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Abstract

Background: Recent efforts in the field of nutritional science have allowed the discovery of disease-beating
molecules within foods based on the commonality of bioactive food molecules to FDA-approved drugs. The
pioneering work in this field used an unsupervised network propagation algorithm to learn the systemic-wide effect
on the human interactome of 1962 FDA-approved drugs and a supervised algorithm to predict anticancer
therapeutics using the learned representations. Then, a set of bioactive molecules within foods was fed into the
model, which predicted molecules with cancer-beating potential.
The employed methodology consisted of disjoint unsupervised feature generation and classification tasks, which can
result in sub-optimal learned drug representations with respect to the classification task. Additionally, due to the
disjoint nature of the tasks, the employed approach proved cumbersome to optimize, requiring testing of thousands
of hyperparameter combinations and significant computational resources.
To overcome the technical limitations highlighted above, we represent each drug as a graph (human interactome)
with its targets as binary node features on the graph and formulate the problem as a graph classification task. To solve
this task, inspired by the success of graph neural networks in graph classification problems, we use an end-to-end
graph neural network model operating directly on the graphs, which learns drug representations to optimize model
performance in the prediction of anticancer therapeutics.

Results: The proposed model outperforms the baseline approach in the anticancer therapeutic prediction task,
achieving an F1 score of 67.99% ± 2.52% and an AUPR of 73.91% ± 3.49%. It is also shown that the model is able to
capture knowledge of biological pathways to predict anticancer molecules based on the molecules’ effects on
cancer-related pathways.

Conclusions: We introduce an end-to-end graph convolutional model to predict cancer-beating molecules within
food. The introduced model outperforms the existing baseline approach, and shows interpretability, paving the way
to the future of a personalized nutritional science approach allowing the development of nutrition strategies for
cancer prevention and/or therapeutics.
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Background
Cancer is a major healthcare burden and the second lead-
ing cause of death in the USA [1]. It has been recently
shown, however, that modifying dietary and lifestyle fac-
tors alone can prevent between 30 and 40% of all cancer
cases [2, 3]. As research continues, it is becoming clearer
that nutrition plays a major role in cancer. For exam-
ple, vegetarian and pescetarian diets have been shown to
reduce cancer risk by 10% and 13% respectively [4], and
meta-analyses of numerous observational studies have
evidenced a reduced risk of colorectal cancer associated to
high consumption of whole grains, vegetables, fruit, dairy
products, and cruciferous vegetables [5, 6]. However, lit-
tle is known about the underlying biological mechanisms
behind the observed anticancer properties of foods.
Given that understanding such mechanisms is cru-

cial for the design of personalized nutritional strate-
gies for cancer patients, experimental techniques have
been used to test anticancer properties of individual
molecules within foods. As a result, some biologically-
active molecules found in plants (phytochemicals) have
been shown to regulate processes linked to oxidative
stress, chronic inflammation and epigenetic changes,
reducing the risk of cancer [7].
These experimental studies have uncovered anticancer

properties of individual food molecules, opening the path
towards explaining anticancer properties of foods. How-
ever, there are hundreds of molecules within a single food,
all of them contributing to a food’s overall effect. There-
fore, to provide an accurate explanation of the observed
anticancer effects of a given food, the anticancer proper-
ties of a greater proportion of its constituent molecules
should be studied.
However, evaluating anticancer properties of a single

food molecule using experimental techniques is an expen-
sive process which takes months or even years, hence
analyzing anticancer properties of all existing molecules
within food is hardly feasible. To overcome this limitation,
recent efforts have resulted in the compilation of com-
prehensive databases of phytochemicals [8, 9] which have
facilitated computational studies of food molecules [10–
12].
Previous computational studies on foods have explored

their interactions with diseases and drugs at the genome
level, identifying food-drug relationships [11], and bene-
ficial and harmful food-disease pairs [10]. Despite their
novelty, these studies only leverage overlap of gene tar-
gets or differentially expressed genes to define food-drug
and food-disease relationships. These data sources are
sparse, pointing to individual genes rather than genemod-
ules affected. However, drug, disease, and food molecule
similarities in the context of cancer can only be fully
captured by leveraging dysregulated pathways (gene mod-
ules), rather than gene target overlap, in the context of

protein-protein interaction (PPI) networks, given the het-
erogeneity of cancer genotypes [13–15].
To uncover dysregulated pathways from gene targets

data as input, a set of methods under the term of network
propagation has been widely used in cancer research. Net-
work propagation, which has been termed an “amplifier of
biological signals,” allows finding dysregulated pathways
based on the assumption that genes underlying similar
phenotypes tend to interact with one another [16].
Veselkov et al. leveraged this set of methods to pro-

