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Animals use varied acoustic signals that play critical roles in their lives.
Understanding the function of these signals may inform about key life-
history processes relevant for conservation. In the case of fin whales
(Balaenoptera physalus), that produce different call types associated with differ-
ent behaviours, several hypotheses have emerged regarding call function, but
the topic still remains in its infancy. Here, we investigate the potential func-
tion of two fin whale vocalizations, the song-forming 20-Hz call and the
40-Hz call, by examining their production in relation to season, year and
prey biomass. Our results showed that the production of 20-Hz calls was
strongly influenced by season, with a clear peak during the breeding
months, and secondarily by year, likely due to changes in whale abundance.
These results support the reproductive function of the 20-Hz song used as an
acoustic display. Conversely, season and year had no effect on variation in
40-Hz calling rates, but prey biomass did. This is the first study linking
40-Hz call activity to prey biomass, supporting the previously suggested
food-associated function of this call. Understanding the functions of animal
signals can help identifying functional habitats and predict the negative
effects of human activities with important implications for conservation.

provided by St Andrews Research R
1. Introduction
Animals produce an array of different acoustic signals. These signals can
encode various types of information about the signaller’s attributes or external
environment, and serve various purposes. During the mating season, males of
many species produce high intensity and repetitive songs to attract or court
females, repel conspecific males, or both [1–3]. It has been suggested that
male songs can convey information about the individual’s reproductive
status, body size or health [4,5] and may be used by females and other males
to assess the signaller’s quality and competitiveness [6–8]. Numerous bird
and mammal species produce food-associated calls. These calls can hold infor-
mation on type, quality or quantity of food available and be used to announce
resource ownership or attract others to the food source [9]. Many species give
alarm calls in response to particular predators or predator abundance, thereby
informing conspecifics about a threat [10,11], while social contact calls are often
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Figure 1. (a) Location of the Azores (inset map) and of the hydrophone moorings (black dots) at two locations (Gigante and Condor). Example spectrograms
showing (b) the 20-Hz and (c) the 40-Hz call. (Online version in colour.)
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used to maintain group cohesion, coordinate group activities
and mediate social interactions [12,13]. As animal’s acoustic
signals play a critical role in their reproduction and survival,
understanding the context of production and information
content of these signals can give valuable insights into key
life-history processes relevant for conservation [14].

Fin whales (Balaenoptera physalus) produce distinct vocali-
zations but knowledge about the functions of their calls is
still limited. The most reported fin whale call worldwide
is the 20-Hz note [15–19], a short-frequency downsweep
mostly centred around 20 Hz [15]. The 20-Hz call can be pro-
duced (i) in regular sequences, forming a stereotypical song
[15,16]; (ii) at irregular intervals [20] and (iii) as counter-calls
[21]. Songs have only been documented from males [22] and
are produced mainly during the known breeding season of
the species [23,24]. Thus, it has been hypothesized that male
fin whale song is used to attract females, either as an
acoustic display [15] or by advertising patchy food
resources [22]. Non-song counter-calling and irregular
20-Hz calls are normally produced by animals in groups
[20] and probably serve a social function, such as main-
taining contact with moving conspecifics [21,25]. Fin
whales also produce a 40-Hz call sweeping in frequency
from 75 Hz to 40 Hz [20,26,27]. The 40-Hz call is mostly
detected in late spring and summer in known feeding areas
[26], in association with complex topographical features
[28,29] and feeding behaviours [20], suggesting a potential
food-associated function.

