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Thesis Abstract 

Despite ever increasing information on the importance of oceanographic processes for 

marine predators, movement ecology of higher trophic level species in tidal stream 

environments remains relatively under-studied. This represents a significant 

knowledge gap for certain species which spend large portions of their lives in these 

energetic habitats. In this thesis I show that a top predator, the harbour seal (Phoca 

vitulina), inhabiting one of the most tidally energetic regions in Europe, the Pentland 

Firth, shows a complex range of behaviours as a consequence of the strong current 

flows they are subjected to. Both horizontal movement and diving behaviour elucidate a 

degree of foraging plasticity, hitherto undocumented in a single population of harbour 

seals.  I also demonstrate that, by using multiple perspectives of movement, researchers 

can better tease apart ecologically important areas for animals inhabiting these 

habitats. Given the importance of tidally energetic systems for harbour seals, I then go 

on to study the impact of tidal energy installations on their movements and physical 

fitness. Using telemetry data, I determine an overt avoidance response of the local 

population to an operational turbine array and demonstrate the effect this can have on 

our understanding of collision risk. To further augment our predictions of the 

population level effect of these devices, I then go on to demonstrate that not all 

collisions between seals and tidal turbine blades are likely to result in fatality. In 

combination, these results suggest that currently held views on the lethal effects of tidal 

turbines are overly-conservative, and the likely behavioural and physical responses to 

these devices may result in a more ecologically favourable outcome than previously 

assumed.  
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1.1 Abstract 

The role of marine predators in balancing delicate marine ecosystem dynamics is a vital 

trophic cascade that has a significant effect on ecological resilience. Increasing evidence 

suggests that tidally influenced features ranging from mixing fronts to tidal streams are 

vitally important habitat for many marine vertebrates both for migration and foraging. 

Previous studies demonstrate that taxon-specific behaviour and distribution in these 

regions is nuanced and often enigmatic given the challenges in data collection. Marked 

behavioural plasticity is often apparent and is likely to function as a means of effectively 

exploiting these variably productive and available features. The energetic costs of 

movement appear to be successfully offset by increases in foraging opportunities as a 

result of increased productivity, lower trophic level aggregations and disorientation of 

prey species. Owing to the increasing industrialisation of the world’s oceans, some 

marine populations have been heavily negatively impacted at various scales ranging 

from the oceanic effects of climate change and plastic pollution to more localised effects 

of fisheries by-catch and collisions with shipping. Given the evident ecological 

importance of these regions, and the potential for tidal energy extraction, it is vital that 

the renewable energy industry and academic institutions collaborate to expand our 

understanding of the fine-scale behaviour of animals in areas proposed for 

anthropogenic exploitation. This will require flexible frameworks to allow for 

temporally varied ecological issues. Future research should focus on a combination of 

mechanistic and empirical approaches to provide a holistic view of species-specific 

behaviour. Here I (1) review interactions between physical oceanographic features and 

marine vertebrates in these habitats (2) discuss the fine-scale behaviour of these 

animals in a temporally and spatially heterogeneous environment and (3) explore how 

the advent of the tidal energy industry may impact these animals. 



Chapter 1: The importance of tidally dominated regions to the ecology of marine 
vertebrates 

3 
 

1.2 Introduction  

An animal’s movement can be driven by a range of life-history goals (Alerstam, 

Hedenström & Åkesson 2003). The ability of individuals to successfully forage and 

breed often hinges on the ability to move efficiently between sites. In general, terrestrial 

animal movement is achieved solely through propulsion and their own energetic 

expenditure (Cavagna et al. 1977). However, air-borne and aquatic animals must deal 

with a further challenge; that they are often subjected to the considerable additional 

force of flow (Chapman et al. 2011). The movement over ground of an animal moving 

from one location to another, in water and air, is the vector sum of both its locomotion 

and that of the surrounding flow. As a consequence, birds, flying insects and aquatic 

fauna have evolved a suite of techniques to exploit or temper this forcing by either (a) 

moving at favourable times and altitudes/depths when prevailing flow compliments the 

ultimate goal destination or (b) orienting themselves into the prevailing flow so as 

propulsion balances or outweighs the advective forces (Dickinson et al. 2000; Chapman 

et al. 2011). If the goal destination is upstream of the prevailing flow, the ability to 

employ the second strategy is entirely dependent on the animal being able to swim/fly 

above the speed of the opposing flow. This limits the applicability of this strategy for 

many less physically capable species.  

The behavioural strategies employed by animals in flow are influenced by the goal of 

movement, and by predator avoidance or opportunistic foraging, and are ultimately 

constrained by their physiological limitations. Some animals have been observed to 

move almost exclusively in a manner consistent with assisted transport, regardless of 

their likely ability resist and move against water and air movement (Metcalfe, Hunter & 

Buckley 2006; Gill et al. 2009; Campbell et al. 2010). Alternatively, some species which 
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are not characteristically fast swimmers or flyers, have developed strategies to counter 

flow by varying their orientations, altitudes/depths and propulsion speeds at various 

points along a track (Krupczynski & Schuster 2008; Alerstam et al. 2011; Klaassen et al. 

2011). Prevailing flow has often been shown to be the most prominent and enduring 

extrinsic force acting on large-scale, goal-oriented migrating animals. It is therefore 

likely that, over relatively long distances and varying flow conditions, a combined 

approach of compensation for flow-induced drift and goal directed down-stream 

transport is the most favourable strategy (Alerstam 1979). For shorter distance 

movements, such as foraging trips, the short-term driver of movement may result in 

different strategies. If a target goal, such as a discrete foraging patch or individual food 

item, exists upstream of a significant wind or current it may be an optimal strategy for 

an animal to continually move in the opposing or perpendicular direction of the flow to 

achieve its goal (Riley et al. 1999; Krupczynski & Schuster 2008). This may also provide 

future benefits for central place foragers returning to the starting location in a 

downstream orientation after loading mass (Alerstam, Bäckman & Evans 2019). 

Although understanding the mechanisms underlying animal movement in flow can be 

challenging, it is clear that a range of intrinsic and extrinsic factors influence how an 

animal orientates itself to, and expends energy in, flow conditions. The ability of animals 

to withstand or counteract flow forces appears central to their endurance and fitness 

both at a population and individual level. Disentangling the active movement of an 

animal from movement due to environmental flows has been highlighted as a key 

question in understanding how animals use dynamic environments (Hays et al. 2016). 

Tidal processes can have significant impacts on the structure and dynamics of shelf-seas 

and coastal environments. Tides generate currents, which shape the bathymetry, advect 
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sediment and greatly affect the distribution of less mobile, lower trophic level plankton 

and nekton (Brown 1999). Being cyclical, they create dynamic habitats which are 

variable but predictably available to different species. In shallow, coastal waters this 

often results in markedly different species assemblages at different tidal states (Sogard, 

Powell & Holmquist 1989; Gibson 2003) presumably due to dramatic changes in food 

availability, shelter and migratory corridors. Given the seasonally variable nature of 

these processes and their cascading influence on the distribution of primary 

productivity and immotile lower trophic level species, tides can be seen to largely 

govern the food-web in these regions, both spatially and temporally (Otto et al. 1990; 

Zhao, Daewel & Schrum 2019).  

Predator distribution is primarily driven by prey distribution and availability, and 

individuals will often be observed in localised patches (Boyd 1996; Hastie et al. 2004).  

Prey patches in the marine environments can often be associated with hydrographical 

and oceanographic features and, in lieu of direct observations of foraging events, 

reasonable assumptions can be made as to prey distributions as a function of these 

features (e.g. Hazen & Johnston 2010). Oceanographic features ranging from mesoscale 

tidal mixing fronts to fine-scale tidally energetic current features such as eddies and rips 

have been associated with increases in biodiversity suggesting them to be vitally 

important for efficient migration and foraging for multiple taxa (Begg & Reid 1997; 

Johnston, Westgate & Read 2005; Ingram et al. 2007; Scott et al. 2010).  

To understand predator distributions in dynamic environments, many empirical studies 

of space use and how they associate with fixed and mobile features have been carried 

out (e.g. Cox et al. 2017; Lieber et al. 2018). The advent of integrated biologging 

technology such as GPS-CTD tags (Boehme et al. 2009) and D-Tags (Johnson & Tyack 
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2003) and the rapid development of sophisticated mechanistic models have advanced 

this field of research considerably over the past decade and allow inferences on 

behaviour, as well as distribution, to be made (McClintock & Michelot 2017; Jonsen et al. 

2018). However, little is still known about the subtleties of marine animal movement in 

some of the most energetic and dynamic regions in the ocean. While the importance of 

tidally dominated regions is clear, the behavioural adaptations which allow animals to 

efficiently use these areas remains enigmatic and presents the next step in 

understanding the biological complexities of these systems. In this chapter, I review the 

ecology and dynamic physical properties of coastal environments, with a particular 

emphasis on the behaviour and foraging strategies of predators in tidally energetic 

areas.  

1.3 Multi-scale, tidally influenced marine dynamics 

Since Newton (1687) first described the equilibrium (astronomical) tides as a function 

of gravitational forces acting on the earth by the Sun and Moon, oceanographers have 

had the foundation from which to study the movement of water governed by the tide. In 

fact, Newton’s description, while groundbreaking and fundamental, only provided 

scientists with the basis by which ocean dynamics occur in the absence of variability, 

and there are a suite of hydrodynamic reactions to this water movement that need to be 

considered when predicting tidal processes.   

Tidal forcing results from the gravitational pull of the Moon and the Sun and the 

centrifugal force of the Earth’s rotation (Simpson & Sharples 2012). Consequently, the 

strength of the tide is both temporally cyclical and heterogeneous across space at any 

given time. Tides and tidal currents have a cyclical pattern on three general scales: 

diurnal (or semi-diurnal), lunar/solar and equinoctial. The position of the lunar/solar 
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cycle governs the height of the tide and therefore the strength of tidal currents, as 

driven by gravitational forces of the moon and the sun and their relative positions with 

respect to the Earth. This is commonly referred to as the spring/neap cycle. Diurnal or 

semi-diurnal cycles refer to the timing of flood and ebb tides (high and low waters) and 

cycle on just above a 12-hour basis, resulting in a slight forward shift in the timings of 

high and low waters each day. Equinoctial cycles refer to the bi-annual effect of the axial 

tilt of the earth and its orbit around the Sun where the position of the Sun in relation to 

the equator changes. This results in highest astronomical tides (HAT) during the Vernal 

and Autumnal equinoxes when the plane of the equator passes the centre point of the 

Sun. This fundamental physical force governs oceanographic processes ranging from 

micro-scale turbulent features to large scale marine currents.  

1.3.1 Tidal features in shelf-seas: physical properties and biological importance  

Shallow shelf-seas are mediated by seasonal and tidal processes (Simpson & Hunter 

1974; Pingree & Griffiths 1978; Simpson & Sharples 2012). Tidal currents are often the 

main flow constituent in these areas (Otto et al. 1990) and they drive turbulence, 

upwelling and mixing processes which underpin the regional ecology. Tidal stirring 

caused by near constant movement results in perpetually mixed water in coastal 

regions however, further offshore, seasonal thermal stratification occurs periodically 

(Hill et al. 2008). The boundary between these stratified and mixed waters, referred to 

as tidal mixing fronts, are among the largest, tidally mediated features in shelf-seas, 

often being greater than 100 km in length (Suberg 2015). Due to the seasonal effect on 

stratification, tidal mixing fronts are seasonally persistent. In general, they form in 

shallow seas with strong tidal currents and sloping bathymetry when the boundary 

layer of turbulence caused by friction at the seabed propagates sufficiently through the 
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water column to mix the overlying layers (Fig. 1). In deeper waters, the boundary layer 

does not penetrate high enough into the water column to affect the pycnocline and 

counteract the buoyant effects of surface heat flux, resulting in stratification.  

 

Figure 1 Large-scale, tidally mediated features in shelf-seas and coastal habitats. 
Dashed lines indicate isotherms and circular arrows represent eddies. Adapted from 
Van Heist (1986). 

Consequently, the location of tidal fronts is predictable due to the dependence of mixing 

on the ratio between bathymetric depth (H) and tidal velocity (u), the so-called Simpson 

Hunter parameter, H/u3 (Simpson and Hunter 1974). Local environmental conditions 

such as heat-flux and surface wind stress can affect this value by altering the buoyant 

properties of the turbulent layer and kinetic energy, shifting the position of tidal mixing 

fronts, however, they are predominantly influenced by the strength of tidal forcing. 

Recent studies have also highlighted the importance of other variables such as salinity 

gradients and non-tidal flows in the formation of these fronts (Sheehan et al. 2018). 

Primary productivity is often high at tidal mixing fronts due to the combined physical 

properties of comparatively deep photic zones in stratified offshore waters and nutrient 

retention from coastal mixing (Franks 1992). Convergent flows also serve to 
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redistribute small or immotile phytoplankton, zooplankton and fish species (Epstein & 

Beardsley 2001) which aggregate pelagic foragers and create high levels of seasonally 

varying biodiversity (Cox et al. 2018).  

1.3.2 Tidally energetic coastal waters 

Tidally influenced currents can be found throughout the world’s oceans but are most 

prominent in coastal regions. The effects of tidal forcing are particularly pronounced in 

mid-shelf and coastal regions, where interactions between mobile water masses and 

static features (e.g. land masses) can result in fast-flowing water being funnelled 

through channels and peeling off headlands. Further, the strength of currents is 

regionally specific and can also be affected by a range of stochastic features such as 

wind stress and heat flux. As water masses interact with landmasses, significant 

potential and kinetic energy can be generated through compression (Vogel 1994). In 

comparison to the mid-shelf regions of seasonally stratified waters, boundary layer 

propagation through the relatively shallow waters creates a perpetual and vertically 

consistent mixed layer, restricting the prevalence of primary productivity due to 

increased turbidity, and results in a near-surface pycnocline.  

The majority (~75%) of tidal energy supplied by gravitational forces is dissipated in 

shelf seas and coastal systems, supporting tidal flows (Wunsch & Ferrari 2004). As a 

consequence of the large amount of energy dissipation to coherent structures in these 

systems, they are characteristically turbulent and variable environments. Various 

coherent structures such as eddies, boils, wakes and jets can be generated at different 

scales at these sites, depending on the topography and amount of energy supplied to the 

system. Consequently, the ability of animals to exploit these environments is likely to be 

spatially and temporally constrained. 
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1.3.3 Biodiversity in tidal mixing fronts 

The mobility of water can affect marine predators at a range of scales. Like all animals in 

mobile features, they must account for the direction and strength of water movement 

when attempting to get from one location to another. This may be advantageous or 

detrimental depending on the speed and direction of the current. Such interactions can 

occur on large spatial scales, along migration routes, or at small scales in coastal tidal 

streams or at confluences where dynamic water masses meet relatively static, stratified 

waters causing frontal systems. 

Given the entrainment of primary production at tidal mixing fronts, multiple trophic 

levels have been reported to forage at sites of convergent flow (Bost et al. 2009; 

Embling et al. 2012; Scales et al. 2014b). In particular, surface and pelagic predators, 

and suspension feeders are relatively abundant. For example, several cetacean species 

have been observed to associate with tidally influenced frontal systems and they have 

even been suggested to affect migratory phenology (Bailleul et al. 2013). Doniol-

Valcroze et al. (2007) described spatial partitioning between mysticete species within 

frontal systems suggesting interspecific differences in foraging tactics. Pelagic 

delphinids such as bottlenose dolphins (Tursiops sp.) and common dolphins (Delphinus 

delphis) have also been reported to be strongly associated with tidal mixing fronts, and 

have been predominantly observed favouring the offshore, stratified side of the 

boundary (Franks 1992; Cox 2016; Cox et al. 2017). Smaller-scale fronts in UK waters 

have been noted to attract basking sharks (Cetorhinus maximus) which display almost 

completely passive movement during foraging bouts, tracking the trajectory of the 

prevailing current and ‘following’ dense aggregations of zooplankton over several days 

(Sims & Quayle 1998). This may be an efficient foraging tactic for grazing species as 
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their relatively immotile prey is aggregated by the currents. Further, dense, diverse 

aggregations of plankton can allow enhanced prey selection, resulting in further 

energetic benefits when targeting these regions (Vlietstra et al. 2005). 

Several central-place foragers have been observed utilising prey aggregations and 

productivity at tidal-mixing fronts; however, these usage patterns are more seasonally 

dependent than their pelagic counterparts (Cox et al. 2018). Seasonal use of these 

features has been suggested to be driven by proximity, given that trip distance from 

haulouts or nesting areas is a key limiting factor in at-sea distribution, and tidal-mixing 

fronts may only be within home-ranges when increased heat-flux in spring and summer 

shifts the fronts closer to the coast (Holt & Umlauf 2008). For example, short-tailed 

shearwaters (Puffinus tenuirostris) in the Bering Sea have been observed to be 

dependent on euphausids associated with near-shore thermal fronts during summer 

when stratified waters encroach further towards land (Jahncke et al. 2005). Piscivorous 

seabirds have also been noted to heavily use tidal mixing fronts, foraging on species 

presumably attracted to similar resources as planktivorous species. Durazo, Harrison 

and Hill (1998) noted four species, razorbills (Alca torda), black-legged kittiwakes 

(Rissa tridactyla), common guillemots (Uria aalge) and Manx shearwaters (Puffinus 

puffinus) foraging around tidal mixing fronts when performing concurrent line-transect 

surveys of foraging assemblages and CTD casts in the Irish Sea. Similarly, northern 

gannets (Morus bassanus) have been shown to be more likely to perform foraging like 

movements when in close proximity to frontal systems (Scales et al. 2014a; Grecian et 

al. 2018). While these studies are useful indicators of the importance of fronts to higher 

trophic levels, it is important to note that birds have a markedly different relationship 

with mobile environments such as tidal mixing fronts and currents when compared to 
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exclusively marine or semi-aquatic animals. Specifically, animals which commute and 

forage in water are continually subjected to the forces of currents and often must adjust 

their locomotion in order to maximise their energy intake. Conversely, birds can 

effectively avoid these advective forces by flying between discrete patches or prey 

aggregations more directly.  

There is a relative lack of information as to the distribution of pinniped species around 

tidal mixing fronts. This is curious given the fact that many pinnipeds occupy the same 

ecological niches as seabird and cetacean species which rely heavily on the prey 

assemblages in these zones. This may be due to the comparatively high dependence on 

benthic and demersal prey sources by pinniped species which solely occupy shelf seas 

(Bowen, Beck & Austin 2009); in these cases, tidal mixing fronts may not provide 

elevated foraging opportunities due to productivity being concentrated in the upper 

photic zones. Consequently, stratified areas further offshore may be preferred given the 

high levels of nutrients in the colder, denser underlying waters. Ongoing research is 

beginning to point towards the contrary; however, there are still limited data sets in 

which to answer this question. For example, pinnipeds on the east coast of the UK have 

been shown to associate with the Flamborough frontal system (Carter et al. in prep), a 

tidal mixing front in the North Sea (Hill et al. 1994). There is, however, evidence which 

points towards phocid use of coastal, well-mixed, tidally energetic waters (Zamon 2001; 

Hastie et al. 2016; Jones et al. 2017; Lieber et al. 2018) where nutrients are entrained 

and transported throughout the water column and foraging opportunities can present 

themselves at varying temporal and spatial scales and depths. 
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1.3.4 Air breathing predators in tidally energetic waters 

Several predatory species appear to target tidal stream environments; however, there is 

often a pronounced interspecific and cyclical pattern in abundance which correlates 

with tidal phase (e.g. Bailey & Thompson 2010; de Boer et al. 2014; Hastie et al. 2016). 

Tidal currents can reach speeds as high as 10 m.s-1 (Eliassen, Heggelund & Haakstad 

2001), so predators attempting to forage during peak flow periods must possess the 

ability to identify important features and navigate through energetically demanding 

water in order to effectively find and catch prey. Consequently, the strategies required 

for piscivorous predators to efficiently forage in these environments are likely to be 

markedly different than in calmer waters. 

Productivity in tidally energetic regions depends heavily on the seasonal flux of 

nutrients from the deeper, stratified waters further offshore (Brink 2013). Regardless of 

the comparatively low levels of primary productivity, these regions demonstrate 

cyclical periods of increased biomass; migratory animals seek reduced costs of 

transport through enhanced travel speeds in prevailing flow directions, and piscivorous 

and planktivorous predators exploit boosted foraging opportunities due to the inability 

of smaller zooplankton and nekton to resist the strong forces of upwelling and 

turbulence (Gibson 2003; Benjamins et al. 2015).  The predictable nature of tidal forcing 

presents a potentially important energy source for larger animals if they are able to 

withstand or exploit the energetic forces themselves.   

1.3.4.1 Pinnipeds 

While many pinniped species have been observed in association with mesoscale and 

sub-mesoscale oceanographic frontal structures (e.g. Lea et al. 2006; Bailleul et al. 2007; 
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Baylis, Page & Goldsworthy 2008; Charrassin et al. 2008; Della Penna et al. 2015), few 

have been observed in consistent association with tidal streams.  

As such, quantitative studies of seal distributions in relation to tidally energetic areas 

are sparse; however, a number of animal-borne telemetry studies suggest that these 

areas may be important to some. For example, Brown and Mate (1983) observed 

harbour seals holding position, swimming directly into the prevailing flow at river 

mouths during flooding tides in Oregon, USA foraging on chum salmon. The seals were 

likely targeting large salmon which were using tidally assisted movement to return to 

their spawning grounds and so represented a predictable, highly calorific food source. 

Similarly, Zamon (2001) observed a strong association between harbour seal foraging 

behaviour and tidal currents. Seals spent more time foraging for salmon at the mouth of 

a river during slow, flooding tides suggesting a threshold above which seals may not be 

capable of efficiently targeting these high flow spots. This study also provided a basis 

for the still commonly held ‘tidal coupling hypothesis’ where tidal currents mediate fish 

species aggregations when flows exceed their physiological capabilities and provide 

profitable foraging sites for piscivorous predators (Zamon 2001; Zamon 2003). 

Conversely, Thompson (2012) observed what appeared to be a different, relatively 

passive foraging tactic with juvenile grey seals moving forwards and backwards with 

the tide repeatedly diving to the bottom suggesting foraging activity in the fast-moving 

tidal currents off Anglesey and Ramsey Sound, Wales. In similar tracking studies on the 

west coast of Scotland, Thompson (2013) and Hastie et al. (2016) observed adult 

harbour seals demonstrating foraging techniques in tidal rapids that suggested 

utilisation of smaller scale coherent structures. Seals repeatedly swam (or were 

advected) downstream with the flow while diving to mid-water. It was postulated that 
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they were continually targeting mid-water fish species such as mackerel. In order to 

continue this process throughout the flooding tide, seals potentially “escaped” the flow 

by swimming into associated eddies which allowed them to move into slower moving 

water at the periphery of the channel and swim upstream before repeating the process 

(Hastie et al. 2016).  

While foraging activity may partly explain the pinniped distributions during different 

phases of the tidal cycle, it is important to consider that haul-out behaviour and 

breeding strategies may also play a role in the observed patterns.  For example, the 

availability of intertidal haul-out sites decreases during flooding tides resulting in an 

increasing proportion of seals being at-sea during this time (Thompson et al. 1997). 

Studies have noted higher seal abundance in narrow channels during flooding tides 

compared to ebbing tides (Zamon 2001; Zamon 2003), some with markedly different 

cyclical haul-out patterns between flood and ebb tides that are not directly centred 

around high tide (Hastie et al. 2016). This suggests that the observed patterns are not 

directly related to haulout availability. Nevertheless, studies of the relationships 

between tidal state and foraging activity of pinnipeds must consider haulout availability 

when interpreting observed patterns. Similarly, Van Parijs, Hastie and Thompson 

(1999) noted reproductive strategies of harbour seals were spatially and temporally 

affected by tide cycles with male reproductive vocalisations being significantly greater 

in narrow channels, during flooding tides suggesting the complexity of tidal usage by 

phocids may have a phenological component at certain times of year. 

1.3.4.2 Odontocetes 

Harbour porpoises (Phocoena phocoena) are widely distributed in most shelf-sea waters 

and sightings are common in many coastal regions (Hammond et al. 2002). The highest 
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concentrations of porpoises in UK waters have been seen in areas with strong tidal 

features such as the Inner Hebrides (Northridge et al. 1995; Embling et al. 2010).  

However, there are contrasting observations suggesting that the use of high tidal energy 

sites may vary between different geographical locations. Several studies of harbour 

porpoise spatial usage in tidal areas of Europe have reported higher abundance 

(observation rates) during periods of strong tidal flow (Pierpoint 2008; Marubini et al. 

2009; Jones et al. 2014; Ijsseldijk et al. 2015). Behavioural observations have also 

indicated foraging primarily during fast, ebb tides where individuals would adopt the 

strategy of using the flow to hold position and ambush prey swimming with the 

prevailing flow (Pierpoint 2008). However, it is important to highlight that 

geostationary porpoises would likely be more easily seen and recorded than a porpoise 

increasing its speed over ground by swimming with a current, so alternate strategies 

may be as prevalent but less likely to be observed. In a study using drifting porpoise 

recording systems, Benjamins et al. (2016) noted that porpoise presence was not 

correlated with flow speed and that a more complex interaction occurred where 

porpoises consistently travelled downstream with prevailing currents. In addition, 

porpoise distributions can vary markedly within, as well as between, discrete tidal 

phases (Benjamins et al. 2017). In contrast, Embling et al. (2010) used habitat models to 

predict relative densities in the southern Inner Hebrides and found that maximum tidal 

current was the best predictor of distribution with greater numbers predicted in areas 

of low current. The apparent differences may be a result of the tidal differences in the 

study areas or due to subtle differences in the analytical methods.  For example, 

Embling et al. (2010) considered separate spatial and temporal measures of tide rather 

than a single temporal measure which is more commonly used. Arguably this method 

has more explanatory power as the state of tide can vary dramatically over a relatively 
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small area and modelling flow rates over the entire study area concurrently can give a 

broader perspective on the movements and spatial usage of a dynamic marine predator. 

Recent investigations in the Sound of Islay and Kyle Rhea, Scotland have concluded that 

it is not the tidal narrows themselves but turbulent eddies, formed as a result of tidal 

outflow from the channels, that harbour porpoises utilise more frequently (Wilson, 

Benjamins & Elliott 2013). Regardless of the reasons behind the differences, it seems 

clear that tidal currents play a significant role in their distribution. 

Several delphinid species have been observed using tidally active regions and tidally 

generated structures. Bottlenose dolphins (Tursiops truncatus) are commonly observed 

in tidally influenced regions; however, as generalist predators, their activity is not 

always predictable or consistent and the importance of energetic regions on their 

foraging opportunities remains uncertain. Blair, Scott and Kauffman (1981) observed 

that bottlenose dolphins in Palma Sola Bay, Florida swam more frequently against the 

current and at the periphery of channels where tidal flow diminished, possibly 

indicating opportunistic foraging. Similarly, Shane (1980) observed a higher abundance 

of bottlenose dolphins during peak ebb tides in southern Texas and were repeatedly 

observed swimming against the current. This behaviour coincided with anecdotal 

evidence of increased fish abundance (local fisheries catch records) during these 

periods and indicated a possible foraging tactic similar to that identified in porpoises in 

the UK (Pierpoint 2008). However, as with all studies of this nature, they must be 

caveated by the fact that animals swimming against a flow will be more available to 

observers than animals moving with a current, assuming no change in surface 

behaviour. 
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1.3.4.3 Birds 

Although several bird species utilise tidal streams for foraging, there do not appear to 

be any species that specialise exclusively on high energy tidal streams with generalist 

tendencies often noted (Benjamins et al. 2015). There is also a high degree of 

interspecies variability in foraging tactics such as shallow surface diving, plunge-diving, 

deep diving and less often, surface foraging.  

The Auk family varies in both body size and prey selection, but are a common feature is 

their ability to dive relatively deep. For example, common guillemots (Uria aalge), have 

been recorded diving up to 180 metres (Piatt & Nettleship 1985). When using tidal 

environments, foraging behaviour is limited by tide cycles due to the energy required to 

either swim against currents or travel back to important foraging areas after swimming 

with currents. Consequently, multiple studies have noted differences in dive behaviour 

and abundance during changes in tidal current direction and speed (Holm & Burger 

2002; Zamon 2003; Furness et al. 2012; Waggitt & Scott 2014). 

Holm and Burger (2002) observed significant differences in densities, between slack 

and flood/ebb tides, of ancient murrelets (Synthliboramphus antiques) and pigeon 

guillemots (Cepphus columba) in the strong tidal currents of Vancouver Island, Canada. 

The use of fast-flowing tidal currents for foraging by pigeon guillemots was also noted 

in this area. Similarly, foraging behaviour by black guillemots (Cepphus grylle), 

razorbills and common guillemots has been reported in tidally energetic sites in the UK 

(Furness et al. 2012; Waggitt & Scott 2014). Zamon (2003) observed that not only do 

rhinoceros auklets (Cerorhinca monocerata) utilise tidal flows of the San Juan 

archipelago, USA to forage but they are significantly more abundant during flooding 

tides than ebbing tides.  
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Several studies have noted foraging in tidal currents by phalacrocoracids in Northe 

America (Zamon 2003; Ladd et al. 2005; Elliott et al. 2008). Further, Wade et al. (2013) 

observed foraging activity within the tidal system of inner Pentland Firth, UK by the 

European shag (Phalacrocorax aristotelis). They noted that diving shags often surfaced 

upstream from the point of submergence indicating swimming against the current.  This 

was interpreted as foraging activity; the increased costs of swimming against a fast-

flowing current would presumably require the individual to offset this by consuming 

more prey. Similar to the behaviour of alcids, Zamon (2003) also noted Phalacrocorax 

species exploiting flooding tides of the San Juan archipelago with reduced activity 

during ebbing tides.  

Gulls and gannets (family: Laridae and Sulidae respectively) have been observed using 

high energy sites to varying degrees and it is likely they profit from increased prey 

concentrations caused by both tidal currents and prey aggregation by deep divers. For 

example, Elliot (2004) found a high abundance of black-legged kittiwakes and northern 

gannets (Morus bassanus) in the Gulf of Corryvreckan (a tidally dominated, high energy 

site on the west coast of Scotland).  

1.4 Animal movements in tidally energetic regions  

As described above, there are numerous reports of use of tidal features by marine 

predators; however, the range of foraging and travelling behaviours observed indicates 

stark differences in the drivers of abundance in these areas. Although the use of these 

regions must impart an energetic benefit for animals found in them, the mechanisms 

underlying the benefit remain unclear. However, it is likely to be based on reduced 

expenditure through current use to aid transit or through increased prey acquisition.  
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1.4.1 Discrete behaviours 

Many fish species have been shown to passively use tidal currents through selective 

tidal stream transport (STST, Forward & Tankersley 2001; Gibson 2003). Metcalfe, 

Arnold and Webb (1990) noted adult plaice (Pleuronectes platessa) migrating into the 

water column during one phase of the tide and then returning to the seabed on the 

reciprocal tide. It was suggested that this represented a strategy for energetically 

efficient migration between feeding and spawning grounds. More commonly, STST is 

observed in larval and juvenile fish and crustacea (Forward & Tankersley 2001; Gibson 

2003) which are less capable of active movement in tidally driven waters. Migratory 

pelagic fish species have also been recorded using tidal currents and channels to aid 

transit. For example, Lacoste (2001) tracked pre-spawning movements of herring 

(Clupea harengus) in the tidally active region of the St. Lawrence estuary, Canada. 

Herring translocated to a tidal channel, repeatedly swam towards spawning grounds 

regardless of the state of tide, gaining more ground during concurrent movement than 

they lost when actively resisting flow. Further, no STST was observed which indicated 

energetically effective use of the channel; no significant energetic deficit was being 

incurred as a result of swimming against the current given the ground being made up by 

swimming with the current.  

While larger marine vertebrates may be more capable of combatting fast-flowing 

currents, several species have also been seen to use tidally driven movement to aid 

transit between foraging patches. de Boer et al. (2014) observed that harbour porpoise 

use of a high energy tidal site in Wales dropped significantly either side of slack water; 

however, the authors consistently observed individuals “hitch-hiking the current” 

through the channel rather than actively swimming at the periphery of the flow. Raya 
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Rey et al. (2010) also noted that transit between nest sites and foraging grounds of 

Magellanic penguins (Spheniscus magellanicus) in the Beagle channel always occurred 

with the prevailing current flow during chick-rearing, when net energy gain is most 

important for successful breeding. Although foraging behaviour in channels subject to 

strong currents would seemingly require animals to actively swim against the direction 

of flow in order to target resident prey, it is possible that individuals may use tidally 

induced hydrodynamic features (e.g. eddies or coastal friction) or static structures to 

counteract the effects of displacement (Liao 2007).  

The leading hypotheses as to why predators may be attracted to these regions are 1) 

increased abundance of prey, and 2) increased vulnerability of prey to capture due to 

turbulent waters (Benjamins et al. 2015).  Theoretically, prey concentrations will 

periodically increase in these sites due to the bottom-up effects of the advection of 

zooplankton from productive, stratified waters of the mid-shelf region (Zamon 2002). 

Coupled with the frequency of STST movement by benthic and demersal fish and active 

reproductive migrations of pelagic fish we could expect prey species to be in high 

abundance throughout the water column. However, it has been argued that the 

behaviour of forage fish and their increased vulnerability due to disorientation and 

advection during high flow periods may be the major driver of tidally mediated 

predator abundance  (Liao 2007; Fauchald 2009; Ferguson, Kingsley & Higdon 2012). 

Multiple tactics to exploit the disorientation of prey in tidal streams have been 

theorised for marine predators. Some hypotheses are based on laboratory and field-

based observations of predatory fish species such as using flow refuges to ambush prey 

(McLaughlin & Noakes 1998) and using turbulent structures to increase closing speeds 

to disoriented prey (Lewis & Pedley 2001). However, for larger predators such as 
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marine mammals and birds, fine-scale behaviours have generally been inferred from 

horizontal and vertical movement strategies and there are few direct observation of 

predator-prey interactions (Zamon 2001). Nevertheless, it seems clear that tidal 

streams are a periodically important foraging habitat for several marine predators.  

1.4.2 Challenges of assessing movement in high flow conditions 

Measuring movement and foraging behaviour in tidal flows is challenging due to the 

relative difficulties of tracking individual animals in fast-flowing environments. As such, 

most studies have been limited to short-term observational studies of animals at the 

surface (e.g. Wade et al. 2013; Lieber et al. 2018).  However, as foraging behaviour 

generally occurs underwater and over larger time-scales, the inferences that can be 

made are limited. The spatial and temporal complexity of these systems in three 

dimensions further compounds the difficulties in measuring fine-scale, sub-surface 

behaviour using only surface observations, whether they be GPS records of horizontal 

movement or direct observations.  

The exploration of these underwater behaviours is hindered by the difficulty in 

measuring 3-dimensional hydrodynamic conditions at these sites while simultaneously 

collecting high-resolution movement data (Lieber et al. 2018). Consequently, most 

studies have relied on modelled predictions or interpolated in-situ measurements in 

concurrence with animal movement observations (both from biologging, observational 

and acoustic surveys). While quantitative analysis can be carried out with these kinds of 

data, mechanistic and empirical frameworks will inevitably overlook fine-scale features 

which, when analogously scaled up, are of evident importance to predators foraging in 

the realms of meso- and macroscale oceanographic structures.  
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A critical component when looking to understand animal movement in tidally energetic 

areas is that movement patterns are necessarily a function of both the locomotion of the 

individual and the flow vector of the immediately surrounding medium (Richardson 

1990; Gaspar et al. 2006). In other words, an observed animal trajectory in a tidally 

influenced habitat is governed by the movements of both animal and the current (Fig. 

2). This becomes problematic when trying to use mechanistic approaches to defining 

animal movements in energetic environments as the movement behaviour is not being 

directly measured by observation alone. Even if we consider discrete behaviours, 

without accounting for oceanographic conditions we omit the information required to 

robustly interpret the animal’s behavioural state (Gaspar et al. 2006). To date, 

researchers have generally not considered this potential issue when investigating 

animal movements in tidally energetic sites. However, in the past 30 years, studies of 

large scale migrations of pelagic species and avian movements have begun to resolve 

this issue.  

