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Simple Summary: Mitochondria, the powerhouse of the cell, exist in the range of 100 s–1000 s of
copies in almost every cell in the body, each with their own mitochondrial DNA, called mtDNA.
When the healthy operation of a significant proportion of these mitochondria is disrupted, it can
lead to dysfunction and by extension disease. One source of dysfunction arises due to mutations in
the mtDNA, resulting in individual cells harbouring multiple versions of mtDNA—a “standard”
wild type and a variant—a state called heteroplasmy. Heteroplasmy is a state that can arise either
through inheritance or by mutations that occur through life, resulting in a new mitochondrial allele
within a cell. The proportion of mitochondria that have a wild type and that have a variant allele
differs between individuals, tissues within an individual, and even cells within a tissue. Historically,
heteroplasmy has mainly been studied with bulk sequencing technologies, which miss variation
within a tissue. The cellular variation in heteroplasmy throughout the body and its implications for
pathology is not fully understood. In this review article we outline recent developments in scRNA-seq
and scATAC-seq techniques which allow researchers to discover the extent of this cellular variation
and further uncover the role heteroplasmy plays in disease at the cellular level.

Abstract: Next-generation sequencing technologies have revolutionised the study of biological
systems by enabling the examination of a broad range of tissues. Its application to single-cell
genomics has generated a dynamic and evolving field with a vast amount of research highlighting
heterogeneity in transcriptional, genetic and epigenomic state between cells. However, compared
to these aspects of cellular heterogeneity, relatively little has been gleaned from single-cell datasets
regarding cellular mitochondrial heterogeneity. Single-cell sequencing techniques can provide
coverage of the mitochondrial genome which allows researchers to probe heteroplasmies at the level
of the single cell, and observe interactions with cellular function. In this review, we give an overview
of two popular single-cell modalities—single-cell RNA sequencing and single-cell ATAC sequencing—
whose throughput and widespread usage offers researchers the chance to probe heteroplasmy
combined with cell state in detailed resolution across thousands of cells. After summarising these
technologies in the context of mitochondrial research, we give an overview of recent methods
which have used these approaches for discovering mitochondrial heterogeneity. We conclude by
highlighting current limitations of these approaches and open problems for future consideration.

Keywords: scRNA-seq; scATAC-seq; mitochondria; heteroplasmy; heterogeneity

1. Introduction

Mitochondria play a central role in most human cell types, and by extension, ensuring
their healthy function is critical. When such mitochondrial function is perturbed, sub-
stantial pathology can ensue, resulting in debilitating mitochondrial diseases [1]. Unlike
other organelles found in animal cells, mitochondria possess their own DNA, referred to as
mtDNA, which exists as 100 s to 1000 s of copies per cell. Individual humans universally
possess a mixture of mitochondrial genomes, a state referred to as heteroplasmy [2]. The
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precise allele fraction of this mixture at any given locus can vary from no heteroplasmy, 0%,
all the way up to 100%, termed homoplasmy, in which a mutant variant has taken over the
population of mtDNA. The state of heteroplasmy can originate through inheritance down
the maternal line or via somatic mutations that occur during development or later in life.
Originally, mitochondrial mutations were hypothesised to have arisen due the exposure of
mtDNA to large amounts of reactive oxygen species. However, the pattern of mutations is
more consistent with errors that take place during replication [3]. Numerous diseases, as
well as aspects of ageing, have been linked with mitochondrial mutations and the extent to
which these mutations are pathological can greatly depend on their heteroplasmy [4,5].

The level of heteroplasmy is heterogeneous at the population, individual, tissue,
and cellular level [6,7]. Whilst some studies focus on specific mitochondrial mutations
which are pathological or have been associated with mitochondrial diseases [8,9], the
focus of the current review is on methods which discover mutations with high throughput
to uncover deeper heterogeneity. Next-generation sequencing (NGS) has been a key
technology for investigating many aspects of heteroplasmy. However, many early studies
were conducted using bulk sequencing techniques, which entail homogenising cells from
a tissue, placing an inherent limit on the resolution of these approaches and preventing
analysis of cellular variation [2,10]. In recent years, single-cell omics approaches have
revolutionised biological research, enabling levels of granularity that were previously
not possible, with several recent studies making use of these technologies to study the
heterogeneity of heteroplasmy within a tissue. To give one example, lineage tracing is the
process of identifying a cell’s progeny and grouping the descendent cells together through
the use of a labelling strategy. Lineage tracing has applications in fields including stem cell
biology for understanding cell fate decisions, and in cancer biology to infer how tumour
heterogeneity arises with implications for treatment resistance [11]. A body of recent
work has demonstrated that mitochondrial mutations are projected down cell lineages,
and that this can be observed using single-cell data, making the mitochondrial genome
an effective in vivo barcode. Beyond lineage tracing, researchers should in principle be
able to obtain vital mitochondrial features at the single cell level: both the presence of
mutations, and the heteroplasmy of those mutations. Single-cell approaches are further
advantageous in that observed mutations can be cross-validated in other cells to protect
against sequencing error. However, they also offer the prospect of detecting mutations
which would be unobservable in homogenised mixtures, which would be expected of
some somatic mutations [12]. Together with features of cell state, this data would facilitate
research in understanding the mechanisms by which the accumulation of heteroplasmy
leads to pathology.

In this review, we begin by reporting what methodological progress has been made in
exploring aspects of the mitochondrial genome in single cell data thus far, what its limita-
tions are, and what the future scope is for using this data to further explore heterogeneity
in heteroplasmy at the single cell level. A particular emphasis will be placed on scRNA-seq
and scATAC-seq, two of the most popular single-cell techniques currently in use with
the capability of obtaining information about cell state as well as mitochondrial genotype.
Though we provide a succinct overview of scRNA-seq and scATAC-seq to contextualise
the discussion with regards to mitochondrial DNA, we direct readers to the numerous
excellent reviews covering the experimental and computational methods associated with
these protocols [13–16].

