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“In the long history of humankind those who learned to collaborate and improve most 

effectively have prevailed”  

 

-Sir Charles Darwin 
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Abstract 
 

This research aims to investigate the biological interactions of cold atmospheric pressure 

plasma (CAP) with bacteria and to develop therapeutic hydrogel wound dressings which 

work in tandem with CAP treatment for the reduction of the bacterial bioburden of the 

wound while screening out any potentially harmful species generated by the CAP. The 

presence of a bacterial biofilm within a wound increases the risk of wound chronicity and 

bacterial biofilms are known to have increased antibiotic resistance. Wound infection can 

result in septicaemia.  

 

Chapter 3 characterises a helium-driven CAP (He-CAP) device pertaining to its clinical use 

through the quantification of the biologically relevant reactive oxygen and nitrogen species 

(RONS) it produces, operating temperature, the effect upon pH under varying operating 

conditions and how the He-CAP device interacts with a model hydrogel wound dressing 

(polyvinyl alcohol (PVA)). The optimised He-CAP operating parameters were then applied 

to planktonic and biofilm bacteria.  

 

Chapters 4 & 5 seek to understand the biological interactions between bacteria and He-CAP. 

Chapter 4 concerns the interactions between He-CAP and bacterial biofilm formation and 

oxidative stress response, through the assessment of RONS delivery through the developing 

bacterial biofilm. Chapter 5 assesses the mutagenic impact of sub-lethal He-CAP exposure, 

compares the mutagenic profile to known mutagens UV and ionising radiation and the 

impact upon antibiotic susceptibility.  

 

The final chapters focus on the development and assessment of therapeutic hydrogel wound 

dressings. Chapter 6 aims to develop a hydrogen peroxide responsive hydrogel which 

releases an antibiofilm agent to prevent biofilm formation. Chapter 7 seeks to utilise and 

characterise a novel argon-driven CAP (Ar-CAP) jet and to use a known antimicrobial, 

povidone-iodine (PVP-I) in a PVA hydrogel for synergistic killing of a Pseudomonas 

aeruginosa bacterial biofilm.  
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Chapter 1 : Introduction 

1.1 The Clinical Problem – Biofilm-Associated Bacterial 

Wound Infection  
 

By definition a wound is “an injury to living tissue through a cut, blow or trauma resulting 

in breakage of the skin”. Any break in the skins integrity puts the patient at risk of 

colonisation by pathogenic bacteria and can result in an infection. Overall, wound treatment 

accounts for 4% of the total cost of the healthcare budget within the UK.1 Wound infections 

result in increased patient trauma, extending hospitalisation which can increase the 

associated costs, and in extreme cases,  can lead to sepsis and death. The “ESKAPE” 

pathogens: Enterococcus faecium, Staphylococcus aureus (S. aureus), Klebsiella 

pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa (P. aeruginosa) and 

Enterobacter are a group of nosocomial pathogens that are multidrug resistant (MDR) and 

virulence and thus are considered a great threat to human health.2 

 

Populations of bacteria can bind to the surface of the wound forming complex communities 

known as biofilms, which are associated with increased virulence, need significantly higher 

doses of antibiotics for clearance, slow healing and can result in wound chronicity.3 

Moreover, biofilm-associated infections have been shown to contribute to antimicrobial 

resistance (AMR). AMR is within the top global health threats, able to affect people of any 

age or nationality. The World Health Organisation (WHO) report that by 2050 more that 10 

million people will die annually from antibiotic resistant bacterial infections.4 With between 

60-100% of wounds cited as having biofilm-associated infections, the need for novel 

treatments of biofilm infections has never been higher.5 
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1.2 Wounds 

1.2.1 Wound Classification  
 

Wounds are classified according to a number of factors, the most important of which are: 

the form of injury which caused the wound, the depth of wound, site, contamination and the 

duration of existence.6 Wounds are subcategorised into two types, acute and chronic. An 

acute wound is defined as a wound which progresses through the 4 stages of healing: 

haemostasis, inflammation, proliferation and remodelling within a timely fashion.7 The 

exact appropriate time frame of healing is disputed. However, broadly speaking it is between 

4-8 weeks.8,9 When a wound fails to progress through these stages of healing it is then 

defined as a chronic wound.10 There are three most common forms of chronic wounds: 

diabetic foot ulcers, venous/arterial ulcers and pressure ulcers.11  

 

1.2.2 Acute Wounds  
 

An acute wound is any break in the skin that occurs suddenly and will heal at an expected 

rate. Acute wounds include traumatic wounds, which can be subcategorised into blunt and 

penetrating traumatic wounds, bite wounds of either human or animal origin and surgical 

site wounds and some burn wounds.12 The decision to medically close an acute wound 

through use of stitches or glue, is based upon the age of the wound, the degree of 

contamination and whether the wound is infected. Human bite wounds, blast injuries and 

severely contaminated wounds are left open. Wounds are irrigated with saline or an 

antibiotic solution and dressed with a moist, absorbent gauze dressings.13 

 

1.2.3 Chronic Wounds  
 

Chronic wounds are classified into two groups: vascular ulcers (VU) which include diabetic 

ulcers, and venous/arterial ulcers or pressure ulcers (PU). They share common features 

including excessive inflammation and persistent infection, often caused by drug-resistant 

bacterial biofilms. Chronic wounds are often comorbidities, with patients who are bed 

bound, diabetic, smokers and the elderly, being at greater risk of their formation.14 Chronic 

wounds have a high rate of morbidity and mortality associated with them.15 Per annum, 
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wounds and their associated morbidity and mortality cost the National Health Service (NHS) 

an estimated £5.3 million.16 The care of chronic wounds is specialised and requires regular 

visitation to a wound clinic for treatment from a trained nurse. Wounds are routinely cleaned, 

debrided and dressed. Debridement is the removal of dead or inflamed tissue, often through 

the use of sharp items such as tweezers or a curette. Although enzymatic gels, high-pressure 

water jets and maggot therapy are also used.17  

 

1.2.4 Burn Wounds  
 

Burn wounds are classified based upon their causative agent: physical, thermal, electrical, 

chemical, radiation and laser burn each type differing in their presentation and clinical 

management. The skin has three main layers, epidermis, dermis and subcutaneous fat, the 

structure of healthy skin is shown in Figure 1.1A.  The healing of a burn wound is heavily 

dependent on the depth of the burn. Burns are categorised into first-degree burns, where skin 

is erythematic without vesication, second-degree involves the epidermis and variable 

thickness of the dermis (Figure 1.1C), third-degree eschar formation and fourth degree 

burns, which extend into fat, muscle and bone (Figure 1.1B).18  

 
Figure 1.1: Structure of healthy skin (A). Structure of burned skin showing the layers effected in the varying degree of 

burns (B). Photograph example of second-degree burn (C). (Image created in BioRender). 

The clinical management of burn injury is based upon the severity, minor burns are <15% 

total body surface area (TBSA) for adults and <10% in children and major burns are up to 

35% TBSA in adults and 30% in children. Coverage greater than this is deemed life-

threatening.19 While initially burn wounds are sterile, they quickly become contaminated. 

The only organisms present within a wound are those within the epithelial appendages of 

hair follicles and sebaceous glands. The formation of eschar acts as a cultural media for these 



Chapter 1 

 4 
 

bacteria to proliferation and invade deeper tissue. This is thought to be a cause of burn wound 

sepsis. An effective antimicrobial for a burn wound must penetrate the eschar and kill these 

organisms. S. aureus and P. aeruginosa are the bacteria most frequently isolated from burn 

wounds.20 Owing to the great surface area available for bacterial colonisation and infection 

burn wounds are dressed to prevent infection, antimicrobials are often applied topically to 

prevent infection.20,21  

 

1.2.5 Wound Infection  
 

Nearly all open wounds will become colonised with microorganisms; while usually this has 

no clinical consequences, occasionally the patient will exhibit symptoms which suggest that 

they have become clinically infected. A wound is only said to be infected when pathogenic 

organisms have triggered an immune response.22 The risk of infection is increased with the 

size of the microbial inoculum, the virulence of the colonising microorganism, and the 

immunocompetency of the patient. Clinical manifestations of wound infection include 

redness, warmth, swelling, pain and purulent secretions.23  

 

The progression of infection occurs as follows: contamination, colonisation, critical 

colonisation threshold (CCT), localised infection, spreading infection and then systemic 

infection (Figure 1.2). Bacterial contamination is the first phase of infection, in which the 

bacteria are not multiplying or causing clinical problems. This progresses into colonisation 

where the bacteria are multiplying but wound tissues are not being damaged. The bacteria 

then reach the CCT, whereby the bacteria have multiplied to an extent that healing is 

impaired and the wound tissues are damaged and bacterial biofilms begin to form.24,25 



Chapter 1 

 5 
 

 
Figure 1.2: Schematic outlining the progression from bacterial contamination to systemic infection. 

The human skin covers ~1.6 m2 with a range of specialist niches for the support of a range 

of bacterial species.26 Often the source of contaminating bacteria is from the patient’s skin, 

for example S. aureus are known to colonise the nasopharyngeal passage and contribute to 

the skin microbiota and are considered opportunistic pathogens.27 Normal human skin is 

colonised with between 104 – 106 colony forming units (CFU) per cm2.28 Wound infection 

is characterised clinically through presentation with fever, erythema, oedema, pain and/or 

wound discharge of a purulent nature.29 The nature of infection can vary from localised 

infection, requiring minimal intervention, or can spread to systemic infection. Serious 

complications of wound infection are cellulitis, sepsis and necrotising fasciitis.30 To date 

there is no set classification for skin and soft tissue infection (SSTI) likely owing to the vast 

range of clinical presentation.31  

  

1.2.6 Infection Diagnosis 
 

The diagnostic challenge within wound infection diagnosis is the identification of wounds 

which are infected to a level that will impact healing and repair. Some wounds which are 

heavily colonised will heal in a spontaneous and timely fashion, whereas others which have 

significantly lower levels of bacterial colonisation will result in serious infection. While 

clinical presentation and the trained eye of a physician drive suspicion of infection, diagnosis 

is confirmed using clinical microbiology, however as yet, no gold standard for wound 

infection diagnosis exists.32 Wounds are swabbed and sent to pathology labs for 
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investigation, which is split into semi-quantitative and quantitative.33 Semi-quantitative 

analysis involves the culture of any viable bacteria from patient sample and grading growth 

accordingly: light, moderate and heavy. This culture method is flawed owing to its 

propensity for growth of motile and quick growing organisms, leaving fastidious organisms, 

namely anaerobes, underrepresented.34 Quantitative analyse of tissue samples and pus, while 

labour intensive, is a better method for the prediction of infection. A bacterial load of greater 

than 105 CFU/mm2 of tissue is regarded as being significantly at risk of causing infection.31  

 

There are a number of issues with microbiological testing for wound infection. Firstly, the 

turnaround time varies from 24-48 h, after which antibiotic treatment has likely already been 

administered or infection has increased in severity rendering the diagnosis irrelevant. 

Moreover, clinical microbiology can only confirm the presence of bacteria and indicate any 

antibiotic resistance the detectable species may have. There is no way to confirm that the 

detected bacteria are pathogenic or whether they will cause serious infection or sepsis. Point-

of-care testing can offer a quicker time to diagnosis increasing the evidence for the 

requirement of antibiotic treatment thus potentially reducing unnecessary use of antibiotics. 

Such tests currently available are Woundchek and MolecuLight. MolecuLight uses UV light 

to detect the presence of fluorescent bacteria, S. aureus emits a red colour owing to the 

presence of endogenous porphyrins and P. aeruginosa cyan signal, shown in Figure 1.3C 

as a result of endogenous pyoverdine in otherwise clean looking wound bed Figure 1.3B.35 

 

 
Figure 1.3: MolecuLight device detects fluorescence emitted from bacteria colonising wound bed (A) handheld 

MolecuLight device with digital screen showing presence of bacteria (image found online moleculight.com). (B) 12-days 
post lower limb split-thickness skin graft wound bed of a 58-year-old male. (C) MolecuLight fluorescent image showing 

cyan in wound bed. (Reproduced with permission from Journal of Woundcare)35 
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Woundchek is quick, taking 15 minutes and costing £30 per swab, it detects the presence of 

proteases within the wound. Proteases are produced by both Gram-positive and negative 

bacterial species which are associated with increased pathogenicity owing to their ability to 

degrade healthy host tissues and impair host immune response. However, WoundChek is 

only marketed for the diagnosis of infection within chronic wounds but currently has no 

application in detecting developing infection within acute patients.36,37 

 

Thet et al. describe an in-situ infection detecting hydrogel dressing, where bacterial toxins 

produced on the development of a biofilm rupture synthetic lipid vesicles, containing a 

fluorescent dye. On their release there an increase in their fluorescence, indicating the 

presence of infection. The dressing indicates bacterial presence after 4 h. Thus it can be 

concluded this device has the potential to detect developing pathogenic infection indicating 

to clinicians that a bacterial infection could be forming (Figure 1.4).38 

 

 
Figure 1.4: Fluorescent response of the protype dressing in response to 24 h model burn infections of P. aeruginosa and 

S. aureus infections. (Reproduced with permission from ACS Applied Materials and Interfaces)38 

1.2.7 Wound Dressings 
 

Owing to the dynamic nature of wounds in terms of size, purulence, depth, location and 

infection there is a wide range of available dressings available to meet the range of demands 

stretching from the common household plaster, to semi permeable, antimicrobial releasing 

hydrogels (Table 1.1). Regular dressing changes put the wound at greater risk of 

contamination and can hinder wound healing owing to the high risk of removing the 

developing layer of keratinocytes from the wound surface. In addition to this, frequent 

dressing changes are painful, especially within burn wounds, and can require many visits to 

the wound clinic.39,40 
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Table 1.1: Analysis of the different types of dressings available with description of function, examples and the wound 

type they are used to treat.41 

Dressing 
Type 

Description Examples Wound Type 

Gauze Made from woven or non-woven fibres of 
cotton or polyester, to form a protective 
barrier.  

XeroformT

M  
Non-exudating – 
slightly exudating.  

Semi-
permeable 
film 
dressings 

Transparent and adhesive polyurethane 
allows for transmission of CO2, O2 and water 
vapour from wound  

OpsiteTM  

TegadermT

M 

For epithlelialising 
wounds, shallow 
wounds with low 
exudate & 
superficial wounds 

Semi-
permeable 
foam 
dressings 

Consist of hydrophilic and hydrophobic 
foam. Allowing for protection from liquids 
but enabling gas exchange, silicone-based 
rubber foam enables the dressing to mould to 
the wound. Foam thickness dictates wound 
drainage capabilities.  

LyofoamTM Highly exudative 
wounds. Not 
suitable for dry 
wounds.  

Polymer 
hydrogels  

Insoluble, hydrophilic materials made from 
synthetic polymers such as poly-vinyl-
alcohol (PVA). They have a high water 
content helping granulation tissues and 
epithelium. Their elasticity enables easy 
application and the temperature of the wound 
is decreased upon application providing a 
cooling effect.  

AquaformT

M 

Nu-gelTM  

 

Low exudation 

Hydrocolloid  Consist of two layers, inner colloidal layer 
and outer water-impermeable layer. 
Allowing water permeation while protecting 
from bacteria. They also have debriding 
properties and absorb exudate.  

ComfeelTM 

GranuflexT

M 

Neuropathic ulcers 
or highly exudating 
wounds  

Alginate 
hydrogels 

Made up of mannuronic and guluronic acid 
units. Derived from seaweed, some studies 
have shown alginates accelerate healing 
through macrophage activation and TNF-a 

SorbsanTM  

 
Moderate-heavy 
excudating wounds 

Skin 
Substitutes 

2 types available: one mimics keratinocytes 
and fibroblasts on collagen matrix, the other 
contains dermal elements. 

BiobraneTM Burns and ulcers 

Medicated 
Dressings  

Dressing impregnated with antimicrobials 
such as silver or iodine. Dressing can also 
contain proteolytic enzymes such as papain 
and collagenases. 

Aquacell 
Ag+  
DebridaceT

M 

Ulcers, burns and 
nectrotic wounds  

 

 



Chapter 1 

 9 
 

1.2.8 Wound Healing 
 

Wound healing begins with the inflammation phase. This early stage in wound healing is 

when the wound is at most risk of colonisation of pathogenic bacteria. Inflammation is split 

into two phases: vascular and cellular. Acute inflammatory response (Figure 1.5A) consists 

of localised vasodilation, extravasation and blocking in lymphatic drainage causing 

swelling, redness and heat, the main signs of infection. Tissue damage typically causes blood 

vessel damage which results in bleeding. The cellular response involves platelets, a key 

component of blood, adherence, aggregation and release a multitude of factors for 

coagulation. Further to this coagulation platelets also initiate healing through the release of 

chemoattractants and growth factors, attracting neutrophils, macrophages and leukocytes.42 

Proliferation (Figure 1.5B) provides the necessary components for a new functional barrier, 

through re-epithelisation, establishment of a new blood supply through the generation of 

blood vessels (known as angiogenesis) and reinforcements of damaged dermal tissues. Re-

epithelisation restores the remaining epidermal tissues though attraction of keratinocytes 

into the wound, then subsequent proliferation and differentiation of neoepithelium into 

stratified epidermis. Remodelling occurs throughout the wound repair process. Fibrin clots 

formed early in the inflammation phase, are replaced with granulation tissue rich in type III 

collagen and blood vessels during proliferation. This is then replaced with type I collagen 

and less mature blood vessels. Change in the extracellular wound matrix is a key 

characteristic of wound remodelling (Figure 1.5C).43 

 
Figure 1.5: Schematic representation of the stages of wound healing: inflammation (A) Proliferation & Re-epithelisation 

(B) and remodelling (C). (Reproduced with permission from Trends in Pharmacological Sciences)44 

 

 

 

 

 

A B C 
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1.2.9 Bacterial Biofilms  
 

Initially discovered in the 17th century by Antoine Von Leeuwenhoek, a biofilm is broadly 

defined as aggregated microorganisms irreversibly bound to a surface living within a 

complex matrix consisting of extracellular polymeric substances (EPS) that cannot be 

removed without force, Figure 1.6.45 

 
Figure 1.6: Schematic of the stages of bacterial biofilm formation on skins surface. (1) Planktonic bacteria attachment. 

(2) Irreversible bacterial attachment. (3) Cell proliferation. (4) Growth and maturation. (5) Dispersal. (Created using 

BioRender).  

Planktonic bacteria are single “free living” microorganisms, they can reversibly attach to 

surfaces, which within a clinical environment include catheters, teeth, orthopaedic implants 

and importantly, wounds.46 After attachment the community of bacteria forms a 

microcolony, stabilising their adhesion to the associated surfaces, and the cohesion between 

neighbouring bacteria increases making the microcolony stronger. At this stage the bacteria 

are now irreversibly bound to the surface owing to the formation of the EPS. The EPS 

“slime” is composed of nucleic acids, proteins and polysaccharides and makes up about 80% 

of the biofilm. The EPS surrounds the bacteria functioning as a protective barrier against the 

hosts immune response.47 The bacteria begin to proliferate. Upon reaching a critical density, 

the activation of quorum sensing (QS) occurs, which enables communication between 

bacterial cells and results in alteration of bacterial phenotypes. Once QS molecules are 

present the upregulation of biofilm formation occurs through phenotype alteration. Bacteria 

excrete QS molecules which causes neighbouring bacteria to join the biofilm.48 Within the 

bacterial biofilm there is a broad range of phenotypic and genotypic traits resulting in a 

community that is less susceptible to antimicrobials and the hosts immune response. 

Antimicrobials fail to eradicate biofilms owing to poor penetration into the biofilm, the 

metabolic inhibition, and the dormant bacteria, known as persister cells. Persister cells are 
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able to repopulate the community if a significant proportion of the biofilm is removed. 

Finally some cells will detach from the mature biofilm ready to colonise a new surface.49  

 

1.2.10  Staphylococcus aureus  
 

Bacteria are categorised into Gram-positive and Gram-negative, using Gram’s staining. 

Gram-positive bacteria, which have a single, thick peptidoglycan layer, retain crystal violet 

dye, whereas Gram-negative bacteria, which have a double peptidoglycan layer, will not 

retain crystal violet dye identifying themselves as Gram-negative. S. aureus is Gram-

positive, and its cell wall is 50% peptidoglycan by weight.50 

 

S. aureus translates as golden, grape-cluster berry owing to its colour and shape. It is a 

catalase positive and a facultative anaerobe. S. aureus are commensal bacteria, persistently 

colonising the nasal-pharynx of between 20-25% of the population with 60% transient 

carriage. While it has a high level of asymptomatic carriage it is associated with a number 

of illnesses, from skin conditions like impetigo and folliculitis to life threatening conditions 

like meningitis and sepsis.51 Staphylococci produce a range of toxins, which are categorised 

based upon their action. Cytotoxins such as alpha toxin, can cause pore formation and 

inflammation in mammalian hosts resulting in sepsis. Toxic shock syndrome toxin (TSST) 

is found in 20% of S. aureus isolates and causes toxic shock syndrome. Epidermolytic toxins 

A & B causes skin erythema and separation which is seen in staphylococcal scalded skin 

syndrome.52 

 

A major component of S. aureus biofilms is polysaccharide intercellular adhesin (PIA) 

which is produced by enzymes encoded in the icaADBC locus, composed of b-1,6-linked N-

acetylglucosamine. PIA plays an important role in the structural integrity of the biofilm.53 

Further to this S. aureus has surface -associated proteins which are important components 

in the attachment and development of the biofilm matrix such as protein A, fibrinogen-

binding proteins, biofilm-associated protein (Bap) and clumping factor B (ClfB) the 

importance of which will vary between strains.54  S. aureus biofilm regulation is controlled 

by staphylococcal accessory regulator (sarA) and accessory gene regulator (agr) which 

compose a two regulatory gene locus encoded by arlRS, a member of the OmpR-PhoB 

family. When upregulated arlS prevents biofilm formation, sarA transcripts are upregulated 
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in biofilms. The agr quorum sensing system has been shown to downregulate genes of cell-

wall associated adherence factors and its expression is induced though auto-inducing 

peptides (AIP) resulting in the dispersal of mature biofilms. Additional levels of biofilm 

control are achieved through the sigB operon product sB. sB upregulates the expression of 

clumping factor, coagulase and fibronectin binding protein A (FnbpA) which are needed in 

the early stages of biofilm development.55  

 

S. aureus biofilm-associated infections are the key cause of a number of diseases. They are 

the most prevalent cause of osteomyelitis, an infection of the bone, where bacteria are often 

introduced through trauma or surgery.56 S. aureus biofilms are also commonly isolated from 

medical devices such as prosthetic implants, intravenous catheters and stitch materials.57 S. 

aureus is also recovered from 50% of chronic rhinosinusitis cases and within over 50% of 

endocarditis patients.58 

 

1.2.11  Pseudomonas aeruginosa  

 
P. aeruginosa translates as “false unit” (Greek and Latin, referring to the rod-like shape) of 

“copper rust” colour (Latin), referring to the colour of the bacteria. P. aeruginosa is Gram-

negative, owing to its double cell membrane. P. aeruginosa is considered an opportunistic 

infection, thriving in moist environments. It generally affects immunocompromised patient 

groups such as those with burns, cystic fibrosis or who are immunosuppressed.59 But can 

also affect the immunocompetent via hot tub folliculitis, owing to its ability to thrive in moist 

environments. P. aeruginosa is frequently isolated from medical devices such as catheters 

and ventilators which can result in ventilator-associated pneumonia which is associated with 

high mortality rate within cystic fibrosis patients.60  
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Figure 1.7: Structure of P. aeruginosa. (Created using BioRender) 

Bacteria surface factors including lipopolysaccharides, pili and flagella as well as toxin 

production and biofilm formation contribute to P. aeruginosa virulence shown in Figure 

1.7. Pyocyanin, a phenazine dye produced by P. aeruginosa which gives it its colour, is also 

a virulence factor. Pyocyanin is toxic to mammalian cells as well as bacterial cells enabling 

P. aeruginosa to outcompete other species.61 P. aeruginosa also produces a range of other 

virulence factors including elastases 62 and exotoxins.63 

 

P. aeruginosa has two interconnected quorum sensing systems which rely upon 

acylhomoserine lactone (AHL) signalling molecules. The Las system uses N-(3-

oxododecanoyl)-L-homoserine lactone and the Rhl system which uses N-butanoly 

homoserine lactone. The Rhl system regulates swarming motility, which is implicated in the 

early stages of P. aeruginosa biofilm formation and also controls the production of 

rhamnolipids which play multiple roles within biofilm formation.64  

 

1.3 Bacterial Infection Treatments  
 

As all wounds will be colonised to some extent with microorganisms there is a requirement 

of effective and targeted treatments to reduce and prevent the impact and extent of potential 

infection in both acute and chronic wounds. There are three key groups of antimicrobials; 

antibiotics which destroy microorganisms within the body, antiseptics which are applied to 

living tissues with the aim of reducing infection (particularly during surgery) and 

disinfectants which are nonselective agents which kill a range of microbes on non-living 

surfaces, preventing the spread of disease.  
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1.3.1 Antibiotics  
 

The word antibiotic, translated from Greek, means “opposing life” and is defined as “a 

substance that is able to kill or inhibit a microorganism”.  Penicillin, the first antibiotic, was 

famously discovered accidentally by Alexander Fleming in 1928. Derived from Penicillium 

moulds, penicillin was found to exert lytic action against Staphylococci.65 Howard Florey, 

devised a method for the mass production of penicillin. This discovery won Florey and 

Fleming the Nobel prize, and in 1942 the first patient, a male with Streptococcal sepsis was 

treated with penicillin.66 This discovery kicked off the “golden era” of antibiotic discovery. 

Since the discovery of penicillin the number of deaths caused by infectious diseases has been 

reduced by over 70%.67 Antibiotics are classed based upon their structure. Common targets 

include bacterial cell wall synthesis, nucleic acid synthesis and protein synthesis, the 

chemical structure and mechanism of action of some examples is outlined in Table 1.2. 

 

 
  



 

 1 

Table 1.2: Categorises of antibiotics, description of action, chemical structure and resistance mechanism.  

Category of 
Antibiotic 

Examples Description Structure Resistance Mechanism Ref 

Beta-lactams  Penicillins e.g. 
penicillin 
(pictured), 

amoxicillin & 
flucloxacillin and 

cephalosporins 

Beta-lactam ring (shown in blue) work 
through inhibiting bacterial cell wall 

synthesis. They achieve this by inhibiting 
the last step in the production of 

peptidoglycan, which is a vital component 
of the bacterial cell wall. This occurs when 
beta-lactams binds to the penicillin-binding 

proteins (PBP).  
 

Bacteria synthesis beta-
lactamase, an enzyme 

which cleaves the beta-
lactam ring. 

68 

Aminoglycosides Streptomycin, 
neomycin & 
kanamycin 

Made up of amino-modified glycoside 
(sugar), aminoglycosides inhibit protein 

synthesis. They bind to the cytosolic 
membrane-associated ribosome, preventing 
the elongation and resulting in inaccurate 

mRNA translation.   
 

While still broadly 
effective, some bacteria, 

have a reduced drug 
uptake by 

aminoglycoside-
modifying enzymes. 

69 

Chloramphenicol  Chloramphenicol Organochlorine compound that is dichloro-
substituted acetamide containing a 

nitrobenzene ring. It diffuses through the 
cell wall and reversibly binds to the 50S 

ribosomal unit altering peptidyl transferase 
activity. 

 

Bacterial enzymatic 
inactivation by 

acetylation mainly via 
acetyltransferases. 

 
 

70 



 

  
 

Glycopeptides Vancomycin Inhibit bacterial cell wall synthesis 
through binding to the terminal D-
Ala-D-Ala in pentapeptide portion 

of N-acetylglucosamine-N-
acetylmuramic acid peptidoglycan 

cell wall precursor. 

 

Resistance is mediated by 
vancomycin resistance 

operon, transported 
chromosomal and 

extrachromosomal plasmid.  

71 

Quinolones Ciprofloxacin, 
levofloxacin 

Interferes with bacterial DNA 
replication and transcription 

through targeting DNA gyrase and 
DNA topoisomerase IV. 

 

Mutations in the target 
enzymes, and through 

efflux pumps.  

72 

Oxazolidinones Linezolid, 
posizolid 

Inhibits synthesis of proteins 
preventing growth through binding 

to the 50S subunit. 

 

Can occur through target 
modification.  

73, 74 

Tetracyclines Tetracycline, 
doxycycline 

Inhibits protein synthesis by 
preventing attachment of 

aminoacyl-tRNA to the ribosomal 
acceptor (A) site thus preventing 

growth.   

Usually through acquiring 
mobile genetic elements 

carrying tetracycline-
specific resistance genes.  

75 

 Macrolides Erythromycin, 
clarithromycin 

Inhibits of bacterial protein 
synthesis through prevention of 

peptidyl transferase from adding the 
growing peptide attached to the 

tRNA to the next amino acid and 
through inhibition of ribosomal 

translation.   

Post translational 
methylation of the 23S 

bacterial ribosomal RNA. 
This resistance can be 

acquired either through 
plasmid or through 

mutation.  

76, 77 



 

  
 

Polymyxin Polymyxin B, 
Polymyxin E 

Colistin 

Binds to LPS in Gram negative 
bacteria and disrupts lipid 

membranes of bacteria 

 

Modification of LPS to 
decrease binding 

66 
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1.3.2 Antibiotic Resistance  

 

Antibiotic resistance occurs when bacteria develop the ability to combat the drugs effect, 

enabling them to either continue to grow in the presence of the drug, or are unable to be 

affected by the drug. Infections caused by antibiotic resistant bacteria are difficult and 

sometimes impossible to treat, often requiring extended hospital stays, more costly 

alternative treatments and frequent medical follow up appointments.  

 

It is commonly misconceived that antibiotic resistance is as a result of the body becoming 

resistant to antibiotics, however, this is not the case. The inappropriate use and overuse of 

antibiotics has resulted in a surge of antibiotic resistant bacteria within a multitude of sectors 

including healthcare, veterinary and agricultural industries. Antibiotics not only save lives; 

they have also enabled a major advancement on modern medicine and surgery before 

antibiotics simple procedures such as caesarean sections and tooth removals had a high level 

of associated mortality.  

 

Epidemiological studies have shown the direct relationship between antibiotic use and the 

emergence of resistant bacterial strains.78 Resistance can occur spontaneously, or genes can 

be inherited from relatives or shared by non-relatives in close proximity through the 

transferral of mobile genetic elements such as plasmids.  Horizontal gene transfer (HGT) 

enables the transferral of antibiotic resistance between different species of bacteria.79 Yet 

despite warnings against overuse, antibiotics remain widely overprescribed across the world 

and in some countries are uncontrolled (sold over the counter). Furthermore, the incorrect 

prescribing of antibiotics has also contributed to the rise in antibiotic resistance, within 

intensive care units (ICUs) 30%-60% of antibiotic prescriptions have been found to be 

inappropriate, unnecessary or suboptimal.80 Subinhibitory concentrations of antibiotics can 

promote resistance by supporting genetic alterations, including virulence, HGT and 

mutagenesis.81 

 

Antibiotic administration to livestock is known to promote growth and limit infection 

resulting in larger yields and higher quality produce. However, antibiotic resistant bacteria 

pass from livestock to humans through the food chain. Further to this, antibiotics are excreted 

into the environment by livestock through stool and urine which is subsequently widely 
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distributed into rivers through groundwater, surface runoff and fertiliser. This environmental 

dissemination of antibiotics contributes to the exposure of microorganisms in the 

environment and increases the proportion of resistance.82 

 

There are a multitude of multidrug resistant (MDR) bacterial species which pose a serious 

threat to human health. These have been further categorised based on risk. Within Gram-

positive bacteria S. aureus and Enterococcus pose the greatest threat owing to S. aureus 

strains with resistance to methicillin, known as methicillin-resistant S. aureus (MRSA) and 

Enterococci are broadly vancomycin resistant. Gram-negative bacteria are more threatening 

owing to their resistance to nearly all available antibiotic treatments. MDR nosocomial 

pathogens frequently cause infection and associated with a higher risk of mortality.2 MDR 

infections often occur within a healthcare setting, yet other MDR infections are becoming 

prevalent within the community including E. coli 83 and Neisseria gonorrhoea.84 

 

Antibiotic resistance can either be acquired, as already outlined, or intrinsic owing to the 

inherent structural of functional characteristics. The simplest version of intrinsic resistance 

is the absence of the antibiotic target, for example, triclosan is broadly efficient against 

Gram-negative and Gram-positive bacteria, however, is ineffective against bacteria of the 

genus Pseudomonas. This is owing to Pseudomonas carrying an insensitive fabl gene which 

encodes the enzyme enoyl-ACP reductase, the target of triclosan.85 Gram-negative bacteria 

are intrinsically less permeable to antibiotics owing to their outer membrane. Bacterial efflux 

pumps are also known to be a major component of intrinsic resistance. Efflux pumps actively 

transport antibiotics out of the cell.86 

 

Chloramphenicol florfenicol resistance (cfr) is achieved by methyltransferase specifically 

methylates A2503 in the 23S rRNA conferring resistance to a range of drugs that have targets 

near this site, including: streptogramins, phenicols and oxazolidonones (including linezolid). 

The pnr genes encode pentapeptide repeat proteins (PRPs). PRPs bind to topoisomerase IV 

and DNA gyrase and protect from the lethal action of quinolones i.e. ciprofloxacin.87  
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1.3.3 Topical Antimicrobials  

 

Clinically infected wounds typically require treatment with systemic antibiotics. However, 

some superficial wound infections such as impetigo, a skin infection caused by S. aureus, 

are routinely treated with topical antimicrobial therapies.88 Topical antimicrobials aim to 

either kill colonising bacteria or prevent their replications without causing clinically 

significant damage to the patients cells. They can be used alone or in combination with 

antibiotics. Typically, topical antimicrobials are broad spectrum in their activity, with 

multiple microbial targets. Chlorohexidine and povidone iodine are commonly used within 

wound care, however, currently silver ions are being promoted as the main antimicrobial 

within wound disinfection.89 

 

The ease of application of topical antimicrobials makes them very appealing from a patient’s 

point of view, they can be applied by either the patient or their caregiver thus reducing the 

need to attend the clinic.  Pharmacologically speaking their high and sustained concentration 

at the infection site is advantageous, further, there is a reduced risk of systemic absorption 

and toxicity. Owing to reduced risk of toxicity, novel therapies that have yet to be approved 

for systemic use can be used.90 However, topical antimicrobials are not without 

disadvantage, from a patients’ perspective frequent reapplication can be tiresome, 

application can be difficult depending upon wound location and there is risk of 

contamination in multidose containers. There is also the potential for localised 

hypersensitivity or contact dermatitis associated with topical antimicrobials and a risk of 

systemic absorption in large wounds which may lead to toxicity.89 

 

1.3.3.1 Hydrogen Peroxide  

 

Hydrogen peroxide (H2O2) is a commonly used topical antimicrobial for wound irrigation 

and in some cases for the removal of necrotic tissue from wounds. H2O2 for this use has a 

concentration of between 1-3 % (v/v) (324-972 mM).91 H2O2 is an oxidising agent which 

induces cellular toxicity through the generation of hydroxyl radicals which subsequently 

induce lipid peroxidation leading to DNA damage and cellular death. However, H2O2 is 

readily formed by immune cells, such as leukocytes, within the mammalian healing 

process.92  
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The effects of H2O2 within wound healing are debated. Multiple studies have shown that low 

concentrations of H2O2 can promote re-epithelisation of the wound (250-500 µM)93 and 

enhance healing (10-50 mM).94 Yet these concentrations are significantly lower than the 

high concentrations used within wound care. High concentrations of H2O2 have been found 

to damage cells within the wound bed and healthy cells surrounding the wound. The toxic 

effect that H2O2 induced oxidative stress has on fibroblasts 95 and keratinocytes 96 have been 

widely reported. While the dermal penetration of H2O2 has not been reported owing to its 

instability and rapid decomposition by enzymes catalase and glutathione peroxidase, it is 

accepted that H2O2 rarely has systemic toxicity.97 Importantly, however, there are no reports 

of H2O2 resistant bacteria.  

 

1.3.4 Drug Repurposing 

  

With the ever-growing threat of antimicrobial resistance, the need for novel antibacterial 

treatments increases concurrently. Yet, the development of de novo antibiotics is risky, with 

only 1 in 70 progressing from early screening. This process is expensive and lengthy, taking 

between 10-17 years and costing over $1 billion. However, drug repurposing provides a 

potential solution, identifying new commercial opportunities for already approved drugs. 