Richardson (1990) compiled evidence of ‘drift compensation’ in migratory birds and 

demonstrated that, given that following winds are sporadic or sometimes absent on 

many important migratory corridors, certain species must adjust their orientation and 

speed in order to efficiently travel. This technique was then applied to large scale 

movements of marine animals subjected to ocean currents (e.g. Loughlin 1999; 

McConnell et al. 2002). Gaspar et al. (2006) then suggested, using the example of 

leatherback turtle GPS tracks in the western Atlantic, that neglecting the influence of 

ocean currents could result in misclassifications of discrete behavioural modes. This 

idea has been developed somewhat over the past decade with large scale movements of 

pelagic foragers being adjusted for physical ocean movement in an attempt to tease 
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apart subtleties in behaviours as a response to oceanographic variables (Horton et al. 

2011; Bon et al. 2015; Dodge, Galuardi & Lutcavage 2015; Briscoe et al. 2016; Trudelle 

et al. 2016). However, they are largely hampered in their ability to robustly detect 

small-scale, oceanographically influenced movements given the typically coarse scale of 

hydrodynamic information.  

 

 

Figure 2: Animal movement vs current. In the marine environment, an observed 
movement vector over ground (G) is the vector sum of the animal’s swimming vector (S, 
also known as heading) and the current vector (C). Animals must compensate 
movement in increasing currents by swimming in opposing angles to current direction 
such that in currents moving in the opposite direction to the target destination, animals 
must swim at a 180° orientation to the prevailing flow.  

Recently, environmental data has begun to be collected onboard tags (Boehme et al. 

2009) as well as researchers using oceanographic measurement tools such as ADCPs to 

validate tidal forecasting models (e.g. Murray & Gallego 2017). These developments 

particularly aid the interpretation of diving animal behaviour given that flow conditions 
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of a given area are heterogeneous in both the horizontal and vertical planes. However, 

as described above, these analyses still rely on broad-scale assumptions of fluid 

dynamics and are heavily scale dependant. Consequently, the application to tidal 

streams has remained relatively untouched, given the inherent fine-scale heterogeneity 

of physical features in mid-shelf to coastal waters, the more pronounced effects of 

meteorological conditions on tidal currents in shallow waters and the difficulties of 

measurement therein. 

1.5 Tidal stream energy industry 

The role of marine predators in marine ecosystem dynamics is a vital trophic cascade 

that has a significant effect on ecological resilience (Soule et al. 2003; Hughes et al. 

2005; Heithaus et al. 2008). As a result of the increasing industrialisation of the oceans, 

several populations have been heavily negatively impacted at various scales ranging 

from the oceanic effects of climate change (Moore & Huntington 2008; Gremillet & 

Boulinier 2009) and plastic pollution (Vegter et al. 2014; Nelms et al. 2016)  to more 

localised effects of fisheries by-catch (Lewison et al. 2004) and collisions with shipping 

(Laist et al. 2001) and renewable energy installations (Desholm & Kahlert 2005). 

Effective conservation presents many challenges owing largely to the highly mobile and 

enigmatic behaviour of many species; some of which occupy several ocean basins or 

exist in areas which are difficult to survey (Wilson 2016). Furthermore, the 

establishment of static protected areas may over-simplify the effective conservation of 

several species whose distribution is driven primarily by temporally and spatially 

heterogeneous conditions. While mitigation of anthropogenic degradation is imperative, 

effective strategies to improve population trajectories and re-establish distributions can 

only be achieved with an improved understanding of fundamental vertebrate ecology. 
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Geographical areas of interest to the marine renewable energy industry appear to 

overlap with the geographic ranges of several marine species and it is therefore 

important to assess the potential environmental consequences of the installation and 

operation of the industry. Over the past decade, growing concerns about 

anthropogenically induced climate change has resulted in significant developments of 

the renewable energy industry. Global renewable energy capacity is dominated by 

biomass digestion plants and hydroelectric power, with a rapidly increasing 

contribution from on-shore wind sources (Panwar, Kaushik & Kothari 2011). However, 

offshore wind, wave and tidal power (marine renewables) are an increasingly attractive 

alternative due to the public perception of cosmetic landscape effects of terrestrial 

structures (Green et al. 2016) and the magnitude of wind offshore, and predictability of 

tidal power  (DECC 2011). Tidal stream energy devices typically function in a similar 

way to wind turbines, by converting the kinetic energy of the tidal flow into electricity. 

In general, they have tapered blades attached to a central hub which rotates and 

activates a generator to produce electricity at a rate proportional to the tidal current 

velocity.  

At present, there is a high degree of uncertainty regarding the potential environmental 

impacts of the marine renewable energy industry, particularly when considering the 

abundance of animals which inhabit areas of interest. Predicted impacts vary markedly 

both between and within the renewable industries due to the variation in the physical 

properties and the installation and operational strategies of the devices.  The primary 

concern for marine mammals with regards to offshore wind farms derives primarily 

from the high sound levels as a result of pile driving during the installation phases 

(Bailey et al. 2010; Brandt et al. 2011; Hastie et al. 2015; Russell et al. 2016). 
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Operational phases have been suggested to be relatively benign (Russell et al. 2016) 

with some evidence suggesting that the turbine foundations provide increased foraging 

opportunities through artificial reef effects (Russell et al. 2014). Conversely, although 

some tidal power generation devices do require potentially acoustically damaging 

installation phases, key concerns about the potential impacts of the tidal industry are 

potential collisions between animals and  the rotating blades of tidal turbines during the 

operational phase, with the potential for injury or death (Wilson et al. 2006). Other 

potential impacts include avoidance behaviour leading to displacement from key 

habitats or barrier effects (Hastie et al. 2017).  The concerns may be compounded as 

high flow periods, where the blades are rotating at their fastest, are often associated 

with high densities of marine animals (Williamson et al. 2019).  

 Due to the relative infancy of the tidal industry, there is a general lack of information to 

determine whether the perceived impacts are valid. Further, there is a paucity of data 

on marine predator distributions and behaviour in tidally energetic areas, particularly 

those with operational tidal turbines. To date, only three studies have measured the 

effects of an operational turbine on animal movement and distributions, and these have 

suggested a degree of avoidance. Sparling, Lonergan and McConnell (2017) and Joy et al. 

(2018) used GPS quality tracking data on harbour seals to observe movements around 

the SeaGen Tidal Turbine device in Strangford Lough, Northern Ireland. These studies 

report an overall decrease in density of seals close to the turbine during operation, with 

animals transiting past the turbine at the periphery of the narrow channel as compared 

to their general mid-channel transits in the absence of the turbine. Joy et al. (2018) 

suggested that the observed degree of spatial avoidance could reduce collision risk by 

>90%. In contrast, although Long (2017) observed that the numbers of most bird 
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species in the region of the European Marine Energy Centre (EMEC) Falls of Warness 

tidal turbine test site in Orkney, Scotland reduced during installation phases, they 

recovered to baseline levels during operations. This result suggests that, for bird 

species, the installation phase may cause a larger avoidance effect than the device itself. 

While informative, these studies were limited in spatial and temporal resolution and 

focussed on the effects of single, test turbines with sporadic operations so cannot be 

generalised to large commercial scale devices.  Furthermore, data on the direct physical 

consequences of collisions to animals are lacking, resulting in potentially overly 

conservative approaches of population effects being adopted (Band et al. 2016). As a 

result, a number of attempts to estimate population-level impacts have used theoretical 

models based on animal movement data in the absence of tidal turbines; collision risk 

models (CRMs) or encounter rate models seek to estimate the frequency of interactions, 

and the consequences to individuals and populations as a result of the interactions 

(Wilson et al. 2006; Band et al. 2016). 

Currently, CRMs require information on animal movement to estimate the number of 

times an animal would be predicted to encounter a turbine blade in the absence of 

close-range evasion responses. To date, there are two CRMs widely used to quantify 

collisions between marine mammals and tidal turbines: 1) the Scottish Association for 

Marine Science (SAMS) Research Services Limited (SRSL) Encounter Rate Model 

(Wilson et al. 2006) which estimates the overall rate of collisions between animals and 

turbines using an adaptation to a predator-prey model by Gerritsen and Strickler 

(1977), and 2) the modified Band collision risk model (Band et al. 2016) which 

estimates the risk posed to individual seals during a nominal number of transits 

through a simulated turbine.  There is, however, very few data to inform the potential 
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for fine-scale avoidance behaviour (Wilson et al. 2014a; Bald et al. 2015), so estimates 

from these models are often un-realistic. General scalars are included in these models to 

account for an assumed near-field evasion and large-scale avoidance of animals 

however, they are self-admittedly non-informative given the lack of data to support 

them. Given the hydrodynamic performance of many diving animals in these regions it 

is likely that they are capable of evading turbine blades at ranges closer than previously 

used tracking techniques have been capable of resolving. Future studies will attempt to 

rectify this issue using high resolution, near field acoustic tracking (Hastie et al. 2019a; 

Hastie et al. 2019b) but presently, large scale avoidance measurement remains the only 

tool to assess behavioural responses to tidal turbines.  

Recent attempts to measure avoidance behaviour of marine mammals to operational 

tidal turbines are limited.  Sparling, Lonergan and McConnell (2017) provided the first 

investigation of the effects of operating tidal turbines on the behaviour of marine 

mammals. While no overt barrier effects were reported, the authors noted that harbour 

seals adjusted their transit frequency and behaviour in response to turbine operations 

and provided the first evidence of potential avoidance behaviour. Similarly, Joy et al. 

(2018) used the same data to suggest there was an overall reduction in collision risk as 

a response to the presence of an operating tidal turbine and an avoidance response 

apparent up to 200 metres from the turbine location. Hastie et al. (2017) showed 

similar avoidance patterns by tagged harbour seals to playbacks of sounds of a tidal 

turbine indicating that avoidance behaviour may partly be a result of auditory cues. 

Carlson et al. (2014) and Copping et al. (2017) were the first to assess the potential 

physical ramifications of tidal turbine collision on killer whales (Orcinus orca) and 

harbour seals respectively. Through computational modelling of soft tissue trauma as a 
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result of ‘worst-case scenario’ interactions, neither study found concrete evidence of 

likely fatality however, the effect on harbour seals remained reasonably unclear.  

In order for the industry to develop in an environmentally sound manner, filling the key 

data gaps addressed in this section is essential. More robust information on movements, 

dive behaviour, responses to operational devices and arrays, and the consequences of 

physical collisions with these devices are needed. Moreover, these data need to be 

applied in frameworks which inform mitigation and allow the industry to make key 

planning decisions which do not significantly impact populations. 

1.6 PhD Objectives 

The objective of this thesis is to understand the movement and spatial ecology of 

harbour seals in tidally energetic areas with a specific focus on potential interactions 

with tidal turbines. I investigate the importance of these ecosystems for harbour seals 

and measure the potential of an operational tidal energy turbine array.  

1.6.1 Harbour seals of the UK: status and threats 

Harbour seals are the most widely distributed pinniped species, common in the 

temperate and sub-polar waters of the North Atlantic and North Pacific (Perrin, Würsig 

& Thewissen 2009). Natal site-fidelity has resulted in five genetically and geographically 

distinct subspecies; the European population being constituted solely of Phoca vitulina 

vitulina (Stanley et al. 1996). The UK harbour seal population constitutes ~30% of the 

entire European stock (~80,000 individuals), of which 80% breed and moult in Scotland 

(Duck et al. 2011; Thompson et al. 2019).  
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Inter-regional differences in population trends within Europe has resulted in harbour 

seals being listed in Annex II of the EU Habitats Directive stating the necessity to 

designate special areas of conservation (SAC) to establish and maintain favourable 

conservation statuses. As a member state, the UK has followed this directive by the 

establishment of nine designated harbour seal SACs. Additional protection is provided 

in the UK under the Conservation of Seals Act 1970 (England and Wales), the Marine Act 

2010 (Scotland) and the Wildlife Order 1985 (N. Ireland). To ease management and 

trend reporting, the entire UK population is divided into 15 seal management units 

based on the spatial distribution of breeding haulout sites (Thompson et al. 2019; Fig. 

3). In recent decades several of these management units have shown rapid increases in 

population size; for example, counts of harbour seals in South-east England have 

increased exponentially (2.8% per annum) since the culmination of the PDV epidemic of 

2002 (Thompson et al. 2019). Conversely, some populations, such the North Coast and 

Orkney seal management unit, are undergoing steady declines the causes of which are 

still uncertain (Thompson et al. 2019).  

Several proximate causes have been postulated for local harbour seal declines in the UK 

such as competition between and predation pressure from the rapidly growing grey seal 

(Halicheorus grypus) population (Brownlow et al. 2016; Thomas et al. 2019), predation 

pressure from killer whales (Bolt et al. 2009), persistent effects from population crashes 

due to phocine distemper virus epidemics (Thompson et al. 2019) and exposure to 

harmful algal toxins such as domoic acid and saxitoxins  (Jensen et al. 2015). While no 

single event has yet been linked to the declines, it is likely that a combination of 

pressures has led to deleterious effects being felt at the population level. Given the 

protection required for Annex II species, these declines require any local anthropogenic 
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activity to be exhaustively monitored and assessed to determine whether 

environmental impacts may exacerbate the declines, at which point mitigation 

measures must be pursued or new ventures abandoned. This has created a paradoxical 

situation as the UK government has pledged to offset carbon emissions by shifting 

energy generation towards renewable sources such as wind and tidal, but in the process 

have identified that these ventures can potentially serve to negatively affect local 

ecosystems (including harbour seals) through long and short term, direct and indirect 

impacts if not mitigated (Boehlert & Gill 2010; Wright 2014).  

Figure 3 Seal management units of the United Kingdom (Thompson et al. 2019)   

One such issue exists in the Pentland Firth, Scotland; the fast tidal flows in the region 

have been identified as a potential source for commercial scale tidal energy extraction 

however, the leased development site overlaps with the local population of harbour 

seals which has been undergoing significant declines in recent years (Jones et al. 2017; 
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Thompson et al. 2019). The concerns of direct and indirect negative effects from 

collisions (Wilson et al. 2006) and barrier effects reducing accessibility to key foraging 

sites (Sparling, Lonergan & McConnell 2017) render further investigation into this site 

crucial as the development progresses. Under the guidance of the OSPAR Convention 

EcoQO management actions are required if local populations decline by more than 10% 

over a decade (OSPAR 2009). Using potential biological removal as a tool to estimate the 

maximum number of individuals available for removal through anthropogenic action 

(direct and indirect), research programmes have identified that the North Coast and 

Orkney SMU can afford no additional mortality sources if the 10% per decade threshold 

is to be achieved (SCOS 2017; Arso-Civil et al. 2018). Therefore, any identified threat 

posed by the turbine array development could curb further licensing and cause 

significant environmental and economic difficulties.  

1.6.2 The Pentland Firth: study site and project plan 

The Pentland Firth is a body of water separating mainland Scotland from the Orkney 

Islands. It is characterised by strong tidal currents created by geographical bottlenecks 

through the channel and around small islands, producing currents in excess of 5 m.s-1 

during peak, spring flood and ebb tides; speeds which exceed the maximum burst 

speeds of the harbour seals which inhabit the area (Williams & Kooyman 1986; 

Thompson, Hiby & Fedak 1992). Between May and August, approximately 85 harbour 

seals haul out to breed and moult at sites along the north coast of the mainland, and 

exhibit at-sea distributions primarily within the Pentland Firth (Jones et al. 2017). Due 

to the significant energy resource produced by the tidal currents, a lease site has been 

consented by the Scottish Government and developed by SIMEC Atlantis Energy Ltd. 

which represents the world’s first commercial sized tidal energy array (MeyGen 2017). 
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However, uncertainty around it’s environmental impact is a cause for concern given the 

overlap with the geographic range of the declining local harbour seal population.  

Given the lack of information on the potential environmental risks posed by large arrays 

such as this, consenting has progressed under the scientific knowledge generated from 

modelling approaches and investigation of the effects of single, test devices (Wright 

2014; Sparling, Lonergan & McConnell 2017; Joy et al. 2018). This is a necessity in lieu 

of large scale arrays however, with installation of scaled up deployments, comes the 

opportunity and the requirement to assess the effects to the local ecosystem. The 

Pentland Firth therefore provides a unique opportunity to study both the effects of 

operational renewable energy devices on harbour seals and how these animals navigate 

a fast-flowing, dynamic system to achieve energetically efficient movement; 

complimentary investigations which could yield information key for conservation and 

elucidate nuances of movement ecology in dynamic systems, hitherto undocumented. 

In Chapter 2, I therefore explore the movement ecology of seals in relation to their geo-

spatial movements and swimming behaviour and quantify the relative use of these to 

understand how seals forage in dynamic environments. The aim of this work is to 

further the biological knowledge of the animals’ movement patterns in relation to 

environmental conditions, and in so doing aid in our interpretation of potential threats 

to the animal by, or indeed their resilience to, proposed anthropogenic activity. 

Specifically, I tagged Fourty-eight harbour seals with GPS devices over 4 deployments. I 

apply hidden-Markov models to geo-referenced movement parameters as well as tidal 

current vector corrected values to compare the differences between geo-centric 

movement and swimming behaviour. I then use environmental covariates to describe 
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behavioural state-switching and to understand fine-scale, horizontal movement in the 

context of tidal currents.  

In Chapter 3, I quantify seal dive behaviour and present variations in water column use 

as a function of tidal currents, seasons and a range of other environmental covariates. I 

also compare the dive data to the behavioural data from Chapter 2 and make a series of 

inferences about dive function. Similarly to chapter 2, this work aims to both clarify how 

animals use diving to navigate an exploit fast flowing systems and how their depth use 

could inform their susceptibility to tidal turbine arrays. 

In Chapter 4, I use cutting-edge modelling techniques to measure the impacts of the 

world’s first commercial-scale tidal turbine array on the at-sea distributions of harbour 

seals. I use both the presence of the turbines and their operational state to evaluate 

potential long-term and short-term effects of tidal turbine arrays. This work directly 

aims to inform the tidal energy industry on best practices by demonstrating how 

animals may react to their devices. 

In Chapter 5, I develop a novel experimental protocol and investigate the effects of 

collisions between seals and tidal turbine blades. This is designed to provide an 

empirical measure of threshold collision speeds, above which are likely to be fatal; 

implications for collision risk models and the tidal energy industry are discussed.  

I will finally discuss the major implications of this work in the context of future 

directions in marine research and industry. Together, this thesis provides detailed 

insights into harbour seal behaviour, and aims to advance the field of movement 

ecology . It will also inform how researchers seeking to study these dynamic habitats 

collect and interpret data in the future. Finally, it will serve as a benchmark for future 
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projects in these increasingly commercially important environments and provide 

baseline information on the ecology of a threatened population to ensure future 

development and industrialisation of coastal ecosystems is carried out sustainably.   
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Intraspecific foraging plasticity of a predator in a highly 
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“You mean the tidal force controls your actions?” 

“Partially, but it also obeys your commands”  
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2.1 Abstract 

Quantifying and describing animal behaviour allows us to understand the ways in which 

environmental drivers affect energy acquisition. With the aid of new technologies and 

analytical techniques, the interpretation of discrete behavioural traits has become 

easier at the individual and population levels. However, characterising behaviour in 

dynamic ecosystems requires more complex analyses than simply quantifying observed 

geocentric movement. In this study, GPS quality tracking data was combined with 

model-derived hourly estimates of tidal current vectors to quantify the differences 

between geocentric movement and swimming behaviour of harbour seals in a tidally 

energetic habitat. I used discrete-time Hidden Markov Models (HMMs) to identify 

behavioural states for both perspectives of movement (geo-spatial and hydro-spatial) 

and included hydrodynamic covariate effects to estimate the probabilities that an 

animal would transition from one state to another. Three functional behavioural states 

were identified; localised, dispersed, and travelling which were described by different 

distributions of relative step-length and turning angles. A significant difference in the 

activity budgets of the seals between the two perspectives was identified, including a 

higher percentage of time spent foraging from 52.1% (s.d. 11.2%) to 57.5% (s.d. 14.9%) 

when using a hydro-spatial as opposed to geo-spatial perspective. Covariate effects of 

tidal currents revealed a high degree of foraging plasticity which showed to what extent 

seals could remain resident, were forced to travel, or drifted with prevailing currents. 

This study presents, for the first time, how activity budgets for animals in dynamic 

marine environments, can potentially be misclassified when taking a single perspective 

of movement into account. The plasticity in behaviour also supports the assertion that 

harbour seal populations in the UK are predominantly made up of generalist predators, 

capable of responding to significant changes in oceanographic conditions.  
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2.2 Introduction 

The importance of oceanographic drivers of marine animal behaviour is well 

established for multiple taxa (McConnell et al. 2002; Gaspar et al. 2006; Bost et al. 2009; 

Grecian et al. 2016; Hastie et al. 2016; Abrahms et al. 2018). Features ranging from 

ocean currents at the scales of kilometres to eddies and tidal boils at scales of tens of 

metres have been linked to foraging activity (Zamon 2001; Mann & Lazier 2005; 

Benjamins et al. 2015; Grecian et al. 2016).  Highly dynamic, tidally influenced marine 

ecosystems provide a series of relatively unique challenges, such as potentially high 

transport costs due to water currents, and benefits, such as spatially predictable prey 

patches (Genin 2004; Gómez-Gutiérrez, Martínez-Gómez & Robinson 2007). Foraging 

predators must therefore seek to balance these contrasting features to forage 

successfully and maintain suitable fitness for growth and reproduction.     

The development of animal-borne tags has provided researchers with the means of 

collecting high-resolution movement data for many marine species (Cooke et al. 2004; 

Carter et al. 2016). These data can be compared to environmental conditions to answer 

questions about drivers of distribution and population dynamics (Zucchini, MacDonald 

& Langrock 2009; Morales et al. 2010). In recent years, growth in the field of movement 

ecology has also given rise to statistically robust methods of inferring foraging 

behaviour from telemetry and observational data (Morales et al. 2004; Jonsen, 

Flemming & Myers 2005; Langrock et al. 2012b; Auger-Méthé et al. 2017; Patterson et 

al. 2017).  Typically, movement tracks are partitioned into discrete states which are 

related to underlying behaviours. The most common sets of inferred states for marine 

species are foraging/resting (characterised by high residence times and low directional 

persistence) and travelling (characterised by low residence times and high directional 
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persistence (Zucchini, MacDonald & Langrock 2009; Carter et al. 2016). Studies have 

also investigated drivers that lead to animals switching behavioural states by measuring 

the effects of intrinsic and extrinsic covariates on the probability of transitioning 

between states, such that contemporaneous environmental conditions are now often 

explicitly modelled as independent variables (Patterson et al. 2009; Dragon et al. 2012; 

Pinto, Spezia & Freckleton 2016). Although studies have demonstrated environmental 

effects on behavioural transitioning (Towner et al. 2016; Leos-Barajas et al. 2017b; 

Grecian et al. 2018), few have investigated the effects of environmental covariates on 

the state determination itself which has potentially led to a restricted view of how 

behaviours can develop and adapt over different time-scales (McClintock & Michelot 

2017).  

More recently, state-space models and analogous frameworks have been refined to 

allow the incorporation of environmental covariate effects on the probability 

distributions which relate to the movement characteristics of the individual  (Auger-

Méthé et al. 2017; McClintock & Michelot 2017). However, in dynamic environments, 

the interpretation of the behavioural mechanisms underlying movements is 

complicated due to the animal’s observed movement pattern being necessarily a 

function of both the individual’s movement and the movement of the environment 

immediately surrounding it (Richardson 1990; Gaspar et al. 2006). Consequently, key 

signals which are traditionally used to inform behavioural classification in marine 

animal movements may be misinterpreted, which may give rise to inaccuracies in 

behavioural classification and the identification of foraging habitats. 

The measured trajectory of an animal is a vector sum of the speed and orientation of 

propulsive movement and the speed and orientation of its immediately surrounding 
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medium (Richardson 1990). This often results in animals adjusting their movement 

through air or water to maximise energetic efficiency (Able 1977; Weimerskirch et al. 

2000; Wakefield et al. 2009; Gaspar et al. 2012; Gutierrez Illan et al. 2017) or exploit 

resources within physically energetic regions (Gaspar et al. 2006; Della Penna et al. 

2015). Gaspar et al. (2006) first described the mismatch between inferences of 

behavioural data for a marine species with the comparison of geo-referenced tracks and 

the swimming trajectories of a leatherback turtle in the North Atlantic. It was noted that 

simply using geo-referenced tracks to detect periods of high residence time produced 

an underestimate of foraging effort in faster moving currents. To date, current 

correction has not been explicitly resolved for species in dynamic, micro-scale features 

such as tidally forced currents, but several authors have caveated their inferences with 

this issue (Jonsen, Myers & James 2007; Bailey et al. 2008; McClintock et al. 2012). 

Consequently, our understanding of the foraging strategies employed by species in 

dynamic marine ecosystems is limited. 

Harbour seals have been shown to exhibit highly localised at-sea distributions in tidally 

energetic channels, potentially exploiting fine-scale hydrodynamic features to forage on 

predictable prey sources (Hastie et al. 2016; Jones et al. 2017). In many cases, 

consistency in the use of such tidal channels has been shown to be linked to tidal state 

(Zamon 2001; Jones et al. 2017); however, some populations have been noted foraging 

in a range of energetic conditions. Tidal features in these regions have a clear influence 

on harbour seal foraging but how individuals adjust to varying degrees of tidal currents 

to efficiently forage remains unclear.   

In the present study, the foraging strategies of harbour seals in a highly dynamic tidal 

environment were investigated.  Using both geo-referenced locations and current 
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corrected (hydro-referenced) locations, the disparity between activity budgets of the 

two processing methods was quantified to gain insights into the foraging strategies of 

seals and the potential links between tidal currents and behaviour.  Specifically, harbour 

seal telemetry data collected within the Pentland Firth, on the north coast of Scotland 

was analysed within a movement modelling framework (a discrete-time hidden Markov 

model; HMM).  

2.3 Methods 

2.3.1 Study Site: The Pentland Firth  

The Pentland Firth is a body of water separating mainland Scotland from the Orkney 

Islands. It is characterised by strong tidal currents created by geographical bottlenecks 

through the channel and around small islands, producing currents in excess of 5 m.s-1 

during peak, spring flood and ebb tides (Fig. 1). Water depths are less than 85 metres 

and the benthos is composed mainly of shells, sand and gravel (Fig. 2). Between May 

and August, approximately 85 harbour seals haul out to breed and moult at sites along 

the north coast of the mainland, and exhibit at-sea distributions primarily within the 

Pentland Firth (Jones et al. 2017). The HMM framework was selected as it has been 

demonstrated to be a robust means of extracting behavioural state-switching for GPS 

derived movement data when compared to other methods such as first-passage time or 

kernel density estimation (Dragon et al. 2012; Bennison et al. 2018).   
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Figure 1  Mean annual tidal flow speed for the Pentland Firth and Orkney Waters. 
Mean speeds are provided for both spring tides (top panel) and neap tides (bottom 
panel). Flow speed estimates were generated from the Pentland Firth and Orkney 
Waters sub-domain of the Scottish Shelf Model (Wolf et al. 2016). 
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2.3.2 Telemetry Data 

Fastloc® GPS/GSM tags (SMRU Instrumentation) were deployed on 14 harbour seals in 

2011 and Fastloc® GPS/UHF tags (Pathtrack Ltd.) were deployed on 40 harbour seals 

over 4 deployments in 2016, 2017 and 2018 in the Pentland Firth, Scotland (Table 1, 

Fig. 2).  All seals were caught on or close to haulout sites using tangle nets in the water 

or hoop-nets on land. All Seals were weighed and then anesthetised with intravenously 

administered Zoletil100® at a dose rate of 0.005 mg.kg-1 prior to further handling 

(Sharples et al. 2012). GPS tags were glued to the fur at the back of the neck using 

Loctite 422TM cyanoacrylate adhesive. All capture and handling protocols were carried 

out under UK Home Office licences #60/4009 and #70/7806 in accordance with the 

Animals Scientific Procedures Act 1986. 

Both GPS tag types collected data at irregular intervals; GPS/GSM tags attempt to record 

a position every 5 minutes while the GPS/UHF tags attempt to record a position at a 

maximum of once every 3 minutes. GPS/GSM tags transmitted data via the Global 

System for Mobile Communication (GSM) network when the seal came within signal 

coverage (McConnell et al. 2004).  UHF tags collected and stored data on-board the tag 

and transmitted to UHF base stations placed overlooking haulout sites along the coast 

once the tag had been dry for 30 minutes (Hastie et al. 2016). In addition, individual at-

sea locations could be broadcast if a seal surfaced within line-of-sight of a base-station. 

GPS locations with large errors were identified and removed using a filter based on 

number of satellites and thresholds of residual error (Russell et al. 2015). Further 

location uncertainty was partially resolved by measuring the estimated swim speed, 

assuming straight line movement, between sequential geo-referenced locations and 

removing any location demonstrating swim speeds greater than 2 m.s-1 after maximum 
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estimated assistance from currents was taken into account. The 2 m.s-1 threshold was 

used as the assumed maximum, sustained speed of a harbour seal (Williams & Kooyman 

1986; Thompson, Hiby & Fedak 1992; Hind & Gurney 1997; Gallon et al. 2007). The 

speed threshold removed 0.07% (n=156) of locations. Haulout behaviour for GPS/GSM 

tags were identified on-board the tag using a wet/dry sensor; seals were assumed 

hauled out when the tag was dry for 10 minutes and the haul out period ended when 

the sensor had been wet for 40 seconds. Haulout behaviour for GPS/UHF tags was 

identified using a pre-scheduled temporal threshold for location acquisition; once the 

tag was dry, five consecutive locations were collected at precisely 3 minute intervals 

after which subsequent location intervals were collected at precisely 30 minute 

intervals until the wet/dry sensor was wet for 15 seconds. Haul out data were removed 

from any further analyses as the primary focus of this study was to observe at-sea 

movements.
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Table 1 Capture details for the all seals telemetry tagged in this study.  All animals were qualitatively assessed as being of 
breeding age.  Animals tagged in 2011 were fit with SMRU Instrumentation GPS-GSM tags which include embedded time-depth 
recorders so dual tagging was not necessary. 

TAGGING DATE CAPTURE LOCATION SEX GPS BODY NUMBER TDR BODY NUMBER LENGTH (CM) AXIAL GIRTH (CM) MASS (KG) 

29-MAR-11 Gills Bay F pv24-598-11 NA 136 114 84.6 
29-MAR-11 Gills Bay F pv24-580-11 NA 146 114 89 
30-MAR-11 Brough Bay M pv24-165-11 NA 143 112 90.6 
30-MAR-11 Brough Bay M pv24-541-11 NA 153 118 96.8 
30-MAR-11 Brough Bay M pv24-394-11 NA 128 89.5 49.6 
30-MAR-11 Brough Bay M pv24-590-11 NA 133 92 49.8 
31-MAR-11 Brough Bay M pv24-x625-11 NA 151 114 98.6 
31-MAR-11 Brough Bay M pv24-622-11 NA 151 111 91.4 
24-SEP-11 Scotland's Haven M pv24-155-11 NA 154 109 95 
24-SEP-11 Scotland's Haven M pv24-112-11 NA 156 122 92.8 
24-SEP-11 Castle Mey M pv24-148-11 NA 143 126 76.2 
25-SEP-11 Scotland's Haven M pv24-151-11 NA 140 117 84.8 
26-SEP-11 Gills Bay F pv24-150-11 NA 136 119 86.6 
26-SEP-11 Gills Bay F pv24-153-11 NA 144 100 72 
28-SEP-16 Brough Bay M 65254 51031 153 110 89.2 
29-SEP-16 Brough Bay F 65231 51019 110 80 33.6 
30-SEP-16 Gills Bay F 65199 51025 148 110 91.6 
30-SEP-16 Scotland's Haven M 65191 51011 144 110 92.6 
01-OCT-16 Scotland's Haven M 65201 51009 115 104 85 
01-OCT-16 Scotland's Haven M 65334 51020 165 116 106.2 
01-OCT-16 Scotland's Haven M 65246 51030 155 96 75.4 
01-OCT-16 Scotland's Haven M 65242 51026 147 116 100.2 
02-OCT-16 Scotland's Haven M 65446 51022 154 115 93 
02-OCT-16 Scotland's Haven M 65239 51029 153 114 102 
02-APR-17 Ham M 65257 51104 149 108 87 
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TAGGING DATE CAPTURE LOCATION SEX GPS BODY NUMBER TDR BODY NUMBER LENGTH (CM) AXIAL GIRTH (CM) MASS (KG) 

02-APR-17 Ham M 65500 51120 147 101 81.4 
02-APR-17 Ham M 65243 51105 151 110 92.6 
03-APR-17 Harrow Harbour F 65507 51109 147 112 103.4 
03-APR-17 Harrow Harbour M 65513 51111 137 99 73.6 
07-APR-17 Harrow Harbour F 65195 51101 142 115 103.2 
07-APR-17 Brough Bay F 65502 51119 143 121 110.7 
07-APR-17 Harrow Harbour M 65504 51100 159 116 112 
07-APR-17 Ham M 65499 51112 156 112 108 
08-APR-17 Harrow Harbour F 65506 51114 146 109 86.4 
08-APR-17 Ham M 65505 51116 148 99 74.6 
09-APR-17 Harrow Harbour F 65496 51115 142 105 88.4 
13-APR-17 Gills Bay F 65503 51108 146 106 97.6 
13-APR-17 Gills Bay F 65512 51117 135 103 76 
16-APR-18 Brough Bay F 64315 51129 151 108 92.7 
17-APR-18 Brough Bay F 64313 51128 139 118 93.9 
17-APR-18 Brough Bay F 64312 51134 151 111 97.1 
18-APR-18 Castle Mey F 64318 51125 138 104 88.5 
18-APR-18 Ham M 64304 51124 143 99 76.9 
18-APR-18 Ham M 64305 51130 153 115 101.7 
19-APR-18 Castle Mey F 64321 51131 135 102 77.7 
19-APR-18 Castle Mey F 64308 51122 145 104 84.3 
20-APR-18 Brough Bay M 64309 51121 140 105 78.7 
21-APR-18 Gills Bay F 64316 51110 138 103 85.9 
21-APR-18 Gills Bay F 64301 51132 137 103 83.1 
21-APR-18 Gills Bay F 64300 51102 142 111 93.1 
21-APR-18 Gills Bay F 64303 51136 135 102 77.7 
22-APR-18 Gills Bay M 64320 51127 155 112 101.9 
22-APR-18 Gills Bay M 64314 51126 145 105 86.7 
24-APR-18 Brough Bay M 64302 51118 153 112 90.1 
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Figure 2 All GPS data collected for harbour seals in the Pentland Firth. (top panel) 
Cleaned tracks from 14 harbour seals instrumented with GSM-GPS tags between 2011-
2012 and (bottom panel) 40 UHF-GPS tags between 2016-2018. Bathymetric data 
represents depth at lowest astronomical tide and were downloaded from EMODnet 
Digital bathymetry database (EMODnet 2016). 
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2.3.3 Hydrodynamic Data 

Data on estimated, depth averaged current vectors (velocity and direction) were 

extracted from a Finite Volume Community Ocean Model (FVCOM) of the Pentland Firth 

and Orkney Waters; a sub-domain of the Marine Scotland Scottish Shelf Model which 

produces hydrodynamic projections for Scotland’s coastal waters. The model simulates 

hydrodynamic conditions within its boundaries, on an unstructured grid for a given 

date range based on bathymetric data, forcing data and calibration data. As an 

unstructured grid, the resolution is non-uniform throughout its range. Maximum 

resolution (150 metres between vertices of triangular elements) occurs in the inner 

sound of the Pentland Firth and becomes coarser in a broadly analogous way to the 

densities estimated by the at-sea behaviour of tagged seals in this study rendering it 

ideal for use with this telemetry data set (Fig. 1, Appendix I). Horizontal resolution is 

largely based on the extent and resolution of the bathymetric and geographical data. 

Grid-meshes were generated so as to ensure the grid sizes varied smoothly; resolution 

in areas towards the northern periphery were 2.5 – 3 km whereas within the Pentland 

Firth and Orkney waters the grid-cells rarely exceed 250 m. Depth averaging is carried 

out over 10, equally spaced, binned depths throughout the water column, resulting in 

coarser vertical resolution in deeper areas. However, flow rate is more vertically 

uniform in deeper areas given boundary conditions representing smaller proportions of 

the water column so coarser resolution is more defensible.  

