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A number of studies have shown that the microbial communities of the human
body are integral for the maintenance of human health. Advances in next-generation
sequencing have enabled rapid and large-scale quantification of the composition of
microbial communities in health and disease. Microorganisms mediate diverse host
responses including metabolic pathways and immune responses. Using a system
biology approach to further understand the underlying alterations of the microbiota in
physiological and pathological states can help reveal potential novel therapeutic and
diagnostic interventions within the field of synthetic biology. Tools such as biosensors,
memory arrays, and engineered bacteria can rewire the microbiome environment. In
this article, we review the computational tools used to study microbiome communities
and the current limitations of these methods. We evaluate how genome-scale metabolic
models (GEMs) can advance our understanding of the microbe–microbe and microbe–
host interactions. Moreover, we present how synergies between these system biology
approaches and synthetic biology can be harnessed in human microbiome studies to
improve future therapeutics and diagnostics and highlight important knowledge gaps
for future research in these rapidly evolving fields.

Keywords: microbiome, synthetic biology, systems biology, microbioime engineering, microbiome therapies

INTRODUCTION

The human microbiota consist of microorganisms, including bacteria, viruses, and fungi, that live
in and on the human body (Ursell et al., 2012; Figure 1A). The composition of these microbial
communities varies with body site (Ma et al., 2018) and can be influenced by several factors
such as age, diet, drugs, and sex (Hollister et al., 2014; Figure 1B). The human microbiota play
various roles in physiological functions including development of the immune system (Mezouar
et al., 2018), drug metabolism (Nichols et al., 2019), nutrient degradation, protection against
pathogens, and vitamin production (Rowland et al., 2018). Moreover, studies have shown that
alterations of the homeostatic balance of gut microbial communities (dysbiosis) can be associated
with disease including infectious diseases (e.g., Clostridium difficile; Bien et al., 2013), metabolic
diseases (Karlsson et al., 2013; Bouter et al., 2017), and inflammatory bowel disease (Tamboli, 2004;
Figures 1C,D).
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FIGURE 1 | Microbiota is involved in normal host physiology and can be a contributing cause to many diseases. Microbial communities are present at different body
sites in the human body (A). An individual’s microbiota can be influenced by several internal and external factors such as age diet, genetics, and medication (B).
When the homeostatic balance of the community is disrupted, a dysbiosis can occur leading to altered or new exchanged metabolites, pathways, or mechanisms
(C). A persistent change in symbiotic and dysbiotic microbial communities can have a preventive or promotor role in the development of several diseases (D). With
the help of synthetic biology, the host equilibrium can be restored with effective therapeutics such as engineering microbes to detect external signal and integrating
these inputs to deliver therapeutics. Phage therapy relies on recognizing a target bacterial species engineered by phage particles so that specific species with certain
genes can be eliminated. Administrated targeted probiotics and prebiotics can stimulate the growth of certain bacterial species in which a community can be
restored. Quorum sensing involves cell-to-cell communication mediated by diffusible signal molecules and can be used for development of personalized and
translational medicine. Synthetic biology can add to the field of systems biology by developing effective treatment and diagnostic strategies (E). Synergies of
systems biology and synthetic biology in human microbiome studies are vital for a better understanding of microbial communities in health and disease (F).

Microbial communities are dynamic, and members of the
community fluctuate over time resulting in changes in overall
microbial diversity (Figure 1D). Understanding and controlling
microbial communities can help maintain health and treat
disease by restoring host–microbiota homeostasis. There are
complex interactions between the microbiome and host as well
as microbe–microbe interactions and therefore, a systems-level
approach is needed to better understand these interactions and
describe the microbiome changes underlying mechanisms of

health and disease. Systems biology approaches aim to describe
complex cellular and/or tissue interactions by implementing
biological networks and using mathematical models (Breitling,
2010). Moreover, the modeling of biological networks can
function as a tool for the integration and exploration of
multi-omics data to create a more holistic understanding of
microbial communities. Integration of our current knowledge
of systems biology methods with the field of synthetic biology
provides an approach to manipulate and design microbial
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systems in which human health and treatment of disease can be
improved (Figure 1E).

Synthetic biology is a field that uses engineering strategies,
including computational models for biological investigation.
An emergent area of synthetic biology is engineering and
controlling microbial communities (Serrano, 2007; McCarty
and Ledesma-Amaro, 2019). This can be done with genetic
tools by creating synthetic microbial communities, those where
species are developed or modified and introduced in the human
microbiome (Habibi et al., 2012). For instance, bacterial strains
can be designed to improve a certain pathway leading to
increased production or consumption of certain metabolites
leading to a specific function (Roell et al., 2019). This can act
as a delivery system at a specific microbial community in the
human microbiome. An exemplary previous study has shown
that genetic circuits can reprogram the identity of cells in order
to treat diabetes (Duan et al., 2015). Overall, this demonstrates
the potential applications of synthetic biology in medicine and
how it may deliver therapeutics (Figure 1F).

In this review, we will discuss the range of multi-omics
data types and computational methods that are used in human
microbiome research. We highlight possible outcomes for
integrating synthetic biology and systems biology in health and
disease applications. Finally, we discuss whether it is possible to
integrate both fields in human microbiome studies.

TECHNOLOGIES USED TO STUDY THE
HUMAN MICROBIOME

Microbiome research has benefited from recent advances
in sequencing techniques and computational tools. There
are different computational approaches used to study the
microbial species of the human microbiome, to understand the
microbial community composition and functions to unravel
potential interactions. These methods include metagenomics,
metatranscriptomics, metaproteomics, metabolomics, and
single-cell omics. These individual methods alone provide limited
mechanistic insight. However, combining these techniques with
modeling approaches can help in elucidating interactions and
predicting the behavior of the microbial community. Each omics
technique has advantages and limitations when applied to study
microbial communities (Figure 2).