There are two distinct principles for the identification of candidate drugs: (1) a drug may 

have unknown biological activities, evident through identification of many side-effects and 

(2) different diseases frequently share a common molecular pathway or genetic factors, this 

principle is commonly leveraged within cancer therapy. A famous example of drug 

repurposing is Sildenafil, originally used to treat hypertension, was repurposed for treatment 

of erectile dysfunction. To date approximately 46 approved drugs have been repurposed for 

novel therapeutic uses.98,99 

 

There is also a third approach of screening combinations of drugs to assess modulation of 

antimicrobial effects, and the identification of antibiotic drugs that potentiate antimicrobials. 

Extending the life span of said antimicrobial and overcoming antibacterial resistance is an 

attractive concept. A key example is the co-administration of b-lactamase inhibitors with b-

lactam antibiotics or Fluoxetine (Prozac), which is an efflux pump inhibitor, being used in 

combination to modulate antibiotics activity.100 
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1.4 Cold Atmospheric Plasma  

1.4.1 Overview  

 

First described by Irving Langmuir in the 1920’s, plasma is affectionately referred to as “the 

fourth state of matter”.  Plasma exists in a variety of forms, examples include lightening, the 

Northern Lights, solar flares, televisions and neon signs.101 Plasma is generated through the 

application of heat or electromagnetic field on an inert gas, causing ionisation of the gas 

which causes an increase in electrical conductivity. On application of an electric field 

electrons are subject to external energy, increasing their kinetic energy making them faster 

than the heavier ions of the gas, thus increasing their temperature to several thousand degrees 

before their environment heats up. In nonthermal plasma, cooling of the ions and uncharged 

molecules is more effective than the energy transfer from the heated electrons, resulting in 

the bulk gas temperature remaining cold. Owing to this, nonthermal plasmas are also referred 

to as non-equilibrium plasmas. Whereas, within a thermal plasma, the energy flux from 

electrons to heavy particles within the gas will cause the heavy gas particles to have a 

temperature equal to that of the electrons, which will in turn equilibrate with heavy particles 

in the external environment.102  

 

The application of plasma within medicine is a relatively new field known as “plasma 

medicine”. Early plasma medicine utilised the heating aspect of thermal plasmas for 

sterilisation of contaminated surfaces, cauterisation and tissue removal. Electrocautery, the 

application of heat to a tissue surface through application of high current, while effective, 

often results in the adhesion of charred tissue to the metal surface. Argon plasma coagulation 

resolved this issue owing to the absence of direct tissue contact. Thermal plasma has also 

been used for the cosmetic alteration of tissues.103,104 

 

Cold atmospheric pressure plasmas (CAP) have a greater range of applications within 

plasma medicine due to their temperature being within a physiologically tolerated range, 

typically <40°C, and their ability to operate under stable, easily reproducible atmospheric 

conditions. On interaction with the atmosphere the plasma produces a “cocktail” of reactive 

oxygen and nitrogen species, collectively known as reactive oxygen and nitrogen species 

(RONS), which have a range of biologically relevant applications. In addition to RONS, 
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CAP also generates UV, visible ultraviolet (VUV), infrared radiation/heat and 

electromagnetic fields.105,106 

 

1.4.2 Cold Plasma Devices 

 

The characteristics of CAP can be incredibly variable and can be manipulated to favour the 

application of the device. The two types of CAP used within wound care are dielectric barrier 

discharge (DBD) and cold atmospheric pressure plasma jet (CAPPJ) illustrated in Figure 

1.8B. In 1853 Theodose du Moncel discovered that discharge can be induced between two 

conducting plates separated by two glass plates. Moncel applied a Ruhmkorff coil to drive 

the discharge, which allowed for the generation of high alternating current (AC voltage from 

a low voltage DC source). Later, in 1857 Werner von Siemens reported the design of a DBD 

apparatus to generate ozone.107 

 

DBD generates large volume, non-equilibrium atmospheric pressure plasma using a 

dielectric material such as alumina or glass to cover at least one electrode. The electrodes 

are driven at high AC voltages within the kV range and at frequencies win the kHz range. 

DBD devices maintain a non-equilibrium state of plasma owing to the surface change 

accumulation on the dielectric surface as soon as the discharge is ignited.108 107 

 

(A) (B) 

 

 
Figure 1.8: Schematic of DBD plasma (A) and CAPPJ (B). (Created using BioRender).  
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CAPPJs emit low temperature plumes into the surroundings and maintain temperatures 

below 40°C, enabling them to touch biological tissues without causing thermal damage. As 

such CAPPJs have proved useful within biomedical applications. As shown in Figure 1.8A 

the plasma plume is formed away from the high voltage electrode and into the atmosphere, 

which is free from high voltage, so the plasma does not cause electrical damage to the target 

tissue. However, there is a high electrical field at the tip of the CAPPJ which aids the 

propagation of the plasma plume and can affect the target tissue.109  

 

These CAP sources generate a cocktail of RONS, which play crucial biological roles. While 

RONS are thought to be the dominate biologically relevant species, there are other CAP 

components which will also interact with biological species: UV and VUV radiation and 

electric fields. There are now multiple plasma devices that are CE-certified medical devices 

and available for clinical use. 

 

1.4.2.1.1 The kINPenâMED 

 

The kINPen is a class IIa medical device, which been available since 2013 and was the first 

approved CAPPJ aimed at treating hard to heal wounds and pathogen induced skin diseases. 

Daeschlein et al. showed that the kINPen was effective in the inactivation of 105 wound 

infections on caused by 11 different bacterial species.110 Further to this Kramer et al. found 

that there was an increased proliferation rate on human cells that were treated with plasma. 

They also observed chronic wound remission after 3-24 weeks in four dogs and two cats. 111 

Stratmann et al. reported significant improvement in the healing of 43 out of 62 diabetic foot 

ulcers after kINPen treatment.112 
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(A) 

 

(B) 

 
 

Figure 1.9: kINPenâMED apparatus (A) and ignited plasma jet plume (B) (Reproduced with permission from Springer 

Nature). 

The plasma jet is handheld, moved vertically and precisely with over the affected area with 

a mean treatment time of 30-60 s/cm2 (Figure 1.9A). The jet consists of a central pin 

electrode and the plasma is ignited at 2-6 kV at a frequency of 1 MHz using argon at a flow 

of between 3 to 5 standard litres per minute (SLPM). The plume has a length of between 8-

13 mm and a diameter of 1 mm (Figure 1.9B).113 If the jet is not moved for 60 seconds the 

UV exposure locally is 8.8 J/m2.113 Plasma treatment would be applied to the wound post 

debridement and prior to the application of any topical medications to avoid undesired 

interactions. Currently the kINPenâMED is licensed for the treatment of chronic wounds, 

acne vulgaris, herpes genitalis, eczema and athlete’s foot.114 

 

1.4.2.1.2 Adtec SteriPlas  

 

The SteriPlas consists of a 6-electrode plasma torch and produces plasma by microwave-

induced discharges using argon as the carrier gas (Figure 1.10A). The aperture of the plasma 

torch has a diameter of 3.5 cm resulting in a treatment area of 4-5 cm2 (Figure 1.10B), both 

the apparatus and the treatment are significantly larger than the kINPen device. The distance 

between the plasma torch and the treatment tissue is 2 cm and treatment times were between 

2-5 mins at an operating temperature of 33-37°C. The ignition conditions are 2.45 GHz and 

80-110 W.115 A treatment time of two minutes was found to be effective in killing bacteria 

in infected wounds, further to this, 30 seconds of treatment was found to significantly 

influence the migration of fibroblasts however, it had no effect on the proliferation of 

keratinocytes of fibroblasts.116 SteriPlas was shown by Isbary et al. to relieve pain and 
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accelerate healing of herpes zoster infections and was found to reduce bacterial load in 

chronic wound patients.117,118 

(A) 

 

(B)  

 
Figure 1.10: Adtec SteriPlas apparatus (A) and ignited plasam plume (B). (Reproduced with permission from the Journal 

of Clinical Plasma Medicine). 

 

1.4.3 Applications  

 

CAP devices have unique physical and chemical properties which can be tailored for the 

specific needs of the application, lending their utility to a variety of biomedical applications 

including dental treatment, cancer therapy, sterilisation, material preparation, tissue 

extrusion, and wound healing and decontamination.  

 

Every year $60 billion is spent on dental disease in the USA alone. Periodontal disease and 

caries are the most common diseases seen within dentistry. Dental caries are the localised 

destruction of tooth tissue owing to acids produced by bacteria, Streptococcus mutans (S. 

mutans) is one of the leading causes of caries.106 Periodontal disease is caused by plaque 

which is a complex oral biofilm. CAP treatment has been shown to successfully treat oral 

biofilms caused by a variety of bacterial species including S. mutans119,120 and 

Porphyromonas gingivalis121 a common cause of periodontal disease. In addition to this, 

helium driven CAP has been found to be effective within cosmetic dentistry for tooth 

whitening in conjunction with H2O2, improving the bleaching efficacy.122 

 

Within the development of cancer therapies the goal is to hit the therapeutic “sweet spot”, 

where the treatment kills the cancerous cells without damaging normal cells of the diseased 
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tissue. CAP treatment is able to induce both necrosis and apoptosis within cancerous cells, 

depending on treatment time, a decrease in cell migration and induction of senescence in 

cancer cells, which is believed to be as a result of CAP produced ROS which are known to 

induce apoptosis.106 Fridman et al. observed apoptosis and necrosis after DBD CAP 

treatment of melanoma cancer cells, after treatment with a low dose the cells became 

apoptotic several hours post treatment and at higher doses the melanoma cells became 

necrotic.123 Further to this CAP has been shown to be effect against pancreatic cancer cells 
124, neuroblastoma cells 125 and colorectal cancer.126 

 

The first application of CAP was the inactivation of bacteria on abiotic and biotic surfaces 

and in media. CAP was also found to be effective at treating biofilms and contaminated 

wound surfaces which will be discussed further in Section 1.4.5.2. In addition to its efficacy 

against bacteria CAP has also been found to inactivate viruses including HIV 127 and most 

recently COVID-19.128 Aside from medical applications CAP has also been used within 

dermatology and aesthetic medicine. CAP has been effective in treating Ichthyosis and 

atopic dermatitis.129 Within normal skin an acidic protective hydrolipid film, produced by 

the perspiratory glands and sebaceous glands covers the outer layer of skin and protects the 

skin from drying, this layer typically has a pH of between 5.4 and 5.9.130 However, the pH 

value of patients with Ichthyosis or atopic dermatitis are significantly higher. CAP treatment 

lowers the pH of the hydrolipid film in diseased skin inhibiting colonisation by pathogenic 

bacteria. 131,132 In addition to this, CAP has been shown to reduce scarring within patients 

with acne scars owing to its ability to promote tissue regeneration and work is an effective 

treatment for acne through its ability to reduce sebum production.133 

 

1.4.4 RONS  

 

All living, aerobic, multicellular organisms require molecular oxygen to live. Due to its 

electronic structure O2 is susceptible to radical formation owing to the presence of unpaired 

valence shell electrons. ROS are a natural by-product of metabolism and play a significant 

role in homeostasis and cell signalling, however, in the presence of environmental stresses, 

such as UV radiation or ionising radiation, their levels can drastically increase. At high 

concentrations ROS react readily with carbohydrates, proteins, lipids and DNA. This causes 

damage to cell structure and results in oxidative stress. Oxidative stress occurs when the 



Chapter 1 

 28 
 

balance between oxidants and antioxidants shifts resulting in an accumulation of oxidants 

which has an overall detrimental effect on the organism.134 

 

RONS are the key therapeutic component within CAP treatment, generated through CAP 

interactions with the atmosphere and upon contact with biological fluids, living tissues and 

other media. The cocktail of RONS generated through CAP treatment can be finely tuned 

and optimised for the desired purpose.135 RONS can be generated within liquids through the 

dissociation of water molecules, resulting in the formation of short-lived species: such as 

OH• and H• radicles and hydrated (solvated) electrons (esolv). Very quick reactions between 

these species results in the formation of transitory and more stable species (Shown in 

Equations 1-7), usually with a lifetime of more than one second, such as O3, H2, O2 and 

H2O2.  
																e!"#$

% +	e!"#$
% →	H& + 2OH%	 (1) 

			H( +	e!"#$
% →	H•	 (2) 

								H• +	H• →	H&	 (3) 

					•OH	 + 	•OH	 → H&O&	 (4) 

										H• +	O& → HO&	 (5) 

				O& +	e!"#$
% →	O&

% (6) 

																		HO&	
• +	HO&

• →	H&O& +	O&	 (7) 

 

In the presence of air, RNS are also formed in liquids. Nitrogen oxides can be formed 

through the dissociation of nitrogen and oxygen (shown in Equations 8-11)  

 

									N& + e% → N% + N• (8) 

									O& + e% → O% + O•	 (9) 

N• + O• → NO	 (10) 

N• + 2O• → NO&	 (11) 

 

These nitrogen oxides subsequently react with water forming acids (shown in Equations 12-

16), which alters the pH and conductivity of the CAP treated solution.  

 

																																																	3NO& +	H&O →	2H( +	2NO*% + NO		 (12) 

NO& +	NO& +	H&O →	HNO* +	HNO& →	NO*% +	NO&% +	2H(	 (13) 
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NO& + NO + H&O →	2HNO& →	NO&
% +	NO&

% +	2H( (14) 

																		NO& +	H&O →	NO*% +	2H(	 (15) 

							4NO +	O& +	2H&O →	4NO&
% +	4H(	 (16) 

 

NO can be oxidised to NO2 when oxygen is used as the working gas, mixed within the 

plasma plume, as in the case of atmospheric plasmas. This increases the concentration of 

NO2. NO2 can further react with hydroxyl radicles to form nitric acid (as per Equation 17).  

 

NO& + 	•OH	 →	HNO* (17) 

 

Further reactions between different species can lead to the formation of peroxynitrous acid 

(for example in acidified conditions) (as per Equation 18) or peroxinitrite ions (in neutral 

conditions or basic conditions, i.e. PBS) (as per Equation 19).136 

 

		NO&
% +	H&O& +	H( → O = NOOH +	H&O	 (18) 

												NO&
% +	 	•OH	 → O = NOO% +	H(	 (19) 

 

1.4.4.1.1 Hydrogen peroxide  

 

H2O2 is a biologically relevant CAP produced RONS, created as per equations 4 & 7 in CAP 

treated solutions, that is already present within host cells. H2O2 is thought to be the most 

prevalent of the CAP generated RONS and as such its production from CAP has been 

extensively characterised.137 Throughout the literature a wide variation of CAP jet 

configurations and operating parameters are used, making it difficult to directly compare the 

generation of H2O2. However, these findings clearly demonstrate that through the tailoring 

of the CAP configuration the concentration of different RONS generated can be finely 

tuned.136  

 

1.4.4.1.2 Nitrite ions  

 

NO2- are formed through the dissolution of NO, which are formed within the gaseous phase 

of the plasma jet. NO2- formation leads to the decrease of pH. The amount of NO2- decreases 

with an increase in flow rate. This is thought to be as a result of the decrease in mixing 
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between the CAP gas and the atmosphere, resulting in the production of fewer RONS.138 

The amount of NO2- formed has been found to decrease with increased flow rate owing to 

less air mixing with the plasma jet channel, resulting in less RONS.138 

 

1.4.5 Antimicrobial Effects of Cold Plasma 

1.4.5.1 Planktonic Bacteria  

 

CAP produces a spectrum of antibacterial RONS, which do not target one specific bacterial 

species. This is one of the major advantages of CAP treatment over traditional antibiotic 

therapy; owing to the range of components, bacteria struggle to mount resistance to CAP 

therapy, whereas antibiotics operate via one mechanism and as such are easy to mitigate 

against. Thus, it is unsurprising the CAP therapy has proven effective in the decontamination 

of foodstuffs, sporulating bacteria, protozoa and bacterial infections.  

 

The use of low voltages limits damage to the fragile surfaces of fresh produce, and has 

enabled CAP to decontaminate eggshells with Salmonella typhimurium on the surface, as 

well as decontaminating lettuce, spinach and strawberries. E. coli O157:H7 is an 

enterohemorrhagic strain of E. coli that causes a number of deaths per annum when ingested 

from contaminated foods. Studies have shown CAP effectively reduces colonisation of E. 

coli in milk and on the leaves of spinach. It has also effectively decontaminated cheese of 

Listeria monocytogenes (L. monocytogenes). Bacillus and Clostridium species produce 

bacterial endospores exhibit high levels of tolerance to environmental stresses such as 

disinfectants and thermal inactivation owing to their impermeable outer later and low water 

content. They can survive in a dormant state for prolonged periods of time, which is of 

particular concern on surfaces within clinical settings and within the food industry. CAP has 

demonstrated efficacy against Clostridium difficile (C. difficile) spores.139 Often hospital-

acquired and broadly resistant to antibiotics, C. difficile causes enteric disease and has a high 

morbidity and mortality within the elderly population.140 

 

CAP treatment has been found to result in a moderate reduction of protozoal viability. 

Cryptosporidium parvum, a common cause of water-borne disease in humans, produces 

oocysts which have exhibited resistance to chemical disinfectants such as chlorine and 

hypochlorous acid. However, CAP treatment resulted in a 4-log reduction of C. parvum 
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oocytes within 30 mins of CAP exposure. Further to this CAP has been found to inactivate 

cysts and trophozoites of Acanthamoeba polyphagia and Acanthamoeba castellannii which 

are ocular pathogens which can cause Acanthamoeba keratitis.141,142 

 

CAP has also been found to be effective in the decontamination of the ESKAPE pathogens. 
143 Interestingly, it has been found that Gram-negative bacterial species are more susceptible 

to CAP treatment than Gram-positive species, despite their double outer membrane. This is 

thought to be due to their thinner cell wall (<10 nm, whereas Gram-positives are between 

20-80 nm thick.144 

 

1.4.5.2 Biofilms 

 

As previously discussed, bacteria often exist as biofilms which are significantly more 

resilient to environmental stresses and antimicrobial treatments. Biofilm formation poses a 

risk to human health when they form on the surfaces of contaminated foods, surfaces within 

a clinical setting, and within wounds. As such, these are potential areas where CAP therapy 

could be utilised.  

 

Due to the great range of variables and potentially bactericidal products of CAP it is 

unsurprising that there are a multitude of mechanisms by which CAP treatment impacts 

bacterial biofilms. A number of studies have evaluated the depth of CAP generated RONS 

penetration into a bacterial biofilm matrix. Xiong et al. demonstrated that helium CAP was 

able to completely inactivate Porphyromonas gingivalis to a depth of 15 µm145 and 

Alkawareek et al. demonstrated that helium CAP was able to penetrate 40 and 80 µm into 

P. aeruginosa biofilms.146 Importantly, findings by Duan et al. suggest that some RONS can 

penetrate through 500 µm of biological tissue, suggesting that the previous studies may have 

underestimated the penetration of RONS.147 Further to this, CAP produced NO can signal 

the dispersal of the biofilm. NO is known to induce dispersal in multiple species including 

P. aeruginosa and Vibrio cholera.148 CAP has also been shown to hinder QS within P. 

aeruginosa through the inactivation and chemical modification of N-acyl-homoserine 

lactone and inactivation of elastase and pyocyanin.149  
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Whilst many studies that show the treatment and eradication of bacterial biofilms using CAP 

treatment, however, comparison is limited owing to the variability in both methodology of 

biofilm formation, bacterial species and plasma source. Despite this, the results are 

promising. Alkawareek et al. observed a 4-log reduction in P. aeruginosa biofilms after 4 

minute treatment with He/O2 plasma.146 Denes et al. found that CAP is also effective in the 

treatment of mixed-species biofilms, decreasing the attachment of S. epidermidis, P, 

fluorescens and S. typhimurium by 56.5% and reducing biofilm formation by 72.2%.150  

 

1.5 Hydrogels  

 

Hydrogels are three-dimensional, cross-linked, polymeric networks which are hydrophilic, 

and swollen with water. They can be produced through the simple reaction of one or more 

different monomers. Alternatively, they are polymeric materials which are able to swell and 

retain water without dissolving in it. Owing to their large water content hydrogels exhibit a 

degree of flexibility. Hydrogels can be made from naturally occurring of synthetically 

created polymers. Their high-water content and flexibility have resulted in great interest for 

application within biomedicine. Hydrogels can be synthesised in a number of ways, 

including polymerisation and parallel cross-linking of multifunctional monomers and 

multiple step procedures involving synthesis of polymer molecules and subsequent cross-

linking of their reactive groups. This synthesis can be tailored for biodegradation, 

mechanical strength, chemical and biological response.  

 

There are numerous ways of classifying a polymer. This can be based on their source in 

which they are classed as either natural or synthetic, according to polymeric composition. 

Homopolymer hydrogels are referred to as polymer network from a single species of 

monomer, copolymers are made up of two or more monomers. These often consist of one 

hydrophilic component and multipolymer interpenetrating polymeric hydrogel, made up of 

two independent cross-linked synthetic/natural polymer components in a network. 

Hydrogels can also be classified based on physical structure, into amorphous, 

semicrystalline and crystalline and physical appearance. They also vary in their electrical 

charge non-ionic, ionic, amphoteric and zwitterionic.151 
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Polymerisation is commonly initiated by compounds which generate free-radicles such as 

2,2-azoisobutyronitrile (AIBN), benzoyl peroxide and ammonium peroxodisulphate or 

alternatively through the use of gamma, UV or electron radiation. As observed in Figure 

1.11A, after polymerisation further purification is required to remove residual monomers. 

Yet this can be avoided through the use of ready-made water-soluble polymers as shown in 

Figure 1.11B. Frequently used polymers include poly(ethylene glycerol), poly(acrylic acid), 

poly(vinylpyrrolidone) poly(vinyl alcohol), polyacrylamide and some polysaccharides.152 

 

(A) 

 

(B) 

 

 
Figure 1.11: Synthesis of hydrogels through three-dimensional polymerisation (A). Synthesis of hydrogel by cross-

linking of ready-made water-soluble polymers (B). (Created using BioRender). 

 

Hydrogels are capable of holding large quantities of water, as water is the greatest 

component of the human body, thus providing great potential for biomedical applications 

such as tissue engineering, biosensors, wound dressings and drug delivery.152 One highly 

advantageous property of hydrogels within biomedicine is that they can be made to be 

responsive to various stimuli within the body such as temperature and pH or alternatively to 

an external stimulus such as light. Schoener et al. developed a pH-responsive hydrogel 
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which releases a therapeutic agent from a hydrogel in response to the change in pH from the 

stomach to the small intestines for the application of treatment of gastrointestinal (GI) and 

colon cancers.153 

 

1.6 Drug Delivery Systems  

 

Drug delivery systems are designed to improve the therapeutic and pharmacological 

properties of a drug through either controlled release or targeted delivery of the drug. This 

is often done through the use of polymer or lipid-based nanoparticles. Traditional systemic 

delivery of drugs is associated with an increased risk of side effects and toxicity. This can 

be bypassed using drug delivery systems to administer the drug locally. Targeted drug 

delivery can be divided into two forms either passive, in which the system utilises tissue 

permeability altered either through disease pathology or owing to the properties of the 

delivery system, or active which is achieved through conjugation of the delivery system to 

a polymer or protein, enabling accumulation of the drug at a specific location.154  

 

The advantage of drug delivery systems is clearly highlighted within cancer therapies. 

Enabling the targeted delivery of often highly toxic chemotherapy drugs to the tumour site 

would significantly reduce side effects and increase the therapeutic dose being delivered to 

site.  Nanoparticles are between 100-500 nm in size and can be modified for optimal 

bioavailability and increase stability which reduced clearance making them good drug 

delivery carriers.155  Montero et al. describe a protein-based nanoparticle using human serum 

albumin-bound paclitaxel nanoparticles to deliver abraxane for improved solubility and 

tumour delivery to the tumour for the treatment of metastatic breast cancer.156   

 

Liposomes are spherical vesicles consisting of one or more phospholipid bilayers, whose 

biochemical and physiochemical properties can easily be manipulated, making attractive 

drug delivery systems.157 Liposomes can encase hydrophilic and lipophilic compounds 

enabling them to carry a range of drugs, further, as they are composed of natural lipids that 

are pharmacologically inactive resulting in minimal toxicity.158 Sriraman et al. report that 

doxorubicin can be administered via liposomes for the treatment of cancer.159  
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1.7 Hydrogels as Drug Delivery Systems  

 

As previously described the biocompatibility of hydrogels enables a broad range of 

biomedical applications of which drug delivery is one. Their cross-linking impedes the 

penetration of proteins reducing degradation risk particularly within the application of 

biological therapeutics.160 The physical properties of hydrogels can be tuned to enable a 

range of pharmacological uses. There are three main categories: macroscopic gels, microgels 

and nanogels, as shown in Figure 1.12.  

 

 
Figure 1.12: Classification of hydrogels based on subsequent route of delivery. (Reproduced with permission from 

Nature Reviews Materials).161 

Microgels and nanogels are significantly smaller than macroscopic hydrogels, their size 

dictating the method of delivery. Microgels smaller than 5 µM are delivered orally or 

through the pulmonary system but not intravascularly owing to their rapid clearance. 162 

Nanogels between 10-100 nm are suitable for intravascular delivery and are particularly 

favoured for the delivery of plasmid DNA within gene therapy, as they improve cellular 

uptake and increase circulation time.163  

 

Macroscopic hydrogels can be surgically implanted or placed on the body for transepithelial 

delivery. In situ gelling hydrogels, such as tetrazine-norbornene chemistry, microporous gels 

which can undergo reversible volume changes, which are frequently used within wound care 
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and shear thinning gels such as alginate hydrogels which are crosslinked with multivalent 

ions, shown in Figure 1.12.161 

 

Within hydrogel drug delivery systems adhesion, toughness, mesh size and crosslinking 

network all play important roles in regulating drug delivery. The ability of a hydrogel to 

adhere to a surface will dictate its utility. For example, the mucosa and epithelial lining of 

the stomach is wet and slippery, as such, hydrogels will be unable to stick and thus will have 

limited utility.164 Yet within wound care hydrogels adhere and are retained for a long time 

at the treatment size, maximising the delivery of the drug, the hydrogel needs to be tough to 

limit risk of tearing.  Mesh size (typically 5-100 nm) is dictated by the crosslinking network 

and allows for liquids and small molecules to diffuse out of the hydrogel, the dynamics and 

rate of diffusion varying depending on mesh size. 161 If the drug is smaller than the mesh 

size it will rapidly diffuse out. Where the mesh is equal to the drug size the drug release will 

be slow and if the drug is bigger than the mesh then the drug is physically trapped in the 

hydrogel.  The entrapped drug can be released, or the rate of release can be increased through 

the degradation of the hydrogel network or increase swelling, owing to the increase the mesh 

size.  This degradation can be achieved either through chemical reactions such as 

degradation of a polymer backbone, through enzymatic hydrolysis or enzymatic activity or 

mechanical means such as the application of ultrasound or a magnetic field. 165,166 
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1.8 Aims and Objectives 

 

• The optimisation of a helium-driven cold atmospheric pressure plasma jet for the 

decontamination of bacterially infected wounds. 

- Quantify the biologically relevant RONS H2O2 and nitrates/nitrites 

- Maximise production of biologically relevant RONS while maintaining favourable 

mechanical interactions with a prototype PVA hydrogel wound dressing 

• Investigate the interactions between bacteria and cold plasma. 

- Role of developing biofilm and bacterially produced enzyme catalase on mitigating 

plasma induced damage 

- Elucidate the mutagenic dose of helium-driven cold plasma  

• Development of a CAP responsive hydrogel for the inhibition and eradication of 

bacterial biofilm-associated wound infection 
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Chapter 2 : Materials, Methods and Instrument Theory 

2.1 Materials  

2.1.1 Bacterial Strains  

 

Staphylococcus aureus (S. aureus) strain H560, Methicillin-resistant Staphylococcus aureus 

(MRSA) strain MRSA252, Pseudomonas aeruginosa (P. aeruginosa) stain PAO1 were 

obtained from the Jenkins Collection, University of Bath. Escherichia coli (E. coli) strain 

NCTC 10418 was obtained from the Yves-Mallard Group, University of Cardiff. E. coli 

strains BW25113, WP2 and uvrA- were purchased from the Yale E. coli stock centre. E. coli 

strains PNW11-1, PNW11-2 and PNW11-4A were donated from the University of British 

Columbia.  

 

2.1.2 Chemicals 

 

Tryptic soy broth (TSB), tryptic soy agar (TSA), brain heart infusion agar (BHIA), fetal 

bovine serum, agarose, H2O2 solution (33% (v/v)), titanium oxysulphate solution, potassium 

iodide, crystal violet, gelred®, glycerol, polyvinyl alcohol (PVA) (MW 146000-186000), 

Whatman®nucleporeTM track-etched membranes (diameter 25 & 19 mm, pore size 0.2 µm, 

polycarbonate) were purchased form Sigma-Aldrich (Poole, Dorset, UK).  

InvitrogenTM molecular probesTM LIVE/DEADTM BacLightTM bacterial viability kit for 

microscopy L7007, Luria Bertani agar (LBA), Luria broth base (Miller’s LB broth 

base)(LB), phosphate buffer saline (PBS) tables, D (+) glucose, TAE buffer and primers 

were purchased from Fischer Scientific (Leicestershire, UK).  

X2 GoTaq mastermix was purchased from New England Biolabs (Ipswich, UK).  
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2.2 Bacterial Growth  

2.2.1 Principles of Bacterial Growth 

 

For consistent and reproducible microbiological data, bacteria are first grown within liquid 

culture medium, containing optimum nutrient concentrations and growth conditions for 

maximum bacterial proliferation and growth. Cultures can then be streaked onto solid agar 

plates to separate out species and obtain pure cultures from mixed broth or maintain pure 

stocks of individual species. From these pure plate cultures, bacterial isolates can be stored 

in 15% (v/v) of glycerol at -80 °C creating freeze stocks for long term storage. Alternatively, 

liquid cultures can be aliquoted onto solid agar to enumerate the total number of bacterial 

cells present within the culture.  

 
Figure 2.1: Standard bacterial growth curve showing change in OD (dotted line) changing with viable bacterial cells 

(solid line) over time. (A) lag phase, (B) exponential phase, (C) stationary phase and (D) death phase.  

Bacterial growth consists of four distinct phases lag, exponential, stationary and death phase 

(Figure 2.1) Lag phase consists of the bacteria preparing for replication, through DNA 

synthesis and upregulation and production of enzymes. Cells then enter the exponential 

phase, where cell replication occurs at that the maximum rate, increasing bacterial 

population at an exponential rate. Then, once the bacterial population have exhausted the 

available space and nutrients, they enter stationary phase where the rate of bacterial growth 

is equal to the rate of death, resulting in no net change. Finally, when conditions exceed the 

bacteria’s tolerance, they move into death phase, when the bacterial population begins to 

decline. Bacterial growth can be monitored photometrically by measuring the optical density 

(OD) of the bacterial culture periodically over time. The OD reading correlates the light 
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scattering of the culture with the quantification of bacterial turbidity. Bacterial growth phase 

and viable cell counts over time are shown in Figure 2.1. 

 

2.2.2 Growth Conditions  

 

All bacteria were maintained in 15% (v/v) glycerol stocks at -80 °C and streaked out on agar 

plates as required. Gram-positive bacteria were grown statically at 37 °C on TSA and Gram-

negative were grown on LBA. Overnight (ON) cultures were grown by inoculating bacterial 

broth with a single bacterial colony and then grown at 37 °C for 18 h at 200 rpm to maintain 

turbidity. Gram-positive bacteria were cultured in TSB and Gram-negative bacteria in LB. 

Subcultures were obtained through dilution of ON culture into either fresh broth or PBS, by 

carrying out a 1 in 1000 dilution to OD of ~ 0.1 (1.5x105 CFU/mL).   

 

2.2.3 Quantification of Bacteria  

 

Colony forming units (CFU) are used to estimate the number of viable bacterial cells in a 

culture as one viable cell gives rise to one colony. CFU enumeration is carried out through 

plate counting. The Miles & Misra method was used to enumerate viable bacteria cells.1 

Bacterial cultures were serially diluted (100 µL in 900 µL of PBS) from 10-1 to 10-8. 10 µL 

of each dilution was then spotted in triplicate, shown in Figure 2.2, to obtain single colonies 

onto the appropriate bacteriological agar.  

 
Figure 2.2: Schematic demonstrating the Miles & Misra method. 

Plates were subsequently incubated, statically for 18 h at 37 °C. After incubation total 

number single colonies per spot were counted, ideally spots with between 20-50 colonies for 

increased accuracy. The average was taken then CFU/mL was calculated according to  

Equation 2.1. 



Chapter 2 

 56 
 

CFU

mL
= 	
Average	number	of	colonies	x	Dilution	factor

Amount	aliquoted	onto	plate
	 (1) 

 

Equation 2.1: Calculation for the enumeration of colony forming units per mL 

 

2.3 Bacterial Biofilm Methods 

2.3.1 96-well Plate Model  

 

ON culture was subcultured by adding 10 µL of ON culture into 10 mL of D (+) glucose 

supplemented broth for the cultivation of biofilms. For Gram-negative species LB broth was 

supplemented with 50% (v/v) of D (+) glucose and for Gram-positive species TSB broth 

was supplemented with 1% (v/v). 200 µL of bacterial subculture was then added to wells of 

96-well plate, with a column of wells with only supplemented 200 µL broth serving as a 

negative control. Plates were then grown statically at either 32 °C or 37 °C for desired time. 

 

2.3.2 Crystal Violet Staining of 96-well Plate Model  

 

96-well plate biofilms were prepared as per 2.3.1. After incubation the contents of the 96-

well plate were removed, and all wells washed two times with sterile PBS (pH 7.4, 25 °C) 

and left to dry at 25 °C for 2-3 h. 210 µL of 0.1% (w/v) crystal violet solution was added to 

all wells and left to incubate at 25 °C for 15 mins. Well content was removed, and all wells 

were washed with sterile PBS two times. The 96-well plate was left to dry for 2-3 h at 25 

°C. 210 µL of 30% (v/v) glacial acetic acid was added to all wells and left to elute dye for 

15 mins. After incubation 125 µL was removed from each well and placed into a fresh 96-

well plate. Absorbance was read at 510 nm using FLUROstart plate reader. All values were 

blank corrected to 125 µL of Glacial Acetic Acid.  

P. aeruginosa biofilms, owing to their motility, form biofilms at the liquid-air interface, 

whereas S. aureus lacks motility and form biofilms by binding to the bottom of the well.  
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2.3.3 Polycarbonate Membrane – In vitro Wound Biofilm Model  

 

Whatman polycarbonate membranes (white,19/25 mm in diameter, pore size 200 nm) were 

placed shiny side up atop BHIA and were UV-C sterilised for 10 minutes (Figure 2.3). For 

19 mm membrane: 20 µL of artificial wound fluid (AWF), 1:1 foetal calf serum and peptone, 

was added to the membrane and allowed to dry. 30 µL of bacterial subculture (~1x105 

CFU/ml) was then added to the membrane. Plates were then incubated statically for desired 

time at either 32 °C or 37 °C. For 25 mm membrane: 30 µL of AWF was added and 50 µL 

of bacterial subculture. Biofilms were then exposed to antimicrobial treatment. After 

exposure to “antimicrobial” polycarbonate biofilms were removed from BHIA using sterile 

tweezers and placed into 5 mL of sterile PBS in 15 mL Falcon tube. The biofilm suspension 

was then vortexed for 1 minute and sonicated for 15 minutes. This was repeated twice to 

ensure removal of all bound cells. The biofilm suspension was then serially diluted and 

viable cells enumerated as in 2.2.3.  

 

 
Figure 2.3: Schematic of polycarbonate membrane wound biofilm model. 

2.4 Drug Susceptibility Assays 

2.4.1 Minimum Inhibitory Concentration (MIC)  

 

Antibiotic minimum inhibitory concentration (MIC)s were determined according to the 

Clinical and Laboratory Standards Institute guidelines.2 Antimicrobial was made up to 

double the desired starting concentration in sterile H2O, if appropriate, antimicrobials were 

filter sterilised prior to experimental use. 200 µL was added to the first column of a 96-well 

plate. 100 µL of antimicrobial was then serially diluted into bacterial broth across the plate 

to column 10. 100 µL of bacterial subculture (~1x106 CFU/mL) was added into all wells in 

column 1-10. 200 µL of broth only was added to column 11 serving as a negative control. 
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200 µL of bacterial subculture was added to column 12 serving as a positive control. MIC 

was defined as between the lowest concentration of antimicrobial that inhibited growth and 

the highest concentration that permitted bacterial growth. This was scored first through 

visualisation, and subsequently quantitatively using FLUROstar plate reader. Absorbance 

was read at 600 nm at 0 h and plates were then grown at 200 rpm for 18 h at 37 °C overnight.  