The numerical model has been validated using existing Acoustic Doppler Current 

Profiler (ADCP) data collected by the British Oceanographic Data Centre (BODC; Baston 

and Harris, 2011) and the Environmental Research Institute (ERI) in 2001 and 2009 

respectively (Wolf et al. 2016). Further, Price et al. (2016) and Murray & Gallego (2017) 
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calibrated the model using available contemporary tidal forcing, temperature and 

salinity data from the National Oceanography Centre Atlantic Margin Model and 

meteorological forcing data (i.e. wind) and wave data from the Met Office. 

The baseline model was acquired, with given hydrodynamic covariate estimates at 

hourly averages for a calendar year. The number of unique grid cells used by the seals 

was calculated as the number of unique grid-cells that raw GPS location fixes from the 

seal tags were recorded in. The hydrodynamic conditions for each of these grid cells 

were estimated for the date-range of the seal tag data via a harmonic analysis whereby 

the tidal peaks from the base-line model were matched to tide height data during the 

seal telemetry deployment. Hydrodynamic estimates were computed for each hourly 

time-step and then the model element and the hourly time-step in which the data point 

appeared were matched to produce the estimated velocity vector at each seal GPS 

location. Hydrodynamic data analysis and extraction was carried out in MATLAB (V 

9.3.0.7). 

2.3.4 Current Correction 

To estimate seal swim direction and speed, current correction was carried out; the 

observed velocity of a seal’s movement (wg) is necessarily a sum of the seal’s swim 

vector through the water (ws) and the water movement vector (wc) (Gaspar et al. 2006) 

such that re-arranging allows assessment of the vector of the animal through hydro-

space (Eq. 1) giving: 

(𝑢𝑠
𝑣𝑠

) =  (𝑢𝑔
𝑣𝑔

) − (𝑢𝑐
𝑣𝑐

)     (Eq. 1) 
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Northerly and easterly current velocities, which were estimated from the hydrodynamic 

model, were used to calculate depth averaged current speed and direction for each seal 

location at the point of departure. Current speed was then calculated using the standard 

vector formula (Eq. 2): 

 

𝑣𝑐  =  √𝑈2 + 𝑉2
        (Eq. 2) 

 

Where U is easterly current speed and V is northerly current speed. Current direction 

was computed through the circular trigonometric equation (Eq. 3): 

θc = (arctan (
U

v
,

V

v
)) ∗

180

π
    (Eq. 3) 

Which calculates flow orientation on the scale of -180˚ to +180˚. Negative values are 

then adjusted to represent geostrophic orientation where -1˚ = 359˚, -2˚=358˚…….-180˚ 

= 180˚. Seal swim speeds (vs) were calculated as distance over time for sequential raw, 

cleaned GPS location fixes. Distance was calculated using the Haversine formula (Eq. 4): 

𝑑 = 𝑟 ∙  𝛷      (Eq. 4) 

Where d is the great circle distance between two lat/lon locations, r is the radius of the 

Earth (usually given as the mean radius, 6,371 km) and 𝛷 is the central angle which in 

turn is calculated using the trigonometric equation (Eq. 5): 

𝛷 = 2 ⋅ arctan(√𝑎, √1 − 𝑎)    (Eq. 5) 

Where a is given as: 
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a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)  (Eq. 6) 

 Swim direction was calculated using the forward azimuth formula (Eq. 7): 

𝜃𝑠 = arctan(sin 𝛥𝜆 ⋅ cos 𝜑2 cos 𝜑1 ⋅ sin 𝜑2 − sin 𝜑1 ⋅ cos 𝜑2 ⋅ cos 𝛥𝜆)  (Eq. 7) 

A current corrected vector (Vs) was then produced by subtracting the current vector 

(Vc = vc, θc ) from the seal movement vector (Vg = vg, θg) for each time step, as per 

Gaspar et al. (2006). Vs ultimately describes the direction and speed a seal would have 

to swim in a given current to produce the measured movement track over ground and is 

demonstrated in figure 3. 

 

Figure 3 Animal heading velocity and current flow velocity. An animal’s track vector 
(Vg), i.e. velocity over ground is the vector sum of its swim vector (Vs) and the current 
vector (Vc). The dashed blue line represents the current flow velocity at the point of 
departure to provide temporal context, however, is the same magnitude and direction 
as the solid blue line. 

Location data were finally interpolated to a constant 15-minute time-step due to the 

requirement of regular intervals for HMM fitting. Several interpolation intervals were 

tested to establish the minimum reasonable value which did not violate model 

assumptions but was robust to the fact that several data gaps occurred within the data 
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and data resolution differed between the two tag types. The final interpolation value 

was determined by the comparatively longer median inter-location interval of the GSM 

tags compared to the UHF tags (Fig. 4).  Data were separated into bouts of locations 

whereby a new bout was specified if the observed location frequency was ≥ 45 minutes. 

Interpolated locations between these points were flagged as ‘unreliable’ and were 

excluded from further analysis, post-hoc. Tag durations ranged from 13 – 119 days 

(median: 72 days); tags with <28 days of data were removed from the study after the 7-

day period immediately following deployment was removed. This ensured (a) a 

comparable sample size was used to ensure state frequency could be reliably linked 

between individuals (Zuur, Ieno & Elphick 2010) and (b) representative behavioural 

data was used, discounting any potentially abnormal post-capture effects (McKnight 

2011).  
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Figure 4 Time intervals between filtered GPS locations. Histograms are shown for 
GSM-GPS tags (below) and UHF-GPS tags (above). Dashed red lines indicate median 
values. Peaks at >30 minutes indicate extent of haulout behaviour and data gaps.  

2.3.5 Hidden Markov Model (HMM) 

Separate discrete time, 3-state, multivariate HMMs were developed for both the hydro-

spatial corrected movement and geo-spatial movement from the regularised tracking 
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data using the momentuHMM package (McClintock & Michelot 2017). Models were 

parametrised using the movement metrics step length (st, the Euclidian distance 

travelled in one time-step) and bearing (φ, turning angle in radians between 

consecutive locations). Discrete states were estimated in the model through 

identification of modes in the distributions of the movement metrics. Each location was 

assigned to one of three latent states: zt ∈ [Tr, Fe,  Fd]. Three states were used rather 

than the widely used 2-state models (traditionally inferring travelling and 

foraging/resting) to ensure enough flexibility in the model to allow a variety of 

movement behaviours, that may not be apparent in more static environments, to be 

described. For example, animals may exhibit larger step lengths during area-restricted 

search behaviour in higher flow rates rendering separation of travelling and putative 

foraging more difficult. Following previous studies  (Jonsen, Flemming & Myers 2005; 

McClintock et al. 2012; Russell et al. 2015) step length followed a gamma distribution 

(sn,t|zn,t = i ~  Gamma(μn,i/σn,I, σn,i)) where the state-specific mean step and shape parameter 

were greater than 0. A circular distribution, the VonMises distribution, was assumed for 

bearing (φ) (Langrock et al. 2012).  

To maximise the likelihood function through exploration of the parameter space, initial 

distributions are required (mean and standard deviations for each parameter) for 

model estimation (Zucchini, MacDonald & Langrock 2009). Model convergence does not 

necessarily require the selection of meaningful initial parameter values. However, 

resulting state-dependent distributions can be heavily influenced by these values. The 

state process of the model is initiated by probabilistically sampling the unobserved 

state at the first time-step to be one of n possible states (3 possibilities in the present 

case) driven by the initial parameter values provided. Establishing starting values for 
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the parameter estimates was therefore conducted using an iterative process due to the 

possibility of a local rather than global maximum likelihood being reached if poor 

starting values were provided. Starting parameter means and standard deviations were 

a random combination of between 0-6.3 km for step length and between 0-π radians for 

turn angle, for each iteration. The models were run 50 times with different, randomly 

selected combinations of values, and the likelihood functions were compared to 

establish the global maximum likelihood which was estimated using the forward 

algorithm.  

Given the apparent inter-individual variation in spatial distributions, each model was 

run separately for each individual. Resulting probability distributions were graphically 

compared to assess whether pronounced individual variability was evident. Variation in 

the tidal dynamics of the study site was also likely to affect the parameter estimation 

and transition probabilities, and this approach allowed for the assessment of any inter-

individual variations in behaviour. State sequences were then decoded using the Viterbi 

algorithm and assigned to the original time-intervals of the interpolated data to 

determine activity budgets. 

Previous studies have described challenges associated with separating resting and 

foraging behaviour in two-dimensional models of movement. For example, harbour 

seals have been observed to spend over 5% of their time resting at sea (Russell et al. 

2015).  The limited availability of concurrent dive data to inform these assignments 

resulted in the inability to include multiple data streams to augment assumptions made 

purely from step length and turn angle measurements. Available dive data were, 

however, extracted for all intervals for which surface locations were known; i.e. when 

the beginning and the end of a dive had contemporaneous GPS locations. A comparison 
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of the model with the dive data was conducted and the results are presented in Chapter 

3. 

To establish whether state-switches were driven by environmental variables, a novel, 

‘known state’ sequence model was then fit using predicted flow rate as a covariate on 

state-transition probabilities. The ‘known state sequence’ involved the Viterbi derived 

state-sequences for both geo-spatial and hydro-spatial models being pooled for each 

time-step to create a new state sequence for each individual. This resulted in a 9-state 

system which represented all possible combinations of geo-spatial and hydro-spatial 

states (Table 2). The model was parameterised assuming the states were known and 

correct. In other words, the model was not permitted to estimate state dependant 

distributions of discrete states during fitting but only estimate transition probabilities 

between states. Due to the necessity of modelling state-dependant distributions being 

alleviated, all individuals were pooled for this analysis. The effect of tidal current flow 

rate was implemented on the transition probability matrix using a multinomial logit link 

function, using the starting parameter values estimated from the iterative process 

described above. This allowed assessments of behavioural switching as it relates to the 

local oceanographic dynamics.  

Model selection was carried out by comparing delta AIC between the model with the 

covariate effect acting on the transition probability matrix and the intercept only model. 

The covariate model was considered superior if inclusion of the covariate resulted in a 

ΔAIC of <2 (Burnham & Anderson 2002). Final models were validated by visual 

inspection of qq-plots and pseuo-residual trends as well as an assessment of auto-

correlation functions for the pseudo-residuals. Similarly, model fit was considered good 
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if pseudo-residuals showed no discernible trends and qq-plots deviated minimally from 

a 1:1 ratio (Patterson et al. 2009; Appendix I). 

Table 2 Combined, known states. Each state used as the input, known state sequence 
for the combined HMM. Accompanying descriptions of the combined states are 
provided to clarify the swimming trajectory of the seal given the observed geospatial 
and hydrospatial states.  
 

State Number Geospatial State Hydrospatial State State Description 

1 Dispersed Dispersed Geo-Hydro Dispersed 

2 Dispersed Localised Drifting-tortuous 

3 Dispersed Travel Advection assisted travel 

4 Localised Dispersed Cross-current localised 

5 Localised Localised Geo-Hydro Localised 

6 Localised Travel Swimming against current 

7 Travel Dispersed Cross-current travel 

8 Travel Localised Drifting - directed 

9 Travel Travel Geo-Hydro travel 

 

2.4 Results 

2.4.1 Trip characteristics 

A total of 3,677 foraging trips (periods of at-sea movement between individual haul out 

events) provided 71,7668 hours of tracking data across 24 individuals. Of the remaining 

seals, the tags either did not produce more than 2 weeks of data, produced tracks with 

large data gaps during offshore periods or failed entirely for unknown reasons, and 

were removed from further analysis. At-sea locations were concentrated within the 

Pentland Firth and relatively close to haulouts (Fig 2). This was reflected in the 

resulting trip distance and duration metrics; mean trip duration was 11.12 hours (4.52 

– 71.42 hours) and mean trip distance (maximum distance from haulout of departure) 

was 5.22 km (3.12 - 19.27 km). Hourly resolved, depth-averaged hydrodynamic 

predictions were available for all locations for the 32 individuals included in the final 
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modelling procedure (detailed below). Daily mean distance travelled for geo-spatial and 

hydro-spatial tracks across all individuals was 24 km (s.d. 18.9 km) and 34.3.3 km (s.d. 

22.1 km) respectively (Fig. 5; Appendix I, Fig A1.1). 

2.4.2 Hidden Markov Models 

Hidden Markov Models converged for both geo-spatial and hydro-spatial data for all 

individuals included. Three discrete states were captured for both geo-spatial and 

hydro-spatial data; a dispersed state, a localised state and a directed state. Mean speeds 

of the localised state were 0.11 m.s-1 (s.d. 0.12 m.s-1) and 0.16 m.s-1 (s.d. 0.14 m.s-1) for 

geo-spatial and hydro-spatial movement respectively. In contrast, mean speeds for the 

dispersed state were 2.77 m.s-1 (s.d. 3.34m.s-1) and 3.88 m.s-1 (s.d 5.55 m.s-1) for geo-

spatial and hydro-spatial movement respectively. This indicated little difference in 

speed between the two states in geo-referenced data (0.03 m.s-1) compared with a more 

pronounced difference in the hydro-referenced data (0.72 m.s-1). Following previous 

state-space approaches to characterise phocid at-sea behaviour the three states were 

defined by the following: 1. Dispersed foraging: longer step lengths with high tortuosity, 

2. Localised foraging: shorter step lengths with high tortuosity and 3. Travelling: longer 

step lengths with low tortuosity (Figs. 6 and 7). A 2 state-model was also run to 

compare foraging designation. State-sequences indicated several time-intervals which 

were determined to be travelling in the 2-state model but dispersed foraging in the 3-

state model, justifying the inclusion of the third state given the difference in turn-angle 

state dependant distributions between these 2 observed states. 
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Figure 5 Geo-spatial vs Hydro-spatial tracks. (top panel) Cleaned geo-referenced 
tracks (before interpolation) of a male harbour seal during a 16-hour trip to sea with 
associated current vector estimates for each time interval. Current trajectory (shown by 
the arrows) and strength (colour coding) is given estimated at the first of each pair of 
locations. (bottom panel) Current-corrected track using the vectors displayed in the top 
panel to represent the swimming vector of the seal. Hydro-spatial movement is presented 
without landmass features as it represents the animals swimming track through hydro-
space. Locations are coloured by estimated current strength at that location using the 
same scale as the top panel. Red triangles show the point of departure of the trip. 
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Figure 6 State dependant distributions of step length and turning angle in hydro-space. (left panel) step length (speed) and (right 
panel)  turn-angle distributions. Histograms show the underlying movement parameters of the 15-minute regularised data (grey bars) 
and the discrete state distributions colour coded by state number and description of the hidden states. 
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Figure 6 State dependant distributions of step length and turning angle in geo-space. (left panel) step length (right panel) turn 
angle distributions. Histograms show the underlying movement parameters of the 15-minute regularised data (grey bars) and the 
discrete state distributions colour coded by state number and description of the hidden states. 
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Track tortuosity was highest in localised and dispersed foraging states for both models; 

however, the difference between the states was more pronounced in hydro-spatial data 

compared with geo-spatial. Dispersed foraging behaviour in hydro-referenced tracks 

showed peaks in turn angle centred around 180° (±π) whereas localised foraging 

behaviour was normally distributed around 0°. Tortuosity was lowest for travelling 

states in both models (Figs. 6 and 7).  

In terms of the environmental drivers of state-transition, the combined geo-space and 

hydro-space HMM (geo-hydro model) converged with the inclusion of the flow-rate 

covariate on the state-transition probability matrix. Final state-dependent distributions 

can be seen in Figure 8. Evident modality in the frequency of states was observed in the 

combined state-sequence where geo-spatial and hydro-spatial models concurred i.e. 

where geo-spatial and hydro-spatial models converged on the same Viterbi derived 

state assignation (Fig. 9). 

Model selection retained the covariate of flow-rate on the state transition probabilities 

for the geo-hydro model. The most notable transition relationships were from a state 

where the animal was estimated to be localised foraging in both geospace and 

hydrospace (hereafter referred to as Geo/Hydro localised foraging). The probability of 

switching to a hydrospatially localised-geospatially travelling state (drifting with the 

current) from Geo/Hydro localised foraging increased markedly above flowrates of 1 

m.s-1 (Fig. 10). The probability of switching to a hydrospatially travelling-geospatially 

localised state (swimming against a current) increased rapidly up to flowrates of ~2 

m.s-1 and then decreased rapidly towards 0 (Fig. 11). The probability of remaining in a 

Geo/Hydro localised foraging state decreased markedly with increasing flow rate to 0 at 

2.76 m.s-1 (Fig. 12). Additionally, the probability of transitioning from a known 
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travelling state to a geo-spatially traveling, hydro-spatially dispersed state increased 

consistently from 0 m.s-1 to 4 m.s-1 flowrates (Fig. 13).  

 

 

Figure 8 State dependent distributions for the geo-hydro model. Speed (top panel) 
and turning angle (bottom panel) distributions for all 9 combination states. Legend 
denotes the combination assignation with the three states in each model being localised, 
dispersed or travelling. Prefix of Geo or Hydro denotes geo-spatial or hydro-spatial state 
assignation, respectively. Underlying movement parameters are drawn from the geo-
referenced data.  
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Figure 9 Overall proportion of time spent in inferred activity across all individuals 
(top) and per individual (below). Inferred foraging and travelling indicate when both 
geospatial and hydrospatial movements estimated localised or dispersed observed 
states.  Drifting indicates when an animal was moving rapidly with a current with no 
apparent swimming assistance.
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Figure 10 Probability of transitioning from a known localised foraging state to a 
GeoTravel-HydroLocalised state. Known foraging is assumed due to agreement of 
foraging type movement (localised) in both geo-spatial and hydro-spatial models. The 
figure shows the mean estimate (green line) and confidence intervals were calculated 
following the delta method for standard error determination in the package 
momentuHMM (McClintock & Michelot 2017).   

 

Figure 11 Probability of transitioning from a known localised state to a 
GeoLocalised-HydroTravel state. Known foraging is assumed due to agreement of 
localised foraging type movement (localised) in both geo-spatial and hydro-spatial 
models. The figure shows the mean estimate (green line) and confidence intervals were 
calculated following the delta method for standard error determination in the package 
momentuHMM (McClintock & Michelot 2017).  
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Figure 12 Probability of remaining in a known localised state. Known foraging is 
assumed due to agreement of localised foraging type movement in both geo-spatial and 
hydro-spatial models. Confidence intervals were calculated following the delta method 
for standard error determination in the package momentuHMM (McClintock & Michelot 
2017).  

 

Figure 13 Probability of transitioning from a known travelling state to a 
GeoTravel-HydroDispersed state. Known travelling is assumed due to concurrence of 
travelling type movement in both geo-spatial and hydro-spatial models. Confidence 
intervals were calculated following the delta method for standard error determination 
in the package momentuHMM (McClintock & Michelot 2017).  
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2.4.3 Activity Budgets  

The mean proportion of time spent foraging (classified as either in dispersed or 

localised states) as decoded by the Viterbi algorithm, differed by 6.4% between the geo- 

and hydro-space models. Across individuals, seals spent a mean of 52.1% (s.d. 11.2%) of 

their time foraging when estimated by the geo-spatial HMM compared to 57.5% (s.d. 

14.9%) as estimated by the hydro-spatial HMM (Fig. 14). The proportion of locations 

that were assigned different states (travelling, localised, or dispersed foraging) in geo- 

and hydro-space was 37% (s.d. 11%). The difference as determined by a Bernoulli two-

sample test for equality of proportions was significant between the geo- and hydro-

space models (χ2 = 145.1, p < 0.001). When foraging locations (dispersed and localised) 

from both models were combined the mean proportion of time spent foraging across all 

seals was 71% (s.d. 9%). Locations where there was disagreement that the activity state 

was foraging between the geo- and hydro-space models occurred predominantly in 

areas of the Pentland Firth where tidal current speeds are highest (Fig. 15 and 16).  

 

Figure 14 Proportion of time spent foraging (dispersed or localised).  Boxplot of the 
estimated time spent in a foraging state in geo-spatial and hydro-spatial HMMs. 
Whiskers represent 95% confidence intervals; solid bars represent median value and 
blue dots represent means. 
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Figure 15 Foraging locations in the geo-spatial and hydro-spatial models. (top 
panel) all locations which were estimated as foraging (localised and dispersed) in both 
geo-spatial and hydro-spatial HMMs, and (bottom panel) all locations which were 
inferred as foraging in one model but not the other. Note that disparity occurs almost 
exclusively in energetic waters in the narrow channel between the mainland and 
Orkney. Locations are overlaid on a map of peak spring tidal current estimates from the 
Marine Scotland Scottish Shelf Model.
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Figure 16 State assignations for an example trip. Viterbi derived state-sequence is provided for the same trip shown in figure 5. Green 
points represent a localised foraging state and purple points represent a travel state. Geo-spatial (top left) and hydro-spatial (top right) 
state assignations are provided along with combined states (bottom) superimposed onto the geo-spatial track, assuming that both 
determinations of localised behaviour are informative (i.e. combining all localised states).

Geo-space Hydro-space 

Combined 
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2.5 Discussion  

This study has demonstrated that the behaviour of seals can be influenced by the 

underlying water movements in a tidally energetic environment, and that interpretation 

of foraging activity is highly dependent upon geo-spatial and hydro-spatial perspectives 

in movement data. Specifically, increased flow rates can mask discrete behaviours when 

only one perspective is considered due to the adjustments animals appear to make in 

order to remain in a foraging patch, or efficiently search for prey in energetically 

demanding conditions. Flow conditions also appear to significantly influence the 

transition between behavioural states, whereby seals either choose, or are forced to 

switch foraging tactics as a result of changes in tidal current magnitude. 

Previous studies have highlighted the importance of accounting for environmental 

influences of movement trajectories (McConnell et al. 2002; Gaspar et al. 2006; 

Robinson et al. 2010; Gordine 2017). Further, some researchers have caveated their use 

of state-space models to identify foraging behaviour, emphasising the importance of 

understanding the underlying water movements (Dragon et al. 2012; McClintock & 

Michelot 2017).  This work represents the first time where these issues have been 

addressed in a tidal stream environment. 

While measured metrics such as diving and tri-axial acceleration have been used to 

refine state-space models of animal movement in the past, the present study represents 

a unique insight into the effects on extrinsic drivers of movement behaviour and activity 

derived using state-space models. It is also a novel example of how behaviour, inferred 

through HMMs, can be affected by environmental covariates. Specifically, the proportion 

of time spent foraging was significantly different between geo- and hydro-spatial 
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models. This supports the use of the combined approach for activity budget 

determination for species foraging in dynamic ecosystems. Moreover, by assessing both 

the animals’ geo-spatial movement as well as their swimming behaviour with respect to 

hydrodynamics, I have shown that seals can demonstrate significant plasticity in 

foraging patterns with probabilities of remaining in or transitioning to inferred foraging 

states changing markedly with increasing flow rates.  

2.5.1 Activity budgets in geo-space and hydro-space 

The formal comparison of HMMs highlighted that correcting geo-spatial movement 

trajectories to account for current vectors can lead to contrasting interpretations of 

movement. For example, seals that exhibit localised movements in geo-space during 

high current periods may in fact be moving significant distances through the water. In 

contrast, seals exhibiting little directional swimming during high current periods may 

exhibit highly directional movements in geo-space which would traditionally be 

interpreted as travelling. In other words, directional persistence can either become 

more or less pronounced in geo- and hydrospace as a result of incorporating tidal 

vectors.  

Overall time spent putatively foraging was greatest when estimated through hydro-

spatial movement; 52.1% (s.d. 11.2%) and 57.5% (s.d. 14.9%) for geo-space and 

hydrospace, respectively. While significant, considering this difference in isolation 

potentially masks a greater disparity; where and when foraging behaviour was 

predicted to occur. When overall numbers of time-steps exhibiting conflicting state 

assignations were compared, I observed a difference of 37%. There is, therefore, a 



Chapter 2: Intraspecific foraging plasticity of a predator in a highly dynamic 
environment 
 

73 
 

potential misclassification rate of 37% when looking solely at geo-spatial movement in 

these types of habitat. 

Given the importance of identifying foraging locations when looking to identify 

protected areas for conservation (Game et al. 2010; Grecian et al. 2012), this result 

could have significant importance for marine spatial planning. Foraging hotspots are 

considered the primary areas of interest when designating MPAs. Transit routes are less 

considered (Stokes et al. 2015), provided ample alternate options are available. 

However, if foraging locations for harbour seals in this habitat were based purely on 

geo-spatial movement patterns, conservation efforts could run the risk of misclassifying 

foraging areas as transit routes and consequently target only a proportion of the 

important at-sea areas. Previous studies of harbour seal distribution and movement 

behaviour in these energetic regions may warrant revisiting, should the inferences be 

taken as indicative of total foraging effort. By combining the inferences of the movement 

patterns in each perspective (geo- and hydro-space), we gain a further understanding of 

when and where seals may be performing discrete behaviours. 

A study in a less energetic region of the UK previously found a difference in activity 

budgets between geo-spatial and hydro-spatial models of movement behaviour; 

however, this only described inferred hydro-spatial foraging not being detected in the 

geo-spatial model (Russell 2016). In the present study, the differences in the 

proportions of time spent foraging between geo-spatial and hydro-spatial HMMs, 

coupled with the large number of putative foraging locations that were estimated in one 

model and not the other (in both directions), are likely indicative of the different 

foraging tactics employed by individuals occupying highly energetic conditions.  
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A relatively frequent occurrence when the two models were combined was when seals 

in high currents appeared to swim rapidly in a directed fashion in hydro-space, 

indicative of travelling behaviour, but displayed localised movements in geo-space 

(GeoLocalised – HydroTravelling behaviour, Fig. 8 and 9). This may be indicative of 

foraging on geo-stationary prey patches. For example, at particular geographic locations 

there may be an increase in foraging opportunities as a function of flow speed. Prey 

species using currents to passively travel between sites may be funnelled through a 

small area, and/or, turbulent conditions peripheral to the main flow may aggregate 

relatively immotile prey (Sebens et al. 1998; Zamon 2001; Bailey & Thompson 2010). 

Alternatively, predictable, geostationary benthic prey patches may exist in certain high 

flow areas, which are not as directly affected by hydrodynamics. Seals may exploit these 

features by adopting a strategy of increased swim speed against the prevailing flow to 

avoid geographic displacement. This observation is analogous to feeding behaviour 

identified in harbour porpoises (Phocoena phocoena) in tidal races on the west coast of 

the UK, which swim into the current when foraging during peaks of tidal flow, and 

presumably take advantage of tidally concentrated prey patches (Pierpoint 2008). 

Certain benthic and pelagic foraging seabird species have also been observed to 

consistently orient themselves facing into tidal currents, surfacing in locations 

suggesting swimming against the prevailing flow, but often downstream (Holm & 

Burger 2002; Wade et al. 2013). Holm and Burger (2002) noted all 19 recorded flights 

of pigeon guillemots (Cepphus columba) occurred during either peak flood or ebb tides 

and resulted in individuals flying upstream of the current, starting a dive and surfacing 

again downstream. Similarly, Wade et al. (2002) observed that surface diving seabirds 

were significantly more likely to dive facing into a current than with it, often surfacing 

upstream of the pre-dive surface interval. The localised and dispersed states in the geo-



Chapter 2: Intraspecific foraging plasticity of a predator in a highly dynamic 
environment 
 

75 
 

spatial HMM showed turn angles centred around ±π rad, and possibly suggests a similar 

behaviour being employed by the seals, albeit seals cannot escape the prevailing flow as 

directly as flying birds. Foraging in high currents may result in this pattern if an 

individual was attempting to maintain position in geo-space and exploit a benthic 

foraging patch as it would likely be displaced from this location during descent and 

ascent phases, and when at the surface. Such behaviour would not be identified as 

foraging in hydro-spatial movement as the animal would appear to consistently swim 

unidirectionally against the current in order to maintain position and appear as though 

it were travelling. The prevalence of this disparity can be seen in figure 9 in the 

GeoLocalised – HydroTravel state. In reality, it may be that seals are forced to drift 

downstream while in the surface phase of a dive, swim upstream when close to the 

seabed (where flows are lower) and surface upstream of their previous diving location. 

Although this analysis provides insights into seal behaviour, it remains unclear whether 

seals here are utilising benthic or pelagic prey patches; however, as they spend a large 

proportion of time swimming against the prevailing current flow in an effort to 

maintain a location in geo-space, this suggests foraging given the energetic cost they are 

presumably incurring. 

Another relatively frequent occurrence when the two models were combined was one 

in which geo-spatial travelling states were identified as localised foraging states in the 

hydro-spatial model (GeoTravel – HydroLocalised and GeoTravel – HydroDispersed 

states, Fig. 9). This is indicative of seals showing little directional movement within a 

water mass, resulting in movement behaviour that mirrored the current trajectory 

(Figs. 5 and 17). It also goes some way to explaining why the turn angle distributions for 

the hydro-spatial localised state were normally centred around 0 rather than uniformly 
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distributed as the geo-spatial counterpart; if an animal was drifting with a current 

without performing much swimming, hydro-spatial turn angles would likely show a 

lesser degree of tortuosity. Therefore, in hydro-space, movements would be interpreted 

as resting or foraging behaviour i.e. slow horizontal speeds. In contrast, geo-spatial 

movements would be inferred as travelling. Such behavioural patterns may be a means 

of travelling or searching for benthic prey in an energetically efficient manner.  

Alternatively, it could represent foraging on pelagic species which are also moving 

within the mobile water mass. In support of this, it has been demonstrated that fish 

assemblages peak during high flow periods (during both flooding and ebbing tidal 

phases), and vertical distributions of fish schools are consistently centred around mid-

water in the inner sound of the Pentland Firth (Fraser et al. 2018). It is therefore 

possible that, during high flow periods, seals could benefit from reduced energetic costs 

by switching from foraging on geo-stationary, benthic prey, to foraging on pelagic 

species.  This behaviour has been observed in other species. For example, Bennison et 

al. (2019) observed that in Atlantic puffins (Fratercula arctica); movement tracks 

showed no indication of area-restricted search behaviour (in geo-space) during entire 

foraging trips and foraging bouts appeared to be similar to that expected by planktonic 

advection by the prevailing tidal current.   

Previous studies have used concurrent dive data to identify prolonged surface intervals 

and differentiate foraging behaviour from resting behaviour (McClintock et al. 2013; 

Bestley et al. 2015; Russell et al. 2015; McClintock et al. 2017). Although dive behaviour 

was not formally used in the current HMM analyses, the method by which haulouts 

were detected and removed is likely to have removed at-sea resting behaviour close to 

(<0.25km) haulout sites (see Methods) which is commonly observed in harbour seals  
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(McClintock et al. 2013; Ramasco, Biuw & Nilssen 2014; Russell et al. 2015). This 

combination of factors is likely to have reduced the misidentification of resting 

behaviour as foraging. However, this question is addressed in further detail in Chapter 3 

of this thesis with a temporally resolved analysis of dive data.  

2.5.2 Foraging behaviour as a function of tidally driven currents - remaining in a 

foraging state 

While geo-spatial prey encounter rates may increase in areas of high tidal current, the 

ability to exploit this resource is only valuable to a predator if its own locomotory 

capabilities allow it to remain resident in geo-space. The maximum burst speed of a 

harbour seal is approximately 4 m.s-1 (Williams & Kooyman 1986) but it is unlikely that 

seals can efficiently sustain swim speeds greater than 1.5 m.s-1-2 m.s-1 (Hind & Gurney 

1997; Gallon et al. 2007) for prolonged periods; it is therefore likely that area restricted 

search behaviours would be less observed in geo-space as water speed increases above 

1.5 m.s-1. This may explain the peak in the probability of transitioning from a known 

localised foraging state to a state where the animal is localised in geo-space but 

traveling in hydro-space at speeds approaching 2 m.s-1 (Fig. 12). At current speeds 

below the minimum cost of transport speed for an 87 kg harbour seal (~1.3 m.s-1, mean 

mass for seals tagged in this study), it should be relatively cost-effective to forage at a 

benthic or pelagic prey patch. As current speeds increase above ~1.5 m.s-1, oxygen 

consumption increases exponentially if the seal attempts to remain in the same geo-

spatial location (Williams & Kooyman 1986; Thompson, Hiby & Fedak 1992). In theory, 

a seal would have to adjust its locomotory strategy to continue to exploit this patch by 

either swimming faster against the current (and incurring a greater energetic cost), or 

by utilising micro-scale hydrodynamic features such as eddies, or static, bathymetric 
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objects to reduce apparent flow.  Such strategies (Karman gaits) have been shown to be 

used by fish to maintain position in rivers (Liao et al. 2003; Liao 2007). The results from 

this study suggest this change in movement behaviour when current speeds increase.   

As current speeds exceed ~2m.s-1, the probability of transitioning to geo-spatial 

travelling and hydro-spatial localised foraging increases significantly.  This suggests 

that, in these flow rates they are probably adopting a drifting behaviour to allow 

assisted transport to either a) forage on dynamic prey resources rather than static 

benthic ones or b) use the current for passive transport from one patch to another. 

What is likely is a combination of both these strategies, given the potential entrainment 

of prey species in currents and the inferred foraging behaviour often observed after 

drifting periods cease (e.g. Fig. 17). To date, there has been little evidence of pinnipeds 

drifting in currents speeds greater than their maximum swimming speeds. Thompson 

(2012) noted juvenile grey seals drifting with currents and consistently diving to the 

seabed presumably foraging while moving passively along the horizontal plane. 

Campagna et al. (2006) and Della Penna et al. (2015) both recorded southern elephant 

seals (Mirounga lenonina) passively drifting with large scale currents and eddies. Given 

the inferred productivity in these regions and that associated dive behaviour suggested 

foraging patterns (Campagna et al. 2006), it is likely that this passive behaviour was 

also related to foraging. The drifting behaviour identified in the present study, with 

localised hydro-spatial movement, similarly indicates that little energy is being 

expended by the seal to move along the horizontal plane. However, there is a key 

difference between these two studies, in that harbour seals, unlike elephant seals, are 

not capable of swimming faster than all of the flow rates they are observed to 

experience. Drifting could therefore be seen to be forced rather than sought. However, 

given that the probability of transitioning to a drifting state continues to increase with 
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increasing flow rate, it seems clear that seals do not often attempt to escape these 

currents (by swimming cross-current which would produce less directed geo-spatial 

movement) and so remaining entrained within them can be seen as somewhat 

preferential. With the likelihood that prey species will also be similarly entrained by 

currents it may follow that harbour seals use this to their advantage and forage while 

drifting. It is also possible the seals are allowing currents to transport them through 

environments and periodically diving to the bottom to search for suitable prey patches. 

However, given the dive behaviour presented in Chapter 3, this seems unlikely.  

2.5.3 Foraging behaviour as a function of tidally driven currents – transitioning from 

travelling to foraging 

The observed changes in the probability of transitioning into or remaining in a foraging 

state (whether geo-spatial or hydro-spatial) with increasing flow rate suggests that tidal 

currents are a significant driver of harbour seal at-sea behaviour. It is likely that this 

switch occurs as a bottom-up response to increasing prey densities resulting from bio-

physical coupling with complex, temporally heterogenous hydrodynamic features 

(Zamon 2001; Zamon 2003). Indeed, the probability of switching from travelling to 

foraging (first in geo-space and then in hydro-space) continued to increase up to the 

maximum current speeds shown to be used by the seals. The relatively high density of 

seal usage within the Pentland Firth channel where strong currents are observed (Fig. 

2) may explain this behaviour as being a response to an apparent bottleneck effect, 

concentrating tidally predictable prey sources which are responding to localised 

aggregations of zooplankton (Zamon 2001; Pierpoint 2008; Bailey & Thompson 2010). 

A study of Pacific harbour seals found an increased proportion of salmonid capture 

events during increasing flooding tides in a narrow channel when compared to other 



Chapter 2: Intraspecific foraging plasticity of a predator in a highly dynamic 
environment 
 

80 
 

tidal phases which suggested a tidally mediated prey encounter rate (Zamon 2001). 

Similarly, Hastie et al. (2016) observed an increase in harbour seal presence during 

periods of peak flow (~2 hours before high water) in narrow channels on the west coast 

of Scotland, where flow speeds can reach in excess of 4 m.s-1. The results presented in 

the present study suggest a similar pattern whereby individual seals preferentially 

switch to a foraging state when subjected to faster flowing currents, possibly to exploit 

prey species which are subject to the water movement which aggregates or 

disorientates them. However, given the probability of remaining in a specific geo-hydro 

foraging state also changes with increasing current strength, it is likely that multiple 

foraging tactics are used to forage in tidally dominated habitats. 