2. Background on Single-Cell Omics

Single-cell data is omics data derived from individual cells [17]. These techniques
encompass single-cell RNA sequencing, epigenomics, immune profiling, copy number
variation, and proteomics, among others. Additionally these techniques can be combined
to obtain two or more sets of features from the same cells, referred to as multi-omics [18].
Prior to the development of high-throughput single-cell techniques, most studies were
conducted in bulk analyses, where numerous cells were homogenised and processed at
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once. Whilst such analyses have yielded useful insights [10], they are inherently unable to
detect heterogeneity at the single cell level meaning cellular states relevant to pathology
went unobserved. The breakthrough of single-cell RNA sequencing changed this. The
original inception of scRNA-seq was confined to studying five cells, though recent de-
velopments have greatly expanded throughput by several orders of magnitude [19,20].
This has been enabled through the use of innovations which simplified and automated
isolation of cells, as well as intelligent strategies for barcoding individual RNA molecules
from different cells, enabling multiplexed sequencing of RNA from numerous cells at
once [21]. This development has resulted in massively parallel, commercially available
techniques such as those offered by 10× genomics, which can allow for >100,000 s of cells
to have their transcriptomes sequenced simultaneously in a single experiment [20]. Other
single-cell omics are following suit with developments in obtaining high-throughput [22].
By leveraging these recent technological breakthroughs, large consortia such as the Human
Cell Atlas and LifeTime aim to use sequences from 1,000,000 s of cells to further understand
human pathology at the single cell level [23,24].

The granularity combined with the scale of these techniques has had a major impact
an many areas of biology, such as immunology where scRNA-seq has been used to help
define cellular states, observe heterogeneity in genomic sequences of cells derived from the
same donor, and single-cell immune profiling can be used to measure TCR sequences to
perform lineage tracing and measure TCR repertoires [25]. A similar impact has been made
in tumour research where single-cell techniques have been used to probe heterogeneity
throughout the tumour micro environment, and to perform lineage tracing of sub-clonal
populations within the tumour [26,27]. In contrast to these areas of biology, the use of
single-cell omics data to probe single-cell mitochondrial heterogeneity and how it interacts
with cellular phenotype remains relatively underdeveloped, even though they can provide
coverage of the mitochondrial genome [28].

3. Sequencing Protocols & mtDNA

For researchers interested in discovering heterogeneity in mitochondrial heteroplasmy
with single-cell data, two primary tasks must be performed—(1) identify real mitochondrial
mutations and (2) accurately assess the heteroplasmy of these mutations. This is achievable
as single-cell sequencing data obtains sequences derived from the mitochondrial genome
in individual cells. We focus on two popular modalities for obtaining such sequences,
scRNA-seq and scATAC-seq, due to their wide availability and because of their potential
to combine observations of cell state with mitochondrial genotype. Though RNA does not
measure heteroplasmy directly, heteroplasmy in DNA should broadly be reflected in RNA
sequences. Additionally, RNA modifications in mitochondrial genes could be another axis
of variation which could be phenotypically relevant within single cells [29]. The primary
purpose of these two distinct approaches is to quantify gene expression and find accessible
regions of the genome to quantify DNA regulation respectively. RNA sequences from
scRNA-seq and DNA sequences for scATAC-seq enable the discovery of mitochondrial
heteroplasmy heterogeneity by finding mismatches in these sequences from the reference
genome, termed variant discovery.

A challenge posed by single-cell data, however, is the variation in quality metrics
relevant to achieving these two goals. Due to inconsistent terminology surrounding quality
metrics in the literature, we clarify and standardise our use of language surrounding
the metrics used throughout this review. As is described in more detail below, sequence
data comes in the form of many separate sequences termed as a library with each of the
constituent sequences referred to as a read. Within a library, any given locus on the genome
can typically be represented multiple times in separate reads. Having more sequence reads
at any given position on the genome is desirable as it makes mutation detection more
reliable by protecting against sequencing errors and enables more accurate estimation of
the heteroplasmy of a mutation at a given position. Building on the clear terminology from
Sims et al. (2014) [30], we use the following definitions: Depth of coverage is a property of
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a single site on the genome and is the number of times a base in the reference genome
is covered by a high-quality read; Breadth of coverage is a property of a target sequence
on the genome and is the proportion of bases on the target sequenced to a desired depth
of coverage. The primary target genome is the mtDNA in this article. Moreover, as we
are interested in cellular heterogeneity, we are interested in these quantities per cell. Both
quantities also depend on parameters such as sequencing base quality thresholds, in which
some positions from a read are neglected due to low quality sequencing.

Figure 1 illustrates these definitions with data from two contrasting scRNA-seq data
types, showing the breadth and depth of coverage of the mt-ND1 gene in two human data
sets. Using mt-ND1 as the sequence of interest, Figure 1a figure shows the number of reads
aligned to each position in the gene. 10× data (blue) shows high mean depth of coverage
per cell for positions >4000. For positions less than this, 10× data shows shallow depth of
coverage, and can therefore be described as having narrow breadth of coverage restricted
to the 3′ end of the transcript. Smart-Seq2 data (red) in contrast to this has superior mean
depth of coverage across almost the entire length of mt-ND1 and can therefore be said
to have superior breadth of coverage to 10× sequencing data. The intervals around the
mean emphasise that these definitions are made per cell, with considerable variation in
both depth and breadth of coverage which can be attributable to biological signal, such as
transcriptional variation, as well as technical stochasticity in detection.
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Figure 1. Breadth of coverage and depth of coverage differ between sequencing types. (a) Here, both
meanings of coverage are illustrated for the mt-ND1 gene from two scRNA-seq data types [31,32]. It
can be seen that 10× 3′ data (blue) has a high mean depth of coverage at the 3′ end of the transcript,
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with many sequenced reads aligning to this position. The mean depth of coverage rapidly declines at
bases with positions roughly <4000 moving in the 5′ direction, behaviour typical of 10× 3′ data (see
Section 3.1). 10× data is therefore said to have a narrow breadth of coverage of the mt-ND1 transcript.
Smart-Seq2 (red) in contrast has a higher mean depth of coverage across almost the entire length of
the transcript and can therefore be described as having both high depth and breadth of coverage.
Central 90% quantiles demonstrate the heterogeneity in both coverage measures across cells, with
some cells possessing far less depth of coverage in certain regions, posing a challenge for robustly
identifying mutations across the mitochondrial genome in all cells. (b) Smart-seq2 shows superior
breadth of coverage of the mitochondrial genome at all depth thresholds. This difference reflects the
3′ bias of 10× scRNA sequencing data, limiting its breadth of coverage at modest depth thresholds,
where Smart-Seq2 maintains much more stable breadth of coverage up to high depth thresholds.
Both methodologies, however, show reductions in the proportion of cells attaining large breadth of
coverage as depth thresholds increase.

Figure 1b shows how the breadth of coverage per cell declines across the whole
mitochondrial genome as the demand for depth of coverage increases. Almost every base
in the mitochondrial genome is covered by at least a low number of reads in some cells. 10×
data shows a rapid decline in the breadth of coverage as the depth threshold is increased,
whilst Smart-seq2 data shows greater stability.