 

2.4.2 Minimum Biofilm Inhibitory Concentration (MBIC)  

 

ON culture of bacteria was subcultured as before (2.2.2). Serial dilution of antimicrobial was 

carried out as before (2.4.1). Plates were incubated statically for 18 h at 37°C. After 

incubation biofilm inhibition was evaluated using crystal violet staining (2.3.2)  

 

2.4.3 Minimum Biofilm Eradication Concentration (MBEC)  

 

Bacteria were grown as previously described (2.2.2). After 18 h growth contents were 

removed from all wells and 100 µL of fresh glucose supplemented broth was added to 

columns 2-10. Serial dilution of antimicrobial was carried out as in 1.2.4. After serial dilution 

100 µL of fresh broth was added to all wells in columns 1-10. 200 µL was added to columns 

11 and 12 which serve as positive and negative controls respectively. Plates were then 

incubated for 18 h at 37 °C and remaining biofilm was then evaluated using crystal violet 

staining (2.3.2)  

 

2.5 Microscopy  

2.5.1 Scanning Electron Microscopy  

2.5.1.1 Theoretical Background  

 

Scanning electron microscopy (SEM) creates images by scanning the sample surface with a 

focused beam of electrons, upon interaction with atoms of the sample the electrons produce 

signals which correspond to the topography and composition of the sample. Electrons are 

produced at the top of the microscope column and accelerated down through a series of 

apertures and lenses to produce a focused beam of electron. This electron beam will hit the 

sample that is mounted on the stage at the bottom of the microscope. The position the beam 
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hits on the sample can be controlled by the coils above the objective lens. When the electrons 

interact with the sample, they produce secondary electrons, backscattered electrons and 

characteristic X-rays. These signals are collected and form a visual display of the sample. 

Unlike conventional light microscopy, SEM can achieve a resolution of up to 1 nm.  

 

SEM samples require advanced preparation to enable them to withstand the high vacuum 

operating system. Samples often require preparation to increase their electrical conductivity 

and their stability. Non-conducting materials are coated with a thin layer of electrically 

conducting material such as gold or platinum, deposited by low-vacuum sputter coating. In 

addition to metal coating, biological samples are often impregnated with an osmium-based 

stain, like osmium-tetraoxide, to increase their bulk conductivity and thus the image quality. 

SEM samples are required to be completely dry owing to the high vacuum within the 

chamber. As such, biological samples require fixation using a chemical fixative and then 

dehydration, air drying causes collapse and shrinkage of cells, therefore water is replaced 

with ethanol to maintain structural integrity of sample to produce a representative image.3,4 

 

2.5.1.2 Sample Preparation 

 

Biofilms were prepared and treated as before (2.3.3). After treatment they were suspended 

in 1 mL PBS to remove any unbound, planktonic bacteria. Biofilms were then fixed 

overnight in a solution of 3% (v/v) paraformaldehyde, 1.5% (v/v) glutaraldehyde in PBS 

(pH 7.4). Samples were rinsed in osmium tetroxide and dehydrated in ethanol of increasing 

concentrations (70, 80, 90 & 95 %(v/v)). Samples were left to dry and then fixed onto SEM 

platforms using carbon tape. Samples were then stored under vacuum until required. Before 

imaging sputter coated with gold. Imaging was performed using field emission scanning 

electron microscope and standard scanning electron microscope. (JEOL SEM6480LV, Bath, 

UK).  
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2.5.2 Confocal Laser Scanning Microscopy (CLSM)  

2.5.2.1 Theoretical Background  

 

Confocal light scanning microscopy (CLSM) utilises a pinhole conformation to focus light 

onto both living and fixed sample, therefore only what is in the geometric focus of the lens 

is detected.  Owing to the pinhole configuration light can be focused onto separate planes 

while eliminating the out of focus light above and below the sample.5 As such high-powered 

lasers, either argon or krypton/argon, are used to illuminate sample to collect enough light 

to enable resolution as desired plane. CLSM use multiple mirrors enabling scanning linearly 

across x and y axis.6 

 

 
Figure 2.4: Schematic of CLSM optical pathway. (Reproduced with permission from Springer).  

CLSM has frequently be used to study both planktonic bacteria and biofilms. Within 

bacterial  biofilms CLSM has assisted in elucidating composition, metabolism and 

structure.7,8 The ability to study different depths of the biofilm without damage to the 

biological structures is a huge advantage.  
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LIVE/DEAD Assay Theory  

 

LIVE/DEAD staining is used as an indicator of cell viability through determination of the 

cell walls integrity in bacteria including biofilm structures. LIVE/DEAD BacLight® uses a 

dual staining system: SYTO9 and propidium iodide (PI).9 The dyes have two distinct 

wavelengths 510-540 nm for SYTO9 and 620-650 nm for PI. While they both intercalate 

with nucleic acids, enhancing the fluorescence signal, they differ in their cell membrane 

permeability.10 SYTO9 can cross bacterial cell membranes emitting a green signal, enabling 

total cell count, PI can only cross into cells with disrupted membranes, emitting a red 

fluorescence signal.11 

 

2.5.2.2 LIVE/DEAD Staining  

 

Biofilms were grown as per Section 2.3.3. Membranes were carefully removed from agar 

and washed with PBS three times to remove unbound, planktonic bacterial cells. 

BacLightTM, consisting of two nucleic acid dyes: SYTO9 and PI, which were prepared 

according to manufacturer’s instruction. Each biofilm was immersed in 1.5 mL of the 

combined stain mixture for 15 min in the dark at 25 °C. Post staining the biofilms were 

rinsed once with PBS and fixed onto microscope slides. These were then imaged using a 

confocal scanning laser microscope (Zeiss LSM510META). Manipulation of the images and 

3D reconstruction was performed using LSM Image Browser and Imaris 7.4.2 software. 

 

2.6 Cold Atmospheric Pressure Plasma  

2.6.1 Helium Jet Set Up  

 

CAP jet was used as outlined by Szili et al.12 A single copper electrode was attached to either 

a tapered or non-tapered glass tube, helium gas fixed at 40 was run through the system 

controlled by a digital flow meter (either 0.6 or 2 standard litres per minute (SLPM)), Figure 

2.5. Power and voltage were controlled using digital oscilloscope and conditions were fixed 

at 25 kHz and 10 kV. Distance between the bottom of the jet and the treatment substrate, 

known as the gap distance, was fixed at 5 mm unless otherwise specified. Jet was either 

fixed or manually moved by hand.  
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Figure 2.5: CAP jet set up. 

2.6.2 CAP Treatment of Biological Substances 

 

CAP jet was applied atop biological substance, either in wells of a 96-well plate or a 

polycarbonate membrane biofilm on agar surface. The gap distance between CAP jet and 

treatment surface was fixed at 5 mm and was checked before ignition. Jet was either fixed 

in a stationary position or carefully moved by hand on a leaver system across treatment 

surface. After treatment biological material was left to incubate at 25 °C for 30 mins.  

 

2.6.3 PVA Hydrogels  

 

PVA (14,600-18,600 gmol-1, 20% (w/v)) was made up to desired concentration by 

dissolving PVA into milliQ water, and then dissolved and sterilised by autoclaving. Solution 

was stored at room temperature until required. As needed, gels were then cast to desired 

thickness in a petri dish or on 24-well plate. Gels were then cryo-crosslinked at -20 °C and 

thawed. This process was carried out by removing gels from the freezer and defrosting for 

4-6 h at 25 °C, this was considered one freeze/thaw cycle. The hydrogels were placed back 

into the -20 °C overnight and then taken out and defrosted for 4-6 h at 25 °C. This was 

considered two freeze/thaw cycles. This process can be repeated for a number of times, as 

the number of freeze/thaw cycles increases, the density of crosslinking will increase.  
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2.6.4 Absorbance and Fluorescence  

 

Absorbance is the interaction of light with matter, when exposed to light it is either taken in, 

this is called absorbance or lost through scattering. Biomolecules absorb at separate distinct 

wavelengths, for example, haemoglobin absorbs yellow-green light enabling the detection 

and quantification of specific analytes blank corrected to solvent without analyte. While 

traditionally absorbance measurements are carried out in a cuvette, for high throughput 

measurements microplates can be used. The portion of light through the sample is called 

transmission (Equation 2.2) where transmittance (T) is defined as the ration of transmitted 

intensity (I) over the incidence intensity (I0). Absorbance (A) is related to transmittance and 

incident and transmitted intensities (Equation 2.3).13 Absorbance has a logarithmic 

relationship with transmarine, absorbance of 0 would have a transmittance of 1.  

 

N = 	
O

O+
	 (2) 

Equation 2.2: Transmission of light 

 

A = 	−log,+T	 (3) 
Equation 2.3: Absorbance of analyte 

When required the absorbance value can then be used to calculate the concentration of the 

analyte of interest, through either a standard curve of known analyte concentrations against 

absorbance or using the Beer-Lambert law where absorbance (a) is linear to analyte 

concentration (c) multiplied by path length (l) and extinction coefficient (e) (Equation 2.4). 
14 

A = clε	 (4) 
Equation 2.4: Beer-Lambert law 

 

2.6.5 Quantification of CAP Produced RONS 

2.6.5.1 H2O2 Quantification - Potassium Iodide Method 

 

1 M KI solution was made fresh by dissolving 0.83 g of KI into 5 mL of PBS (pH 7.4) as 

required to eliminate risk of degradation. KI standard curve was made by adding 100 µL of 
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KI indicator to 100 µL of H2O2 of known concentrations (1000-100 µM) made from stock 

33% (v/v) H2O2 in a 96-well plate. Plate was left to incubate at 25 °C for 30 minutes to allow 

yellow colour to develop and then absorbance was read at 410 nm using FLUROstar Omega 

plate reader. Readings were blanked against absorbance of KI only.  

 

2.6.5.2 H2O2 Quantification - Titanium Oxysulphate Method 

 

100 µL of Titanium Oxysulphate solution was added to 50 µL of 100 µL of H2O2 of known 

concentrations (1000-100 µM) made from stock 33% (v/v) H2O2 made up in PBS for 

increased stability of H2O2. On addition of titanium oxysulphate a yellow colour formed 

immediately. Absorbance was read immediately at 405 nm using FLUROstar Omega plate 

reader. Readings were blanked against the absorbance of TiOSO4 only.  

 

2.6.5.3 Nitrite Quantification – Griess Test  

 

100 µM nitrite was prepared through diluting stock 0.1 M sodium nitrite. 100 µL of 100 µM 

nitrite standard was serially diluted across a 96-well plate into PBS giving final 

concentrations of 100, 50, 25, 12.5, 6.25, 3.13, 1.6 µM and final volume of 50 µL in each 

well. 50 µL of sulphanilamide solution (1% (w/v) of sulphanilamide, 5% (v/v) phosphoric 

acid) was then added to each well and incubated in the dark for 10 minutes. 50 µL of NED 

solution was then added to all wells and left in the dark for 5-10 minutes, purple/magenta 

colour formed immediately. Absorbance was read at 540 nm immediately.15, 16 

 

2.7 DNA Methods 

2.7.1 Principles of PCR 

 

Developed in the 1980’s by Karl Mullis, PCR enables the synthesis of specific DNA 

fragments using the enzyme DNA-polymerase. Polymerase synthesises a complementary 

sequence of DNA while a specific primer is bound to one of the DNA strains within the 

specific site to initiate synthesis.17 PCR is made up of three steps: denaturation, annealing 

and extension. Denaturation is when the target double stranded DNA is heated to cause the 

strands to separate, then annealing occurs when the primers bind to the regions flanking the 
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desired DNA sequence and finally extension occurs when DNA polymerase extends the 3’ 

end of each primer along the target template strand. These steps are repeated between 25-40 

times, these are referred to as cycles and produce exact replicates of the target sequence at 

an exponential rate.18  

 

To analyse whether the desired PCR product has been produced, PCR products are run on 

an agarose gel using a method known as gel electrophoresis. Gel electrophoresis separates 

out DNA fragments by size using electrical current. DNA is negatively charged so samples 

are loaded in the agarose gel next to the negative electrode and DNA samples will move 

towards the positive electrode. Smaller samples will move through the gel quicker and thus 

move furthest away from the loading wells. Samples are run against a ladder, which contains 

DNA fragments of known lengths for internal comparison and estimation of unknown 

fragment size.  

 

2.7.2 Colony PCR  

 

Single colony was picked and suspended into 2 µl of PBS (pH 7.4) and then added to 15 µl 

of X2 GoTaq master mix with 1 µl of Forward primer and reverse primer. Primers were 

designed specifically for desired fragment and thermocycler conditions were optimised for 

desired product. 

 

2.7.3 Agarose Gel Electrophoresis  

 

Agarose gel electrophoresis was performed to analysis if PCR amplification had been 

successful. A 1% (w/v) agarose gel was prepared using 1x TAE buffer. 1 µl of GelRed dye 

(1:10,000) was added once agarose had cooled to 65°C prior to casting in the gel mould. 

Agarose was then cast into the gel tray and left to set for ~30 mins. 10 µl of 1 kB DNA 

marker was added. 20 µl of DNA sample was loaded into wells and the gel was run at 100 

volts for 45-60 minutes. Bands were visualised under UV light and gel images were taken 

and stored.  
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2.8 Data Analysis  

 

Comparisons between data sets was done either with a Students t-test or a One-way ANOVA 

depending. P-value of <0.05 was considered statistically significant for all cases. Graphs 

were plotted using GraphPad 8.0. Three biological replicates (n=3) were used throughout 

unless otherwise specified and error bars represent standard deviation, unless otherwise 

specified.  
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Chapter 3 : Characterisation of Helium Driven Cold 

Atmospheric Plasma Jet 

 

3.1 Aims  

 

The aims of the work described in this chapter were to characterise and optimise the 

treatment parameters of a helium driven cold atmospheric plasma jet (He-CAP) to maximise 

bacterial killing/inhibition, while maintaining favourable interactions with a hydrogel 

screen. Owing to the large number of variables within the He-CAP set up, the jet nozzle 

conformation, helium flow rate and treatment time were the three variables altered. The 

operating parameters of power and voltage remained constant. Characterisation was 

performed via the quantification of the bactericidal components produced by the He-CAP 

jet, which included: reactive oxygen and nitrogen species (RONS), specifically hydrogen 

peroxide (H2O2) and nitrites and nitrates (NO2-/ NO3-). Moreover, localised elevation in 

temperature and pH change were likely to have an effect on microbial growth. Subsequently, 

the variation in treatment parameters was then evaluated on bacteria both in the planktonic 

state and within biofilms. While He-CAP may be effective in the decontamination of 

bacterially infected wounds, the potentially harmful and mutagenic effects of He-CAP 

derived RONS on healthy mammalian cells is of paramount concern.  

 
Figure 3.1 Schematic representation of a hydrogel “screen” wound dressing applied to a bacterially infected wound. He-

CAP treatment will then be applied atop the hydrogel dressing, allowing bactericidal RONS to diffuse through into the 

wound bed, where they will decontaminate the wound bed and potentially promote healing, whilst also screening out 

RONS which could be harmful to healthy mammalian cells such as keratinocytes. 
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Hydrogel dressings are frequently used in wound care owing to their beneficial healing 

effects such as the ability to maintain a moist healing environment. However, as with all 

conventional wound dressings, they must be changed regularly to observe wound healing 

and to ensure the wound is clean. This process can be painful and can cause trauma to the 

patient and can actually slow healing by removal of new epithelial tissue. Limiting the need 

for dressing changes would improve patient experience as well as potentially aid in healing. 

The utilisation of a hydrogel screen within He-CAP treatment could filter out harmful and 

potentially mutagenic RONS while enabling transport of bactericidal species through into 

the wound milieu for decontamination. This chapter also seeks to characterise the 

interactions of He-CAP and simple, potential hydrogel screens, assessing the delivery of 

RONS through the hydrogel as well as the reduction of bacterial load, both planktonic and 

biofilm, underneath the protective screen.  
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3.2 Chapter Background  

3.2.1 Characterisation of CAP  

 

Cold atmospheric plasmas (CAP) are formed in air via through the partial ionisation of an 

inert gas, and via the through interaction with the atmosphere to produce RONS. RONS are 

widely recognised for their reactivity with biological material. There are numerous variables 

that effect the RONS composition of the plasma: properties of the carrier gas (helium, argon, 

oxygen), flow rate of gas, gap distance (distance from treatment surface to plasma jet), 

voltage, power, treatment time, substrate (earthed or not earthed), direct/ indirect 

application, and physical properties of treatment “tissue” (liquid or solid).  

 

Even small alterations in the CAP configuration can hugely impact the CAP interactions 

with bacterial and mammalian cells. The highly sensitive nature of CAP generation is 

advantageous in that it enables users to tailor the chemical composition for clinical use. For 

medical applications plasmas need to be able to operate under stable, reproducible, 

atmospheric conditions and remain <40°C at the tissue contact point.1 Furthermore, within 

wound care, CAP should ideally produce a high concentration of bactericidal RONS to 

enable a significant reduction in the contaminating bacterial load while limiting damage to 

healthy, mammalian cells. 

 

A key concern in plasma medicine is the control and speciation of secondary RONS 

generated within the activated medium. Owing to complex, plasma-induced liquid phase 

chemistry, (as outlined in Chapter 1), a variety of downstream RONS are generated after 

plasma activation of the substrate, varying from short-lived to long-lived species. Therefore, 

the cocktail of reactive species present within an activated substrate may differ to those 

generated at the point of plasma initiation. To ensure the safety and reproducibility of CAP 

treatment the RONS concentrations must be quantified. Previously, a range of methods have 

been used to gain a comprehensive characterisation of the generated components of CAP 

devices. These methods have included electrical, optical and spectroscopic techniques, flux 

analysis, UV and FTIR absorption spectroscopy and mass spectrometry to quantify ions and 

reactive species.2,3 H2O2 concentration can be quantified using colorimetric assays including 

titanium oxysulphate or potassium iodide as can the nitrite/nitrate ion concentrations through 

the use of the Griess assay (discussed 3.4.1.2).4–6 
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Table 3.1: All possible free-radical and non-radical RONS generated through cold atmospheric pressure plasma.7 

Free Radical Non-Radicals 

Superoxide O2•- Hydrogen peroxide H2O2 

Hydroxyl •OH 

Hydroperoxyl HO2
• 

Alkoxyle RO• 

 Peroxyle RO2• 

Carbon dioxide radical CO2
•- 

Nitric oxide •NO 

Nitrogen dioxide •NO2 

Ozone O3 

Singlet 1O2 

Organic peroxides ROOH 

Peroxynitrite ONOO- 

Nitrosoperoxycarbonate ONOOCO2 

Nitrous acid HNO2 

Peroxynitrite ONOO- 

 

It is important to note that the generation of RONS has been found to vary significantly 

between cell culture media and biocompatible liquids, such as phosphate buffered saline 

(PBS) or Ringer’s solution, with higher concentrations of RONS being generated in cell 

culture media as a result of their higher organic component content.8 This phenomenon could 

have a serious impact on the cytotoxicity data of CAP treatment if not taken into account.  

 

Szili et al. report the major bactericidal, long-lived RONS generated within PBS after 

exposure to He-CAP to be H2O2 and NO2/NO3.3, 9 The focus in this work for characterising 

the He-CAP jet are the bactericidal components H2O2, NO2/NO3 and characteristics that 

could impact the morphology of the hydrogel i.e. temperature and pH. As previously 

discussed, the gas type, voltage, power, earthing and gap distance were maintained at 

constant values throughout, however, the flow rate of the gas, whether a non-tapered or 

tapered glass tube was used, and treatment times were varied to optimise and maximise 

RONS production for bacterial killing, while limiting damage to the hydrogel screen. While 

there is a large body of research on the optimal CAP conditions for high levels of RONS 

production and optimised conditions for killing various bacterial species, the addition of a 

hydrogel screen is novel, therefore there were no standard treatment conditions.  
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3.2.2 Biological Interactions of CAP  

 

CAP derived RONS, UV and electromagnetic fields are known to have an impact on the 

biological function of both bacterial and mammalian cells. CAP produces both H2O2 and 

nitric oxide (NO). Topical H2O2 solution is used within wound clinics at high concentrations 

(1.5-3% (v/v)) for the decontamination of heavily colonised wounds. NO is synthesised by 

inflammatory cells, chiefly macrophages and has been shown to increase healing rates. NO 

promotes angiogenesis, modulates inflammation and effects cell proliferation.10,11 Like 

H2O2, NO is also known to have antimicrobial properties. At low concentrations NO 

promotes the activity and proliferation of immune cells and at high concentrations NO will 

covalently bind to DNA, proteins and lipids, inhibiting and killing the target pathogen.12 

CAP devices can be supplemented with O2, which has been shown to increase oxygenation 

within the treated tissue.13 As chronic wounds are often in a state of chronic hypoxia, which 

impedes healing, oxygenation could prove advantageous within a wound environment.14 

 

While UV’s toxic and mutagenic impact on mammalian cells has been widely studied and 

is a causative agent in some of skin cancers, UV is also known to be toxic to bacteria and is 

a widely used for sterilisation of bacterially contaminated clinical equipment.15 

Electromagnetic fields are also thought to impact bacteria with reports citing impact on DNA 

stability influencing interactions with oxidative radicals,16 increasing the effects of NO 17 

and limiting bacterial growth.18  

 

3.2.3 PVA Hydrogels  

 

Polyvinyl alcohol (PVA) is one of the oldest, most frequently used polymers in wound 

dressings, drug delivery systems, and contact lenses.19 Owing to its high biocompatibility 

and hydrophilic properties PVA hydrogels create a moist environment to promote wound 

healing and can be cross-linked for added structural integrity.20 While aqueous solutions of 

PVA will partially gel at room temperature, increasing elasticity, PVA can be made into a 

more desirable gel by crosslinking. The crosslinking of polymers is broken into two 

categories: physical crosslinking and chemical crosslinking.   
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To create a strong elastic hydrogel with PVA, the aqueous solution is heated to dissolve the 

PVA fully, then the hydrogel is subjected to a series of freeze-thaw cycles. The properties 

can be influenced through alteration of polymer concentration, molecular weight of PVA 

(Mw 146,000-186,000) and number of freeze-thaw cycles.21 Freeze-thawing crosslinks the 

PVA through the formation of crystalline regions. During freezing the densification of the 

PVA macromolecules through the formation of ice crystals (freezing) occurs, then the 

formation of an ordered structure during thaw (heating) period.22 

 

PVA can be mixed with additives such as nanoparticles or other polymers to make complex 

hydrogels. When blended with other substrates crystallisation by heat may be insufficient, 

instead chemical modification will be required. This process involves the modification 

acetalization of the PBA hydroxyl group using a mono-aldehyde like formaldehyde or di-

aldehyde like glutaric aldehyde or glyoxal to form intermolecular crosslinking.23 
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3.3 Methods  

3.3.1 Thermal Imaging 

 

A Xenics® GOBI-640-GigE thermal imaging camera was used to capture relative 

temperature change. Thermal imaging was calibrated against a carbon sheet of known 

temperature. The camera was then set up according to manufacturer’s instructions. 

Temperature was recorded at second intervals using the software and calculated relative to 

surroundings. 

 

3.3.2 pH and Temperature  

 

1 mL of sterile PBS (pH 7.4, 25°C) was aliquoted into a 12-well plate. CAP treatment was 

applied for 1, 5, and 10 minutes, with a gap distance of 5 mm, under standard operating 

conditions with varying flow rate and jet tube conformation. The temperature and pH were 

measured before, immediately after He-CAP treatment and after 30 minutes incubation at 

25°C using Jenway’s temperature and pH probe as per the manufacturer’s instructions.  

 

3.3.3 Scanning Electron Microscopy of PVA Hydrogels 

 

The external topography of the PVA hydrogel surface was analysed by scanning electron 

microscopy (SEM). Gels were freeze-dried (6 hours) and stored under vacuum overnight to 

ensure complete dehydration. SEM was then carried out as per section 2.5.1.2 

 

3.3.4 Rheology  

 

Experiments were run in triplicate. The sample was positioned on the rheometer (AR 2000 

EX) and set with a relaxation time of 60 minutes. Oscillatory amplitude experiments 

maintained a frequency of 10 rad s−1 and performed with the amplitude of oscillation from 

0.01 % up to 100 % at 298 K. Oscillatory frequency sweep experiments maintained a 

constant shear strain (γ) of 0.0925 % with an increasing frequency from 0.1–100 rad s−1 at 

298 K.  

 



Chapter 3 

 78 
 

3.4 Results and Discussion  

3.4.1 Quantification of RONS from He-CAP Jet  

 

He-CAP is known to produce a range of RONS through interactions with the atmosphere, 

however, the majority of these are short-lived and, as such, are difficult to measure directly. 

Owing to their short life, it is likely these species play little role in killing bacteria, instead 

reacting with other species forming longer-lived species.  

 

The plasma plume formation varies visually with the change in helium flow rate and jet 

conformation, with the plume for the tapered jet appearing to be more intense than the non-

tapered jet (Figure 3.2). This finding supports that of Laroussi et al.24 The He-CAP jets 

plume is known to be of a low temperature and so can make contact with biological surfaces 

with reduced impact. Interestingly, previous work has shown that plasma plumes do exhibit 

a high, instantaneous and localised electric field at its tip.25 Owing to the appeared intensity 

of the 0.6 standard litres per minute (SLPM) jet plume and the topography of treatment 

surfaces after exposure, this localised electric field could be the cause of the apparent 

scorching of hydrogels and biofilms surface. 26 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 3.2 He- CAP jet plume when ignited at 25 kHz, 10 kV using non-tapered glass tube (A-B) and tapered glass tube 

(C-D). (A) and (C) used 0.6 standard litres per minute (SLPM) and (B) and (D) used 2 SLPM. 

3.4.1.1 Quantification of Hydrogen Peroxide  

 

H2O2 production was quantified under varying He-CAP jet operating conditions to determine 

optimum conditions for bacterial killing. H2O2 concentration was found to increase linearly 

with an increase in CAP application time and varied, dependent on helium flow rate and jet 

tube conformation. Helium flow rate of 0.6 SLPM was found to produce higher 

concentrations of H2O2 than 2 SLPM regardless of jet conformation (Figure 3.3).  
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There is a significant difference in the concentrations of H2O2 produced using the tapered 

jet upon altering the helium flow rate p<0.0001 (****) for the difference between tapered 

and non-tapered using 0.6 SLPM of helium and p=0.0272 (*) for 2 SLPM. This could be 

due to the alteration of air flow from laminar to turbulent mode, a phenomenon previously 

observed by Baek et al.27 The group observed that, as flow rate was increased the density of 

OH increased, corresponding to the generation of RONS, yet when flow rate was increased 

to 4L/min the OH density was found to decrease. The group attributed this to change of flow 

from laminar to turbulent which resulted in the length of the helium gas stream with low air 

fractions decreasing significantly.27 Further to this, Labay et al. also found that with an 

increase in flow rate there was a decrease in RONS production, however, the group attribute 

this decrease to the acidification of the treatment solution causing NO2- and H2O2 to react 

and produce peroxynitrites.28 

(A) 

 

(B) 

 
(C) 

 

(D) 

 
Figure 3.3 H2O2 quantification for various He- CAP jet conditions 0.6 SLPM of helium through non-tapered jet (A), 2 

SLPM of helium through non-tapered jet (B), 0.6 SLPM of helium through tapered jet (C) and 2 SLPM of helium 

through tapered jet (D). Measured after 30 mins post treatment incubation at 25°C using KI reporter system. Error bars 

denote standard deviation (n=3). 
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3.4.1.1.1 Background and Sensitivity of H2O2 Detection Assays 

 

Two colourmetric assays were found to detect H2O2 Titanium oxysulphate and Potassium 

iodide, the protocol and details of the assays are outlined in section 2.6.5. The concentrations 

of peroxide generated by CAP treatment is known to vary greatly depending on the operating 

parameters, as such the sensitivity of the two assays was assessed to attain when to use them. 

It is important to note that while these assays do quantify the amount if peroxide present it 

is possible that other CAP generated RONS are allow being quantified.  

Titanium Oxysulphate 

 

TiOSO- +	H&O& +	2H&O →	H&TiO- + H&SO-	 (1) 
Equation 3.1 Titanium reaction with peroxide  

Titanium oxysulphate reacts with H2O2 to produce pertitanic acid, which produces an 

instantaneous yellow colour, which is stable for 6 h. 29 As He-CAP is known to produce 

nitrites, sodium azide was added to eliminate the decomposition of H2O2 by nitrites under 

acidic conditions as it reduces nitrites into molecular nitrogen, as such this method measures 

exclusively H2O2.30 The limit of detection (LoD) was calculated to be 110 µM. (Standard 

Curve in Appendix 3.8.3). 

Limit	of	detection = 	
3	x	standard	deviation	of	lowest	used	concentration

gradient	of	standard	curve
(2) 

Equation 3.2 Limit of detection  

Potassium Iodide 

 

2I% + 2H( + H&O& →	 I& +	2H&O	 (3) 
Equation 3.3 Iodide ions and hydrogen peroxide 

I& + I% →	 I*
%	 (4) 

Equation 3.4 Iodine and iodide ion reaction  

On addition of H2O2 the iodide ions (I-) within the potassium iodide (KI) are slowly oxidised 

to iodine (I2), in the presence of iodide, iodine reacts to form triiodide (I*%) which is yellow 

in colour.31 This can be quantified at absorbance 400 nm. LoD for KI is 11.77 µM. While 

the LoD for KI is lower than TiOSO4, at higher concentrations KI tops out and ceases to be 

readable by absorbance owing to the production of O2. This is commonly referred to as the 
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“Elephant’s toothpaste” reaction. O2 is produced during the catalysed decomposition of 

H2O2.32  

 

As such, when high concentrations of H2O2 were expected TiOSO4 was used whereas KI 

was chosen when concentrations were expected in the millimolar range. It is important to 

note that while both methods will quantify H2O2 they are not selective and could be 

quantifying other CAP produced RONS (Standard Curve in Appendix 3.8.1). 

 

3.4.1.2 Quantification of Nitrites  

 

Nitric oxide (NO) is also known to be a product of He-CAP. One method to quantify NO 

production is by the through measurement of NO2-, one of two non-volatile, stable products 

of NO. The Griess assay uses sulphanilamide and N-1-napthyethylenediamine 

dihydrochloride (NED) under acidic conditions (in phosphoric acid). The system is capable 

of detecting nitrites in various environments: serum, urine and plasma.33,34 Importantly it has 

proved highly useful in the quantification of nitrites from CAP sources.35 (Standard Curve 

in Appendix 3.8.2) 

 
 

Figure 3.4 Chemical reaction for measuring NO2
- using the Griess reagent system 

The LoD of the Griess test was found to be 1.73 µM, making the test reasonably sensitive, 

which is important given that the concentrations of nitrites produced by He-CAP treatment 

were expected to be low. Unlike peroxide, the generation of nitrites within He-CAP treated 

liquids was instantaneous, yet owing to their instability, nitrites were not observed after 30 

minutes incubation post He-CAP treatment. Interestingly, nitrite concentration was found to 

be higher with shorter treatment times, decreasing as He-CAP application time increased. 

As treatment time increases there is more time for the nitrites to degrade into more stable 

RONS. This finding was concurrent with literature reporting that, nitrites are short lived and 

will break down into more stable species.8 A gas flow rate of 0.6 SLPM with tapered jet 

conformation was found to give the highest concentration of nitrite ions, similarly with 
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peroxide, this is thought to be owing to the turbulent airflow from the tapered jet 

conformation resulting in an increase in the formation of RONS

 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 
Figure 3.5 NO2

- quantification for various He- CAP jet conditions: 0.6 SLPM of helium through non-tapered jet (A), 2 

SLPM of helium through non-tapered jet (B), 0.6 SLPM of helium through tapered jet (C), and 2 SLPM of helium 

through tapered jet (D). Error bars denote standard deviation (n=3). 

3.4.2 Temperature and pH 

 

While He-CAP jets are reported to be “cold”, for direct application onto human skin to be 

tolerated the temperature needs to be below 40°C and, as previously discussed, the pH of 

the He-CAP treatment environment could have an impact the RONS generated.  Moreover, 

pH plays an important role in maintaining homeostasis. Healthy skin has a pH between 4.0-

6.3, however, chronic wounds have an alkaline pH of 7.15-8.93.36 Wounds with an alkaline 

pH have been found to have a slower rate of healing. Yet acidic wound pH is associated with 

faster wound healing.37  
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Temperature was measured for plasma-liquid treatments to mimic the interactions between 

plasma and the wound interface and plasma-surface biofilm treatments closely representing 

bacterial biofilm-associated wounds as biofilms consist of 90% water. Temperature change 

was measured using a temperature probe for liquids; the thermal imaging camera for the 

surface temperature of polycarbonate membrane biofilms; and pH was recorded using a pH 

probe. 

 

Liquid-Plasma Temperature & pH  

Temperature and pH change were measured in He-CAP treated PBS to assess whether there 

were any significant alterations that may have physiological impact. Owing to experimental 

constrictions temperature and pH had to be measured in 1 mL of PBS rather than the standard 

treatment volume of 350 µL. This was deemed acceptable as previous papers used similar 

volumes.38,39 While the values in Figure 3.6 will not be the same in the standard treatment 

volume, the trend is representative. No significant increase in pH or temperature is observed 

with any He-CAP conditions. This is surprising as literature reports a decrease in pH and 

increase in temperature with increased, He-CAP treatment time but is likely owing to the 

large volume used for the methodology.  
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(A) 

 

(B) 

 
(C) 

 

(D) 

 
Figure 3.6 Temperature (shown in dark grey and recorded on the left axis) and pH change (shown in light grey and 

recorded on the right axis) in 2 mL of PBS (pH 7.4, 21°C) at varying times of exposure to He-CAP jet with different jet 

conformations: 0.6 SLPM He non-tapered jet (A), 2 SLPM He non-tapered jet (B), 0.6 SLPM tapered jet (C), & 2 SLPM 

tapered jet (D). Error bars denote standard deviation (n=3).  

Surface Biofilm – Plasma Temperature 

 

He-CAP jet was applied to P. aeruginosa polycarbonate biofilm to assess if there was any 

heating over time. While the temperature of the biofilm) was found to increase when He-

CAP was applied to the surface, the temperature was found to be between 34 – 40 °C. Thus, 

it was concluded that direct application of the He-CAP jet to skin could be tolerated. Jet flow 

rate of 0.6 SPLM can be seen to emit more heat within its plume (Figure 3.7A) than 2 SLPM 

(Figure 3.7B). Moreover, the addition of a hydrogel screen would be likely to reduce any 

heating effect on the skin surface.  
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Figure 3.7 Thermal imagine of He-CAP jet demonstrating the variation in temperature between helium gas flow rates 

using Xenics GOBI-640-GigE thermal imagine camera 0.6 SLPM He flow rate (A) 2 SLPM He flow rate (B) when 

treating P. aeruginosa (PAO1) biofilm atop PBS buffer. 

 

3.4.3 Interaction of He-CAP Jet with PVA Hydrogel  

 

The overarching aim was to apply the He-CAP jet atop a hydrogel to reduce the penetration 

of damaging RONS, while maximising the bactericidal effects of the longer-lived He-CAP-

generated RONS. The interactions between the hydrogel and He-CAP treatment were a key 

consideration. When operated with a flow rate of 0.6 SLPM, the He-CAP jet produces 

significantly more H2O2 than with a flow of 2 SLPM, thus, 0.6 SPLM would be the optimum 

flow rate to maximise antimicrobial effects. The model hydrogel used was PVA owing to its 

favourable biological interactions and biocompatibility, moisture content and durability.  

 

(A) 

 

(B) 

 
(C)

 

(D) 

 
Figure 3.8 Photos of the visible, structural impact of He-CAP 0.6 SLPM of helium through tapered jet (A), 2 SLPM of 

helium through tapered jet (B), 0.6 SLPM of helium through non-tapered jet (C) and 2 SLPM of helium through non-

tapered jet (D). 
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Through simple visual and microscopic examination (Figure 3.8 & Figure 3.9) the 

structural impact of He-CAP exposure, with variation in operating conditions, on PVA 

hydrogels was assessed. Figure 3.8 shows the visual impact the He-CAP treatment has on 

the PVA gels. When exposed to 0.6 SLPM tapered He-CAP the PVA hydrogels appear to 

dry out and become scorched, as indicated by the yellowing of the gel seen in Figure 3.8A. 