vide the first large-scale study on anticancer properties of
food molecules. In this work [12], the authors predicted
anticancer food molecules based on the commonality of
mechanisms of action on PPI networks of food molecules
compared to FDA-approved anticancer drugs. To this
aim, mechanisms of action of drugs on PPI networks
were learned using the network propagation algorithm
Random Walk with Restarts (RWR). The resulting drug
profiles were fed to a supervised machine learning algo-
rithm trained to classify drugs into anticancer and non-
anticancer classes. The trained classifier was then used to
predict anticancer molecules within food.
The approach used by Veselkov et al. consisted of dis-

joint modeling and prediction steps, which can result in
sub-optimal learned systemic-wide effects of drugs on the
PPI with respect to the prediction task. This also translates
into a cumbersome optimization process, requiring test-
ing of thousands of hyperparameter combinations and sig-
nificant computational resources. Furthermore, the net-
work propagation algorithm used by Veselkov et al. in the
modeling step to uncover dysregulated pathways propa-
gates or “convolves” information across the network in
an unsupervised fashion, using a pre-defined propagation
rule.
An alternative to these pre-defined propagation or con-

volution operators on graphs are graph neural networks
(GNNs), developed as part of the trend of deep learning
on graphs [17, 18]. Instead of convolving the informa-
tion across the graph using a pre-defined propagation
rule, GNNs have learnable parameters allowing them to
propagate or convolve information across the graph in a
way that maximizes the performance of a (un)supervised
task. This property has been leveraged in a number
of applications in bioinformatics incorporating PPI net-
works, achieving state-of-the-art performance in many
cases [19–21].
Building on the capabilities of GNNs and to overcome

the limitations of the method proposed by Veselkov et al.,
we propose an end-to-end graph neural network model
which operates directly on graphs representing drugs and
is able to model drugs’ effects on the PPI network con-
ditioned on the classification of anticancer therapeutics.
Specifically, we feed PPI networks and binary node fea-
tures encoding drugs’ targets to a graph convolutional
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encoder to learn the effect of drugs on the PPI net-
work, resulting in vector representations of drugs. Then,
learned representations of drugs are fed to an multilayer
perceptron (MLP) for prediction of anticancer class.
We train our model in the dataset introduced by

Veselkov et al. and compare the performance with
their proposed method. Empirical results show that our
approach achieves comparative performance in terms of
balanced accuracy and significantly higher performance
in terms of precision-recall and F1 score, which better
capture the performance of a classifier in the case of a
highly-imbalanced dataset, such as the one used in this
study. Additionally, we offer a causal interpretation of
the neural network decision using attribution methods to
assign scores to input features.
The major contributions of our work are as follows:

• We propose an end-to-end model for the anticancer
molecule prediction task, framing the problem as a
graph classification task and proposing a graph-based
neural network model to solve it

• We explore graph pooling based on biological path-
ways as a way of integrating prior biological informa-
tion into the neural network architecture

• We offer causal interpretation of the neural network
which evidences that predictions are made based on
biological knowledge

Methods
Dataset
A human protein-encoding gene-gene network was com-
piled using data from STRING v10.5 [22], UniProt (Jan,
2019) [23], COSMIC (Jan, 2019) [24], and NCBI Gene
(Jan, 2019) [25]. The subset of experimentally validated
protein-protein interactions was selected from STRING.
We removed isolated nodes and kept the biggest con-
nected component (15,135 nodes and 177,848 edges).
Information on clinically approved drugs was extracted

from DrugBank v5 [26] and DrugCentral (Feb, 2019) [27].
Food molecules were extracted from FooDB (N = 7,793.
Nov, 2018) [8]. Drug- and food molecule-gene encoded
protein interactions were extracted from STITCH (Jan,
2019) [28].
We extracted pathways from the Kyoto Encyclope-

dia of Genes (KEGG [29], downloaded version 7.1 from
MSigDB [30]). The pathway assignation matrix P ∈
Z
npathways×15,135
2 , where npathways = 186 is an assigna-

tion matrix with Pij = 1 if gene j is involved in pathway
i and 0 otherwise. Out of the 15,135 genes in the PPI
network, 4590 genes had at least a pathway assigned.
Each drug (food molecule) i is represented by a graph

G = (V ,E) of protein-protein interactions, with |V| =
15, 135 nodes and |E| = 177, 848 edges, and a feature
vector xi ∈ Z

|V|
2 , i.e., one binary feature per node: 1

if the gene is a drug (food molecule) target, 0 other-
wise. Hence, we identify drug molecules using only their
protein-coding gene targets given that we aim to model
their systemic-wide effects on the PPI, task for which drug
target information is sufficient. Our dataset contains 2048
drugs and 7793 food molecules. We followed the proce-
dure in [12] to obtain classification labels for the cancer
task (positive/negative: 209/1839 drugs).

