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ABSTRACT
The main objective of this paper to show the potential of mul-
titemporal Sentinel-1 (S-1) and Sentinel-2 (S-2) for detec-
tion of water hyacinth in Indian wetlands. Water hyacinth
(Pontederia crassipes, also called Eichhornia crassipes) is
one of the most destructive invasive weed species in many
lakes and river systems worldwide, causing significant ad-
verse economic and ecological impacts. We use the expec-
tation maximization (EM) as a benchmark machine learning
algorithm and compare its results with three supervised ma-
chine learning classifiers, Support Vector Machine (SVM),
Random Forest (RF), and k-Nearest Neighbour (kNN), us-
ing both synthetic aperture radar (SAR) and optical data to
distinguish between clean and infested waters.

Index Terms— Remote sensing, multitemporal image
analysis, Sentinel-1, Sentinel-2, water hyacinth, Eichhornia
crassipes, wetland, machine learning.

1. INTRODUCTION

The synoptic coverage provided by satellites enables water
hyacinth (WH) to be distinguished in colour infrared imagery
across a temporal scale at multiple different study sites, with
further analysis allowing the infestations to be quantified [1].
A previous study monitoring the Gwydir Wetlands, Australia,
used images captured from the optical satellite Landsat-8 to
monitor potential WH infestations within the site. The result
showed a means of optical surveillance for the aquatic vege-
tation behaviour at a large spatial scale [2]. A study of aquatic
plants using Quickbird multispectral data of Turkey was ca-
pable of producing an unsupervised classification accuracy of
83% when identifying and mapping plant species [3]. Mixed
pixels were identified as a main limitation in the procedure.

However, optical data are not always available without
cloud cover. This is a strong limitation when we want to
achieve a prompt alert system that is able to detect the in-
festing weed at early occurrences. Synthetic aperture radar

(SAR) can help with this due to the capability to monitor in
all-weathers, day- or night-time. The scattering processes of
SAR allow mapping of marsh, surface waters and forest to be
determined from volume-, double-bounce and surface scat-
tering [4]. Hess et al. [5] used SAR to distinguish between
water, herbaceous vegetation and forest within the Amazon
Basin.

Multi-modal, multi-sensory approaches to study WH are
generally missing in the literature. The authors of [6] re-
viewed the latest developments in the use of remote sensing
and other technologies to monitor WH infestation. They also
proposed a multimodal approach that combines the strengths
of the different methods. In this paper, as an extension of our
previous study [7], we use an unsupervised machine learning
classifier based on the expectation-maximization (EM) algo-
rithm, applied to multitemporal data from S-1 SAR and op-
tical S-2, for detection of WH within Vembanad Lake, Kut-
tanad, India, and compare its results with three supervised
classifiers The results show that the monitoring of WH is pos-
sible using only S-1 and S-2 data individually. Fast-flowing
currents can rapidly change the position of the free-floating
WH and in cases of a time gap between the optical and radar
data, the combination of these two data will be challenging. In
those cases, we only use one data type (either SAR or optical).
We can use S-2 data to fill time gaps in radar observations.
This paper presents a quantitative analysis of detection per-
formance using traditional machine learning algorithms with
these two data sets.

2. DATASET AND MATERIAL

2.1. Study Area

Kuttanad, Kerala is a paddy-rich region in south-west India.
The Department of Agriculture Development and Farmers’
Welfare has reported intensive fertiliser usage by local farm-
ers in the Kuttanad region [8]. This has resulted in an increase
in WH found within the major lakes of the region. Due to the
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Fig. 1. False color RGB (VV, VH, VV/VH) composite image
(Top) and NDVI (Bottom) of S-1 and S-2 data sets acquired
on (Left) Nov-2019 with clean water and (Right) Jan-2020
showing WH on surface of Vembanad Lake.

presence of WH within the region’s waterways, impacts have
been felt on fisheries, drinking water, irrigation, transport and
recreational use of the water bodies. This study focuses on
the Vembanad Lake, the largest Ramsar site in Kerala, India.