However, none of the other conditions appear to have any significant impact, aside from 

some mild dehydration. Yet, through microscopic examination in Figure 3.9 it can be seen 

that non-tapered 0.6 SLPM (Figure 3.9B) and 2 SLPM (Figure 3.9 C&D) are altering the 

surface morphology of the hydrogel. The increased impact on the hydrogel from the He-

CAP at 0.6 SLPM could be owing to the increase in temperature of the plume as shown in 

Section 3.4.2.  

 
Figure 3.9 Microscopic analysis of the structural integrity of 5% (v/v) PVA gel treated with non-tapered He-CAP jet of 

varying conditions (x40 magnification) untreated control gel (A) 45 seconds with helium flow of 0.6 SLPM (B) 45 

seconds with helium flow of 2 SLPM (C-D).  

The topography of the PVA hydrogel surface after treatment with the varying He-CAP 

operating systems was further investigated using SEM. Owing to the increase in resolution 

it was hoped SEM would give a greater understanding of the impact of the He-CAP plume 

and the hydrogel surface. While the results were impacted by the freeze-drying step of the 

sample preparation, the hydrogels are compared to an untreated, control hydrogel for 

continuity. Figure 3.10 shows the impact He-CAP treatment has on the hydrogel surface. 

Figure 3.10A&B show the smooth surface expected of a PVA hydrogel. However, after 

CAP treatment there is clear change in the surface morphology after both variations of flow 

rate.  
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Figure 3.10 SEM images of 5% (w/v) PVA hydrogel. Untreated control gel (A&B), 5% PVA hydrogel after 5 min 

treatment with He-CAP jet operated at 0.6 SLPM (C&D) & 5% PVA hydrogel after 5 min treatment with He-CAP jet 

operated at 2 SLPM (E&F). He-CAP induced damage is indicated (*). 

Rheology is sensitive to the internal structures of a polymer. The storage modulus (G’) 

reflects the strength of a hydrogel, a larger G’ means a greater strength. G’ measures the 

materials elastic response. The loss modulus (G”) measures the materials viscous response. 

The G” values were ten-fold lower than the G’ value which indicates the gels were quite 

rigid, however this did not change post He-CAP treatment or vary between flow rates 

(Figure 3.11). Interestingly there is a 10-fold decrease in the G’ value post He-CAP 

treatment this would seem to indicate some loss in strength. This could be owing to the 

changes in surface topography observed in Figure 3.10.40,41 

* 

* 
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Figure 3.11 Rheology data for 5% (w/v) PVA hydrogels after He-CAP treatment. Untreated 5% PVA gel (A), 0.6 SLPM 

He-CAP treated 5% PVA gel (B) and 2 SLPM He-CAP treated 5% PVA gel (C) (l) storage modulus (G’) (n) loss 

modulus (G”). Error bars denote standard deviation (n=3). 

 

To further conclude the appropriate, He-CAP conditions for application atop a hydrogel, the 

RONS concentration recovered beneath the hydrogel screen was assessed. Both nitrite and 

H2O2 concentrations were assessed below a 5% (w/v) PVA hydrogel after 1 h incubation 

post exposure to five minutes of He-CAP treatment, with varying operating parameters. 

Figure 3.12 shows that the highest concentration of both NO2- and H2O2 was recovered 

when treated with tapered jet with 0.6 SLPM. However, this operating condition had a 

detrimental effect on the structural integrity of the hydrogel. Thus, it was concluded that 

tapered jet with 0.6 SLPM helium flow was not appropriate for use with a hydrogel screen. 

Interestingly, the RONS recovered in all other conditions were comparable.  
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(A) 

 

(B) 

 
Figure 3.12 recovery of H2O2 and NO2

- below 5% (w/v) PVA hydrogel after 1 h incubation at 25°C after 5 min of He-

CAP treatment using: 0.6 SLPM of helium through non-tapered jet (A), 2 SLPM of helium through non-tapered jet (B), 

0.6 SLPM of helium through tapered jet (C) and 2 SLPM of helium through tapered jet (D). Error bars denote standard 

deviation (n=3). 

As a result of favourable gel interactions, the non-tapered He-CAP conformation was 

concluded to show best potential for application with a hydrogel screen. These conditions 

were therefore assessed for their bactericidal effects.   

 

3.4.4 He-CAP Killing of Planktonic Bacteria  

 

Planktonic bacteria were exposed to He-CAP treatment for varying times. The aim was to 

elucidate He-CAP’s effect on bacterial viability and if, like many antibiotics, He-CAP was 

more effective on specific species of bacteria.  Within the literature He-CAP is widely hailed 

as highly bactericidal against planktonic bacteria.42–44 Importantly, these studies use a 

multitude of different devices and do not consider the interactions between He-CAP device 

and a hydrogel screen.  

 

Initially He-CAP was applied to subcultures of Pseudomonas aeruginosa (P. aeruginosa) 

(PAO1) Staphylococcus aureus (S. aureus) (H560) with CFU/mL of ~1x105, as would be 

used within an MIC assay, the He-CAP was applied, and the bacterial cultures were left to 

grow for 18 h. Five minutes of He-CAP treatment was able to inhibit the proliferation of P. 

aeruginosa but not effective against S. aureus. However, as bacterial cultures of 1x105 

CFU/mL would not be considered an infection within wound care, this was irrelevant. The 

MIC of H2O2 for P. aeruginosa (PAO1) is between 0.7-1.4 mM, S. aureus (H560) and 
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Methicillin-resistant Staphylococcus aureus (MRSA) (MRSA252) is between 3-6 mM 

(Appendix Figure 3.22). As the five minutes of He-CAP treatment produces ~ 300 µM and 

600 µM at 2 SLPM and 0.6 SLPM respectively, it is unsurprising no significant reduction is 

observed for stationary cultures of any of the strains. 

 

He-CAP was then applied to stationary phase bacterial culture to assess its efficacy against 

high titre planktonic infection (at around 1.5 x 109 CFU/ml). To ensure that there was no 

bacterial proliferation, overnight cultures were suspended in PBS prior to He-CAP exposure. 

Cultures were then treated with either 2 SLPM or 0.6 SLPM of helium for 1, 5 and 10 

minutes. After treatment bacteria were left to incubate to allow, He-CAP-produced RONS 

to have time to act, then the viability of remaining culture was enumerated Figure 3.13. No 

significant reduction on bacterial viability was observed with either flow rate or increased 

exposure time.  

 
Figure 3.13 Effects of varying He-CAP helium flow rate and exposure time, using non-tapered jet, on viability of 

stationary phase, planktonic P. aeruginosa (PAO1) (A), S. aureus (H560) (B) and MRSA (MRSA252) (C) cultures in 

PBS. Error bars denote standard deviation (n=3). 
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3.4.5 He-CAP Eradication of Biofilms  

 

He-CAP’s efficacy in reducing bacterial biofilm bioburden has been widely reported within 

the literature, owing to the novel jet set up, the efficacy of the He-CAP jet was tested against 

the most prevalent bacterial species within wounds: P. aeruginosa, S. aureus and MRSA.45 

He-CAP was applied directly to established, 24 h biofilms of area 280 mm2 for 5 minutes 

Figure 3.14). A treatment time of five minutes was used as it was thought to be a feasible 

treatment time for admission within a standard wound clinic.  

 

He-CAP was found to significantly reduce the biofilm bioburden of all three bacterial 

species. This was unexpected, given that He-CAP had such a poor efficacy against 

planktonic cultures of the same bacterial strain, and that each mm2 of biofilm would 

theoretically be exposed to the plasma for 0.945 seconds. This could potentially be as a result 

of changes in metabolic state for bacterial cells within a biofilm causing the bacteria to be 

more susceptible to RONS mediated killing. Alternatively, this unexpected reduction could 

be as a result of an increase in RONS generation on a solid surface. P. aeruginosa biofilms 

were most susceptible to He-CAP treatment, confirming literature reports that Gram-

negative bacteria are more susceptible to He-CAP treatment.46 Interestingly, a greater 

reduction was observed in MRSA than S. aureus. While it is uncertain what caused this 

difference, it is likely owing to variation in peroxide susceptibility or through variation in 

biofilm formation. No significant difference was observed between the two gas flow rates. 

However, qualitatively, the biofilms treated with 0.6 SLPM appear to have some surface 

scorching, which is thought to be as a result of the intensity of the 0.6 SLPM plume, as 

previously discussed. This phenomenon would not be favourable within a clinical 

environment. 

 

 

 

 



Chapter 3 

 92 
 

 
Figure 3.14 Reduction in viable cell count of P. aeruginosa (PAO1) (A), S. aureus (H560) (B) and MRSA (MRSA252) 

(C) 19 mm, 24 h biofilms after exposure to He-CAP for 5 mins at varying helium flow rate (0.6 & 2 SLPM). One-way 

ANOVA, (****) p<0.0001 and (***) p<0.001 compared to untreated. Error bars denote standard deviation (n=3). 

The addition of a dressing on the wound is standard practice within wound care, providing 

a barrier to limit infection and providing a positive environment for healing to occur. The 

addition of a hydrogel dressing would enable the standard wound care to continue in tandem 

with He-CAP decontamination treatment. The He-CAP would be applied on to the hydrogel 

allowing the bactericidal RONS to diffuse into the wound bed and reduce bacterial load, 

while providing a screen from potentially harmful He-CAP-produced RONS and limiting 

the need for painful dressing changes owing partially to the transparency of the hydrogels, 

allowing basic wound assessment to continue without removal. Wound assessment is critical 

and if it can be done without the added infection risk of dressing removal this is highly 

beneficial. The 5% (w/v) PVA “model” hydrogel dressing was applied atop established 24 

h biofilms of three common wound pathogens: P. aeruginosa, S. aureus and MRSA.   

 
Figure 3.15 Reduction in viable cell count of S. aureus (H560), P. aeruginosa (PAO1) and MRSA (MRSA252) 24 h 

biofilms after 5 mins treatment with He-CAP at helium flow rate 0.6 SLPM or 2 SLPM atop a 5% (w/v) PVA hydrogel. 

Students t-test were carried out for statistical analysis. * p = 0.0265, all other comparisons were not significant. Error bars 

denote standard deviation (n=3). 
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Despite the unfavourable He-CAP-gel interactions both flow rates were used for comparison 

of efficacy. Treatment time of five minutes was found to effectively reduce the bioburden in 

direct treatment and was thought to be a reasonable treatment for use within wound clinics, 

thus five minutes of He-CAP was applied to the PVA gel biofilms. No reduction in viable 

cell counts was found for either H560 or MRSA252 strains. However, 2 SLPM He-CAP 

treatment on P. aeruginosa (PAO1) was found to significantly reduce bacterial counts, yet 

0.6 SLPM was not found to have significant effect. While the reduction in viability was only 

0.87 log (±0.23) given that only 20 µM of H2O2 was recovered under the PVA gel after 5 

mins He-CAP treatment, no reduction in bioburden had been expected. The delivery of H2O2 

through a PVA hydrogel was quantified in section 3.4.3, however, previous quantification 

was carried out in a liquid medium (PBS), whereas here we observe the bactericidal effects 

of He-CAP generated RONS through a PVA hydrogel onto a surface biofilm, while biofilms 

are, as previously mentioned, 90% water, it is likely that there are different interactions 

occurring here than in previous experiments. Owing to the observed reduction in bacterial 

cell death in P. aeruginosa (PAO1) biofilms it is likely that greater concentrations of H2O2 

or other RONS have been generated either within the gel or on the biofilm after He-CAP 

treatment. However, further work is required to understand this phenomenon.  

 

3.4.6 He-CAP Inhibition of Biofilm Formation 

 

While He-CAP jet treatment was found to be relatively ineffective for the eradication of an 

established biofilm-associated bacterial infection, it was considered that He-CAP may be 

able to inhibit the formation of a bacterial biofilm during the colonisation stage. As 

previously discussed, when a wound occurs the skin’s integrity is compromised, enabling 

usually harmless bacteria to enter and colonise the wound. When the bacterial population 

outweighs the patient’s immune response an infection occurs. Often when bacteria reach this 

density, known as the “critical threshold”, they form biofilms, which is thought to occur at 

between 8-12 h into colonisation.47 This anticipation of infection based on bacterial cell 

density is a relatively generalised and simplistic model of wound biofilm formation. As 

every patient/ wound is different (based on aetiology, comorbidities, treatment protocols, 

immune system responses/ complications etc.) it is challenging to predict wound progression 

based on microorganism colonisation alone. However, as biofilms are known to be hard to 

treat much research is now focused on the prevention and limitation of biofilm formation, 
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thus enabling easier treatment of bacterial infections and the reduction of antibiotic use. 

Bacterial biofilms were inoculated at 0 h and left to grow on a polycarbonate in vitro wound 

biofilm model for a total of 24 h at 37°C. At various stages during growth the developing 

biofilms were treated for 5 minutes with He-CAP jet. After a total 24 h of growth, biofilms 

were analysed.  

 

3.4.6.1 Reduction in Viability  

 

Biofilms were stripped and viable cells enumerated as previously described. A significant 

reduction in viable cells was observed at all treatment intervention times for P. aeruginosa 

(Figure 3.16). When treatment was administered at 0, 4 and 8 h the total biofilm was reduced 

below 105 CFU/ml, which would no longer be clinically considered as a wound infection.48 

After 8 h the bioburden is still significantly reduced, resulting in the likelihood that 

antimicrobials will be more effective, as well as improving the likelihood of the patient 

clearing the infection through a reduction in the burden on the host immune system and not 

overwhelming the innate immune response. He-CAP intervention was not found to be as 

effective on the developing MRSA252 biofilms. It is known that Gram-positive bacteria, 

such as MRSA, are not as susceptible to He-CAP. This is likely owing to their higher MIC 

(3-6 mM) for H2O2 when compared to Gram-negative bacteria like P. aeruginosa (700-350 

µM). 

 
Figure 3.16 Comparison of viable bacterial cells at 24 h growth after varying He-CAP treatment intervention times 

during bacterial biofilm development. P. aeruginosa (PAO1) (A) MRSA (MRSA 252) (B). One-way ANOVA was 

performed (****) p<0.0001 and (***) p<0.001 (**) <0.01 (*) p<0.01. Error bars denote standard deviation (n=3). 
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3.4.6.2 SEM Visualisation of Treated Biofilm  

 

To further understand the potential mechanism of He-CAP on limiting biofilm formation, 

qualitative visualisation of the biofilms was carried out using SEM. Owing to the high-

resolution, SEM enables visualisation of biofilm architecture, as well as morphology of 

bacterial cells at high resolution. The untreated P. aeruginosa biofilm displays typical 

biofilm morphology, the bacterial cells are densely packed, with an intricate web like 

structure, known as the extracellular matrix (ECM), holding them together (Figure 3.17A). 

After intervention at 8 h into bacterial growth where biofilm formation is likely to begin to 

occur, although this will vary between species, a visible reduction in bacterial density can 

be observed, with vast amounts of cellular debris and loss of the ECM (Figure 3.17B). 

Subsequently, after intervention 12 h into development (Figure 3.17C), there is some 

evidence of the web-like matrix, yet it appears altered when compared to the untreated 

biofilm. Moreover, despite the increase in bacterial cell density relative, in comparison to 

the Figure 3.17B, which is thought to be as a result of having 4 h extra to reach critical mass, 

the bacterial cells morphology appears altered. The cells appear puckered and no longer 

uniform in their appearance. This alteration in morphology was thought to indicate cellular 

death, Lekbach et al. report comparable P. aeruginosa morphology as cellular death, further 

confirming He-CAP induced death.49 However, despite the evidence of considerable He-

CAP induced cell death and structural alterations, the viable cell counts of biofilms with 

treatment intervention times of 12 h are still ~1×109 CFU/mL (Figure 3.16).  

 

 
Figure 3.17 SEM images of P. aeruginosa (PAO1) biofilm after 24 h growth with varying treatment intervention times 

with 5 min exposure to He-CAP jet Untreated control (A) blue arrow indicating the biofilm extracellular matrix. 

Treatment was applied 8 h into biofilm development, red arrow indicating cellular debris (B). Treatment was applied 12 

h into biofilm development. Green arrow indicating dead P. aeruginosa cell (C).  

B 
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3.4.6.3 Confocal Scanning Laser Microscopy of Biofilms using 

LIVE/DEAD Staining  

 

Due to the disparity between SEM and viability data, LIVE/DEAD staining was carried out 

to further understand to impact of He-CAP treatment intervention. The LIVE/DEAD assay 

indicates cellular death through dye uptake. Cells which are dead, have ruptured membranes, 

those that are alive do not. All cells will take up the green dye, however, only dead cells with 

ruptured outer membrane will take up the red dye indicating their death. 

 

The 24 h biofilm that was treated at 8 h, appears to lack cell density, shown by its thin Z 

axis, however, there is a thin green layer suggesting that although there is a loss of bacterial 

cell density, the cells are beginning to recover (Figure 3.18A). At 12 h a thick layer of red, 

dead, cells on the top layer of the markedly denser biofilm, which is indicative of the cellular 

death observed in the SEM results. Yet a thinner, green, live layer of cells remains. A 12 h 

biofilm will have reached a viable cell count of approximately 1x109 CFU/mL, which is a 

considerable cellular density, however, this biofilm would not have the same level of ECM 

as a 24 h biofilm. The significant amount of red, dead cells is likely owing to the lack of 

biofilm architecture providing protection. Yet, the thin green, viable layer underneath is 

thought to be what gives rise to the high number of viable cells found in Figure 3.16A. 
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Figure 3.18 LIVE/DEAD results P. aeruginosa (PAO1) biofilm after 24 h growth with varying treatment intervention 

times with 5 min exposure to He-CAP jet (A) He-CAP intervention 8 h into growth (B) He-CAP intervention 12 h into 

growth. Images are inverted.  
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3.5 Conclusion 

 

This chapter established that the He-CAP treatment applied atop a simple 5% (w/v) PVA 

hydrogel screen was not sufficient for the treatment of bacterial biofilm-associated infections 

within wounds. He-CAP conditions were optimised for maximum bacterial killing by 

quantifying the key bactericidal components: H2O2 and NO, while others may have an effect 

these are the predominant species, while retaining favourable interactions with a model 

hydrogel wound dressing made from PVA. Through cryo-crosslinking the PVA, hydrogel 

has the durability and flexibility to make it a good model wound dressing. A non-tapered jet 

configuration using 2 SLPM of helium was found to produce ~600 µM of H2O2 and 5 µM 

of NO2- upon direct treatment, and while this was not found to have the greatest 

concentrations of RONS of all jet set ups, these conditions interacted the best with the 

hydrogel. 

 

Gas flow rate did not appear to exhibit any effect on the viability of planktonic P. 

aeruginosa, S. aureus or MRSA strains post He-CAP exposure. Interestingly, when used to 

treat established 24 h biofilms, both 0.6 and 2 SLPM were found to significantly reduce the 

bacterial load, with Gram-negative P. aeruginosa being more susceptible to He-CAP 

treatment. This indicates that the He-CAP interactions at liquids and solid interfaces differ 

substantially. This could be owing to the difference in dilution factor between the liquid 

treatment and the polycarbonate membrane or that the generation of bactericidal RONS 

occurs more readily within the biofilm matrix or wound milieu.  

 

The addition of the PVA hydrogel aimed to limit the delivery of potentially harmful RONS 

into the wound while providing a positive healing environment for the wound, with the 

intention of potentially propagating the generation of bactericidal RONS in situ. However, 

on addition of the hydrogel, He-CAP treatment no longer resulted in a reduction of bacterial 

load in drug-resistant or susceptible S. aureus. This was unsurprising, as the concentration 

of H2O2 recovered below the hydrogel was <50 µM. Interestingly, when using 2 SLPM flow 

rate, a ~1-log reduction in bioburden was observed in P. aeruginosa, however, a biofilm of 

109 CFU/mL would still be hard to treat and be considered a serious infection.  
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Importantly, He-CAP application on a developing biofilm was found to significantly reduce 

the formation of P. aeruginosa biofilms in a time-dependent manner. Although He-CAP 

therapy has been found to induce significant bacterial death, the presence of both living and 

dead cells and impacted the structural integrity of the ECM within an established biofilm 

appears to offer some level of protection to the lower layers of biofilm, resulting in retention 

of viable cells. Treating within the early stages of development, before the biofilm has 

become established which would be before 12 h, significantly reduces the bacterial 

bioburden and limits the biofilms development, wherein traditional treatment strategies may 

become more effective. This finding was very encouraging as the reduction in bacterial load 

could increase the efficacy of antimicrobial treatments which would otherwise ineffective 

against the established biofilm.  

 

A therapeutic release system could work well within the envisaged care pathway. In that, 

any large open wound could be treated with He-CAP to reduce bacterial load and limit 

biofilm formation. For example, at the 8 h stage for example a therapeutic hydrogel wound 

dressing could then be added and the He-CAP could be used to release an antibiofilm agent 

further preventing the biofilm formation and ideally eradicating any infection. 
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3.6 Future Work 

 

The He-CAP jet used fails to generate high enough concentrations of H2O2 to have a 

significant impact on bacteria. Owing to the range of variables associated with He-CAP 

therapy, an improved He-CAP jet could be created which generates higher concentrations 

of H2O2. If H2O2 were available in higher concentrations it is likely a greater reduction in 

biofilm bioburden would be observed both with and without a hydrogel wound dressing 

screen. While the simplistic PVA hydrogel failed to enable He-CAP-produced RONS to 

diffuse through it to produce a significant reduction in bacterial biofilm bioburden, the He-

CAP treatment parameters were optimised for tolerable interactions between the hydrogel 

and He-CAP jet. Within the literature there are a range of H2O2 triggered release systems 

which could be added into the hydrogel to respond to He-CAP application, treating the 

wound infection, without the need for a dressing change.   

 

Future work seeks to elucidate other potential biological interactions with He-CAP that may 

produce advantageous responses, such as those observed with the reduction of established 

biofilms and the time-dependent limitation of biofilm formation. Further to this, it would be 

interesting to see if He-CAP intervention during biofilm development makes the bacterial 

biofilm more susceptible to traditional wound infection treatments such as antibiotics. Direct 

treatment of He-CAP for decontamination of wounds is largely supported within literature 

without any consideration of the potentially harmful effects of exposing bacteria to He-CAP. 

Concerningly, direct He-CAP exposure could induce potentially harmful mutations within 

the bacteria and can bacteria mount resistance to He-CAP treatment, future work would seek 

to investigate the mutagenic effect of He-CAP treatment on bacteria. Further to this, while 

this work only quantifies and investigates the impact of H2O2 and nitrates/nitrites as these 

are reported to be the predominant reactive species, future work would seek to quantify and 

understand the role of other RONS and how they potentiate the bacterial reduction induced 

by He-CAP treatment.  
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3.8 Appendix 

3.8.1  KI Standard Curve 

 
Figure 3.19 Standard curve using 1 M KI for the quantification of H2O2. Error bars denote standard deviation (n=3). 

 

3.8.2 Griess Test Standard Curve  

 
Figure 3.20 Standard curve using Griess reagents against known concentrations of sodium nitrate (NO2

-). Error bars 

denote standard deviation (n=3). 
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3.8.3 Titanium Oxysulphate Standard Curve  

 
Figure 3.21 Standard curve of TiOSO4 for the quantification of H2O2. Error bars denote standard deviation (n=3). 

3.8.4 MIC of H2O2 

 
Figure 3.22 MIC of H2O2 for P. aeruginosa (PAO1) (A), S. aureus (H560) (B) and MRSA (MRSA252) (C). Error bars  

denote standard deviation
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Chapter 4 : Role of Biofilm Formation and Bacterially Produced 

Catalase in Mitigating CAP Damage  

 

4.1 Overview  

 

The interactions of cold atmospheric pressure plasma (CAP) and bacteria are still relatively 

unknown, as CAP is championed for application on biofilm-associated wound infection this 

chapter seeks to elucidate the interactions between CAP with bacteria and the effects this 

has on the efficacy of CAP decontamination of wounds. The complex architecture of 

biofilms is known to limit the diffusion of antibiotics through a biofilm, resulting in an 

increase in therapeutic dose. The structure and interactions within a biofilm denote a high 

level of resistance to mechanical and antibiotic treatments.  

 

Szili et al. showed that plasma produced reactive oxygen and nitrogen species (RONS) were 

able to transverse a “tissue model” for enhanced delivery with ROS delivery being recorded 

150 µm – 1.5 mm below the tissue surface.1 While topical treatments struggle to transverse 

the bacterial biofilm matrix, these finding suggest that CAP may enable enhanced delivery 

of RONS through the biological interface delivering bactericidal RONS deep into the 

biofilm and thus enable a greater antibacterial/antibiofilm properties and help account for 

high efficacy against biofilms observed in Chapter 3.  

 

This chapter seeks to elucidate the role of a developing bacterial biofilm in terms of bacterial 

density and species in limiting the transversion of helium-driven cold atmospheric pressure 

plasma (He-CAP) produced RONS into the wound bed compared topical H2O2. Bacteria 

produce a range of defence mechanism to mitigate cellular death, thus it is hypothesised that 

they will produce a response to limit the damage of He-CAP treatment. This chapters seeks 

to understand the role bacterially produced enzymes play in limiting cellular death from He-

CAP exposure.  
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4.2 Chapter Background  

 

4.2.1 Delivery of CAP RONS into Tissue Model  

 

The use of plasmas for the modification of organic surfaces has been widely reported2, yet 

in this application only 1-2 nm of the uppermost surface is modified. Photons and charged 

species are confined to this outer surface and RONS and radicles will react quickly thus 

having limited penetration. However, CAP produced RONS are known to penetrate into 

wounds covered with exudate and clotting blood. Further to this, our work has shown that 

CAP is effective in the treatment of thick biofilms. Szili et al. used a gelatin hydrogel to 

mimic skin with a vesicle-based sensor system suspended within the gel, which would 

rupture releasing a fluorescent dye in response to CAP induced damage. The group found 

that upon application of CAP treatment vesicles deep into the gelatin tissue (>150 µm) model 

were damaged. Further to this, despite the modest diameter of the CAP jet, the group found 

that a circular diameter of ~10 mm around the treatment area was subject to CAP induced 

damage, which is thought to be owing to the gas flow.1 

 

4.2.2 Oxidative Stress  

 

Oxidative stress is caused by an imbalance between the systemic levels of reactive oxygen 

species (ROS) and the biological systems ability to mitigate their impact. While normally 

the system is able to detoxify the reactive species, when they cannot, oxidative damage will 

occur. Oxidative damage can occur in all living organisms and can be catastrophic in its 

effect altering the structure and activity of protein and can even lead to cellular death.3 

 

Within human health, oxidative stress is involved in the development of a variety of medical 

conditions including cancer,4 Alzheimer’s5 and Parkinson.6 However, ROS are produced 

endogenously by phagocytes within immune system to combat infection and also through 

leakage of activated oxygen from mitochondria during oxidative phosphorylation. But in 

order to maintain homeostasis cells have antioxidising systems, predominantly consisting of 

enzymes to mitigate or “mop up” excessive production of ROS and thus limit oxidative 

damage. Such enzymes include superoxide dismutase (SOD), catalase and glutathione 

peroxidase.7 
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4.2.3 E. coli Oxidative Stress Response 

 

All aerobic bacteria, such as Escherichia coli (E.coli), require molecular oxygen (O2) for 

respiration and the generation of energy. However, occasionally O2 can be oxidised by redox 

enzymes in a process creating superoxide (•O2-) a reactive oxygen species (ROS), that can 

cause damage to the bacteria.8 Further to this threat, the environment inhabited by bacteria 

is full of other harmful RONS such as H2O2, NO and hydroxyl radicles (•OH).9 The levels 

of RONS are kept in balance by bacteria using antioxidants, if the balance is disrupted, the 

bacteria’s oxidative stress response (OSR) is engaged to prevent damage (Figure 4.1).  

 

 
Figure 4.1: Schematic of reactive oxygen species induced damage in E. coli (Reproduce with permission from 

International Journal of Current Microbiology and Applied Sciences).10 

E. coli’s OSR is mediated by three key antioxidising pathways: SOD, catalase (kat) and alkyl 

hydroperoxide reductase (Aph). SOD dismutates •O2- to H2O2 and E. coli has two distinct 

SOD Fe-SOD (encoded for by sodA) and Mn-SOD (encoded for by sodB).11 Catalase 

catalyses the breakdown of H2O2 into H2O and O2, E. coli has two catalases hydroperoxidase 

I (HPI) (katG) and hydroperoxidase II (HPII) (katE) (discussed further in section 4.2.5).12 

Aph reduces various endogenous hydroperoxides (encoded for by aphC and aphF) (Figure 

4.1).  
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4.2.4 Catalase  

 

Catalase is an enzyme which catalyses the decomposition of H2O2 into oxygen and water, 

Equation 4.1, and is found in nearly all animals, plants and bacteria. Bacterial catalase is 

located intracellularly and is tested for within clinical microbiology, through application of 

a few drops of 30% (v/v) H2O2. If effervescence is observed a positive result is recorded, to 

assist in classification of bacterial species.13  

 

VWXWYWZ[ 

2H&O& 																		→ 								 O& +	2H&O	 (1) 
Equation 4.1: Breakdown of H2O2 catalysed by catalase 

 

4.2.5 E. coli Catalase  

 

(A) 

 

(B) 

 
Figure 4.2: Structure of HPII (A) and HPI (B). 

E. coli has been found to have two forms of catalase HPI and HPII. HPI is a bifunctional 

enzyme possessing both catalase activity and peroxidase activity, tetrameter is structure with 

a molecular weight of 84,000 Daltons (Da), encoded for by katG (Figure 4.2A).14 HPII is 

monofunctional enzyme, with a molecular weight of 74000 Da, possessing only catalase 

activity and is encoded for by katE (Figure 4.2B).15 
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The expression of the two catalase enzymes is regulated independently of one another. HPI 

expression is induced in the presence of low concentrations of H2O2 through the detection 

of stress by OxyR, which is the main peroxide sensor than regulates the transcription of 

oxidate stress defence genes in response to low levels of H2O2. This results in a 

conformational change on the cysteine residues of katG. Whereas HPII is expressed during 

the transition between exponential growth phase and stationary phase through of 

transcription of RNA polymerase containing sS subunit, a product of rpoS gene, which plays 

a key role in stress response.16 

 

4.2.6 Gene Knockout  

 

Gene function can be evaluated simply through removing the gene, this process is known as 

gene knock-out. After knock-out the gene’s function can be elucidated through the 

evaluation of alterations to phenotype. Gene knockouts can be used to understand the 

complex network of regulation and the gene’s function of a system wide level through the 

use of metabolomics, proteomics and transcriptomics.17 E. coli K-12 was first isolated from 

the stool of a diphtheria patient in 1922 and subsequently served as a standard culture in the 

laboratories of Stanford University owing to its high fertility within a laboratory setting.18 

E. coli K-12 also has lambda phage (l), which contains lac reporting system for isolation of 

mutants. 

 

4.2.7 E. coli Catalase Mutants  

 

Various strains of E. coli lacking the individual catalase have been used to analyse the role 

of the two catalase genes, Narita & Peng describe the construction of single knockouts and 

a catalase double knockout in E. coli. The group achieved this by knocking out the katG 

from the existing katE with kanamycin resistance cassette insertion using the Lambda Red 

recombination system, which is mediated by phage genes on a helper plasmid enabling 

scarless recombination and generation of the knockout. The kanamycin resistance cassette 

was then subsequently removed by the flippase recognition target (FRT) sites by the 

recombinase flippase (FLP) known as (FLP-FRT) recombination system, mediated by 

flippase on the helper plasmid.19 



Chapter 4 

  116 

4.3 Methods  

4.3.1 Materials 

 

Ethylenediaminetetraacetic acid (EDTA), phenylmethlysufonyl fluoride (PMSF), bovine 

serum albumin (BSA) and catalase from bovine liver were all purchased from Sigma-

Aldrich (Poole, UK). Bradford reagent was purchased from Fischer Scientific (Ipswich, 

UK).  

 

4.3.2 Recovery of RONS Through Bacterial Biofilm  

 
Figure 4.3: Experimental set up for the recovery of RONS beneath bacterial biofilm.  

Biofilms were grown on polycarbonate membranes for 8, 12 and 24 h according to protocol 

in Section 2.3.3. Biofilms were removed using sterile forceps and placed atop 400 µL of 

sterile PBS in a 96-well plate as shown in Figure 4.3. Non-tapered CAP jet treatment was 

applied to the biofilm for 5 minutes (0.6 standard litres per minute (SLPM), 25 kHz, 10 kV, 

5 mm distance) without movement. Post treatment biofilms were left to incubated at 25 °C 

for 30 minutes to allow the diffusion of H2O2 through the biofilm. After incubation 100 µL 

of PBS from below the biofilm was removed and the H2O2 concentration was subsequently 

quantified using KI reporter system as per section 2.6.5.1.  

 

4.3.3 PVA/CMC Hydrogel  

 

5% (w/v) solution of polyvinyl alcohol (PVA) was prepared as per 2.6.3. The solution was 

supplemented with carboxymethylcellulose (CMC) and case to a thickness of 10 mm and 

stored for 18 h at -20 °C to promote cryo-crosslinking. Gels were removed and defrosted at 
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room temperature after one freeze-thaw cycle, as per 2.6.3. As required gel discs were cut 

to a diameter 1 cm.  

 

4.3.4 Bacterial Lysis  

 

10 mL of bacterial overnight was centrifuged at 4,000 rpm for 10 minutes and resuspended 

in 1 mL of lysis buffer (Potassium phosphate buffer (5 mM), EDTA (5 mM), 10% (v/v) 

glycerol and PMSF (25 mM)). The suspension was then left to incubate at 37 °C for 1 h to 

completely lyse bacteria. After incubation, the lysis suspension was sonicated for 3 minutes 

with sonication probe (15 sec on ,15 secs off at 50% power). Suspensions were then 

centrifuged at 12,000 rpm for 10 minutes and supernatant, containing catalase, was removed 

and stored at -80 °C. 

 

4.3.5 Protein Quantification – Bradford Assay  

 

Bovine serum albumin (BSA)(Sigma) was diluted from stock (1 mg/mL) in DI water, to 

create a range of BSA concentrations: 100-1000 µg/mL. 10 µL of each concentration was 

added, in triplicate, to a 96-well plate with DI water used as a blank. Bradford reagent 

(Biorad)(Comassie Blue G) was equilibrated to room temperature and 300 µL was added to 

each well. The plate was mixed in a shaker incubator at 25 °C for 15 minutes. The 

absorbance was then read at 595 nm using microtiter plate reader (FluroSTAR, Omega). The 

absorbance from the blank sample was subtracted from all absorbance values, these 

corrected values were then used to create a standard curve – BSA concentration vs 

absorbance (Appendix 4.8.1). 10 µL of bacterial lysate containing unknown amounts of 

protein was added in triplicate to microtiter plate and 300 µL of Bradford reagent was then 

added, and the protocol was repeated as before. The absorbance readings for the unknown 

could then be used to calculate the protein concentration from the standard curve. 
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4.3.6 Catalase Activity Assay 

 

Bacterial lysate was defrosted at room temperature and then incubated at 37 °C for 2 h to 

activate catalase enzyme. Agilent UV-Vis was blank corrected with 3 mL of PBS (pH 7.4, 

25 °C) in 3 mL quartz cuvette. 100 µL of catalase lysate was added to 2.9 mL of 0.033% 

(v/v) of H2O2, diluted from 33% stock into PBS. The absorbance was recorded at 240 nm, 

at 10 second intervals for 60 seconds. Rate of decrease in absorbance of H2O2 corresponded 

to catalase activity. Activity was calculated using Equation 4.2, where absorbance was 

recorded at time (T) 60 s was subtracted from absorbance at 0 s multiplied by total volume 

(Vt) which was 3 mL. Where extinction coefficient at 240 nm (e&-+) was 43.6 mol-1 cm-1 

multiplied by optical length of the cuvette (d), which was 10 mm, the volume of enzyme 

sample (Vs) which was 0.1 mL, the protein concentration (Cr) which was quantified using 

the Bradford assay as per section 4.3.5. 20 

 

Catalase	 \
U

mg
] = 	

(AB240	nm	at	T = 0	 − 	AB240	nm	at	T = 60	)	x	Vt

e&-+	x	d	x	Vs	x	Cr	x	0.001
(2) 

Equation 4.2: Calculation for catalase activity using the change in H2O2 absorbance at 240 nm. 