Metagenomics
A method commonly used to study microbiome composition is
amplicon sequencing (also known as 16s rRNA sequencing). In
this method, the DNA is extracted and a specific region of the
16S rRNA gene is amplified and sequenced, and the generated
sequences are identified using a reference database (De Oliveira
Martins et al., 2020). This method allows for the identification of
a specific organism at different taxonomic level (Johnson et al.,
2019) and the functional profiles of bacterial communities can
be predicted by using different bioinformatic pipelines such as
Tax4fun, PICRUSt2, and Vikodak (Aßhauer et al., 2015; Nagpal
et al., 2016; Douglas et al., 2020). It is generally fast, cost-effective,
and an appropriate tool to characterize unculturable bacterium.

Although 16s rRNA sequencing is a powerful tool to study
microbiome communities, there are limitations. For instance,
this method has a limited taxonomic coverage and can identify
bacteria and archaea but not viruses and fungi. In most cases,
bacteria can only be identified at genus level due to the high
similarity between 16s rRNA genes from closely related species
(Osman et al., 2018).

Using amplicon sequencing has revealed the diverse character
of the microbiome and advanced our understanding of its role
in health and disease in multiple body sites (Grice et al., 2009;
Guerrero-Preston et al., 2016). In addition, microbiome studies
have shown that microbial profiles have little individuality at
species level but high individual specificity on strain level (Oh
et al., 2016; Abu-Ali et al., 2018). Hence, community profiling
at a finer resolution is needed for a better understanding of the
bacteria within a community.

Another technique used to study microbial communities
is shotgun metagenomics. Shotgun metagenomics can reveal
the compositional and functional information of the microbial
communities. This technique analyzes abundance of microbial
species and provides insights in the functional profile of the
community (Cheng et al., 2019). Metagenomics studies have
highlighted differences in composition of the microbiome and
provide evidence that a dysbiosis in microbial communities play a
role in the pathogenesis for diseases. For instance, several studies
have shown that the strains of E. coli and Ruminococcus gnavus
have been associated with inflammatory bowel disease (Joossens
et al., 2011; Fang et al., 2018).

The general approach of shotgun metagenomics starts with
fragmentation of DNA resulting in many short reads which
are reconstructed into a consensus sequence and aligned to
a reference genome to identify specific genes and functions
(Lavezzo et al., 2016). An advantage of this method is that it
allows for the detection of low abundant species of microbial
communities (Truong et al., 2017). This method identifies
the sequences of all organisms such as fungi and viruses,
which cannot be detected by other sequencing methods. Novel
organisms can be identified from a community in comparison
with traditional culture-based techniques in which microbial
organisms were isolated and individually studied (Qin et al.,
2010). Despite the benefits of metagenomics, there are still
several challenges associated with this method. Data obtained
with metagenomics is often complex and large due to its
multivariate structure making informatic analysis difficult. New
software tools have been developed to analyze this complex
metagenomics data, for example, MicrobiomeAnalyst. This
tool enables researchers to perform numerous tasks such as
metabolomic network visualization, community and functional
profiling, and statistical analysis. Besides, MicrobiomeAnalyst
and other tools like Metaviz and PUMA are statistical analysis
and visualization tools that improve metagenomics data analysis
(Dhariwal et al., 2017; Mitchell et al., 2018; Wagner et al., 2018).

Despite extensive culturing and sequencing, the microbial
reference genome remains undefined and there is a need for
well-characterized collection of reference genomes. Hence, a
culture-independent and reference-free approach is possible
by using a metagenome-assembled genome binning method
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FIGURE 2 | Advantages and limitations of omic technologies used in microbiome research. The different omic techniques allow for the measurement of different
features (the genome, transcriptome, proteome, and metabolome) within a biological sample. After data generation, the data are processed and analyzed using
bioinformatic approaches.

(MAG). This is a computational approach in which sequence
reads are assembled into contigs which are then binned into
metagenome assembled genomes (MAGs) based on sequence
coverage and tetranucleotide frequency. This method enables
new insights into species and functions within uncharacterized
bacterial communities (Almeida et al., 2019; Nayfach et al., 2019).
However, there is still the issue of the incompleteness of the
MAGs (Frioux et al., 2020).

Metatranscriptomics
The functional profile of microbial communities can be
explored with metatranscriptomics. This technique provides
information about which genes are expressed in a specific
microbial environment. Metatranscriptomics in combination
with metagenomics data, which provides the information

for gene and species abundances, enables characterization
of microbial transcription. Therefore, an in-depth functional
profile of a microbe can be acquired such as active metabolic
pathways in different contexts (Franzosa et al., 2014; Bikel
et al., 2015). A longitudinal metatranscriptomics study of IBD
patients showed that the expression of two specific organisms
was the reason for the expression of a certain pathway at
different time points, which correlated with disease severity
(Schirmer et al., 2018).