Approach
Anticancer hyperfood prediction task
We consider the problem of predicting molecules with
anticancer properties in foods based on their similarity to
FDA-approved anticancer drugs. Food molecules should
be predicted as anticancer if their effect on the human
genome is similar to that of anticancer drugs.
To this purpose, we build a model to predict anticancer

drugs and later use the trained model to predict anti-
cancer food molecules (see Fig. 1). We cast the problem of
predicting anticancer drugs as a graph classification task
in which drug labels represent whether a drug has been
approved to treat cancer (1) or not (0) and our model is
trained to output the correct label for each drug. Once
the model is trained, it is used to predict anticancer food
molecules.
Drugs are represented by the human PPI and their asso-

ciated drug targets as a binary signal on the PPI. Given a
drug i represented as a graph G = (V ,E), with |V| nodes
and |E| edges, and feature vector xi ∈ Z

|V|
2 (i.e., one feature

per node), our aim is to classify it into anticancer/non-
anticancer categories. To this aim, we use a non-linear,
multi-layer convolutional graph neural network model
that operates directly on a graph G. We next describe our
model for anticancer therapeutic prediction.

Graph classification model
Our graph classification model takes as input the PPI
graph G and feature vector xi of drug i, and outputs a
classification label indicating anticancer/non-anticancer
category. It is comprised by 2 steps. First, a vector rep-
resentation of the graph G is computed using a graph
encoder. Then, this representation is fed to a multi-layer
perceptron (MLP) which outputs a probability distribu-
tion for anticancer/non-anticancer categories for classifi-
cation (see Fig. 1).

Graph encoder
To generate a vector representation of an input graph,
we rely on techniques developed as part of the trend
of deep learning on graphs [17, 18]. Specifically, we use
GNNs, operators that learn how to transform and propa-
gate information, captured by node feature vectors, across
the graph. We test three variants of GNNs and com-
pare their performance: GCN [31], GraphSAGE [18], and
ChebNet [32].
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Fig. 1 Drug targets are represented as a binary signal on the PPI. We use a GNN to generate a graph embedding representing the systemic-wide
effect of the drug on the PPI. We then feed this representation to an MLP for the anticancer prediction task. The model is trained in an end-to-end
fashion. After model training, we feed bioactive molecules within foods to the model for the prediction of anticancer food molecules

GCN
For a given node, a GCN aggregates transformed fea-
ture vectors of its first-order neighborhood. This operator
is applied to all nodes in the graph, with transforma-
tions applied to neighboring nodes being shared across all
nodes.
This is formulated for all nodes in matrix notation as:

H(l+1)
i = σ

(
D̃−1/2ÃD̃−1/2H(l)

i W(l)
)

where Ã = A + IN is the adjacency matrix of the undi-
rected graph G with added self-connections, IN is the
identity matrix, D̃ is the diagonal degree matrix of Ã, with
D̃ii = ∑

j Ãij. W(l) ∈ R
dl×dl+1 is a layer-specific train-

able weight matrix and σ(·) denotes an activation function
such as the rectified linear unit: ReLU(·) = max(0, ·).
H(l)

i ∈ R
|V|×dl is the hidden state of drug i in layer l

represented by |V| nodes and dl features.
Deeper models, convolving information across the Kth

order neighborhood (i.e., embedding of a node depends
on all the nodes that are at most K steps away) can be built
by stacking K of these layers.

GraphSAGE
The GraphSAGE framework learns a function that gen-
erates embeddings by aggregating features from a node’s

neighbors. We use theGCN variant of GraphSAGE which
has the form:

Ĥ(l+1)
i = D̃−1Ã H(l)

i W(l)

H(l+1)
i = σ

(
Ĥ(l+1)

i

‖Ĥ(l+1)
i ‖2

)

where Ã is the adjacency matrix of the undirected graph
G with added self-connections, D̃ is the diagonal degree
matrix of Ã, W(l) ∈ R

dl×dl+1 is a layer-specific trainable
weight matrix, and σ(·) denotes an activation function.
H(l)

i ∈ R
|V|×dl is the hidden state of drug i in layer l

represented by |V| nodes and dl features.
Just like with GCNs, stacking K GraphSAGE layers

results in the convolution of information across the Kth
order neighborhood.

ChebNet
ChebNet is a formulation of convolutional neural net-
works in the context of spectral graph theory. It relies on
the definition of Fourier basis of graphs to define a con-
volutional filter as a multiplication in the spectral domain.
After parametrizing filters using Chebyshev polynomials,
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a convolutional layer has the form:

H(l+1)
i = σ

(N−1∑
n=0

Y(l)
i,n W

(l)
n

)

where N is the size of the convolutional filter, W(l)
n ∈

R
dl×dl+1 is a layer-specific trainable weight matrix, σ(·)

denotes an activation function, and Y(l)
i,n is computed

recursively as:

Y(l)
i,0 = H(l)

i

Y(l)
i,1 = L̂ H(l)

i

Y(l)
i,n = 2 L̂ Y(l)

i,n−1 − Y(l)
i,n−2

H(l)
i ∈ R

|V|×dl is the hidden state of drug i in layer l repre-
sented by |V| nodes and dl features. L̂ denotes the scaled
and normalized Laplacian 2L

λmax
−I, with the Laplacian L =

I − D−1/2AD−1/2, and λmax being the maximum eigen-
value of the Fourier decomposition of the graph Laplacian
L.
Intuitively, each layer of a ChebNet convolves node fea-

tures from 1 to N hops away of each node. For detailed
justification and derivation of the ChebNet expression, we
refer the reader to [32].