4.3.7 H2O2 Susceptibility  

 

Bacteria were grown overnight as standard, washed and resuspended in 10 mL of PBS (pH 

7.4, 25 °C). 400 µL of ON culture in a 12 well plate, was the treated with non-tapered He-

CAP jet for 5 mins at (0.6 SLPM 25 kHz, 10 kV, 5 mm distance). After treatment bacteria 

was incubated for 30 mins at 25 °C. He-CAP treated bacteria and untreated bacteria were 

plated out onto LB agar for the enumeration of surviving CFU/mL. 200 µL of He-CAP 

treated bacteria and untreated bacteria were added to 200 µL of H2O2 (20 mM) and incubated 

for 1 h at 37°C. After incubation H2O2 treated bacteria were plated out to calculate survival.  

The susceptibility of bacteria to H2O2 was then calculated using Equation 4.3. 

 

Percentage	Susceptibility	(%) = 	
Number	of	bacteria	after	H&O&

Number	of	bacteria	without	H&O&	
	 (3) 

Equation 4.3: Calculation of bacterial susceptibility to H2O2. 
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4.4 Results and Discussion 

4.4.1 Transmission of RONS through Bacterial Biofilm  

 

The findings of Szili et al. discussed in section 4.2.1 show that He-CAP can deliver ROS 

and theoretically induce cellular damage 150 µm deep into a biological tissue and effecting 

cells within a 10 mm circular radius. Within wound bacterial biofilm treatment this finding 

is encouraging and helps explain the efficacy of He-CAP against biofilms observed in 

Chapter 3. While the He-CAP jet was found to be relatively ineffective against planktonic 

culture of bacteria, its efficacy against bacterial biofilms was found to be significant, despite 

antimicrobials typically requiring 10-1000 times the MIC for biofilm eradication. The 

findings of Szili et al. potentially explain this phenomenon. Therefore, their methodology 

was adapted to assess the delivery of RONS through bacterial biofilms of progressive 

maturities to assess the effects of both bacterial cellular density and the maturation of biofilm 

formation. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas 

aeruginosa (P. aeruginosa) are the most frequently isolated bacterial species from infected 

wounds, as such were thought to be the most relevant species to assess. Furthermore, they 

are Gram-positive and Gram-negative respectively, as He-CAP is known to have a greater 

effect on Gram-negative species it was important to include both.  

 

During the development of bacterial biofilms there is an increase in cellular density owing 

to an increase in the number of viable cells, once biofilms reach the “critical colonisation 

threshold” they begin to form biofilms. Due to complex intercellular communication through 

quorum sensing, forming extra-cellular matrix and central cells becoming metabolically 

dormant biofilms are hard to treat. To understand the role of a developing biofilm on the 

effects of He-CAP, biofilms of varying maturity were used to assess the role of both cellular 

density and the formation of biofilm architecture.  

 

The cellular density of the developing biofilms was elucidated first, both P. aeruginosa and 

MRSA biofilms were grown for 8, 12 and 24 h and found to have to comparable cell density 

at all three time points (Figure 4.4). After 12 h the biofilms reach the “critical colonisation 

threshold”, whereby the increase in number of viable cells stops and the community begin 

to form the architecture of a biofilm through release of toxins and development of 

extracellular matrix. Using these three stages in development we can assess the effects of 
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both an increase in bacterial cell density (between 8-12 hours) and the development of 

biofilm architecture (between 12-24 hours).   

 

 
Figure 4.4: Quantification of viable cells of MRSA (MRSA252) and P. aeruginosa (PAO1) biofilms at 8, 12 and 24 

hours of growth. Error bars denote the standard deviation (n=3). (This graph was made in collaboration with Dr H. 

Hathaway and reproduced with her permission).  

 

The in vitro wound biofilms are formed on a nano-porous polycarbonate membrane, to 

ensure any measured effect on RONS recovery was solely owing to the developing bacterial 

biofilm, the recovery beneath the membrane impregnated with artificial wound fluid (AWF) 

was assessed. After five minutes of CAP treatment, a 33% reduction in H2O2 recovered 

beneath the membrane was observed when compared to direct treatment of PBS. This was 

then taken into consideration as the transmission factor (TF) with a value of 0.67 to 

normalise values against the interference of the membrane.  AWF impregnated membranes 

were incubated for 8, 12 and 24 h and the TF was measured to ensure there was no change. 

The results in Figure 4.4 show that there is no significant difference in recovered H2O2 

suggesting that AWF has little impact on H2O2 transmission.  
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Table 4.1: Concentration of H2O2 recovered beneath polycarbonate membrane impregnated with AWF after incubation 

for 8, 12 and 24 h at 37°C normalised to TF.  

Incubation time [H2O2]/TF (µM) 

8 374.9 ± 40.4 

12 520.5 ± 13.1 

24 400.2 ± 96.8 

 

The concentration of H2O2 beneath bacterial biofilms was then analysed at 8, 12 and 24 h, 

relative to the membrane with AWF, Figure 4.5. 8 h biofilms with cell density of ~1x109 

CFU/mL were found to reduce the recovered H2O2 by half. 12 h and 24 h biofilms with 

density ~1x1010 CFU/mL almost completely prevent H2O2 from passing through them. The 

recovery of H2O2 beneath 24 h biofilms was found to be below the LoD of the KI reporter 

system. However, no significant difference was found between 12 and 24 h biofilms was 

observed between the two species, at the same time point (Figure 4.5).  

 
Figure 4.5: Recovery of H2O2 through MRSA (MRSA252) and P. aeruginosa (PAO1) biofilms (normalised to TF) of 

varying maturity from 8 – 24 h. Error bars denote the standard deviation (n=3). (This graph was made in collaboration 

with Dr H. Hathaway and reproduced with her permission).   

Further to this, the time-dependent generation and/or diffusion of He-CAP generated H2O2 

was assessed using a PVA/CMC hydrogel to mimic human skin on top PBS. He-CAP 
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treatment was applied to the hydrogel for five minutes, in the same way as in the bacterial 

biofilm experiment. The concentration of H2O2 beneath the hydrogel was analysed at various 

time points post treatment (Figure 4.6A). As post treatment incubation time was increased, 

the concentration of H2O2 recovered increased in a time dependent manner.  

 

(A) 

 

(B) 

 
Figure 4.6: H2O2 recovery beneath PVA/CMC hydrogel after varying post CAP treatment incubation times (A) and 

recovery beneath P. aeruginosa (PAO1) and MRSA (MRSA252) biofilms after 4 hours rest (B). Error bars denote the 

standard deviation (n=3). (This graph was made in collaboration with Dr H. Hathaway and reproduced with her 

permission).   

However, when the bacterial biofilms were left to incubate after He-CAP treatment the same 

trend was not observed Figure 4.6B. There was a significant reduction in the amount of 

H2O2 recovered beneath both P. aeruginosa and MRSA biofilms suggesting that there is a 

bacterial mechanism resulting in the reduction of the amount of H2O2 recovered. Previous 

studies have shown that bacterially produced enzyme catalase has a protective role 

mitigating H2O2 damage by catalysing its decomposition into water and oxygen. Both 

MRSA and P. aeruginosa are catalase-positive so this could explain the observed trend. 

Further work will seek to further elucidate this phenomenon.  

 

4.4.2 Protective Role of Catalase Against CAP  

 

Findings in section 4.4.1 suggest that bacterial biofilms are able to reduce the amount of He-

CAP produced H2O2, a potential mechanism of this reduction is thought to be owing to 

catalase, an enzyme which catalyses the decomposition of H2O2 to water and oxygen. To 

assess this, catalase knockout strains of E. coli were obtained and compared to wild type. If 
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catalase is playing a role in reducing CAP produced H2O2 the knockout strains will be more 

susceptible to CAP treatment and will permit greater concentrations of H2O2 through their 

biofilms.  

 

4.4.3 Characterisation of Catalase Mutants  

 

Catalase single and double knockout E. coli were made by Narita et al. and were acquired 

from the University of British Columbia and parental strain, which is a K-12 derivative, 

BW25113 was purchased from the Yale E. coli stock centre. The catalase test was used to 

confirm the absence of catalase within the E. coli strains. If catalase is present, then 

effervescence is observed owing to the breakdown of H2O2 into H2O and O2. Table 4.2 

shows that strain PNW11-2 and parent strain BW25113 are catalase positive. PNW11-2 is 

positive owing to the presence of katE gene, which is upregulated during stationary phase 

producing HPII. Whereas PNW11-1 has katG which is upregulated during the exponential 

phase of growth producing HPI, as such it would not be active in the stationary phase culture. 

As stationary phase bacteria are used for the catalase test a positive result was expected from 

PNW11-2 and the parental strains BW25113 as it is wild type for catalase activity. However, 

NW11-1 is devoid of catalase activity at stationary phase and PNW11-4A is null for catalase, 

so a negative result was expected. H2O2 susceptibility was further assessed using MIC 

testing, PNW11-1 was found to be least susceptible to H2O2, this is thought to be owing to 

the presence of katG, which will be upregulated in the presence of H2O2 to produce HPI. As 

the cultures are grown over 18 h in presence of H2O2, the H2O2 is thought to induce HPI 

production, resulting in degradation of H2O2 requiring a higher concentration of H2O2 to 

inhibit growth.16 Whereas PNW11-2 would only express katE during stationary phase ay 

which stage the bacterial growth is likely to have been significantly inhibited by the presence 

of H2O2. 
Table 4.2: Characteristics of E. coli knock-out strains, description of gene knockout, catalase test results and H2O2 MIC. 

Strain Name Catalase 

Present 

Expression Gene Knock-

out 

Catalase Test H2O2 MIC 

(mM) 

PNW11-1 HPI Exponential DkatE Negative 1.09-2.17 

PNW11-2 HPII Stationary DkatG Positive 0.27-0.54 

PNW11-4A None None DkatEDkatG Negative 0.07-0.14 

BW25113 HPI & HPII Both Parental Strain Positive 0.27-0.54 
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As studies were focused on biofilms rather than planktonic bacteria, the strains were assessed 

for that biofilm formation abilities, as often genetic modification can alter bacterial growth. 

The four E. coli strains were used to grow simple 96-well plate biofilms and crystal violet 

staining was carried out on the 24 h biofilms. Their biomass was compared to the wild type, 

parental stain and no significant difference was found between the four strains used (Figure 

4.7). 

 

 
Figure 4.7: Analysis of E. coli strain biofilm biomass using 96-well plate assay after 24 h growth at 37°C. Absorbance at 

570 nm corresponds to bacterial biofilm biomass (n=4). 

 

 

4.4.4 CAP Susceptibility  

 

As earlier hypothesised, if catalase was playing a key part in protecting bacterial biofilms 

from the damaging effects of CAP produced H2O2 then bacteria which are devoid of catalase 

would be more susceptible to CAP treatment. The E. coli catalase mutant strains were grown 

for 24 hours to produce mature biofilms. They were then treated with CAP for five minutes 

and reduction in viable cell count was compared to wild type parent strain E. coli BW25113 

(Figure 4.8). 
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Figure 4.8: Log reduction of catalase mutant E. coli biofilms CFU/mL which were grown for 24 h and treated with CAP 

jet for 5 minutes using non-tapered jet at 5 mm distance. Error bars represent standard deviation, One-way ANOVA was 

carried out * p = 0.0122 (n=3). 

E. coli catalase knockout biofilm He-CAP susceptibility reflects the trend of planktonic 

mutants in presence of H2O2 (Table 4.2). The parental strain, catalase wild type, BW25113 

is least susceptible to He-CAP induced death, with double knockout PNW11-4A being most 

susceptible, with a significant reduction in bacterial viability when compared to the parental 

strain. Interestingly, there is no significant difference between the two single knockout 

strains. This is unexpected, as PNW11-1 lacks HPII, as HPII is expressed during stationary 

phase, PNW11-1 was expected to be more susceptible to He-CAP induced killing. However, 

there is no significant difference between PNW11-1, PNW11-2 and BW25113.  

 

To further understand what effect the He-CAP was having on the E. coli mutant biofilms 

SEM was carried out to observe the morphology of biofilms post He-CAP treatment relative 

to untreated bacterial biofilms (Figure 4.9). While only a qualitative method, visually, the 

He-CAP induced damage to the E. coli biofilms does correspond to the quantitative viable 

cell data. Literature reports that the shortening of bacterial cells corresponds to bacterial 

death,21,22 which is what is observed in the He-CAP treated biofilms to increasing degrees 

between the parental wild-type stain, single knockouts and double knockout.  
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Figure 4.9: Scanning electron microscopy images of E. coli 24 h biofilms untreated control (A,C,E & G) and after 5 

mins CAP treatment (B,D,F & H) at x5000 magnification. E. coli BW25113 (A-B), PNW11-1 (C-D), PNW11-2 (E-F), 

and PNW11-4A (G-H). 
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Untreated E. coli catalase mutant biofilms morphologically look like bacterial biofilms, with 

dense populations of bacteria although lacking the distinct extracellular matrix (ECM), this 

could be owing to sample preparation as control strain lacks ECM. Comparatively, post He-

CAP E. coli biofilms look morphologically irregular, shorter in length, with distinct damage 

to cellular surface. This corresponds to the findings of previous research investigating the 

morphological effects of He-CAP treatment on bacteria and corresponds to the damage 

observed in Chapter 3. Further quantitative analysis, through measurement of cell length, 

confirms that E. coli DkatE/DkatG biofilms are most susceptible to He-CAP induced death 

(Figure 4.10).   

 

 
Figure 4.10: Comparison on E. coli bacterial cell length in untreated biofilms (l) compared to cellular length in biofilms 

after 5 mins treatment with CAP (n).  

 

4.4.5 RONS Through Mutant Biofilm 

 

To assess the role of catalase on hindering the delivery of CAP produced H2O2 through a 

biofilm, mutant biofilms were grown for 8, 12 and 24 h owing to the differing expression of 

HPI and HPII during biofilm growth and for comparison to initial study. As previous work 

confirmed that the bacterial density contributes to limiting H2O2 delivery viable bacteria 

were assessed for variance to ensure no significant difference. At 8 h growth ( 
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Figure 4.11A) the greatest concentration of H2O2 was recovered through DkatE/DkatG 

biofilm owing to complete absence of catalase. Interestingly, significantly more H2O2 was 

found beneath a DkatG biofilm owing to presence of HPII. HPII is expressed during 

exponential growth phase resulting in degradation of He-CAP produced H2O2. After 12 h 

growth ( 

Figure 4.11B) H2O2 delivery through wild-type and single knockout biofilms was reduced. 

While H2O2 recovery through DkatE/DkatG is significantly higher, owing to lack of catalase 

activity. After 24 h H2O2 is only recovered through DkatE/DkatG biofilms owing to a lack 

of catalase with all other biofilms have average H2O2 concentrations below the LoD for the 

KI assay (~11  µM). These results conclude that catalase plays a key role in limiting the 

delivery of He-CAP produced H2O2 into the biofilm. 

 

 
 

Figure 4.11: Recovery of H2O2 through knockout E. coli biofilms relative to CFU/ mL after 8 h (A) 12 h (B) and 24 h 

(C) of growth. H2O2 concentration is black and recorded on the left y-axis and CFU/mL is grey and recorded on the right 

y-axis. Error bars denote standard deviation (n=3).  
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4.4.6 Quantification of Catalase Activity  

 

Catalase was extracted from E. coli samples after 5 mins He-CAP treatment and activity was 

assayed and compared to untreated control Table 4.3. There was found to be an upregulation 

of catalase after He-CAP treatment further indicating that He-CAP does cause an 

upregulation of catalase activity. This upregulation is thought to play a key role in limiting 

the delivery of H2O2 into the dense bacterial biofilms. E. coli BW25113 and NCTC 10418 

were assessed as they are both wild type for catalase activity, BW25113 is the parental strain 

of the catalase knockouts, and NCTC 10418 is a clinically relevant strain.  
Table 4.3: Quantification of E. coli catalase activity with and without He-CAP treatment. 

Strain Without He-CAP treatment 
(U/mg) 

After 5 min He-CAP treatment 
(U/mg) 

E. coli BW25113 0.24 ± 0.23 4.5 ± 0.45 

E. coli NCTC 10418 0.32 ± 0.162 5.1 ± 0.071 

 

4.4.7 Role of Catalase Concentration 

 

To further prove the impact that catalase has on the delivery of H2O2 through a bacterial 

biofilm, exogenous bovine liver catalase was added to the double knockout strain PNW11-

4A of various concentrations to understand the role of catalase concentration.  

 
Figure 4.12: Inhibitor-response curve of H2O2 recovered through 24 h E. coli PNW11-4A biofilm impregnated with 

varying doses of bovine catalase. Error bars denote standard deviation (n=3).  
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24 h PNW11-4A biofilms were impregnated with bovine catalase and treated for 5 mins with 

He-CAP. After 30 minutes incubation the H2O2 below the biofilm was quantified and plotted 

(Figure 4.12). As the amount of catalase increases the H2O2 recovered decreases, owing to 

catalase degrading the H2O2. The IC50 was found to be between 5.6 – 7.89 U/mL, meaning 

5.6-7.89 U/mg of catalase will reduce the concentration of H2O2 recovered by 50%. This 

confirms the quantification of catalase (Section 4.4.6) as BW25113 produces approximately 

4.5 U/mL of catalase and approximately 10 µM of H2O2 is recovered as would be expected 

from inhibition curve. While these mutant colonies have been well characterised by Narita 

et al. further work would seek to restore the functionality of the null mutant by knocking the 

gene back in to further confirm that the lack of catalase was impacting H2O2 recovery. 

 

4.4.8 Susceptibility to H2O2 

 

As He-CAP appears to upregulate catalase activity, to further test the potential implications 

of this H2O2 susceptibility was tested with and without He-CAP treatment (Figure 4.13). 

After 5 min He-CAP treatment E. coli BW25113 was found to be significantly less 

susceptible to H2O2 induced killing owing to the upregulation of catalase expression. Within 

a clinical environment this could have significant impact, if after only 5 minutes He-CAP 

treatment the bacteria are less susceptible to H2O2 killing is it likely that with repeated He-

CAP application the therapeutic effects will lessen.  

 
Figure 4.13: E. coli BW25113 was treated for 5 mins with CAP and then exposed to H2O2 (20 mM) for 1 h at 37°C, 

survival was calculated. Error bars denote standard deviation (n=3) Students t-test was carried out, p<0.01. 
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4.5 Conclusion  

 

He-CAP has been shown to deliver RONS deep into a tissue model and is effective in 

reducing the bioburden of bacterial biofilms despite producing low concentrations of RONS. 

Here, is has been shown that He-CAP can deliver RONS through a thick biofilm of ~1x109 

CFU/mL after 8 hours of growth, however, the recovery of H2O2 is reduced by half by the 

biofilm. After 12 and 24 hours of biofilm growth, the recovery of H2O2 is almost completely 

prevented by the bacterial biofilm. While the results at 8 h help explain the results observed 

in Chapter 3, where He-CAP intervention up to 8 h was found to significantly limit the 

formation of P. aeruginosa biofilms. After He-CAP was applied to a PVA/CMC hydrogel 

“model biofilm”, under the same conditions as the bacterial biofilm and left to incubate after 

treatment, the amount of H2O2 recovered was found to increase with increased incubation 

time, suggesting the H2O2 takes time to diffuse through a physical barrier. However, when 

the 8 h bacterial biofilms were left to incubate for 4 h post treatment no H2O2 was recovered 

beneath them, implying that the bacteria are removing the H2O2. 

 

Using E. coli mutant strains which had either HPI, HPII or both knocked out the role of 

catalase was elucidated, and it was shown that if catalase was completely removed the 

recovery of H2O2 beneath the biofilm was significantly higher than the strains that had 

catalase activity. Catalase activity was found to play a protective role against He-CAP 

induced damage within biofilms, the E. coli biofilm null of catalase activity was significantly 

reduced by He-CAP treatment whereas those with either HPI or HPII activity or wild type 

parent strain were not affected. Catalase has also been shown to be upregulated after He-

CAP exposure, accounting for the reduction in H2O2 recovery and lack of effect on the 

catalase positive E. coli biofilms, further evidence of the protective effect of catalase against 

He-CAP treatment is an observed decrease in susceptibility of bacteria to H2O2 after He-

CAP exposure.  
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4.6 Future Work  

 

This work shows that there is a strong correlation between catalase activity and complete 

reduction of delivery of H2O2 deep into the biofilm after 24 h, yet within null catalase species 

of E. coli there is only a 50% reduction owing to the bacterial density or alternatively through 

the protective role of alterative oxidative stress enzymes such as SOD or glutathione oxidase. 

Future work would seek to elucidate the role of these enzymes in mitigating CAP induced 

death.  

 

Further to this, owing to the apparent prevalent role of catalase in mitigating the effect of 

He-CAP it is possible that catalase negative strains of bacteria would be more susceptible to 

CAP treatment such as Streptococci. Streptococcus is known to cause cellulitis, as well as 

impetigo which are both common skin infections. While multiple studies have investigated 

the efficacy of cold plasma against a variety of different bacterial species no studies thus far 

have compared the efficacy of He-CAP on catalase positive strains comparing with catalase 

negative strains. Future work would seek to elucidate this and to create a library of catalase 

null-mutants for direct comparison.  
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4.8 Appendix 

4.8.1 Bradford Assay – Standard Curve 

 

 
Figure 4.14: Standard curve for Bradford assay using bovine serum albumin (BSA) of varying concentrations. LoD 2.5 

µg/mL. Error bars represent the standard deviation (n=3).  
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Chapter 5 : Cold Atmospheric Plasma Induced Mutagenesis  

5.1 Aims  

 

The mutagenic effects of helium-drive cold atmospheric plasma (He-CAP) have previously 

been studied within mammalian cells, however their molecular interactions with bacterial 

cells have seldom been investigated. UV and X-ionising radiation are used within bacterial 

decontamination and are known to have mutagenic potential within bacteria and as such, 

they are assigned a mutagenic dose, whereby the mutagenic effects are estimated in 

accordance with the dose.  

 

This chapter seeks to elucidate the mutagenic dose of He-CAP treatment through 

comparison with the known mutagens, UV and X-ionising irradiation. These mutagens were 

chosen as they are both well studied and have certain homology to components of, He-CAP. 

He-CAP is known to have a UV component and X-ionising radiation induces mutagenesis 

through the production of reactive oxygen and nitrogen species (RONS) that is comparable 

to He-CAP bactericidal mechanism which is through the production of RONS. Thus, they 

are logical comparisons for He-CAP mutagenesis. Furthermore, we seek to analyse the 

mutations induced both on a nucleotide and phenotypic level to investigate whether He-CAP 

induced mutations impact the bacteria virulence or have any impact upon patient care.  

 
Figure 5.1: Graphical abstract for He-CAP induced mutagenesis workflow.
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5.2 Chapter background  

5.2.1 Mutagenesis  

 

Mutagenesis is a process where genetic information of an organism is altered resulting in a 

mutation. This process can occur spontaneously or by exposure to a mutagen. Within 

mammals, spontaneous mutations often arise through misreading during transcription by 

DNA polymerase and can result in detrimental effects such as cancers or heritable diseases. 

A mutagen is defined as “any physical, chemical or biological agent that through exposure 

results in a mutation”. Hermann Muller, widely considered as the founding father of 

mutagenesis, discovered the mutagenic properties of X-rays for which he was awarded the 

Nobel Prize in 1946.1,2  

 

Within modern day biology, mutagenesis has become a seminal tool for elucidating the 

function and role of genes and proteins within complex systems through the creation of 

libraries of mutant genes, proteins and strains of bacteria. There are a number of methods 

used to induce mutations for biological study, including random mutagenesis, site-directed 

mutagenesis, insertional mutagenesis, homologous recombination and artificial gene 

synthesis. Mutations are classified by either the origin of mutation: whether is it spontaneous 

in origin or induced by the environment. Or alternatively by the type of mutation: mispairing, 

depurination, deamination or environmental. Mutations are then further characterised by the 

mechanism of mutation. The substitution of a nucleotide where a base with the DNA code 

is altered to another base is known as a point mutation. This mistake will then be copied into 

daughter cells and thus the mutation is permanent; if a purine base, Adenine (A) or Guanine 

(G) is changed to another purine base or a pyrimidine base, Cytosine (C) or Thiamine (T) is 

changed to another pyrimidine base this is known as transitional substitution; if a purine base 

is changed to a pyrimidine base this type of mutation is known as a transversion mutation. 

There are three types of single-base substitutions: silent substitutions are where one codon 

for an amino acid is altered to another codon for the same amino acid; missense mutations 

are where the codon for one amino acid is replaced with a codon for another amino acid and 

nonsense mutation is where the codon is replaced by a translation termination (stop) codon 

(discussed in section 5.2.4). The ramifications of point mutations are hard to predict. The 

consequences vary depending on the location or mutation, and whether it disrupts the 
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functional site. While some mutations may alter the amount of protein produced by a gene 

others may result in a complete loss of cellular function and as such are lethal.3 

 

Random mutagenesis can be used to attain what the impact of such mutations are. This 

process was used by Muller to elucidate the mutagenic function of X-rays, through 

application of mutagen and assessment of change in phenotype.4 This method was also used 

to understand UV mutagenesis through its application upon Escherichia coli (E. coli).  

 

5.2.2 Ionising Radiation  

 

Energy emitted from a source is referred to as radiation, this encompasses everything from 

sunlight to UV to gamma rays. Radiation can be subcategorised into ionising and non-

ionising radiation. Ionising radiation possess enough energy that upon interaction with an 

atom is capable of removing electrons from the atom, causing the atom to become charged 

– ionised. Whereas non-ionised radiation only exerts enough energy to cause atoms to 

vibrate, such as microwaves and infrared radiation.5 Owing to the omnipresence of radiation, 

exposure is unavoidable. However, exposure to radiation can have catastrophic effects to 

living things. The detrimental effects of radiation have been highlighted in famous disasters 

like Chernobyl and Fukushima, where nuclear meltdowns occurred releasing radioactive 

components. During the Chernobyl disaster 134 people were hospitalised, with acute 

radiation syndrome owing to patient absorbance of high doses of ionising radiation. 28 

subsequently died and countless cases of cancer are attributed to the Chernobyl disaster.6,7 

 

The link between cancer and radiation has been studied for many years. Marie Curie won 

two Nobel prizes for her work on radiation, utilising radiation for the treatment of cancers 

and for X-ray imaging. However, owing to the lack of understanding of the damaging effects 

of ionising radiation, Curie worked unprotected and died of Leukaemia, attributed to 

exposure to radiation. As such, exposure to radiation is now tightly regulated. Radiation is 

typically valued in either Sievert (Sv), units of quantifying the effective dose or Gray (Gy) 

denoting the absorbed dose. 10-20 mSv or 0.01-0.02 Gy is the typical dose of radiation from 

a full body CT scan.8,9 Those working with radiation are limited on exposure to a maximum 

of 20 mSv per calendar year.10 
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Ionising radiation’s mutagenic effects have been extensively studied, exposure to Ionising 

radiation results in a range of DNA damage including nucleotide modification and directly 

alters DNA structure by causing double-strand breaks (DSB). Secondary effects are as a 

result of the production of reactive oxygen species (ROS) which cause the oxidation of 

proteins and lipids and induce DNA Ionising radiation damage is particularly concerning as 

mutations can accumulate in the offspring of the irradiated parents.11,12 

 

5.2.3 Ultraviolet  

 

UV is categorised into three types:  

1.) UVA – 315 - 400 nm: Possesses the least energy and can cause skin damage through 

indirect damage.  

2.) UVB – 280 – 315 nm: Has more energy than UVA and can cause direct damage to 

skin cells and are responsible for the majority or skin cancers. 

3.) UVC – 100 – 280 nm: Has high energy reaction with ozone in the atmosphere and 

as such does not reach the ground. However, UVC can be made in man-made forms 

for sterilising surfaces.   

 

UV light induces the formation of molecular lesions within DNA known as pyrimidine 

dimers. These are formed from thymine or cytosine bases via photochemical reactions. UV 

induces the formation of covalent linkages between consecutive bases along nucleotide 

chains. Cyclobutane pyrimidine dimers (CPD) (Figure 5.2) contains a four membered ring 

owing to the coupling of the two-carbon double-bonds of each pyrimidine base. 6-4 

pyrimidine-pyrimidone (6-4 products) (Figure 5.3) is an alternative dimer consisting of 

single covalent bond between carbon-6 or one ring and carbon-4 of the neighbouring ring. 

6-4 products occur at a third of the rate of CPD, however they are more mutagenic.  

 
Figure 5.2: Formation of cyclobutane dimer in response to UV exposure. 
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Figure 5.3: Formation of 6,4 pyrimidine-pyrimidine in response to UV exposure. 

The most common source of UV is the Sun, to which we are all exposed to varying degrees, 

as such the mutagenic effects of UV have been studied extensively. UVB induced erythema, 

commonly known as sunburn is the most frequently observed photobiological response. A 

UVB dose sufficient enough to induce erythema will correspond to the formation of 105 

CPD per epidermal cell, but these are usually corrected within seconds of formation by 

photolyase reactivation or through nucleotide excision repair. However, uncorrected lesions 

can inhibit the function of polymerases resulting in misreading during transcription and 

replication and thus cancer.  

 

The most common types of cancer caused by UV are basal cell carcinoma, squamous cell 

carcinoma and cutaneous malignant melanoma. Patients who have Xeroderma pigmentosa, 

a rare genetic disorder, are very sun sensitive and at increased risk of skin cancer.  

 

5.2.4 Ochre Stop Codon  

 

A stop codon or termination codon is a nucleotide triplet within messenger RNA (mRNA) 

which signals for the termination of the translation of RNA into proteins. Stop codons signal 

the termination of translation by binding release factor which signals the dissociation of the 

ribosomal subunits and releasing the transcribed amino acid chain.13 

 
Table 5.1: Nucleotide sequence for stop codons and their names. 

Codon  
Standard Codon 

 
Name DNA RNA 

TAG UAG  

STOP 

“Amber” 

TAA UAA “Ochre” 

TGA UGA “Opal” 
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Mutations which change a codon into a stop codon are known as nonsense mutations, there 

are three stop codons (Table 5.1) which are named according to their discovery. Nonsense 

mutations are frequently lethal (at a cellular level) owing to the degradation of protein 

through premature termination of translation.  

 

5.2.5 Mutagenesis in Bacteria  

 

The ability to alter DNA has enabled an enumerable number of scientific discoveries, often 

pertaining to protein and gene function. There are a variety of model organisms in existence 

where mutagenesis can be utilised. They vary in complexity from simple bacterial models 

included E. coli, Caenorhabditis elegans (C. elegans) worms, zebra fish and mice. E. coli is 

a simple model for genetic modification owing to its hardy nature and versatility within a 

variety of different growth nutrients where it grows easily. E. coli has proved its utility 

through a variety of landmark scientific discoveries, for example, the elucidation of the 

genetic code, discovery of restriction enzymes, and the discovery of the life cycle of lytic 

and lysogenic bacterial viruses.14  

 

As previously discussed, mutagenesis can be induced through exogenous and endogenous 

environmental factors or self-induced in response to environmental conditions, for example 

in the presence of antibiotics. Mutagenesis can also be induced experimentally to attain a 

genes function. This can be achieved through a variety of methods. As discussed in section 

5.2.1 mutations were induced through exposure to a mutagen, like Muller’s work with X-

rays where mutants with desired characteristic were then selected. Alternatively, modified 

oligonucleotides can be used in PCR to reduce fidelity and increase mutation rate. Mutant 

PCR products are then cloned in an expression vector for characterisation of proteins.15 

 

Site directed mutagenesis gives control of the location of mutation. A common method for 

DNA manipulation, introduces mutations at a defined site in the target DNA fragment, 

including the genome and plasmid, via PCR or restriction endonuclease reaction. Depending 

on the number of mutational sites, site directed mutagenesis is divided into single site-

directed mutagenesis and multiple site-directed mutagenesis. Site directed mutagenesis is 

simple, rapid and highly efficient and readily accessible.16 While site directed mutagenesis 

can be used for the deletion of bases, this is a small deletion, limited to ~170 bp. Whereas 
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gene knockout can be used to partially/completely delete a gene of up to 50 kb. Gene 

inactivation is carried out through plasma mediated homologous recombination, linear 

DNA-mediated homologous recombination or through insertional inactivation.17 
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5.3 Methods  

5.3.1 Materials  

 

Ammonium sulphate, sodium citrate, magnesium sulphate, thiamine, ciprofloxacin 

hydrochloride salt and lysozyme were purchased from Sigma-Aldrich (Poole, UK). Low-

melting agarose, RNaseIF, SYBR Gold were purchased from Fischer scientific. E. coli WP2 

and uvrA- were purchased from the Yale E. coli stock centre. 

 

5.3.2 Ames Test  

5.3.2.1 Theory  

 

The Ames test is used to determine the mutagenic potential of a chemical using bacteria as 

a reporter system. The test uses a library Salmonella typhimurium (Salmonella) strains with 

mutations in different genes in their His operon, which act as “hot spots” for mutations by 

mutagenic chemicals which cause DNA damage via various mechanisms.  The Salmonella 

strains are auxotrophic, in that they require histidine for growth, but cannot produce it. If a 

chemical is mutagenic, it will cause either point mutations or frameshift mutations within 

the “hot spots” in the His operon, causing a reversion in phenotype (His- à His+), enabling 

the Salmonella to produce histidine autologously. Owing to mammalian capability to 

metabolise chemicals into other molecules that may not be mutagenic, or vice-versa, rat liver 

extract is often added. This optional addition mimics metabolism breaking down chemicals 

to assess the mutagenic potential of the metabolites.19–21 

 

While this simple mutagenic screening method has been used to identify 50-90% of all 

known carcinogens and is used as a multi test algorithm to assess novel drugs by the USA 

Toxic Substances Control Act. It is limited in that Salmonella is a prokaryotic, whereas 

humans are eukaryotic, moreover, human and rat metabolomics are not completely 

comparable. 22 
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5.3.2.2 Salmonella Ames Test  

 

Figure 5.4 outlines the Ames test protocol. His- Salmonella was grown up in broth 

supplemented with histidine to enable growth and, if required, rat liver extract was added. 

Salmonella suspension was then added to minimal agar, lacking histidine, and grown for 48 

h to screen for natural revertant colonies, of which there should be few. Chemical or 

treatment condition of interest, henceforth referred to as “mutagen” was then added to 

Salmonella culture and plated on minimal agar lacking histidine, and incubated for 48 h. 

After incubation the total number of revertant colonies was counted. A significant increase 

in the number of revertant colonies compared to the untreated control suggests exposure to 

the potential mutagen is causing mutations and thus it is mutagenic.  

 
Figure 5.4: Salmonella Ames Test workflow.  

 

5.3.2.3 E. coli Ames Test 

5.3.2.4 Theory 

 

Unlike the standard Ames test the modified Ames test uses E. coli with a mutation in the 

TrpE gene rendering it unable to synthesis tryptophan and as such the E. coli are unable to 

grow on agar unless it is supplemented with tryptophan. In the presence of a potential 

mutagen, in this case plasma, UV and ionising radiation, if point mutations are induced 
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during exposure the E. coli will revert to being able to produce tryptophan and will grow on 

the minimal agar identifying itself as a mutant colony. Further to this, the E. coli Ames test 

does not use rat liver extract as the system is applicable to bacterial mutagenesis not 

mammalian mutagenesis whereby the rat liver mimics the activity of mammalian liver 

enzymes which contribute to the breakdown of toxic compounds.  

 

5.3.2.5 Bacterial strains 

 

E. coli WP2 is a E. coli B/r strain derivative and wild type for DNA excision repair. WP2 

uvrA- is a mutated form of WP2, it has a mutation in the trpE65 gene which removes accurate 

excision repair mechanism enabling for the detection of base-pair substitution mutations. 

This mutant strain was successfully used to study UV-induced mutagenesis.18   

 

5.3.2.6 Minimal Agar  

 

To prepare MA, components were prepared (as per Table 5.2) in separate bottles and 

combined after autoclaving. 1 mL of 10% (w/v) magnesium sulphate and 0.2 % (w/v) 

thiamine (B1) were added after combination.  
Table 5.2: Minimal agar recipe for modified Ames test. 

Bottle 1  

Potassium phosphate (Dibasic) 5.3g 

Potassium phosphate (Monobasic)  2 g 

Ammonium sulphate  1 g 

Sodium citrate 0.5 g 

dH2O 333 mL 

Bottle 2 

Agar 16 g 

dH2O 333 mL 

Bottle 3  

D (+) Glucose  4 g 

dH2O 333 mL 
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5.3.2.7 Bacterial Growth Conditions  

 

Bacterial stocks were maintained at -80 °C in 15% (v/v) glycerol and grown on LB agar as 

required. Overnight cultures were grown in LB broth (as previous 2.2.2). Subcultures were 

made through inoculation of 125 µL of ON culture into 5 mL of LB and grown for 2 h with 

shaking (200 rpm) at 37 °C.  

