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Abstract

Understanding how the biodiversity of freshwater fish assemblages changes over

time is an important challenge. Until recently most emphasis has been on taxonomic

diversity, but it is now clear that measures of functional diversity (FD) can shed new

light on the mechanisms that underpin this temporal change. Fish biologists use dif-

ferent currencies, such as numerical abundance and biomass, to measure the abun-

dance of fish species. Nonetheless, because they are not necessarily equivalent,

these alternative currencies have the potential to reveal different insights into trends

of FD in natural assemblages. In this study, the authors asked how conclusions about

temporal trends in FD are influenced by the way in which the abundance of species

has been quantified. To do this, the authors computed two informative metrics, for

each currency, for 16 freshwater fish assemblages in Trinidad's Northern Range that

had been surveyed repeatedly over 5 years. The authors found that numerical abun-

dance and biomass uncover different directional trends in these assemblages for each

facet of FD, and as such inform hypotheses about the ways in which these systems

are being restructured. On the basis of these results, the authors concluded that a

combined approach, in which both currencies are used, contributes to our under-

standing of the ecological processes that are involved in biodiversity change in fresh-

water fish assemblages.
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1 | INTRODUCTION

Freshwater fishes are one of the most diverse vertebrate taxa

(Magurran et al., 2011), but also one of the most threatened because

of multiple anthropogenic impacts including introductions of non-

native invasive species, modification and destruction of habitats and

overexploitation (Albert et al., 2020; Dudgeon et al., 2006; Reid

et al., 2019). As yet, there is only limited understanding of how the

biological diversity of these fish assemblages is changing over time.

Information on biodiversity change is particularly scant for tropical

fresh waters, and for facets of biodiversity other than taxonomic

diversity. The Intergovernmental Science-Policy Platform on Biodiver-

sity and Ecosystem Services (IPBES) Conceptual Framework defines

biodiversity as “variation in genetic, phenotypic, phylogenetic, and
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functional attributes, as well as changes in abundance and distribution

over time and space, within and among species, biological communi-

ties and ecosystems” (Díaz et al., 2015, p. 12). Filling this knowledge

gap will be a substantial task involving many different teams, but it

will also depend on fundamental insights into how the way in which

diversity is measured influences the conclusions drawn. In particular,

because fishes in a river or lake can vary substantially in body size, the

method chosen to quantify abundance, such as number of individuals,

biomass or catch per unit effort (CPUE), has the potential to generate

different insights into biodiversity change. In this study, the authors

focused on functional diversity (FD), a facet of biodiversity that is

gaining increasing attention in the literature (Laureto et al., 2015;

Villéger et al., 2017), and for this they used data from rivers in the

Northern Range on the island of Trinidad in the Caribbean to ask how

the choice of abundance currency influences the understanding of

biodiversity change.

FD draws on the premise that biological traits explain the perfor-

mance of organisms in ecological assemblages and communities

(Violle et al., 2007). Analyses of FD therefore use traits, rather than

taxonomic species identity. There are a large number of FD metrics,

some of which deal with the presence/absence of species, whereas

others incorporate information on the abundance of species (Mouillot

et al., 2013). These abundance-based FD metrics evaluate functional

roles described by the distinctive combination of biological traits and

the commonness or rarity of the species within the system (Mouillot

et al., 2008), and therefore detect patterns that go beyond functional

replacement (i.e., the loss, gain or substitution of one functional role

by another) (Mouillot et al., 2013). The authors of this study used two

widely used abundance-based FD metrics.

Ecologists recognise that two of the currencies that fish biolo-

gists use to quantify abundance (numerical abundance and biomass),

while both ecologically meaningful, shed light on different processes

(Dornelas et al., 2011). Numerical abundance is particularly relevant

in analyses of demography, intrinsic and extrinsic population

growth, and biomass in investigations of resource allocation

(Dornelas et al., 2011). Nonetheless, the two currencies are not

completely independent as they are related through their link with

body size (Henderson & Magurran, 2010; Magurran &

Henderson, 2012). In fish assemblages, numerical abundance is gen-

erally expected to decrease with body size, as the largest taxa in the

assemblage are typically found in lower numbers (Cohen

et al., 2003; Cyr et al., 1997). Biomass, on the contrary, tends to

scale positively with body size, which results in an inverse relation-

ship between currencies. If this relationship is not entirely symmet-

rical, then biomass and numerical abundance will reveal different

patterns of abundance structure.