To investigate the hypothesized fin whale call functions,
we examine variation in production rates of song-forming
20-Hz calls and 40-Hz calls with respect to season, year and
prey biomass. If males use 20-Hz calls to attract females
through acoustic display [15], we expect call production to
be mainly driven by season, peaking in winter, the known
mating period of the species [23,24]. If, on the other hand,
the 20-Hz call is used to attract females via food advertising
[22], singing activity will be influenced by both season and
prey biomass. Finally, if the 40-Hz call is associated with fora-
ging activity, we predict that calling rates will be positively
related to prey biomass, comparable with foraging calls of
other species (e.g. bottlenose dolphin (Tursiops truncatus)
bray calls, humpback whale (Megaptera novaeangliae) ‘mega-
pclicks’) [30,31]. To test these predictions, we used a five-
year acoustic dataset from bottom-moored hydrophones to
extract call rates of each call type. In the absence of concur-
rent measurements of prey biomass, an ecosystem model
was used to provide hindcast simulations of low trophic
level (mesozooplankton) biomass for the area and period
of acoustic recordings [32,33]. This approach allowed inves-
tigating the direct relationship between fin whale vocal
behaviour and predicted prey biomass, avoiding interpret-
ation of relationships with time-lagged prey proxies (i.e.
chlorophyll).

2. Methods
(a) Acoustic data collection and analyses
Passive acoustic monitoring (PAM) data were collected at two
locations off the Azores Archipelago (figure 1a) using ecological
acoustic recorders (EARs) [34] deployed at depths of approxi-
mately 200 m. The EAR consists of a Sensor Technology SQ26-01
hydrophone with a response sensitivity ranging from 193 to
194 dB re 1 V/μPa (depending on deployments) and a flat fre-
quency response (±1.5 dB) from 18 Hz to 28 kHz. Hydrophones
recorded from March 2008 to October 2012 with several data
gaps and duty cycles (electronic supplementary material, figure
S1). Despite gaps in the acoustic dataset, all seasons were well
represented across the five sampled years.

Acoustic recordings were analysed for two fin whale vocali-
zations: the 20-Hz call, a 1 s downsweep centred at 20 Hz [15]
(figure 1b) and the 40-Hz call, a 0.3 s downsweep from 75 Hz
to 40 Hz occurring in irregular sequences [20] (figure 1c). All
acoustic data were downsampled to 1 kHz to facilitate analysis.
The 20-Hz call was previously analysed from these recordings
and for another study [35] by using the low-frequency detection
and classification system (LFDCS) [36]. Based on a reference call
library of manually identified 20-Hz fin whale calls, the LFDCS
detected candidate calls and estimated their pitch-track, which
characterizes the frequency and amplitude variation of the
signal over time. Each candidate call was compared to the refer-
ence library using a quadratic discriminant function analysis
(QDFA). LFDCS performance was assessed by comparing
detector outputs with manually analysed notes, yielding 0.9%
of false positives, 80% of true positives and 20% of missed
calls (for more details on the methodology [35]).

Three months (representative of each season) with longer
duty cycle recordings (1 h of continuous recordings) were manu-
ally inspected to identify song and non-song 20-Hz calls. Results
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showed that only 2.5% of the files contained non-song 20-Hz
calls (Oct: 0%; Nov: 3.5% and Mar: 0%). Thus, we assumed
that most 20-Hz calls analysed in this study were part of
songs. Identification of 40-Hz calls using automatic detectors is
challenging because of the frequency overlap with sei (Balaenop-
tera borealis) and blue whale (Balaenoptera musculus) calls [37]. So,
40-Hz calls were detected by visually inspecting spectrograms of
the entire dataset (2048-point FFT, Hanning window with 50%
overlap) using Adobe Audition 3.0 (Adobe Systems Inc., San
Jose, CA) and annotating each call. The 40-Hz call was ident-
ified from its acoustic characteristics [20,26], which clearly
differentiates it from the 20-Hz call because of the higher fre-
quencies that downsweep from 75 Hz to 40 Hz over 0.3–1 s.
The 40-Hz call was also easily distinguished manually from
blue whale D calls, previously identified in this dataset [35],
as having a distinctly broader bandwidth and longer duration.