2.2. Data Analysis

Inspecting satellite images for the Vembanad Lake showed
that there was clearly something floating on the water surface.
Regions of Interest (ROIs) were established to create time-
series of co-polarized (VV) backscatter and cross-polarized
(VH) backscatter data. Initial viewing of the time-series data
showed that there were clear dates where the VV channel data
peaked and troughed. Inspection of these dates showed that,
on these dates, the water surface was cleaner, Fig. 1(a), or
more infested with WH, Fig. 1(b).

Our hypothesis is that WH infestation alters the scattering
by increasing the roughness of the lake surface. This should
be distinguishable in the satellite image as spots or patches
with high brightness. When smooth, the waters of a lake will
scatter most electromagnetic radiation in the specular direc-
tion and therefore will appear darker. On contrary, the pres-
ence of the non-reflective WH mat on the water surface will

Fig. 2. Time series profile of mean radar backscatter (VV
channel) over an infested area.

appear brighter in the image and should be picked up by the
radar. As seen in Fig. 2, the radar backscatter of the ROI
area increases in infestation times, in particular around Jan-
uary 2020, indicated by a vertical red line in the time-series
profile.

It is observed that the presence of WH will cause the opti-
cal reflectance to change and as a result, the Normalized Dif-
ference Vegetation Index (NDVI) will increase, as seen in Fig
1(d) in infested time compared to Fig 1(c) in clean time.

3. METHODOLOGY

Our workflow for WH detection involves five operations: pre-
processing, land masking, feature extraction, unsupervised
machine learning classification, and identification of WH.
3.1. Preprocessing: The preprocessing carried out on the
input GRD Sentinel-1 data consists of 6 steps: 1) update
orbit information, 2) radiometric calibration to obtain sigma0
(σ0), 3) thermal noise removal, 4) speckle filtering, 5) range
Doppler terrain correction, 6) subsetting, and 7) convert SAR
backscatter intensities into decibel-scale (dB). The image
pixels were obtained at the final geocoded pixel spacing of
10×10 m in the Universal Transverse Mercator (UTM) coor-
dinate system.

The Sentinel-2 data were downloaded from the Sentinel-
2 Global Mosaic (S2GM) service which provides analysis-
ready composites from time-series of Sentinel-2 surface re-
flectance observations to monitor large area in a timely man-
ner. These data are analysis-ready as typical preprocessing
and correction steps have already been applied.
3.2. Land masking: Land masking is important, not only
for the obvious reason that only WH in the open water is
of interest, but also because land vegetation can have similar
backscatter and spectral signature to WH, producing a high
number of false alarms. For this reason, automatic land de-
tection algorithms need to be considered. In this paper, land
masking is performed using the SRTM digital elevation model
to ensure that WH detection was carried out only on the area



Fig. 3. Parametric Gaussian model fit to the histograms (VV
polarization channel). Left and Right are for clean and in-
fested water, respectively.

of interest.
3.3. Feature extraction: A number of optical and SAR fea-
tures, such as texture features and vegetation indices, which
are related to the physical and spectral properties of the scat-
tering medium are extracted. These features are chosen based
on the observation that WH exhibits a different backscatter
and spectral behaviour compared to the surrounding open wa-
ter. The features used are as follows:

• Backscatter intensities: < |Svv|2 >, < |Svh|2 >

• Cross-polarization ratio: γ = <|Svh|2>
<|Svv|2> gives an esti-

mate of depolarization of the SAR signal. The ratio is
expected to be higher for WH than clean water.

• Span=< |Svv|2 > + < |Svv|2 >

• Gray level co-occurrence matrices (GLCMs) texture
features: contrast, dissimilarity and homogeneity, en-
tropy [9].

• S-2 bands were processed to give vegetation indexes,
including the normalized difference vegetation index
(NDVI), normalized difference Red-Edge (NDRE),
normalized difference water index (NDWI), normal-
ized difference aquatic vegetation index (NDAVI), and
Soil Adjusted Vegetation Index (SAVI).