This asymmetry has consequences for the evaluations of the FD

of fishes over temporal, spatial or other ecological gradients. Aquatic

ecologists have tended to choose biomass over individual counts in

the field (Arantes et al., 2019; White et al., 2007), but because of the

scarcity of multi-currency data (Morlon et al., 2009), the extent to

which different abundance measures influence conclusions about

temporal trends in FD is unknown.

In this study, the authors addressed this question using numerical

abundance and biomass data from tropical freshwater fish assem-

blages surveyed repeatedly over 5 years (Magurran et al., 2018).

These assemblages are located on the island of Trinidad, which has a

rich and well-studied ichthyofauna (Phillip et al., 2013). In light of the

different emphases the two currencies give to species relative abun-

dances, the authors predicted that they would provide different con-

clusions about the temporal FD patterns observed in these rivers.

2 | MATERIALS AND METHODS

2.1 | Data collection

The Caribbean island of Trinidad is located 11 km from the Venezue-

lan coast (11�00 N, 61�00 W). The climate is tropical, with a dry sea-

son (January to May) and a rainy season (June to December)

(Starr, 2009). The Northern Range mountain system extends across

northern Trinidad and has a maximum height of around 900 m. It is

drained by a system of small rivers that support fish species with both

South American and Antillean origins (Phillip et al., 2013).

Surveys were conducted with equivalent sampling effort for

5 years (2011–2015). Every year, the freshwater fish diversity of

16 sites (2 sites in each of eight Northern Range rivers) was monitored

four times: at the beginning and end of both the dry and rainy seasons

(Deacon et al., 2015; Magurran et al., 2018). This yielded a total of

20 sampling events per site. The first sampling event was excluded

from analyses because of the differences in sampling effort (Magurran

et al., 2018). For each of the 16 sites, the same 50 m river stretches

were revisited on every occasion. Fishes were sampled using consis-

tent deployment of seining and electrofishing (see Deacon, Mahabir,

et al., 2017b) and identified to species in the field. During each sam-

pling event, all fishes found were counted and weighed individually,

and then returned unharmed to their habitat. Data collection met the

ethical approval of the European Research Council during a review

undertaken as part of the award of ERC AdG BioTIME 250189, and

was conducted in compliance with the University of the West Indies

Policy and Procedures on Research Ethics (FGP.P2C 2010/2011).

Analysis of these data was approved by University of St Andrews Ani-

mal Welfare and Ethics Committee (24 April 2019).

A total of 19 descriptors were selected as proxies for biological

traits to characterise the FD of the regional species pool in the North-

ern Range. These descriptors were selected from three main sources:

FishBase (Froese & Pauly, 2020); Phillip et al. (2013) and

Winemiller (1989). Four continuous, five ordinal and ten categorical

variables were adopted (Supporting Information Table S2A). Categori-

cal variables accommodated information available only in descriptive

format and enhanced the scope of the study (Villéger et al., 2017).

The descriptors the authors used reflected key ecological aspects of

species' performance in ecosystems such as their life history, feeding

habits, environment/habitat association, locomotion/swimming ability

and defence (Villéger et al., 2017; Winemiller et al., 2015) (Supporting

Information Appendix S2).
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2.2 | Statistical analysis

The authors used the compiled information on species trait descriptors to

quantify the temporal change in FD in the 16 fish assemblages through

the 5-year period covered by the survey. To assess FD in cases where

there was limited trait information for a taxon, they inputted missing trait

values. They used the missForest algorithm (Stekhoven, 2013), which is

suitable for data containing a combination of continuous and categorical

variables (Stekhoven & Bühlmann, 2012). The algorithm imputes values

based on the known trait combinations among species. In this study, 5%

of data gaps were filled this way. Because there are slightly different out-

comes when an imputation is rerun (because of statistical resampling

effects), the authors repeated the process 100 times and assessed the

Pearson's r coefficient of all values of FD. This was always ≥ 0.9.