A call rate index was calculated as the total number of 20-Hz
or 40-Hz calls detected in a week divided by the recording time, in
hours, during that week, to reduce potential bias from the different
duty cycles. Hereafter, we will in general refer to 20-Hz or 40-Hz
call rates, but these strictly mean the corresponding call rate index.
:20211156
(b) Zooplankton model
Stable isotope analysis of skin and faeces indicates that fin
whales from the study area feed primarily on zooplankton
(mainly euphausiids and copepods) [38,39]. In addition, meso-
zooplankton biomass derived from a spatial ecosystem and
population dynamics model (SEAPODYM) was the most impor-
tant predictor of the distribution of fin whales in the Azores and
across the mid-North Atlantic, while micronekton biomass esti-
mates from the same model had no effect on the movements of
the species [40]. Thus, we assumed that zooplankton is the
main prey of fin whales in the study area and obtained estimates
of zooplankton biomass from the lower trophic level SEAPODYM
model (SEAPODYM-LTL) [32,33]. The SEAPODYM-LTL is a
spatially explicit ecosystem and population dynamics model that
simulates the biomass of mesozooplankton organisms within
the epipelagic layer defined by the euphotic depth. The model
is driven by physical and biological variables and applies a
series of advection–diffusion–reaction equations [32]. Physical
variables (temperature and currents) were extracted from the
ocean reanalysis GLORYS (https://www.mercator-ocean.fr/en/
ocean-science/glorys/), produced with the ocean general
circulation model NEMO (http://www.nemo-ocean.eu/), in an
eddy-permitting configuration [41–43]. Net primary production
and euphotic depth were derived from ocean colour satellite
data (http://www.science.oregonstate.edu/ocean). Outputs from
these models were interpolated onto a weekly timescale and a
spatial resolution of 0.25° × 0.25° to be used by the SEAPODYM-
LTL model. The model predicts weekly mesozooplankton biomass
on a global spatial grid (0.25° × 0.25°). Predictions for the period
1998–2019 are publicly available (https://marine.copernicus.eu/).
The model validation is based on the climatological database
COPEPOD that provides standardized mean zooplankton biomass
values on a global spatial grid [42,43].
(c) Spatial scale of data integration
SEAPODYM-LTL estimates of mesozooplankton biomass (here-
after zooplankton biomass) were extracted for the weeks with
acoustic recordings (electronic supplementary material, figure S1)
and averaged across 0.25° × 0.25° grid cells centred around the
hydrophone position. To determine the most appropriate spatial
scale (i.e. the number of grid cells) for analysing SEAPODYM-
LTL data in relation to acoustic data, the maximum detection
range of 20-Hz and 40-Hz fin whale calls was estimated using
the sonar equation [44]:

SNR ¼ SL � TL�NLþ 10 log10 BW,

where SL is the transmitted source level (dB rms re 1 µPa at 1 m),
TL is one-way transmission loss (dB), NL is the ambient noise level
at the receiver (dB rms re 1 µPa) and BW is the processing band-
width (Hz). Source levels of 20-Hz and 40-Hz calls were
calculated using calls localized by three EARs deployed in a
nearby area. The propagation range-dependent acoustic model
(RAM) [45,46] was used for the calculation of TL. Ambient NL
were calculated for the frequency band of each call type and for
the quietest and noisiest months within the recording period
(see electronic supplementary material, text S1B for more details).

Finally, a sensitivity test of the scale of data integration was
performed by analysing annual and monthly patterns of
estimates of zooplankton biomass at a range of scales.
(d) Statistical analyses
Data from summer months (June to August) were excluded
because the summer matches the end of fin whale migration
through the Azores and whales are rare in the area [40,47,48];
hence the lack of acoustic detections in the summer simply
reflects the absence of whales and not changes in calling
patterns.