Final graph representation
To generate the graph representation of drug i, we apply K
convolutional layers to the initial drug representation xi.
Inspired by the Jumping Knowledge framework [33], the
final representation of drug i is obtained by concatenating
representations generated by all layers:

Zi =
[
H(1)

i |H(2)
i | ... |H(K)

i

]
∈ R

|V |×(d1+d2+...+dK )

with the input of the first layer being the drug feature
vectorH(0)

i = xi ∈ R
|V|×1.

We then feed the graph embedding Zi generated by the
convolutional layers to a fully connected layer to reduce
the dimensionality of drug representations by aggregating
node features to a single dimension:

zi = ZiWfc

zi ∈ R
|V|×1 is the transformed representation of drug

i and Wfc ∈ R
(d1+d2+...+dK )×1 is a matrix with weights

learned to aggregate node feature vectors.

Pathway pooling
We consider an alternative architecture in which we intro-
duce pathway pooling, pooling genes in the graph accord-
ing to biological pathways. Formally, given the graph
representation Zi, pathway pooling can be formulated as:

Ẑi = PZi

where P ∈ R
npathways×|V | is an assignation matrix with

Pij = 1 if gene j is involved in pathway i and 0 otherwise.

We then feed the graph embedding Ẑi to a fully connected
layer to reduce the dimensionality of drug representations
by aggregating node features to a single dimension:

ẑi = ẐiWfcp

ẑi ∈ R
npathways×1 is the transformed representation of

drug i and Wfcp ∈ R
(d1+d2+...+dK )×1 is a matrix with

weights learned to aggregate node feature vectors.

MLP
Transformed representation of drugs zi (or ẑi) are then fed
to a 2-layer MLP to output a probability distribution for
the classification task:

pi = Softmax
(
ReLU

(
zTi Wl1 + b1

)
Wl2 + b2

)

where Wl1, b1, Wl2 and b2 are learnable weight matri-
ces. pi ∈ R

1×2 represents a distribution probability for
anticancer/non-anticancer categories for drug i.

Attributing predictions to input features for interpretability
We seek to assess whether the trained model has learned
the top biological pathways (i.e., PPI subgraphs) responsi-
ble for the anticancer properties of drugs. Given a trained
model and an input, an attribution method assigns scores
to each input feature that reflect the contribution of that
feature to the model prediction. Inspecting the attribution
scores reveals what features, in our case, genes were most
relevant to the model’s decision. Formally, suppose a func-
tion F : R

n →[ 0, 1] represents a deep neural network.
The attribution at input x = (x1, ..., xn) ∈ R

n is a vector
AF(x) = (a1, ..., an) ∈ R

n where aj is the contribution of xj
to the prediction F(x).
In our case, given drug i and its feature vector xi as

input, F(xi) denotes the probability that the drug belongs
to the anticancer category. In the remainder of this
section, we will refer to xi as x for notation simplicity. To
compute attributions to individual genes, we use the Inte-
grated Gradients method [34]. This method satisfies two
fundamental axioms for attribution methods: sensitivity
and implementation invariance. For extended definitions
and comparisons with other attribution methods, we refer
the reader to [34].
This method provides attributions relative to a provided

baseline input. Here, we use an input where all drug tar-
gets are set to zero. Integrated gradients are defined as the
path integral of the gradients along the straightline path
from the baseline to the input. The integrated gradient
along the jth dimension for an input x and baseline x′ is
defined as follows:

aj(x) ::==
(
xj − x′

j

)
×

∫ 1

α=0

δF
(
x′ + α × (

x − x′))

δxj
δα
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Attribution recall score
We would like the attribution scores to recover gene tar-
gets that are present in cancer-related pathways. This
would mean that our model makes decisions based on
feature values in genes relevant for the anticancer proper-
ties of drugs. To evaluate the extent to which the model
is able to recover cancer-related genes, we introduce a
metric called attribution recall score that measures how
well the attribution scores recover cancer-related genes.
First, we compute attribution scores for samples classi-
fied as anticancer. Then, we obtain average attribution
scores for samples classified as anticancer across all splits
for a given model. With the average attribution scores,
we use the PreRanked module of Gene Set Enrichment
Analysis (GSEA) [30] to obtain over-represented pathways
(from the Kyoto Encyclopedia of Genes- KEGG) in the
most positively attributed genes. This measures whether
genes in KEGG pathways are overly-present in the most
positively-scored genes as compared to what is expected
by chance.We then filter over-represented pathways using
an FDR of 25% (as advised in GSEA documentation)
and measure the recovery of anticancer pathways as the
number of over-represented pathways that are related to
cancer divided by the total number of anticancer pathways
in KEGG.