To avoid correlation between traits when computing FD, the

authors performed a principal coordinates analysis (PCoA) built on a

Gower distance matrix (Gower, 1966) (Figure 2). A PCoA provides

orthogonal axes that summarise the variation in the original variables,

which can be a mix of continuous and categorical, in a multi-

dimensional space. The authors selected the best number of synthetic

axes in this multidimensional space – seven, in this case – following

the framework proposed by Maire et al. (2015). The best number of

axes defines a space where the initial distances between species are

accurately represented, and can be determined by assessing the mean

squared deviation (mSD) between the initial distances and the

distances in the coordinates of the multidimensional, functional space

(i.e., the lower the value of mSD, the more congruent are the initial

and final distances) (Maire et al., 2015). The authors used the function

quality_funct_space deployed by Maire et al. (2015) to perform the

PCoA and assess the quality of the functional space.

The authors selected two metrics that capture complementary facets

of alpha FD (Mouillot et al., 2013) (Figure 1). They chose metrics that were

suitable for the analysis of species-poor assemblages (Colin et al., 2018)

given that the species richness of the rivers ranged from 2 to 15. The first

metric they used is functional originality (FOri). This metric assesses the

extent to which the rarest trait combinations in the entire region (i.e., con-

sidering traits of all the fish species the authors recorded in the Northern

Range) occur in any one local assemblage (Mouillot et al., 2008, 2013).

The second metric of this study was functional dispersion (FDis). FDis is

the abundance-weighted mean of the distance of all species present in an

assemblage to the abundance-weighted centroid of functional space of

that assemblage (Laliberté & Legendre, 2010). The authors used the func-

tion multidimFD to compute both metrics (Mouillot et al., 2013). The func-

tions quality_funct_space and multidimFD are available online at http://

villeger.sebastien.free.fr/Rscripts.html.

For each site and sampling event, the value of the FD metrics was

computed twice, first using relative numerical abundance and then

using biomass data. The authors performed a sensitivity analysis to

evaluate if any given trait was driving the resulting values of FOri and

FDis more than the others (Grenié et al., 2018). To do so, they
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F IGURE 1 (a) Hypothetical 2D trait space occupied by a regional pool of four fish species. The position of each fish is defined by its values
(coordinates) for trait 1 (x-axis) and trait 2 (y-axis). (b) Ranking of species in the region according to their nearest-neighbour distances (functional
originality). (c) Representation of functional dispersion (FDis) in two fish assemblages that contain all the species in the region. In the right case-
scenario dispersion is higher than in the left because species that are more functionally dissimilar to one another (1, 3 and 4) have higher relative
abundances, causing the assemblage to be more dispersed in functions. (d) Representation of functional originality (FOri) in two assemblages that
contain all the species in the region. In the right, the species that has the rarest combination of values for traits one and two (species 4) is the
most relatively abundant. Therefore, this assemblage has higher originality than the one on the left
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recomputed both metrics omitting one trait at a time (n = 18 traits)

and assessed the correlation (Pearson's r) between the values of FD

obtained from these analyses and those obtained using the complete

set of 19 traits. After this process, the authors removed one trait from

the final matrix – seasonal strategy – because it was over-influencing

the results. After this trait was removed, correlations were very strong

for all FD facets (Pearson's r ≥ 0.77) .

Next, the time-series of FDis and FOri values at each site, calculated

with each currency, were individually regressed against chronological

sampling events (n = 19). An OLS linear regression was performed, and

results yielded a total of 64 slopes and P-values. All analyses were con-

ducted in R Statistical Software version 4.0.3 (RCore Team, 2020).

3 | RESULTS

Significant directional shifts were observed for both FD metrics even

though the output from the analyses carried out with each currency was
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F IGURE 2 Position of the fish
species present in the Northern
Range assemblages in the first two
summary axes of trait space. The
area of the circles represents the
maximum length of each fish
species (first continuous trait, used
as a proxy for body size) according
to the information on FishBase
(Froese & Pauly, 2020). Circle
areas are scaled for visualisation
using the function scale_size_area()
in ggplot2 (Wickham, 2016)

F IGURE 3 Map of the temporal trends (linear OLS regressions against time sessions) observed for FDis and FOri in the Northern Range rivers
during the studied period (2011–2015). A four-cell grid is assigned to each site. The results for both metrics computed with numerical abundance
are represented in the first row, and the results for the same metrics obtained with biomass data are represented in the second. The cells
coloured with a darker shade of grey indicate a significant negative trend, whereas those coloured with a lighter shade indicate a significant
positive trend. White cells indicate non-significant results for a given metric. Significance level is α = 0.05
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different (Figure 3). A total of nine assemblages experienced a directional

shift (P < 0.05) over time in at least one of the two FD metrics measured

with either numerical abundance or biomass data (Figure 3).