3.1. scRNA-seq

RNA sequencing has been around in excess of a decade, and is now ubiquitous in
biological research. In this technique, RNA is extracted from a biological tissue, comple-
mentary cDNA is synthesised by reverse transcription, then PCR amplified, resulting in
what is referred to as a library of cDNA reads. This library is then sequenced on a high-
throughput sequencer. Many variations of this basic procedure exist, and more have arisen
since the emergence of single cell RNA sequencing (scRNA-seq). Instead of aggregating
and homogenizing many cells from a tissue together, scRNA-seq is capable of capturing,
amplifying, sequencing, and then quantifying reads of individual cells separately, allowing
for the the expression of each gene to be quantified on a per cell basis. The transcript counts
per cell for each cell in a sample is typically then compiled into an array of data referred to
as the expression matrix which is then used for downstream analysis [16].

scRNA seq protocols can be divided into two distinct categories, full-length transcrip-
tomics, and 3′/5′ transcriptomics approaches based on what length of the RNA transcript is
captured and sequenced, each with its own advantages and drawbacks.

3.1.1. Full-Length Transcriptomics

Full-length protocols sequence the entire length of a transcript. There are two typical
approaches to full-length transcriptomics. One method, followed by popular approaches
such as the Smart-Seq2 protocol [33], is to fragment a library of full-length cDNAs into
shorter molecules and followed by short-read sequencing on a short-read Illumina se-
quencer. Another approach is to use long-read sequencing on a platform such as Oxford
Nanopore or Pacific Biosciences. Long-read-length sequencing is advantageous in that
the full sequence of a gene’s RNA is obtained, which is particularly useful for detecting
variants across the length of a gene. The primary drawback of direct long-read proto-
cols is that they are low throughput and costly to perform [13]. This is because cells are
typically placed into separate wells on a plate and sequenced separately, bounding their
throughput. Additionally, the long-read length sequencers offered by Oxford Nanopore
or Pacific Biosciences suffer from higher error rates than short-read Illumina sequencers,
posing problems for analysis at the single nucleotide level as would be done to investigate
mitochondrial heteroplasmy [34]. The ability to sequence the entire length of transcripts,
however, is attractive as it has the potential for discovering variants across most of the
mitochondrial genome at a cellular level.
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3.1.2. 3′ and 5′ Droplet-Based Transcriptomics

Alternatives to standard full-length approaches are 3′and 5′ methods in which reads
are reverse transcribed from the 3′ or 5′ end of a transcript. These approaches do not
make use of fragmentation in the same manner as Smart-seq2, thereby resulting in only
one cDNA molecule per transcript prior to PCR. In contrast to full-length approaches,
3′ and 5′ protocols have been able to achieve immense throughput, and high accuracy,
being sequenced on an Illumina sequencer. This has largely been achieved by microfluidics
technologies which capture single cells in oil droplets containing cellular barcodes which
are attached to each read. This barcoding protocol allows reads from many separate cells
to be pooled together (referred to as multiplexing), PCR amplified and then sequenced,
improving throughput. Reads can then be de-multiplexed by using software that exploits
the pre-appended barcodes identifying each cell. In other words, intelligent barcoding
strategies for cell identification enable massive scaling up of throughput. Such an approach
is routinely used by three of the most popular scRNA sequencing platforms—inDrop,
Drop-seq, and 10× chromium—and can be easily used to sequence 100,000 s of cells in a
single experiment [20,35,36]. Additionally short-read technologies enable the use of unique
molecular identifiers.

3.1.3. Unique Molecular Identifiers

In protocols using unique molecular identifiers (UMIs), each indvidual cDNA read
has a random nucleotide sequence attached during the reverse transcription process, with
such random nucleotide sequences being referred to as UMIs. Each resulting cDNA
molecule therefore has both a cell barcode and a unique molecular identifier attached.
Attachment takes place during the first step of library preparation, and importantly, before
PCR amplification. cDNA libraries undergo multiple rounds of PCR amplification, resulting
in multiple copies of every original molecule from the cell, and has been shown to result in
PCR bias, in which some molecules are amplified more than others [37]. This is significant
for researchers who wish to estimate the proportion of sequence molecules (RNA or
otherwise) carrying a certain variant as it is possible that variation induced by PCR could be
a source of noise in the resulting values of variant allele fractions. This could be particularly
relevant for mitochondrial researchers, for whom accurate heteroplasmy measurements
are important. By allowing groups of PCR amplified reads to be grouped together based
on their UMI, reads can be de-duplicated to enable robust estimation of the original
number of transcripts from each gene, and is the basis of the output from tools like
STARSolo and CellRanger which give a UMI counts based expression matrix to quantify
gene expression [38]. Non-UMI approaches rely on read counts without any correction [39].
Though the use of UMIs to form robust counts has been addressed by software tools for
sequence counting such as UMI-tools [40], the ability to form a consensus read sequence
based on all the copies of a molecule remains nascent, with numerous computationally
intensive approaches having been suggested, but few used broadly.

Such UMI approaches are typically limited to short-read sequencing, in which only
positions within 100 s of bases of the 3′ or 5′ end of a transcript are covered, whilst
full-length approaches have typically been missing UMIs. Smart-Seq2 like approaches
prevent UMI usage due to the fragmentation step which would require linking every
fragment to the source UMI, something which remains challenging. Direct full-length
sequencing approaches using Oxford Nanopore or PacBio also inhibit this approach due
to the high error rate of long-read sequencers (nearly 50% of UMIs can have at least
one error in these approaches) which inhibits robust UMI grouping as sequence errors
can create spurious UMIs which did not tag any original molecule. Additionally, long-
read sequencers typically obtain fewer reads per UMI than short-read sequencers further
compounding the issue of accurate UMI usage. Efforts are being made to address these
obstacles [41–43]. Smart-seq3 has recently been developed as a full-length UMI protocol,
though it has not yet attained widespread usage [44]. Such problems are not associated
with short-read Illumina sequencers which have a low error rate enabling accurate barcode-
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UMI sequencing. Whilst this is the conventional approach to sequencing libraries prepared
with 10× technologies [20], it does entail fragmenting prepared cDNA reads into two
short sequences—one containing the barcode and UMI sequences, one containing the
genomic sequence—of approximately 100–200 bps, resulting in substantially less breadth
of coverage of the genome than a full-length approach.