 

5.3.2.7.1 Irradiation  

 

The Cell-rad X-irradiator used in accordance with manufacturer’s instructions. The 

treatment platform was placed on level one to allow treatment of six plates simultaneously, 

three LB agar survival plates and three minimal agar (MA) mutation plates, with a petri dish 

in the middle of treatment platform for constant measuring of delivered radiation dose, 

measured in Gy. The lids were kept on the plates.  

 

5.3.2.7.2 UV  

 

UVC supplied by a germicidal fluorescent tube (Philips) with peak output at 254 nm, was 

administered at an intensity of 1 W/m2 for varying dosages. Bacteria was prepared as per 

Error! Reference source not found.. 100 μL of bacteria was aliquoted on to MA agar in 

triplicate per treatment condition, which were treated in tandem with LB agar survival plates. 

Plates were exposed to varying dosages of UVC. Doses administered were 10, 20 and 30 

J/m2. 

 

5.3.2.7.3 He-CAP  

 

Bacterial cultures were prepared (Section 5.3.1) and 350 µL was treated for varying amounts 

of time with CAP jet (0-10 mins), and left for 30 mins to incubate at 25 °C. After CAP 

treatment, 100 µL of treated E. coli was aliquoted onto MA and spread evenly across the 

plate. Plates were incubated statically at 37°C for 48 h. 100 µL of untreated subculture was 

also added to MA to enumerate spontaneous mutants. CAP treated bacterial cultures were 

serially diluted in PBS and plated on LB agar to calculate number of surviving bacteria post 
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CAP treatment. Mutation rate was then normalised to the surviving CFU/mL of E. coli 

(Equation 5.1).   

Normalised	Mutation	Rate = 	
No. of	Mutant	colonies	post	CAP	treatment

−No. of	spontaneous	mutants
No. of	surviving	bacteria	 =CFUmL A	

	 (1) 

Equation 5.1: Normalised mutation rate calculation  

5.3.3 Antibiotic Susceptibility Assay 

 

E. coli BW25113 was grown and treated with He-CAP (0-10 mins) as before (Section 

Error! Reference source not found.) and left to incubate for 30 mins to incubate at 25 °C. 

After treatment 100 µL of bacterial suspension was added to LB agar supplemented with 

0.03 µg/mL of ciprofloxacin and spread across surface evenly. 100 µL of untreated 

subculture was also added to ciprofloxacin supplemented agar to enumerate spontaneous 

mutants. He-CAP treated bacteria were serially diluted in PBS and plated on LB agar to 

calculate number of surviving bacteria post He-CAP treatment. 

 

5.3.4 Comet Assay  

 

E. coli WP2 was grown and treated with He-CAP as before (Section Error! Reference 

source not found.). After 30 mins incubation at 25 °C 2.5 µL of CAP treated E. coli was 

added to readymade suspensions of:  90 µL low-melting agarose (equilibrated to 37 °C), 5 

µL of lysozyme (20 mg/mL) and 2 µL of RNaseIF (50 U/mL), this was then incubated at 37 

°C for 10 mins. 75 µL of suspension was then spread onto comet assay slides (EnzoLife 

Sciences) ensuring slides are kept flat and no air bubbles are produced. Slides were then left 

to dry at 25 °C for 10 mins. Slides were immersed in lysis solution and incubated at 4 °C for 

30 mins. They were then immersed in alkaline solution (300 mM NaOH, 1 mM) and 

incubated at 25 °C in the dark. Slides were then washed twice with 1XTBE for 5 mins. Slides 

were then run in electrophoresis tank (12V, 10 mins). Slides were then washed for 5 mins in 

70% ethanol before being stained with 1:10,000 SYBR Gold as per manufacturer’s 

instructions. Slides were then imaged using confocal microscope and analysed using 

ImageJ/Fiji.  
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5.3.5 PCR 

 

Colony PCR was carried as per Section 2.7.2 using the primers in Table 5.3 using the 

thermocycling conditions in Table 5.4. Products were run against a 100 bp ladder as per 

section 2.7.3.  Positive products are shown by band at 350 bp as seen in Figure 5.5.  

 
Table 5.3: Primer sequence for amplification of trpE gene. 

Primer Name  Sequence (5’ – 3’) 

TrpE_for CTTCCTGAAACGGGCAGTGT 

TrpE_rev AGGGCGTTATCCAGTAGTGC 

 
Table 5.4: Thermocycler conditions for the amplification of trpE gene. 

PCR Stage Temperature Time 

Initial denaturation 94°C 30 seconds 

30 Cycles 94°C 15-30 seconds 

 45-68°C 15-60 seconds 

 68°C 1 min/kb 

Final extension 68°C 5 mins 

 

 
Figure 5.5: PCR result of trpE positive and negative colonies against 100 bp ladder. 

5.3.6 Sequencing  

 

Isolates were amplified and checked for successful amplification of trpE gene and cleaned 

up using GeneJET kit as per manufacturer’s instructions. Samples were prepared to 5 ng/µL 

using sterile ddH2O and sent off to Eurofins with forward primer (10 pmol/µL) for 
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sequencing. Sequencing data was analysed to ensure clearly defined peaks, using 4Peaks 

and FASTA sequence was compared to trpE and analysed for any mutations using a simple, 

self-written Python script.  

 
ACTTCCTGAAACGGGCAGTGTATTCACCATGCGTAAAGCAATCAGATACCCAGCCCGCCTAATGAGCGGGCTT
TTTTTTGAACAAAATTAGAGAATAACAATGCAAACATAAAAACCGACTCTCGAACAGCTAACCTGCGAAGGCG
CTTATCGCGACAATCCCACCGCGCTTTTTCACCAGTTGTGTGGGGATCGTCCGGCAACGCTGCTGCTGGAATC
CGCAGATATCGACAGCAAAGATGATTTAAAAAGCCTGCTGCTGGTAGACAGTGCGCTGCGCATTACAGCTTTA
GGTGACACTGTCACAATCCAGGCACTTTCCGGCAACGGCGAAGCCCTGCTGGCACTACTGGATAACGC 
Figure 5.6: Sequence of trpE gene showing forward and reverse primers in green, start codon in red and the mutation in 

blue  
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5.4 Results and Discussion  

5.4.1 Comet Assay 

 

Conventionally the Comet assay is used to detect DSB within human DNA, however, 

through modification, can be used to detect DSB within bacteria. According to Luis 

Fernández et al. ROS induced DNA damage can be detected using a modified Comet assay. 

The group found that fragmented DNA halos were observed around the dense, bright 

nucleoids of E. coli after exposure to H2O2. As H2O2 is the dominant, active species produced 

this method was deemed appropriate for the investigation of He-CAP induced DNA damage. 
23 

 

E. coli WP2 cells were treated with He-CAP for five minutes and the comet assay was 

carried out. After visual analysis, DNA fragmentation was observed in a halo conformation, 

comparable to those seen for H2O2 treated E. coli Luis Fernádez et al. The dense nucleotides 

observed in the untreated control (Figure 5.8A) show undamaged DNA. After He-CAP 

exposure, halos of fragmented DNA were observed, which is indicative of DNA damage, 

which is thought to be owing to ROS induced damage as it closely resembles the findings of 

Luis Fernàdez et al. Quantitative analysis of the results found that post He-CAP treatment 

25% of nucleoids were fragmented. This was found to be significantly higher than the 

percentage of fragmentation in the untreated control, which was only ~10% (Figure 5.8D).  

 

Zeocin is a formulation of phleomycin, which is toxic against a range of bacteria, upon entry 

into a cell the copper cation Cu2+ to Cu1+ activating the Zeocin, which then binds and cleaves 

DNA resulting in cell death. 24 Owing to Zeocin’s ability to induce DNA damage, 

fragmented DNA halos were expected if the experimental procedure was correct (Figure 

5.7C) confirming successful experimental procedure and indicates the expected 

conformation of fragmented DNA halos. Results from the He-CAP experiments were 

expressed as a percentage of fragmentation halos produced by zeocin. While there are fewer 

halos observed in DNA samples treated with He-CAP than Zeocin, this was expected as He-

CAP was administered as sub-lethal doses, whereas Zeocin was used at a high concentration 

of 1 mg/mL, which is above the MIC. From these results it can be inferred that He-CAP 

induces DNA damage, through the production of ROS, to a greater extent than in untreated 
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control, producing similar DNA damage in the form of fragmented DNA halos, to positive 

Zeocin control and those found in literature.  

 
 

Figure 5.7: Diffusion-based DNA fragmentation assay was performed on E. coli WP2 cells to assess DNA damage. 

Untreated E. coli exhibit bright, dense nucleoids (A). After 5 min of He-CAP treatment evidence of DNA damage is 

observed, seen as speckling around the nucleoid (*) (B). E. coli treated with 1 mg/mL of Zeocin (C) DNA fragmentation 

(%) in Comet assay of E. coli WP2 after 5 minutes treatment with He-CAP jet compared to untreated control (D). The 

percentage of nucleoids with detectable fragmentation relative to intact nucleoids was calculated. A total of 138 

nucleoids for He-CAP-treated and 157 nucleoids for untreated were analysed from 3 biological replicates.  Error bars 

show standard deviation of the mean. Data was plotted using GraphPad 8.0, students t-test was performed (*)p<0.1. 

 

5.4.2 Survival  

 

He-CAP devices are being introduced into clinical practice and are classed as medical 

devices, much like UV and X-irradiation. As previously outlined UV and X-irradiation have 

been extensively studied for their mutagenic properties and have set mutagenic dose 

thresholds. He-CAP devices such as the kINPen are approved for clinical use and as such 

He-CAPs mutagenic effect on mammalian cells has been studied to some extent. However, 

there has been little investigation of He-CAPs mutagenic effects upon bacteria.  

 

* 

* 
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For decontamination treatment, the application of a sublethal dose poses an increased risk 

of mutations and resistance.25 E. coli WP2 was grown to log phase, to ensure the cells were 

metabolically active and then exposed to three mutagens: UV, X-irradiation and He-CAP. 

For the purpose of mutagenesis studies sublethal doses are required to observe alterations in 

phenotype. Therefore, sublethal doses of the three mutagens were elucidated (Figure 5.8). 

The maximum treatment time of the He-CAP and X-irradiation were found to have no 

significant impact on viability of E. coli WP2. Although UV was found to result in a 1-log 

reduction it recovered after 30 seconds (Figure 5.8C). These results confirm that sublethal 

doses of treatment were being administered enabling subsequent study of potential 

mutations. The reduction in viable cells observed after UV treatment is significantly higher 

than the reduction induced by, He-CAP exposure. Thus, there is an indication the He-CAP 

is lacking a strong UV component as it would be expected that there would be a reduction 

in viability. However, neither He-CAP nor X-irradiation have any effect on bacterial 

viability which is indicative of a similarity in bactericidal mechanism. This is further 

supported by the DNA fragmentation observed in the Comet assay results.   

 

As can be seen from Figure 5.8C, He-CAP had no significant effect on WP2 strain viability 

even at the extended exposure time of 5 minutes treatment. This effect was comparable to 

ionising X-irradiation, which also had no effect on the viability of WP2 at the doses tested 

(Figure 5.8B), consistent with previous work, demonstrating that this B/r derivative is 

resistant to ionising radiation owing to combined deficiencies in Lon protease and the cell 

division inhibitor, SulA protein. It was also observed that the WP2 strain is more resistant 

to He-CAP than other common strains of E. coli. This supports the idea that whilst the He-

CAP produced RONS play an important role in inducing bacterial cell death, He-CAP, like 

X-irradiation, is mutagenic even at the sublethal doses used. 
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Figure 5.8: Effects of varying dosages of He-CAP, treatment time (mins) (A), UV dosage(J/m2) (B) and X-irradiation 

dosage (Gy) (C) on survival of E. coli WP2 strain. Plated to measure survival as per materials and methods and plotted as 

survival fraction relative to untreated control. Error bars represent the standard deviation of the mean (n=3). 

 

5.4.3 Mutation Rate 

 

E. coli WP2 has an ochre stop codon in the tryptophan marker gene trpE, removing the 

bacteria’s ability to produce tryptophan. On introduction of a mutation, a reversion will 

occur, and the colony will grow on the media without tryptophan. According to Ames et al. 

if the number of revertant mutants from auxotrophy to prototrophy is higher than the rate of 

spontaneous mutations the “chemical” is mutagenic.21 

 

This modified Ames test was used to assess the mutagenic effects of UV, He-CAP and X-

irradiation. A dose-dependent increase in reversion mutation rate was observed for UV and 

X-irradiation, with highest overall rates seen with the highest dose of UV (30 J/m2) (Figure 

5.9). A mutagenic dose threshold was observed in the treatments, meaning if exposure 

exceeds a certain dosage there is a significant increase in mutation rate. For X-irradiation 
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this was found to be above four minutes treatment for He-CAP (Figure 5.9A), 40 Gy for 

ionising radiation (Figure 5.9B) and for UV above 10 J/m2 (Figure 5.9C).  

 

 
Figure 5.9: TrpE revertant mutants for E. coli WP2 after exposure to varying dosage of He-CAP (A) X-ionising 

radiation (B) and UV (C). Data was plotted using GraphPad 8.0. Error bars represent the standard deviation of the mean 

(n=3), significance was analysed using a one-way ANOVA comparing significance to the untreated control (****) 

p<0.0001, (***) p<0.001, (**) p<0.01 & (*) p<0.1. 

To further assess if He-CAP treatment was inducing bulky lesions, more commonly 

associated with UV, as opposed to the oxidative lesions associated with X-irradiation, He-

CAP treatment was applied to E. coli WP2uvrA- strain. This E. coli strain is sensitive to 

ultraviolet radiation owing to loss of nucleotide excision repair function. If an increase in 

mutation rate was observed after He-CAP treatment, this would suggest that UV induced 

pyrimidine dimers, or another type of bulky, helix-destabilising damage was involved. As 

expected, an increase in mutants with WP2uvrA- strain suggesting that nucleotide excision 

repair (NER)-dependent damage is produced. After treatment with He-CAP fewer mutants 

were found in the WP2 strain than the WP2uvrA- strain (Figure 5.10). WP2uvrA- were not 

treated with UV or X-irradiation as this is irrelevant to the study. It is known that the 

WP2uvrA- strains are unable to repair UV induced damage, owing to absence of excision-
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repair mechanism and as such the effects of X-irradiation will be the same as the WP2 strain 

as both strains remain competent for X-irradiation mutation repair.  

 

 
Figure 5.10: Comparison of the mutation rate with increased He-CAP treatment time between E. coli WP2 strain than in 

the E. coli WP2uvrA- strain. Error bars denote standard deviation of the mean (n=3). Data was plotted using GraphPad 

8.0. Unpaired t-test performed to assess statistical significance. (**) p< 0.01.  

 

The trpE gene of E. coli has been well studied as a screening method for mutagen; there are 

seven known point mutations within the Ochre codon (Table 5.5). These point mutations 

result in reversion of nonsense phenotype of the trpE gene, enabling the production of 

tryptophan, changing the phenotype from Trp- to Trp+. 26 Alternatively, suppressor mutations 

in genes encoding tRNAs can also arise, enabling the Ochre codon to be read through by the 

ribosome. There are four possible suppressor mutations that can suppress ochre mutations: 

anticodon changes UUGàUUA in supB, UUUàUUA in supG, and GUAàUUA in both 

supC and supM.  
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Table 5.5:  Within the ochre codon of the trpE gene of E. coli there are known to be 7 possible point mutations which 

result in a change in stop codon, these are outlined below. 

Mutation  Type of 

Mutation 

Wild Type 

Codon 

Point 

Mutation 

Amino Acid Change 

A•T à G•C Translation TAA CAA Glutamine (Gln) 

A•T à T•A Transversion  AAA Lysine (Lys) 

A•T à T•A Transversion  TTA Leucine (Leu)  

A•T à T•A Transversion  TAT Tyrosine (Tyr) 

A•T à C•G Transversion  GAA Glutamic Acid (Glu) 

A•T à C•G Transversion   TCA Serine (Ser) 

A•T à C•G Transversion  TAC Tyrosine (Tyr) 

     

To assess which point mutations were more frequently induced by known mutagens (UV 

and X-irradiation) revertant colonies were analysed and compared to the unknown mutagen 

CAP (Table 5.5). As shown in Table 5.5, there is a distinct difference in the spectrum of 

point mutations induced by the two known mutagens. A sample of the amino acid sequences 

observed after exposure to the mutagens compared to the untreated reference sequence is 

shown in Figure 5.11. 

 

X-irradiation predominantly causes CAA transition mutations and AAA/TCA transversions, 

yet these are not observed after UV treatment. Importantly, there are mutations induced by 

He-CAP treatment that are not documented as being induced by either X-irradiation or UV: 

TCC & TTT. This type of mutation could be what is causing the difference in mutation rate 

between the WP2 and WP2uvrA- strains. There is also a high number of suppressor 

mutations. Suppressor mutations denote a mutation that has altered the phenotype from trpE- 

to trpE+; where the Ochre stop codon remained unchanged. Therefore, it can be concluded 

a mutation has occurred elsewhere in the genome. For example, mutations within tRNA can 

increase reading error rate, enabling stop codon to be misread. 
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Figure 5.11: Amino acid sequence alignment data for comparison of mutations between a range of mutagen treatments.  

Treatment Conditions                          trpE Amino Acid Sequence 
Ref Sequence   ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
40Gy           ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
10UV           ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
10Gy           ----------FEQN--*RITMQT------*KPTLEQLTCEGAY-- 
20Gy           ----------FEQN--*RITMQT------*KPTLEQLTCEGAY-- 
20Gy           ----------FEQN--*RITMQT------*KPTLEQLTCEGAY-- 
60Gy           ----------FEQN--*RITMQT------*KPTLEQLTCEGAY-- 
60Gy           ----------FEQN--*RITMQT------*KPTLEQLTCEGAY-- 
60Gy           ----------FEQN--*RITMQT------*KPTLEQLTCEGAY-- 
60Gy           ----------FEQN--*RITMQT------*KPTLEQLTCEGAY-- 
10UV           ----------FEQN--*RITMQT------*KPTLEQLTCEGAY-- 
240CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
240CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 

300CAP         ----------FEQN--*RITMQT------*KPTLEQLT*RRRLS- 
240CAP         ----------FEQN--*RITMQ--------TPTLEQLTCEGAYR- 
120CAP         ----------FEQN--*RITMQT------QKPTLEQLTCEGAYH- 
30UV           ----------FEQN--*RITMQT------QKPTLEQLTCEGAY-- 
80Gy           ----------FEQN--*RITMQT------QKPTLEQLTCEGAY-- 
60CAP          ----------FEQN--*RITMQT------QKPTLEQLTCEGAYR- 
180CAP         ----------FEQN--*RITMQT------QKPTLEQLTCEGAYR- 
10Gy           ----------FEQN--*RITMQT------SKPTLEQLTCEGAY-- 
10Gy           ----------FEQN--*RITMQT------SKPTLEQLTCEGAY-- 
240CAP         ----------FEQN--*RITMQT------SKPTLEQLTCEGAYR- 
120CAP         ----------FEQN--*RITMQT------SKPTLEQLTCEGAYR- 
20Gy           ----------FEQN--*RITMQT------YKPTLEQLTCEGAYR- 
10Gy           ----------FEQN--*RITMQT------YKPTLEQLTCEGAY-- 
180CAP         ----------FEQN--*RITMQT------YKPTLEQLTCEGAYR- 
300CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
300CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
30CAP          ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
30CAP          ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
60CAP          ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
120CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
180CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
240CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
240CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
240CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
240CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
180CAP         ----------FEQN--*RITMQT------*KPTLEQLTCEGAYR- 
30CAP          ----------FEQN--*RITMQT------EKPTLEQLTCEGAYR- 
180CAP         ----------FEQN--*RITMQT------EKPTLEQLTCEGAYR- 
5Gy            ----------FEQN--*RITMQT------LKPTLEQLTCEGAYR- 
180CAP         ----------FEQN--*RITMQT------LKPTLEQLTCEGAYR- 
240CAP         ----------FEQN--*RITMQT------LKPTLEQLTCEGAYR- 
10Gy           ----------FEQN--*RITMQT------KKPTLEQLTCEGAYR- 
10Gy           ----------FEQN--*RITMQT------KKPTLEQLTCEGAY-- 
60Gy           ----------FEQN--*RITMQT------KKPTLEQLTCEGAY-- 
180CAP         ----------FEQN--*RITMQT------KKPTLEQLTCEGAYR- 
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While there are clear distinctions in the frequency of individual point mutations between the 

three treatment groups, the mutagenic signature of He-CAP seems to resemble that of the X-

irradiated group more closely than the UV exposed group. The spectra induced by both He-

CAP and X-irradiation are also more similar to each other than either is to any induced by 

the range of mutagens tested by Ohta et al. Taken together these data indicate that He-CAP 

mutagenesis is similar to X-irradiation mutagenesis and therefore likely involves oxidative 

stress via the RONS component.27  

 
Figure 5.12: After analysis of the trpE gene of E.coli WP2 a broad spectrum of point mutations was observed in the 

Ochre region (TAA)(details outlined in Table 5.5). The frequency was calculated as percentage relative to total number 

of samples sequenced per condition. 

 

5.4.4 He-CAP Induced Antibiotic Mutations 

 

Resistance to ciprofloxacin, a widely used fluoroquinolone antibiotic, can occur as a result 

of single point mutations, similar to those the He-CAP jet appear to induce. Fluoroquinolone  

resistance is primarily caused by mutational alterations in the target genes of 

fluoroquinolones DNA gyrase and topoisomerase IV (at codons 80 or 84 of parC).28 Hamed 

et al. reported a least one missense mutation in a variety of genes in fluoroquinolone resistant 
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bacteria.29 As such, after He-CAP treatment E. coli suspensions were challenged with plates 

supplemented with ciprofloxacin at above MIC concentrations (0.03 µg/mL). As He-CAP 

treatment time increased, the number of mutant colonies capable of growing in the presence 

of ciprofloxacin also increased, further indicating that He-CAP induces point mutations, 

which can have important phenotypic effects. Interestingly, the mutation rate is non-linear 

suggesting that there is a threshold effect. He-CAP induced point mutations were found to 

increase E. coli resistance to ciprofloxacin treatment (Figure 5.13).  

 
Figure 5.13: Normalised mutation rate of E. coli BW25113 in the presence of ciprofloxacin (0.03 µg/mL) after He-CAP 

treatment for varying amounts of time. Mutation rate is defined as number of ciprofloxacin-resistant E. coli cells per total 

surviving. Error bars represent standard deviation (n=3) Unpaired t-test performed to assess statistical significance. (*) 

p<0.1 

There are a number of potential explanations for this. It is known that ROS scavengers such 

as superoxide dismutase (SOD) and catalase, which are enzymes from bacteria that can 

reduce the effect of ciprofloxacin and other antibiotics, owing to their bactericidal 

mechanisms including generation of ROS for bacterial killing. It was found in Chapter 4 that 

He-CAP treatment does upregulate the expression of catalase. Therefore, it is likely that the 

increased presence of catalase plays some role in mitigating the bactericidal effects of the 

ciprofloxacin increasing tolerance.  
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5.5 Conclusions  

 

These findings indicate that the mutagenic effects of the He-CAP jet on bacteria are more 

comparable to X-irradiation than UV. Although it is known that He-CAP jets produce some 

UV radiation, our observations of the absence of a dramatically increased mutation rate or 

decreased survival rate in a WP2uvrA strain, together with differing mutagenic spectra for 

Trp reversion, strongly suggest that He-CAP-produced UV is not the dominant mutagen in 

our system.  

 

The mutation spectrum induced by He-CAP appears to be more similar in pattern to those 

found in the X-irradiated samples than those with UV treatment (Figure 5.12). These 

findings suggest that He-CAP-produced RONS are the dominant mutagenic factor in our 

treatment conditions, as a consequence of inducing DNA damage (Figure 5.7), although the 

possibility of adaptive mutagenesis cannot be wholly discounted. This is consistent with 

previous studies that have separated out the particle and UV components of plasma to 

demonstrate that the UV component makes a comparatively minor contribution to 

decontamination when O2 is present 30,31 and a recent report that E. coli relies on genes 

associated with detoxification of RONS for  resistance to He-CAP.32 

 

He-CAP induced mutations were found to impact E. coli’s susceptibility to a ciprofloxacin, 

which is commonly used to treat wound infection (Figure 5.13). While this was a simple 

study using only a single type of antibiotic this finding should be explored further with some 

urgency owing to the potential ramifications for the clinical use of He-CAP. As He-CAP 

treatment is intended for decontamination of bacterial infected wounds, including chronic 

wounds, where patients will often be on antibiotic treatments it is thus important to ensure 

there is no risk of increasing resistance through the use of He-CAP treatment. 
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5.6 Future Work  

 

While E. coli is a good model bacterium to study mutagenesis, future work would seek to 

replicate the studies above using a Gram-positive strain of bacteria, to elucidate if similar 

results are displayed. Furthermore, wounds are frequently colonised and infected with 

multiple bacterial species, understanding the effects on Gram-positive bacteria is of 

paramount importance.  

 

While sequencing has been carried out, further work would be required to understand the 

mutagenetic effects of He-CAP treatment on a whole genome basis, investigating the effects 

of both one-off treatment and repeated exposure to He-CAP. While preliminary data here 

suggests that exposure to He-CAP can denote an increased tolerance to ciprofloxacin, it 

would be interesting and of clinical importance to assess a range of other antibiotics for 

potential alterations in susceptibility, with particular focus on those used within wound care 

and to assess this library of antibiotics on a range of species and isolates. Further to this, 

assessing the susceptibility to topical antimicrobials such as povidone-iodine or hydrogen 

peroxide. Moreover, as there appears to be some level of genetic alteration that infers 

changes to antibiotic susceptibility it would be interesting to see if there is a further increase 

with repeated treatments.  

 

Owing to the application of CAP being focused upon the decontamination of infected 

wounds, it would also be of interest to assess the antibiotic susceptibility of clinical wounds 

that have been CAP treated and isolate these after each treatment to understand the 

mutagenic effects in vivo. This could easily be done with high throughput screening of 

bacterial strains isolated from wounds before, during and after CAP treatment as assessing 

their phenotype and genotype for changes in correlation with treatment.  
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Chapter 6 : Development of a Hydrogen Peroxide Responsive 

Hydrogel  

 

6.1 Aim  

 

The aim of this chapter was to develop a H2O2 responsive hydrogel which releases an 

antimicrobial moiety, for the inhibition of the formation of bacterial biofilms, in response to 

exposure to helium-driven cold atmospheric pressure plasma (He-CAP) produced reactive 

oxygen and nitrogen species (RONS) or alternatively through the application of topical 

H2O2.Currently, topical H2O2 solution is used as an antimicrobial in woundcare, but the 

concentration of H2O2 needs to be carefully moderated, owing to the potentially detrimental 

effects that high concentrations of H2O2 can have on the healing process. However, the 

concentration needs to remain high enough to induce bacterial inhibition and death. The low 

levels of H2O2 produced by He-CAP treatment need to be sufficient to kill planktonic 

bacteria but not hinder wound healing.  

 

Previous work described a displacement assay based on a boronic ester containing gel, in 

which the displacement of alizarin red S (ARS) by saccharides causes allows colorimetric 

determination of saccharide concentration. Sun et al. also reported a similar, reaction-based 

indicator, utilising the ability of RONS to oxidise boronic esters to produce a colorimetric 

response. This works aims to combine that these studies to develop a RONS responsive 

hydrogel that would be capable of releasing ARS into a wound, which we hypothesise will 

act as a biofilm inhibitor (Figure 6.1).  

 
Figure 6.1: Schematic outlining the concept of the ARS-PBA hydrogel triggered release system for the inhibition of 

biofilm formation. The release of ARS in response to H2O2 diffuses through the hydrogel into the wound inhibits S. 

aureus biofilm formation.  
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6.2 Introduction  

6.2.1 Boronic Acid and Ester Soft Materials  

 

Boronic acid containing hydrogels have properties which may render potential utility in 

creating a matrix for drug delivery and wound care: they combine their unique reactivity of 

boronic acids with a hydrophilic, biocompatible matrix, capable of forming a range of 

macrostructures. Boronic acid macromolecules are effective in nanomaterials, sensors and 

in the delivery of therapeutics such as insulin. Effective polymeric systems for drug delivery 

are typically rigid and plastic, however, boronic esters dynamic nature offer better 

rheological characteristics for the development of wound dressings which need to conform 

to body shape and be comfortable to wear. These materials exhibit interesting physical 

properties, including the ability to self-heal, meaning the gel can be cut and reformed without 

external influence. Boronic acids are soft materials offering favourable biocompatibility and 

can act as a reservoir for drug release, which is utilised in the delivery of contraceptive 

drugs.1 

 

While there are a multitude of different boronic acids which can form esters, the most widely 

used is phenyl boronic acid (PBA) owing to its stability, availability and reactivity. PBA 

moieties can be incorporated into polymeric systems in a variety of ways. Existing polymers 

containing pendant groups that offer reactivity, including polyesters and amides, can have 

PBA groups coupled to them using a variety of coupling chemistries. The most commonly 

used coupling methods include: carbodiimide (CD) and EDC/NHS coupling. This was used 

by Chen et al. to functionalise hyaluronic acid with maltose or PBA, which produced a 

dynamic, covalently crosslinked hydrogel of hyaluronic acid. Hyaluronic acid is ubiquitous 

within human tissues and thus is highly biocompatible and the presence of the boronic acid 

offers glucose responsivity with the potential for application within drug release of 

biomedical sensing.2 

 

6.2.2 Dye Displacement Saccharide Detector Assay  

 

A monomer that has been synthesised containing PBA which can subsequently be 

polymerised forming polymeric chains featuring the previously mentioned boronic acid 

reactivity, which can then be crosslinked to form hydrogels. Lampard et al. developed a 
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hydrogel saccharide sensor which released chromophore ARS. ARS is deep red in colour, 

featuring a 1,2 diol in the form of a catechol and as such can form cyclic boronic esters in 

the presence of boronic acid functionalities. Upon esterification ARS exhibits a clear, visible 

colour change from red to orange. Quantification of this colour change within the hydrogel 

is difficult owing to the light-scattering nature of the material. This problem can be resolved 

by adding the gel into solutions of glucose, fructose, mannose and galactose of varying 

concentrations, and measuring the absorbance of the resulting solution. The sugars compete 

to bind to the boronic ester, displacing the ARS resulting in a colour change of orange back 

to red (Figure 6.2). The release of the ARS into the solution the hydrogel was suspended in 

could then be measured with UV-Vis at ARS’s absorbance at 513 nm enabling the 

concentration of free ARS to be determined. This allowed for the subsequent back 

calculation of the saccharide concentration (Table 6.1).  

 
Figure 6.2: Displacement of ARS from PBA containing hydrogel matrices in the presence of saccharides owing to 

competitive binding. 

 
Table 6.1: The amount of ARS release from PBA and Blank gels as abs g-1 at 513 nm 

 Fructose Galactose Mannose Glucose 

PBA Gel 0.82 0.40 0.41 0.34 

Blank Gel 0.23 0.21 0.22 0.19  
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6.2.3 Biofilm Inhibitors  

 

The phenotypic transition of bacteria from their planktonic to biofilm state is associated with 

a significant increase in pathogenicity. Furthermore, biofilms are known to be significantly 

harder to treat than their planktonic counterparts as discussed in Chapter 1. As such, much 

research has gone into the development and discovery of molecules that can impact on 

biofilm formation. These include those which inhibit biofilm formation as well as those 

which disrupt preformed biofilms. This can be achieved in a number of ways, small organic 

compounds can inhibit bacterial surface adhesion, interference with the quorum-sensing 

pathways and altering biofilm formation.3  

 

Nature has been a source of biofilm inhibiting compounds including ginseng and garlic. 

Emodin is a naturally occurring anthraquinone found in the roots of a number of moulds, 

plants and lichens. Ding et al. found that emodin inhibited biofilm formation at 20 µM in 

Pseudomonas aeruginosa (P. aeruginosa). This is thought to be owing to emodin’s ability 

to penetrate into the biofilm and interfere with the QS system in P. aeruginosa.4,5 While the 

use of biofilm inhibitors are often employed to prevent the colonisation of surfaces through 

impregnation, for example within orthopaedic implants, they could also have application 

within wound care.6 

 

6.2.4 Alizarin  

 

Alizarin is an organic dye (Figure 6.3A), used throughout history, in 1869 it became the 

first natural dye to be synthetically produced. Alizarin is soluble in hexane and chloroform 

and exhibits pH dependent colour changes. Alizarin has been found to have antibiofilm 

properties against Candida albicans and MRSA.7,8 Alizarin red S (ARS) is the water soluble, 

sodium salt, of alizarin (Figure 6.3B). ARS is useful stain within histology; Dahl’s method 

uses ARS for the highly specific staining of calcium within samples enabling the 

identification of calcification in the aorta and human kidney for effective medical 

diagnosis.9,10 While ARS is more soluble than alizarin, its maximum solubility is still 

relatively low at 2.5x10-4 M.  
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(A)

 

(B)

 
Figure 6.3: Chemical structure of Alizarin (A) and Alizarin red S (B). 
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6.3 Methods  

6.3.1 General Information  

 

All solvents and reagents were purchased from commercial suppliers and used without 

further purification unless otherwise specified. Proton and carbon NMR were recorded using 

a Bruker Advance 500. Chemical shifts were reported in ppm using TMS or solvent residual 

signals as internal reference standards. High-resolution mass spectrometry (HRMS) were 

performed on an Agilent 6545 LC/Q-TQF. UV-Vis were performed on a BMG Labtech 

CLARIOstar, BMG Labtech CLARIOstar data analysis software package MARS.  

 

6.3.2 Blank Gel Synthesis  

 

Hydrogels were formed through the dissolution of acrylamide (3.9 g) and methylene 

bisacrylamide (0.1 g) in distilled water (20 mL). Tetramethylethylenediamine (50 µL) was 

added to freshly prepared ammonium persulphate solution (10% (w/v), 150 µL), this was 

then added to the acrylamide solution with stirring at room temperature. This was then taken 

up into sterile 1 mL syringes, which were inverted and placed in racks to set. After 30-45 

minutes incubation at room temperature the gels will have set, as determined by visual 

inspection. The end of the syringe was removed with scissors, and 0.1 mL pieces of gel were 

cut off using a sterile scalpel. Gels were stored in sterile phosphate buffer saline (PBS). 

 

6.3.3 PBA Gel Synthesis  

 

Hydrogels were made by dissolving acrylamide (3.8 g), methylene bisacrylamide (0.1 g) and 

PBA monomer (0.1 g) in distilled water (20 mL). Tetramethylethylenediamine (50 µL) was 

added to freshly prepared ammonium persulphate solution (10% (w/v), 150 µL), this 

solution was then added to acrylamide solution. This was then taken up into sterile 1 mL 

syringes, which were inverted and placed in racks to set. After 30-45 minutes incubation at 

room temperature the gels will have set, (as determined by visual inspection). The end of the 

syringe was removed, and 0.1 mL pieces of gel were cut off using a sterile scalpel. Gels were 

stored in sterile PBS.  
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6.3.4 PBA monomer synthesis  

N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methacrylamide (PBA) was 

synthesised (Figure 6.4). NEt3 (0.49 g, 4.88 mmol) and methacryloyl chloride (0.51 g, 4.88 

mmol) in DCM (4.0 mL) was added dropwise to a solution of 3-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)aniline (1.00 g, 4.56 mmol) in DCM (60 mL) at 0 °C. The reaction 

mixture was stirred for 2 h and was allowed to warm to rt, which was then stirred for a 

further 30 min. It was ensured that the temperature did not rise above 30 °C in order to 

minimise the occurrence of side polymerisation products. The solution was then washed 

with H2O (3 x 40 mL) and dried over MgSO4. The organic solvent was removed under 

reduced pressure and the title compound yielded as an off white solid (1.25 g, 95 %). 1H 

NMR (δ; 300 MHz; DMSO-d6) 7.98 (1H, dq, CH), 7.68 (1H, d, CH), 7.56 (1H, d, CH), 7.36 

(1H, t, AR CH), 5.79 (1H, s, CHH), 5.44 (1H, s, CHH), 2.05 (3H, s, CH3), 1.35 (12H, s, 4 x 

CH3). 13C NMR (δ; 75 MHz; DMSO-d6) 166.54, 140.90, 137.32, 130.73, 128.74, 125.89, 

123.23, 119.15, 84.14, 24.98, 18.85. FTIR (thin film) ν; 1622 (C=C), 1662 (C=O), 2977 (C-

H), 3355 (N-H). HRMS (FTMS): m/z calculated for C16H22BNO3: requires 288.1768 for 

[M-H]+, found 288.1795. 