A typical workflow of metatranscriptomics consists of
extraction of cellular RNA and conversion of it to cDNA
for preparation of a sequencing library. Then, the obtained
sequence reads will be mapped against a reference genome.
This strategy is limited by the information present in the
database of the reference genome (Shakya et al., 2019). Another
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strategy is de novo assembly of the reads into transcript contigs
(assembled reads). The drawback of this method is that it is
limited by the ability of software programs to correctly assemble
the contigs from the short reads (Hrdlickova et al., 2017).
Metatranscriptomics can detect at strain-level resolution, is less
susceptible to amplification biases, and precise quantification of
the activity of the organisms can be obtained (Marcelino et al.,
2019). However, metatranscriptomics has its own challenges
including the need to obtain sufficient and high-quality RNA.
Another limitation is that the presence of mRNA is not
always an indication for the presence of protein or protein
activity (Guimaraes et al., 2014). Host RNA contamination
can occur, depending on the sample, and can be problematic
as it complicates downstream data analysis. Also, reporting
species-specific gene expression within microbial communities
requires a large amount of data (e.g., reads) as it is necessary
to consider species abundances within the community (Abram,
2015; Marcelino et al., 2019; Chung et al., 2020).

While metatranscriptomics microbiome analysis holds
promise in enhancing our understanding of the microbial
communities, several challenges need to be overcome. Using a
standard for RNA isolation, and sequence analysis can provide
better integration of metatranscriptomics for microbiome
research. As such, metatranscriptomics enables better elucidation
of functional alterations of the microbiome in a given context and
provides information of when a healthy microbiome converts
toward a disease-driven configuration.

Metaproteomics
Metaproteomics aims to study the whole microbial community
by measuring the expressed collective proteins. This proteomic
profiling method provides a direct measurement of the functional
state of the microbial community. Metaproteomics analysis
not only provides information about the function of microbial
communities but also about the community dynamics and
structure (Wilmes and Bond, 2006). Cellular proteins carry
out most functions such as transport, catalysis of biochemical
reactions, and maintenance of cell structure. These functions
provide a picture of the cell phenotype at the molecular level.
This understanding can give us a stable picture of microbial
community function. Metaproteomic research has revealed
remarkable discoveries on the activity and functional pathways
of microbial communities. For instance, a metaproteomic
study applied to IBD revealed that different protein modules
at the mucosal-luminal interface are found between healthy
subjects and IBD patients (Li et al., 2016). In general, a
metaproteomic approach consists of extraction followed by
purification of the protein. Proteins are digested (either
chemically or enzymatically) into peptides which are then
separated using a technique named liquid chromatography (LC)
before mass spectrometry (MS). To identify the proteins, the
experimental mass spectra are compared with theoretical mass
spectra from a protein database (Hettich et al., 2013). The main
advantage of this technique is the identification of proteins
and the assignment to taxa providing a better understanding
of host physiology. There are some challenges associated with
this technique. For example, there are many peptides which are

common to most bacterial species and therefore indistinguishable
from each other which might result in false positives. Fortunately,
in recent years, new software has been developed to handle the
requirements of complex mass spectrometry data and reduced
the rate of false identifications (Heyer et al., 2017). A drawback
is that the interaction between function and taxonomy is difficult
to analyze (Easterly et al., 2019). Identifying proteins from a
complex microbial community composed of thousands of species
is difficult due to the absence of complete genomic sequences of
poorly characterized or uncultivated species. Overall, a complete
database containing the collection of all known protein sequences
is essential to identify the proteins of microbiome samples.

Metabolomics
A method that gives a snapshot of the physiology of the cells is
metabolomics. This method studies the substrates and products
of metabolism and as such provides a functional readout of the
cellular state (Fiehn, 2002). Metabolites are exchanged between
several species in the microbial community and host, and play
key roles in biology as signaling molecules, energy sources, and
metabolic intermediates. Hence, the metabolome is the most
direct indicator of health or dysbiosis of a specific body niche,
making metabolomics a promising method for personalized
medicine (Jacob et al., 2019).

Metabolomics experiments can take a targeted or untargeted
approach. In targeted metabolomics, the identified metabolites
are compared with a reference database of known metabolites. As
the standard reference database for many metabolites is lacking,
this can limit the number of compounds that can be detected
(Cao et al., 2020). Moreover, many metabolites are similar across
species making it difficult to discern the biological source in a
study (Roberts et al., 2012). The untargeted approach, however,
tends to find as many metabolites as possible and may not
precisely quantify, in absolute terms, all measurable metabolites
but may provide a relative quantification. It is therefore a
powerful technique but there may be a bias present toward the
most abundant metabolites (Schrimpe-Rutledge et al., 2016).

A general workflow for metabolomics starts with collection
of a sample from which metabolites are extracted. Sample
collection method and storage conditions play important roles in
metabolomics and can lead to biases in the results. This has been
reviewed previously in several articles (Deda et al., 2015; Chen
et al., 2016). After sample collection and metabolite extraction,
the metabolites are quantified with an analytical technique
such as mass spectrometry (MS) or nuclear magnetic resonance
(NMR) (Chen et al., 2019). These analytical techniques have their
own advantages and disadvantages in regards to quantifying and
identifying intracellular and extracellular metabolites and have
been reviewed in more detail elsewhere (Aretz and Meierhofer,
2016). For instance, MS is a highly sensitive method and has
a wide dynamic range to detect and quantify hundreds of
metabolites in a single measurement. One limitation of this
technique is its poor performance in analyzing large samples and
non-volatile metabolites (e.g., alcohols, aldehydes, and ketones)
greater than 700 amu (Rowan, 2011; Theodoridis et al., 2012).
On the other hand, NMR is widely used for metabolomics
as this platform is easily quantifiable and requires little to no
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chromatographic separation. In addition, this method requires
minimal sample preparation. However, it has low analytical
sensitivity (Emwas et al., 2019).