3.1.4. Comparing Full-Length and 3′/5′ for Mitochondrial Heterogeneity Discovery

We can understand the quality of these two approaches for discovering mitochondrial
heterogeneity by using data from Smart-Seq2 and 10× Chromium platforms as exem-
plars [31,32]. Figure 2 shows the depth of coverage across the mitochondrial genome on a
per cell level for each of these approaches. Smart-Seq2 displays consistently high depth
of coverage across the mitochondrial genome. In comparison, 10× data shows far lower
breadth of coverage with consistent enhancements in depth of coverage near the 3′ end
of each gene. Whilst this non-uniform depth of coverage might prevent identification
of variants across the mitochondrial genome variants should be consistently identifiable
within close proximity to the 3′ end.
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Figure 2. Sequencing protocols demonstrate a high degree of variation in both depth and breadth of coverage they attain
across the mitochondrial genome. (a) Full-length Smart-Seq2 data [32] demonstrates broadly uniform coverage across
transcript lengths. 10× 3′ protocols achieve a far higher throughput of cells, than full-length approaches. (b) However,
10× 3′ data [31] has a poorer breadth of coverage of the mitochondrial genome due to reads preferentially capturing the 3′

poly A tails of transcripts. This results in the pronounced depth of coverage which can be observed in the 3′ end of each gene.
High throughput combined with consistent 3′ coverage could enable 3′ data to facilitate the discovery of mitochondrial
heterogeneity. Such coverage plots can be generated by counting the reads aligned to each position in the mitochondrial
genome in each individual cell.

We summarise the trade-off between popular full-length sequencing protocols and
those which use 3′/5′ droplet-based approaches as follows: full-length approaches typically
maintain a superior breadth of coverage, but lack UMIs and can have a higher sequenc-
ing error rate when used in conjunction with long-read sequencing. In contrast, 3′/5′

droplet-based approaches incorporate UMIs into their analysis, meaning that biases and
errors arising from PCR can in principle be ameliorated, and sampled transcripts can be
accurately counted. Cells sequenced with these 3′/5′ library approaches, however, show
great heterogeneity in precisely which bases attain a sufficiently high depth of coverage for
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accurate variant calling in any given cell. Furthermore, the breadth of coverage of 3′/5′

droplet-based approaches is circumscribed, with high depth of coverage localised around
the corresponding transcript end due to the end bias of these approaches, leaving a lot of
the genome with insufficient depth of coverage to inspect heteroplasmy [45]. Comparing
variants across different cells using such approaches should be possible, but requires care
to account for coverage variation.

3.2. scATAC-seq

Single-Cell Assay for Transposase Accessible Chromatin using sequencing (scATAC-
seq) is another popular technique capable of obtaining sequence data from individual cells.
Briefly, scATAC profiling methods make use of a hyperactive transposase Tn5 which binds
preferentially to regions of accessible chromatin with the simultaneous ligation of adapters
to the ends of the associated DNA molecules which can then be PCR amplified [15]. Regions
of the genome which have accessible chromatin will then typically tend to have greater
coverage than other areas of the genome. These differences in coverage can then be used to
perform peak calling in which regions which have a far larger number of aligned reads than
background are then used to infer the presence of accessible regions [15]. These accessible
regions are associated with cis-regulatory elements which play a key role in transcriptional
regulation, which scATAC-seq therefore measures.

The use of cellular barcoding strategies has enabled the development of high-throughput
droplet methodologies similar to those used for RNA sequencing, and there are also com-
mercially available platforms such as those offered by BioRad and 10× Genomics [22,46].
Unlike scRNA-approaches, UMI methodologies are not as mature and are not as widely
used. scATAC UMI-based approaches are, however, being developed to mitigate amplifica-
tion biases. Standard approaches de-duplicate reads based on the start positions of where
reads align to the genome are established [47]. However, this can induce further biases.
By making use of UMIs, one study was able to quantify how many Tn5 insertions may
independently occur at the same position [48]. This showed that up to 20% of the reads
discarded based on their alignment positions, a standard method step in many protocols,
were done so erroneously and actually arose due to independent Tn5 insertion events. As
de-duplication alters the counts of reads which carry variants or not, this approach could
bias heteroplasmy estimates.

In early ATAC-seq approaches mitochondrial reads accounted for an overwhelming
proportion of aligned reads. This is because nuclear DNA regions only come in 2 copies
in any cell, whilst mtDNA comes in 1000 s of copies, and each mtDNA is accessible as
they are not bound up in a nucleosome. Consequently, a lot of the signal from the nuclear
DNA was considered to be drowned by the “noise” of mtDNA reads, and efforts were
taken to suppress the coverage of the mtDNA in these sequencing approaches. More
recent high-throughput single-cell protocols for ATAC sequencing typically have reduced
mitochondrial content as these protocols isolate individual nuclei, discarding the rest of
the cell [22]. Despite this, these approaches still offer the potential to probe mitochondrial
heterogeneity as mitochondria have been closely associated with the peri-nuclear sheath,
meaning total isolation is unlikely to occur [49].

4. Heteroplasmy in Single-Cell Data

In this section we review previous work that has been undertaken to probe mitochon-
drial heteroplasmy in single-cell data. This centres on the work of three previous papers,
one that analysed conventional scRNA sequencing protocols to perform lineage tracing,
and two that developed new protocols to gain greater insight into the mitochondrial
variants at the single cell level.

Whilst some studies have investigated mitochondria in single cells their throughput
has been limited, e.g., [50]. Others studies seek to inspect mutants known to be pathogenic,
or have required producing clonal populations of cell’s [8,51]. The focus of the current
article is on approaches which offer both high throughput and scope for discovering
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previously unobserved heteroplasmy from in vivo samples. Each of the following papers
focuses on using mitochondria for lineage tracing, and all demonstrate how mitochondrial
heterogeneity in both the mutations found and their range of heteroplasmies can be
discovered using these techniques.

4.1. Mitochondrial Heterogeneity with scRNA-seq and scATAC-seq

In vivo lineage tracing using single cells conventionally relied upon the detection of
nuclear somatic variants. By performing variant calling in scRNA-seq and scATAC-seq data,
Ludwig et al. (2019) showed that mitochondrial sequences could in certain circumstances
be used as natural genetic barcodes for tracing cellular lineages [52]. The authors argue
that mitochondrial sequences are short enough to allow for cost-effective sequencing, yet
are long enough to harbour numerous mutations. As such, mitochondrial sequences offer
enough genetic diversity to serve as an effective barcode that can differentiate between
cellular lineages. Grouping cells by the mitochondrial mutations that are shared between
them should enable the inference of lineage.

They compare the percentage (i.e., breadth of coverage) of the mitochondrial genome,
attaining different levels of depth of coverage for a range of single-cell RNA sequencing
techniques. Short-read, 3′ approaches show considerably less of the mitochondrial genome
being sequenced at any given level of depth of coverage, as would be intuitively expected
(see Section 3.1.4). Smart-seq2 has the greatest breadth of coverage at any fixed level of
depth compared to the other approaches they analysed. By using a scATAC-seq derived
from whole cells, rather than nuclei, using an earlier approach [53] they show that this
modality gives uniform depth and breadth of read coverage across the mitochondrial
genome, making it a suitable candidate for obtaining reliable heteroplasmy data from
single-cell data.