Model training
During training, we optimize hyperparameters using
cross-entropy loss:

−
N∑
i=1

2∑
c=1

yic log(pic)

where yic is a binary indicator if class label c is the correct
classification for drug i and pic is the predicted probability
that drug i is of class c andN is the number of drugs in the
training set.
We train the model in an end-to-end fashion and opti-

mize all model parameters using back-propagation. We
train the model for a maximum of 100 epochs (training
iterations) with the Adam optimizer and early stopping
with a window size of 20: The training stops if the valida-
tion loss does not decrease at least 1e−4 for 20 consecutive
epochs. We implement our model using PyTorch [35] and
the Torch Geometric Library [36].
We perform hyperparameter search for the learning

rate, l2 regularization on the weights of the neural net-
work, number of dropout layers in the MLP, input data
normalization and batch normalization after the convolu-
tional layers.

Experimental setup
We view the problem of predicting anticancer therapeu-
tics as a graph classification task. Each drug is represented

as a graph and its associated node features. We perform
5-fold cross-validation to assess model performance. In
each split, 20% of the data is kept as the test set; from
the remaining 80%, 10% is used as a validation set to per-
form early stopping. All splits are generated stratifying
samples with respect to labels. It is worth noting that the
dataset is highly unbalanced with respect to the target
label (only 10.2% of drugs are anticancer). To balance the
positive/negative classes, we re-scaled the contribution of
each class to the loss function so that it is inversely propor-
tional to class frequencies of each class during training.
Models were trained on NVIDIA Tesla V100 and GEForce
RTX 2080 GPUs.
We use our models that, for each drug, output a prob-

ability of it being an FDA-approved anticancer drug. We
evaluate the performance of our presented models against
the baseline model introduced in [12]. In this work, the
authors represented drug-protein interactions as binary
signals on the human PPI network and applied RWR to
learn the systemic genome-wide response to the drug
intervention. The learned representations were used as
input to an SVM for the binary classification task of
anticancer/non-anticancer drugs.
To motivate the use of network propagation, we also

evaluate versions of the baseline and proposed methods
without network propagation. We use an SVM classifier
as the counter-part to the baseline method and anMLP as
the counter-part of our proposed neural models.
We use various metrics for the comparative analysis of

performance. Balanced accuracy is the average of recall
obtained on each class; F1 is the weighted average of pre-
cision and recall for the positive (anticancer) class; and
AUPR is the area under the precision-recall curve and
represents the average precision across all recall values.
Hyperparameter settings for every method are deter-

mined using a validation set with a grid search
over candidate hyperparameter values. For the baseline
approach, the grid search for the restart probability is
[ 0.001, 0.01, 0.1, 0.2, ..., 0.9]. For neural models, hyperpa-
rameter candidates can be found in Table 1.
All convolutional layers in our model have d = 8 hid-

den units. The first prediction layer has 32 hidden units

Table 1 Hyperparameter space searched

Hyperparameter Space search

Learning rate 5.10−4, 5.10−3

L2-regularization 1.10−5, 1.10−4, 5.10−4

Number of convolutional layers 1, 2, 3

Number of dropout layers 1, 2

Batch normalization True, false

Feature normalization True, false

n-hops for ChebNet 2, 4, 6
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and the final prediction layer has 2 output units. We use a
mini-batch size of 16.

Results
Computational complexity
The time complexity of the graph neural layers and neural
models used can be found in Table 2. The three proposed
variants of graph convolutional layers have comparable
time complexity, with the complexity of the ChebNet layer
additionally depending on the n-hop used for neighbor-
hood aggregation. Training time is expressed as millisec-
onds per sample per epoch to facilitate the estimation of
the total training time the proposed neural models would
need for a different dataset.

Prediction of anticancer drugs
We compare the performance of our proposed models to
the baseline approach in the anticancer drug prediction
task.We report in Table 3 results of our experiments.With
the anticancer classification task in mind, we compare the
performance of the models using the F1 score and AUPR,
the metrics of choice when evaluating classifiers on highly
imbalanced datasets.
We see how using a learnable network propagation

framework allows our proposedmodels to outperform the
baseline approach by a large margin. The ChebNet vari-
ant of our proposed approach had the best performance
overall, outperforming the baseline approach by 16.15%
(F1) and 6.48% (AUPR). A significantly higher F1 score in
the ChebNet model is reflected in that it achieves around
27% higher precision in classification of anticancer sam-
ples (with similar recall). The full precision-recall curve,
averaged across splits, can be found in Fig. 2, where we
can see that the ChebNet model achieves overall higher
average precision as compared to the baseline method.
By comparing the AUPR of baseline and neural models

with and without the graph structure, a key observation
can be drawn that for both, the SVM classifier and the