Wilson (2014) found that diet composition for harbour seals within the Orkney 

management unit (which encompasses the Pentland Firth haulouts) shifted seasonally 

between being dominated by sandeels (Ammodytes spp.) during the spring and summer 

months and pelagic fish such as herring (Clupea harengus) and mackerel (Scomber 

scombrus) in the autumn. Further, it was clear that seals within this management unit 

showed elevated variability in diet when compared to other populations around the UK. 

This supports the foraging plasticity observed here, both by the transition probabilities 

as well as the geographic locations of the different behavioural states.  

2.5.4 Caveats  

As primarily benthic foragers, harbour seals spend the bulk of their time foraging at 

depth, surfacing briefly to breathe and occasionally rest (Bjørge et al. 1995; Tollit et al. 

1998; Russell et al. 2015). Consequently they minimise the amount of time spent 

exposed to surface drag  (Thompson & Fedak 1993) and, if foraging on demersal 
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species, are subjected to currents considerably less than maximum flow rates observed 

in mid-water (Vogel 1994). It may follow that the apparently high energetic demands of 

seals observed foraging in strong currents are being avoided by spending extended 

periods of time in flow speeds markedly different from the mean flow in the water 

column. This likelihood is further augmented by the fact that the transition from known 

foraging to a geo-spatial localised – hydro spatial travelling state  continues to increase 

above the assumed minimum cost of transport speed for harbour seals in this study. 

This would not be identified in the model presented given the use of depth averaged 

currents to correct the geo-referenced location data. This issue is addressed in further 

analyses in Chapter 3. 

The hydrodynamic model used to estimate current strength did not include 

contemporary meteorological forcing data to augment model predictions. While broad 

oceanographic processes are somewhat predictable, fine-scale features such as flow 

regimes and coherent structures in tidal streams are heavily subject to external forcing 

such as wind stress. Therefore, the flow speeds and directions experienced by the seals 

may have been subject to a degree of error. However, during development, the model 

underwent rigorous validation using ADCP data from multiple years and therefore, in 

lieu of extending the model with contemporaneous ADCP and meteorological data, I am 

confident the broad patterns of flow have been accurately captured. Further the 

temporal resolution of the raw seal data was far finer than that of the hydrodynamic 

model; ~3 minutes compared to hourly averages. This could yield significant 

mismatches in flow speed experienced by the seals as averages may encompass peaks 

or troughs in the tidal cycle and therefore under or overestimate the external forcing 

imposed on the individual, respectively.  
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The presence of small-scale oceanographic features such as eddies was also not 

resolved in the underlying hydrodynamic model and these could equally serve to help 

harbour seals exploit fast flowing currents by providing alterations in assisted 

trajectory. The rotational forces produced by eddies may allow seals to remain geo-

stationary in currents without the need to expend energy, equal to the force of the 

current, swimming against it. While this may not change our interpretation of activity 

budgets, it would provide a potentially different explanation of the way in which seals 

are foraging. Future studies could seek to resolve this issue by using high resolution 

dive data and 3-dimensional current profiles to examine precisely how seals interact 

with tidal currents, however, this was outside the scope of the present study. In 

addition, accompanying acoustic doppler current profiling (ADCP) casts should be used 

in tandem with movement data collection to calibrate any flow models and alleviate the 

issue of assuming the hydrodynamic model predictions represent reality. Such data 

could then be used to robustly investigate how observed states differ in multiple 

dimensions, e.g., how dispersed and localised behaviours differ in terms of diving 

behaviour. Inclusion of multiple data streams which aid interpretation of locomotory 

activities such as tri-axial accelerometery, speed sensors and magnetometry could help 

extract additional behavioural states associated with foraging (Leos-Barajas et al. 

2017b).  This could provide further insight into the effects of water currents on the 3-d 

behaviour of diving predators and address a major  source of error in 3-dimensional 

dive reconstruction (Shiomi et al. 2008; Iwata et al. 2015).   

2.6 Conclusions  

The extension of a commonly used method to infer behaviour from movement data with 

a high resolution hydrodynamic model has provided a novel perspective on the 
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complexities of harbour seal at-sea behaviour. The use of this technique will aid future 

studies on animal movement where trajectories may be significantly affected by the 

movement of their surrounding environment. Here, harbour seal foraging behaviour 

was correlated with tidally energetic processes. Further, the apparent foraging 

movement parameters changed as a function of increasing flow rate suggesting a high 

degree of behavioural plasticity in seals and provides new insights into how behavioural 

strategies have developed in tidally energetic habitats. 
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3.1 Abstract  

For air-breathing, diving predators, maximising efficiency at depth is a key component 

in determining individual fitness. With increasing spatial and temporal habitat 

heterogeneity comes an increasing need to develop multiple foraging strategies to 

account for difference drivers of movement and prey fields. Tidally energetic habitats 

present several challenges to the movement of predators in both the horizontal and 

vertical dimensions. However, they are often areas of predictable prey sources making 

them attractive if the predator can successfully navigate the pronounced flows. This 

study used location and dive data from animal-borne tags to quantify the diving 

behaviour of harbour seals (Phoca vitulina) in a tidal stream environment. Clustering of 

dives showed behavioural classifications which reflected those found from a horizontal 

movement analysis of the same individuals (Chp. 2). This indicated that changes in 

behaviour are displayed in both variations in horizontal and vertical movements. 

Animals appeared to descend faster and spend longer at depth with increasing current 

speeds. Further, diurnal patterns showed a shift towards benthic diving at night and 

pelagic foraging during the day with an additional, significant seasonal pattern in dive 

depth. Observed relationships between dive behaviour and hydrographic conditions 

highlight the importance of tidal currents for seals foraging in tidally energetic habitats 

and suggests that such habitats confer not only a series of significant challenges, but 

also a series of unique benefits to seals.     
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3.2 Introduction 

A central question in ecology is how animals find and exploit food in dynamic and 

variably predictable habitats (Stephens & Krebs 1986). When studying air-breathing, 

marine predators this question presents some significant and unique challenges as 

foraging behaviour generally occurs underwater and can rarely be directly observed. 

However, information on movement patterns and depth use in these species is key to 

understanding their foraging behaviour at a range of two-dimensional and three-

dimensional scales (e.g. Thompson & Miller 1990; Thompson et al. 1991a; Fossette et al. 

2008).  

The marine environment is characteristically heterogenous, both temporally and 

spatially. Flexible foraging tactics are therefore likely to be crucial for marine predators 

(Stephens & Krebs 1986); the availability of prey patches can vary with constantly 

changing environmental conditions (Johnson, Parker & Heard 2001; Launchbaugh & 

Howery 2005; Weimerskirch 2007; Furness & Greenwood 2013; Day et al. 2019) and 

predators may need to match this with adaptations to their foraging tactics and/or prey 

sources. Populations inhabiting temporally dynamic environments may therefore 

demonstrate generalist tendencies such as broad diet compositions and habitat 

preferences, while exhibiting a number of specialist behaviours to allow individuals to 

exploit a range of different prey sources (Gilmour et al. 2018) or foraging conditions. 

For example, recent studies have noted that marine predators are often observed 

foraging over long periods in areas of high tidal currents, where energetic demands of 

locomotion can be high if the desired orientation is against the prevailing flow (Wade et 

al. 2013; Hastie et al. 2016). Consequently, a variety of foraging tactics might be 

expected to occur given the differences in flow conditions over tidal cycles, especially 
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when sustained flow speeds can exceed the burst speeds of the individuals observed. 

Analysing movement data with concurrent environmental data can therefore serve to 

disentangle complex behavioural ecology questions (Nathan et al. 2008; Dodge et al. 

2013) which can have strong conservation implications when forecasting the effects of 

potential change in environmental conditions.  

The depths at which air-breathing predators can forage is ultimately limited by the 

physiological constraints of diving (i.e. proximity to the surface and breath-hold 

capacity; Kooyman & Ponganis 1998). Dynamic environments potentially confer an 

additional challenge in that they’re often moving at speeds greater than the animal’s 

own swimming speeds. This aspect also makes the analyses of behaviour challenging 

given the highly variable nature of their movements; however, this also makes them 

particularly interesting when considering ecological questions which relate to bottom-

up processes and when developing mechanistic approaches to understanding the 

marine environment.   

Harbour seals (Phoca vitulina) are one of the most widely distributed phocids, ranging 

across northern temperate and polar waters in both the Atlantic and Pacific oceans 

(Bigg 1969; Thompson 1989). They are found in many tidally energetic areas across 

their largely coastal habitats (Zamon 2001; Jones et al. 2015; Jones et al. 2017). 

Significant research effort has been devoted to the assessment of their broad spatial 

distributions (Jones et al. 2015), population trends (Thompson, Lonergan & Duck 2005; 

Thompson et al. 2019), two-dimensional inferences of foraging behaviour (Thompson & 

Miller 1990; Thompson et al. 1991b; McClintock et al. 2013; Russell et al. 2015), and 

vital rates such as survival and fecundity (Cordes & Thompson 2014). However, there is 

a distinct paucity of information on the influence of static and dynamic environmental 
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covariates on diving behaviour (Blanchet et al. 2015). Previous studies have shown that 

harbour seals exhibit a high proportion of benthic and demersal diving to depths of 

between 15 – 400 m (Bjørge et al. 1995; Tollit et al. 1998; Gjertz, Lydersen & Wiig 2001; 

Blanchet et al. 2015). However, foraging dives to mid-water depths have also been 

observed in some populations (Tollit et al. 1998; Wilson et al. 2014b; Blanchet et al. 

2015). This variability is reflected by their varied diet (Bromaghin et al. 2013; Luxa 

2013; Wilson & Hammond 2019) and the occurrence of mid-water foraging dives 

appears to occur in areas where prey availability is assumed to have a higher temporal 

and spatial variation (Wilson et al. 2014b; Blanchet et al. 2015; Wilson & Hammond 

2019). Further, distinct seasonal trends in dive characteristics have been repeatedly 

observed and have been suggested to be linked to prey migration, meteorological and 

oceanographic variations, (Blanchet et al. 2015), age (Bowen, Boness & Iverson 1999), 

and breeding phenology (Wilson et al. 2014b).  

Given the variation in water current strength (and direction) across the water column, it 

is possible that diving behaviour may be more variable in areas demonstrating a greater 

range of oceanographic conditions. Marked temporal variations in oceanographic 

conditions has also been suggested to influence variations in prey availability relative to 

water depth and may drive the observed variety in the diet of generalist predators 

(Andersen et al. 2013) as harbour seals have been suggested to be. However, to date, no 

studies have determined the effects of water movement on diving behaviour.  

One of the most dynamic marine environments around the UK is the Pentland Firth,  a 

channel between the north coast of Scotland and the Orkney Islands (Neill et al. 2017) 

which connects the North Sea and the North Atlantic and experiences relatively large 

tidal currents. Harbour seals are present here throughout the year and regularly use the 
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most tidally-energetic areas of the region (Jones et al. 2017; Thompson et al. 2019). This 

study aims to quantify harbour seal diving behaviour and relate this to a range of static 

and dynamic environmental covariates to establish whether seals show exhibit changes 

in diving behaviour in response to environmental conditions on a range of temporal 

scales. Further, models of horizontal movement often suffer from a lack of empirical 

data to justify the assumptions of underlying behaviours. Diving behaviour can 

therefore help to elucidate and validate the underlying behavioural states associated 

with the observed processes, given our prior knowledge of seal foraging behaviour and 

diet composition. This chapter therefore also aims to understand the functional 

mechanisms underlying the diving behaviour by linking information on behavioural 

activity states based on horizontal movement (Chp. 2), dive behaviour, and a range of 

environmental co-variates.  

3.3 Methods 

A combination of GPS tags and time-depth recorders (TDRs) were used to 1) measure 

the diving behaviour of seals in a tidally energetic habitat, 2) relate these behaviours 

with behavioural state assumptions from the movement analysis in Chapter 2, and 3) 

quantify the effects of a range of temporal and spatial covariates on diving behaviour. 

The overall aim was to determine whether the plasticity in movement behaviour 

observed in Chapter 2 is reflected in seal diving data.  

3.3.1 Telemetry Data 

Fastloc® GPS/GSM tags (SMRU Instrumentation) were deployed on 14 harbour seals in 

2011 and TDR/UHF tags (Pathtrack Ltd.) were deployed on 40 harbour seals over four 

deployments in 2016, 2017 and 2018 in the Pentland Firth, Scotland (Fig. 1).  Seals were 



Chapter 3: Plasticity in diving behaviour in a tidal stream environment suggests seals 
maximise efficiency in varying flow conditions 
 

90 
 

caught on, or close to, haul-out sites using tangle nets in the water or hoop-nets on land. 

All Seals were weighed and then anesthetised with intravenously administered Zoletil-

100® at a dose rate of 0.005 ml.kg-1 prior to further handling (Sharples et al. 2012). GPS 

tags were glued to the fur at the back of the neck and TDRs were glued to the fur at the 

apex of the back using Loctite 422TM cyanoacrylate adhesive. All capture and handling 

protocols were carried out under UK Home Office licences #60/4009 and #70/7806 in 

accordance with the Animals Scientific Procedures Act 1986. 

Dive data were processed onboard the tags and transmitted in different formats for the 

two tags types. For the GPS/GSM tags, pressure values were recorded every 4 s and 

discrete dives were identified in-situ when the pressure sensor recorded a depth of ≥ 

1.5 m for > 8 s.   Depth traces for discrete dives were then abstracted to 11, regularly 

spaced, linearly interpolated points (inclusive of pre- and post-dive surface points) on-

board the tag prior to transmission (Fedak, Lovell & Grant 2001).  

TDR/UHF devices recorded depths at regular 10 second intervals throughout the 

lifespan of the tag. Continuous depth records were then transmitted to terrestrial, UHF 

receiving base-stations (see Chp. 2) whenever the animals hauled out. Post-processing 

was required to determine discrete dives in the UHF data. To ensure that data between 

tag types were broadly comparable, a bespoke algorithm was written in the 

programming language R to produce dive records emulating the format used by the 

GSM tags. Firstly, a zero offset correction of depth was applied using the R package 

diveMove (Luque 2007) due to the possible drift over time in pressure sensors (Luque & 

Fried 2011). Discrete dives were then classified when a depth record of >5 m was 

recorded for at least 10 seconds (i.e. 2 consecutive dive records). A larger dive-depth 

classification threshold was necessary given the comparatively reduced temporal 
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resolution of the raw UHF data; using a 1.5 m threshold resulted in multiple dives being 

classified as single dives as the seal had time to record a depth value, surface and 

descend back to below threshold depth before the next depth value was recorded. This 

approach is highly conservative as multiple shallow dives could be discarded but it is 

necessary to ensure confidence in the final data-set by reducing the likelihood of 

including multi-dive metrics which would inflate certain estimates such as dive time, 

and proportion of time spent in discrete phases. 

To make behavioural inferences, dives were separated into four distinct phases 

(surface, descent, bottom, and ascent). Descent and ascent phases were first extracted 

by fitting a 4th order polynomial to the dive depths (or inflection points for the GSM 

tags) and attributing a transit period to any vertical speeds exceeding a slope which 

equalled 0.3 m.s-1  (Luque 2007; Jouma'a et al. 2016). This differs from previous 

methods of assigning dive phases whereby any period greater than 80% of the 

maximum dive depth is considered a bottom phase (e.g. Schreer, Kovacs & Hines 2001; 

Sala et al. 2011; Krause et al. 2016). Importantly, the method presented here allowed 

for multiple bottom phases in a single dive which may represent prey encounters 

during transit to and from the maximum dive depth. Any period outside of the assigned 

descent and ascent periods was determined as a bottom phase. For the UHF-TDR tags, 

surface phases were considered as the time between successive depth records 

shallower than 5 metres. This likely overestimates the time spent at the surface 

between dives as it discounts shallow dives above the threshold; however, the 

assumption considers that shallow dives and surface periods may satisfy a similar 

biological function through recovery from dives.  
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The metrics which were extracted from these dives (dive depth, proportion of the water 

column used, proportion of time in the bottom phase, descent rate, bottom-phase 

wiggliness, bottom-phase duration, dive duration and post-dive surface duration) and 

their definitions are provided in Table 1. All variables except bottom-phase wiggliness 

were calculated for both tag types; reduced resolution throughout the dive from the 

GSM tags due to pre-transmission data abstraction precluded the ability to robustly 

estimate fine-scale activity such as this. Consequently, only UHF-TDRs were used for the 

principle component analysis. To ensure that analyses of dive data were not confounded 

by male display dives during the breeding season (Van parijs et al. 1997; Van Parijs, 

Hastie & Thompson 1999), data collected during the pre-breeding and breeding periods 

were excluded; Julian day 152 (June 1st) to 243 (August 31st).  

3.3.2 Environmental Data 

To test the relative influence of tidal currents on diving behaviour, a series of other 

environmental variables were included in an analyses of individual dive metrics. 

Candidate independent variables were chosen based on a literature search of important 

drivers of phocid diving and foraging behaviour in shelf-sea and coastal ecosystems 

(Bjørge et al. 1995; Tollit et al. 1998; Gjertz, Lydersen & Wiig 2001; Beck, Bowen & 

Iverson 2003; Hastings et al. 2004; Jessopp, Cronin & Hart 2013; Photopoulou et al. 

2014; Wilson et al. 2014b). To associate dive metrics with environmental covariate 

data, each dive was given a location based on adjacent GPS location fixes. The mid-point 

between dive start and end times was matched to a linearly interpolated track between 

successive GPS locations for the same animal, providing an estimated location for each 

discrete dive. If the mid-point of a dive was more than 10 minutes from the nearest GPS 

fix, it was excluded from further analyses.  
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Depth averaged tidal current data were extracted for each dive location from the 

Pentland Firth and Orkney Waters sub-domain of the Marine Scotland Scottish Shelf 

Model (Wolf et al. 2016). For details of the model and location matching protocols see 

Chapter 2. Bathymetry data were also assigned to each dive location using the European 

Marine Observation and Data Network (EMODnet) 1/16 * 1/16 arc minutes (~ 115 * 

115 m) regular grid Digital Terrain Model (DTM) for European Waters (EMODnet 

2016). Each bathymetric depth was converted to a temporally resolved value which 

accounted for tide height. Firstly, estimated bathymetric depth at lowest astronomical 

tide (LAT) values provided by the EMODNet DTM were converted to mean sea level 

using the Vertical Offshore Reference Frame (VORF) correction. Mean sea level was then 

corrected for each dive to account for sea level height change as a function of tide using 

temporally resolved tidal cycle prediction as estimated using the POLPRED tidal 

prediction model. The proportion of the water column used in each dive was then 

calculated as the maximum dive depth divided by the estimated bathymetric depth. 

After calculation, a proportion of dives (~6%) registered depth values that were below 

the estimated bathymetric depth. For these dives, proportion of the water column dived 

to was corrected to 1.  

Diving behaviour has been shown to be correlated with target prey type and prey 

encounter rate (Sato et al. 2004; Le Bras et al. 2016); in the absence of concurrent, 

temporally resolved prey distribution data, sediment type has been used as a useful 

proxy for prey distribution (Aarts et al. 2008). Sediment data were downloaded from 

the Folk 5-Class Classification layer of the multiscale EMODnet Seabed Substrate data 

portal (http://www.emodnet.eu/seabed-habitats). Each dive was assigned to one of five 

http://www.emodnet.eu/seabed-habitats
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categorical variables defined within the layer as; 1. mud to muddy sand, 2. sand, 3. 

coarse substrate, 4. mixed sediment and 5. rock and boulders.  

Diurnal patterns in diving behaviour outside the breeding season have been noted in 

several pinniped species and is assumed to be a consequence of seasonal stratification 

and vertical prey distribution (Burns & Testa 1997; Bennett, McConnell & Fedak 2001; 

Hastings et al. 2004). A diurnal cycle variable was assigned to each dive as a binary 

vector being either ‘Day’ or ‘Night’. Position in the local diurnal cycle was calculated 

using the R package ‘suncalc’ (Agafonkin & Thieurmel 2017). Any period after nautical 

dusk and before nautical dawn was determined ‘Night’ and therefore twilight periods of 

dusk and dawn were included within the ‘Day’ category.  Crepuscular patterns were 

therefore not considered in the analysis.  

3.3.3 Statistical analyses 

3.3.3.1 Principal component analysis and dive clustering for HMM validation 

Principal component analysis (PCA) allows the identification of statistically discrete 

groups within a data set based on the linear combinations of each of the measured 

metrics and a quantification of the extent to which these combinations explain the 

variance in the data (Jolliffe 2011). PCA aims to simplify the number of variables by 

combining the important terms and reducing the degrees of freedom. This is a 

particularly useful method to apply when attempting to identify many different groups 

within a dataset, allowing for a more interpretable combination of terms.  

To categorise dives, a PCA was applied to the metrics (per dive) presented in Table 1. 

This effective reduction of explanatory variables provided a set of principle components 

for further analyses. The principle components were then incorporated in a cluster 
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analysis using a set of Gaussian mixture distribution models with the R package ‘mclust’ 

(Fraley et al. 2012). Each model, accounting for a different number of clusters, was fit 

using maximum likelihood estimation and was selected by assessment of the BIC scores. 

This has advantages over heuristic approaches as each data point can be assigned a 

probability of belonging to one of two or more clusters, partially addressing any 

uncertainty. The final model, based on highest BIC score, identified the clusters which 

best explained the variation in the principal component distributions, and consequently 

the dive types assignations. The model probabilistically assigned each dive to a cluster 

and the dive shapes were inspected visually to interpret the dive function based on 

known biological information on seal diving and foraging behaviour.  

The dive clusters were used, in combination with behavioural state assignations, to 

validate inferences of state switching inferred from a Hidden Markov Model (see 

Chapter 2 for full description of model formulation). Behavioural states were derived 

from horizontal movement trajectories using geo-referenced data and inferred, hydro-

referenced, locomotory behaviour.  The aim of this two-dimensional model was to 

quantify movement in the context of tidal currents. It also served to assess the possible 

misclassification of foraging behaviour when only one perspective of movement was 

accounted for in an energetic system. To validate this, dive classifications were 

correlated with contemporaneous, HMM derived observed states. State assignations for 

individual time-steps were correlated to dive clusters if the interpolated GPS location 

underlying the discrete state fell within 15 minutes of any particular dive. If multiple 

dives fell within that 15-minute window, the closest dive was correlated to that time-

step. Relative proportions of each dive cluster in particular observed states were 

compared and used to assess whether the interpretation of underlying behavioural 
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states from the HMM are mirrored by the inferences made from dive behaviour. This 

method did result in some dives being used in more than 1 time-step; however, dive 

behaviour of phocids has repeatedly been noted to occur in bouts of similar function 

(e.g. Austin et al. 2006; Wilson et al. 2014b) and therefore this should not bias the 

interpretation.  

The ultimate aims of the comparison between state-assignations are two-fold. Firstly, it 

allows assessment of the use of horizontal movement as a proxy for discrete 

behavioural states; if dive-records, which are associated with individual states, tend to 

be dominated by particular behaviours, it provides support that the model of horizontal 

movement has identified true behavioural distinctions. Secondly, discrete dive 

behaviours can be used to validate the underlying behavioural inferences made from 

the associated movement model. 
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Table 1 Dive metrics included in PCA and cluster analysis. All metrics are provided 
along with descriptions and derivation. 

Dive Metric Description Source and Calculation 

Dive Depth 
(m) 

Maximum depth value registered (in 
metres) by the tag during a single dive 

Tag derived. Taken as the maximum 
absolute value recorded by the pressure 

sensor. 

Proportion 
of the water 

column 

Proportion of the water column the  
maximum depth value during a single 

dive represents 

The maximum dive depth divided the 
bathymetric depth. Bathymetric depth was 

taken as the LAT estimated form the 
EMODNet DTM corrected to MSL through 

VORF correction and adjusted for tidal 
height. 

Proportion 
of time in 
bottom-

phase 

Proportion of time spent in the inferred 
bottom-phase of a dive 

Individual dives divided into descent, 
bottom, ascent and surface periods 

through vertical speed threshold 
calculation through the R package 

diveMOVE. Bottom-phase was then divided 
by the total duration of the dive. 

Descent Rate 
(m.s-1) 

Speed with which the animal transited 
from the surface to the beginning of the 

inferred bottom-phase in a dive 

Total distance between the surface and the 
depth of the first bottom-phase record 

divided by the time between the surface 
record and the first bottom-phase record. 

Bottom-
phase 

wiggliness 
index (m) 

The degree of vertical sinuosity during 
the inferred bottom-phase of a dive 

Absolute vertical distance travelled in the 
bottom-phase of the dive (Leos-Barajas et 

al. 2017a). 

Bottom-
phase 

duration (s) 

The total amount of time spent in the 
inferred bottom-phase of the dive 

Time-stamp of the final record in the 
inferred bottom-phase subtracted by the 

time-stamp of the first record in the 
inferred bottom-phase. 

Dive 
Duration (s) 

The time between end of the pre dive 
surface interval and beginning of the 

post dive surface interval 

The time-stamp of the final record in the 
entire dive subtracted by the time-stamp 

of the first record in the dive. 

Post-dive 
surface 

duration (s) 

The amount of time spent at the 
surface  

after surfacing from a dive, before  
commencing the next dive 

The time-stamp of the first record of the 
following dive subtracted by the time-
stamp of the final record of the dive in 

question. 

3.3.3.2 Dive Metric Modelling 

Individual dive metrics (descent rate, proportion of the water column used, proportion 

of dive spent in the bottom-phase, and dive duration) were analysed as response 

variables, using generalised additive models (GAMs) within a generalised estimating 

equation (GEE) framework using the R packages ‘splines’ and ‘geepack’ (Halekoh, 
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Højsgaard & Yan 2006). Errors were modelled as gamma distributions with an inverse 

link function for all models except for the response variables representing proportions. 

Proportional responses were modelled with a binomial error structure and logit link 

function. A GEE framework was chosen due to the inherent correlation associated with 

time-series data, which is likely to propagate through to the residuals, a violation of a 

key assumption of traditional GAMs(Wood 2017). Within a GEE framework, longitudinal 

data are grouped into panels, within which data are permitted to be correlated and 

between which are assumed to be independent of each other. Robust sandwich-based 

estimates of variance (Pirotta et al. 2011) inflate the standard errors around the 

estimates, ensuring that the presence of autocorrelation has been accounted for without 

directly modelling it. The acf function in the R package ‘stats’ was used to assess 

temporal autocorrelation and the most relevant GEE panel size was determined to be 

individual seals. Coefficient estimates derived from GEE-based models for a given 

covariate are representative of a population-level response rather than a mean 

individual response. To ensure that these inferences could be generalised across 

individuals and the population, relative density plots of sample size for each covariate 

were produced (Appendix II).   

Interactions between each of the continuous variables of bathymetric depth, current 

speed and Julian day, with the factor variable of diurnal period were tested in the 

models. Current speed and bathymetric depth terms were entered as cubic 𝛽-splines 

due to the assumption that the relationships with response variables could be 

nonlinear. Julian day was fit with a cyclic spline to ensure that the model represented 

the difference between day 365 and day 1 the same as all other sequential days. Basis 

functions for the cyclic splines were generated using a traditional, univariate GAM with 
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Julian Day as the response variable and the ‘cc’ argument in the ‘bs’ function from the R 

package ‘splines’.   

Model selection was carried out using backwards hypothesis testing and model 

simplification. The significance of covariates was assessed using a Wald’s Test and an 

assessment of p-values (Hardin & Hilbe 2012). Multiple ANOVAs were fitted for each of 

the final models using the ‘getPvalues’ function in the package ‘MRSea’ (Scott-Hayward et 

al. 2013a). In each ANOVA, a single covariate was included last in the calculation, to re-

confirm covariate significance by assessing marginal terms. Spline terms were iteratively 

replaced with linear terms if non-significance was established, and models were re-

tested. A traditional significance level (α = 0.05) was considered in all model selection 

steps. Finally, responses were predicted across the range of the predictor variables 

(rather than the range of values possible within the study area) to ensure no false 

inferences were made beyond the information provided by the telemetry data. Each 

prediction for a given variable kept all other variables constant at their median values. 

All predictions were generated on the response scale to ease interpretation of the 

marginal effects. 

3.4 Results 

A total of 97277 dives were recorded across 32 of the 54 tagged seals. The remaining  tags 

transmitted less than 14 seal days of data each and were excluded from further analyses. 

A large proportion (0.79) of recorded dives were within the Pentland Firth, with animals 

rarely moving into waters >150 m deep (Fig. 1). Median maximum dive depths across 

individuals was 92.8 m (range: 58.6 m - 198.7 m) and median dive duration was 197 

seconds (range: 71 seconds - 333 seconds).  
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Figure 1 Dive locations. Red points indicate filtered dive locations; each location is 
within 15 minutes of a GPS fix. The underlying blue surface shows the bathymetric depth 
scale. 

3.4.1 Dive Clustering 

The principle component analysis identified 5 principle components from the eight dive 

metrics which explained ~94% of the variation in the data (Fig. 2). The contribution of 

dive metrics to each principle component can be found in Appendix II. Principle 

component 1 accounted for 46.8% of the variation in the data and was most strongly 

influenced by bottom phase wiggliness, total duration in bottom phase, proportion of 

the water column used and maximum dive depth. Principle component 2 accounted for 

17.7% of the variation in the data and was most strongly influenced by descent rate, 

total duration in bottom phase of the dive and the total dive duration.  
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Figure 2 Percentage of explained variance contributed by each individual principle 
component. Significant figures have been rounded so cumulative explained variance 
only sums to 99.9 %. 

Cluster analysis proceeded by computing and comparing BIC scores for 14 different 

model iterations, with each iteration sequentially adding clusters until the integrated 

likelihood was maximised.  The optimal model identified five discrete clusters; each 

cluster represents an identifiably different general dive profile representing different 

ranges for each dive metrics (Fig. 3). Mean and standard deviations of the eight dive 

metrics were calculated for all clusters and sample time-depth plots were generated to 

assist in behavioural interpretation of each identified cluster (Table 2 and Fig. 3).  

A centroid plot of the first 2 principle components associated with the cluster analysis 

demonstrates that discrete dive types could be easily distinguished and that 
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behavioural modes can be robustly teased apart with the dive data (Fig. 4). The 95% 

range of all clusters overlapped with at least one other cluster’s range except cluster 5 

(V-shaped dives; Fig. 5); however, these two principle components only accounted for 

64.5% of the variation in the data so further discrimination is not represented by this 

plot alone (see Appendix II for full suite of plots for every PC used in this analysis). 

 

Figure 3 BIC scores for each Gaussian mixed model iteration. The 14 different models 
identify the volume, shape and orientation of the covariates as being either equal or 
variable. The full description of each model can be found in (Scrucca et al. 2016). Note the 
optimal model; VVV showing the maximised integrated likelihood being reached at 5 
clusters. 
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Figure 4 Principle component 1 vs principle component 2. Points represent a 
random sample of 5000 observations from the model data. Centroids represent where 
95% of the model data are contained.  

Figure 5 shows summarised metrics and an example of a time-depth profile from each 

cluster. Cluster 1 was characterised by deep, benthic/demersal dives with relatively flat 

bottom phases and fast descent rates; cluster 2 was characterised by shallow, flat 

bottomed dives with slow descent rates; cluster 3 was characterised by mid-water dives 

with high wiggliness during the bottom-phase; cluster 4 was characterised by deep, 

benthic/demersal dives with slower descent rates and highly wiggly bottom-phases; and 

cluster 5 were broadly v-shaped dives (Thompson et al. 1991a; Wilson et al. 1996), 

characterised by slow descent rates and very short bottom-phases (Fig 5).
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Figure 5 Example time-depth profiles for each dive cluster. Times are given in UTC and depth in metres below the surface. 
Associated mean and standard deviations for dive metrics can be found in figure. 4. From left-to-right and top-to-bottom: examples of 
dive clusters 1, 2, 3, 4 and 5 are presented.   Red lines indicate the bathymetric depth at the location of the dive. 
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3.4.2 HMM comparison 

HMM derived states 1, 2, and 3 (geo-spatial dispersed states coupled with hydro-spatial 

dispersed, localised and travel states, respectively) all had relatively similar dive cluster 

proportions; between 61.3% - 66.42% of dives were comprised by a combination of 

dive clusters 1 and 4 in each of these states. Dive cluster 3 was the next most 

represented in states 1,2 and 3 followed by cluster 5. Dive cluster 2 represented <6% of 

the dive record in all three cases.  

State 4 (Cross-current localised) was mostly represented by dive cluster 2 (36.75%). 

Clusters 1 and 3 were relatively evenly represented in this state (18.4% and 25.94%, 

respectively) with clusters 4 and 5 comprising a combination of <19%.  

State 5 (Geo-Hydro localised) demonstrated a very similar pattern to states 1, 2 and 3, 

with clusters 1 and 4 comprising a combined total of 70.1%. However, cluster 3 

contributed a smaller relative proportion of the dive record in this state compared to 

the first 3 states (3.72%).  

State 6 (Swimming against the current) was the only state which did not have all dive 

clusters represented in the record; dive cluster 5 was absent from all time-steps 

predicted to be state 6. Seals were diving in a manner consistent with cluster 1 for 

63.68% of the time, with cluster 4 being the next most represented at 28.46%. Dive 

clusters 2 and 3 represented <8% of the total record during time-steps predicted to be 

in state 6.  
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Table 2 Mean and standard deviation of dive metrics for each discrete cluster. Standard deviations are provided in brackets. 

Cluster 
# 

Inferred 
qualitative 
description 

Parameter 

Dive 
Depth 

(m) 

Proportion 
of water 
column 

Proportion of 
time in bottom-

phase 

Descent 
Rate (m.s-1) 

Bottom-
phase 

wiggliness 
index 

Bottom-
phase 

duration 

Dive 
duration 

(s) 

Post-dive 
surface 

duration 
(s) 

1 
Benthic 

Foraging on 
Static Prey 

55.1 
(19.72) 

0.82 (0.18) 0.61 (0.19) 
0.9 (0.48) 

4.11 (1.65) 
169.73 
(48.85) 

291.28 
(126.12) 

138.92 
(58.26) 

2 
Shallow 

Travelling 
14.71 
(2.26) 

0.4 (0.15) 0.5 (0.049) 
0.48 (0.25) 

5.75 (4.59) 
15.34 
(6.94) 

31.45 
(12.57) 

92.94 
(62.03) 

3 
Pelagic 

foraging 
26.12 
(8.53) 

0.61 (0.21) 0.72 (0.1) 
0.81 (0.41) 

27.67 
(8.68) 

168.87 
(66.94) 

228.54 
(70.76) 

129.27 
(60.95) 

4 

Benthic 
/Demersal 

Foraging on 
Pursuit Prey 

56.17 
(22.38) 

0.91 (0.11) 0.58 (0.16) 
1.25 (0.52) 14.94 

(12.4) 
145.54 
(72.15) 

242.19 
(76.3) 

99.49 
(66.51) 

5 
Deep 

Travelling 
/Prospecting   

40.37 
(19.15) 

0.77 (0.23) 0.11 (0.056) 
0.62 (0.44) 

0 (0)* 
11.77 
(4.11) 

138.15 
(70.0) 

65.07 
(57.47) 
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HMM derived state 8 (Drifting - directed) had 43.6% and 30.9% of dives identified as 

belonging to clusters 3 and 1, respectively. The remaining 3 clusters each contributed 

<11% to the total dive record for state 8.  

Time-steps predicted to be state 7 (Cross-current travel) were represented by high 

(>20%) proportions of dive clusters 1, 2 and 3 with dive cluster 5 representing 17.26% 

of the dive record during this state. The Geo-Hydro travelling state (state 9) 

demonstrated the largest proportion of dive cluster 5 (36.05%) compared to all other 

states, with a similar proportion (33.28%) being represented by cluster 2. Dive cluster 1 

represented ~19.15% of state 9 with clusters 3 and 4 representing a combined 

proportion of <12%. 