The quasi-Poisson model (a particular case of a generalized
linear model, GLM) was used to describe the relationship
between 20-Hz and 40-Hz call rates, and a set of independent
variables: year, season (according to meteorological definition)
and zooplankton biomass. This modelling tool is especially
suited to handle overdispersed count variables because it
incorporates an overdispersion parameter that allows for
more spread than the standard Poisson mean–variance
relationship [49,50]. Separate models were built for the 20-Hz
and 40-Hz call rates to understand how the same explanatory
variables affected each vocalization type. The variance inflation
factor (VIF) was calculated for the complete models to measure
the strength of correlation between all predictor variables
(season, year and zooplankton biomass). VIF values higher
than 5 or 10 are considered too high and could cause misinter-
pretation of model outputs [51]. In our models, VIF values for
the three variables were approximately 1. Season and year
were used to assess intra and inter-annual variations in the
response variables. Given that zooplankton biomass varied
with season, an interaction between these two variables
was also included in the models. No interaction between
season and year was included because seasonality in calling
did not vary with year. Detailed descriptions of the statistical
models are given in the electronic supplementary material,
text S1C.

The best model was selected based on the lowest quasi-
Akaike’s information criterion (QAIC). Drop-in deviance tests
(based on the F-test to account for overdispersion) were
computed for the best model to validate each explanatory vari-
able’s statistical significance. The process started with the null
model, and each explanatory variable was added sequentially
until reaching the best model defined by the QAIC criterion.
Moreover, the Wald test was applied to each parameter of the
model to test the null hypothesis that the respective parameter
is equal to zero.

Model assumptions were verified by plotting residuals
versus fitted values to check for heterogeneity of variance and
residual QQ plots to check for normality. Half-normal prob-
ability plots of the residuals with simulated envelope were
computed [52] to check whether the choice of the random com-
ponent of the model was appropriate and identify possible
outliers in the data [53]. Additionally, the temporal dependency
of the residuals was assessed [54] to detect autocorrelation in

https://www.mercator-ocean.fr/en/ocean-science/glorys/
https://www.mercator-ocean.fr/en/ocean-science/glorys/
https://www.mercator-ocean.fr/en/ocean-science/glorys/
http://www.nemo-ocean.eu/
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http://www.science.oregonstate.edu/ocean
http://www.science.oregonstate.edu/ocean
https://marine.copernicus.eu/
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Figure 2. Monthly variation in (a) 20-Hz and (b) 40-Hz call rates, and (c) model-based estimates of zooplankton biomass (gWW: grams wet weight), from 2008 to
2012. The graph on the x-axis in (a) and (b) represents the recording effort by month and year and grey colour indicates no data. Horizontal lines within the
boxplots in (c) indicate the median, box boundaries indicate the 25th (lower boundary) and 75th (upper boundary) percentiles, vertical lines indicate the largest
(upper whisker) and smallest (lower whisker) values no further than 1.5 times the interquartile range, and black dots represent outliers. Colours on the x-axis
indicate seasons: blue, winter; green, spring; orange, summer; brown, autumn. Abbreviations for months are the following: Jan, January; Feb, February; Mar,
March; Apr, April; Jun, June; Jul, July; Aug, August; Sep, September; Oct, October; Nov, November; Dec, December. (Online version in colour.)
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the data. An autocorrelation at lag 1 was detected for the 20-Hz
call rates, implying there was a correlation between call rates in
successive weeks. To account for the temporal autocorrelation,
one-week lagged values of 20-Hz call rates were included in
the model as a predictor variable. All statistical analyses were
performed using the software R (v. 4.0.2) [55].
3. Results
(a) Detection range and zooplankton biomass spatial

scale
Median detection ranges at the deployment locations were
64 km for the 20-Hz call and 18 km for the 40-Hz call (electronic
supplementary material, table S1). Therefore, SEAPODYM-LTL
estimates of zooplankton biomass extracted for the weeks with
acoustic recordings (electronic supplementary material, figure
S1) were averaged across four grid cells of 0.25° × 0.25° centred
around the hydrophone position (55 × 55 km). Changing the
number of grid cells to nine (83 × 83 km) or 16 (194 × 194 km)
had little or no effect on the annual and monthly patterns of
estimated zooplankton biomass (electronic supplementary
material, figure S2).