 
Figure 6.4 Structure of PBA 

6.3.5 ARS loading  

 

0.1 g of PBA hydrogel cylinder was immersed in 1 mL of 2.5 x 10-4 M ARS solution for 5 

h at 25°C with rocking, to achieve maximum loading of ARS. ARS loading was monitored 

quantitatively through change in absorbance at 513 nm, read every 5 mins from 0 – 50 mins 

and then every 42 mins subsequently until there was no further decrease in absorbance. Gels 

were then placed into 1 mL of PBS for 3 h to wash out any non-bound ARS.  
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6.3.6 Removal of Excessive Dye  

 

To measure the release of non-covalently bound dye from the gel, gel cylinder (0.1mL) 

loaded with ARS was weighed and placed into 24-well microtitre plate. 1 mL of PBS was 

then added. The initial absorbance at 513 nm using Spectrostar Omega plate reader from 

BMG Labtech. The aliquot was returned to the well to maintain volume at 1 mL.  

 

6.3.7 ARS Release Studies with H2O2  

 

To measure ARS release from PBA gel when exposed to H2O2 solution, a range of H2O2 

solutions at differing concentrations were freshly made up in sterile PBS (0 to 4 mM) 

solution. ARS-PBA gels were placed into wells of a 24-well microtitre plate containing 1 

mL of either sterile PBS or H2O2 solutions. 100 µL was taken from the well and absorbance 

was measured at 513 nm at regular time intervals. After readings 100 µL was replaced into 

the well to maintain volume. Values were blank corrected to PBS only.  

 

6.3.8 Release Studies using Plasma Activated Buffer 

 

1 mL of sterile PBS was treated with cold atmospheric plasma jet, using conditions: 10 kV, 

25 kHz, helium flow rate of 0.6 SLPM and gap distance of 15 mm, non-tapered jet for 

varying amounts of time (0-30 mins). Once the plasma activated solution was generated the 

ARS-PBA gels were added and released ARS was added to bacteria to assess ability to 

inhibit biofilm formation as discussed in section 6.3.9.  

 

6.3.9 Biofilm Inhibition Studies 

 

PBA-ARS gel was placed into a PBS solution (1 mL, pH 7.3) containing 2 mM H2O2 and 

incubated for 3 hours. Then 100 µL of the resulting PBS/H2O2/ARS solution (as discussed 

in 6.3.8) was then added to 100 µL of bacterial subculture (~2.5x105 CFU/mL) in glucose 

supplemented broth (as per section 2.4.2) in 96-well plates. Biofilms were then statically 

incubated at 37°C for 18 h. After incubation biofilms were rinsed with PBS and stained with 

CV (as per section 2.3.2) 
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6.4 Results and Discussion  

 

Initial release characterisation of the PBA hydrogel was carried out including quantification 

of ARS loading, washing and triggered release in the presence of varying concentrations of 

H2O2 in order to quantify optimal ARS release conditions. The antimicrobial efficacy of 

ARS and H2O2 both alone and in combination was then assessed on four strains of bacteria: 

two Gram-positive strains; methicillin-resistant Staphylococcus aureus (MRSA) and 

Staphylococcus aureus (S. aureus) and two Gram-negative; P. aeruginosa and Escherichia 

coli (E. coli), which are representative of the bacterial strains predominantly isolated from 

both acute and chronic wounds. The ARS-PBA gel was then tested for its ability to inhibit 

the formation of bacterial biofilms.  

 

6.4.1 Synthesis of Boronic Acid Containing Hydrogel 

 

The PBA monomer was prepared as shown in Equation 6.1 according to the synthesis 

reported by Lampard et al.11 The PBA hydrogel was made by dissolving acrylamide, 

methylene bisacrylamide and boronic ester monomer into distilled water. TMEDA and 

ammonium persulphate solution was added to initiate the polymerisations. After 40 minutes 

gelation was completed, and the cylinders were produced to a measurable volume. The gels 

created were clear in colour, as such, it was thought they could take on the colour of a dye. 

 
Equation 6.1: The binding of PBA to acrylamide monomer 

 

6.4.2 Determination of Loading of Hydrogel  

 

The loading of the PBA hydrogel was conducted in multiple stages, initially the binding of 

ARS to the PBA gel was analysed, then the washing of unbound ARS from the PBA 
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hydrogel was monitored to ensure its total removal. Finally, the release of ARS from the 

PBA hydrogel in response to H2O2 was quantified.  

 

To bind the ARS to the boronic ester moieties within the hydrogel, the PBA gel cylinders 

were placed into 2.5 x 10-4 M solution of ARS in PBS and left to incubate for 5 hours, to 

maximise ARS dye loading. The ARS binding to the hydrogel can be observed visually 

through the colour change from clear (unloaded PBA gel) to red (after loading with ARS for 

5 hours). After the excess, unbound, ARS was washed away by placing gels in PBS for 3 

hours, the final ARS-PBA gels were orange in colour as shown in Figure 6.6. 

 

 
Figure 6.5: PBA hydrogel gel blank (A), loaded with ARS prewash step (B) and after washing in PBS (C). 

 

6.4.2.1 Scheme for Triggered Release 

 

Work by Lampard et al. outlined the release of ARS in response to the presence of sugars in 

equilibrium, the addition of the H2O2 prevents the backward reaction pathway. This is owing 

to the oxidation of the boron-carbon bond to the boron-oxygen bond, removing the binding 

site for the ARS catechol. The ARS binding and release should occur in a similar manner to 

that of the carbohydrate, with oxidation of the boronic ester causing the release of the bound 

dye, rather than the displacement in the presence of the saccharide. This would then result 

in the release of the ARS into the surrounding solution. Boronic esters are known to undergo 

H2O2 mediated oxidation to form the corresponding phenol. In the presence of H2O2 the ARS 

is cleaved and released into the aqueous solution (Figure 6.6). This can be visually 

monitored owing to the change in the colour of the gel as shown in Figure 6.5. 



Chapter 6 

 181 

 
Figure 6.6: Schematic for the binding and triggered release of ARS to PBA hydrogel in the presence of H2O2 with the 

oxidative release of the ARS indicated by the reverse colour change on addition of H2O2 

 

6.4.2.2 Loading of ARS to PBA Gel  

 

The loading of ARS to the PBA gel can be quantified using absorbance. As the concentration 

of free ARS within the solution decreases, so does the absorbance, in accordance with the 

Beer Lambert law (Equation 6.2).  

 

e = 	fgh	 (1) 
Equation 6.2: Beer Lambert law 

This absorbance change can be monitored over time. Aliquots were taken from the loading 

solution and measured at different time intervals. To allow for the discrepancies in gel 

swelling and size, absorbance was plotted as a function of the individual gel masses Figure 

6.7. From these results, the minimum time required for the maximum loading of the dye 

where the gel is said to be saturated with ARS, can be elucidated. After 200 minutes the 

graph reaches a plateau, indicating no further decrease in absorbance, thus is can be 

concluded that PBA gel is saturated with ARS. While the PBA gels used are relatively small 

cylinders, if the gel size were to be increased, for example to make a larger sheet for wound 

dressing, the loading time would increase owing to an increase in the number of boronic acid 

binding sites and to account for the increased diffusion length.  
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Figure 6.7: UV-Vis absorption per gram of PBA-based hydrogel at 513 nm over time in PBS (pH 7.3) at 25°C. Error 

bars indicate the standard deviation (n=3). 

After ARS loading, to ensure that all non-specifically bound ARS was removed from within 

the hydrogel matrix structure the gels had to be washed. This was done by adding the gels 

to PBS solution and monitoring the increase of absorbance in the surrounding solution 

indicating release of ARS from the gels. Aliquots of the gel wash solution were periodically 

removed, and the ARS concentration measured through recording absorbance at 513 nm 

(Figure 6.8). Subsequently the aliquots were replaced to maintain the wash solution volume. 

The absorbance of the wash solution corresponded to the amount of un-bound ARS removed 

from the hydrogel. Once the wash solution absorbance ceased to increase, it was deemed 

sufficient washing had occurred and the remaining ARS was covalently bound to the gel. 

This was found to be at 180 mins.  
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Figure 6.8: UV-Vis absorption per gram of PBA-based hydrogel at 513 nm over time in PBS (pH 7.3) at 25 °C. Error 

bars indicate standard deviation (n = 3). 

6.4.2.3 Triggered Release of ARS from PBA Hydrogel 

 

Following the loading and subsequent wash steps, the ARS-PBA hydrogels were ready for 

release studies. The gels were exposed to increasing concentrations of H2O2 made up in PBS 

(for increased stability of H2O2 and to maintain the pH of ARS) and the absorbance of the 

resulting solution was recorded. As the excess ARS has been removed as shown in Section 

6.4.2.2, any release of ARS in the presence of H2O2 will be owing to the oxidation of the 

PBA and the subsequent triggered release of ARS. The rate of release of ARS was found to 

increase in the presence of higher concentrations of H2O2 (Figure 6.9). The release of ARS 

in the presence of H2O2 was found to increase as the concentration of H2O2 increased from 

100 µM – 4 mM. 

-20 0 20 40 60 80 100 120 140 160 180 200

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ab
so

rb
an

ce
(A

bs
 g

-1
 a

t 5
13

 n
m

)

Time (Mins)



Chapter 6 

 184 

 
Figure 6.9: Absorbance at 513 nm of ARS released over time from PBA in the presence of varying concentrations of 

H2O2 (0-4 mM) in PBS.  

As shown in Figure 6.9, the release of ARS begins to plateau at 180 minutes post exposure 

to H2O2, the absorbance at 180 minutes was subsequently plotted in Figure 6.10 for direct 

comparison of release after exposure to varying H2O2 concentrations. Interestingly, there 

was a significant release of ARS in the presence of 0.5 mM of H2O2, which is the 

concentration of peroxide produced by He-CAP jet after five minutes, thus theoretically He-

CAP treatment could release ARS from the PBA containing gel. 

 
Figure 6.10: UV-Vis absorption per gram of PBA-based hydrogel in the presence of various concentrations of hydrogen 

peroxide (0.1 – 4 mM) in PBS (pH 7.3) after 3 hours. Absorbance was measured at 513 nm at 25 °C; error bars indicate 

standard deviation (n = 3).  
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6.5 Bacterial Studies  

 

H2O2 is a known topical antimicrobial used within the decontamination of wounds. As it 

serves as a trigger within the hydrogel some H2O2 is likely to diffuse through the hydrogel 

into the wound bed in addition to the release of the ARS. As such the combination of ARS 

with H2O2 was assessed for antimicrobial effects.  

 

6.5.1 Minimum Inhibitory Concentrations 

 

As previously outlined, the MIC of an antimicrobial is indicative of the minimum 

concentration required to inhibit growth of bacteria. When tested on planktonic bacteria 

Gram-positive bacteria MRSA and S. aureus were found to be less susceptible to H2O2 than 

Gram-negative P. aeruginosa and E. coli (Table 6.2). MRSA252 and S. aureus have an MIC 

of 6.95-13.91 mM and P. aeruginosa and E. coli have an MIC of 0.43-0.87 mM (For 

absorbance data see Appendix 6.9.1). The MIC for all four strains was > 125 µM ARS, 

however, it is worth noting that the maximum solubility of ARS is 2.5x10-4 M and owing to 

the protocol, the maximum concentration of ARS that can be used in the MIC is 1.25x10-4 

M.  

 
Table 6.2: The MIC of MRSA (MRSA252), S. aureus (H560), P. aeruginosa (PAO1) and E. coli (NCTC10418) when 

treated with H2O2 and ARS using standard microplate dilution method. For absorbance data see Appendix 6.9.1 & 6.9.2.  

Bacterial Species MIC H2O2 (mM) MIC ARS (mM) 

MRSA252 6.95-13.91 >125 

S. aureus H560 6.95-13.91 >125 

P. aeruginosa PAO1 0.43-0.87 >125 

E. coli NCTC 10418 0.43-0.87 >125 
 

6.5.2 Minimum Biofilm Inhibitory Concentrations 

 

Alizarin is a known biofilm inhibitor; it was thus thought that ARS would also have biofilm 

inhibitory properties. The minimum biofilm inhibitory concentration (MBIC) is the 

minimum concentration of antimicrobial required to inhibit biofilm formation. Owing to the 

fact that alizarin is a calcium chelator as proven by Lee et al. and as calcium contributes to 
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adhesion of bacteria to surface, it was though that ARS would reduce the amount of calcium 

available for the bacteria and thus would impact binding and reduce biofilm formation.7 To 

assess this, varying concentrations of ARS was added to lag phase bacteria (~1x105 

CFU/mL) in a 96-well plate, the bacteria was then left to grow statically, to enable the 

formation of biofilms, for 24 h. After incubation the bacterial biofilm biomass was stained 

using crystal violet (CV) dye and its biomass was measured as a function of absorbance. An 

increased absorbance at 570 nm corresponded to an increase in bacterial biomass. It is 

important to note that while the methodology enables high throughput screening, as was 

required here, it is a crude method estimating only biomass not the viability or number of 

cells within the remaining biofilm. Further to this CV will stain all materials present, 

including extracellular (ECM) and biofilm slime not just the bacterial cells themselves.  

 

As expected, the biofilms of the four species respond differently to the ARS; Figure 6.11 

shows the variation in the biomass of the biofilms varies between the species. Both MRSA 

and S. aureus biofilms are inhibited by ARS, however P. aeruginosa and E. coli are not. 

Their MBIC values are outlined in Table 6.3. This is potentially owing to S. aureus biofilms 

require greater concentrations of calcium for biofilm formation than the Gram-negative 

strains and as such, are more susceptible to the ARS owing to its ability to chelate calcium.  
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Figure 6.11: Varying concentrations of ARS (2.5-100 µM) were added at lag phase to MRSA (MRSA252) (A), 

S. aureus (H560) (B), P. aeruginosa (PA01) (C) and E. coli NCTC 10418 (D). After 24 hours growth at 37 °C, 

absorbance was measured at 570 nm. Error bars indicate standard deviation (n = 4). 

 

The same experimental procedure was repeated with H2O2 to elucidate the MBIC of H2O2 

Figure 6.12. Gram-negative bacteria appear to be less susceptible to H2O2. The MBIC of P. 

aeruginosa 25-100 mM which would seem to be an experimental anomaly.  
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Figure 6.12: Varying concentrations of H2O2 (1-100 µM) were added at lag phase to MRSA (MRSA252) (A), S. aureus 

(H560) (B), P. aeruginosa (PA01) (C) and E. coli (NCTC 10418) (D). After 24 hours growth at 37 °C, absorbance was 

measured at 570 nm. Error bars indicate standard deviation (n = 4). 

The MBIC of MRSA252 and S. aureus for ARS is between 50-100 µM, however, the MBIC 

for P. aeruginosa or E. coli is above 100 µM (Table 6.3). 

 
Table 6.3: The MBIC of MRSA (MRSA252), S. aureus (H560), P. aeruginosa (PAO1) and E. coli (NCTC10418) when 

treated with H2O2 and ARS using standard microplate dilution method. For absorbance data see Appendix.  

Bacterial Species MBIC H2O2 (mM) MBIC ARS (mM) 

MRSA252 4-5 50-100 

S. aureus H560 4-5 50-100 

P. aeruginosa PAO1 25-100 >100 

E. coli NCTC 10418 5-10 >100 

 

To further assess the effect of ARS on bacteria, a viability assay using XTT was performed, 

to see whether the ARS was affecting the bacteria’s viability while preventing it from 

forming a biofilm or if it is only preventing the biofilm formation leaving viable bacterial 
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cells. The metabolic activity of all four strains was found to be >50% showing that while the 

biofilm had not formed the bacteria are still metabolically active (Figure 6.13).  

 
Figure 6.13: XTT Viability of ARS against bacterial strains P. aeruginosa (PAO1) and S. aureus (H560). Error bars 

indicate the standard deviation (n=3).   

 

6.5.3 Minimum Biofilm Eradication Concentrations (MBEC) 

 

As outlined in Chapter 1, the concentrations of drug required to eradicate a biofilm can be 

between 10-1000 times higher than the MIC of said drug. To further assess the utility of 

H2O2 and ARS were tested against 96-well plate, 24 h biofilms to elucidate their MBECs. 

The MBECs were found to be higher than the maximum solubility of ARS (Table 6.4).  
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Figure 6.14: Varying concentrations of ARS (2.5-100 µM) were added at stationary phase to MRSA (MRSA252) (A), 

S. aureus (H560) (B), P. aeruginosa (PA01) (C) and E. coli (NCTC 10418) (D). After 24 hours growth at 37 °C, 

absorbance was measured at 570 nm. Error bars indicate standard deviation (n = 4).    

Unsurprisingly the MBEC of ARS was above 2.5x10-4 M, as ARS has no effect on the 

viability of the bacteria it was not expected that the ARS would have any effect on the 

established biofilms (Figure 6.14).  
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Figure 6.15: Varying concentrations of H2O2 (1-100 mM) were added at stationary phase to MRSA (MRSA252) (A), 

S. aureus (H560) (B), P. aeruginosa (PA01) (C) and E. coli (NCTC 10418) (D). After 24 hours growth at 37 °C, 

absorbance was measured at 570 nm. Error bars indicate standard deviation (n = 4).    

The MBEC of H2O2 was found to be above 100 mM for all four strains as shown in Figure 

6.15, confirming that the MBEC is significantly higher than the MIC.  

 
Table 6.4: The MBEC of MRSA (MRSA252), S. aureus (H560), P. aeruginosa (PAO1) and E. coli (NCTC10418) when 

treated with H2O2 and ARS using standard microplate dilution method. For absorbance data see Appendix. 

Bacterial Species MIC H2O2 (mM) MIC ARS (µM) 

MRSA252 >100 >125 

S. aureus H560 >100 >125 

P. aeruginosa PAO1 >100 >125 

E. coli NCTC 10418 >100 >125 
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6.5.4 Combination of ARS and H2O2 

 

As both ARS and H2O2 would be released into the wound milieu, the combination of 2 mM 

H2O2 and either 50 µM or 100 µM ARS were added to developing biofilms at 0 h to assess 

whether the combination had an additive effect on the inhibition of biofilm formation. If the 

combination is additive or synergistic the absorbance for the combination will be 

significantly lower than the individual compounds.  

 

For MRSA252 the combination of 2 mM H2O2 and 50 µM and 100 µM ARS was found to 

completely inhibit the formation of MRSA252 biofilms as denoted by a crystal violet 

absorbance of <0.5 at 570 nm, which corresponds to complete lack of biofilm biomass 

Figure 6.16A. As the combinations produced a significantly greater effect than the 

compounds alone it can be concluded that the combination is synergistic. While the 

combination of H2O2 and ARS significantly reduced the biomass of P. aeruginosa, the 

absorbance was still ~1.5 indicating the presence of bacterial biofilm. However, owing to 

the decrease in biomass it is hypothesised that the addition of further antimicrobials would 

be effective at lower concentrations as they would be able to penetrate the sparse biofilm 

easier than a dense biofilm. The combination of ARS and H2O2 was found to be ineffective 

on S. aureus (H560) and E. coli (NCTC10418). When the combinations were added to 

growing biofilms at 6 hours into growth or to established 24-hour biofilms the combination 

was found to be ineffective in both instances, as was expected owing to the lack of efficacy 

shown by the individual compounds.  
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Figure 6.16: H2O2 (2 mM) was added to ARS (50 and 100 µM) during lag phase to MRSA252 (A), S. aureus H560 (B), 

P. aeruginosa (PAO1) (C) and E. coli (NCTC 10418) (D). After 24 h growth at 37 °C whereby absorbance was measured 

at 570 nm. Error bars indicate standard deviation (n=4). 

 

6.5.5 ARS PBA Hydrogel Inhibition of Biofilm Formation 

 

The ARS PBA gel was treated with H2O2 and the resulting solution was added to planktonic 

cultures of MRSA, S. aureus, P. aeruginosa and E. coli under the same conditions as the 

individual antimicrobials had been added previously. As the most promising results were 

observed when 2 mM H2O2, solutions were added in combination with ARS, 2mM of H2O2 

was added to the PBA gel to trigger the release of the ARS. The resulting solution was found 

to significantly inhibit the formation of MRSA252 biofilms (Figure 6.17). However, it was 

ineffective against S. aureus H560, while this was to be expected owing to the observed 

results of the combination therapy, it was not expected that the treatment would be effective 

on MRSA and not S. aureus. This could potentially be as a result of MRSA252 using greater 

concentrations of calcium for the formation of its biofilm when compared to S. aureus 

(H560) thus accounting for the discrepancy. The combination was not found to be effective 
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against P. aeruginosa or E. coli. 2 mM of H2O2 was found to inhibit the formation of both 

species’ biofilms, as such it could not be concluded that the ARS released from the PBA 

hydrogel was having any effect upon the biofilm formation. 1 mM of H2O2 was instead used 

to trigger the release of ARS (data not shown), however, this was not found to inhibit biofilm 

formation. It was thus concluded that the ARS-PBA hydrogel was ineffective against P. 

aeruginosa and E. coli. 

 
Figure 6.17: Biofilm biomass after 18 h grwoth at 37 °C in the presence of resultant solution after ARS loaded 

acrylamide gel was exposed to 2 mM H2O2, 2 mM H2O2 only, the resultant solution of PBA hydrogel in the presence of 

PBS compared to untreated bacterial control and broth only control for MRSA (MRSA252) (A), S, aureus (H560) (B), P. 

aeruginosa (PAO1) (C), and E. coli (NCTC10418) (D). Error bars resprent standard deviation (n=3) One-way ANOVA 

was performed p<0.0001.  

To ensure the antibacterial/antibiofilm properties of the ARS-PBA hydrogel were due to the 

combination of the H2O2 and ARS, and not the PBA containing hydrogel, the toxicity of the 

PBA gel was assessed without ARS bound to it and no H2O2. To mimic the triggered release 

conditions, 1 mL of PBS was added to the PBA gel, this was then added to the bacteria and 
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biomass was assessed after 24 h. The biomass was compared to untreated control. There was 

no significant difference between the untreated bacterial biomass and the bacterial biofilm 

treated with PBA gel solution. Upon oxidation of the boronic acid, boronic acid is produced, 

the potential toxicity of this was concerning, however, these results show that the boronic 

acid has no antimicrobial effect.  

 

6.5.6 He-CAP Activation of PBA Gel  

 

An overarching aim of the project was to develop a system where a molecule or molecules 

could be released from a hydrogel in response to exposure to He-CAP. As the ARS is 

released in the presence of H2O2, which is the predominant RONS produced by He-CAP, it 

was thought that He-CAP would release the ARS and result in an antimicrobial effect within 

a contaminated wound.  

 
Figure 6.18: Absorbance at 513 nm of release of ARS from PBA gel after incubation with PBS treated with He-CAP for 

varying amounts of time (0-30 minutes). Error bars represent standard deviation (n=3).  

As shown in Chapter 3, as He-CAP treatment time increases so does the concentration of 

RONS generated in treatment solution, with 5 minutes generation ~650 µM of H2O2. When 

ARS gels were added into plasma-activated PBS the absorbance at 513 nm increases owing 

to the He-CAP generated RONS mediating the release of ARS from the PBA gel, this is as 

a result of the He-CAP generated RONS within the PBS (Figure 6.18). The longer the PBS 
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has been exposed to the He-CAP, the greater the concentration of RONS generated and thus 

the increase in ARS released. This encouraging result indicates that the PBA is a potential 

candidate for a He-CAP responsive therapeutic hydrogel wound dressing.  

 

As such, He-CAP was then applied directly to the PBA gel cylinders to trigger the ARS 

release. However, He-CAP treatment dehydrated the gels causing them to become brittle 

and there was a significant amount scorching observed (data not shown). Larger sheets of 

PBA gel were made to test with He-CAP treatment, in theory the larger volume should act 

as a reservoir allowing for the movement of water and decreasing the risk of burning and 

localised dehydration. However, this was not the case, the PBA gel dehydrated, and a hole 

was burned in the centre as shown in Figure 6.19. 

 

 
Figure 6.19 He-CAP treated ARS-PBA hydrogel. Edges of the gel were taped down to prevent movement. 

To attempt to limit this dehydration a PVA layer was added to the PBA. As shown in Chapter 

3 PVA did not have any adverse response when treated with He-CAP, so a bi-layer gel was 

created. The PVA provides a more robust layer for the direct application of He-CAP and 

acts as a reservoir, for the He-CAP generated RONS, which would then diffuse down and 

trigger the release of the ARS from the PBA gel. However, the RONS reacted at the 

PBA/PVA interface and created an ARS concentration gradient resulting in the diffusion of 

ARS away from the wound surface as shown in Figure 6.20.  

 
Figure 6.20: Bilayer ARS-PBA and PVA hydrogel before He-CAP treatment and after He-CAP treatment showing 

diffusion gradient of ARS post He-CAP treatment moving away from the wound. 
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Owing to the ARS gradient moving away from the contact surface, the tests were performed 

using the single layer PBA gel with H2O2 solutions and He-CAP activated solutions rather 

than direct He-CAP treatment.  
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6.6 Conclusions  

 

A boronic ester containing acrylamide monomer was synthesised and successfully 

polymerised into a boronic ester functionalised polyacrylamide hydrogel known as PBA. 

PBA was found to be able to bind the diol containing dye, ARS. The ARS can be cleaved 

from the PBA in the presence of H2O2, thus acting as a triggered release system. The release 

of ARS occurs in dose dependent manner in response to H2O2.  

 

Further to this, it was found that CAP treated PBS also triggered the release of ARS from 

the PBA hydrogel in a dose dependent manner, whereby the increased exposure time of the 

PBS to the CAP jet inferred an increased dose. This is thought to be due to the increased 

production of RONS, chiefly H2O2, with increased CAP exposure time. This was thought to 

offer a promising alternative to the PVA hydrogel described in Chapter 3, as not only would 

it provide a screen from potentially damaging RONS produced by the CAP jet, it would also 

release an antibiofilm agent to prevent the formation of bacterial biofilms within the wound. 

However, when CAP treatment was applied directly to the gel, it was found to dehydrate 

and burn. The addition of a PVA layer, to form a dual layer hydrogel failed to mitigate this 

adverse response. Therefore, in order for this system to be compatible with CAP therapy 

further engineering of the hydrogel is required.  

 

The ARS-PBA hydrogel system was found to be effective at inhibiting the formation of 

MRSA biofilms in vitro, but disappointingly, it was not found to be effective against S. 

aureus or Gram-negative P. aeruginosa or E. coli bacteria. However, as bacteria are not 

known to have any resistance to ARS, this could be administered as a prophylactic treatment 

although. Furthermore, as hydrogels and hydrogen peroxide are routinely used within wound 

care, this therapeutic option would require no alteration to existing clinical care pathways.  

 

In addition to its utility as a therapeutic wound dressing, the ARS-PBA hydrogel system 

could be used as a solid state, reaction-based indicator of H2O2 concentration. This could 

have multiple applications within biology and for environmental detection.  
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6.7 Future Work 

 

While 96-well plate biofilm models enable the high-throughput analysis of antibiofilm 

agents, they are simplistic and lack a multitude of physiological components that could 

influence the efficacy of the ARS-PBA hydrogel. Future work would seek to test the efficacy 

of the ARS-PBA hydrogel on both an ex vivo porcine skin model and potentially on animal 

models.  

 

Further to this the ARS-PBA hydrogel could theoretically be used in tandem with an 

infection detection system, for example the commercially available Wound Check or 

Moleculight technologies or indeed the SPaCE sensor system developed within the Jenkins 

Group. On the detection of bacterial colonisation was detected then the H2O2 trigger could 

be applied either topically or via CAP therapy if the hydrogel were modified for optimal 

compatibility, to release ARS into the contaminated wound and prevent a biofilm-associated 

infection from forming.  

 
Figure 6.21: Structure of Kanamycin, an aminoglycoside antibiotic  

Kanamycin is an aminoglycoside antibiotic, commonly prescribed within the clinic and 

historically was used to treat Mycobacterium tuberculosis, however there is growing 

kanamycin resistance within this species. The sugars that constitute the aminoglycosides 

offer a number of 1cis-,2 and 1,3 diols which act as binding sites for boronic acids. As such, 

kanamycin could be bound to the PBA gel for the RONS mediated triggered release of 

kanamycin to treat an infected wound. 
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6.9 Appendix  

6.9.1 MIC H2O2 

 
Figure 6.22: Minimum inhibitory concentration (MIC) of H2O2 against MRSA252, S. aureus (H560), P. aeruginosa 

(PAO1) and E. coli (NCTC10418). Absorbance at 600 nm corresponds to planktonic bacterial growth relative to 

untreated bacterial control (n=3). 

6.9.2 MIC ARS 

 

 
Figure 6.23: Minimum inhibitory concentration (MIC) of ARS against MRSA (MRSA252), S. aureus (H560), P. 

aeruginosa (PAO1) and E. coli (NCTC10418). Absorbance at 600 nm corresponds to planktonic bacterial growth relative 

to untreated bacterial control (n=3). 
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6.9.3 NMR Spectra 

 

N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methacrylamide (PBA) (1H 

NMR, 300 MHz, DMSO-d6) 
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N-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methacrylamide (PBA) (13C 

NMR, 75.5 MHz, DMSO-d6) 
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Chapter 7 : Povidone Based Hydrogel Wound Dressing  

 

7.1 Aims  

 

Due to the low production of H2O2 by the helium-driven cold atmospheric pressure plasma 

(He-CAP) jet through a hydrogel wound dressing an alternative route for cold atmospheric 

pressure plasma (CAP) therapy with a hydrogel was to use He-CAP jet treatment in tandem 

with an antimicrobial to produce a synergistic response for the eradication of a bacterial 

infection. Theoretically, this could be done either through the topical application of the 

antimicrobial or by incorporating the antimicrobial into a hydrogel.  

 

Within burn wound care, povidone-iodine (PVP-I), a polymeric iodophor, is commonly used 

like H2O2, for the decontamination of burn wounds. Previous literature suggests that PVP-I 

can act synergistically with H2O2 in the treatment of bacterial infections. It was thus 

hypothesised that PVP-I could act synergistically with He-CAP treatment for the eradication 

of bacterial infection. Furthermore, as the He-CAP was sub-optimal in its efficacy, an 

alternative CAP jet using argon was investigated for its therapeutic potential. Ghimire et al. 

developed a novel argon driven cold atmospheric pressure plasma (Ar-CAP) jet tailored for 

the decontamination of infected wounds owing to its ability to generate high concentrations 

of H2O2. The Ar-CAP was assessed to see if it would interact more favourably with a 

hydrogel and generate greater concentrations of H2O2 both with and without a hydrogel. 

Finally, the aim was to combine the PVP-I hydrogel with the modified Ar-CAP jet for the 

decontamination of Pseudomonas aeruginosa (P. aeruginosa) biofilm-associated wound 

infections.  
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7.2 Chapter Background  

7.2.1 Povidone-Iodine 

 

Povidone iodine (PVP-I) consists of the polymer polyvinylpyrrolidone (PVP) and triiodide 

(I3-) (Figure 7.1). The triiodide forms a complex with the carrier polymer povidone, which 

when in an aqueous environment will release iodine (I2) and iodide (I-) into the solution and 

establishes an equilibrium with free iodine being released following Equation 7.1: Triiodide 

equilibrium to iodine and iodide with an equilibrium constant of 0.000145 M at 298 K 

showing the majority “reservoir” species is I2. 

 

 
Figure 7.1: Chemical structure of PVP-I. 

 

I*
% 	⇋ 	 I& +	I% (1) 

Equation 7.1: Triiodide equilibrium to iodine and iodide. 

PVP-I has been found to be effective against a range of microorganisms. It is a broad spectra 

antimicrobial with efficacy against both Gram-positive and Gram-negative bacteria, in 

addition to this it is also effective against mycobacteria, yeasts, enveloped and non-

enveloped viruses, including rabies, as well as protozoa.1 As iodine crosses into bacteria it 

can induce cell death through the oxidisation of amino acids and nucleic acids (Figure 7.2).2 

This gradual dissociation of iodine from PVP-I results in low associated cytotoxicity and 

sensitisation. 

 

In addition to its antimicrobial activity, PVP-I also exhibits a range of anti-inflammatory 

properties on the host cells. Within the patient PVP-I modulates redox potential, exerts an 

inhibitory effect on inflammatory cells like TNF-a and enhances healing signals from 
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proinflammatory cytokines through the activation of monocytes, T-lymphocytes and 

macrophages. In the bacteria PVP-I can inhibit the production and release of bacterial 

exotoxins such as a-hemolysin and phospholipase C and can supresses the activity of 

enzymes like elastase.3 

 

 
Figure 7.2: PVP-I antibacterial mechanism through the establishment of an equilibrium. (Reproduced with permission 

from Journal of Surgery).  

 

As with all approved antimicrobials, the cytotoxicity of PVP-I has been extensively 

investigated, while there is a low level of cytotoxicity owing to nonspecific effects, it is at a 

significantly lower level than in other commonly used topical antimicrobials like 

chlorohexidine. PVP-I treatment is not recommended for patients with thyroid disorders, 

infants with low birth weight or patients receiving radio-iodine therapy. The absorption of 

PVP-I is determined by the condition of the skin barrier, absorption will increase if the skin 

barrier is broken and will also depend on the skins age and the surface area of the application 

area.4 

 

PVP-I is used successfully within care regime for acute wounds, chronic wounds and burn 

wounds. The formulation used is dependent on its presentation, specifically its level of 

exudation and the extent of bacterial contamination ( 

Figure 7.3). Inadine, is a commercially available PVP-I based dressing, the non-adherent 

dressing using polyethylene glycol impregnated with PVP-I and has been used for the 

treatment of wound for over 30 years.5 

 

 



Chapter 7 

 210 

 

 

Level of 

Exudation 

High 
Polyurethane foam with 3% Dry powder spray/solution 
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Figure 7.3: Chart showing the selection of PVP-I formulation depending on requirements of the clinical wound.6 

  

7.2.2 Argon Plasma 

 

As already discussed, the engineering of plasma devices can be tailored for their use. The 

He-CAP jet previously described, was not found produce high enough concentrations of 

ROS, mainly H2O2, for the decontamination of wounds. H2O2 in CAP jets is a secondary 

product of the reaction between hydroxyl (●OH) radicals (●OH + ●OH à H2O2) and its 

production could be enhanced by a suitable choice of the working gas. Based on the 

literature7,8 the rate coefficient (k) for the formation of ●OH radicals is an order of magnitude 

higher with argon metastables (Arm + H2O à ●OH + H + Ar, k = 4.5×10-10 cm3s-1) than that 

with helium metastables (Hem + H2O à ●OH + H + He, k = 2.6×10-11 cm3s-1). Also, results 

by Xian et al.  suggest that the concentration of ●OH radicals in Ar-CAP is higher than He-

CAP. This higher concentration in Ar-CAP is mainly attributed to the morphology of the 

discharge. Ar-CAP discharge operates in filamentary mode with a lot of micro-discharges 

whereas discharge in helium is more diffuse. Higher energy and electron density in plasma 

filaments / streamers that are more likely to be formed in Ar-CAP are known to contribute 

to the higher concentration of ●OH radicals. 

 

Based on the above principle, the effect of inter-electrode separation distance along with the 

length of the plasma jets were investigated by Ghimire et al. (collaborators at Lancaster 

University). It was found that by increasing the inter-electrode separation distance from 5 

mm to 160 mm increased the concentration of H2O2 from 0.4 mM to 1.2 mM in two minutes 

of plasma treatment in deionised water. This is significantly higher than the concentration 

produced by He-CAP in five minutes of plasma treatment. The higher inter-electrode 
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separation distance mainly facilitated the formation of energetic streamers, which increased 

the concentration of H2O2. Further to this, the Ar-CAP jet was found to decrease the pH of 

the treatment solution owing to the generation of NO2-, which within a wound environment 

would be advantageous for healing. The Ar-CAP (described in the next section) was 

optimized to operate at room temperature by addition of an additional ground electrode, still 

producing higher concentration of H2O2.  
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7.3 Methods  

7.3.1 Bacterial Strains  

 

Within this chapter a selection of P. aeruginosa strains were used outlined their origin is 

outlined in Table 7.1. They were maintained and cultured as per 2.2.2. 