Interestingly, the authors also present a comparison between the heteroplasmies
observed in joint WGS and scRNA seq data from single cells. For the variants found in
both datasets there appears to be a high level of agreement, demonstrating the utility of
scRNA sequencing approaches to indirectly discover mutations in the mtDNA as well
as their heteroplasmy. However, there are some variants which appear to be specific to
the RNA modality. The authors claim and that some of these are attributable to RNA
editing, and transcription errors. However, some of the low-heteroplasmy RNA variants
are likely attributable to errors in RNA sequencing arising from some combination of
reverse transcription errors—a step which is absent for WGS data—and errors occurring
during early PCR, highlighting sources of false positive variants in scRNA data. High-
heteroplasmy RNA variants are unlikely to be due to these systemic errors as the chance of
reverse transcription errors, PCR artifacts, or sequencing errors independently producing
errors at the same position in numerous reads, as would be required for an observed high
heteroplasmy, is unlikely to occur by chance. High heteroplasmy variants are therefore
more robust to multiple sources of error.

In vitro, the authors performed variant calling across cells from 64 different erythroid
and myeloid colonies, profiling between 8 and 16 cells in each colony. The donor and
colony of origin was known, enabling a supervised analysis to be performed. Variants
observed at near homoplasmy were capable of separating cells into their donor of origin as
well as singling out individual colonies. It was observed that unique clonal mutations were
found in many of the colonies, at a range of heteroplasmies capable of differentiating many
of the colonies. They made similar observations using an scATAC-seq dataset published
by Buenrostro et al. [53]. Both insights demonstrate how heteroplasmic mutations are
propagated through colonies. Using publicly available T-cell, Smart-Seq2 [33] scRNA-seq
data and TCR-seq data [54,55], Ludwig et al. were also able to demonstrate similar findings
in vivo. Grouping T-cells by their TCR receptor allowed for a similar supervised analysis
to take place, in which mitochondrial mutations were shared among cells sharing TCR
sequences. Some mtDNA mutations were capable of further refining the clusters identified
by identifying sub-populations within TCR groups, whilst some mtDNA mutations were
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shared across TCR groups, suggesting a common ancestor before V(D)J recombination
took place.

In addition, by using somatic mitochondrial mutations first identified in bulk RNA-seq
Ludwig et al. further elucidate clustering of cells derived from colorectal adenocarcinoma
primary tumors when using scRNA-seq to further resolve which cells did and did not pos-
sess these mutations, highlighting the ability of mtDNA mutations to elaborate intratumoral
clonal heterogeneity. By using publicly available chronic myelogenous leukemia scRNA-
seq dataset [56], tsne clusters based on mitochondrial genotypes as features showed nearly
perfect separation of cells into their originating donors. Finally, analysis was performed
of 10× chromium 3′ using the PBMC data in the original 10× chromium publication [20].
These PBMCs were taken from a recipient before and after transplantation of HSCs. Two
homoplasmic mutations were observed to distinguish the donor and recipient, and post
transplant PBMCs from the recipient were found to be overwhelmingly derived from the
donor, demonstrating the potential of 3′ approaches to detect heterogeneity in spite of
their narrow breadth of coverage. These observations highlight the potential for finding
biological insight regarding heterogeneity in heteroplasmy at the cellular level through the
use of single-cell data.

4.2. EMBLEM

Epigenome and Mitochondrial Barcode of Lineage from Endogenous Mutations (EM-
BLEM), which focuses on single-cell ATAC sequencing to perform lineage tracing using
mitochondrial variants, was a strategy presented by Xu et al. [57]. Just as lineage tracing
in scRNA seq allows users to get cellular lineage information and cell state informa-
tion from the same cells, EMBLEM aims to let users obtain epigenomic state alongside
clonal genotypes.

As noted by the authors, observing a mutation at x% heteroplasmy in bulk could
arise due to x% of cells harbouring that mutation at homoplasmy or all cells separately
harbouring that mutation at x%, as well as other combinations between these extremes.
Inspecting the variant allele fraction of different mutations in single cells using scATAC-seq,
Xu et al. saw that different mutations occupying different positions along this spectrum with
some mutations being present in many cells at low heteroplasmy, whilst other mutations
are found at high heteroplasmies in single cells.

By sequencing LSC and blast cell populations Xu et al. showed that they shared mito-
chondrial mutations at similar variant allele fractions. This is coherent with the established
hierarchical lineages in which LSCs give rise to blast cells and should therefore be expected
to share mitochondrial mutations [58]. Taking a sample from a single patient they found
several cells that shared the same four mutations, with subsets of these mutations contained
in many other cells. Combining this observation with the fact that all cells are derived from
the same progenitor cell and should therefore share the same mutations, the authors aimed
to quantify the proportion of cells a mutation would be observed in as function of mito-
chondrial read depth. Mutations with moderate ∼20% heteroplasmies could be detected
in ∼90% of cells with only 20 reads covering the position of that mutation. Conversely,
when a mutation has heteroplasmy <1%, more than 100 read depth can be required to
obtain a detection rate exceeding 90%, reflecting the need for greater sampling to detect
low heteroplasmy variants. Moreover, without deep sampling, such low-heteroplasmy
mutations would be challenging to distinguish from sequencing error.

These observations highlight the level of confidence which mitochondrial variants can
be called with accuracy, showing that near homoplasmic variants can be called robustly and
discovered even when read depth is low at a position. This has implications for detecting
mtDNA mutations in other sequencing types, such as 10× 3′, where depth of coverage
at different bases of the mitochondrial genome is heterogeneous both between cells and
across the genome due to the variability of 10× coverage at the cellular level (see Figure 2b).
In such sequencing types, high-heteroplasmy mutations should be observable in regions



Biology 2021, 10, 503 11 of 20

with low depth of coverage away from transcript ends, whilst regions of the genome with
high depth of coverage should be able to discover mutations with low heteroplasmy.

4.3. mtscATAC-seq

Building on the earlier work by Ludwig et al. (2019) [52], a new scATAC-seq protocol
was developed by Lareau et al. (2021) to perform mitochondrial genotyping in single
cells [59]. Ludwig et al. (2019) showed the limited breadth of coverage of the mitochondrial
genome in high-throughput 3′ sequencing assays such as Drop-seq. They show similar
shortcomings for the massively parallel and massively popular 10× chromium system
when compared to a full-length, low-throughput assay like Smart-Seq2 [52]. In order to
capture the best of both of these approaches, that is to say, a high-throughput approach
with uniform coverage of the mitochondrial genome, Lareau developed mitochondrial
single-cell assay for transposase-accessible chromatin with sequencing (mtscATAC-seq).
As mentioned previously, most scATAC protocols have been developed to work with single
nuclei, which depletes the mitochondrial coverage. By modifying scATAC-seq, the authors
develop an assay that works with whole cells.