(b) Temporal occurrence of calls and zooplankton
biomass

Rates of the 20-Hz call increased in autumn, peaked in
winter, decreased in spring and were null in summer
(figure 2a). Conversely, 40-Hz call rates were low in
autumn, increased in late winter, reached highest values in
spring and decreased again in summer (figure 2b). Zooplank-
ton biomass showed a clear peak in spring (April–May),
decreased throughout the summer and early autumn and
increased again in winter (figure 2c).

(c) Model of the 20-Hz call
Season was the most important predictor of the 20-Hz call,
followed by year and one-week lagged call rates (57%
deviance explained; electronic supplementary material,
table S2). Zooplankton biomass had no significant effect on



Table 1. Analysis of deviance (ANOVA) for the best fitting quasi-Poisson model of the 20-Hz call rate. Significant terms ( p < 0.05) are shown in italics. d.f.—
degrees of freedom, Dev.—deviance, Res. d.f.—residual d.f., Res dev.—residual deviance.

d.f. Dev. Res. d.f. Res. dev F p-value

NULL 142 3066.7

season 2 955.38 140 2111.3 47.25 <0.001

year 4 601.36 136 1510.0 14.87 <0.001

lag-1-call rate 1 209.92 135 1300.0 20.76 <0.001
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Figure 3. Results from the quasi-Poisson model showing the (a) season and (b) year effect on the 20-Hz call rate. Blue points represent observations, error bars represent
the mean (back dot) and 95% confidence intervals of fitted values. Seasons are abbreviated as follows: spr, spring; aut, autumn; win, winter. (Online version in colour.)

Table 2. Analysis of deviance (ANOVA) for the best fitting quasi-Poisson model of the 40-Hz call rate. Significant terms ( p < 0.05) are shown in italics. d.f.—
degrees of freedom, Dev.—deviance, Res. d.f.—residual d.f., Res dev.—residual deviance.

d.f. Dev. Res. d.f. Res. dev F p-value

NULL 143 197.81

zooplankton 1 39.62 142 158.18 25.94 <0.001

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211156

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 J

ul
y 

20
21

 

the 20-Hz call (table 1; electronic supplementary material,
table S3). The call rate was significantly higher in winter
than in autumn and spring but did not differ between these
later seasons (figure 3a). 2012 had significantly lower call
rates than all other years except 2009 (figure 3b; electronic
supplementary material, table S3). Overall, the model
residuals did not show any pattern, indicating a good fit to
the data. Most of the residuals were within the simulated
envelope (electronic supplementary material, figure S3).
(d) Model of the 40-Hz call
The best model for the 40-Hz call rate included only zoo-
plankton biomass (20% deviance explained; electronic
supplementary material, table S2). Call rate increased with
increasing zooplankton biomass (table 2 and figure 4; electro-
nic supplementary material, table S3). Although zooplankton
biomass varied seasonally (figure 2c), the interaction between
these two variables had no significant effect on 40-Hz call
rates. Model residuals did not show outliers and indicated
the model was adequate to describe the data (electronic
supplementary material, figure S4).
4. Discussion
Our study shows that the production of 40-Hz calls in fin
whales is positively associated with prey biomass, providing
supporting evidence of a food-associated signal, as previously
suggested [20,26–29]. The 40-Hz call rates increased with
increasing biomass of zooplankton, the main component
of the fin whale diet [38,39]. Conversely, the production of
20-Hz calls was mainly influenced by season and to a lesser
extent by year, but temporal patterns were independent of
zooplankton biomass. This finding corroborates the widely
accepted view that 20-Hz songs are used in a reproductive
context [15,22] but suggests their function is independent of
food biomass.