Table 2 Time complexity of neural layers in O notation

Layer/model Time complexity Layers Running time (ms)

GCN O(|E| dl dl+1) 1 5

2 6

3 7

GraphSAGE O(|E| dl dl+1) 1 3.5

2 4.5

3 6

ChebNet O(N|E| dl dl+1) 1 4

2 5

3 6

Time complexity of neural models expressed in running time per training iteration
per sample

neural models, model performance increases when taking
into account the underlying network structure of the data
(PPI). Another interesting observation is that introducing
pathway pooling translates into a decrease in performance
for all models. This could be a result of the incomplete
pathway knowledge on the PPI network. The PPI network
used in this work has |V| = 15, 135 protein-encoding
genes with only 4590 genes belonging to at least a path-
way (with 186 pathways in the KEGG database). The
initial hypothesis was that by having only 30% of genes
contributing to the final prediction, the model would
increase its performance by focusing only on genes with
known biological processes, including cancer processes.
However, results indicate that such a hard regularization
prevents the model from potentially learning from other
equally-relevant but experimentally understudied genes.

Model interpretation
We compute the attribution recall score for the best-
performing model to assess whether the model predicts
drugs as anticancer preferentially based on the feature val-
ues in cancer-related genes. The attribution recall score
for the most positively attributed genes is 85.29%. This
means that the most positively attributed genes in our
model (i.e., the ones whose initial feature value is the
most relevant for the prediction task) are preferentially
found in cancer-related pathways such that around 85% of
cancer-related pathways in KEGG are over-represented.
This means that the graph neural model classifies drugs
as anticancer preferentially based on the value of the
input features in cancer-related genes, which adds to the
biological plausibility of the model.
To further validate model’s attributions, we investigate

6 use cases: the top 3 correctly and incorrectly classi-
fied drugs as anticancer (i.e., drugs classified as anticancer
with highest probability) with experimentally validated
pathways in the literature. For each of these drugs xi,
we obtain the drug representation computed by our best
model zi and obtain over-represented pathways (FDR
<1%) using the PreRanked module in GSEA.We compare
over-represented pathways obtained from the drug repre-
sentations to the knowledge available in the literature on
these drugs (see Additional file 1). For all 6 drugs studied,
over-represented pathways successfully recovered path-
ways described in the literature along with cancer-related
pathways (see Additional file 1). This means that the rep-
resentations learned capture the mechanisms of action of
drugs.

Prediction of anticancer foodmolecules

We compute anticancer likeness of food molecules using
the best neural model, with the 5 models trained during
the cross-validation and average them to provide a more
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Table 3 Summary of results (%) on anticancer drug prediction

Method ACC F1 AUPR Precision ac Recall ac Precision non-ac Recall non-ac

SVM 79.26 ± 4.2 52.12 ± 5.92 53.35 ± 10.97 41.50 ± 6.75 69.12 ± 10.08 96.31 ± 1.06 88.74 ± 3.20

RWR + SVM 81.13 ± 3.79 51.84 ± 5.79 67.43 ± 8.14 38.98 ± 5.38 75.08 ± 6.92 96.90 ± 0.83 86.67 ± 2.37

MLP 80.62 ± 3.81 66.53 ± 5.02 69.05 ± 5.01 69.75 ± 6.74 64.55 ± 8.23 96.02 ± 0.85 96.68 ± 1.30

GCN 80.52 ± 3.33 63.95 ± 3.90 66.45 ± 5.82 63.33 ± 5.72 65.51 ± 7.42 96.08 ± 0.76 95.54 ± 1.38

GraphSAGE 78.27 ± 6.11 59.93 ± 6.53 64.42 ± 9.96 61.04 ± 5.72 61.15 ± 13.48 95.62 ± 1.37 95.38 ± 1.51

ChebNet 83.46 ± 2.52 67.99 ± 2.87 73.91 ± 3.49 65.46 ± 4.53 71.27 ± 5.58 96.71 ± 0.59 95.65 ± 0.96

MLP-P 76.72 ± 2.68 54.40 ± 3.56 59.79 ± 7.64 51.67 ± 11.33 60.73 ± 7.81 95.44 ± 0.72 92.72 ± 3.18

GCN-P 78.70 ± 5.36 57.43 ± 7.61 60.03 ± 8.48 52.77 ± 7.69 64.03 ± 11.05 95.83 ± 1.18 93.37 ± 1.72

GraphSAGE-P 77.09 ± 4.18 54.07 ± 4.88 60.55 ± 9.51 48.87 ± 4.06 61.64 ± 9.65 95.53 ± 0.96 92.55 ± 1.95