3.4.3 Dive Metric Modelling 

Results from model selection via backwards hypothesis testing are shown in Table 3 

along with Wald’s Chi-squared statistics, the associated degrees of freedom and P-

values. Further, individual-based distribution plots aided interpretation of the spread of 

the data so qualitative inferences on individual behavioural traits could be made from 

the population-level estimates from the GAM-GEE based model predictions (Appendix 

II). 
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Figure 6 Proportion of dive clusters represented by each HMM derived state. State 
descriptions are presented above each pie chart and are the same state assignations as 
presented in Chapter 2. Rows separate geo-spatial states where the top row indicates all 
geo-spatial dispersed states, the second row indicates geo-spatial localised states and 
the bottom row indicates geo-spatial travelling states. Columns similarly separate 
hydro-spatial states into (left) dispersed, (centre) localised and (right) travelling states. 

Variation in descent rate was best explained by current speed, bathymetric depth, 

benthic substrate and Julian day (Table 2). An additional interaction term with diurnal 

period was retained for bathymetric depth. Inspection of model predictions shows that, 

between current speeds of 0.4 – 1.7 m.s-1 (Fig. 7), descent rate increased markedly from 

~0.5  to ~1.6 m.s-1 . The descent rate then decreased in current speeds up to 3 m.s-1; 

beyond this, estimates of descent rate have wide confidence intervals, likely due to a 

lack of data and inferences must be treated with caution. Seals generally descended 

faster in deeper areas and during the winter months. Descent rate was also faster at 
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night regardless of the bathymetric depth of the region. Descent rate was highest in 

areas characterised by sandy, coarse and mixed sediments with the lowest descent rates 

being estimated in rocky regions (Fig. 7). 

The proportion of time spent in the bottom phase of dives varied with current speed, 

bathymetric depth and Julian day but to varying degrees (Fig. 8). Seals spent longer in 

the bottom phase of a dive in low to mid flow speeds (peak response at ~1 m.s-1) and in 

50 – 60 m deep water. The interaction with diurnal period suggested that seals spent 

longer in the bottom phase of dives at night, regardless of the bathymetric depth of the 

region. However, confidence intervals are relatively wide suggesting this result should 

be treated with caution. Mean bottom time was greatest during winter and spring 

months with the overall minima reached during summer (Fig. 8).  

Predicted dive durations and bottom phase durations peaked at low to mid current 

strengths (Fig. 9). Mean dive duration was predicted to increase with increasing 

bathymetric depth reaching a maximum at depths around 50 m. Seals were predicted to 

dive for up to a minute longer during winter months compared to spring and early 

summer predictions. No diurnal interactions were retained in model selection for the 

response of dive duration (Fig. 9). 

Seals utilised a smaller proportion of the water column at higher current speeds (Fig. 

10) with peak water column usage observed in speeds of ~0.5 m.s-1. Further, seals dived 

to a greater relative depth at night regardless of current speed. The proportion of the 

water column used decreased with increasing current speed during both the night and 

day; however, the magnitude of the decrease was greater during the day (Fig. 10).  



Chapter 3: Plasticity in diving behaviour in a tidal stream environment suggests seals 
maximise efficiency in varying flow conditions 
 

110 
 

Predicted proportion of the water column was greater during night than during the day, 

at all current speeds up to 3 m.s-1, beyond which confidence intervals show high levels 

of uncertainty. The proportion of the water column used showed little variation in 

water depths up to 100 m, with a gradual decrease in dive depth in deeper areas.  A 

seasonal shift to shallower relative depths was observed in autumn and winter months, 

with maximum water column usage being predicted in spring. A diurnal interaction was 

retained in model selection for the Julian day covariate, with seals diving to a greater 

proportion of the water column at night during spring and summer but shallower at 

night during autumn and winter. However, confidence intervals for this interaction 

suggest that the effect size for the interaction is extremely small.  A significantly greater 

proportion of the water column was used in sandy and mixed sediments than in coarse 

sediment or rocky environments.  
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Table 2 Table of χ2 and p values. Shaded boxes indicate variables which were retained during model simplification. If interactions are 
retained, partial effects are not reported. 

Response Variable 

Predictor Variable 

Current speed : 

Diurnal period 
Current speed 

Bathymetric depth : 

Diurnal period 

Bathymetric 

depth 

Julian day : 

Diurnal period 
Julian day Sediment 

Descent rate 
χ2 = 0.66, df = 3; p = 

0.41 

χ2 = 18.6; df = 3; 

p < 0.001 

χ2 = 7.87, df = 3, p = 

0.003 
- 

χ2 = 0.76, df = 4; p 

= 0.44 

χ2 = 12.9; df = 4; 

p <0.001 

χ2 = 8.54; df = 4; 

p = 0.0035 

Dive duration 
χ2 = 2.89; df = 3; p = 

0.08 

χ2 = 9.86; df = 3; 

p = 0.002 
χ2 = 1.72; df = 3; p = 0.14 

χ2 = 8.42; df = 3; 

p = 0.003 

χ2 = 0.49; df = 4; p 

= 0.32 

χ2 = 4.9; df = 4; p 

= 0.02 

χ2 = 4.37; df = 4; 

p = 0.037 

Proportion of time in 

bottom phase 

χ2 = 3.27; df = 3; p = 

0.07 

χ2 = 11.94; df = 3; 

p < 0.001 
χ2 = 6.3; df = 3; p = 0.014 - 

χ2 = 7.5; df = 4; p = 

0.006 
 

χ2 = 0.76; df = 4; 

p = 0.38 

Proportion of the 

water column 

χ2 = 11.77; df = 3; p < 

0.001 
- χ2 = 0.17; df = 3; p = 0.68 

χ2 = 8.08; df = 4; 

p = 0.004 

χ2 = 5.78; df = 4;  p 

= 0.016 
- 

χ2 = 4.04; df = 4; 

p = 0.04 
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Figure 7 Covariate effects on changes in descent rate. Solid lines represent population mean estimates on the response scale. Grey 
shaded areas demonstrate uncertainty using GEE derived 95% confidence intervals. Red shading indicates periods of data removal. 
Mean effect estimates of the factorial variable of sediment type (bottom-right) are given by points with bars representing upper and 
lower GEE derived 95% confidence intervals. Rug plots demonstrate the spread of the observations and provide context for the 
uncertainty estimates. 
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Figure 8 Covariate effects on changes in proportion of time in the bottom phase of a dive. Solid lines represent population mean 
estimates on the response scale. Grey shaded areas demonstrate uncertainty using GEE derived 95% confidence intervals. Red shading 
indicates periods of data removal. Mean effect estimates of the factorial variable of sediment type (bottom-right) are given by points 
with bars representing upper and lower GEE derived 95% confidence intervals. Rug plots demonstrate the spread of the observations 
and provide context for the uncertainty estimates. 
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Figure 9 Covariate effects on changes in dive duration. Solid lines represent population mean estimates on the response scale. Grey 
shaded areas demonstrate uncertainty using GEE derived 95% confidence intervals. Red shading indicates periods of data removal. 
Mean effect estimates of the factorial variable of sediment type (bottom-right) are given by points with bars representing upper and 
lower GEE derived 95% confidence intervals. Rug plots demonstrate the spread of the observations and provide context for the 
uncertainty estimates. 
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Figure 10 Covariate effects on changes in proportion of the water column used. Solid lines represent population mean estimates on 
the response scale. Grey shaded areas demonstrate uncertainty using GEE derived 95% confidence intervals. Red shading indicates 
periods of data removal.  Mean effect estimates of the factorial variable of sediment type (bottom-right) are given by points with bars 
representing upper and lower GEE derived 95% confidence intervals. Note y-axis range spans values less than 0 and greater than 1 to 
include the insignificant confidence intervals in high flow rates. Rug plots demonstrate the spread of the observations and provide 
context for the uncertainty estimates.
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3.5 Discussion 

The results presented here show that harbour seals can exhibit a high degree of 

variability in dive behaviour in a temporally and spatially dynamic environment, and 

that a number of environmental covariates influence their diving behaviour. To my 

knowledge, this is the first study showing the relationships between the diving 

behaviour of harbour seals, or indeed any marine mammal, and hydrography in a tidal 

stream environment.  Further, the results represent a first insight into harbour seal dive 

behaviour as it relates to dynamic habitat variables in the UK and suggest that seals may 

switch foraging tactics as a result of tidal flow. 

Observed diving behaviour was compared with results of a discrete time HMM, which 

demonstrated transition probabilities that were representative of individual-level 

behavioural switching (Chp. 2). This comparison largely supported the inferences of 

foraging behaviour made from the horizontal movement data. It therefore seems 

reasonable to assume that behavioural switches occur frequently in response to 

changing environmental conditions, and that foraging plasticity is a common trait of 

harbour seals in this tidally energetic environment. The result also supports previous 

suggestions (Chp. 2) that harbour seals adjust their foraging tactics to successfully 

exploit variably energetic conditions as well as local, static environmental features. 

With many individuals occupying a wide range of hydrodynamic conditions across the 

study period, it is therefore proposed that these results demonstrate that seals adopt a 

generalist rather than specialist approach to foraging in this region. It was notable that 

all HMM derived states included multiple dive types which highlights these analyses, 

while useful is providing broad-scale inferences, are problematic for describing fine-

scale harbour seal behaviour. However, the dive data cluster analyses was useful for 
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quantifying and interpreting activity budgets and, in tandem with horizontal movement 

and environmental data, provided useful insights into the environmental drivers of 

behaviours.  

Benthic diving was the most common dive-behaviour exhibited during the known 

localised state categorised by both geo-spatial and hydro-spatial movement in the HMM 

(geospatial localised - hydrospatial localised; state 5; Fig. 6). This supports the widely 

held assumption that such area-restricted search (ARS) behaviour is indicative of 

foraging (Kareiva & Odell 1987). When seals were geo-spatially stationary in increasing 

flow rates by swimming against a prevailing current (geo-spatial localised – hydro-

spatially travelling), benthic dives also predominated. Concurrently, a significant 

increase in descent rate and proportion of time in the bottom phase of dives was 

observed. Within the water column, current strength generally peaks close to the 

surface (assuming no external forcing) and decreases to effectively 0 at the boundary 

between the water and the sea-bed (Brown 1999). It is therefore possible that seals 

avoid significant displacement during benthic foraging in increased tidal currents by 

reducing the amount of time spent in the highest flow rates during descent phases. In 

addition to assisting geo-spatial localised foraging, this tactic may also allow seals to 

exploit prey patches that are unavailable for less efficient benthic diving competitors 

such as seabirds (Waggitt et al. 2016).   

Behavioural mechanisms to avoid high flow rates at the surface has also been noted in 

other species during migration (Metcalfe, Hunter & Buckley 2006; Campbell et al. 2010). 

However, given the regularity with which they display this behaviour, it seems likely 

that the apparent avoidance of high currents in the water column by seals is linked to 

foraging rather than as a means to assist travelling. Specifically, as central place foragers 
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that do not tend to migrate large distances to breed and forage, harbour seals are able to 

haul-out regularly, presumably to rest between foraging bouts. This results in a larger 

proportion of their time at-sea dedicated to foraging when compared to migratory 

species or animals with larger home-ranges (Russell et al. 2015). Further, the 

association of benthic diving and fast descent rates with prolonged periods of 

swimming against the current to remain in a geostationary patch (state 6 in the HMM; 

Fig. 6) suggests a desire to remain local rather than travel. 

Hydro-spatial localised behaviour was more apparent at current speeds greater than 1.7 

ms-1 suggesting seals were drifting with the prevailing flow (Chp. 2). During hydro-

spatial localised behavioural states where geo-spatial dispersed or travelling 

predominated, the dive cluster analysis showed a high proportion of mid-water dives 

with high levels of movement in the bottom-phase of the dives, lasting similar durations 

as benthic foraging dives. These changes in behavioural patterns during periods of 

increasing flow may demonstrate a switch from benthic to pelagic foraging. Seals 

appear to switch from an ARS pattern in geo-space to an ARS pattern in hydro-space, 

with foraging putatively remaining the primary driver. This hydro-spatial ARS 

behaviour appears analogous to that of elephant seals (Mirounga leonina) in the 

southern ocean demonstrating “quasi-planktonic” foraging bouts (Della Penna et al. 

2015) and puffins (Fratercula arctica) in Ireland, which were shown to engage in no 

geo-spatial ARS movement but drift with the current and dive during passive horizontal 

transport (Bennison et al 2019). Similarly, harbour porpoises (Phocoena phocoena) 

have been more detectable using drifting acoustic recorders than moored recorders in 

energetic systems, suggesting their utilisation of currents while foraging by drifting or 

actively moving downstream (Benjamins et al. 2016); however, this is potentially 
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confounded by lower detectability by static receivers which are more vulnerable to 

ambient flow noise during increased currents. In flow rates lower than the minimum 

cost of transport speed in harbour seals (~1.8 m.s-1 ; Thompson, Hiby & Fedak 1992; 

Gallon et al. 2007), water movement is unlikely to significantly affect the energetic costs 

of travelling and foraging; as such, seals may be more capable of remaining at a geo-

stationary prey patch at flow speeds below this. This would make the exploitation of 

benthic prey patches in low currents efficient and diving pelagically whilst moving with 

a current may become a more energetically favourable strategy at higher currents.  

The observed changes in diving behaviour with flow speed therefore suggest that prey 

switching occurs (from benthic to pelagic) as current speed increases. This is supported 

by results that show that, compared to other regions, harbour seals in this region have a 

relatively varied diet. Wilson and Hammond (2019) showed that both pelagic and 

benthic species were important components of harbour seal diet in the Pentland Firth 

and Orkney waters throughout the year. The authors also show that diet is more varied 

in this area than many other populations around the UK and that prey composition may 

be shifting more towards other pelagic and demersal species due to crashes in local 

sandeel populations (Frederiksen et al. 2004). The seasonal fluctuations in the 

proportion of the water column used supports these results in that benthic diving was 

more apparent in spring and summer months with a shift towards mid-water diving in 

autumn, though confidence intervals are relatively wide for these predictions. It is 

important to note that the diet analyses of Wilson and Hammond (2019) identified 

population level variability and it remained unclear whether this constituted a 

population of generalists or several specialists. Density plots of covariate representation 

(Appendix II) suggest that this population is likely made up of a mixture of both, with 
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many individuals inhabiting multiple conditions and others preferring a narrower 

environmental range. It should also be noted that the summer and early autumn effects 

estimates should be treated with a great deal of caution in this present study. Data were 

abstracted to ensure breeding periods did not affect behavioural interpretations in early 

summer and deployments subsequent to the cessation of moulting periods did not 

begin until late September. Model predictions around these dates carry necessarily wide 

confidence intervals and should be interpreted with caution. 

Descent rate and relative dive depth as a proportion of the water column decreases as 

depth-averaged current strength increases beyond ~1.7 m.s-1, and seals switch to geo-

spatial travelling or dispersed patterns (Chp. 2). However, confidence intervals around 

the estimates of descent rate are progressively wider above these values despite 

relatively large sample sizes up to ~3 m.s-1. This increased variability in descent rates at 

these flow speeds suggests that descent rate may not be a constraint while seals drift 

with currents and hydro-spatially forage. Interestingly, the negative relationship 

between proportion of the water column and current speed differed between day and 

night. Significantly more benthic diving was predicted at higher current speeds at night 

and mid-water diving occurring more frequently during the day and at depth-averaged 

current-speeds exceeding 1 m.s-1. Most previous studies investigating phocid diving in 

relation to diurnal patterns have noted a pronounced trend towards deeper diving 

during the day, suggesting a response to vertical migrations of prey (e.g. Bennett, 

McConnell & Fedak 2001; Photopoulou et al. 2014). However, these studies have tended 

to focus on habitats which exhibit clear vertical stratification in the water column and 

where diurnal vertical migration of motile plankton and nekton occurs. The area of the 
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present study, being coastal and characteristically energetic, is likely to have a highly 

mixed water column, so vertical migration of primary production is reduced.  

It is possible that there are a variety of sensory modalities required for different flow 

conditions and different prey types. During periods of low flow, the use of whiskers to 

detect fine-scale changes in surrounding water hydrodynamics (Murphy et al. 2017) 

may be favourable, and at high flow rates, where turbulence limits or preclude this, 

vision may by the primary sensory modality for foraging. In other words, the apparent 

switch from deep, benthic diving at night to pelagic diving during the day may therefore 

represent a switch from conditions where mystacial vibrissae innervation is the 

primary sense for prey location (Schulte-Pelkum et al. 2007) to a vision-based, pursuit 

hunting which requires light to locate moving prey. With more light closer to the 

surface, pursuit hunting would benefit from residency in the upper photic zone. Sensory 

modality may also explain why at higher flow rates, seals appeared to spend relatively 

more time at shallower depths relative to the bathymetric depth. Specifically, higher 

flows likely cause increasing turbulence and a larger boundary layer emanating from 

the water-substrate interface (Vogel 1994). Turbulent flow becomes more laminar as 

frictional forces dissipate in the upper water column. This would allow seals to employ 

the use of mystacial vibrissae by detecting hydrodynamic trails of forage fish (Schulte-

Pelkum et al. 2007) without being masked by turbulent flow in the demersal region. 

Although this is potentially an oversimplification of a highly complex system, the overall 

patterns observed in the dive data do suggest that seal behaviour is affected by the 

interactions between current strength and the seabed, and that a combination of 

changes in prey distributions and availability likely drive the patterns observed. 
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Irrespective of season and daylight, dive depth was shallower in flow rates above 2m.s-1. 

This may be a direct response to increases in the abundance of fish in the water column; 

for example, Williamson et al (2019) observed that the overall size of mid-water fish 

schools increases with increasing flow rate. Some predatory species have been 

observed frequently targeting fast flowing areas presumably due to this ‘tidal coupling’ 

relationship where prey species are aggregated and/or disorientated by the energetic 

conditions. These hydrodynamically influenced dive depths appear to support the tidal 

coupling hypothesis in that the seals spent significantly longer diving to pelagic depths 

in faster flow than during lower flow rates when they appeared to dive more 

benthically. Williamson et al. (2019) also noted that pelagic fish school area and 

frequency peaked during daylight periods which lends further support to the assertion 

that the seal dive behaviour here is related to prey switching; dive depths consistently 

showing shallower diving during daylight periods.  

The results presented here suggest that foraging behaviour is influenced by diurnal 

cycles, tidal state, and season in this region, and that behaviour switching is likely a 

response to prey availability as well as environmental conditions. Given that foraging-

like dive behaviour accounted for the highest percentage of all of the HMM derived 

states which were categorised as putative foraging also reinforces the assertion that 

hydro-spatial and geo-spatial movement patterns should both be considered when 

establishing a predators activity budget and foraging behaviour in dynamic 

environments.   

It is important to highlight that there a number of caveats associated with this study; 

most notably foraging behaviour is inferred from the movement and dive data here and 

was not measured directly. A recurring theme in movement ecology in the realm of 
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remote sensing is the reliance on statistical approaches and underlying assumptions of 

foraging ecology in order to make inferences about the function of specific movements 

(Patterson et al. 2008; Joo et al. 2013). Often researchers do not have the ability to 

directly observe animals to validate behavioural inferences based on movement and 

rely on ancillary data from other populations and/or pre-conceived biological theories. 

Given that the environment in this study presents unique challenges to seals it could be 

equally feasible that behavioural assumptions made from a different population are not 

applicable.  

This study has attempted to address this issue by relating the identified movement 

patterns to previous, robust measurements of diet however the interpretations of the 

drivers of the diving patterns remain uncalibrated. Further studies might consider 

measuring the effect of environmental drivers on dive behaviours in the context of 

discrete dive clusters as well as extrinsic covariates, essentially coupling the 2 different 

analyses conducted in this study. This may help elucidate how ‘foraging’ dives and 

‘travelling’ dives may differ in their fine-scale properties; however, this would reduce 

the sample size for each analysis, rendering it more challenging to decipher a signal in 

the data. Furthermore, foraging has been directly recorded in virtually every ‘dive-

shape’ identified in harbour seals (Lesage, Hammill & Kovacs 1999) and therefore these 

distinctions may not robustly broaden our understanding of activity budgets. 

Researchers must therefore continue to observe these movements in finer scale to gain 

a better understanding of activity budgets and energetic balances to strengthen these 

inferences.  

Current speeds presented are model derived and depth-averaged, and do not take 

account of external forcing such as wind and local atmospheric pressure. Further, the 
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resolution of the model precludes the identification of fine-scale oceanographic features 

such as eddies and boils, and this may limit the power of such analyses to tease apart 

fine-scale behavioural strategies.  As such, the significant relationships between diving 

behaviour and habitat covariates must be interpreted with these caveats in mind.  

The use of two different tag types presented some challenges in data processing and the 

difference in raw-data resolution could have an impact of the robustness of dive metric 

estimation. If animals spend little time in the bottom-phase of a dive, such as the V-

shaped dives identified in these data, decreasing data resolution may begin to mask the 

true maximum depth of dives or indeed bottom phase behaviours which indicate 

behavioural modes may be masked. For example, if a tag records a depth estimate every 

10 seconds and during a v-shaped dive an animal descends (and ascends) at 1.5 m.s-1 to 

a depth of 50 metres, if a depth record was taken at 40 metres during descent then the 

maximum depth of a dive would be recorded as 45 metres (the subsequent depth 

reading, during the ascent phase). This would represent a 10% error in estimated 

proportion of the water column used and could have pronounced implications for 

behavioural inference. In practice, the behavioural assignations used here would not 

have been severely affected as all V-shaped dives, regardless of dive depth were 

presumed to be indicative of travelling behaviour however it is an important 

consideration especially when considering behavioural implications and physiological 

limitations. 

The present study was novel in that, for the first time, dive behaviour of seals was 

investigated in the context of complex hydrodynamics in a tidally energetic region. 

However, previous studies have speculated that finer-scale hydrodynamic features than 

presented here may influence foraging mechanisms of harbour seals. For example, 
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Hastie et al. (2016) suggested that in a similarly energetic system, harbour seals may 

use micro-scale eddies to exploit the periphery of the prevailing flow and utilise 

adjacent, slower moving water to swim upstream while foraging. Similarly, Lieber et al. 

(2018) found the probability of harbour seal occurrence to increase with the presence 

of peripheral eddies and vertical shears using ADCP line transects. While the results 

presented here showed changes in diving behaviour with foraging in a tidal-stream, the 

association with micro-scale features was not possible given the scale of the 

hydrodynamic models available in the area. Further, the use of depth-averaged current 

data limits the analyses to horizontal current velocities over time, and ignores the fact 

that, as tidal state changes, average current may represent a different proportion of the 

maximum current speed in the water column.  

3.6 Conclusions 

The observed relationships between dive behaviour and hydrographic conditions 

highlight the importance of tidal currents for seals foraging in tidally energetic habitats, 

and suggests that such habitats confer not only a series of significant challenges, but 

also a series of unique benefits to seals.  Useful future studies would be to use higher 

resolution tracking techniques such as sub-surface sonar (Hastie et al. 2019a; Hastie et 

al. 2019b) or high resolution biologging devices such as accelerometers, magnetometers 

and swim speed loggers (Wilson, Shepard & Liebsch 2008) to investigate the foraging 

tactics and mechanisms of seals in the context of their fine-scale vertical and horizontal 

movements. Further steps towards refinement of three-dimensional oceanographic 

models would also aid in the interpretation of these types of data and allow a more 

robust inference as to the conditions immediately surrounding moving seals. These 

techniques may aid in our interpretation of how seals might utilise micro-scale, tidally 
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generated features and would help determine the mechanisms underlying the 

behavioural plasticity of foraging harbour seals. 
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4.1 Abstract 

The increasing global demand for energy coupled with the desire to reduce atmospheric 

carbon has fuelled the development of the renewable energy industry in recent years. 

Owing largely to their predictability, tidal currents provide one useful source of 

renewable energy which can be harnessed in a similar manner to wind. However, due to 

its relative infancy, data on the environmental impacts ranging from direct interactions 

with marine fauna to changes in physical oceanic properties, are largely lacking. Here, I 

present an analysis which quantifies the behavioural effects of the presence and 

operations of the world’s largest operational tidal turbine array on a population of 

harbour seals (Phoca vitulina) in the north of Scotland. The results demonstrate that 

seals show overt avoidance responses to the operations of the turbine, with a significant 

decrease in predicted abundance (between 24% and 39%) within a range of ~2 km 

from the turbine array while they are generating power. I also show that, over the 

longer period of exposure to the presence of the turbines, no significant changes in 

distribution were observed indicating that during the study period, foraging sites were 

not obstructed by any apparent barrier effects or perceived threats. These results 

provide important information which can be used to update estimates of potential 

interactions and collision rates between harbour seals and tidal turbine arrays and 

demonstrates a robust analytical framework which can be employed in future studies to 

assess how arrays of increasing size and operational status can affect distributions of 

marine animals.  
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4.2 Introduction 

The tidal energy industry is in its infancy compared to other renewable energy sources 

such as wind and solar farms. However, the spatial and temporal predictability of tidal 

currents make it an attractive choice, with several sites around the world being 

proposed for development. Tidal turbines are deployed subsea to extract energy from 

tidally-driven water currents with the majority of designs being horizontal-axis turbines 

with rotating blades; this has led to concerns about the potential impacts of turbines, 

through direct collisions between large animals (e.g. marine mammals) and turbine 

blades (Wilson et al. 2006; Dolman & Simmonds 2010; Hastie et al. 2017; Sparling, 

Lonergan & McConnell 2017; Fraser et al. 2018; Joy et al. 2018; Williamson et al. 2019).  

Tidal turbine development sites are characterised by being relatively coastal with fast 

tidal currents; such energetic habitats are commonly a consequence of topographical 

features which force water through narrow channels, shallow water, or around 

headlands (Simpson & Sharples 2012). The predictable nature of these oceanographic 

features is also thought to provide foraging opportunities for marine predators (Uda 

1958; Wolanski & Hamner 1988; Zamon 2001; Zamon 2003), and provide enhanced 

migratory and travelling efficiency when travelling with prevailing flow (Raya Rey et al. 

2010). For example, harbour seals (Phoca vitulina) are a coastal marine mammal 

species which has been observed in high numbers at tidally energetic sites; 

observations of tidally mediated residency and foraging behaviour suggest the sites to 

be of particular importance to some populations (Zamon 2001; Hastie et al. 2016). This 

link has also been noted in several species of seabirds and cetaceans (Pierpoint 2008; 

Cox, Scott & Camphuysen 2013; Wade et al. 2013; Waggitt & Scott 2014; Benjamins et 

al. 2015; Cox et al. 2018). This has led to concerns that large scale turbine array 

installations may result in collisions with these species, or create perceptual or physical 
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barriers to movement, restricting access through these areas. These restrictions may 

lead to increased transport costs, reduction in key foraging opportunities, or direct 

mortality (Chp. 5; Onoufriou et al. 2019) which has the potential to lead to population-

level effects.  

Studies to predict the potential impacts of tidal turbines on marine mammals have 

focussed primarily on the development and application of models to estimate species-

specific rates of collision (Wilson et al. 2006; Band et al. 2016; Thompson et al. 2016). 

These models are underpinned by estimates of the abundance and distribution of 

animals in areas of proposed tidal energy developments. Abundance data are then 

scaled by estimates of rates of avoidance by individuals as a result of animals detecting 

the turbines and exhibiting behavioural avoidance responses (Hastie et al. 2017). This is 

often difficult due to lack of empirical data which results in most collision risk models 

simply calculating estimated encounter rates. Encounter rates are defined as the rate at 

which animals would strike a turbine if they did not respond to the presence or 

operations of the device; essentially assuming no change to observed, pre-installation 

movement processes. Recent studies have suggested that this assumption is invalid 

given the changes in distribution seen as a response to active single devices or 

simulated devices (Hastie et al. 2017; Sparling, Lonergan & McConnell 2017; Joy et al. 

2018) but as yet, no information exists to inform the avoidance rate after turbine arrays 

are scaled up or how animals may evade the devices at close range. However, there is 

growing evidence that the installation of static anthropogenic structures may also 

increase biodiversity through bottom-up processes (Pickering & Whitmarsh 1997; Inger 

et al. 2009; Russell et al. 2014; Fraser et al. 2018; Williamson et al. 2019), potentially 

attracting animals to tidal turbines to forage. To date, there is an almost complete lack 

of data on how marine mammals respond to tidal turbine arrays.  
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As acoustically sensitive animals it is generally held that avoidance behaviour is likely to 

be triggered by aversive responses to the acoustic signal of the structures, be it during 

installation or operation. While closer range avoidance could be triggered by visual cues 

alone, the relatively high turbidity of coastal channels may render this difficult beyond a 

few 10s of metres.  Harbour seals can detect sounds at frequencies of up to ~110 kHz at 

pressure levels as low as 140 dB re 1 µPa, however are particularly sensitive to 

frequencies between 0.1 – 50 kHz (Cunningham & Reichmuth 2016). The predominant 

narrowband acoustic components of operational tidal turbines have been established at 

tonal frequencies of 120 Hz, 750 Hz and 1.5 kHz, falling within the sensitivity range of 

harbour seals (Goetz et al. 2011). These frequencies are notably above the sensitivity 

threshold of harbour seals up to (and possibly further than) 1500 metres from the 

devices. However, outside slack water periods, pressure levels over 1,000 metres from 

the devices often fall below ambient noise due to increased flow, rendering it 

increasingly unlikely that harbour seals could detect them at these distances (Goetz, 

Hastie & Sparling 2011). Aversive responses are consequently more likely to occur 

closer to the devices (up to ~1,000 metres) where the turbines are perceptibly louder, 

or potentially a greater distances in the instances where flow noise is low but flow 

speed has reached levels sufficient for turbine operations. However, as has been 

demonstrated in previous studies, novelty and threat perception, in addition to received 

sound pressure level, are equally important factors to consider when assessing why a 

seal may respond to a sound source (Deecke, Slater & Ford 2002; Hastie et al. 2017). 

Partly due to the limited numbers of operational tidal turbine arrays, studies 

investigating the avoidance or attraction of marine mammals to turbine arrays, and the 

consequent changes in density and distribution have been limited to measuring 

responses to controlled acoustic exposures or single test turbines (Hastie et al. 2017; 
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Sparling, Lonergan & McConnell 2017; Joy et al. 2018). These studies showed that 

marine mammals do exhibit avoidance responses to single devices. Hastie et al. (2017) 

found that harbour seal abundance decreased significantly up to 500 metres from a 

speaker playing tidal turbine sounds. Similarly, Sparling, Lonergan and McConnell 

(2017) showed that seals transited past a test turbine at greater distances during 

operational periods. This dataset was further analysed by Joy et al. (2018) who 

incorporated environmental covariates, as well as the operational status of the turbine, 

to demonstrate an overall reduction in usage within a 200 metre buffer of the turbine 

site; this led to assumed avoidance rates of ~68%. Although useful in understanding the 

potential collision risks associated with single turbines, to ensure that the industry 

develops in an environmentally sustainable manner, data on the responses by animals 

to operational arrays of turbines is urgently required.    

The largest tidal turbine array in the world (as measured by power generation potential 

and device size) is located off the north coast of Scotland. This is also an area with a 

relatively large, but rapidly declining, population of harbour seals (Fig. 1; Thompson et 

al. 2019). Major haulout sites on the north coast of Scotland are all within 10 km of the 

turbine array and there is likely to be significant overlap between the seals’ at sea 

distribution and the turbine array (Jones et al. 2017). This study therefore aims to 

describe the patterns of at-sea distribution by harbour seals around a turbine array and 

quantify distribution changes in response to turbine presence and operation. While 

uncertainty around close-range cannot be specifically addressed with the presented 

data, this analysis aims at characterising potential displacement or attraction which can 

ultimately help to refine estimates of collision rates by augmenting our understanding 

of how relative abundances will be affected. 
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Figure 1 North Coast and Orkney seal management unit. The full UK map (left) 
shows the North Coast and Orkney UK Seal Management Unit delineated by the pink 
polygon. The Pentland Firth map (right) includes turbine locations indicated with blue 
stars and seal tagging locations indicated by red stars. 

4.3 Methods 

MeyGen Holdings Ltd. under the umbrella of SIMEC Atlantis Energy began installation of 

four 1.5 MW tidal turbines, three Andritz Hammerfest Hydro HS1500 turbines and one 

AR1500 turbine, in the inner sound of the Pentland Firth in January 2015 (Rajgor 2016). 

The installation of all four turbines was completed in February 2017 with full 

operations commencing in August 2017. The turbines were installed in a non-linear 

array between 96 and 286 metres apart. Each structure consists of six gravity-based, 

concrete ballast blocks as foundations (totalling 1,500 tonnes) anchoring each of the 

three turbine support structure legs, a nacelle, and rotors measuring 18 m in diameter. 

Given that the turbines are gravity based, the noise emitted during installation was 
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relatively low compared to other installation techniques (e.g. pile-driving); therefore 

these periods were not considered as significant stressors and only the presence and 

operational periods were considered as potential drivers of distribution. 

4.3.1 Telemetry data collection and processing 

To measure the distribution of seals around the operational tidal turbine array, 

Fastloc® GPS/GSM tags (SMRU Instrumentation) were deployed on 14 harbour seals in 

2011 and 2012, and Fastloc® GPS/UHF tags (Pathtrack Ltd.) were deployed on 40 

harbour seals over 4 deployments in 2016, 2017 and 2018 (Chp. 2: Table 1, Fig. 2).  For 

full details of tags, scheduling, and capture and handling protocols, see Chapter 2.  

Given the potential for harbour seals to exhibit behavioural responses to the presence of 

turbines (Russell et al. 2014; Russell et al. 2016; Williamson et al. 2019) and/or to the 

operation of turbines (Hastie et al. 2017; Sparling, Lonergan & McConnell 2017; Joy et 

al. 2018), the data were analysed at two temporal scales. The first analysis compared 

the distribution of seals between periods when turbines were present or absent. 

Presence of turbines was assumed consistent from the final installation date and 

included periods when the turbines were generating and not generating. The second 

analysis only included data collected after the turbine installation date and compared 

distribution between periods when the turbines were generating and not generating 

electricity (see section 4.3.2).  

Seal tracks were linearly interpolated to regularised 15-minute intervals to ensure data 

resolution was consistent between all individuals. A 15-minute interval was chosen as 

this represented a compromise between data-resolution differences between tag types 

(see Chp. 2 for details). Interpolated locations which fell within data gaps of >2 hours 

were determined to be unreliable and removed from the analysis. Further, data 
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between May and September were removed to ensure that behavioural responses to the 

turbine array were not conflated with breeding and moulting phenology at this time of 

the year (Cordes & Thompson 2013).  

Only return trips (trips with both a start and end haulout location within the Pentland 

Firth) were used in the analyses of distribution (Fig 2). Three individuals frequently 

used haulouts in Orkney and Shetland and foraged primarily outside the Pentland Firth, 

so were removed from the analyses. This effectively reduced the availability polygon 

used in the generation of pseudo-absences (see below) and ensured a suitably high-

resolution prediction grid could be used to measure responses. All seal locations (and 

pseudo-absences) were assigned to one 500 m x 500 m grid-cell within the study site. 

These data were then used in the final analyses in which a use-availability framework 

was employed to assess the likelihood of animals using a particular site given a range of 

environmental or anthropogenic stimuli. 
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Figure 2 All locations from return trips in the Pentland Firth by HMM derived 
behavioural state (chapter 2). (top) All “Geo-Hydro foraging” locations, (middle) all 
“swimming against the current” and (bottom) all drifting with the current locations. Red 
stars represent turbine locations. Future references to the ‘study site’ in this chapter 
should be thought of as the rough extent of these maps.  

4.3.2 Covariate data 

Turbine operational data were provided by the turbine developers SIMEC Atlantis 

Energy Ltd. A continual time-series from 1st October 2017 to 1st January 2019 were 

provided at a 1-minute resolution detailing RPM of the turbine, and the power 

generation. A binary response variable of ‘operating’ or ‘not operating’ was assigned to 

each seal location based on the power generation data. A value of 5 kW was used as a 

threshold for operation; this was based on correlation plots which confirmed that a 

power generation threshold of 5 kW could be used to determine an acoustic output of 

the device. Accompanying passive acoustic monitoring mounted on the base of one of 

the turbines confirmed that peak noise generation of the device was achieved at an 
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approximate power generation threshold of ~5 kW (Palmer et al. 2019; Fig.3). Source 

level was constant above this. Any seal locations associated with power generation 

values below this were considered to be in non-operational periods. The acoustic signal 

of the turbines showed a peak frequency at 20 KHz (Fig. 3). This frequency falls within 

the peak sensitivity of harbour seals (Cunningham & Reichmuth 2016) and therefore 

can be assumed to be detectable at close ranges. However, no maximum detectable 

range was assumed, and all seal locations were considered ‘exposed’ during periods of 

operation regardless of distance to the source. Non-operational periods included 

instances where the turbine was rotating but not generating electricity and therefore 

periods where the seals could detect the motion of the turbine if in visual range. 