(a) 20-Hz song function
The winter peak in 20-Hz calls found in this study is consist-
ent with the known seasonality of the fin whale song in the
Northern Hemisphere [15,16,35,56]. The fact that the 20-Hz
song peaks during the breeding season of the species
[23,24], is produced only by males [22] and is well-suited
for long-range communication [57], support the widely
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accepted hypothesis that fin whale song is a male advertise-
ment signal [15,22]. Similarly, it has been suggested that
male fin whales sing to attract females, mediate interactions
with other males, or a combination of both [15,22,58]. Croll
et al. [22] proposed that male fin whale song could attract
females by conveying information on aggregations of patch-
ily distributed prey. In the resident fin whale population of
the Gulf of California [59], male singing co-occurs with
winter foraging on dense aggregations of krill [22,60]. In
this study, zooplankton biomass had no effect on fin whale
singing activity, as would be expected if male songs signal
food aggregations. Similarly, other studies did not find a
relationship between prey proxies (i.e. acoustic backscatter
strength) and the production of song-forming 20-Hz calls
[29,61]. Thus, findings from this and previous studies do
not support the hypothesis that fin whale song serves to
attract females via food advertising. Instead, these results
are in line with the hypothesis that singing may be an acous-
tic display [15] directed towards females or other males.
Evidence from a range of taxa indicates that songs can
convey honest information on singer’s motivation and qual-
ity which may be used both by females in mating
decisions, and by other males in competitive interactions
[4,5]. However, there are also species in which song traits
do not correlate with male quality [62] and further research
is needed to directly test this hypothesis in fin whales.

The effect of year on singing activity was greatly influ-
enced by 2012, which showed significantly lower call rates
when compared to 2008, 2010 and 2011. The most plausible
explanation is that decreased call rates in 2012 reflect lower
numbers of fin whales in the area. This is partly supported
by visual observations collected by the Fisheries Observer
Program Data showing that fin whale encounter rates (sight-
ings/100 km) were null in 2012, compared to 0.9 in 2010 and
9.2 in 2011. Year-to-year variability in fin whale numbers is
usually attributed to environmental changes affecting prey
distribution and abundance [37,63]. In this study, models
did not show an effect of prey biomass on singing activity.
In addition, lower values of modelled zooplankton biomass
in 2012 were only found in April and May (figure 2c), the
end of the singing season. It could also be argued that
inter-annual variability in call rates results from differences
in call detectability due to variations in background noise
from shipping. Although noise levels in the study area did
not vary significantly between 2010 and 2012 [64], effects of
shipping noise on call detectability should be investigated
in the future.
(b) 40-Hz call function
This study confirms the temporal separation between fin
whale 40-Hz calls and 20-Hz calls [26]. More importantly,
we demonstrate that production of fin whale 40-Hz calls
was best predicted by zooplankton biomass alone across all
years and seasons, with call rates increasing with increasing
prey biomass. These results lend support to previous sugges-
tions of a food-related function of the 40-Hz call [20,26,28,29].
In the eastern North Pacific, 40-Hz calls peaked in early
summer at known important feeding habitats [26]. In the
Canadian Pacific, distance from the shelf break and backscat-
ter intensity (as the proxy of potential prey) were important
determinants of fin whale 40-Hz calls [29]. In addition,
40-Hz calls were generally produced by whales in groups,
engaged in long, possibly foraging, dives [60] or surface feed-
ing activities [20]. Together, findings from this and previous
studies provide strong evidence for the use of 40-Hz calls
in a feeding context.

Some food-associated calls are produced only in feeding
contexts, with animals adjusting call types or rates as a func-
tion of the type, quality or quantity of food available [65].
More commonly, food-associated calls are given in multiple
contexts and are not food-specific [9]. Irrespective of their
degree of context-specificity, there is increasing evidence
that food-associated calls provide receivers with information
about a food source or feeding event and often are used to
attract them to a foraging site. In many cases, food-associated
calling functions to recruit potential mates or kin, increasing
the inclusive fitness of callers [66], or to recruit non-related
partners and allies, potentially enhancing social status and
bonds [67]. Attracting conspecifics to a feeding site may
also increase the foraging efficiency of callers, by facilitating
prey capture or defence, or helping with predator vigilance
[68]. There are also examples where food-associated calls
are not used to attract others but to reduce or mediate com-
petitive interactions over food by establishing resource
ownership [69]. Clearly, the ultimate function of food-associ-
ated calling varies greatly with the social and ecological
environment of animals [9].