ChebNet-P 76.10 ± 2.67 55.71 ± 4.46 59.68 ± 9.53 53.72 ± 4.07 57.86 ± 4.96 95.17 ± 0.53 94.35 ± 0.44

ACC = balanced accuracy, F1 = harmonic mean of precision and recall, AUPR = area under the precision-recall curve, ac = anticancer, non-ac = non-anticancer

robust anticancer likeness measure. Of the top predictions
(anticancer likeness >= 0.9), 20 molecules were found
as additional predictions to those reported in [12] (see
Table 4, Additional file 2).
We obtained embeddings of these molecules and over-

represented pathways from the KEGG and REACTOME
databases using GSEA. Over-represented pathways of
these molecules captured a wide range of cancer-related
mechanisms and signaling pathways including P53 signal-
ing pathway, MAPK signaling pathway, ERBB signaling
pathway, and those involved in apoptosis, cell growth, and

cell proliferation.
Of the 20 anticancer-predicted molecules, genistein

and pterostilbene show the most promise as cancer-
preventing agents, as indicated by substantial experimen-
tal evidence. Genistein, an isoflavone present in soy, is
known to have multiple molecular effects that impact
carcinogenesis, such as the inhibition of inflammation,
promotion of apoptosis, and modulation of steroidal hor-
mone receptors and metabolic pathways [37]. There-
fore, genistein plays an important role in preventing and
treating some types of cancer. Pterostilbene, found in

Fig. 2 Precision-recall curve of Baseline and ChebNet models across all splits
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Table 4 Anticancer likeness of food molecules was computed using the best-performing neural model

ID Name Description

FDB001084 Pancreatin Digestive enzyme. Used in replacement therapy. Used to prepare pro-
tein hydrolysates for pre- and post-operative diets.

FDB006967 Anthracene Organic compounds containing a system of three linearly fused ben-
zene rings. Anthracene can be found in sorrel. Anthracene is formally
rated as an unfounded non-carcinogenic (IARC 3) potentially toxic
compound.

FDB008856 2,2’-Bis(4-hydroxyphenyl) propane Potential food contaminant arising from its use in reusable polycarbon-
ate food containers such as water carboys, baby bottles and kitchen
utensils.

FDB011663 Coumestrol Coumestrol is a natural organic compound in the class of phytochem-
icals known as coumestans. It has garnered research interest because
of its estrogenic activity and its prevalence in some foods, such as
soybeans and herbs such as Pueraria mirifica. Coumestrol is a phytoe-
strogen, mimicking the biological activity of estrogens.

FDB011828 Genistein Genistein is a phenolic compound belonging to the isoflavonoid group.
Isoflavonoids are found mainly in soybean. Genistein and daidzein (an
other isoflavonoid) represent the major phytochemicals found in this
plant.

FDB012375 Pterostilbene Pterostilbene is a member of the class of compounds known as stil-
benes. Pterostilbene can be found in common grape and grape wine.
Pterostilbene is a stilbenoid chemically related to resveratrol.

FDB012974 Mercenene Found in the common clam Mercenaria mercenaria and Mercenaria
campechiensis

FDB014654 Myristicin Natural organic compound present in the essential oil of nutmeg and
to a lesser extent in other spices such as parsley and dill.

FDB016593 2,5-Dihydro-4,5-dimethyl-2-(1-methylpropyl) thiazole Flavoring ingredient. Reported in hydrolyzed vegetable protein.

FDB020870 1-Methyl-6-phenyl-1H-imidazo[4,5-b]pyridin-2-amine Food-related mutagen, reported to be the most abundant heterocyclic
amine found in cooked meat and fish.

FDB022056 5a-Androstane-3a,17a-diol Steroid compound.

FDB022182 Isourso-deoxycholic acid Bile acid.

FDB022318 11alpha-Hydroxy-progesterone Steroid hormone involved in the female menstrual cycle, pregnancy
(supports gestation) and embryogenesis of humans and other species.

FDB023086 Dihydro-testosterone Potent androgenic metabolite of testosterone.

FDB023772 Testosterone enanthate Testosterone enanthate is used in androgen substitution.

FDB024072 5b-Dihydro-testosterone Intermediate in androgen and estrogen metabolism.

FDB028898 Methyl-arsonite Found in the arsenate detoxification I pathway.

FDB030068 Platinum Member of the class of compounds known as homogeneous transition
metal compounds. Platinum can be found in a number of food items
such as white cabbage, sunburst squash (pattypan squash), potato, and
broccoli.

FDB030278 17-α-hydroxy-pregnenolone It belongs to gluco/mineralocorticoids, progestogins, and derivatives
class of compounds.

FDB030678 Androst-4-en-3,17-dione It belongs to androgens and derivatives class of compounds.