Metabolomics has been used in many human microbiome
studies to investigate key metabolites and biological networks
associated with host–microbiota interactions as it profiles the
metabolites found in biofluids. For instance, a study by Gawron
et al. (2019) used saliva to understand the pathological changes
occurring in the oral cavity during the transition from health to
chronic periodontitis and reported a change in eight metabolites.
This study demonstrated that metabolomics can give insights in
the metabolic status of the oral cavity in chronic periodontitis
(Gawron et al., 2019). Urine has been used to study the
dysbiosis that occurs in IBD. Williams et al. (2009) showed that
a metabolite named hippurate had low levels in the urine of
patients suffering from IBD which is interesting as hippurate
levels have been shown to correlate with the presence of Clostridia
in the gut. A recent large fecal metabolomics population study
demonstrated that the fecal metabolome can be influenced
by host phenotypes (i.e., age, sex, and obesity), gut microbial
composition, and host genetic influences. This demonstrates the
strong association between metabolic output and gut microbial
structure (Zierer et al., 2018). Another study investigated the
associations between the blood metabolome and gut microbial α-
diversity (sample diversity) and found that 40 plasma metabolites
could be used to predict gut microbiome diversity and that
specific metabolites (e.g., TMAO) were also related to human
health (Wilmanski et al., 2019).

Single-Cell Omics
While meta-omics approaches have aided in the insight of host–
microbiota interactions, they have not provided information at
the level of the single microbial cell. Single-cell analysis aims
to study the cell-to-cell variation within a population of cells;
hence, providing insight into cell function and intercellular
heterogeneity (Dhawan, 2019). To perform single cell analysis,
individual cells are isolated using methods such as flow activated
cell sorting (FACS), microfluidics, or serial dilution (Zeb et al.,
2019). Remarkable advances in the field of single-cell analysis
and in particular single-cell genomics and transcriptomics (sc-
RNAseq) have been made. However, profiling the single-cell
proteome and metabolome are in their infancy due to high
diversity and large dynamic range of the cellular proteome and
metabolome. In addition, there is a difficulty in the amplification
step and single-cell data requires simultaneous profiling of large
number of individual cells to overcome the noise in the data
(Zenobi, 2013; Streets et al., 2014; Lin et al., 2019). Single
cell nucleic acid analysis (DNA or RNA) have been used in
microbiome studies (Xu and Zhao, 2018). The advantage of
single cell analysis is that it allows low abundance species,
which may not be detected by metagenomic sequencing, to
be identified. In addition, the function of individual microbes
within a community can be studied (Zenobi, 2013; Streets
et al., 2014; Tolonen and Xavier, 2017). A limitation is
that cell-sorting is time consuming. Amplification biases and
environmental contamination is frequently observed during
single cell sequencing (Lasken and McLean, 2014). The technical

aspects of many single-cell omics approaches are available in
other reviews (Gawad et al., 2016; Svensson et al., 2018). Single
cell sequencing has been used in intestinal microbiome research
and has led to novel findings such as the identification of specific
gut microbial cells which use host-derived compounds and
the quantification of taxon abundances of the gut microbiome
(Berry et al., 2013; Props et al., 2017). A review of the
current applications of single-cell omics in model organisms
and in humans as well as the potential it has to improve
diagnosis and treatment is available in an excellent article by
Strzelecka et al. (2018).

INTEGRATION OF MULTI-OMICS DATA
FOR HUMAN MICROBIOME RESEARCH

In the previous sections of this review, we have described
approaches for understanding microbial diversity and microbial
community composition, activity, and functionality. These
omics technologies provide different ways to study microbial
communities, but currently there is not a single approach that
provides a complete picture of the complex interaction of
these communities. Integrating multiple omic tools and analyses
are needed for a deeper understanding of the members of a
microbial community.

The main challenge is integration of multi-omics data
to elucidate the complex interactions in the microbial
community, host and environment, and also reveal the
underlying mechanisms of the microbiome in a holistic way.
There are various bioinformatic pipelines available for processing
microbiome omics data. More in-depth information on which
bioinformatic pipeline to use for different experimental designs
of microbiome study is extensively reviewed elsewhere (Aguiar-
Pulido et al., 2016; Heyer et al., 2017; D’Argenio, 2018). Each
stage of a microbiome study from experimental design to data
analysis can impact the results and biological interpretation.
Hence, standardization is necessary at the data-analysis stage and
will bring consistency and comparability to the microbiome field.

An example of an integrative multi-omics study was carried
out by Heintz-Buschart et al. (2016), who characterized
microbiome functions in patients with familial type 1 diabetes
using different omics techniques. This study underpins the
importance of integrating multi-omics analysis for host–
microbiome interaction studies (Heintz-Buschart et al., 2016).
Another study by Price also highlights the importance of meta-
omics analysis. In their study, they showed how a complex
set of metabolites can disrupt the microbiome and trigger
inflammatory reactions during flares of inflammatory bowel
disease (Lloyd-Price et al., 2019).

Systems biology, with its holistic view, can offer an integrative
platform to link the multi-omics data and elucidate the complex
interactions between the different components. This field
combines experimental and computational methods observed
in multi-omics data (metagenomics, metatranscriptomics,
metaproteomics, and metabolomics) to identify the molecular
mechanisms that occur within complex networks, representative
of biological systems (Pinu et al., 2019). The main goal of
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systems biology is to study the complexity of biological networks
by understanding the cellular and/or tissue interactions at a
systems level, using mathematical models representing existing
connection within a cell/and or tissue.