Fin whales do not live in stable social groups [70] and the
distribution of their prey is ephemeral [71]. Thus, it is unli-
kely that fin whale 40-Hz calls serve to attract kin or social
partners, either to provide them with increased foraging
benefits or to assist defending food patches. Also, the lower
detections of fin whale 40-Hz calls during the breeding
season reported here and in other studies [20,26], suggests
that the primary function of this call is not to attract potential
mates, trading-off food for reproductive benefits. In other
cetaceans, food-associated vocalizations have been recorded
during cooperative foraging behaviours (e.g. humpback
whales [72], killer whales (Orcinus orca) [73]) and may assist
with prey herding and capture [74]. With the exception of a
single report of fin whales feeding at the surface in perfect
synchrony [75], there is no evidence of cooperative feeding
in fin whales. Nevertheless, attracting other whales to the
foraging site may increase the chances of tracking prey move-
ments, thus prolonging feeding opportunities for callers, as
suggested for cliff swallows (Petrochelidon pyrrhonota) feeding
on insect swarms [76]. Fin whales often occur in temporary
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foraging aggregations in our study area and elsewhere
[26,47]. Fin whale 40-Hz calls could be used to convey infor-
mation about the individual location to regulate spacing
between foragers, or establish ownership of food patches,
as described for other species [69]. At present though, we
do not know the functional significance(s) of the 40-Hz fin
whale call when produced in feeding contexts.

The recent description of two acoustically tracked fin
whales producing 40-Hz calls while moving past each other
[27], gives some indication that this call might also serve as
a contact or social call. In birds and mammals, functionally
specific vocalizations, like food or alarm calls, are often
used in different behavioural contexts [9]. Blue whale ‘D
calls’ were firstly described as food-associated and social
calls because, as the 40-Hz fin whale calls, were recorded
during foraging behaviours in feeding areas [77,78] and
from whales in groups [79,80]. Later though, one study
reported D calls also produced in a reproductive context
where two males were aggressively interacting with each
other while escorting a female [81]. Thus, it is likely that
more functions for the 40-Hz call may be revealed with the
increasing research effort on fin whale vocal behaviour.
6

5. Conclusion
Our study is the first to show a positive association between
the production of the 40-Hz call and modelled biomass of
prey, providing additional evidence of the use of this call in
feeding contexts. Our findings are also consistent with earlier
work indicating that the song-forming 20-Hz call is used in
reproductive contexts, but the absence of a relationship
with prey biomass does not support the assumption that
this call is used by males to advertise a food source and
attract potential mates. Instead, the 20-Hz song may be a
male acoustic display used in intersexual and intrasexual
interactions. Our study also illustrates how spatio-temporally
resolved simulations of zooplankton biomass, which is chal-
lenging to measure in the field, can provide valuable insights
into the environmental context and potential functions of
baleen whale vocalizations.

Understanding call function and monitoring vocal beha-
viours associated with the state of individuals or groups
(e.g. reproductive status and success, and social complexity),
habitat quality (e.g. food resources) or animal density (e.g.
call rates) can help identify functional habitats, predict nega-
tive human impacts and support conservation planning [14].
Information on the temporal and spatial occurrence of fin
whale 40-Hz calls may inform when and where animals
engage in foraging and provide important clues to the
environmental factors promoting foraging behaviour on this
species. Similarly, the 20-Hz song may give unique insights
into the location and characteristics of the areas used for
mating. Studies combining visual and acoustic observations
of callers and receivers simultaneously, offering information
on the behavioural context of call production along with
responses of conspecifics, could significantly advance our
understanding of fin whale vocal behaviour.
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