However, due to the resolution of distribution being estimated in this study, this should 

not affect final estimates of avoidance as close-range evasion is not being considered. 

 

Figure 3 Acoustic signature of the turbine power generation. Spectrograms were 
used to determine the threshold at which the acoustic signal peaks. The red bar 
indicates the onset of power generation values exceeding ~5 kW.  
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Given the influence of tidal state on harbour seal behaviour at sea (Chp. 2), it was also 

included as a covariate for testing. Although the operational status (power extraction 

and rotor RPM) of a fully operational tidal turbine is expected to be highly colinear with 

tidal state, this turbine array was in a demonstration phase and there were numerous 

periods when the turbines were not operating (Fig. 4). Non-collinearity was confirmed 

using variance inflation factors calculated using the ‘vif ‘ function in the R package ‘car’. 

This enabled tidal state to be tested in the same models as turbine operation, and to 

predict seal distributions as a function of both tidal state and turbine operational state. 

Tidal state information was extracted from the tidal prediction software POLPRED 

version 2.003 (National Oceanography Centre, Liverpool, UK). Given the relatively small 

study area and short trip distances of harbour seals, tidal state (low and high waters) 

were predicted for a single point at the centre of an availability polygon (see below for 

definition of availability polygon). The difference between the time stamp of the 

location and the nearest high water time was then calculated and a continuous variable 

of ‘Time Around High Water’ (-6 hours : 6 hours) was created to match seal locations to 

tidal state (Fig. 4).  

 

Figure 4 Power generation by the turbine array. Power generation as a function of 
tidal state.  
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4.3.3 Statistical Analysis   

A use-availability design was used to analyse the seal location data to model population 

distribution as a function of both the accessibility and selection of areas (Matthiopoulos 

2003). If all points in a given area are assumed to be equally available to an individual, 

then that individual’s preference can be thought of as directly correlated to its 

distribution (Matthiopoulos 2003). However, harbour seals are central place foragers 

and are ultimately constrained by distance to suitable haulouts (Stephens & Krebs 

1986; Bailey, Hammond & Thompson 2014) so this assumption of equal availability 

across all space is violated. Here, the geodesic distance between all seal locations and 

the haulouts of departure and return were calculated for each trip. Maximum distance 

travelled within each trip was then determined as the longest geodesic distance 

between a location and a haulout, A single availability polygon was then created based 

on this maximum distance regardless of whether it was the haulout of return or 

departure. In other words, the largest distance value of all trips across all individuals 

was used as the radius of the accessibility polygon.  For each observed presence point, 

two temporally matched, randomly placed pseudo-absences were generated within the 

accessibility polygon. These pseudo-absences can be thought of as way of modelling 

telemetry tag data to resolve individual preference by including information about 

locations which were available but were not selected by the observed individuals.  

Each model was fit using a binary response of 0=pseudo-absence and 1=presence as the 

dependant variable. Using this, the modelling exercise attempts to predict the likelihood 

of a seal being present in any given grid-cell as a function of the covariates described 

above. Complex Region Spatial Smothers (CReSS) were used to ensure smoothing 

around coastlines was carried out using geodesic distances rather than typical spatial 
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smoothing algorithms such as thin-plate splines which employ Euclidean distances to 

measure point to point similarity (Scott-Hayward et al. 2014). CReSS smooths were  

employed in combination with Spatially Adaptive Local Smoothing Algorithms (SALSA) 

to select for the most appropriate number and location of knots. SALSA varies the 

position of knots from a starting point of even knot distribution in a smooth term, such 

as would be employed by a typical cubic β-spline in statistical packages such as ‘mgcv’ 

(Wood 2015; Wood 2017). The algorithm then iteratively changes the knot positions 

and refits a model, conducting automated model selection using pre-defined selection 

criteria (e.g AIC).  This algorithm has recently been adapted to specifically investigate 

the effects of anthropogenic structures on marine species distributions using survey 

data (Scott-Hayward et al. 2013b) and is appropriate for studies using telemetry data to 

assess changes in distributions using use-availability designs (Russell et al. 2016).    

Smooth terms were initially fit in a Generalised Additive Model (GAM) framework to 

establish appropriate knot locations. Traditional GAM inference assumes independence 

between model residuals and therefore fitting models to telemetry data often violates 

this assumption given the likelihood of sequential data points being heavily dependent 

on temporally adjacent observations (Pirotta et al. 2011). Final models were therefore 

re-fitted using Generalised Estimating Equations (GEE) to account for the inherent 

temporal autocorrelation in telemetry data. GEEs allow for entire time-series of data to 

be modelled in a regression analysis while explicitly accounting for residual auto-

correlation (Pirotta et al. 2011; Hardin & Hilbe 2012). This approach require data to be 

split into discrete panels, between which independence is assumed but within which 

the autocorrelation is accounted for through robust, sandwich-based estimates of 

variance (Pirotta et al. 2011). Different panel criteria were tested for post-hoc through 

an assessment of autocorrelation function plots. Results suggested that individual seal 
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was the most appropriate panel size for this analysis. However, only presences were 

included in the individual panels given that pseudo-absences were randomly generated 

and therefore likely to cause an underestimation of autocorrelation between data points 

if included. All pseudoabsences were included in separate panels before final models 

were run.  

Model selection proceeded through a 2-stage process. Firstly, backwards, stepwise 

selection using quasi-likelihood information criterion (QIC) scores was conducted by 

iteratively removing covariates until no further improvement was noted. QIC is 

analogous to Akaike’s Information Criterion (AIC) commonly used in logistic model 

selection but is adapted for use with models which are based on quasi-likelihood. A 

ΔQIC score of -2 between sequential models was considered an improvement (Burnham 

& Anderson 2002). Marginal p-values for each covariate from the minimal adequate 

model (i.e. the final selected model from the backwards, stepwise selection protocol 

using QIC) were then calculated using the ‘getPvalues’  function in the R package ‘MRSea’ 

(Scott-Hayward et al. 2013a). Using a p-value significance threshold of 0.05, non-

significant covariates were removed, and significance was re-tested until all significant 

covariates were retained.  

Model validation was conducted by comparing fitted versus observed values using the 

area under the curve (AUC) of the receiver operating characteristic (ROC) curve for each 

model to determine thresholds in the construction of confusion matrices (as per Pirotta 

et al. 2011). These allow the percentage of false-positives and false-negatives to be 

compared to true positives and negatives, and can therefore be used to assess relative 

model fit (Fielding & Bell 1997; Pirotta et al. 2011).  
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The exponent of the linear predictor from the final logistic model was used to generate 

predictions of distribution as per Beyer et al. (2010). A prediction grid comprised of 500 

m x 500 m grid-cells was constructed and predictions for all retained covariate 

combinations were generated. Uncertainty around estimates were calculated through a 

parametric bootstrap process and presented as 95% confidence intervals. Final 

predictions were normalised to 100 to represent the percentage of the population (and 

percent changes between scenarios) to provide a biological context to prediction values. 

Grid-cell specific significance was finally determined based on whether the confidence 

intervals for any given cell spanned 0; a significant decrease was reported if upper and 

lower confidence intervals fell below 0 in that cell, and a significant increase was 

reported if both confidence intervals fell above 0. 

4.4 Results 

A total of 1,878 and 1,059 seal days of data were collected within the delineated study 

site (Fig. 2) for analysis of the effects of the presence and operation of the turbines, 

respectively. This included a total of 2,012 and 1,156 trips to sea within the study site, 

for the presence and operation analyses respectively. Overall patterns of movement 

were indicative of frequent transit behaviour rather than prolonged residency in the 

areas immediately surrounding the turbines.  

Overall, model performances were good, and the confusion matrices indicated that 85% 

and 78% of predictions were correct with AUC scores of 0.69 and 0.81 for the effects of 

turbine presence and turbine operations, respectively (Table 1).  
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Table 1 Model validation. Performance checking for both turbine presence and turbine 
operations models, with 2 pseudo-absences per observed presence.   

Model Turbine Presence Turbine Operation 

AUC 0.69 0.81 

Confusion  
Matrix 

 
Observed 

 
Observed 

Predicted 1 0 Predicted 1 0 

1 13794 3175 1 9532 5612 

0 3655 31723 0 2477 18406 

Total Observed 
 

17449 34898 
 

12009 24018 

Confusion Matrix  
(%) 

 
Observed 

 
Observed 

Predicted 1 0 Predicted 1 0 

1 79.05 9.10 1 79.37 23.37 

0 20.95 90.90 0 20.63 76.63 

 

4.4.1 Effects of Turbine Presence  

Seal distribution was strongly influenced by tidal states with marked differences in 

distributions between low and high water. The final model selected through QIC and 

marginal P-value only retained the smooth of tidal state and the interaction between 

location and the smooth of tidal state as explanatory covariates. Seal abundance was 

predicted to be greater in the western region of the study site during ebbing tide but 

showed a more dispersed pattern during the flood tide and high water (Fig. 5). 

Distribution across the site was highest around high water than any other state of tide 

(Fig. 5). Distribution around low water showed higher abundance in grid-cells close to 

haulout sites, compared to other states of the tide. 

Presence of the turbine array did not significantly influence at-sea distribution (Table 2) 

but was retained in model selection using QIC criteria (Table 2). This result suggests 

that some difference was noted when predicting seal distributions between the two 

conditions but did not significantly affect the observed changes across the study period.  

 



Chapter 4: Harbour seals avoid tidal turbine arrays during operations 
 

145 
 

Table 2 Turbine presence model selection. Marginal p-values generated from 
repeated ANOVA tests for each covariate in the model including turbine presence as a 
covariate. Values in bold indicate term retention through ΔQICu and significance at the 
0.05 level. Colons (:) indicate interaction terms. ΔQICu represents change from the full 
model including all covariates; 37908.62. 

Covariate 
ΔQICu upon term removal  Marginal  

p-value 

Turbine presence +112.2 0.062 

s(Location (lat, lon)) +262.5 <0.0001 

Tidal Phase +62 0.011 

Tidal Phase  : s(Location (lat, lon)) +330 0.02 

Turbine presence : s(Location (lat+lon))  -71 0.22 

 

 

4.4.2 Effects of Turbine Operation 

The model selected through QIC and marginal P-value assessment retained all 

covariates and interactions; importantly, both tidal state and turbine operation were 

retained as explanatory covariates. Further, the interaction terms between turbine 

operations and location, and between tidal phase and location were retained.  

Inspection of the model predictions showed that seal presence decreased significantly 

up to 2 km from the centre of the turbine array during operational periods. Point 

estimates of percentage change in grid-cells within this area ranged between -24% and -

39%; mean change in usage across all grid cells within 2 km of the turbine was -27.6% 

(mean 95% C.Is: -11% and - 77%).   

Abundance also significantly increased within an area in the northern region of the 

study site during turbine operation. Further increases were predicted between 4 and 13 
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km from the centre of the turbine array; however, at these distances, increases were not 

significant (i.e. bootstrapped confidence intervals of usage change in these grid-cells 

spanned 0). Distribution predictions suggested similar tidally mediated distributions as 

the previous (turbine presence) model predictions; seal distribution was predicted to 

be greater in the western region of the study site during ebbing tide but showed a more 

dispersed pattern during flooding tide and high water (Fig. 5). Abundance across the 

site was highest around high water than any other state of tide (Fig. 5). Distribution 

around low water showed higher abundance in grid-cells close to haulout sites, 

compared to other states of the tide. 

 Table 3 Turbine operations model selection. Marginal p-values generated from 
repeated ANOVA tests for each covariate in the model including turbine operational 
status as a covariate. Bold values indicate term retention through ΔQICu and 
significance at the 0.05 level. Colons (:) indicate interaction terms. ΔQICu represents 
change from the full model including all covariates; 27845.62. 

Covariate 
ΔQICu upon 

term removal  

Marginal  

p-value 

Turbine operational status (on/off) +210 0.022 

s(Location (lat, lon)) +311.1 <0.0001 

Tidal Phase +114 0.032 

Tidal Phase : s(Location (lat, lon)) +75.7 0.029 

Turbine operational status: s(Location (lat+lon))  +39.8 0.042 

 



Chapter 4: Harbour seals avoid tidal turbine arrays during operations 
 

147 
 

 

Figure 5 Predicted distribution of seals in the inner Pentland Firth as a function of tidal phase. (top left) Slack low water (top 
right), mid-water flood tide (bottom left), slack high water, and (bottom right) mid-water ebb tide. Scale bar represents the estimated 
percentage of the maximum at-sea population, per 500 m x 500 m grid-cell.
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Figure 6 Predicted changes in distribution between non-operational and 
operational periods in the inner Pentland Firth. The scale represents the predicted 
percentage change in usage as a proportion of the at-sea population of harbour seals. 
The turbine locations are highlighted with white diamonds. Negative (-) and positive (+) 
symbols denote cells with a significant decrease or increase in abundance respectively. 
Significance was calculated through parametric bootstrapping and each grid cell was 
assessed to determine whether 95% confidence intervals spanned 0. Mean predictions 
(top), lower (bottom left) and upper (bottom right) confidence intervals around the 
mean are provided. 
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4.5 Discussion 

The results presented here show, for the first time, that seals exhibit apparent 

responses to a commercial-scale tidal turbine array, with significant changes in their at-

sea distributions relative to the array. Although there was no measurable impact of the 

presence of the array, seals exhibited a spatial response to the operation of the turbines; 

there was a significant decrease in seal abundance up to 2km of the array when the 

turbines were generating power.  

A small but insignificant decrease between pre and post-installation periods was 

observed in grid-cells close to the turbine array. This suggests that the presence of the 

turbines did not elicit significant avoidance responses by seals. However, it is important 

to highlight that it is possible that the observed decreases are real, but the analyses 

suffered from a lack of statistical power. The turbines were not fully operational for the 

entirety of the post-installation period, meaning changes between these periods may be 

more difficult to resolve if seals only responded to the operations rather than presence.  

Further, the relatively small, pre-installation sample size may have hindered the ability 

of detecting a change. Over a longer period of exposure to the presence of the turbines, 

or a larger pre-installation sample size, a significant change in population distribution 

may have been apparent; however, it is unclear how effects may change with changing 

operational frequency and array size. Nevertheless, these results suggest that, over the 

time period of the study, seals are not significantly attracted to individual turbine 

structures for foraging as has been observed at offshore wind turbines (Russell et al. 

2014; Russell et al. 2016). Given the lack of significant differences between pre and post 

installation distributions, it seems unlikely that foraging opportunities have been 

reduced by the turbines. It must be noted that the time period of this study is likely too 

short for epifaunal communities to fully establish to the point at which they become 
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attractive for predators. However, it has been suggested that these tidal turbines are 

being used as refuges for pelagic fish species so seal prey abundance within the 

immediate vicinity of the turbines may be seen to be increasing, even in the absence of 

established epibenthic communities (Williamson et al. 2019). Regardless, this potential 

increase in prey density does not appear to have influenced the abundance of seals in 

the channel. 

The result showing that abundance decreases significantly during operational periods 

up to 2 km away from the array is an important one and suggests turbine operation may 

be perceived as aversive by seals. This is markedly further than previous reports of 

harbour seal (Hastie et al. 2017; Sparling, Lonergan & McConnell 2017; Joy et al. 2018) 

responses to the sounds or operation of a single turbine. This supports previous 

hypotheses that the seals respond to an acoustic rather than visual cue, given that 

turbidity in such an energetic environment and the relatively fast attenuation of light in 

water likely precludes visual detection beyond a few tens of metres. Harbour seals are 

acoustically sensitive to frequencies between 1 and 120 KHz at received levels as low as 

60 dB re 1μPa (Cunningham & Reichmuth 2016) and behavioural responses (i.e. 

avoidance) to anthropogenic sounds have been noted in several captive and wild 

studies of harbour seals (Hastie et al. 2014; Russell et al. 2016; Hastie et al. 2017). 

Although there is limited data on the acoustic output of the tidal turbine array in the 

current study, previous studies of the SeaGen turbine at Strangford Lough reported an 

estimated broadband RMS source level of 174 dB re 1μPa-m (Goetz et al. 2011; 

Robinson & Lepper 2013). Despite this relatively high level, during high flow conditions 

when the turbines were operating, all estimated 1/3 octave band received levels above 

1kHz dropped below ambient conditions at a range of 190-210 m. Recent recordings 

using drifter buoys at the MeyGen turbine array suggest that the acoustic signal of one 
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of the turbines remains above ambient levels up to ranges of approximately 2 km from 

the device (Rische & Wilson, pers comm). This suggests that during periods of power 

generation, the turbine is likely to be audible to seals at distances of up to 2 km and 

potentially explains the distance of the observed reduction in seal usage in the present 

study.   

The observed reductions in abundance during operational phases have important 

applied and biological implications. Specifically, concerns about the potential negative 

effects to marine mammals mainly derive from the potential for collisions with turbine 

blades. The population level effects of these interactions are currently predicted using 

collision risk models which scale estimated animal density by an assumed avoidance 

rate to calculate the number of expected collisions in a given period (Wilson et al. 2006; 

Band et al. 2016). Using the Band Collision Risk model (2016) together with pre-

installation density estimates consistent with this study and no avoidance rate, an 

estimate of 54 (25 – 96) collisions per year would be predicted (Band et al. 2016). Using 

the lower and upper confidence intervals of avoidance in the grid-cell containing the 

turbines (-49% and  -11%) collisions would be reduced by between 6 - 27 seals per 

year. Although potentially positive, the reduction in collision risk during operational 

periods must be viewed alongside potentially persistent negative effects such as the 

obstruction of important foraging opportunities or transit routes. However, no 

significant change in overall distribution was observed between pre and post 

installation periods suggesting important foraging areas have not significantly changed 

as a result of exposure to turbines. This combination of factors suggests that, overall, a 

reduction in usage in this site is likely a beneficial response to turbine operations; 

foraging opportunities do not appear to be markedly reduced as the seals demonstrate a 

statistically similar distribution pattern overall, regardless of turbine presence and only 
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appear to avoid the area when the turbine is operating reducing the potential for 

collisions. 

Although these results are a significant step forward in terms of understanding the 

effects of tidal turbine arrays, making broader predictions from the results should be 

carried out with a degree of caution.  For example, tidally energetic sites are, by their 

nature, highly heterogenous in their oceanography and geography, and differences 

between sites may be important in determining how animals in discrete populations 

will respond to these devices. For example, previous observations of harbour seal 

avoidance responses to tidal turbines and tidal turbine noise, have all been made in 

narrow channels (Kyle Rhea, Scotland and Strangford Lough, Northern Ireland) (Hastie 

et al. 2016; Hastie et al. 2017; Sparling, Lonergan & McConnell 2017; Joy et al. 

2018)where turbines (or turbine sound sources) were either situated near intensively 

used areas or between haulouts and putative foraging sites. Conversely, baseline data 

for the Pentland Firth suggests that the inner sound where the turbines are installed is 

not an important foraging site which, even in the absence of devices, is used primarily as 

a transit route. Given this, the area to the north of the island of Stroma is also available 

to the animals to transit between haulouts and foraging sites to the northern and 

eastern regions of the Pentland Firth. Further, the at-sea usage hotspots presented here 

show some important at-sea areas >2 km to the west of the north-west turbines which 

would not require passage within audible range of the devices. If turbine arrays were 

perceived as barriers to movement, unlike areas such as Strangford Lough and Kyle 

Rhea, the seals here may have additional options for transit to foraging sites. It is 

therefore important to consider, not only the abundance of animals in an area but also 

the motivation that those animals have to be in the area when looking to predict 

avoidance responses in other areas.  
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The presented results appear compelling; however, there are several caveats and 

potential limitations in the study design and analytical framework which should be 

considered.  For example, the use of pseudo-absences as control points assumes that the 

entire area of the study site is available to each individual, that this availability is 

temporally consistent, and that distance from haulout is the only feature which limits an 

animal’s range or movement. This particular study area presents some potential issues 

which may violate this assumption. Specifically, tidal currents in some areas of the 

Pentland firth often reach speeds in excess of the maximum burst speed of a harbour 

seal (4 m.s-1;  Williams & Kooyman 1986).  It is therefore likely that there is spatial and 

temporal heterogeneity in availability across the study area as high current speeds will 

preclude the ability of the seals to swim against them potentially rendering areas 

inaccessible. While the addition of tidal state as a covariate in the models goes some 

way to accounting for this, considering these results an example of traditional ‘habitat 

preference’ is likely erroneous and one would be more suited to consider these results 

‘extrinsically forced seal distribution’. This distinction is important when developing 

concepts about the drivers of observed usage patterns in highly dynamic environments; 

seal movement must be considered a function of both preference and forcing, and future 

studies may seek to account for this by weighting absences according to more 

biologically relevant accessibility criteria.  

The use of confusion matrices to validate model fit can be questionable for use-

availability designs given the fact that this ultimately tests the ability of the model to 

detect true-absences when indeed the absences are randomly generated. Given the 

relative lack of non-likelihood based methods of assessing model fit (as is required for a 

GEE framework), final models were refit to a random subset of data with 2, 5, 7 and 10 

pseudo-absences and confusion matrices were constructed for each to compare the 
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relative fit between models covering increasing proportions of the available habitat.  

Little difference was noted between these values so final models were run using two 

pseudo-absences per presence point to maximise computational efficiency. Whilst 

absences remained randomly generated, this allowed for an assessment of how 

representative the models of the available habitat were by quantifying how many 

absences per presence point are necessary to gain a representative result in this 

particular study site (Keating & Cherry 2004; Manly et al. 2007; Aarts et al. 2008). This 

method of validation was also deemed reasonable in this scenario given the large 

number of individuals sampled, relative to the total population size and the study area; 

it has been suggested that larger scale studies are less prone to the problem of placing 

pseudo-absence points where animals (not observed) actually were (Aarts et al. 2008). 

Therefore, the assumption of pseudo-absences being representative of true absences is 

increasingly tractable when more individuals are sampled over the same time period.   

In terms of future work, a key avenue of research to allow accurate predictions of the 

effects of tidal turbines is the fine-scale behaviour in close proximity to operating tidal 

turbines. The results presented here have shown the frequency of encounters between 

seals and turbines is likely to be reduced; however, individuals not exhibiting avoidance 

at the scales measured here may still be vulnerable to collision. Future studies should 

seek to track animals’ three-dimensional movements at scales of metres around 

individual operating turbines. This could be achieved with sophisticated biologging 

devices or the employment of active acoustic monitoring systems such as sonar (Hastie 

et al. 2019a; Hastie et al. 2019b). Assessing the near-field environment to observe long-

term, multi-species reactions in combination with this type of larger scale distribution 

analysis should help to resolve the multi-dimensional effects of the tidal energy industry 



Chapter 5: Empirical determination of severe trauma in seals from collisions with tidal 
turbine blades 

155 
 

and help understand the effects of such devices on trophic interactions in the 

surrounding area.  

4.6 Conclusions 

This study has shown that harbour seals respond to the operations of a tidal turbine 

array, with a reduction in abundance of up to 39% within a 2 km buffer zone of the 

turbine array. However, overall distribution does not appear to be affected by the 

presence of the turbines. This represents an important step in determining the 

environmental impact of such devices. Nevertheless, it is only with continued 

monitoring of local population trajectories, long-term movements of animals in 

response to prolonged exposure and increasing array sizes, and information on fine-

scale behaviour around turbines, that the true long-term effects of tidal energy industry 

can be determined. 
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5.1 Student’s contributions 

I, Joseph Onoufriou, conceived the study and, with significant assistance from Dr. Dave 

Thompson and Mr. Simon Moss, designed the methodology and conducted the trials for 

this chapter. With the assistance of Dr. Andrew Brownlow, I conducted the CT scanning 

and post-mortem analysis of all carcasses, digitised data and developed the scoring 

system for pathological indicators of mortality. In addition, I independently carried out 

all data analysis and writing. In summary, I was integrally involved in all aspects of 

conception, design, data collection, analysis and dissemination of this work. 
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5.2 Abstract 

Tidal energy converters (turbines) are being developed in many countries as part of 

attempts to reduce reliance on hydrocarbon fuels.  However, the moving blades of tidal 

turbines pose potential collision risks for marine animals. Accurate assessment of 

mortality risk as a result of collisions is essential for risk management during planning 

and consenting processes for marine energy developments.  In the absence of 

information on the physical consequences of such collisions, predicting likely risks 

relies on theoretical collision risk models. The application of these at a population level 

usually assumes that all collisions result in mortality.  This is unlikely and the approach 

therefore produces upwardly biased estimates of population consequences.  In this 

study, I estimate the pathological consequences of direct collisions with tidal turbines 

using seal carcasses and physical models of tidal turbine blades. I quantify severe 

trauma at a range of impact speeds and to different areas of seal carcasses. A dose-

response model was developed with associated uncertainty to determine an impact 

speed threshold of severe trauma to use in future collision risk models. Results showed 

that severe trauma was (a) restricted to the thoracic region, with no evidence of injury 

to the lumbar or cervical spine; (b) only observed in collision speeds in excess of 5.6 

m.s-1 (95% c.i. 4.4 to 6.6) and (c) affected by body condition with increasing blubber 

depth reducing the likelihood of severe trauma. Synthesis and applications: This study 

provides important information for policy makers and regulators looking to predict the 

potential impacts of tidal turbines on marine mammals. I demonstrate that the 

probability of severe trauma in seals due to collisions with turbine blades is highly 

dependent upon collision speed, and that the majority of predicted collisions are 

unlikely to cause fatal skeletal trauma. I recommend that collision risk models 
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incorporate appropriate mortality assumptions to ensure accurate estimates of the 

population consequences are produced in risk assessments for tidal turbine 

deployments. 

5.3 Introduction 

Over the past few decades, marine environments have experienced rapid 

industrialisation, with increases in marine transportation, oil and gas exploration and 

extraction, aquaculture and fisheries (Smith 2000).  Many of these activities can lead to 

negative impacts such as vessel collisions (Vanderlaan & Taggart 2007) and fisheries 

gear entanglement and bycatch (Read, Drinker & Northridge 2006) which pose acute 

traumatic risks to marine mammals.  In many cases, the nature and extent of human 

interactions can have important consequences for the demographics of affected 

populations and pose an existential threat to some species (Read, Drinker & Northridge 

2006).   

More recently, a number of novel technologies in the marine energy sector have 

emerged that have the potential to kill or injure marine species.  For example, tidal 

stream energy extraction is being developed in several countries; this is typically 

carried out using large floating or seabed-mounted turbines that extract kinetic energy 

from tidally-driven, moving water (Boehlert & Gill 2010; Sparling, Lonergan & 

McConnell 2017). Proposed energy developments comprise large arrays of such 

turbines deployed in tidally energetic coastal environments (Boehlert & Gill 2010). 

Evidence also suggests that marine predators are attracted to tidally energetic regions 

(Alldredge & Hamner 1980; Wolanski & Hamner 1988). Further, static structures may 

increase primary productivity through artificial reefs which are known to attract top-

predators (Todd et al. 2009; Russell et al. 2014). The likely spatial overlap between tidal 
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turbines and marine mammals has led to concerns about potential impacts on these 

species. Rotor speeds are often relatively high, with tip speeds of up to 12 m.s-1 (43 

km/hour; Sparling, Lonergan & McConnell 2017), three times the collision speeds 

thought to kill large cetaceans during ship strikes  (Vanderlaan & Taggart 2007).  

Although there is evidence to suggest that seals exhibit avoidance responses to the 

acoustic cues of tidal turbines (Hastie et al. 2017; Chapter 4; Sparling, Lonergan & 

McConnell 2017; Joy et al. 2018), estimated avoidance rates are not absolute and there 

remains a potential that collisions with rotating turbine blades may cause direct 

mortality.  

The risk of collisions with marine mammals depends on the numbers of animals at the 

tidal sites, their natural behaviour and any behavioural responses to encountering 

turbines.  At present there are no empirical data on collision rates between marine 

mammals and operating turbines, and no information on the physical consequences of 

such collisions.  Predicting the impacts of tidal turbines on marine mammals therefore 

relies on theoretical collision-risk models (CRMs).  These combine available information 

or assumptions about animal behaviour and the spatial and temporal patterns of animal 

abundance to estimate numbers of potential collisions between animals and turbines.  

Estimates can then be used to predict population consequences of proposed turbine 

deployments (e.g. Band, 2000; Wilson et al. 2006; Band, 2016).  

Currently, CRMs require information on animal movement to estimate the number of 

times an animal would be predicted to encounter a turbine blade in the absence of 

close-range evasion responses. There are two CRMs widely used to quantify collisions 

between marine mammals and tidal turbines: 1) the Scottish Association for Marine 

Science (SAMS) Research Services Limited (SRSL) Encounter Rate Model (Wilson et al. 
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2006) which estimates the overall rate of collisions between animals and turbines using 

an adaptation to a predator-prey model by Gerritsen and Strickler (1977), and 2) the 

modified Band collision risk model (Band et al. 2016) which estimates the risk posed to 

individual seals during a nominal number of transits through a simulated turbine.  

There is, however, very few data to inform the potential for fine-scale avoidance 

behaviour (Wilson et al. 2014a; Bald et al. 2015), so estimates from these models are 

often un-realistic. Further, there is no data to inform how severity of collisions may vary 

over a tidal cycle and between individuals. In lieu of these data, estimates are still 

required in order to approximate the environmental impact of such devices, however 

these values carry with them a necessarily high degree of uncertainty. 

To date, estimates of population level effects have been based on a precautionary 

assumption that all collisions result in death or permanent disablement of the animals 

involved (Wilson et al. 2006; Band et al. 2016). This assumption is unlikely to be true for 

all cases, and the models may therefore produce inaccurate predictions about the effects 

on populations of marine mammals.  Further, although it may be reasonable to assume 

that high speed collisions will cause injury, turbine blade tip-speeds vary over a tidal 

cycle and are zero at low flow rates around slack tide.  The speed of impact also varies 

along the turbine blade, increasing linearly along the length of the blade from zero at the 

root to a maximum speed at the blade tip.  

Only two studies have explored the validity of the mortality assumption. Carlson et al. 

(2014) and Copping et al. (2017) used a range of skin and blubber morphometrics of 

killer whales (Orcinus orca) and harbour seals (Phoca vitulina) respectively to 

investigate the potential energy transfer from blade to individual. Although the authors 

present a range of severities and provide useful insight into how collisions can vary 
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over a tidal cycle, the collisions were simulated and damage to the skeletal system and 

internal organs, and hence probability of mortality, was not directly measured.  

In this study, I investigate the physical consequences of collisions between seal 

carcasses and a replica tidal turbine blade.  I carried out a series of experimental trials 

to quantify the physical damage and assess the relationship between collision speed and 

the probability of inducing severe, traumatic injuries.   

5.4 Materials and Methods 

All experiments in this study were conducted using dead stranded or by-caught animals 

being opportunistically sampled and as such does not fall under Home-office regulation. 

Appropriate ethical approval was therefore provided by the University of St Andrews 

School Ethics Committee without the necessity to undergo assessment by the Animal 

Welfare and Ethical Review Board. 

5.4.1 Experimental set-up 

To determine the consequences of collisions between seals and tidal turbines a full-

scale replica of the leading edge of a turbine blade tip section was constructed and fixed 

to the bow of a jet-drive boat to carry out a series of controlled collisions with seal 

carcasses (Fig. 1).  

The 840mm long, straight edged replica was made from reinforced PVC blocks 

(Supplementary material) and had the same profile as the leading edge of the tip of an 

Andritz Hydro Hammerfest HS1000 (http://www.andritzhydrohammerfest.co.uk) 

turbine blade. The tip represents the part of the blade with the narrowest leading edge 

and therefore the most damaging point of contact. I took this approach to ensure that 

collisions represented the worst-case scenario and therefore produce conservative 

estimates of damage.  The base of the blade was angled backwards ~5o from vertical to 
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achieve a slight downward component of the impact to ensure that carcasses remained 

submerged throughout the collision while maintaining an angle of attack close to 

perpendicular to the motion of the blade. Perpendicular strike orientation was required 

to ensure maximum energy transfer to the strike location (Grear et al. 2018). 

 

Figure 1 Trial set-up. (a) the seal carcass oriented in a coarse mesh, net bag attached at 
each end to flotation buoys. Note the dorsal surface of the seal carcass presented in the 
top of the photograph and the head-to-tail orientation following the length of the bag. 
(b) the seal carcass suspended on the surface of the water with a quick release line 
attached to one flotation buoy. (c) the vessel with the simulated turbine blade 
immediately prior to an impact. Note the vertical orientation of the model turbine blade 
on the keel of the boat and the perpendicular orientation of the boat with respect to the 
seal carcass. 

 

Seal carcasses were collected for collision trials between 2014 and 2017.  A total of 

nineteen carcasses, 12 males and 7 females, were collected; one juvenile and two adult 

grey seals (Halichoerus grypus) were collected as stranded carcasses, fifteen were 

juvenile grey seals by-caught in fishing nets in the south-west of England and one adult 

male harbour seal from the west coast of Scotland.   

All carcasses were visually assessed at collection for obvious signs of pre-existing 

trauma, decomposition, or emaciation. Skeletal trauma was broadly assessed on site 

through palpation and tactile investigation before being collected and returned to 

laboratory conditions where further assessment could take place.  Suitable carcasses 

were frozen at -20°C.  No experimental bias was imposed on the carcass collection in 



Chapter 5: Empirical determination of severe trauma in seals from collisions with tidal 
turbine blades 

164 
 

that all carcasses which met the criteria of decomposition state were considered, 

regardless of age, sex or species.  

Prior to the collision trial, each carcass was subjected to computed tomography (CT) 

scans to assess any pre-existing trauma. This provided a baseline from which resulting 

from the collision trials could be assessed. Morphometric data of length, girth and mass 

was also taken. All individuals which were used in the final trials were judged to be in 

good physical health and showed no signs of emaciation. 

Collision trials took place during calm (Beaufort 0-2) weather in a sheltered bay on the 

east coast of Scotland. Carcasses were defrosted at ambient temperature for 10 days 

prior to collision trials in September 2016 and 2017 to ensure complete thawing of the 

soft tissue. In each trial the jet boat was driven at the carcass at a pre-determined speed.   

The boat was positioned accurately enough to successfully collide with a pre-

determined target area on the carcass (Appendix III).  Collision locations were 

confirmed with a downward facing, bow-mounted, high definition (720p) video 

recorder (Vivitar ™ Action Cam DVR782HD), recording at a frame rate of 30 fps. 

Collision trials were designed to cover a range of impact speeds which represented the 

expected tip speeds of operational tidal turbines (Sparling, Lonergan & McConnell 

2017).  During a trial, each carcass was subjected to multiple collisions. However, each 

collision location on that carcass was targeted only once as multiple strikes to the same 

location could compound effects by progressively weakening the skeleton; this assumes 

that collisions to discrete locations did not weaken other parts of the skeleton. Dorsal 

collisions were expected to give the highest likelihood of skeletal trauma given the 

exposure of the spine and its connection to the skull, rib-cage and pelvis. All carcasses 

were therefore targeted dorsally and the focal impact points were the skull, thoracic 
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spine and pelvis. Perpendicular impacts were attempted in all cases to mimic the worst 

case scenario with maximal transfer of collision energy; fractures are more likely with a 

faster impact absorption as impact loading is a factor of both force and time over which 

the force is applied (King 2018). Further, established tissue deformation properties for 

seals suggest that angle of attack has a large impact on stress-strain curves, with frontal 

impacts producing the greatest deformation to blubber layers (Grear et al. 2018). 

Preliminary trials with five carcasses were conducted with a different, curved turbine 

blade replica, attached to the keel of the jet boat.  Details of these trials and conversion 

factors to allow direct comparison of results to the later trials are presented in the 

electronic supplementary material. 