The extracted features do to a certain extent have a non-
Gaussian spreading. The features are therefore transformed,
by, e.g., logging the parameters, to make their sample distri-
butions more symmetric and cause their spreading to be closer
to a Gaussian distribution. By incorporating this transforma-
tion stage, simple segmentation methods, such as a mixture
of Gaussians, become applicable.

3.4. Expectation maximization algorithm: We first investi-
gated the potential of statistical parametric approaches by fit-
ting Gaussian probability distribution functions (PDF) on the
histograms of different features. The Gaussian models can be
expressed as

f(x) =

n∑
i=1

aie

[
(
x−bi
ci

)2
]
, (1)

Fig. 4. An example of classification map of infested lake us-
ing the proposed algorithm. Purple = WH, yellow = clean,
and black = land.

where, f(x) is the distribution for input data x, n is the num-
ber of peaks and a, b and c are the amplitude, centroid and
width parameters, respectively.

We estimated the Gaussian model parameters by fitting
the PDFs on the histograms of the clean and infested areas
and the results are shown in Fig. 3. Our study indicates good
parametric fit when n = 2, i.e., mixture of two Gaussian dis-
tributions particularly for WH infested area. This is due to the
heterogeneous nature (weed and water both) of the region of
interest. On contrary, the homogeneous nature of clean water
can be well approximated by a single peak distribution. The
model parameters, a, b and c shows clear distinction between
clean and infested areas.

The unsupervised classification is achieved through a fi-
nite mixture model estimated with a pixel-wise EM algorithm
[10], where the number of clusters is automatically deter-
mined with the goodness-of-fit (GoF) based approach. The
initial state and the number of classes were addressed with
an automatic strategy by consistently starting as one class
and adaptively splitting classes until a statistical criterion is
satisfied in the GoF test. In addition, Markov random field
(MRF) [11] based contextual smoothing is applied after clus-
tering to improve the smoothness of the final image.

3.5. Identification: The unsupervised machine learning re-
sults in an unlabeled map having either one class (clean wa-
ter) or two classes (clean and infested areas). The labeling
step uses the EM output to select the classes corresponding to
WH. In the prediction map, we distinguished WH infested ar-
eas from water by assuming that they had higher backscatter
or higher NDVI values.



Table 1. Classifier accuracy for different classifiers using the
kappa value: (top) S-1 features; (bottom) S-2 features based
on validation patches.

Sensor EM SVM RF kNN
S-1 0.90 0.88 0.89 0.86
S-2 0.87 0.89 0.86 0.79

4. RESULTS

The proposed method first masks out land areas and then uses
a feature-based segmentation stage to produce distinct, ho-
mogeneous regions corresponding to WH and clean water.
The number of classes in the segmentation algorithm is de-
termined by an automatic strategy based on information con-
tained in the GoF of the data to the estimated model [12]. Fig-
ure 4 shows an example of the classification result obtained
using the proposed algorithm. The segmentation returns ei-
ther one or two clusters depending on the existence of infes-
tation in the lake. To evaluate the performance of the pro-
posed method, we identified several training patches from the
temporal stack having distinct and homogeneous WH regions.
We then classified those patches using three supervised ma-
chine learning algorithms, namely, Support Vector Machine
(SVM), Random Forest (RF), and k-Nearest Neighbor (kNN)
and compared the results with the EM algorithm. For some
of the comparison results (comparing classifiers and optical
versus radar), the kappa value is used to provide a summary
of the classification accuracy. The results are reported in Ta-
ble 1. Values of kappa over 0.75 are generally regarded as
being indicative of excellent agreement between actual and
predicted classes.

5. DISCUSSION AND CONCLUSIONS

Using multitemporal S-1 and S-2 data of Vembanad Lake,
India, we demonstrated how SAR and optical can be em-
ployed to monitor water hyacinth using machine learning
techniques. Pixel values have been extracted from ROIs
within the lake and show that backscattering intensities and
spectral reflectance signatures differ between clean sites and
infested sites. Various challenges including accurate co-
registration, spectral variation in the time series, missing
values for cloudy pixels and time gap between SAR and op-
tical data for floating aquatic vegetation have to be addressed
when designing a SAR-optical approach for WH monitoring.
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