This protocol is a modification of the scATAC-seq system offered by 10× genomics. Usu-
ally this uses pooled nuclei before adding the Tn5 enzyme. Instead of this, Lareau et al. use
“mild lysis” of whole cells in combination with fixation. This enables cells to take up the Tn5
enzyme whilst preventing the leakage and cross contamination of mitochondria between
between cells in suspension. After masking NUMTs (see Section 5.6 below) they find that
their approach shows remarkable uniformity across the mitochondrial genome, with residual
coverage variation reflecting stochasticity in PCR and Tn5 insertion variability. They show
that their approach leads to an approximately 20-fold increase in the mean depth of coverage
of the mtDNA genome compared to the original protocol achieving an mean read depth of
191 across the mitochondrial genome, across cells. In general, their method aimed to have
approximately 20 reads after PCR duplicate removal.

One of the key features of this work is the development of Mitochondrial Genome
Analysis Toolkit (mgatk). In contrast to some variant callers which have aimed at geno-
typing single cells, mgatk aims to analyse clonal mutations. Taking the .bam file output
fromCellRanger, mgatk produces a matrix of de-duplicated per-cell, per-strand count of
all alleles at all positions in the genome. Here, de-duplication groups all reads sharing a
starting position and the read with the highest mean base quality is then used as a repre-
sentative read. This de-duplication procedure should enhance heteroplasmy estimation by
counteracting PCR amplification biases. ATAC-seq obtains reads from both the forward
and reverse DNA strands. For each mutation, mgatk measures the correlation between the
allele counts on both strands across the dataset of cells and is termed strand concordance
which helps to protect against photobleaching effects (see Section 5.2). Only mutations with
a high strand concordance and variance mean ratio in their heteroplasmies are retained
for further analysis. mgatk then counts all cells where the variant was detected on both
strands in at least two reads. Lineage variants are considered as high confidence for lineage
tracing if the variant is detected in five or more cells.

Using this variant calling approach, Lareau et al. were able to observe mitochondrial
heterogeneity in a range of phenomena including identification of clonal subgroups using
mitochondrial mutations in TF1 cells, refine clonal substructure in PBMCs and measure
an association between cell’s chromatin profiles and their clonal sub-grouping, thereby
linking genotype and phenotype. Additionally, observations were made of the level of
heteroplasmy ranging from 0 to 100% in the 8344A>G mitochondrial mutation among cells
from an individual suffering from the chronic mitochondrial disease, myclonic epilepsy
with red ragged fibers (MERRF) [60,61], which this mutation is associated with. In adjacent
work by Walker et al. (2020), the mtscATAC and mgatk protocol was applied to PBMCs
from 3 patients suffering from mitochondrial encephalomyopathy with lactic acidosis and
stroke-like episodes (MELAS), commonly associated with the A3243G mutation [9]. Of all
the cell types present, T-cells consistently had this mutation at lowest heteroplasmy across
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all 3 donors, showing how single-cell approaches can discover mitochondrial heterogeneity
among different cell types. These examples highlight the potential of high-throughput
approaches to discover mitochondrial heterogeneity.

4.4. MAESTER

A recent pre-print by Miller et al. [62] develops a high-throughput scRNA-seq ap-
proach. As previously discussed, Smart-seq2 is able to offer far superior breadth of coverage
to the 10× 3′ platforms, making it superior for discovering variants that can be used for lin-
eage tracing, yet is limited by its throughput. The authors present Mitochondrial Alteration
Enrichment from Single-cell Transcriptomes to Establish Relatedness (MAESTER), which
seeks to address this by enriching full-length mitochondrial cDNA which is produced in an
intermediate step by platforms like 10× but are usually only sequenced to partial length.
Complementing this is the Mitochondrial Alteration Enrichment and Genome Analysis
Toolkit (maegatk), an extension of mgatk. This exploits UMIs more extensively than previ-
ous approaches. By grouping all reads sharing the same UMI together, maegatk creates
a consensus read by using the most common nucleotide at every position in conjunction
with the base’s quality. This should ultimately protect against sequencing and PCR errors
as well enhancing the accuracy of heteroplasmy estimates.

Though early in its development, MAESTER offers the exciting potential to discover
mitochondrial variants across a high proportion of the mitochondiral genome, along with
accurate heteroplasmy estimates combined with transcriptional cell state.

5. Future Directions and Open Problems in Assessing Heteroplasmy at the Single
Cell Level

Having explored recent developments using single cells to explore mitochondrial
heterogeneity, we now provide a survey of challenges, limitations, and open problems in
these approaches.

5.1. PCR and Heteroplasmy

As we have noted throughout this review, heteroplasmy at the single cell level is a
key axis of variation, with potential implications for cell state. As such, obtaining accurate
estimations of heteroplasmy is important to be able to fully understand this. A simple
approach to quantify heteroplasmy for each cell is to go through each position in the
mitochondrial genome, count the number of reads which display an alternative allele at
that position, and divide this by the total number of reads at that position [52,63]. This
simple approach has proved effective. However, as sequencing reads are the result of
PCR, the heteroplasmy of input biological molecules could be distorted by variation in the
degree of amplification of different input molecules.

Approaches to address this amplification bias have used de-duplication of reads, in
which all PCR duplicates are grouped together and one read is picked to represent those
reads. mgatk does this by using GATK’s picard tools [47] to group reads by their starting
position, as it is thought that reads derived from different biological molecules are unlikely
to share a starting position by chance. Among reads sharing this starting position, the
one with the highest mean base quality is chosen as a representative. Recent work has,
however, shown that different reads all derived from the same starting biological molecule
may not share the identical starting position due to PCR stutter (see Sena et al. (2018)
for more details [64]). Grouping reads by their starting position could therefore also bias
heteroplasmy quantification.

Building on mgatk, a recent pre-print by Miller et al. (2021) developed the Mitochon-
drial Alteration Enrichment and Genome Analysis Toolkit (maegatk) [62]. This toolkit is
designed to work with UMI data by grouping all reads sharing the same UMI together and
forming a consensus call at every position along the transcript. This approach should both
mitigate sequencing errors and help identify accurately the heteroplasmic proportions of
input cells.
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5.2. Photobleaching and Strand Concordance

Intuitively, mitochondrial mutations are present on both DNA strands and should be
present at comparable levels in DNA-based sequencing data. Lareau et al. suggest that
strand concordance breaks down due to a technical confound which recurrently generates
sequencing errors in certain regions of the mtDNA genome on one DNA strand due to
the effect of surrounding G’s on successive cycles, a form of sequencing bias [59,65]. The
complementary strand would instead having surrounding Cs. This bias is therefore re-
flected and corrected by observing strand concordance, a measure of agreement between
the heteroplasmy observed on both strands of a sequence across cells in a dataset. Mu-
tations with concordance below the threshold are then discarded to protect against the
photobleaching effect.