The analysis carried out using numerical abundance revealed that

FOri decreased significantly in three assemblages over the 5 years of

the study, including QU1, TU1 and TU2. Two negative directional

trends were observed for FDis when it was computed using numerical

abundance data, in LA2 and AC2 (Figures 3 and 4).

In contrast, the analysis using biomass data unveiled directional

changes in the FDis of five sites (significant decrease in LA2, MA1 and

UA1 and increase in LA1 and QU2, P < 0.05). In UA1 and TU2, the

authors observed a significant decrease in FOri (Figures 3 and 5).

Overall, only in two locations significant trends for the same FD facet

were unveiled by both currencies (significant decrease in FDis in LA2

and in FOri in TU2) (Figure 3).

4 | DISCUSSION

This study investigated whether different currencies influenced our

ecological understanding of the temporal change in FD experienced

by tropical fish assemblages. The authors measured two facets of FD

(Mouillot et al., 2013) in assemblages from the Northern Range,

Trinidad, using numerical abundance and biomass data. They found

that both currency-based analyses uncovered temporal directional

patterns in FD, but often led to different conclusions about the nature

of change in these assemblages. This confirmed the authors' predic-

tions that these currencies cannot be assumed to be surrogates for

one another when evaluating temporal change in assemblage struc-

ture (Morlon et al., 2009; Saint-Germain et al., 2007).

The analyses of this study using numerical abundance indicated a

decline in functional originality in three sites and the analysis with bio-

mass showed this trend in two locations. In contrast, when functional

dispersion was assessed using biomass the authors concluded that

almost one-third of the assemblages changed directionally over time,

but found equivalent change in only two assemblages if the metric

was computed with numerical abundance. The authors conclude that

this is because, in many of these locations, these abundance curren-

cies captured different shifts in the species' commonness-rarity gradi-

ent over the 5 years of study. Because this gradient is the structural

backbone of an assemblage (Magurran & Henderson, 2011;

Preston, 1948), these results suggest that using multiple currencies

may be the key to developing a better understanding of the processes

that underpin assemblage structure.

Ecologists quantify biodiversity not just to quantify patterns in

time and space, but also to learn about the mechanisms by which

F IGURE 4 Temporal trends of FDis and FOri computed with (a) numerical abundance (slope FDis = �0.034, P < 0.001; slope FOri = �0.003,
P = 0.139) and (b) biomass data in the site AC2 (slope FDis = 0.003, P = 0.647; slope FOri = 0.007, P = 0.178). (c) Temporal change across
sampling sessions (n = 19) of the relative numerical abundance (%) of the fish taxon Poecilia reticulata (black line) and other fish species present in

AC2 (grey lines). (d) Temporal change across sampling sessions (n = 19) of the relative biomass (%) of P. reticulata (black line) and other species
present in AC2 (grey lines). ( ) FDis; ( ) FOri. ( ) P. reticulata; ( ) other species
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assemblages change. Specifically, the functional dimension of biodi-

versity can predict ecological processes that govern ecosystem func-

tioning such as the flow of energy and nutrients along the trophic

chain (e.g., Gagic et al., 2015; Lefcheck & Duffy, 2015). In aquatic sys-

tems, these processes are heavily controlled by the effects of body

size and metabolism on the performance of individuals (Brown

et al., 2004). Therefore, if alternative currencies lead to different con-

clusions about FD, it is because numerical abundance and biomass,

through their distinctive link to body size (Henderson &

Magurran, 2010), are weighting the performance of the individuals of

each taxon in different ways. This study has shown that a multi-

currency approach broadens our perception of temporal change in

FD. The authors suggest that future work assessing FD through the

lens of multi-currency analyses will elucidate the links that exist

between functional roles and processes, and support a predictive

framework of biodiversity change.