As large-scale omics data become more accessible, the
integration of this data remains challenging due to the multiple
types of data processing. Each individual omics discipline (e.g.,
genomics, transcriptomics, proteomics, and metabolomics) uses
specific analytic tools and experiment designs, which makes
it difficult to undertake comparisons or integrate the multiple
omics datasets. Assuming that the data of the individual omics
techniques are of high quality and well validated, different
platforms can be used to integrate the data. Recently, Misra et al.
(2018) reviewed different tools, databases, and approaches to
integrate multi-omics data. For instance, the method ortholog
two-way projection to latent structures (O2PLS) can be used to
combine multiple sets of omics data, by reducing the feature
space and without the need for a priori biological information
(Löfstedt and Trygg, 2011). This method has been used, for
example, in an asthma study in which data matrices from
transcriptomics and metabolomics were combined with other
assays (Reinke et al., 2018). Web-based platforms such as
3Omics and MetaboAnalyst enable the integration of different
omics data and generate inter-omics correlation networks which
aid data visualization (Kuo et al., 2013; Chong et al., 2018).
Another approach for multi-omics data integration is with
mathematical modeling.

GENOME-SCALE METABOLIC MODELS
FOR PREDICTION OF FUNCTION FOR
HUMAN MICROBIOME

Systems modeling is based on a well-defined understanding
of the system (e.g., transcriptomics or metabolomics) that
is being studied so that new experimental findings can
be compared against the predicted models. For instance,
the COBRA (Constraint-Based Reconstruction and Analysis)
toolbox contains a function that integrates modeling of
experimental molecular systems biology data and enables the
prediction of, for instance, phenotypic properties at a genome
scale (Heirendt et al., 2007). Mathematical models in biology
are a useful platform for either the integration of omics data
for new discoveries or to perform simulations to generate new
hypotheses (Dahal et al., 2020). There are different types of
mathematical modeling approaches such as differential equation
models, dynamic models, and constraint-based stoichiometric
models which provide insights into the functioning of the
microbiome (Zomorrodi and Segrè, 2016).

Among the modeling approaches, genome-scale metabolic
model (GEM) has generated interest in host and microbial
research fields. GEMs incorporate lists of biochemical
information from a target organism that are connected
and encapsulate information on the stoichiometry,
compartmentalization, reaction directionality, and their
associations to genes and proteins. Therefore, these models
can establish gene-protein-reaction links, which make

them applicable to integrate different omics data such as
transcriptomics, proteomics, metabolomics, and fluxomics to
set up a genotype–phenotype (Gu et al., 2019). GEMs can be
applied in constraint-based modeling, through consideration of
specific objective functions such as growth or substrates, using
sets of constraints (Gu et al., 2019). Depending on the type
of constraints and objective function, different optimization
algorithms such as linear programming can be used to determine
the optimum solution. Using these applications, GEMs have
successfully been applied to construct tissue/cell and microbial-
specific models. The reconstruction of GEMs have been reviewed
elsewhere, and the number of reconstructed GEMs increases each
year (Feist et al., 2009; Bordel et al., 2010). The reconstruction of
GEMs for species in a microbial community can be limited by
the lack of availability of a genome for an unculturable microbe
or missing functional annotations. There have been efforts to
generate several models for gut microbes using the existing
available known genome (Magnúsdóttir et al., 2017); however,
still the challenge is the reconstruction of GEMs species without
fully referenced genomes, as using the metagenome assembled
genomes to draft models could result in several gaps or missing
information (Mendoza et al., 2019).

GEMs have been widely implemented in human microbiome
studies to understand the interactions between the host and the
microbiota as well as the effect of the microbiome composition
on host. Diseases such as cancers, obesity, type 2 diabetes,
and non-alcoholic fatty liver disease have been studied using
context-specific GEMS (Shoaie et al., 2013; Ji and Nielsen, 2015;
Mardinoglu et al., 2015; Shubham et al., 2017; Bidkhori et al.,
2018; Rosario et al., 2018). GEMs can be constrained by using
uptake/secretion reactions of metabolites, transcription data,
rate of turnover of molecules through a metabolic pathway,
also known as flux, and the gene expression state (on or
off) based on information of high-throughput data (Bordbar
et al., 2014). These constrains can specify a particular state
or condition in which information of the overall metabolic
capacity of the microbes can be obtained. Multiple GEMS can
be joined together along their extracellular compartments to
build a community model. This community model can be
linked to a “common compartment” mimicking a certain body
niche such as the human gut. This approach can be used to
identify beneficial bacteria for human health and hence be
used for the treatment of disorders that are associated with
the human microbiota. Simulations such as flux variability
analysis can estimate the flux span (minimum or maximum
possible difference) for a specific metabolic exchange reaction of
bacterial strains in a microbial community (Gudmundsson and
Thiele, 2010). Also, pairwise analysis of microbes (can predict
six different interactions: competition, parasitism, amensalism,
neutralism, commensalism, and mutualism) in a community
can be undertaken as well as measuring how the metabolic
relationships change when introduced to different diets (Heinken
et al., 2019). In the human gut microbiota, short-chain fatty
acids (SCFAs) are bacterial metabolites produced in the colon
and have been shown to impact on human health. With the
help of GEMs, it was found which microbes produced specific
SCFAs and that the concentration of SCFAs is low in Crohn’s
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disease (Bauer and Thiele, 2018). Thus, GEMs can give an insight
into altered molecular processes in the development of diseases.
Using GEMs and integrating high-throughput data gives us
insights into microbial communities and is key to understanding
the microbiome. This knowledge can directly or indirectly
contribute (e.g., with biotechnological applications) to changing
the microbiome to benefit the medical industry (Figure 3).