20 molecules were predicted as additional anticancer molecules to those reported in [12]. Extended description and additional information for each molecule can be found
in Additional file 2

grapes and blueberries, is chemically related to resvera-
trol, a well-studied molecule with antimicrobial, antioxi-
dant, and anti-inflammatory activity which translate into
chemopreventive effects [38]. Pterostilbene has shown
excellent pharmacological benefits for the prevention and
treatment for various types of cancer in their different
stages of progression through apoptotic or non-apoptotic
anti-cancer activities [39, 40].

Discussion
The benefit of fruits and vegetables in overall health,
and specifically, in cancer, has been well documented
through numerous observational studies. However, spe-
cific mechanisms of action contributing to the anticancer
properties of individual food items are still unknown. This
knowledge would facilitate the creation of a personal-
ized nutritional science approach where foods and food
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supplements could be tailored to individuals based on
their particular needs, contributing to their overall health
and prevention of cancer.
The first large-scale computational study aiming at ana-

lyzing anticancer properties of food molecules was intro-
duced by Veselkov et al. [12]. Here, the authors introduced
a machine learning approach to predict food molecules
with anticancer properties based on their similitude to
FDA-approved anticancer drugs at the genomic level.
This approach was comprised of 2 disjoint phases. In the
first one, systemic-wide effects of drugs on the genome
were learned using unsupervised RWR. In the second,
the learned representations were fed to an SVM for the
anticancer therapeutic classification task. This can result
in sub-optimal learned representations and is tied to a
cumbersome optimization process. To address this, we
introduced an end-to-end graph neural network model
that takes as input a genomic network and binary features
representing drugs and food molecules and outputs anti-
cancer classification labels, outperforming the baseline
approach by 16.15% (F1) and 6.48% (AUPR).
It is interesting to note the superior performance of

the model utilizing the Chebyshev operator. Most oper-
ators on graphs, including GCN and GraphSAGE, are
designed to generalize across different graphs. In the typ-
ical scenario, graph operators learn propagation rules for
a dataset composed of samples that each have a differ-
ent graph, for example, during a drug property prediction
task based on drug molecular graphs. These operators
are designed with a message passing paradigm, in which
information from neighboring nodes is transformed and
aggregated using a permutation-invariant function. In
contrast, the Chebyshev operator includes an element that
is characteristic of each graph in its formulation: the graph
Laplacian, which allows leveraging the graph eigenvec-
tors to orient the message passing procedure. This might
explain the superior performance in our scenario given
that all samples share the same graph (PPI), and propagat-
ing information in the direction of the graph eigenvectors
might result in a more optimal information propagation
rule than using a permutation-invariant message passing
rule.
To explore miss-classifications of our best model, we

investigate the top 3 miss-classified drugs with higher
anticancer probability across all splits: calcitriol, cetrore-
lix, and estrone sulfate (all predicted anticancer with a
probability of 99.99%). Calcitriol is them most potent
metabolite of vitamin D in humans. Low levels of vita-
min D have been consistently associated with an increased
risk of colorectal [41–44], breast [44], pancreatic [43, 45],
thyroid [46], prostate cancer [47], and cancers of the gas-
trointestinal tract [43]. Given that calcitriol is the most
potent metabolite of vitamin D, calcitriol has been stud-
ied as a supplement to address vitamin D deficiency,

which has resulted in anticancer properties documented
for calcitriol [41, 42, 44, 47].
Cetrorelix, a man-made hormone that blocks the effects

of gonadotropin-releasing hormone, has been consistently
found to have anticancer properties against ovarian [48,
49], prostate [50, 51], and endometrial cancer [49]. In con-
trast with calcitriol and cetrorelix, estrone sulfate has been
documented to be upregulated in patients with breast
cancer, and its inhibition has shown promise as a ther-
apy against breast cancer [52–54]. This highlights the
importance of external validation of results given that the
model classifies molecules as being similar to anticancer
drugs if they act on the genome through similar mecha-
nisms (target similar gene modules). However, under the
hypothesis that drugs target gene modules that are altered
in cancer patients, molecules predicted as similar to anti-
cancer therapies could represent a cancer-preventing or a
cancer-causing molecule.

Conclusion
We present an approach for predicting anticancer food
molecules using a graph convolutional neural network
model. The model takes as input a graph structure and
signal on the nodes and outputs anticancer likelihood of
foodmolecules. Themodel outputs a high anticancer like-
lihood for a given food molecule if said molecule acts on
the interactome through similar mechanisms of action as
those of FDA-approved anticancer drugs. We show that
the graph convolutional model outperforms the baseline
model by a significant margin.We also demonstrate that it
is able to capture knowledge of biological pathways to pre-
dict anticancer molecules based on the molecules’ effects
on cancer-related pathways.
The proposed model successfully combines the network

propagation and classification tasks, and can be trained
in an end-to-end fashion, producing predictions that are
based on biological knowledge. This offers a more effi-
cient approach for the anticancer hyperfood prediction
task and represent a step forward in paving the way to the
future of gastronomic medicine.
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