To illustrate how the different currencies lead to different insights

into change in fish assemblage structure over time, it is useful to con-

sider site AC2 in the Acono River as a case study. The Trinidadian

guppy Poecilia reticulata Peters 1859 is a small poeciliid widely distrib-

uted in the Northern Range (Deacon et al., 2015; Endler, 1978). P. reti-

culata was not present at AC2 in the first year of sampling, but

became the dominant fish in numbers through time; this transition led

to significant decreases in functional dispersion. Simultaneously, the

biomass of P. reticulata, though increasing, remained negligible com-

pared to that of a few individuals of larger species such as the wolf

fish Hoplias malabaricus (Bloch 1794), the river catfish Rhamdia quelen

(Quoy & Gaimard 1824) or the coscorob Andinoacara pulcher (Gill,

1858). In other words, the marked change in the relative numerical

abundance of P. reticulata did not impact the biomass structure of the

assemblage, with the result that functional dispersion measured using

biomass remained stable over the duration of the study.

The site UA1 in the Upper Aripo River represents another exam-

ple of how currencies can provide different insights into temporal FD

assemblage change. At this site, the authors observed how

FD decreases significantly when computed using biomass but not

when computed using numerical abundance. Three fish � the jumping

guabine Anablepsoides hartii (Boulenger, 1890), the jumbie teta

Ancistrus maracasae Fowler 1946 and the teta Hypostomus robinii

Valenciennes 1840 � dominated in terms of relative biomass at this

site. Further, their abundance dynamics across sessions had more

influence on FD when biomass rather than numerical abundance was

used, and when guppies were the dominant fish in almost all sessions.

Indeed, the numerical abundance, but not the biomass, of guppies was

almost always greater than that of any other fish taxon in the North-

ern Range assemblages investigated in this study.

F IGURE 5 Temporal trends of FDis and FOri computed with (a) numerical abundance (slope FDis = 0.005, P = 0.300; slope FOri = �0.002,
P = 0.147) and (b) biomass data in the site UA1 (slope FDis = �0.008, P = 0.030; slope FOri = �0.003, P = 0.019). (c) Temporal change across
sampling sessions (n = 19) of the relative numerical abundance (%) of the fish taxa present in UA1. (d) Temporal change across sampling sessions
(n = 19) of the relative biomass (%) of the fish taxa present in UA1. ( ) FDis; ( ) FOri. ( ) P. reticulata; ( ) A. hartii; ( ) A. maracasae;
( ) H. robinii; ( ) S. marmoratus
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Although focus of this study has been on temporal change in FD,

any investigation that utilises information on the commonness and

rarity of fish species needs to pay attention to the currency used to

assess abundance. Assessments of the intensity of predation risk for

P. reticulata along the longitudinal gradient of rivers in the Northern

Range have been found to differ depending on whether numerical

abundance or biomass was used to evaluate predator importance

(Deacon, Jones, & Magurran, 2017a). Similar patterns of asymmetry in

how currencies capture the relative abundance of species are likely to

affect conclusions about temporal and spatial trends in the biodiver-

sity of freshwater fish assemblages elsewhere. For instance, mis-

matches between the relative numbers and the biomass of fish

species were observed in the It�a reservoir, upper Uruguay River, dur-

ing a 10-year survey (Schork & Zaniboni-Filho, 2017) and in the

Amap�a Lake, Brazil, during a 1-year survey (da Silva et al., 2013).

An additional issue that will require more attention in future work

is the selection of traits, and their quantification. The Trinidadian

freshwater fish assemblage provides text book examples of intraspe-

cific variation in life history, behaviour and morphology (Magurran &

Seghers, 1991; Reznick & Endler, 1982; Walsh & Reznick, 2009). In

line with the usual practice in work on FD, this study drew on infor-

mation in the literature to delineate relevant traits and assign a value

to them. It will nonetheless be interesting in follow on studies to

explore how intraspecific variation in traits shapes patterns of FD over

space and time.

The authors conclude that assessments of trends in FD based on

different abundance currencies are needed to broaden our ecological

understanding of the processes occurring in freshwater fish assem-

blages over temporal and other ecological gradients. Because FD draws

on species' traits and these and abundances can be strongly associated

through their links with body size (Brown et al., 2004; White

et al., 2007; Woodward et al., 2005), studies focused on this dimension

of biodiversity should particularly benefit from multi-currency

approaches. In this sense, the authors believe that the measurement of

freshwater fish diversity using more than one currency in the field will

be an important step towards the goal of achieving greater insights into

the temporal change of the biodiversity of this group.
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