5.4.2 Injury assessment 

Each carcass was subject to post-trial CT scans (Siemens SOMATOM Scope 16 slice 

spiral) to provide insight into skeletal trauma. Post-mortem analyses followed to 

confirm fractures, identify soft-tissue damage and measure mid-sternal blubber 

thickness. Each case was inspected for signs of soft tissue damage associated with blunt 

force trauma. Injury criteria are given in table 2. Key locations for assessment were 

integument, visceral organs, diaphragm and observations of musculature haemorrhage. 

Mid-sternal blubber thickness and stomach contents were recorded to assist in 

interpretation of ante-mortem condition.  

Pathological features of severe trauma were identified, categorised by location and 

tallied to provide a quantification of the extent of injury. As this experiment was carried 

out on dead carcases which had undergone several freeze-thaw cycles, it was not 

possible to assess subtle indications of collision trauma, such as morbidity or delayed 
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mortality. Necropsy assessment was therefore restricted to identifying traumatic 

pathologies considered severe enough  to cause immediate or assured fatality. 

5.4.3 Statistical Analysis 

To assess the effect of turbine blade speed on the probability of inducing severe trauma 

in seals, I modelled the presence of pathological indicators of mortality using 

generalised linear models (GLM) with binomial errors and a logit-link function. Each 

collision was coded as 0 or 1 depending upon the absence or presence of one or more 

pathological indicators of severe trauma associated with that collision.  I used this 

binary variable as our response and as such were testing the correlation between 

known, detectable fatality and select intrinsic and extrinsic covariates. This allowed us 

to determine the dose-response relationship (Harris et al. 2018) between impact speed 

and severe trauma in a probabilistic framework. Discrete pathological indicators of 

mortality (i.e. damage which would be indicative of mortality in a living seal) were 

assigned based on anatomical region; I assigned injuries to specific trials based on the 

strike location nearest to the injury in question. Multiple spinal injuries on one 

individual were considered discrete if they occurred in a different region of the spine; 

namely the cervical, thoracic, lumbar or sacral region. Rib fractures were included as 

one attribute regardless of the number of fractures occurring. If multiple rupture 

locations or traumatic lesions were observed on the same organ, this was considered a 

single discrete attribute. In cases where trauma could have been the result of another 

pathological attribute (e.g. hepatic herniation as a result of diaphragmatic rupture), 

causation was not assumed, and both attributes were considered discrete. None of the 

carcasses demonstrated any signs of external trauma and were visually indistinct from 

pre-trial condition; no lesions, cuts or external bruising was visible as a result of 

collision trials.  
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Candidate variables tested in the model were collision speed, blubber thickness, sex, 

strike count and strike location. Strike count was given as the number of strikes that 

particular trial constituted for that individual and therefore had a maximum value of 3. 

The inclusion of this variable tested whether multiple strikes affected the likelihood of 

the presence of pathological indicators of mortality. Mass was initially included but was 

removed due to collinearity with blubber thickness.  Blubber thickness was considered 

a more relevant metric as it provides a better proxy for animal health and blubber 

should act as protection from impact (Pond 1978; Iverson 2009). An interaction term 

between speed and blubber thickness was included to assess whether the ability of 

speed to describe the pathology of a collision case could be affected by blubber 

thickness.  Model selection was undertaken using backwards, stepwise selection and 

comparing Aikaike’s Information Criterion (AIC) values. An improved fit was 

determined if AIC value reduced by 2 from the previous model (Burnham & Anderson 

2002). 

As an example of how the results could be used in practice, the tidal prediction software 

POLPRED was used to generate estimates of current speeds at ten minute intervals over 

a one month period in a site proposed for tidal energy extraction. These current data 

were used to generate estimates of the blade speed assuming that the turbine stalls at a 

current speed of 1 m.s-1 and reaches a maximum tip speed of 12 m.s-1 for current speeds 

of 2.5 m.s-1 and higher as demonstrated by the SeaGen tidal turbine operating in 

Strangford Lough, Northern Ireland (Sparling, Lonergan & McConnell 2017). This 

distribution could then be taken as the proportion of theoretical collision speeds 

between randomly moving seals and tidal turbine blades across a tidal cycle. The 

increase in blade tip-speed from 0 m.s-1 to 12m.s-1 was assumed linear from the stall to 

maximum current speed as turbine rotation is directly driven by the current. These 
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values were assumed consistent with typical tidal turbine operations (Sparling, 

Lonergan & McConnell 2017) and model predictions were correlated with these 

calculated, theoretical impact speeds to determine the proportion of cases which would 

confidently result in fatality. Finally, these proportions were combined with flow speed 

predictions for a proposed tidal turbine array site in Scotland. These were used to 

estimate the proportion of the turbine blade swept area which had speeds above a 

determined mortality probability from the dose-response model, across a tidal cycle.  

All statistical modelling and subsequent analysis was performed in R (R Core 

Development Team 2016). 

5.5 Results 

5.5.1 Trials 

A total of 28 collisions were carried out at speeds ranging from 2.1 m.s-1 to 10.34 m.s-1. 

Table 1 details the speed and location of each strike along with morphometric data of 

the carcasses.  
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Table 1 Morphometrics of experimental subjects including speed and collision 
location for each collision trial. * indicates the collision speeds which were calculated 
post-hoc after impact with a curved blade. See Appendix III for full details. All 
individuals were judged as sub-adults except for seals HgA, HgC and PvDV which were 
classed as adults. All individuals were grey seals except seal PvDV which was a harbour 
seal. 

Seal 
ID 

Sex Mass 
Blubber 

Depth 
Trial 

Number 
Collision Speed (m.s-1) Collision Location 

TA04 m 18 30 

1 4.9 Thoracic Spine  

2 5.6 Head 

3 5.2 Lower Pelvis 

HJ02 m 32 23 
4 5.5 Sacral Spine 

5 5.5 Thoracic Spine 

JG07 f 19 14 6 6.3 Thoracic Spine 

JG06 f 22 19 7 6.5 Sacral Spine 

TA03 f 20 19 
8 6.1 Cervical Spine 

9 6.8 Pelvis 

HJ01 f 32 19 10 8.2 Sacral Spine 

HJ03 m 38 24 
11 7.1 Thoracic Spine 

12 7.5 Cervical Spine 

JG03 f 39 22 
13 5.6 Sacral Spine 

14 5.3 Cervical Spine 

PvDV m 86 34 

15 8.4 Thoracic Spine 

16 8 Pelvis 

17 8 Head 

HJ05  m 42 16 
18 9.26 Head 

19 9.26 Thoracic Spine 

HJ08 m 25 23 
20 10.19 Head 

21 10.07 Thoracic Spine 

JG10 m 27 18 
22 10.08 Thoracic Spine 

23 10.19 Pelvis 

HJ07 m 46 18 

24 10.03 Thoraco-cervical spine 

25 10.34 Cervical spine 

26 10.29 Thoracic Spine 

HJ09 f 26 22 
27 10.19 Thoracic Spine 

28 9.98 Pelvis 

HgA m 200 16 

29 2.5* Pelvis 

30 2.5* Skull 

31 2.2* Thoracic Spine 

HgB m 52.3 22 

32 2.07* Pelvis 

33 2.07* Skull 

34 2.07* Thoracic Spine 

HgC m 206 47 

35 5.25* Pelvis  

36 5.25* Skull 

37 5.25* Thoracic Spine 

TA05 f 56.7 25 

38 5.27 Pelvis  

39 5.27 Skull 

40 5.27 Thoracic Spine 

TA07 m 48.7 24 

41 5.27* Pelvis  

42 5.27* Skull 

43 5.27* Thoracic Spine 
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5.5.2 CT scans, radiography and post-mortem analysis 

Pre-trial CT scans confirmed the absence of fractures, severe muscle haemorrhage and 

large organ ruptures or herniation. Post-trial analyses of the cross-sectional scans of 

each seal carcass revealed several skeletal injuries. Damage to the spine was observed 

in eleven carcasses. Spinal injuries included fractures to the lateral spinous processes 

and, separation and fracture of vertebrae (Fig.  2) often associated with focal muscle 

maceration (Fig.  3, Table 2). Broken ribs were recorded in four cases (Fig.  4) and a 

fractured scapula in one case (Fig.  5). No damage was recorded to the pelvis, skull or 

mandible in any case, despite these locations being targeted during trials. 

 

Figure 2 CT Scans of thoracic injury. Separation in the thoracic vertebra of seal PvDV 
(above) and separation in the thoracic vertebra with associated fracture of the lateral 
spinous process (below). Results of trial #15 in Table 1. 
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Figure 3 Soft tissue damage associated with spinal fractures. Maceration of axial 
musculature around spinal fractures of seal HJ02 (left) and HJ01 (right). Results from 
trials #5 and #10 respectively (Table 1). 

 

 

Figure 4 CT Scans of injury to the rib-cage. Fractured ribs of (left) seal JG06 and 
(right) HJ01. Results from trial #7 and #10 respectively (Table 1). 
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Figure 5 Fractured left scapula of seal HJ03. Results from trial #12 (Table 1). 

Hepatic rupture was noted in four cases (Fig.  6), three of which were also associated 

with diaphragmatic rupture and herniation of abdominal organs into the thoracic cavity. 

Three additional cases demonstrated diaphragmatic rupture with no herniation. 

Pulmonary rupture was noted in two cases and cardiac rupture in one case. 

Liquefaction of the blubber layer was observed in the only harbour seal represented in 

the trials (Fig.  7). In addition, rupture of the thin mediastinum, a potentially sub-lethal 

indication of trauma, was noted in 5 cases. 
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Figure 6 Liver damage. Ruptured liver of (left) seal HJ01 and (right) seal PvDV. Results 
from trial #10 and #16 respectively (Table 1). 

 

Figure 7 Liquefaction of the blubber layer of seal PvDV. The adipose cell rupture 
extended ~21 mm into the blubber from the subcutis. Results from trial #15 (Table 1). 
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All seals were judged to have been in good physical condition prior to death with 

expected blubber reserves for their assumed age and varying degrees of food in the 

gastro-intestinal tract. Gross examinations revealed no evidence of underlying terminal 

disease or morbidity. 

5.5.3 Dose-response relationship  

The best fit binomial GLM retained the covariates speed of collision (β= 1.23, s.e. = 0.44, 

z = 2.76, p<0.05) and location of the strike (factor=Thoracic Spine, β= 4.16, s.e.=1.77, 

z=2.35, p<0.05) (Table 3). The interaction term between speed and location, and 

blubber depth did not improve model fit and were therefore removed from the final 

model. Random effects did not improve model fit and so were discarded from the final 

model.  

Strike location explained a significant amount of the variation in the data; null deviance 

(21.9, 18 d.f) decreased to a residual deviance of 8.9, 15 d.f with the inclusion of strike 

location, blubber and speed as covariates. A second model was subsequently fit to data 

from strikes to the regions which demonstrated severe trauma (Thoracic spine). The 

best fit model through backwards stepwise selection retained the covariates of speed of 

collision (β = 1.13, s.e.= 0.35, z=3.23, p<0.05) and blubber depth (β = -0.35, s.e. = 0.15, 

z=-1.008, p >0.05, Table 3).  Model predictions suggest that the probability of severe, 

fatal injury exceeds 0.5 at 5.1 m.s-1 (95% CIs: upper=3.2 m.s-1, lower=6.6 m.s-1, Fig.  8). I 

evaluated the influence of each data point (i) using a graphical assessment of Cook’s 

Distance (Di). No Cook’s Distances were noticeably different from the median, with no 

values above 0.5. This is generally considered indicative of no overt influence of any 

single data point (Chatterjee & Hadi 2015). 
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Table 2 Pathological indicators of mortality. Identification of presence (red) or 
absence (green) of broad pathological indicators of mortality for each seal carcass. Seals 
are arranged from slowest mean collision speed (top) to fastest (bottom). 
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HgB 2.1               

HgA 2.4               

TA04  5.2               

HgC 5.25               

HJ02 5.5               

JG03 5.5               

JG07 6.3               

JG06 6.5               

TA03 6.5               

HJ03 7.3               

PvDV 8.1               

HJ01 8.2               

HJ05 9.26               

JG10 10               

HJ09 10.1               

HJ08 10.2               

HJ07 10.2               

 

Probability of severe trauma resulting from collisions with the thoracic spine decreased 

with increasing blubber depth (Fig.  9) although the confidence intervals around the 

model predictions were high.  

 

 

 



Chapter 5: Empirical determination of severe trauma in seals from collisions with tidal 
turbine blades 

176 
 

Table 3 Backwards stepwise selection of model parameters using AIC. Covariates 
are denoted by Sp (speed of collision), L (location of strike), Sx (Sex), Sc (strike count) 
and B (Axial blubber depth). A colon (:) denotes an interaction term between covariates. 
The first line of each section represents the maximal model with all covariates and 
interactions included, and therefore have a ∆AIC of 0. Grey shading indicates the best-fit 
model in that selection. 

Model Data Covariates AIC ΔAIC 

All Locations 

Sp:L+Sx+Sc+B 33.46 0 

Sp:L+Sc+B 28.66 -4.8 

Sp:L+B 24.45 -9.01 

Sp:L 22.52 -10.94 

Sp+L+B 22.87 -10.59 

Sp+L 20.98 -12.48 

Thoracic 
Spine 

Sp:B+Sx+Sc 24.92 0 

Sp:B+Sx 22.81 -2.11 

Sp:B 18.34 -6.58 

Sp+B 16.4 -8.52 

Sp 14.52 -10.4 

B 26.74 1.82 
 

 

Figure 8 Probability of severe trauma as a function of blade impact speed of 
collision. Fitted values (red line) are given with associated bootstrapped 95% 
confidence intervals (grey shaded area). The horizontal black dashed line indicates the 
50% probability of severe trauma. Probabilities are estimated using an assumed 
blubber depth of 21.5 mm; the mean mid-sternal blubber thickness of seals used in 
these trials. 
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Figure 9 Probability of severe trauma as a function of blubber depth. Fitted values 
(red line) are given with associated bootstrapped 95% confidence intervals (grey 
shaded area). The horizontal black dashed line indicates the 50% probability of severe 
trauma. Probabilities were estimated using a constant collision speed of 6.7 m.s-1; the 
upper CI for a 50% probability of severe trauma from model predictions of the effect of 
collision speed to a carcass with a mid-sternal blubber thickness of 21.5 mm.   

 

5.6 Discussion 

This study provides the first empirical estimates of the likelihood of severe trauma to a 

marine mammal as a result of collisions with tidal turbine blades at a range of speeds. I 

have demonstrated that collision speed is an important predictor of physical trauma.  I 

then predict that a large proportion of potential collisions would occur at speeds below 

those likely to result in severe skeletal injuries.  Other potentially fatal injuries that 

were identified (e.g. cardiac rupture, liver herniation) only occurred at collisions speeds 

markedly higher than the threshold speeds for severe skeletal injuries (Table 2).  

However, given the limitations in reliably assessing more subtle trauma in carcases 

which have undergone freeze-thaw cycles, it should not be interpreted that collision 

speeds below these thresholds are benign. 
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Figure 10 Proportion of a blade swept area estimated to cause severe trauma. The 
proportion is plotted as a function of current speed assuming a cut-in  current speed of 
1 m.s-1 and a constant blade tip speed in current speeds >2.3 m.s-1, as demonstrated by 
the SeaGen device in Strangford Lough, Northern Ireland (Joy et al. 2018).  The mean 
threshold for severe trauma is shown by the red line and bootstrapped 95% confidence 
intervals are shown by the grey shaded area. The panel plot shows a frequency 
distribution of blade impact speeds over a full lunar cycle. Yellow bars indicate 95% 
confidence intervals around the estimate of impact speed resulting in severe trauma. 

 

Model predictions highlight physiological parameters as marginal predictors of the 

severity of collisions when compared to the energy imparted by a collision, and 

therefore the risk is reasonably constant across the range of likely sizes and body 

conditions of pinnipeds in UK waters.  Given the paucity of data on the impacts of tidal 

turbines on the marine ecosystem, this study addresses a major uncertainty and 

provides regulators and industry with information to establish and refine mitigation 

measures to avoid potentially deleterious effects of the tidal industry.  

The potential for collisions between marine predators and renewable energy devices 

has been theoretically assessed through a number of different approaches (Wilson et al. 

2006; Grant, Trinder & Harding 2014; Band et al. 2016). However, limited by the 
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paucity of information on the potential for mortality during collisions, most have tended 

towards cautionary approaches whereby mortality is assumed to be the only outcome 

of any collision event. Band et al. (2016) demonstrated that imposing a mortality 

threshold would have a significant effect on the resulting estimate of removal from local 

populations of seals. When compared to the frequency distribution of collision speeds at 

an example tidal array site, the model predictions suggest the impact speed threshold of 

severe skeletal trauma would result in at least 48% of predicted collisions being 

immediately fatal (Fig.  10). When interpreting these predictions, it is important to bear 

in mind that collisions were with the section of the blade with the narrowest and 

therefore most damaging part (the tip); this is due to the concentration of energy 

transfer through the skin and blubber layers. Further, they only encompassed strikes to 

the dorsal region of the seal carcasses and do not address a probable decrease in the 

likelihood of skeletal injury with strikes to the ventral surface.  Therefore, the results 

should be interpreted with these caveats in mind.  

Due to the current assumption in collision risk models that all collisions will be fatal, it 

can be concluded that previous mortality estimates derived from CRMs could justifiably 

be adjusted to account for the mortality threshold measured here. It is important to 

highlight that I do not conclude that 52% of the collisions were benign (discussed 

below), only that they did not result in the catastrophic trauma identified in this study. I 

do not suggest that all fatal injuries are covered under this framework but indicate 

which impact speeds would almost certainly result in severe trauma should they occur. 

The dose-response curve does not therefore indicate survival of all cases below the 

threshold, but rather highlight the number of cases which can confidently be assume to 

result in fatality. Furthermore, the results in this study pertain to phocids (primarily 

juvenile grey seals) and care should be taken when extrapolating out to other taxa and 
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age-classes. CRMs estimate collisions under the assumption of randomly moving seals 

colliding with a tidal turbine blade and largely ignore the potential for a change in seal 

distribution across a tidal cycle (Thompson et al. 1997; Zamon 2001), the potential for 

close-range avoidance (Hastie et al. 2017), and the change in distribution due to the 

presence of tidal turbines (Sparling, Lonergan & McConnell 2017; Chapter 4). 

Nevertheless, this mortality threshold is likely to have a significant effect on collision 

estimates and subsequent assessments of the consequences for populations of seals.  

From the tidal energy industry perspective, these results have important implications 

for both mitigation and consenting. It has been demonstrated that harbour seals show 

avoidance behaviours at scales of tens to hundreds of metres (Hastie et al. 2017; 

Sparling, Lonergan & McConnell 2017), but information on close range evasion of the 

rotating blades is currently lacking. Information on the consequences of interaction are 

therefore critical for estimating potential mortality risks. Our results suggest that for a 

turbine operating at a maximum tip-speed of 12 m.s-1, the number of fatal collisions as 

previously predicted through collision risk models could be reduced by as much as 

52%. However, caution must be taken when applying these corrections as this study 

only addressed immediately fatal injuries.   Further work is needed to assess potential 

lethal effects of injuries due to slower collisions that were not apparent in this study.  

Our results also suggest that the demographics of seal populations around an array site 

is an important factor to consider as intrinsic characteristics such as mass or blubber 

thickness influence an individual’s ability to withstand blunt-force trauma. These 

results could be used to design mitigation or monitoring strategies around turbine sites 

which could be more cost-effective if they only needed to be enforced during periods 

where collisions will be fatal; studies have shown that seal presence in a tidal channel is 
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influenced by tidal state (Zamon 2001; Hastie et al. 2016). Therefore, periods of 

exhaustive monitoring, and mitigative shutdown should seals be detected, could be 

imposed to reduce the likelihood of interactions during periods of high seal usage.  

Quantification of collision consequences in the marine environment have been largely 

limited to ship strikes in large cetaceans and this bears little comparability to the 

physical attributes of smaller pinnipeds. However, there is literature detailing the 

relationship between automobile and sporting impact speeds, and injury in humans. 

(Watanabe et al. 2012) used modelled collisions between pedestrians and automobiles 

to demonstrate that impact speeds of 20 Km/h (5.5 m.s-1) did not result in any severe 

injuries including skeletal fractures and soft tissue injuries to major organs or the brain. 

However, at higher speeds, mass of the subject and location of the strike became an 

important predictor of injury. This is broadly analogous to our findings that at speeds 

lower than 5.6 m.s-1 collisions do not cause severe pathological injury regardless of 

intrinsic attributes or strike location. Further, I noted that at higher speeds blubber 

reserves offer a protective effect. This inference must be treated with caution however 

as the decline in probability of severe injury includes wide confidence intervals which 

span 0.5 at blubber depths above 20 mm. Theoretical models of interactions between 

larger marine mammals and tidal turbines have suggested that impacts may be benign 

across all scenarios. (Carlson et al. 2014) suggested adult southern resident killer 

whales would not succumb to any injuries caused by collision with the OpenHydro tidal 

turbine, a ducted, multi-blade turbine in Puget Sound, Washington, assuming collisions 

with the skull were worse case scenarios. As our results demonstrate that the 

probability of traumatic injuries decreases with increasing blubber thickness, it appears 

likely that size and/or condition is an important consideration when determining the 

outcome of a collision between a tidal turbine and a marine mammal.  
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Only carcasses which were known to be recently deceased were used in this study and I 

was careful to not over-interpret the consequences of collisions to soft-tissue due to the 

potential confounding of the freeze-thaw process.  The freeze-thaw process can 

generate pathological artefacts which can be confused with the impact of trauma, such 

as pseudo-bruising of subcutis; the resemblance of  haemorrhage in the thoracic cavity, 

pericardial sac and abdominal cavity; apparent subcapsular renal haemorrhage; 

pseudo-contusions of the brain; apparent haemorrhage from the nares; and blood-

staining of the anterior ocular chamber (Roe, Gartrell & Hunter 2012).  Consequently, 

many likely sequelae from collisions involving live animals could not be confidently 

evaluated in this experiment. Nonetheless, the assessment indicators chosen, of severe 

catastrophic trauma incompatible with life, were felt to provide robust upper bounds 

for quantifying the impact of blade collisions using cadavers.  The freeze-thaw process is 

also known to have a significant impact on the structural rigidity and stress/strain 

features of soft tissue, particularly skin and blubber (Grear et al. 2018). The protective 

properties of blubber may be hindered by the freezing process, providing less 

resistance to direct impact . However, studies have shown there is limited evidence to 

suggest a significant structural change to blubber as a result of freezing (Grear et al. 

2018) and regardless, this would render the presented results additionally 

conservative. An increased sample size using un-frozen carcasses for the empirical 

testing of the pathological consequences of collision to both the skeletal structure and 

soft-tissue, representing a wider range of demographics, species and fitness states 

would help resolve the relationship between animal size, collision speed and mortality.  

Post-trial CT scans revealed no evidence of skull fractures. This contrasts with the 

human literature where collisions with a range of shapes have been shown to produce 

fractures at much lower speeds (Hodgson & Thomas 1973; Yoganandan et al. 1995; 



Chapter 5: Empirical determination of severe trauma in seals from collisions with tidal 
turbine blades 

183 
 

Delye et al. 2007). This may be related to the differing skull thicknesses of humans 

compared to the seals in this study; mean frontal skull thickness of the seals here was 

6.9 mm (±0.8) whereas adult human skulls have  mean frontal thicknesses of between 

5.7 mm and 6.3 mm respectively (Mahinda & Murty 2009). It has been demonstrated 

that frontal skull fracture in humans can be induced for energies of between 22-24 J 

(Delye et al. 2007) and at impact speeds as low as 2.73 m.s-1 (Hodgson & Thomas 1973). 

I demonstrated that seal skulls are capable of withstanding collisions to the frontal 

region with a turbine blade at speeds of up to 10.1 m.s-1. Deyle et al. (2007) suggested 

the disparity in forces required to fracture embalmed and non-embalmed skulls could 

be a result of energy absorption by the scalp. Seals have considerably thicker scalps 

than humans which may explain the higher resistance to frontal skull fracture as full 

compression of the tissue occurs at a higher impact energy. Energy will also be lost in 

these collisions through rotation of the head and therefore it is possible that a 

combination of morphology and increased spinal flexibility in seals may reduce the 

likelihood of skull fracture. Strike location on the skull is also likely to have an effect as 

resistance to fracture varies across the skull with strength, decreasing from the 

posterior skull to the lateral and frontal regions (Hodgson & Thomas 1973; Yoganandan 

& Pintar 2004). These results therefore likely exhibit the worst case scenario for skull 

fracture and give further justification for the lack of skull damage at the speeds 

presented.  

The experimental procedure presented in this study was not able to assess the effects of 

traumatic brain injury (TBI), specifically concussion and axonal strain injuries. The 

combined effects of autolysis and the freeze-thaw process precluded the assessment of 

TBI due to possible mis-identification of traumatic injury (Roe, Gartrell & Hunter 2012). 

This presents a potential issue as cases of concussion considered mild in humans can 
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cause symptoms that in seals (as a diving mammal) could lead to drowning.  (Omaya & 

Hirsch 1971) demonstrated that the tolerance to concussion scales with the ratio of 

brain mass to head mass and that the reduction in this fraction in chimpanzees 

compared to humans and rhesus monkeys resulted in a higher tolerance to TBI. Coupled 

with a thicker scalp, animals with more ‘padding’ are more resistant to TBIs resulting 

from either angular or linear acceleration. It can therefore be assumed that due to their 

relatively large skulls and small brains, and the capacity for some cushioning from a thin 

blubber layer on the head, seals may be relatively more resistant to TBIs. Further, the 

location of the strike and the size of the animal’s skull and scalp will have an effect on 

whether a TBI is sustained. However, this remains an area which requires further 

research and the results of this investigation should not be considered categorical 

evidence of severity of brain injuries, or indeed any soft tissue damage, as a result of 

collisions with tidal turbines.   

In summary, this work has provided robust evidence that immediate, severe skeletal 

injury would occur during all collisions between seals and tidal turbine blades at impact 

speeds above 6.6 m.s-1 with no pathological indicators of severe trauma detectable at 

collision speeds below 5.5 m.s-1.   A dose-response curve fitted to these data estimate a 

lower 95% confidence interval for severe trauma of 4.4 m.s-1.  In the worked example 

for a typical, horizontal axis tidal turbine,  48% of the potential collisions are estimated 

to be at speeds greater than this threshold.   This has potentially major implications for 

regulators assessing the environmental risks associated with the tidal energy industry.  

These results can be adapted to suit different tidal regimes and turbine designs.  Given 

that blade speed is a major factor in determining likelihood of severe injury, design 

considerations that reduce blade speed could avoid these problems.  Additional work to 
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determine the extent of soft tissue damage and potential concussion injuries would 

reduce the uncertainty surrounding these estimates.  
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General Discussion 

 

“When gone am I, the last of the tidal ecology researchers will you be. The [tidal] force 

runs strong in your family. Pass on what you have learned.” 

 

6.1 Introduction 

The tidal cycle has a central role in shaping marine ecological processes, from governing 

species assemblages in littoral communities (Colman 1933) to driving the mixture of 

nutrients through the water column in shelf seas (Sharples, Moore & Abraham 2001). 

This has led to a wealth of research into the importance of large scale, tidally driven 

features to marine fauna. Much effort has been directed towards studying a range of 

trophic interactions in tidal currents (e.g. Gibson 2003) and mixing fronts (e.g. Begg & 

Reid 1997)  and there is increasing evidence that some species spend large amounts of 

time travelling and foraging within tidal stream habitats (Benjamins et al. 2015). 

However, the relationships between these dynamic habitats and large predators 

remains relatively poorly understood; understanding how predators move and forage in 

them is key to understanding their importance. The overall aim of this thesis was to 

measure the movement and diving patterns of a large marine predator (harbour seals) 

in a tidally energetic area; these data were used quantify foraging behaviour and 

investigate the behavioural mechanisms that seals use to maximise forage successfully 
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in strong tidal currents. Further, the data were used to determine the potential effects of 

marine renewable energy developments in tidal stream habitats for harbour seals.   

Chapter 2 investigated how harbour seals move as a function of tidal current strength in 

a tidally energetic region off the coast of the UK. For this, I took the approach of 

considering their movements in relation to both hydro-space and geo-space. Using GPS 

tracking data from animal-borne tags, I employed discrete time Hidden Markov Models 

(HMM), to compare hydro-spatial and geo-spatial movement of seals and quantify how 

these different perspectives might influence our understanding of activity budgets. I 

then took the novel approach of combining the two different movement perspectives 

(geo-spatial and hydro-spatial) to infer how harbour seals adjust their foraging and 

travelling behaviour in response to variations in current flow. The results highlighted 

that, in energetic regions, this combined approach to behavioural classification is 

essential for quantifying foraging behaviour and identifying specific areas of 

importance. Further, I found there to be marked plasticity in the foraging behaviour of 

seals as a function of current strength. Seals were more likely to transit into foraging 

states with increasing current speeds. However, the specific movements which 

identified foraging behaviour varied; passive drifting was identified more in high flows, 

directed swimming against currents in mid-strength flows and small-scale area-

restricted search movement (in both perspectives) at low flows. The results of this 

chapter highlight the highly variable nature of predator behaviour in tidal stream 

environments.  

Horizontal movement in isolation can be a good indicator of behaviour for many species 

(Dragon et al. 2012; Bennison et al. 2018); however, for diving predators such as 

harbour seals, an understanding of the underwater, vertical movements in relation to 
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water currents was required to quantify foraging. My aim in Chapter 3 was to categorise 

broad dive categories and consider these within the context of the HMM results outlined 

in Chapter 2.  I then analysed a series of individual dive metrics to determine whether 

harbour seals adjust their diving behaviour to maximise foraging efficiency. Data on 

depth use were collected from depth records on GPS-GSM tags and individual time-

depth recorders on the same cohort of seals used in Chapter 2. A data reduction 

approach, through principle component analysis and model-based clustering, revealed 

that inferences about foraging from the dive behaviour generally matched those made 

from the horizontal movement HMM. When conducting “typical” area-restricted search 

patterns in geo-space, seals spent a large proportion of time diving benthically, 

presumably foraging on benthic prey sources. When drifting with currents, seals 

appeared to spend large portions of time diving to mid-water depths, showing high 

degrees of activity in the bottom-phase of dives, indicating possible foraging on pelagic 

species. A fine-scale analysis of individual dives revealed that seals descended to 

maximum depths significantly faster in increasing currents; however, once current 

speeds rose above ~1.7 m.s-1, diving became largely pelagic and descent rate appeared 

to vary markedly. Further, a seasonal and diurnal effect on diving behaviour was found. 

Seals were more likely to dive benthically in the spring and at night. Seasonal switches 

in dive patterns appear to reflect known diet composition of animals in this population 

(Wilson & Hammond 2019) and diurnal patterns also suggest a degree of switching in 

foraging behaviour which may be linked to prey switching or prey behaviour. This 

analysis revealed a degree of plasticity in harbour seal diving behaviour as a function of 

tidal currents similar to that observed in their horizontal movements (Chp. 2). The 

diving behaviour provided an important dimension to our understanding of harbour 
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seal behaviour in tidal streams and suggests that tidally driven processes along with 

seasonal and diurnal heterogeneity play a role in driving behavioural dynamics. 

Given the potential importance of tidally energetic habitats to marine industry, I looked 

to establish whether the installation and operation of a tidal turbine array led to 

significant changes in seal behaviour. Using the GPS tracking data from Chapter 2, I 

investigated whether a newly installed tidal energy array in the Pentland Firth affected 

the distribution of seals, at two temporal scales; as a function of a) the presence of the 

turbine array and b) the operations of the turbine array. Results showed that there was 

no significant change with respect to the presence of the turbines, but that there was a 

significant decrease in seal abundance up to 2 km away from the array during 

operations. This suggested that seals show an overt avoidance response to tidal 

turbines during power generation and the scale of the avoidance suggests this to be a 

response to the acoustic output of the devices. These results have important 

implications for the development of risk assessments for marine species in the vicinity 

of these devices.  

Although the results show clear avoidance behaviour by seals at scales of 100s-1,000s 

m from the turbine array, they also suggest that a proportion of seals may move in close 

proximity to the turbines and potentially collide with turbine blades.  Given this, I aimed 

to assess the possible physical consequences of collisions between seals and tidal 

turbine blades (Chp. 5). I took an experimental approach whereby I carried out a series 

of controlled collisions between seal carcasses and a model tidal turbine blade at 

various speeds in order to identify a threshold, above which mortality would be likely. 

Results suggested that collisions at speeds in excess of 5.6 m.s-1 would likely result in 

fatality, regardless of where on the body the individual is struck. Further, the 
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probability of fatality was affected by blubber layer thickness; there was a lower 

probability of fatality with thicker blubber layers. These results can be used as direct 

scalars of collision risk models for seals in that estimated collision rates can be scaled by 

the values provided by the resulting dose-response curves as well as the associated 

avoidance rates quantified in Chapter 4.  

6.2 Harbour seal movements in energetic habitats 

Data on animal movement can allow researchers to understand important individual, 

population, ecological, and global scale processes (Steinberg & Kareiva 1997; Patterson 

et al. 2008). Deliberate movement occurs as a result of a desire to satisfy a goal. 

Therefore, if the goal is known, inferences can be made as to the mechanisms and 

drivers of the movement process. Information on breeding and foraging cycles can aid 

the understanding of these goals. Outside of breeding seasons, predators can be seen to 

be primarily driven by the desire to gather energy, therefore movements can largely be 

indicative of the distribution of foraging resources, either as a function of searching or 

hunting (Costa 1991).  

Optimal foraging theory suggests that individual fitness is governed by efficient foraging 

behaviour (Stephens & Krebs 1986), and therefore adaptable foraging tactics in regions 

of high variability would be advantageous. When variability is predictable (e.g. tidal 

cycles), the pattern of foraging plasticity should, in theory, be more apparent, given the 

ability of the animals to establish successful tactics over time (Irons 1998; Bradshaw et 

al. 2004; Weimerskirch 2007). If individuals can maintain successful foraging in a range 

of different environmental conditions, overall fitness should be greatly increased 

compared to individuals with a narrow range of foraging behaviours (Stephens & Krebs 
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1986).  Consequently we might expect to see different results in individuals which have 

not yet developed consistent foraging tactics such as immatures (Carter et al. 2019). 

Recently, our ability to collect data on animal movements with concurrent 

environmental measurements has led to several studies on the importance of 

environmental dynamics for predators. Information on the associations between 

marine predator foraging movements and oceanic features has highlighted how 

important oceanographic features are to understanding marine population fitness (Cox 

et al. 2018). Several studies have described the associations between large scale 

oceanographic features such as macro-scale frontal systems and currents, and seabirds 

(e.g. Durazo, Harrison & Hill 1998), pinnipeds (e.g. McConnell et al. 2002), turtles (e.g. 

Gaspar et al. 2012) and cetaceans (e.g. Reilly 1990). However, there were significant 

data gaps with regards to how smaller, coastal species interact with finer scale features 

such as tidal streams (Benjamins et al. 2015). To address this, I showed that, for 

harbour seals, strong tidal currents can be closely linked to foraging behaviour (Chp 2 

and 3). As predicted by Stephen and Krebs (1986), a relatively high degree of foraging 

plasticity was observed in the heterogeneous environment, compared to other harbour 

seal studies (McClintock et al. 2013; Russell et al. 2015; Russell 2016); this suggests 

different foraging tactics may be employed by harbour seals in varying energetic 

environmental conditions. However, it is important to highlight that the use of a novel 

analytical method to identify behavioural changes may mean this degree of plasticity is 

exhibited in other populations but has not been explored. Harbour seals are often 

described as generalist predators (Bowen et al. 2002; Sharples, Arrizabalaga & 

Hammond 2009; Wilson & Hammond 2019) so a wide range of foraging behaviours 

would be a reasonable assumption. A useful next step in understanding this would be to 
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apply the technique from Chapter 2 to other populations or areas to assess whether 

adaptive foraging behaviour is a common trait of harbour seals or whether this is driven 

by exceptionally dynamic conditions.   

While robust inferences of movement behaviour can be made using observations of an 

individual’s breeding/foraging state, other fundamental intrinsic parameters such as 

sex, age and size can have equally strong effects. Age and size were not tractable 

covariates to investigate in this thesis, as only breeding age individuals were targeted 

for tagging. Additionally, sex was not considered in the movement analyses of Chapters 

2 and 3, and this may be a useful avenue for future research. Although phocid foraging 

behaviour has been shown to differ between sexes (e.g. Slip, Hindell & Burton 1994; 

Baechler, Beck & Bowen 2002; Carter et al. 2017), many of these differences are 

apparent in species exhibiting pronounced sexual dimorphism, possibly owing to 

differences in physiological capabilities as well as life-history constraints (Le Boeuf et al. 