SYNTHETIC BIOLOGY: POTENTIAL
APPLICATION OF DIAGNOSTICS TO
HUMAN MICROBIOME RESEARCH

Early stage diagnostics are essential to detect diseases in the initial
phases, when treatments tend to be more effective. Diagnostic
applications of the microbiome are needed to assess dysbiosis
states or specific diseases. For most diagnostics, a sample from
the patient is obtained (e.g., urine, saliva, feces). This sample
is then studied in a clinical laboratory, providing information
about the health of the patient. Using multi-omics techniques,
applied to the human microbiome, resulted in the discovery of
biomarkers, for example, in periodontal disease and oral cancer
(Yoshizawa et al., 2013). Besides traditional diagnostics, new
diagnostics using synthetic biological systems can be employed to
develop devices that can sense a stimulus in situ and immediately
provide a therapeutic.

Diagnostics can be designed with bacteria engineered with
the capacity to detect a signal with a high sensitivity and to
integrate and respond to that signal with an appropriate output.
These so-called biosensors can be used for example in the
human intestinal tract in which they respond to perturbations
in a dynamic environment. Biosensors generally consist of one
or two component systems, which can respond to molecules
such as cytokines (Zav’yalov et al., 1995), hormones (Clarke
et al., 2006), temperature (Piraner et al., 2017), and metabolites
(Pickard et al., 2014; Figure 4). Previous studies show how
differently designed biosensors can sense environmental signals
and regulate gene expression in ex vivo samples and murine
models (Bonnet et al., 2013; Siuti et al., 2013; Mimee et al.,
2015). Recently, a specific heme-sensitive probiotic biosensor was
designed as a diagnostic tool to monitor gut health and to detect
gastrointestinal bleeding. For this biosensor, two bacteria were
used to sense blood in the extracellular environment and modify
it to produce a bioluminescence output signal. This system was
added in a gut-friendly bacterial strain, which could be ingested
as a pill. This study shows great promise for detecting small
molecules produced in the gut, which are difficult to detect
using traditional diagnostics (Mimee et al., 2018). Another study
by Riglar et al. (2017) showed how live, engineered bacteria
could colonize the mouse gut for 6 months and monitor an
inflammatory marker (tetrathionate) during the course of the
disease (ulcerative colitis). This study demonstrates how a robust
synthetic memory circuit is suitable for longitudinal studies and
shows great promise in the development of stable engineered
biosensor strains for in vivo studies (Riglar et al., 2017).

Another diagnostic approach to detect diseases is by using
quorum sensing (QS) molecules. This is a mechanism by which

bacteria communicate using extracellular chemical signaling
molecules. QS has been tested in vitro in which bacteria detect
a molecule and respond by producing another compound
such as an antimicrobial peptide (AMP) (Saeidi et al., 2011;
Hwang et al., 2014).

Quorum sensing can be used to control the expression of
engineered functions and to restrict expression to a relevant
body site. For instance, in a study by Swofford et al. (2015), the
authors engineered the species Salmonella enterica to turn on
gene expression in tumors, as there is a high cellular density, and
remained off in other off-target locations such as the liver where
a low bacterial cell density was present. This study shows promise
in using quorum sensing mechanisms to control expression at
a specific site. Also, autoinducer (AI-2) has been shown to be
present in the human gastrointestinal tract and this molecule
is produced by many gut bacterial species, which promote
colonization of Firmicutes over Bacteroidetes and can limit
Vibrio cholerae infections (Hurley and Bassler, 2017). Hence, QS
provides an opportunity to intervene in gut dysbiosis.

SYNTHETIC BIOLOGY: CURRENT AND
POTENTIAL APPLICATION OF
THERAPEUTICS FOR HUMAN
MICROBIOME RESEARCH

The field of synthetic biology provides ways to rebalance
the dysbiosis of the microbiome, therefore preventing the
development or treating diseases. Recent advances in this field
make use of genetically engineered bacteria to deliver targeted
therapies for treatment of diseases such as HIV, inflammatory
bowel disease, diabetes, and cancer (Duan et al., 2015; Gosmann
et al., 2017; Ho et al., 2018; Charbonneau et al., 2020). This
new approach has several advantages in comparison with the
traditional therapeutics (Braat et al., 2006; Lagenaur et al., 2011;
Takiishi et al., 2017; Zheng et al., 2017). First, the production
costs of medication would decrease as the microorganisms will
produce the therapeutic directly in the human body. Second,
reduced side effects are expected as the administration is non-
invasive and the therapeutics are administered locally.

There is a growing interest in microbiome engineering for
shaping the microbiota. Currently, there are several strategies to
manipulate the microbiota which can be classified as additive,
subtractive, or modulatory. An additive therapy entails that
specific strains or communities can be added to the host
microbiota. These strains or communities can be natural or
engineered microorganism. The subtractive therapy refers to a
therapy by which specific strains need to be eliminated or the
production of certain metabolite must be reduced to improve or
cure a disease. A modulatory therapy involves probiotics or/and
prebiotics which modulate the composition of the endogenous
microbiome. This section will discuss how the microbiota can be
altered to treat diseases (Figure 4).

A therapy that has gained lots of attention over the years is
fecal microbiota transplantation (FMT). This method restores
the gut microbiome by transplanting stool from a healthy
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FIGURE 3 | The design-build-test learn cycle (DBTL cycle) for integrating multi-omics data to infer detailed biological insight for designing new diagnostic and
therapeutics for personalized and translational medicine. Different omics datasets can be generated from high-throughput studies and enables the characterization
of cells and/or tissues in health and disease states. A combination of omics is necessary to reveal the complex behavior of cells and/or tissues that are present in
different states. Integrating these high throughput omics data with systems biology methods such as genome-scale metabolic models can lead to more in depth
biological knowledge revealing molecular mechanisms involved in health and disease states. Using synthetic biology, different engineering strategies can be
employed to construct an organism that performs the desired function(s).

donor into the gastrointestinal tract of the disease-associated
microbiome. This transplantation has been successful in patients
with Clostridium difficile infection (Kelly et al., 2014). As FMT
relies on established microbial communities from healthy donors,
a refined approach to transplantation can be obtained with
designing synthetic communities. These synthetic communities
could replicate the same functions as the natural communities
which are present in healthy donors.