As a default, mgatk uses these statistics of variants found across multiple cells to
identify likely sub-clonal variants. Lareau et al. note that this approach is valid not only
for mtscATAC, but also full-length scRNA-seq approaches such as Smart-Seq2 in which
the strandedness of RNA transcripts is lost during double stranded cDNA synthesis [33].
Therefore observing stand concordance should still counteract photobleaching in these
approaches. In reanalysing some of the data from their previous study [52], they in fact
show that one variant which they had previously identified actually demonstrated strand
discordance, only being present in one strand. However, they do show that a strong degree
of overlap between the variants that they called using their old approach and with mgatk
factoring in strand concordance and VMR, suggesting that variants may still be called with
some degree of accuracy without factoring in strand concordance given other rigerous
quality control thresholds.

As 3′ approaches retain the complementary strandedness of the original transcript
molecule, strand concordance cannot be calculated, thus the authors state that mgatk is
unsuitable for identifying high-quality lineage variants in this datatype. The software
does, however, still offer the option of genotyping single cells obtained from droplet-based
UMI sequencing approaches. In conjunction with suitable quality control thresholds, this
approach could yield heterogeneity at the per cell level regardless of the ability to measure
strand concordance in 3′ data. This underscores the technical considerations that have
to be factored into answering any research question that may arise from variant calling
scRNA-seq data.

5.3. Mitochondrial Cellular Transfer

It has been observed that mitochondrial transfer between cells is a common phe-
nomenon, occurring in multiple contexts [66–68]. Such observations potentially undermine
the use of, endogenous mitochondrial mutations as in vivo barcodes for cellular lineage
tracing. Xu et al. applied EMBLEM to scATAC-seq data from a previous experiment which
entailed the mixing of human and mouse T-cells [69]. They found that species-specific
mtDNA and nuclear DNA always paired appropriately to the correct species. This, they
argue, demonstrates that inter-cellular mtDNA transfer does not occur universally between
cells. However, it remains unclear the extent to which non-observations of mitochondrial
transfer between T-cells of different species generalises to eliminate mitochondrial transfer
as a potential confounder for lineage tracing studies in other contexts.

Simulations by Ludwig et al. suggest that rates of intercellular transfer between cells
would need to be high in order to for the transferred mutations to confound the analysis,
as variant calls are typically done at a level to exclude low heteroplasmy variants [52].
Furthermore, the success of these lineage tracing approaches in a supervised context is
also suggestive of the limited extent of mitochondrial transfer in some settings. However,
more work needs to be done to conclusively eliminate mitochondrial transfer as a potential
source of error in lineage tracing studies in other tissues.



Biology 2021, 10, 503 14 of 20

5.4. Ambient RNA in Droplet-Based Approaches

Droplet-based approaches to single-cell data entail pooling cells together in a single
suspension [20]. Cells are then separated into their separate droplets. Standard subsequent
analyses assume that all reads in a droplet originate from a single cell. Common violations
of this assumption are empty droplets, in which no cell is found and doublets in which
two cells made it into the same droplet. Popular alignment tools such as STARSolo
and CellRanger have approaches for identifying likely empty droplets and software is
being developed to handle doublets [70,71]. A less well known violation of the standard
assumption is ambient RNA, which is cell free RNA in the original cell suspension which
can accompany individual cells into their droplets. Such ambient RNA could arise from
other cells that were lysed or damaged within the suspension. Tools have been developed
to correct the expression matrix in light of such observations [72,73]. Species mixing data
suggests that 1–2% of observed transcripts within a cell could in fact be ambient RNA.
This suggests a technical limit on attempts to elucidate clonal substructure of tissues by
using low heteroplasmy variant calls, which could mistake ambient RNA shared in the
suspension for a clonal variant.

5.5. Mitochondrial Gene Expression Proportion Quality Control

In the analysis of single-cell expression data, best practice recommendations include
a quality control step to filter cells based upon the proportion of mitochondrial reads or
trancsripts they have [16]. Both the tutorials for Seurat and scanpy, two popular single-cell
analysis software packages, use a 5% threshold as a default [74,75]. This originated as
a standard procedure for distinguishing low-quality cells from high-quality cells, where
it was observed that broken cells with a loss of cytoplasmic content were observed to
have a much higher proportion of mitochondrial reads than obviously intact cells [76].
Whilst claiming to be robust across cell types, such observations were predicated on T-cells,
dendritic cells, and mouse embryonic stem cells. Bulk studies of the much more energy
intensive tissue of the heart have found mitochondrial read proportions in excess of 30%
of all reads, with considerable heterogeneity found across tissue types [77]. Moreover,
a systematic study of single-cell data comparing mouse and human data suggests that
different thresholds might be appropriate for different species and tissues [78]. Therefore
researchers should take care to adjust their thresholds according to the subject of their study.

Whilst establishing reliable quality control thresholds might be challenging, they pose
another problem for researchers interested in exploring the heterogeneity of heteroplasmy
in single cells. Beyond lysis, another rationale for the removal of cells with high mito-
chondrial count proportions is the removal of potentially stressed or pre-apoptotic cells, as
retaining such cells would result in clustering cells by their stress state, which researchers
are commonly uninterested in [79]. As such, they are often removed from the analysis by
default. However, mitochondrial mutations [80], as well as mitochondrial proliferation
and copy number [81–83] have been associated with apoptosis. When paired with mito-
chondrial threshold effects [4] it is plausible that the default processing of scRNA-seq data,
which removes highly stressed cells, might systematically bias the conclusions researchers
draw about the impact of mitochondrial heterogeneity on cell state. The assumptions
underlying such a quality control process are not fully explicated in standard tutorials,
and the extent to which the standard approach to these analyses might be a source of
confounding is not well understood.

