitivity Analysis CRFsa: PM2.5: β1 = 5.4a NO2: β2 = 6a

Scenario β̂1 (SEW)/(SEB)
b Bias (%)c β̂2 (SEW)/(SEB)

b Bias (%)c

Main Analysis (Europe-Mixture) 5.33 (1.49)/(3.57) −1.3 4.36 (2.00)/(5.10) −27.4

Different “true” CRFs Low effect CRFd 2.66 (1.50)/(3.53) −1.5 2.19 (2.00)/(4.79) −27.0

High effect CRFe 10.66 (1.47)/(3.73) −1.3 8.78 (1.97)/(6.05) −26.9

Only PM2.5 effect 4.85 (1.50)/(3.57) −10.2 0.13 (2.02)/(4.76) –

Only NO2 effect 0.44 (1.50)/(3.55) – 4.35 (2.02)/(5.05) −27.5

Mixture error percentages (Classical,Berkson)
PM2.5: (55,45%), NO2: (45,55%)

5.20 (1.46)/(3.54) −3.6 4.47 (1.83)/(4.59) −25.6

(Classical,Berkson)
PM2.5: (70,30%), NO2: (60,40%)

5.08 (1.42)/(3.45) −6.0 4.48 (1.70)/(4.26) −25.4

Error type Multiplicative 0.83 (0.27)/(1.92) −84.5 0.61 (0.27)/(1.68) −90.0
aConcentration-response functions for the generation of the health outcome
b SEW: Within-simulations (or model-based) standard error, SEB: Between-simulations (or empirical) standard error

c Relative bias = ðβ̂ι−βιÞ
βι

d Half the CRF from Mills et al. 2006
e Twice the CRF from Mills et al. 2006
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patients report biases from 0 to 22% depending on the
correction method [33]. These values are close to our
findings, as is their assumed percentage of Berkson error
in the exposure that lies between 20 and 80%. In con-
trast, Deffner et al. (2018), examining the effects of
ultra-fine particles on heart rate, reported that mixture
error had little impact on their results [17]. This, how-
ever, may be due to their error definitions: they assumed
that total personal measurements include only classical
error, measurements from fixed sites only Berkson.
This simulation study has some limitations. Firstly,

several of our assumptions increased the uncertainty of
our estimates. For example, we used pooled estimates
for the error structures across wide study areas (e.g. cit-
ies within our areas may have different concentrations),
and approximations for the correlation between expo-
sures and between errors. However, to the best of our
knowledge, no study has attempted to quantify the im-
portant error variables in specific areas, apart from Dio-
nisio et al. (2014) in Atlanta (using a different, more
spatial framework than our study) [23]. We used more
generalisable inputs provided from previously published
work [24]. In addition, equal exposure misclassification
across days was assumed, increasing the uncertainty
about the relationship between sources of spatial and
temporal variations. We could not investigate the de-
pendency or correlation between daily exposures and
how this might interact with the spatial variation. More-
over, we assumed a constant percent error model addi-
tive on the logarithmic scale which implies that at low
exposures, error is also low, and vice versa. Error may be
higher at high exposures, but it might not drop substan-
tially at lower concentrations. In future work, we plan to
use real data from panel studies to identify the gaps in
our information and describe properly the error struc-
tures of the air pollutants.
This study discusses PM2.5 and NO2 and how to separ-

ate their effects on health. There is debate over whether
NO2 is acting as an indicator for other traffic pollutants.
To the extent that these other pollutants have similar
spatial error characteristics and some, e.g. CO, ultrafine
particles, may also have greater infiltration indoors than
PM2.5, our findings regarding effect transfer in multi-
pollutant models with PM2.5 will also apply. Moreover,
our work could not quantify the error structures of
ozone so could not assess its exposure misclassification
bias. This work was on two pollutants that are generally
positively correlated. Ozone, due to its formation and
characteristics, can be negatively correlated with PM2.5

and NO2, and this may change our conclusions. How-
ever, the correlations are not expected to be very high,
and according to this and previous studies, the effect of
pollutant correlations on ME bias is not expected to be
substantial [35]. We are currently working on this, using

previously analysed raw data from a panel study on
schoolchildren [42]. We will also assess the impact of
ME on the shape of the exposure-response curve. This
work did not find any significant distortions for the
shape of the CRFs for the health effects of short-term
exposures when the error is additive, but the effects of
multiplicative error might be more profound especially
for the identification of the long-term effects of air pol-
lution, for which the CRFs are used in cost-benefit ana-
lyses [43]. We addressed effect estimates from short-
term exposures. Future work should address the multi-
pollutant model estimates for long-term exposures
which may be more biased, as indicated in studies asses-
sing single-pollutant exposures [31, 32]. Finally, meas-
urement error correction is an important aspect which
becomes more complex if we consider expanding the
findings from exposure to air pollution to the whole
exposome, i.e. the totality of environmental exposures
throughout a lifetime. In such studies, variable selection
methods are usually used, which rely on empirical data
and may create false positive and false negative selec-
tions in the presence of ME [44].
In summary, this study quantified the effects of ex-

posure measurement error on multi-pollutant, time-
series model estimates. Using simulations, under an
extensive range of scenarios, we showed that non-
trivial underestimation in health effect estimates can
result from measurement error, especially for NO2,
which was found to be more prone to error, but for
PM2.5 as well. We recommend that ME should be
considered in every epidemiological analysis assessing
exposures prone to large ME, and that studies of per-
sonal exposure should provide information on rele-
vant error parameters, such as correlation between
errors and error variability, in order to better under-
stand the correct error structures of the pollutants. It
is important that correct health effect estimates
should be derived in order, not only to separate the
independent effects of air pollutants, but also to cor-
rectly quantify the health impacts of air pollution, in-
form interpretation and recommend future
approaches for policy making.
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