The first generation of microbiome therapies consisted of
prebiotics and probiotics. Prebiotics are non-digestible foods that
are degraded by the gut bacteria (Delbès et al., 2018). Most
prebiotics consist of carbohydrates such as fructans, starch, and
oligosaccharides. Fermentation of these prebiotics results in the
production of SCFAs, which can have multiple effects on the
human body (Sasaki et al., 2018). Previous studies show that
diseases such as ulcerative colitis, Crohn’s disease, and IBD

have a significant reduction in butyrate-producing bacteria (Cho
and Blaser, 2012). As prebiotics promote the growth of certain
bacterial species, this growth can be transient and limit the health
benefits. Thus, to observe a significant effect, the prebiotics must
be consumed regularly. Alternatively, probiotics are another way
to alter the microbiota composition (Gibson et al., 2017). These
are live microorganisms found in certain foods or supplements.
Probiotics work by modulating the imbalance that is present
by increasing certain bacterial species which have beneficial
health effects. An example of a probiotic food is yogurt which
contains the bacterial species Streptococcus thermophilus and
Lactobacillus bulgaricus (Ejtahed et al., 2011). Probiotics and their
treatment effects have been studied in an increasing number of
clinical trials (McFarland, 2015). A meta-analysis reported that
probiotic administration had a beneficial role on the metabolic
profile of managing type 2 diabetes patients (Kocsis et al., 2020).
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FIGURE 4 | Potential application of diagnostics and therapeutics for human microbiome research. Top panel shows how synthetic biology enables the design of
biosensors. This biosensor is a molecular module that can sense and process a biological signal which can be read by a diagnostic device. The middle panel shows
different approaches of how the microbiome can be edited by supplementing the communities with certain bacteria that leads to enrichment of bacteria in the
community. Colonization of the microbial community with engineered bacteria can lead to the production of certain compounds. Targeting specific bacterial species
can selectively eliminate deleterious metabolites from the microbiota. The bottom panel show how a genetic circuit can be engineered and incorporated in a vector
that can either diagnose and/or release the therapeutic treatment.

Recently, a review by Dudek-Wicher et al. (2020) described the
influence of probiotics on human health and summarized the
known mechanism of actions of probiotics as well as the clinical
trial results of different diseases. Despite the promising results
about probiotics, they have not shown significance yet in clinical
trials (Dudek-Wicher et al., 2020). This can be due to the gap
in knowledge regarding the mechanisms by which probiotics
modulate various functions. Also, drawing a conclusion based
on used strains of probiotics for a disorder remains difficult
as clinical trials use different doses and formulation (Brüssow,
2019). Other reasons include the difficulty of isolating bacteria
but also due to the genetic differences across individuals (Lampe
et al., 2013). Lastly, many trials deal with methodological
problems or underpowered studies (Brüssow, 2019). However,

understanding the limitations and the mechanisms by which
disease are caused provides ways to design new probiotics which
counteract the limitations. This can be done with engineering
probiotics. For example, probiotics have been engineered so that
bacteria produce chemicals or proteins. Steidler et al. (2000) used
such an approach in which a bacterium produced the human
interleukin-10 to reduce inflammation and reduced the disease
colitis (Steidler et al., 2000).

More recently, the bacterium Escherichia coli Nissle 1917
has been used as a probiotic and engineered to detect the
environmental signal, tetrathionate (molecule produced in the
inflamed gut). This detection resulted into production of a
microcin, capable of inhibiting the organism responsible for the
inflammation (Palmer et al., 2018). Moreover, there are different
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companies that engineered probiotic bacteria for the treatment
of various diseases. Xycrobe has developed an engineered
bacteria able to penetrate the top layer of dead skin enabling
a biotherapeutic to be delivered. With this approach, the skin
microbiome is targeted, and the engineered bacteria are directly
delivered to the target site treating acne (Cully, 2019). Another
company, Osel Inc., focuses on the vaginal microbiome to treat
bacterial vaginosis. They use the species Lactobacillus to maintain
proper vaginal health. Moreover, the lactobacillus strain has
been engineered in a way that inhibitors of HIV are produced
resulting in protection against HIV (Clarke et al., 2006). Although
engineering probiotics seems promising, more research is needed
to use probiotics as a therapeutic agent.

Another attractive therapy to treat or improve dysbiosis is
by using small molecules produced by microbes that modulate
host physiology (Franzosa et al., 2019). Many metabolites serve
as a mean to communicate between host and microbes. Targeting
downstream signaling pathways of the microbiome leading to a
dysregulation or an excess of certain metabolites can be used to
treat certain diseases. For instance, a study by Sharon et al. (2019)
showed how two metabolites named taurine and 5-aminovalerate
were found in the stool from people with autism, and that
when administered to a mouse model of ASD the behavioral
symptoms improved (Sharon et al., 2019). Another literature
study by Descamps et al. (2019) provides an overview of small
molecules that are or can be used to treat microbiome-associated
diseases (Descamps et al., 2019). Metabolite-based therapies are
attractive for multiple reasons. First, they are suitable for different
routes of administrations (Altaf-Ul-Amin et al., 2019). Second,
they are generally stable and have a low toxicity (Smith and
Obach, 2009). Limitations of metabolite-based therapeutics are
the short half-life time and that some metabolites are highly cell-
type specific. Thus, to use metabolites as therapeutics, the full
characterization of different metabolites is needed to understand
their action and their side effects. Currently, different biotech
companies are exploring the use of small molecules and many are
in phase I and II clinical trials to treat dysbiosis (Cully, 2019).