5.6. NUMTs and Heteroplasmy

Nuclear sequences of mitochondrial origin (NUMT) are sequences found within
the nuclear genome which have a homologous relationship and therefore high sequence
similarity to sequences of the mitochondrial genome. NUMT sequences can be found
in humans as well as other species [84,85]. Such sequence similarity poses a problem
for short-read sequencing experiments in which aligners map reads to positions of the
genome based on sequence similarity and can results in false positive and false negative
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variants being called. False negatives can arise due to mtDNA reads being mapped to
the NUMT positions in the nuclear genome, and false positives can arise due to NUMT
reads being mapped to the nuclear genome. Such effects have the potential to confound
inferred variant allele frequencies, skewing the heteroplasmy estimates of single cells.
Computational study has shown these misalignments result in erroneous loss of coverage
for the mitochondrial genome for reads derived from the mitochondrial reference genome
in silico, and more severe loss of coverage can result when reads harbour variants that
differ from the reference sequence. Some variants are even capable of completely removing
all alignment from the mitochondrial genome [86]. By causing mutated reads to align
to homologs in the nuclear genome, a greater proportion of wild type reads align to the
mitochondrial genome, thereby reducing the measured heteroplasmy. Low heteroplasmy
variants may simply go unobserved as a result. For more details regarding this, we highly
recommend Maude et al. (2019) [86].

The degree to which NUMTs confound mitochondrial heteroplasmy analysis will
vary between modalities and approaches to library preparation. In their ATAC study,
Lareau et al. addressed the issue of NUMTs by masking nuclear genomic regions which in
silico mitochondrial derived reads mapped to. As a result all relevant reads would map to
the mitochondrial genome. The high copy number of mtDNA in each cell relative to nuclear
sequences should result in a low error rate of NUMTs being assigned to the mitochondrial
genome. Others have found that by aligning exclusively to the mitochondrial genome
scRNA achieves superior breadth coverage of the mitochodnrial genome in mice, which
possess NUMTs that affect 6 mtDNA genes [63].

5.7. High-Throughput Droplet Data

High-throughput droplet-based approaches to single-cell sequencing are the dominant
modality with 10× chromium being one of the leading methods of library preparation
available. Such short-read approaches are biased with reads being sequenced from the 3′

or 5′ end of a transcript preventing consistent full mitochondrial coverage per cell. Recent
work, however, has shown that in spite of this end bias, 10× 3′ and 5′ libraries have low
levels of coverage up to 10 Kbp from the 3′ and 5′ ends of the transcripts respectively [87].
Under certain circumstances, these regions could allow for high heteroplasmy variants to
be called as they have a high detection rate even at low depth of coverage, and are less
likely to be confused with errors. Whilst such coverage would be heterogeneous on per
cell level, the large throughput of these techniques implies that even if a small proportion
of cells within a dataset yield coverage at points far from the transcript end, enough cells
covering identical regions could still enable discovery of heterogeneity. Regardless of this,
high-throughput approaches yield consistent coverage near transcript ends, which should
enable reliable variant detection in those regions of the genome.

6. Conclusions

Studying heteroplasmy at the granular level of the single cell has important applica-
tions from lineage tracing cells in clonal populations to potentially assessing the patho-
logical impact of such mutations on gene expression. Here, we surveyed several recent
approaches in the literature and their application. Subsequently, we highlighted several
technical limitations of current technology, both in terms of experimental approach such
as read depth, ambient RNA and end bias, and potential software induced errors linked
to quality control filters and NUMTs. Whilst such technical issues can confound analyses,
biological heterogeneity can and has been detected with such approaches. As sequencing
technology advances, finer levels of granularity will be observable, and more robustly.
However, given the volume of data already published covering many different tissue types
and the successful explorations of mitochondrial variation using these approaches, we
believe that current data could be further leveraged to explore mitochondrial heterogeneity
at the level of the single cell.
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Glossary
3′/5′ Transcriptomics Approaches to transcriptomics that synthesise cDNA from the 3′ or

alternatively the 5′ of a transcript. These approaches typically possess
greater depth of coverage within 150 bp of the respective ends of
the transcript.

Breadth of coverage The proportion of bases in a target genome that attained a certain
depth of coverage threshold. The breadth of coverage is therefore
depth threshold dependent.

CellRanger A software platform offered by 10× genomics to process data output
from their broad range of protocols.

De-duplication Input cDNA from many single cell platforms undergoes PCR
amplification to enable the small amount of RNA from individual cells
to be read on next-generation sequencing platforms. De-duplication is
the process by which reads derived from the same starting cDNA
molecule are grouped together, and a representative read is chosen.
This quantifies how many molecules were present prior to PCR and
counteracts PCR amplification bias.

Depth of coverage The number of reads from a sequencing experiment that align to a
particular base in the genome. This can be in bulk or broken down
per cell.

Full-length
transcriptomics

Approaches to transcriptomics that obtain sequence data covering the
entire length of a transcript. For instance, the Smart-Seq2 platform.

Long-read sequencing Sequencing on machines capable of obtaining sequences from reads in
excess of 1000 Kbp. This includes machines offered by Oxford
Nanopore and Pacific Biosciences.

mgatk Mitochondrial Genome Analysis Toolkit. A computational tool
developed to obtain high-quality variants from mtscATAC-seq data for
lineage tracing.

mtscATAC-seq Mitochondrial single-cell assay for transposase-accessible chromatin
with sequencing. A high-throughput approach for genotyping
mitochondria and obtaining chromatin accessibility in single cells.

Multiplexing In high-throughput single-cell approaches, reads are barcoded with a
nucleotide sequence to identify which cell they come from. This
enables reads from many cells to be pooled together on the same
flowcell during sequencing, thereby increasing throughput. This
pooling is termed multiplexing.

NUMT Nuclear DNA of mitochondrial origin. These homologous sequences
can result in errors of heteroplasmy quantification when using
short-read sequences.

PCR stutter A technical error occurring during PCR, typically near short tandem
repeats, resulting in base pairs randomly being skipped during PCR.
This results in reads derived from the same transcript having different
starting alignment positions.
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scATAC-seq Single-cell Assay for Transposase Accessible Chromatin using
sequencing. A single-cell omics approach for obtaining chromatin
accessible regions of the genome, an epigenomic cell state.

scRNA-seq Single-cell RNA sequencing. A single-cell omics approach for obtaining
transcriptional state.

Short-read sequencing Sequencing on machines that are typically capable of sequencing reads
approximately 150–300 bp in length. Illumina short-read sequencers
are a common platform used for this approach.

TCR T-cell receptors are proteins used by T-cells for detecting antigens from
foreign bodies. Many different TCRs are used by the immune system to
detect a broad range of potential pathogens. Roughly 1015 possible
TCR sequences exist, of which only 1011 will be found in an individual
human, making it unlikely that two identical TCR sequences will
emerge independently in the same person. TCR sequences can
therefore be used to lineage trace T-Cells as any two cells sharing this
sequence will likely be derived from a common ancestor.

Variant Positions where sequenced reads differ from a reference genome. This
is used to infer the presence of mutations.

V(D)J Recombination The process by which different TCR sequences are produced during
thymic maturation.
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