1993). Although sexual dimorphism is not pronounced in harbour seals, early iterations 

of the movement models in Chapter 2 included the covariate effect of sex on transition 

probabilities and found there to be a difference in the foraging patterns between males 

and females at particularly high flow rates (Fig. 1). Males were more likely to transit 

from a hydro-spatial foraging state to a hydro-spatial travelling state with increasing 

flow rate i.e. male seals were more likely to swim against the current in increasing flow 

rates than females; therefore, females were more likely to drift with currents. Further, 

females were not observed in depth averaged flow rates above 3 m.s-1 throughout the 

entire study period so all predictions of seal behaviour in flow rates above this are 

solely derived from the movement of male seals.  
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There is a general paucity of information on sex and size differences in body 

composition of harbour seals, and morphometrics gathered in this study indicate very 

little difference in body size between sexes (Chp. 2, Table 1). However, there remains an 

apparent signal which warrants further investigation. It was difficult to resolve the 

biological drivers of the identified differences but it is possible that they are driven by 

different life-history requirements resulting in different strategies, or that there are 

fundamental differences in physiological capabilities meaning females have a narrower 

range of foraging behaviours available to them. Indeed, proportion of lean to lipid mass 

(and ultimately strength) could be a constraint to an animal’s ability to swim against 

prevailing currents. For example, grey seals males are seen to preferentially load lean 

mass before lipid mass as opposed to females which preferentially load lipid mass 

throughout non-breeding periods (Beck, Bowen & Iverson 2003). It is suggested that 

these differences are a function of sex-specific metabolic properties due to the 

differences in breeding requirements, and a consequent difference in perceived cost-

benefit on certain behaviours (Kelso et al. 2012).   

Differences in cost-benefit balances between sexes can manifest themselves in more or 

less risk-averse strategies resulting in differences in foraging tactics (Beck, Bowen & 

Iverson 2003; Beck et al. 2003). If rich but temporally heterogeneous foraging patches 

exist in areas of high tidal flow, and an individual’s physiology gives it the capacity to 

counter the displacement effect more so than other conspecifics, it may make energetic 

sense to continually target that patch in the absence of competitors. However, a 

perceivable risk may exist whereby if resources happen to be low, the increased 

energetic expenditure of navigating strong currents would result in a vast drain on 

resources and have a detrimental effect on fitness. This could result in significantly 
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reduced lipid reserves and a decreasing ability to successfully bring a pup to 

parturition. We therefore may expect to see males in strong currents more so than 

females, with females electing to forage in slower flow rates in order to minimise their 

metabolic rates. Analogous behaviour has been observed in diving grey seals pups 

where females spend longer in the bottom phases of dives and perform benthic dives 

more often than males (Carter et al. 2017). The suggested reason for this is that females 

have to load more lipid reserves and therefore target lower quality, more predictable 

prey than males, which elect to spend more time in pursuit foraging of larger fish in the 

water column. These cost-benefit trade-offs appear obvious even in early stages of 

phocid development (Kelso et al. 2012; Carter et al. 2017) and therefore suggest a 

possible avenue for the differences in behaviour demonstrated here. 

The results from Chapters 2 and 3 highlight the significant variability in harbour seal 

foraging behaviour in energetic environments and provide a basis from which these 

intrinsic variables can be further investigated.  
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Figure 1 The probability of transitioning from a localised to traveling state in a 
hydro-spatial only HMM. The blue line represents the predicted male effect and the 
red line the predicted female effect on the transition probabilities. Shaded areas 
represent 95% confidence intervals. 

The approaches in Chapters 2 and 3 revealed foraging behaviours, hitherto 

undocumented in harbour seals. I established how harbour seals move in both the 

horizontal and vertical planes, and how this is influenced by flow. However, to 

understand how populations may be affected by environmental change, a more holistic 

approach to identify patterns of space-use with regards to fixed and mobile habitat 

covariates is needed. The discrete behavioural states from these models could be 

extended to act as dependent variables in habitat models whereby distributions could 

be thought of as where animals perform specific behaviours rather than simply when 

they perform them. Largely, habitat models are used to identify areas of importance 

which can guide management and mitigation decisions. With robust estimates of when 

and where animals forage, areas of importance could be more accurately defined and 

marine spatial planning can be tailored to suit species specific needs. With associated 
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knowledge of transit routes and foraging areas, habitat models delineated by underlying 

behavioural state could improve our ability to protect populations.  

Misidentification or underrepresentation of foraging events can influence conservation 

efforts given how some researchers, interested in habitat selection, parametrise their 

models. It is a common practice to estimate habitat preference or selection through 

modelling inferred foraging locations rather than overall distribution (inclusive of all 

other behaviours) due to the relatively high assumed importance of foraging patches 

compared to all other areas (e.g. Doniol-Valcroze et al. 2012; Scales et al. 2016; Wege et 

al. 2019). If researchers only have access to 2-dimensional movement data, which is 

often the case, then establishing habitat selection models becomes an increasingly 

difficult task when animals spend prolonged periods of time in dynamic waters. 

Given the mounting evidence that foraging marine animals are often attracted to ocean 

currents and eddies (Suryan et al. 2006; Bon et al. 2015; Della Penna et al. 2015; Grecian 

et al. 2016; Hastie et al. 2016; Hays 2017) the use of current correction appears a vital 

tool for conservation given the importance of robust identification of foraging locations. 

In the case of this study, 37% of the locations were classified as different behavioural 

states between geospatial and hydrospatial models, suggesting a potential 

misclassification rate of 37%. This could mean that up to 37% of foraging behaviour 

could be missed if hydrospatial movement was not considered. Consequently, important 

foraging areas might be misclassified as less important, producing erroneous or 

unrepresentative foraging distributions and having knock-on effects when used for 

conservation efforts in marine spatial planning. This is of concern in the current study 

given the recent, rapid decrease in local abundance and these results may be a key 
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factor in producing more representative foraging distributions which could aid in the 

protection of the population. 

Technological advances in marine biotelemetry have resulted in the increasing use of 

multi-channel data-loggers; data on geographical location (Thompson et al. 1991a), 

depth use (Le Boeuf et al. 1988), fine-scale movement (Shepard et al. 2008), acoustic 

environment (Johnson & Tyack 2003), temperature and salinity (Boehme et al. 2009) 

are now regularly collected on animal-borne devices. However, as resolution and 

breadth of data increases, tags can become prohibitively expensive and so many studies 

are still constrained to the collection of only one or two data streams. Time-stamped 

location data is usually favoured as without it, concurrent environmental conditions can 

be difficult (or impossible) to estimate and they can be used in isolation to make broad 

inferences about underlying behaviours and life-history stages (Carter et al. 2016). The 

presented evidence that horizontal movement and diving behaviour are inherently 

linked, in both geospace and hydrospace, coupled with the general acknowledgement 

that diving behaviour is a sound indicator of foraging (Le Boeuf et al. 1988), suggests 

that the method in chapter 2 could be used in isolation for researchers intending to 

study seal movement in dynamic systems, without the necessity for significant extra 

expenditure on fine-scale movement or depth tags. The method both validates 

previously held assumptions that horizontal movement metrics can be attributed to 

behavioural states reasonably well and provides a method by which this can be refined 

in a fast moving environment. Evidently, there are questions which could be answered 

on behaviour that would benefit from extra data streams, however in instances of 

archival data sources or limited funding, I have shown that tracking data in isolation can 

still be a very powerful tool for ecological research. 
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Associations between predators and fast flowing systems are widely believed to 

indicate elevated concentrations and disorientation of lower trophic level species; the 

so-called ‘tidal coupling hypothesis’ (e.g. Zamon 2003) . The bottom-up effect of 

predictable coherent structures in tidal streams creating equally predictable 

concentrations of zooplankton, is theorised to attract planktivorous fish species which 

in turns attracts piscivorous predators (Wolanski & Hamner 1988). The importance of 

tidal currents in harbour seal movement patterns presented in this thesis support this 

theory and suggest that harbour seals exploit various aspects of tidal coupling. As 

current strength increases seals were often observed swimming into the current, 

descending faster and often diving to the seabed. Further, in contrast to previous 

observations for several other taxa including pinnipeds (Hays 2003), seals were more 

likely to dive pelagically during the day and benthically at night. Interestingly, with 

increasing current strength, seals transitioned to diving depths in the upper parts of the 

water column.  Although this occurred during the day and night, the onset of this pelagic 

diving began at lower current speeds during the day. Together, these analyses suggest 

three broad behavioural patterns: benthic and pelagic diving while swimming against 

currents, and pelagic diving while drifting with currents. These are indicative of prey 

switching as a result of the diel and seasonal fluctuations in prey abundance or 

availability.   

Catch rates of pelagic species such as herring (Clupea harengus) and whiting 

(Merlangius merlangus) are relatively high in the areas immediately peripheral to the 

high energy channel of the Pentland Firth (Fig. 2; Heessen, Daan & Ellis 2015). 

Important spawning grounds for the Shetland, Orkney and Buchan Herring stock exist 

in these waters with nursery grounds immediately to the west (Ellis et al. 2011). This 
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results in an increased abundance of adult herring in the coastal regions during the 

spawning season throughout Autumn which likely use tidal currents for selective 

stream transport over large distances (Blaxter & Batty 1990). Further, depth 

distributions suggest these species to peak in concentration at around 30-70 metres 

(Fig. 3) and show a diel pattern whereby fish are found in denser, deeper aggregations 

during the daytime (Heessen, Daan & Ellis 2015). Sandeel (Ammodytidae spp.) catch 

rates in Orkney waters and surrounding areas contribute significantly to the overall 

commercial take in the North Sea. Additionally, they have a pronounced diel cycle which 

reflects the pattern of seal diving observed in Chapter 3; adult fish emerge from the 

sediment in the morning, forage in the water column during daylight, and then burrow 

into the sediment again during darkness (Winslade 1974; Freeman, Mackinson & Flatt 

2002). Further, they spend most of the winter season hibernating relatively deep in the 

substrate (Hassel et al. 2004).   

In combination, these observations support the inference that the observed movement 

and diving behaviour is driven by primarily by sandeel availability. Specifically, harbour 

seals spent more time foraging at mid-water depths during the daytime, when sandeels 

are more likely to be foraging pelagically, and switched to benthic diving during hours 

of darkness, when sandeels burrow into the sediment (Winslade 1974). As current 

strength increases, it is less likely that seals can forage benthically given the reduced 

ability to maintain geostationary position. At high current speeds, pelagic foraging on 

sandeels (and other pelagic species such as herring) is therefore more likely during the 

day. Given that sandeels are likely incapable of withstanding flows above 1 m.s-1 for any 

length of time (Johnsen et al. 2017), harbour seals should, in theory, be capable of 

expending relatively little energy by drifting with the current, foraging on schools of 
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sandeels. This tactic appears analogous to foraging puffins in Ireland which were 

observed to drift with currents while foraging at pelagic depths (Bennison et al. 2019).   

In the harbour seals studied here, the onset of pelagic foraging occurs at higher current 

speeds during darkness than during the day. Seals may be able to offset the energetic 

cost of maintaining geostationary movement by exploiting reliable prey patches 

consisting of benthic dwelling sandeels during the night. However, once current 

strength increases past a point where geostationary movement is too energetically 

demanding, seals may switch to pelagic foraging on species such as herring and whiting, 

which migrate towards the surface during darkness (Blaxter & Batty 1990). The 

seasonal component of diving behaviour identified in chapter 3, although showing 

interesting trends remains equivocal given the consistently wide confidence intervals 

around model predictions. However, the hibernation patterns of sandeels potentially 

render them less available to seals during the winter months. This, combined with the 

observation that adult herring come closer to the coast to spawn throughout autumn 

(Ellis et al. 2011), suggest that the increase in benthic diving during the spring, and the 

increase in pelagic diving during the autumn and winter, may be a genuine signal which 

warrants further investigation. In support of this, harbour seal diet in the UK has been 

shown to be dominated by sandeels, with a large seasonally important constituent of 

pelagic prey (predominantly herring) in the autumn and winter months in the north 
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coast and Orkney management area (Wilson & Hammond 2019). 

 

 

Figure 2 Spatial distribution of important prey fish around the UK. Herring (Clupea 
harengus; top left), Whiting (Merlangius merlangus; top right) and Sandeels 
(Ammodytidae spp.) distributions are given by catch rate. Figures from Heessen, Daan 
and Ellis (2015). 
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Figure 3 Depth distribution of pelagic fish around the UK. Whiting (top row) and 
Herring (bottom row) vertical distributions are given in binned depth bands of different 
sizes for the Celtic Sea (CESR), North Sea (NSER) and the Baltic Sea (BSER). Values 
represent total number caught at that depth divided by the total number of hauls at that 
depth, normalised to 1. Figures from (Heessen, Daan & Ellis 2015). 
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With the results in Chapter 2 and 3 suggesting that behavioural mechanisms underlying 

animal movements in tidally dominated regions should be considered from both a geo- 

and hydro-centric perspective, I have shown that harbour seals exhibit complex 

interactions with both geostationary and mobile habitat features. The differences 

between hydro-spatial and geo-spatial foraging identified here are specific to the study 

population in this thesis. However, it seems clear that water flow not only influences the 

movement behaviours of animals but can also significantly affect our interpretations of 

the function of those movements. This is not a new concept, and several previous 

studies have recommended taking hydro-referenced movement into account when 

establishing behavioural classifications of marine animals (McConnell et al. 2002; 

Gaspar et al. 2006; Horton et al. 2011; Bon et al. 2015; Dodge, Galuardi & Lutcavage 

2015; Briscoe et al. 2016; Trudelle et al. 2016). Despite this, simplified, geo-centric 

approaches still prevail in movement ecology, even in systems which exhibit substantial 

flow.  

The results have highlighted the potential issues of classical approaches of movement 

characterisation in mobile environments. If not utilised in future studies of energetic 

systems, researchers risk making false inferences or misinterpreting the relative 

importance of areas or habitat features. Researchers now have an evidence based, 

statistical study with which to refer and develop, and it will no longer be defensible to 

ignore the use of current correction in moving systems in instances where 

oceanographic data is available. I therefore believe the work will have a significant 

impact on movement ecology and lend vital, quantitative support to the notion that, as 

Gasper et al. (2006) stated, “neglecting ocean currents can lead us up the wrong track”. 
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6.3 Effects of the tidal energy industry 

To understand the effects of a tidal energy installation on harbour seals I used the GPS 

data from Chapters 2 and 3 to explore the spatial distributions of seals as a function of 

both the presence and the operations of the turbines. I used a recently developed 

analytical package (Scott-Hayward et al. 2013b) which allowed inclusion of 2-D 

Spatially Adaptive Local Smoothing Algorithms (SALSA) in combination with 

generalised additive models (GAMs). GAMs were fit in a generalised estimating 

equations (GEEs) framework using Complex Regional Spatial Smoothers (CReSS).  The 

results showed that there was a significant effect of the operations of the turbine on seal 

distribution, with an apparent avoidance response up to approximately 2km from the 

turbines. The models, which accounted for the effects of tidal state found in chapters 2 

and 3, showed that, regardless of turbine presence or operations, tidal dynamics was a 

key driver of harbour seal distributions.  

The response presented here supports previous studies on the effects of single tidal 

turbines (or their acoustic emissions) showing that harbour seals exhibit avoidance of 

them during operations (Hastie et al. 2017; Sparling, Lonergan & McConnell 2017; Joy et 

al. 2018). However, the avoidance response seen here was at a scale far greater than 

previously reported and this may be due to differences including numbers of turbines, 

turbine acoustic emissions, and habitat (Chp. 4). For example, previous avoidance of 

turbines by seals had been exclusively observed in the narrow channels of Strangford 

Lough, Northern Ireland (Sparling, Lonergan & McConnell 2017; Joy et al. 2018) and 

Kyle Rhea, Scotland (Hastie et al. 2017). These sites are close to harbour seal haulout 

sites and, particularly in the case of Strangford Lough, there is a pronounced bottleneck 

effect whereby seals are required to transit past the turbine (or sound source; Fig. 4) to 



Chapter 6: General Discussion 

205 
 

foraging grounds. Conversely, the Pentland Firth represents a less enclosed region, with 

the channel where the turbines were installed being one of many transit routes between 

haulout sites and foraging patches (Fig. 5). Additionally, many putative foraging sites lie 

to the west of the turbines so seals would not necessarily need to transit past the 

turbines to forage.  

The acoustic emissions of tidal turbines when operating are likely to be detectable by 

seals (Goetz et al. 2011; Palmer et al. 2019). If seals detect these and perceive them as a 

threat, it is possible that, rather than transit past the turbines, they may opt to avoid the 

channel altogether. This highlights the importance of geographical or environmental 

context when predicting responses in future. For example, in the case of Strangford 

Lough, seals avoided the turbine by transiting past it at the periphery of the channel. If 

the magnitude of the avoidance response was a linear function of the number of 

additional turbines installed, the ability to avoid them would become apparently 

reduced due to the reduced proportion of available channel to transit in. This could 

result in increased risk of collision, resulting in an overall population fitness reduction.  
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Figure 4 Relative positions of transit routes and haulout sites in previous studies 
of the effects of tidal turbines on harbour seals. Strangford Lough (left) is shown 
with associated haulout sites (yellow circles) and turbine site (black diamond). Kyle 
Rhea (right) is shown with haulout sites (red stars), turbine sound source (blue 
triangle) and seal location colour coded by estimated received levels. Figures taken 
from Sparling, Lonergan and McConnell (2017) and Hastie et al. (2017) respectively.  

 

Figure 5 Seal location data in the Pentland Firth in relation to tidal turbines and 
haulout sites. Seal locations are represented by the black points, turbine locations by 
the yellow stars and regularly used haulout sites by the red stars. 
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Although the results in the thesis provide important information on avoidance patterns 

at scales of 100s-1,000s of metres, information on near field (metres) behaviour 

remains urgently required (Hastie et al. 2019a; Hastie et al. 2019b). I have shown that 

seals show a degree of avoidance to turbines when operational, and therefore at their 

most dangerous (Onoufriou et al. 2019). However, the resolution of GPS data precluded 

an analysis of avoidance behaviour at close ranges; therefore, the potential for a 

proportion of seals to collide with turbines remains.  

The lack of technology capable of tracking seals underwater near the turbines at 

suitable scales currently precludes estimation of near-field evasion rates (Hastie et al. 

2019a). The results from Chapter 5 are therefore intended to circumvent this 

knowledge gap by approaching the problem from a different angle; if seals do collide 

with turbines, how likely are they to be fatally injured? Based on the results from 

chapter 5, the potential for fatality as a result of a collision remains a valid concern as I 

showed that fatal interactions are likely to occur at collision speeds of ~5.6 m.s-1 (well 

below the maximum operating tip speeds of tidal turbines). I recommend that future 

developments of collision risk models explicitly consider this threshold to help scale 

estimated collision rates by expected number of fatalities to more accurately quantify 

population level effects.  

The major caveat throughout Chapter 5 was the lack of robust information on soft-

tissue damage and concussion. Previously frozen carcasses do not demonstrate the 

same soft-tissue pathology as living tissue, therefore more subtle injuries may have 

been overlooked (Roe, Gartrell & Hunter 2012). Specifically, the differences between 

fresh and frozen tissue mainly reside in the breakdown of cell linings during the 

freezing process; this normally renders tissue more susceptible to tears or ruptures 
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(Roe, Gartrell & Hunter 2012; Grear et al. 2018). Given this, we would expect to see 

elevated soft-tissue damage in frozen and thawed carcasses subjected to collisions 

when compared to fresh carcasses. In fact, the results showed that all soft-tissue 

rupture identified in the pathological analyses was associated with skeletal damage, 

assumed certain to cause death in a wild seal. The assumption that these results are 

broadly applicable across all collisions therefore appears valid. It is thus suggested that 

future studies on the effects of interactions between seals (and other large marine 

fauna) and tidal turbines focus on the ability of animals to evade the devices at close 

range and resolve whether collisions are likely to occur at all, whether fatal or not.  

The main barrier for consenting of tidal turbine arrays currently rests on uncertainty 

around economic viability and how installations may affect the local ecosystems, both 

on the long and short-term. The results from chapters 4 and 5 represent a significant 

step forward in both the understanding of marine mammal responses to novel, 

anthropogenic acoustic stimuli and the planning and consenting procedure for marine 

renewable energy developments. The fitness consequences of the demonstrated 

avoidance, both at the individual and population level, are clear in that reduced 

likelihood of inhabiting areas near turbines during operations results in reduced 

likelihood of harmful or fatal collisions. These distribution shifts also appear short-lived 

in so much as over the entire study period, no significant effect of turbine presence was 

observed, suggesting foraging areas have not yet been rendered perceptibly 

inaccessible. Therefore, reduction in foraging opportunities could be occurring during 

operational periods however, does not appear to be affecting where seals forage when 

the turbines are not operating. Compounded with the likelihood that a relatively small 

proportion of collisions will be fatal, compared to the previously held assumption that 
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all collisions will result in fatality, these results should augment consenting procedures 

by reducing the uncertainty around environmental impact, especially in areas which 

overlap with threatened populations of marine animals. The quantification of the results 

from these chapters are directly translatable to currently used collision risk models, a 

key feature in consenting for tidal turbine arrays and, as demonstrated in section 6.4 

(below), and can be used to provide evidence based estimates of collision rates in 

various operational scenarios. Furthermore, these results provide crucial evidence 

suggesting the overall impact of these devices for harbour seals is far less than the 

necessarily conservative estimates pre-dating this work (Wilson et al. 2006; Band et al. 

2016; Jones et al. 2017) and can aid in the development of this renewable energy 

industry which could have a significant impact in reducing global carbon emissions in 

the coming decades. While this thesis should only be considered in the context of the 

turbine array in the Pentland Firth, the results from chapter 5 can be assumed uniform 

across test sites, assuming physical consistency across harbour seal populations. The 

results from chapter 4 also demonstrate a robust framework through which array 

developments at other sites can continually monitor their impact of the distribution and 

abundance of local marine mammal populations and serves as a guide as to how seals 

may respond to proposed arrays in the future.  

6.4 Future Work 

From ecology to engineering: updating collision risk model 

Moving forward, a major challenge remains for applied marine mammal ecologists, 

policy makers and regulators, and industry engineers; how will increasing 

industrialisation of coastal waters affect local populations of animals? As a well-studied, 

semi-aquatic species, residing largely in accessible regions, the harbour seal population 
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in the UK has one of the most robust population estimates of any marine mammal. We 

have detailed information on habitat preferences (e.g. Bailey, Hammond & Thompson 

2014), movement behaviour (e.g. Russell et al. 2015), population size and trajectories 

(e.g. Thompson et al. 2019), and  survival and fecundity rates (e.g. Cordes & Thompson 

2014) for several discrete populations. They therefore represented the ideal model 

species to assess the impact of offshore renewables (among other potential stressors). 

Currently, the potential impacts of the tidal energy industry on seals are predicted using 

collision risk models. To provide a formal assessment of the influence of the thesis 

results on collision predictions, I have applied the mortality thresholds and spatial 

avoidance estimates to a commonly used collision risk model and quantify estimates of 

collision and mortality rates. This work is preliminary and is presented as an example to 

guide their use in future studies and applications.  

I used the updated Band Collision Risk Model, which incorporates mortality scalars and 

horizontal and vertical density grids to produce model predictions (Band et al. 2016). 

The model uses an observed depth distributions across 10 metre depth bins and 

observed swim speed over ground of seals, derived from telemetry data (Thompson et 

al. 2016). Collision rates are calculated and summed across all turbine rotation speeds 

at different stages of tide. Using the spatial models from Chapter 4, I predicted absolute 

abundance of seals within the grid-cell containing the MeyGen-Atlantis Tidal Turbine 

Array (Chp. 4) for (a) absence of turbines entirely, during periods of flow (average of 

prediction values for all times except 1 hour either side of slack water), and (b) during 

operations. This was carried out by calculating model predictions as proportions of the 

whole prediction space and multiplying them by the population estimates (81 seals) for 

the entire north coast site (Thompson et al. 2019). This allowed a direct comparison of a 
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method which uses baseline data and assumes no avoidance to a method which 

accounts for the observed changes in seal behaviour as a function of the turbines 

operating.  

Assuming no avoidance (baseline data only) to the current four turbine array in the 

Pentland Firth, and a predicted density of 0.002 seals per 500 m2 in the array region, 

collision rate was estimated at 54 seals.year-1. Assuming a mortality probability of 1 

(Band et al. 2016), this can be considered 54 mortalities.year-1; however, using the 

mortality threshold derived in Chapter 5, this decreases to 38 mortalities.year-1. 

Further, using the avoidance rates predicted during operation (Chp. 4), the estimated 

collision rate reduced to 21 seals.year-1 which yielded a mortality rate of 14 seals.year-1. 

Whilst 14 seals a year represents a significant proportion of a population already in 

decline (Thompson et al. 2019), this exercise highlights the importance of behavioural 

and physiological data to inform these models; here I estimated an overall reduction in 

mortality rate of ~55%. It has been shown in previous studies of bird flight in relation 

to operational wind farms that close range avoidance can occur at rates of up to 99% 

(Winkelman 1992; Painter, Little & Lawrence 1999; Madders 2004). If this rate is 

translatable to harbour seals in tidal turbines then these mortality rates may be scalable 

even further, reducing the likely fatality rate of these interactions to less than 1 

seal.year-1. 

Understanding animal movement through holistic movement models 

The advent of modern biologging techniques to provide ultra-high resolution data could 

offer a means by which we can further understand fine-scale behaviour of marine 

animals in dynamic habitats (Cooke et al. 2004). Several recent studies have shown that 
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tools, such as accelerometers, can help resolve foraging behaviour more robustly  and in 

higher resolution than data from more traditional tags (e.g. Fossette et al. 2008; 

Shepard et al. 2008; Naito et al. 2013; Volpov et al. 2015). These data have also been 

used as means of validating  model based approaches to behavioural classification (e.g. 

Leos-Barajas et al. 2017a). Holistic bio-loggers which include multiple sensors such as 

accelerometers, magnetometers, speed sensors, hydrophones, CTDs, GPS, TDRs and 

even active sonar are now becoming more available (Goulet et al. 2019). Further, 

increasing complexity of mechanistic modelling frameworks is allowing the integration 

of multiple data-streams to quantify and understand animal behaviour at sub-second 

resolutions (Leos-Barajas et al. 2017b; McClintock et al. 2017). In combination with 

development of high spatial resolution hydrodynamic models, a similarly ever-growing 

field, drivers of seal foraging behaviour and the ways in which body movement and 

adjustments allow animals to exploit energetic environments could be determined.  

This thesis presented a rudimentary, discrete time Hidden Markov Model to model seal 

movements in tidal flows. However, application of an extension to this framework, the 

Hierarchical Hidden Markov Model, would allow the inclusion of data streams of 

varying resolutions, such as accelerometery and dive data along with GPS locations to 

resolve the complexities of movement in flow (Langrock et al. 2012a). Further, the 

inclusion of intrinsic covariates could be included to aid interpretation of the potential 

physiological limitations of movement in these habitats. This approach would require 

the assumption that foraging behaviours are variable in regions of high flow, as shown 

by the results in Chapters 2 and 3. Thus a modelling framework incorporating different 

scales of movement in tidal flows, such as flipper stroking rates, body orientation, 

lunging, descent and ascent rates and bottom time in conjunction with environmental 
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covariates could not only refine our understanding of activity budgets but would be 

useful in determining how animals adapt to life in high flow.  
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 Extent of hydrodynamic model elements  

 

 

Fig A1.1 Extent of model elements for the Pentland Firth and Orkney Waters sub-

domain of the Scottish Shelf Model. Plots show the entire horizontal range (above) 

and the inner Pentland Firth (below). Model elements get finer in resolution towards 

the inner Pentland Firth.  
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 Daily distance travelled 

 

Figure A1.2 Daily distance travelled in geo-space vs hydro-space. Each point 
represents the total distance moved during each 24-hour period; data for all seals is 
provided. The red line and shading shows the mean estimate (± 95% CIs) from a linear 
regression between hydro- and geo-space distance. The dashed line indicates the y=x 
relationship. The trend indicates that, in general, animals travelled similar distances in 
geo and hydro-space however an overall slight skew towards further distances travelled 
in hydro-space was observed (overall R2=0.79).
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 HMM Validation 

HMM validation was undertaken by visual inspection of pseudo-residuals. Pseudo-

residuals were near to normally distributed for the hydro-spatial step length and turn 

angle (Fig A1). Autocorrelation function (ACF) plots revealed a small degree of 

autocorrelation in pseudo-residuals however only to a lag of 13.  Pseduo-residuals were 

near to normally distributed for turn angle in the geo-spatial HMM with a comparative 

right skew in step length pseudo-residual distribution when compared to the hydro-

spatial HMM (Fig A2). ACF plots revealed no autocorrelation in turn angle but a small 

degree of periodical autocorrelation in step length pseudo-residuals. This suggests that 

a degree of variability within the data was not explained away by the fitted model and 

additional covariates or states may have resulted in a superior model fit for geo-spatial 

data. However, given the project goals and the limited biological interpretation of 

additional states, coupled with the addition of hydro-spatial information in the 

combined approach, the final model was deemed both a good fit and biologically 

interpretable, which is an essential compromise when fitting HMMs (Pohle et al. 2017).  
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Figure A1.3 Model pseudo-residuals for the hydro-spatial HMM. Observation indices 

and qq-plots are provided to inform normality of residuals for step length Itop row) and 
turn angle (bottom row). Autocorrelation function plots are provided up to a lag of 35.  

 

Figure A1.4 Model pseudo-residuals for the geo-spatial HMM. Observation indices 

and qq-plots are provided to inform normality of residuals for step length Itop row) and 
turn angle (bottom row). Autocorrelation function plots are provided up to a lag of 35. 
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 Supplementary figures for principle component analysis 

 

 

Figure A2.1 Correlation plot for all dive metrics used in principle component analysis. Values represent degree of correlation.
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Figure A2.2 Histograms of contributions from each dive metric to principle component 1. 
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Figure A2.3 Histograms of contributions from each dive metric to principle component 2. 
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Figure A2.4 Histograms of contributions from each dive metric to principle component 3. 
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Figure A2.5 Histograms of contributions from each dive metric to principle component 4. 
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Figure A2.6 Histograms of contributions from each dive metric to principle component 5. 
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Figure A2.7 All principle component combination plots. Associated clusters for the random sample of 5000 dives are highlighted 
with different colours. Ellipses represent the 95% range of each cluster. 
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 Density plots of covariate spread per individual 

 

 

Figure A3.1 Density plots of bathymetric depth representation per individual. Sample size is given for each individual which 

represents the number of dives. Mean value of the covariate is also provided with the standard deviation in brackets.  
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Figure A3.2 Density plots of current strength representation per individual. Sample size is given for each individual which 
represents the number of dives. Mean value of the covariate is also provided with the standard deviation in brackets.  
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Figure A3.3 Density plots of Julian Day representation per individual. Sample size is given for each individual which represents the 

number of dives. Mean value of the covariate is also provided with the standard deviation in brackets. These plots effectively show the 

amount of data provided by each tag, through time.
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Experimental set-up for preliminary collision trials 

Five seal carcasses were suspended either semi- or fully submerged just below the 

water surface with the use of buoys to account for the natural buoyancy of the carcasses 

(figure 1). The carcasses were tied at the neck, fore flippers and hind flippers to a 

horizontal line between two anchored buoys. Weights suspended from the anchor lines 

pulled the buoys apart and maintained the horizontal line under tension.   The carcasses 

were held in a fixed position by strapping a buoy alongside the carcass and prevent 

rotation.  The attachments were not rigid, so the carcass was able to move in response 

to the collisions, but the tension in the horizontal line provided some resistance to 

horizontal rotation (pivoting) and to horizontal displacement. The buoy strapped to the 

carcass added resistance to rotation and to horizontal displacement by increasing the 

surface area and hence increasing the drag forces acting on the body. 

The turbine blade was simulated by fitting a profile similar to the leading edge of a tidal 

turbine blade to the keel of a high speed, jet propelled boat (figure 2). An initial design 

using a straight leading edge was constructed but abandoned because the leading edge 

protruded too far forward from the keel and therefore had the potential to produce 

large lateral forces at the high speeds required for the collisions.  This posed potential 

safety concerns and would have prevented accurate positioning of the boat during high 

speed collision trials.   

A replacement profile that protruded 40mm from the keel was moulded to follow the 

keel of the boat (Figure 3).  Three lengths of PVC piping, arranged in a triangular 

structure, were fixed to the centre line of the hull (figures 3 and 4). Each 20mm 

diameter pipe was attached to the adjacent pipe with a polyethylene weld. The pipes 

were filled with a vulcanised silicon rubber for rigidity. 
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Figure A4.1 Diagram of the experimental set-up. Two orange buoys, weighted with 

chain and fixed in position at the surface with support anchors are connected by a 3 

metre length of rope. The carcass under test is attached to this rope with further 

flotation buoys attached if the carcass displayed negative buoyancy. 

 

 

 

Figure A4.2 An example length of the model turbine blade. Perspectives are 

provided from (a) a head on view, (b) a side view and (c) a cross-sectional view. 

 

(a) (b) (c) 
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Figure A4.3: The model turbine blade fixed to the boat hull at the mid-line. 

Collisions were inflicted on the head, torso (rib-cage and scapulae) and pelvis of each 

carcass by driving the jet boat at the target at known speeds.   Trials were carried out in 

a large sheltered artificial harbour at Ardersier Point in the Inner Moray Firth.  This site 

provided a sheltered, effectively enclosed area, 2 km x 0.25 km with no appreciable 

currents or wind driven waves in the inner harbour where the trials were conducted. 

Photographs of the boat passing at known speeds (figure 4) were used to calculate angle 

of the blade at the impact point, assuming that the initial contact with the buoyed 

carcass was at 30cm above the surface. With the water surface acting as a flat, adjacent 

side to a right angle triangle, the impact angles for 3 m.s-1 (6 kt), 6 m.s-1 (12 kt), and 

12 m.s-1 (24 kt) were 43.7°, 33.9° and 28.2° respectively.  We used these angles to 

calculate an effective collision speed for each trial, calculated as:      

 

Effective speed =  V sin α 

 

Where alpha was the angle subtended by the blade at the water surface and V was the 

measured speed of the boat. 
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Table A4.1 shows the approach speeds, angles of attack and the resulting effective 

collision speeds imposed on the seal carcasses given the angle of attack.  We were 

unable to account for the vertical movement of the boat due to small wavelets.  

 

 

 

Figure A4.4 A perpendicular perspective of the blade profile. Profiles at (a) 6 knots, 

and (b) 24 knots. Note the elevation of the boat hull with relation to the water surface 

and the resulting angle of attack of the blade. 
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Table A4.1 Adjusted displacement speeds at given angles of attack. All values were 

calculated using trigonometric functions assuming the carcass was struck at the 

absolute centre of mass. 

 

Boat Speed (m.s-1) Angle of attack Speed of displacement (m.s-1) 

3 43.7° 2.07 

6 33.9° 3.34 

12 28.2° 5.67 

 

 

 Experimental set-up for subsequent trials  

 

Collision trials took place during calm (Beaufort 0-2) weather in a sheltered bay on the 

east coast of Scotland. Carcasses were defrosted at ambient temperature for 10 days 

prior to collision trials in September 2016 and 2017 to ensure complete thawing of the 

soft tissue. Each individual was suspended immediately below the water surface inside 

a net bag which was buoyed at each end (Fig. 1, main text). The width of the net was 

sufficient to contain each seal carcass whilst being small enough to ensure that they did 

not rotate. The net was anchored at one end and the opposite end was tethered to a 

quick release system which separated upon impact. This ensured that the angle of 

attack was consistent throughout the trials, and the carcass was free to rotate or deform 

in response to the collisions. All collisions were carried out to the dorsal side of the 

carcass for consistency. The allowance of free rotation provided by the quick release 

mechanism resulted in no multiple strikes in the same trial as seals were free to rotate 

away from the trajectory of the blade after impact. 

 