A different application which has gained attention is using
bacteriophages. These small virus-like organisms consist of a
protein capsule around an RNA or DNA genome and can infect
a certain type of bacteria. A bacteriophage can be designed to
target a specific bacterial strain in the microbiome and eliminate
a potential pathogenic strain thus modulating the microbiome.
This approach has the advantage of being target specific. Another
approach is using phages as a delivery mechanism. For instance,
the delivery of heterologous gene networks to target bacteria
can disrupt their structure by expressing certain genes (Clark
and March, 2006). In addition, the DNA editing tool CRISPR-
Cas9 (Hamilton et al., 2019) can be delivered with phages so
that designated strains can be removed. Different companies such
as Eligo Biosciences, Locus Biosciences, and SNIPR-biome use
CRISPR to protect or enhance the microbiome for precision
medicine to treat certain conditions.

Besides phages, another way to alter the microbial community
is with the help of AMPs. These are a diverse group of bioactive
small proteins; key regulators of interaction between microbes
and host. Especially the gastrointestinal tract has been explored

extensively. For example, an E. coli strain has been modified
to overproduce the compound arginine to lower the amount of
blood ammonia from the intestine to correct for rare metabolic
disorders. This engineered strain had no serious adverse events
and is now in clinical trials (Kurtz et al., 2019). Also, E. coli
has been engineered to produce multiple AMPs to specifically
target and kill specific Enterococcus species to decrease murine
colonization (Geldart et al., 2018).

LIMITATIONS OF SYSTEMS AND
SYNTHETIC BIOLOGY AND FUTURE
OPPORTUNITIES

As described previously, synthetic and systems biology offer
very promising opportunities to understand, diagnose, and
treat microbiome-associated disorders. However, they still
have several challenges. One of the major limitations in
microbiome studies is recovering reliable assembled genomes
form metagenomics studies with higher quality draft, therefore
less accurate functional annotations to unravel the microbe’s
specific phenotype. This can hinder the reconstruction of
biological networks for incomplete genomes such as GEMs
within large ecosystems. Advances in technologies such as
culturomics could offer isolation of new strains and generating
new genomes. Culturomics is a high-throughput culture
approach and describes the microbial composition. In this
method, various selective and/or enriched culture conditions
are coupled to MALDI-TOF mass spectrometry and targeted
sequencing (Greub, 2012). However, this technology is laborious,
costly, and time consuming. Moreover, a deeper understanding of
host physiology will make the construction of synthetic biology
tools more reliable, precise, and robust. This will enable us to
design microbial diagnostics and therapeutics to target human
pathologies associated with human microbiome for which there
is still an urgent unmet need.

Merging the fields of synthetic biology and human
microbiome research comes as well with challenges. One
technical issue is that most synthetic biology–based approaches
have been tested in vitro or in murine models, and the
performance within the human body still needs to be proven.
Issues around the stability of some of these approaches, their
half-life in the microbiome, and their colonization of specific
target areas of the body need further development. Another
matter of concern is the use of genetically modified organisms.
In particular, the long-term effect of introducing altered species
into the natural environment of the human body has not been
well studied. In addition, recombinant organisms can transfer
their genetic material to other microorganisms found in the
human microbiome. This process is known as horizontal gene
transfer and can lead to unintentional spread of modified DNA.
However, engineered microbes can be constructed with a kill
switch or with systems to eliminate the heterologous genetic
circuit (Caliando and Voigt, 2015; Chan et al., 2016). This
would limit the long-term colonization of genetically modified
organisms. Microbiome engineering shows promising prospects
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in improving human health. However, its benefits need to be
balanced against the risks. The safety and regulation of using
natural and genetically engineered microbial strains is a widely
discussed topic and the right frameworks need to be constructed
before they can be used as new diagnostics or therapeutics
(Prakash et al., 2011; Wong and Chu, 2013; Lindemann et al.,
2016; Charbonneau et al., 2020).

There has been a great progress in the past decades in
human microbiome research. Advancement in systems biology
contributed to the newfound knowledge on the microbiome. This
knowledge has demonstrated great success for understanding
microbiome associated diseases. However, there is still a
lot about the microbiome that is unknown. Especially, the
dynamics and interactions of microbiomes are largely not
understood. Studying the direct interaction between the host
and microbiome remains a challenge. However, recently,
microfluid systems called organs-on-a-chip were designed to
mimic an organ in vitro. In this study, the human gut
microbiota was co-cultured with intestinal epithelial cells and
local immune cells providing an in vitro model in which
the host–microbiome interactions could be studied (Jalili-
Firoozinezhad et al., 2019). This method shows potential
and opens new opportunities for personalized medicine and
human microbiome studies. Engineering approaches will allow
us to “communicate” with other microorganisms or the host.
Together with omics technologies, this can help to unravel
the microbiome remaining mysteries. In comparison with the
gut, the microbiomes of the skin, oral cavity, genitals, and
airways is in its infancy. Thus, more research needs to be

directed in the aforementioned microbiomes. Synthetic biology
not only provides tools to develop a deeper understanding of
the microbiome but also has shown great promises toward
diagnostics and therapeutics. Challenges of synthetic biology–
based microbiome therapeutics and diagnostics are mostly
associated with the incomplete knowledge of the microbe–
microbe and host–microbe reactions. When this understanding
is improved, it will go hand in hand with enhanced and localized
diagnostics and therapeutics.
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