 
Table 7.1: P. aeruginosa strains name and origin 

Strain Name Origin 

PAO1 ATCC Typed Strain 

PAE45311  

Acute wound isolates from Bristol Southmead 

Hospital 

PAE45321 

PAE45325 

PAE45379 

 

7.3.2 Argon Plasma Jet  

 

Developed at the University of Lancaster by Ghimire et al. the Ar-CAP jet shown in Figure 

7.4 consisted of an internal steel needle electrode (outer diameter = 0.9 mm, inner diameter 

= 0.6 mm, length 51 mm) sealed inside a quartz tube (inner diameter = 1.5 mm, outer 

diameter = 3 mm). Two external copper electrodes of length 4 mm 5.6 cm from electrode, 

spaced 5.4 cm apart and 6.6 cm from the bottom of the tube. Ar gas was kept at 1.0 standard 

litres per minute (SLPM) and generated at 10 kV at 23.5 kHz. Voltage and current 

waveforms were monitored using oscilloscope. The gap distance was 1.5 cm and the Ar-

CAP jet was stationary unless otherwise stated.  

 
Figure 7.4: Schematic of Ar-CAP jet set up. 
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7.3.3 PVP-I Hydrogel  

 

5% (w/v) PVA solution was made up as per section 2.6.3. This was then mixed 1:1 with 

10% (v/v) Povidone Iodine (PVP-I) and vortexed to ensure homogenisation. The gels were 

then cast by aliquoting 500 µL into wells of a 24-well plate and crosslinked through freeze 

thawing, from here referred to as cryogenic crosslinking (cryo-crosslinking). Cryo-

crosslinking was achieved through two repeated freeze-that cycles at -20°C. As required gels 

were rinsed for 2 h in 1 mL of sterile PBS to remove excess PVP-I.  

 

7.3.4 Checkerboard Assay 

 

100 µL of LB broth was added to all wells in a 96-well plate apart from 1A-G which were 

left empty. 200 µL of antimicrobial A was added to wells 1A-G, then 100 µL was removed 

from these wells and serially diluted across the plate, stopping before row11. 100 µL of 

antimicrobial A was added to well H1 and serially diluted across row H, providing the 

minimum inhibitory concentration (MIC) for antimicrobial A. 100 µL of antimicrobial B 

was added to wells 1-10 in Row A, and serially diluted down the plate stopping before row 

G. 100 µL of antimicrobial B was added to well A11 and serially diluted down the plate, 

providing the MIC for antimicrobial B. 100 µL of bacterial subculture was then added to all 

wells aside from E-G12, providing a positive control. Finally, 100 µL of broth was added to 

wells A-D12, providing a negative control. Plates were then incubated statically for 18 h at 

37°C, and the absorbance of each well was then read at 600 nm corresponding to bacterial 

growth. Lack of turbidity indicated no cell growth. This was repeated three times per 

bacterial species. 

 

7.3.5 Plasma Activation of Drug  

7.3.5.1 Planktonic Treatment  

 

150 µL of PVP-I of ½ MIC concentration was added to wells of a 96 well plate and then 

CAP treatment was applied for ½ time required to generate MIC levels of antimicrobial 

activity from the jet (3 or 5 min depending on strain), 150 µL of bacterial subculture was 
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then added atop CAP activated PVP (diluting PVP 1:2).  In a separate well 150 µL of PVP-

I was added and 150 µL bacterial subculture. In a final well ½ MIC CAP dose was applied 

to 150 µL of PBS and 150 µL of bacterial subculture was then added. 150 µL of subculture 

was then added to PBS only to serve as a positive control. The plate was then incubated 

statically for 18 h at 37 °C.  

 

7.3.5.2 Biofilm Treatment  

 

100 µL of PVP was added atop 24 h biofilm, CAP jet treatment was then applied atop the 

biofilm for 5 minutes, under the conditions outlined above. After treatment biofilms were 

left to incubate for 1 h at 37 °C. Biofilms were then stripped and CFU/biofilm enumerated 

as previous. CFU was compared to untreated control. Biofilms were grown and enumerated 

as previously described in section 2.3.3. 

 

7.3.6 FT-IR 

 

PVP-I hydrogels were made as per section 7.3.3 and PVA hydrogels were made as per 

section 2.6.3. The gels were lyophilised and converted into powdered form. Samples were 

then analysed using the fourier transform infrared spectroscopy (FT-IR) at force 75%, over 

the range 600-4000 cm-1 using Spectrum100 (PerkinElmer). 

 

7.3.7 MALDI-TOF  

 

DCTB matrix (trans-2-[3-(4-terta-butylphenyl)-2-methyl-2-propenylidone] malononitrile 

and was dissolved in DI H2O. to give a final concentration of 40 mg/mL. This was then 

mixed 1:1 with PVP-I hydrogel suspension solution. 10 µL was spotted onto a polished steel 

target plate and dried in air. Samples were measured on the Bruker Autoflex Matrix-assisted 

Laser Desorption Ionisation (MALDI) mass spectrometer. Spectra were normalised to 

plasma activated water.   
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7.3.8 Pyocyanin Expression Assay  

 

Overnight cultures of P. aeruginosa were grown as per standard protocol and either synergy 

checkboard assay or MIC assay was carried out. 200 µL of bacterial culture was removed 

from the 96-well plate, post incubation and added to a sterile Eppendorf. This was then 

centrifuged at 10,000 rpm for 10 minutes to separate out whole cells and supernatant.  150 

µL of the green/blue coloured supernatant was then removed and added into a 96-well plate. 

The absorbance was read at 691 nm which corresponds to the concentration of pyocyanin. 

Values were blank corrected against broth only control. 

 

 
Figure 7.5: Structure of Pyocyanin (PCN). 
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7.4 Results and Discussion  

7.4.1 Bacterial Activity of PVP-I  

 

To assess its utility against P. aeruginosa infections, the MIC and minimum biofilm 

eradication concentration (MBEC) for four clinical isolates and one laboratory strain were 

assessed (Table 7.2). There was no measurable difference in MIC for the five isolates used, 

but there was variation in their MBECs. This is likely owing to the variation in biofilm 

formation between the isolates, those which form more dense biofilms are likely to have a 

higher MBEC owing to their complex architecture. The MIC and MBEC of H2O2 for these 

five strains were also attained, as the end goal was to combine the two treatments and assess 

synergistic interactions. More variation in susceptibility to H2O2 was observed between 

strains than was observed for PVP-I. There was no concordance observed between the 

results, the three strains which were most resistant to PVP-I treatment varied in the 

susceptibility to H2O2.  

 
Table 7.2: MIC and MBEC of H2O2 and PVP-I for P. aeruginosa isolates. 

Bacterial 

Strain 

H2O2 MIC 

(mM) 

H2O2 MBEC 

(mM) 

PVP-I MIC  

(% (v/v)) 

PVP-I MBEC 

(% (v/v)) 

PAO1 0.435-0.87 1110-2230 0.63-0.31 1.25-2.50 

PAE321 0.435-0.87 560-1110 0.63-0.31 >5 

PAE379 1.73-3.48 1110-2230 0.63-0.31 >5 

PAE325 1.73-3.48 560-1110 0.63-0.31 0.63-1.25 

PAE311 0.435-0.87 1110-2230 0.63-0.31 >5 

 

It is known that H2O2 and PVP-I are synergistic in their antimicrobial effects.10 To ensure 

that this was applicable to the strains used in this work, a checkerboard assay for drug 

synergy was conducted.11 A simple assay used to determine the fractional inhibitory 

concentration index (FICI) of drug combinations, the checkerboard assay assesses a variety 

of combinations of the two drugs and compares them to the drugs individually as shown in 

Figure 7.6.  
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Figure 7.6: Layout of synergy plate. Black circles show wells where combination of drug has successfully inhibited 

growth below the MIC of the drugs individually. Red square shows where the MIC of Drug A and Drug B falls.  

FICI is calculated as per Equation 7.2, using combination drug MIC and individual drug 

MIC values. The FICI value can then convey whether the drug combination is synergistic, 

FICI of less than 0.5 is a synergistic combination, an FICI of between 0.5-4 is additive and 

an  FICI of >4 is antagonistic.11  

 

FICI = 	
MIC	Drug	A	in	combination

MIC	Drug	A	only	
+	
MIC	Drug	B	in	combination

MIC	Drug	B	only	
= FICA + FICB (2) 

Equation 7.2: FICI calculation 

 

The FICI was found to be 0.375 for four out of five strains used (Table 7.3), confirming the 

combination of PVP-I and H2O2 is synergistic in killing bacteria. For strain PAE45379 the 

combination was not found to be synergistic.  
Table 7.3: FICI values for five P. aeruginosa strains used and FIC range (N=3). 

Bacterial Strain FICI FIC Range 

PAO1  0.375 0.313-1 

PAE45321 0.375 0.313-1 

PAE45379 Not Synergistic  Not Synergistic 

PAE45235  0.375 0.282-1 

PAE45311 0.375 0.31-1 
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As previously mentioned, CAP’s main bactericidal component is H2O2 and as shown in 

Chapter 3, He-CAP treatment is ineffective in reducing viable cell counts of planktonic P 

aeruginosa cultures. Owing to the synergistic interactions between H2O2 and PVP-I, it is 

hypothesised that He-CAP will also active synergistically with PVP-I, enabling a reduction 

of the bioburden of planktonic cultures of P. aeruginosa. 

 

7.4.1.1 Plasma Activation of PVP-I  

 

To assess the potential synergistic combination of He-CAP and PVP-I the checkboard assay 

was found not to be experimentally viable: it was conjectured that after multiple CAP 

treatments to “activate” PBS for the assay, the short lived RONS would have degraded and 

the assay would not be consistent. Instead, the protocol was modified (as per section 7.3.5.1). 

Sub MIC concentrations of both He-CAP and PVP-I had to be used to attain whether the 

combination was synergistic, if MIC values were used any bacterial death could not be 

attribute to the combination, instead it would be owing to the presence of the single drug at 

MIC concentrations. The He-CAP treatment was applied to the ½ MIC PVP-I to “activate” 

it, then planktonic cultures of bacteria were added and incubated for 18 h. If the combination 

is synergistic then the reduction in optical density would be significantly greater in the 

combination treatment wells than the reduction observed by the two single antimicrobials. 

All five P. aeruginosa strains were found to be susceptible to the He-CAP/PVP-I 

combination (Figure 7.7). 
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Figure 7.7: Optical density 600 nm of P. aeruginosa stains PAO1 (A), PAE45311 (B), PAE45321 (C), PAE45325 (D) & 

PAE45379 (E) after exposure to ½ MIC dose of PVP-I (0.33% (v/v), ½ MIC He-CAP (3 & 5 mins) treatment and 

combination treatment relative to untreated control. (n=3) Error bars represent standard deviation. One-way ANOVA was 

performed in GraphPad 8.0 **** p = <0.0001 *** p = 0.0009 respectively. 

 

During CAP activation of PVP-I a visible colour change of the PVP-I was observed with 

increased treatment times (Figure 7.8). Owing to the synergism observed in bacterial 

treatment it was hypothesised that this colour change could be indicative of chemical 

alterations that were responsible for the increased efficacy of PVP-I post CAP treatment.  

 

 
Figure 7.8 Visual analysis of PVP-I after He-CAP treatment of varying times (mins). 
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UV-Vis spectroscopy was carried out to analyse change in absorbance of PVP-I as He-CAP 

exposure time increased. As treatment time increased the absorbance peaks at 290 nm and 

350 owing to w I- and I2  were seen to decrease (Figure 7.9).12  

 

A 

 

B 

 
 

Figure 7.9: (A) UV-Vis Spectra of 0.33% (v/v) PVP-I with increasing He-CAP treatment (B) Absorbance change at 288 

nm (p) and 350 nm (l) after varying treatment time of He-CAP jet. 

 

More liberation of I2 is known to occur with an increase in temperature further to this, at a 

pH >8, the pH of CAP treated solutions is >8, the equilibrium state favours bactericidal 

species hypoiodous acid (HOI) and I2. It was hypothesised that there is a further increase in 

the formation of bactericidal HOI owing to the  interaction of iodide ions with He-CAP 

produced H2O2 to form HOI as per Equation 7.3.13 

 

I% +	H&O& → [I%H&O&]% → HOI +	OH% 

I% +	H&O& → [I%H&O&]% → 2OH% +	I( 

I( + 	OH% → HOI 
															

I%	+	,O& → [I%O&	]% +	H&O → HO& + 	HOI	 	(3) 
Equation 7.3: Formation of hypoiodous acid (HOI). 

HIO is known to be antibacterial and antifungal.14 Elemental iodine is used for the 

disinfections of water and will hydrolyse in a pH-dependent manner forming HOI and I- as 

per Equation 7.4.15  

 

I& +	H&O	 ⇋ HOI +	I% + H(	 (4) 
Equation 7.4: Hydrolysis of molecular iodine (K= 5.4 x 10-13 M2). 
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Both HOI and I2 are active disinfectants, HOI has twice the oxidising power of I2, yet I2 has 

a greater capacity for penetrating into the cells than HOI. The hydrolysis of I2 is pH 

dependent, at higher pH’s the equilibrium will shift to the right so HOI will be the 

predominant active antimicrobial, whereas at low pH equilibrium will shift to the left, so I2 

is the main active antimicrobial. The optimal pH is 7 resulting in a 1:1 ratio of HOI: I2. 

Importantly at pH<8 HOI is unstable and will decompose into iodate and iodide ions.16 

Further to this, the observed decrease in absorbance is indicative of the triiodide ions being 

consumed, supporting the theory that the iodide and iodine are being utilised to produce 

other active iodide containing compounds. 

 

7.4.1.2 Activity of CAP Activated PVP-I Against Model Wound Biofilms 

 

As discussed earlier, targeting bacterial biofilms with novel treatments is of paramount 

importance as they exhibit resilience to conventional antimicrobial treatments due to their 

complex architecture. PVP-I is often applied to heavily contaminated wounds and CAP 

treatment is currently used within some clinics to decontaminate wounds. Hence the 

combination of the two therapies was assessed for efficacy against bacterial biofilms. 

 

The synergistic combination of PVP-I and He-CAP treatment was applied to established 24 

h P. aeruginosa biofilms. PVP-I was added topically to the biofilm, as is routine within the 

wound clinic, and He-CAP was applied to the PVP-I for five minutes with movement. The 

biofilms were then left to incubate for one hour to allow for the generation of RONS and 

subsequent PVP-I/RONS interactions to occur. In order to be synergistic, there must be a 

significant reduction in biofilm density observed with the combination of therapies when 

compared to both of the individual antimicrobials. 
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Figure 7.10: Quantification of viable cells in 24 h P. aeruginosa biofilms stains PAO1 p = 0.0021, 0.0026 & 0.0004 (A), 

PAE45311 p = 0.0006, 0.002 & <0.0001 (B), PAE45321 (C), PAE45325 p = 0.0098, 0.0031 & 0.0031 (D) & PAE45379 

p = 0.0295 (E) after treatment with PVP-I, He-CAP and a combination of PVP-I and He-CAP. Error bars represent 

standard deviation (n=3), One-way ANOVA was performed (****) p<0.0001, (***) p<0.001, (**) p<0.01 and (*) p<0.1. 

The combination of treatments was found to significantly reduce the bacterial bioburden in 

four out of five of the strains (Figure 7.10). However, the combination of He-CAP and PVP-

I was not found to be synergistic, instead an additive effect was observed. This was 

concluded as while there was no significant difference found between the combination 

therapy and the individual treatments, there was a greater reduction in bacterial bioburden 

observed with the combination therapy in three of five strains Figure 7.10A, B & E. P. 

aeruginosa PAE45321 24 h biofilms were not reduced by PVP-I, He-CAP or combination 

treatment (Figure 7.10C) and P. aeruginosa (PAE45325) was not found to be additive as 

the combination therapy did not produce a greater reduction in bioburden than the individual 

treatments (Figure 7.10). 
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The lack of efficacy of He-CAP PVP-I on the PAE45321 strain could be owing to its 

pathogenicity, as previously mentioned, it was isolated from an acute wound infection. This 

environment often promotes an upregulation of virulence factors expression. Pyocyanin is a 

fluorescent molecule expressed by P. aeruginosa which is both cytotoxic to cells in the lung 

and other bacterial species. When the strains were assayed for pyocyanin activity, 

PAE45321 was found to have significantly higher pyocyanin expression than the other 

strains tested (Figure 7.11). Pyocyanin is controlled by QS and controls gene expression 

and community behaviour in bacteria, it also controls colony size and biofilm thickness. As 

such, it is likely that this increased pyocyanin expression is making the PA45321 biofilm 

more robust and resilient to treatments.17 

 
Figure 7.11: Pyocyanin for P. aeruginosa strains PAO1, PA45311, PA45325 & PA45321. Error bars represent standard 

deviation. One-way ANOVA performed (*) p<0.1. 

 

To assess whether the combination of the He-CAP and PVP-I was impacting the structural 

integrity of the biofilm scanning electron microscopy (SEM) imaging was carried out. 

Untreated P. aeruginosa (PAO1) 24 h biofilms (Figure 7.12A) showed densely packed 

bacterial cells with web-like structure visible, which is characteristic of the ECM in a healthy 

biofilm. These biofilms treated with He-CAP showed that whilst the bacteria are still dense, 

their morphology is shortened which is characteristic of cellular death (Figure 7.12B). 

Biofilms treated with 10% (v/v) of PVP-I (Figure 7.12C) are still visibly dense like the 

untreated control, however, the bacterial cells have a puckered morphology characteristic of 

cellular death and there is a lack of extracellular matrix (ECM) present suggesting the He-

CAP treatment does have an impact on the biofilm integrity. The combination therapy 

appears induce a reduction in bacterial density, (the circular pores of the polycarbonate 
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membrane are visible), there is cellular death as observed with the PVP-I only treatment and 

no ECM was visible (Figure 7.12D).  

 
Figure 7.12: SEM at x5000 magnification, of 24h P. aeruginosa (PAO1) biofilm untreated control (A), He-CAP 

treatment for 5 mins (B), 10% (v/v) PVP-I (C) and and 5 min CAP treatment of 10% (v/v) PVP-I (D).  

 

7.4.1.3 Characterisation of Argon Plasma Jet  

 

He-CAP, as previously discussed, was found to produce insufficient concentrations of 

RONS for the effective reduction of bacterial loads both planktonically and in biofilms. As 

the recovery of RONS beneath a hydrogel wound dressing was ~20 µM, which is 

significantly below the MIC for any bacterial species studied. Therefore, an alternative CAP 

jet was constructed to increase the concentration of H2O2. Ar-CAP was found to produce a 

higher concentration of H2O2 in a shorter treatment period (Figure 7.13). ~ 2 mM of H2O2 

was produced in two minutes which is significantly higher than the ~ 650 µM produced by 

He-CAP. Importantly, 2 mM is above the MIC for P. aeruginosa and close to the MIC for 

S. aureus and MRSA. Therefore, it was hoped that Ar-CAP would be more effective at 

treating biofilm-associated wound infections.  
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Figure 7.13 Quantification of H2O2 produced by Ar-CAP jet treatment. Error bars represent standard deviation (n=3).  

Ar-CAP was tested for its efficacy against planktonic bacteria to attain its MIC using a 

modified MIC method known as the minimum inhibitory treatment time (MITT). Ar-CAP 

was applied to PBS for varying treatment times, this CAP-activated PBS buffer was then 

added to planktonic subcultures of P. aeruginosa and S. aureus and left to grow for 18h. The 

MITT was defined as the minimum CAP treatment time capable of completely inhibiting 

bacterial growth. Ar-CAP MITT was between 30-40 seconds for P. aeruginosa (Figure 

7.14A) and 120-180 seconds for S. aureus (Figure 7.14B). 

 
Figure 7.14: Minimum inhibitory Ar-CAP treatment time (MITT) for P. aeruginosa (PAO1) (A) and S. aureus (H560) 

(B) relative to untreated bacterial control. Error bars represent standard deviation (n=3).  

These finds also support He-CAP results that found P. aeruginosa to be more susceptible to 

CAP treatment than S. aureus. Moreover, while this is a basic assay, results suggest that Ar-

CAP treatment will be significantly more effective against bacterial infections than He-CAP 

was found to be. However, like He-CAP, the Ar-CAP jet was found to be ineffective at 

reducing the bioburden of established planktonic cultures of ~109 CFU/mL after five minutes 

of treatment (Figure 7.15).  
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Figure 7.15: Reduction in viable planktonic bacterial cells of P. aeruginosa (PAO1) (A) and S. aureus (H560) (B) after 

varying treatment times with Ar-CAP. Error bars represent standard deviation (n=3).  

Ar-CAP was also found to significantly reduce biofilm bioburden in P. aeruginosa (PAO1) 

and S. aureus (H560), however, it is important to note that while there was a significant 

reduction, visually the surface of the biofilm was very scorched, suggesting high local 

temperatures. This would be very undesirable on a wound surface, owing to its impact on 

healing. While this is concerning, the addition of a hydrogel would screen the skins surface 

and limit the topographical damage induced through Ar-CAP treatment. As such, the 

concentration of the RONS capable of penetrating a PVA hydrogel were investigated, 

Figure 7.16. 

 

A B 

 
Figure 7.16: Analysis of 5% PVA hydrogel with varying Ar-CAP treatment. Recovery of H2O2 beneath the 5% PVA 

hydrogel after varying Ar-CAP treatment times (A). Visual analysis of the 5% PVA hydrogels after varying treatment 

times (B). Error bars represent standard deviation (n=3).  

After five minutes of Ar-CAP treatment and a subsequent 30-minute incubation, ~28 µM of 

H2O2 was recovered beneath the hydrogel Figure 7.16A. While this is significantly lower 

than the MIC for either strain of bacteria, the recovered concentration is over double that 

recovered at He-CAP treatment. Furthermore, as shown in Figure 7.16B, the gels withstand 
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treatment well, with only slight dehydration. As such Ar-CAP treatment could potentially 

be more effective with a hydrogel than the He-CAP.  

 

The addition of a PVA hydrogel significantly reduces the efficacy of Ar-CAP treatment, 

resulting in no significant reduction in S. aureus (H560) biofilms and only a 1-log reduction 

of P. aeruginosa (PAO1), which is no more effective than the He-CAP jet. However, the 

Ar-CAP interacts more favourably with the hydrogels, resulting in no observed scorching 

(Figure 7.17).    

 
Figure 7.17: Reduction in viable cells of 24 h biofilm after treatment Ar-CAP for 5 min atop a 5% PVA hydrogel screen 

P. aeruginosa (PAO1) (A) & S. aureus (H560) (B). Error bars represent standard deviation (n=3). One-way ANOVA 

(**) p<0.001. 

7.4.1.4 Characterisation of PVP-I Gel  

 

PVP-I was shown to act synergistically with He-CAP treatment against planktonic bacteria 

and bacterial biofilms and PVA hydrogels were found to withstand both He-CAP and Ar-

CAP application. PVP-I was thus blended with PVA, which was shown previously to be 

resilient against CAP treatment, to form a potentially therapeutic hydrogel wound dressing 

for combination treatment with CAP therapy.  

 

7.4.1.5 Scanning Electron Microscopy  

 

SEM studies were carried out to assess the surface topography of the PVP-I/PVA hydrogel 

after treatment with Ar-CAP (Figure 7.18). The untreated hydrogel has a smooth surface 
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Figure 7.18A-C, whereas after Ar-CAP treatment there is a clear change in the morphology 

of the hydrogel, with surface dehydration, thought to be owing to the gas flow, resulting in 

a change from the smooth untreated surface, to ridged surface Figure 7.18D&E. In addition 

to this, after Ar-CAP treatment pores/holes appear in the surface of the gel Figure 7.18E, 

G&H.   

 
Figure 7.18: SEM images of PVP-I/PVA Hydrogel. Untreated PVP-I/PVA hydrogel gel control (A-C), PVP-I/PVA 

hydrogel after 3 mins Ar-CAP treatment (D-F) & PVP-I/PVA hydrogel after 5 min Ar-CAP treatment (G-I). 

There is no significant change in rheology data before and after CAP treatment. Unlike the 

PVA only hydrogel discussed in Chapter 3, there is less of a disparity between the G’ and 

G”, indicating that the PVP-I hydrogel is less rigid in structure than the PVA hydrogel.  
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Figure 7.19: Rheology data for PVP-I hydrogel. Untreated control (A) and after 5 minutes of Ar-CAP treatment (B). 

Error bars represent standard deviation (n=3).  

 

7.4.1.6 FT-IR  

 

The FT-IR spectra of PVA and PVP-I was recorded: the stretching vibrations of (O-H) was 

found between 3500 and 3329 cm-1 and asymmetric and symmetric stretching vibration of 

(C-H) of CH2 groups is visible between 2940-2907 cm-1; For PVP a strong peak was 

observed at 1650-1660 cm-1 which is characteristic of the carbonyl group of the PVP. In 

PVP-I both the PVA peaks and PVP carbonyl peak was present confirming that PVP is 

present within the hydrogel.  

 
Figure 7.20 FT-IR analysis of PVP-I Gel (-) and 5 % PVA Hydrogel (-). 

Whilst these results prove that the PVP-I is present within the PVA based hydrogel, it is 

impossible to ascertain the nature of the bonding between the two polymers for this data. It 

is possible that the carbonyl is involved in the hydrogen bonding processes caused during 
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the freeze-thaw process, or it may simply be physically contained within the pores of the 

PVA matrix. 

 

7.4.1.7 MALDI-TOF 

 

While UV-Vis showed that there was a change in absorbance of PVP-I after CAP treatment 

the chemical quantification was mostly conjecture. Matrix-assisted laser 

desorption/ionisation time of flight mass spectroscopy (MALDI-TOF) was used for high 

resolution characterisation of the species present in CAP treated PVP-I. There is a clear 

distinction between untreated PVP-I (blue) and Ar-CAP treated PVP-I (red) shown in 

Figure 7.21. Ar-CAP PVP-I shows clear sharp beaks corresponding to I- (m/z = 129) and I2 

(m/z=251) which are within the accepted mass error, confirming the theory that CAP is 

causing a shift in equilibria causing triiodide to dissociate into iodine and iodide.  

 

 
Figure 7.21: MALDI-TOF analysis of PVP-I gel 1h after 3 mins treatment with Ar CAP jet (-) compared with untreated 

control (-). 

 

7.4.1.8 Efficacy of PVP-I Hydrogel Against Established Model Wound 

Biofilms  

 

While the efficacy of CAP activated PVP-I on planktonic P. aeruginosa was a promising 

finding, as previously highlighted bacterial biofilms are significantly harder to treat and 
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associated with an increase in pathogenicity. Within burn wounds especially P. aeruginosa 

biofilms frequently form, hindering healing. As hydrogels and PVP-I are already used within 

burn care the combination of the two therapies would not deviate from the existing care 

pathway and could provide a therapeutic of increased efficacy, which could easily be 

integrated into the clinic. 

 

5% (w/v) PVA hydrogels have proven mechanically stable after CAP exposure to both He-

CAP and Ar-CAP, thus PVP-I was blended with PVA gels to create a hydrogel. The PVP-

I/PVA hydrogel was washed in PBS for two hours to remove and excess PVP-I to reduce 

the risk of PVP-I leeching out of the hydrogel into the wound milieu. The hydrogels were 

placed onto established 24-hour P. aeruginosa biofilms, which mimic a heavily infected 

wound. Five minutes of Ar-CAP treatment was applied atop the hydrogel, with movement, 

to “activate” the PVP-I. Ar-CAP was used rather than He-CAP as it produces a greater 

concentration of H2O2 which is the known to be synergistic with the PVP-I. The reduction 

in viable bacterial cells was then compared with untreated control, PVP-I gel without plasma 

treatment and Ar-CAP treatment when applied directly to the biofilm (Figure 7.22). The 

biofilms were subsequently incubated statically at 37 °C for one hour to enable the PVP-I to 

have an effect.  

 

Importantly, there was no significant reduction in bacterial cell count in the presence of 

PVA/ PVP-I gel only compared to the untreated control and therefore it can be concluded 

that if there is any PVP-I leeching from the hydrogel it is not enough to have any impact on 

the viability of the biofilms. A significant reduction in biofilm bioburden was observed in 

three out of the five P. aeruginosa strains tested. In the case of P. aeruginosa (PAO1) a 4-

log reduction in bacterial cells was observed, this is very significant given than the biofilm 

was only exposed to the hydrogel for 1 hour. Two of the clinical isolates were also 

significantly reduced PA45321 and PA45379, while they were reduced by 3-log and 2-log 

respectively. Whilst this is less that PAO1, this is to be expected as they are clinical isolates, 

thus they are more likely to be virulent and have increased resilience to antimicrobial 

therapies. PA45311 and PA45325 were not reduced by CAP activated PVA/PVP-I 

hydrogels, despite encouraging planktonic results. It could be that these strains needed an 

increased exposure time.  
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Figure 7.22: Reduction in viable bacterial after treatment for 1 h with PVP-I hydrogel and PVP-I hydrogel with 3 mins 

of Ar CAP jet treatment applied atop relative to untreated control and Ar plasma treatment without hydrogel. P. 

aeruginosa PAO1 (A), PAE45311 (B), PAE45321 (C), PAE45325 (D) and PAE45379 (E). t-test was carried out with 

Welch’s correction p = 0.0019, p = 0.0203 and p = 0.0033 respectively. Error bars represent standard deviation (n=3). 

(**) p<0.01 & (*) p<0.1. 

As already outlined, upon interaction with CAP, PVP-I undergoes a colour change from dark 

brown to yellow/clear. It is hypothesised that this is as a result of the liberation of triiodide 

from the PVP-I and an equilibrium shift from triiodide to iodine and iodide ions. This colour 

change is also observable within the PVA/PVP-I hydrogel where there was a noticeable 

change before and after treatment (Figure 7.23). There is a visible difference in the colour 

of the untreated control gels from brown to lighter brown, which was expected, as there 

would be the release of triiodide from the gel during the incubation, however, this release 

was found to be insignificant against the bacterial biofilms as shown in Figure 7.22. There 

is a significant colour change in the treated gels, from brown to yellow, indicating the 

increased liberation of the triiodide and subsequent iodine reactions discussed previously.  
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Figure 7.23: Qualitative analysis of untreated and Ar-CAP treated PVP-I hydrogels before and after 1 h incubation at 37 

°C. 
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7.5 Conclusions  

 

This chapter describes the synergistic interactions of both Helium and Argon CAP jets with 

PVP-I for the successful prevention and eradication of bacterial infections both 

planktonically and within a biofilm. Furthermore, the PVP-I can be blended with PVA to 

create a therapeutic hydrogel, which might have utility in a wound dressing that reduces the 

bacterial biofilm bioburden upon the addition of CAP therapy.  

 

PVP-I has been shown to act synergistically with H2O2 against bacteria. As such, when PVP-

I is applied in tandem He-CAP treatment complete inhibition of bacterial growth was 

observed in doses that individually were not effective in inhibiting bacterial growth. This 

combination therapy was found to be effective against the five P. aeruginosa strains, one 

laboratory strain and four clinical isolates tested. When the combination of PVP-I and He-

CAP was applied to established, 24-hour P. aeruginosa biofilms, a significant reduction in 

bioburden was observed in three of the five test strains. However, the interaction of the two 

treatments was found to be additive rather than synergistic. The biofilms were only treated 

for one hour to assess the efficacy of the therapy, it is possible that with longer treatment 

exposure a greater reduction in bioburden would be observed.  

 

As outlined in chapter 3, the He-CAP jet was not producing sufficient concentrations of 

RONS to significantly kill bacteria either planktonically or in a biofilm. As such, an 

alternative CAP jet was developed by Ghimire et al. with increased H2O2 and other RONS 

production to increase bactericidal efficacy. Ar-CAP was found to produce double the 

concentration of H2O2 beneath a PVA hydrogel, as well as reduce viable bacteria cell count.  

 

Due to the success of the combination of topical He-CAP and PVP-I, it was thought that the 

PVP-I could be added into a PVA hydrogel to create a robust potentially therapeutic 

hydrogel which screens out damaging CAP RONS that are damaging to healthy tissues 

within the patient, while releasing an antibacterial moiety. While this system is not a 

triggered release system, the synergistic interactions of PVP-I with CAP does appear to 

affect a measurable reduction in bacterial biofilm compared to PVP-I hydrogel alone. The 

PVP-I hydrogel was characterised to confirm that the PVP-I was suspended in the cryo-

crosslinked PVA hydrogel using FT-IR. The interaction of CAP with the PVP-I was 
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confirmed with MALDI-TOF which indicated the liberation of iodide ions and iodine which 

can then subsequently react with the CAP produced RONS. Due to the increased efficacy 

measured, it is hypothesised that the iodide ions react with CAP produced H2O2 to produce 

HOI, a potent antimicrobial. When the PVP-I hydrogel was applied to established 24-hour 

P. aeruginosa biofilms for one-hour significant reduction in bacterial bioburden was 

observed in three of the five strains. This was encouraging and with further incubation or 

longer treatment times the biomass reduction could potentially be further increased.  
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7.6 Future Work  

 

Further work would seek to improve the PVP-I hydrogel for maximum bactericidal effect, 

varying post gel application incubation time, as well as testing the hydrogels resilience to 

increased CAP exposure. This could potentially be achieved through blending the PVP-I 

with a range of different polymer such as CMC or agarose, which have been shown to 

tolerate CAP exposure. This further optimisation of the hydrogel could tolerate repeated 

CAP exposure thus resulting in greater reduction of the biofilm bioburden. Moreover, owing 

to the desired application of the PVP-I hydrogel being for wound decontamination further 

microbiological tests would seek to test PVP-I hydrogels efficacy on other bacterial species, 

potentially on those isolated from chronic wound patients and on mixed species biofilms 

which is more representative of a clinical wound infection including Klebsiella pneumonia, 

Streptococcus sp, and Candida albicans. 

 

The development of the Ar-CAP jet has potential for the use of CAP treatment with a 

hydrogel owing to the increased concentrations of RONS produced and seemingly 

favourable physical interactions with the hydrogel. Dr Bhagirath Ghimire, a collaborator at 

the University of Lancaster is seeking to develop a multi-tube plasma jet, which would 

greatly increase the treatment surface area as well increasing the concentration of RONS 

produced. At present the Ar-CAP jet has a treatment surface area of 5 mm2 whereas the 

multi-tube jet would be able to treat ten-times the area in the same time (Figure 7.24). 

 
Figure 7.24: Prototype multi-jet  

Overall, it was concluded that a simple hydrogel screen, while effective in preventing the 

delivery of damaging RONS to the wound bed, however, also prevented therapeutic 
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concentrations of RONS from being delivered into the wound. Therefore, the addition of 

antimicrobial moieties into the hydrogel for enhanced generation of RONS or alternatively 

the triggered release of antimicrobial moieties was required.  

 
Figure 7.25: MIC of PAA for S. aureus (H560) (A) and P. aeruginosa (PAO1) (B). 

One such possible compound is TAED – PAG particles which, in the presence of H2O2, 

releases peracetic acid (PAA). PAA is known to be an effective antimicrobial against both 

S. aureus and P. aeruginosa. The MIC of PAA was found to be 4.13-8.23 mM for S. aureus 

and 0.26-0.52 mM for P. aeruginosa (Figure 7.25).  

 
Figure 7.26: Reduction in optical density of S. aureus (H56) after 18 h growth at 37°C in the presence of TAED-PLGA 

particles, Ar-CAP activated water, Ar-CAP activated TAED-PLGA particles compared to untreated bacterial control (A), 

prototype TAED-PLGA wound dressing system (B).  

Preliminary work has found that Ar-CAP activated TAED-PAG particles were effective at 

inhibiting S. aureus growth (Figure 7.26A). The TAED-PAG particles would be suspended 

in an agarose wound gel with a gauze layer to prevent adhesion to the wound bed and then 

Ar-CAP would be applied on to the gel to “activate” the particles, as shown in Figure 7.26B. 

If this concept was found to be effective in reducing S. aureus biofilms, then theoretically, 
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the TAED-PAG gels could be combined with the PVP-I gel to create a CAP responsive, 

therapeutic hydrogel wound dressing, which is effective against both P. aeruginosa and S. 

aureus.   
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Chapter 8 : Conclusions & Future Perspectives 

 

While cold atmospheric pressure plasma (CAP) treatment is approved for clinical use the 

field of plasma medicine is still in its infancy with many complex biological interactions not 

fully understood. This multidisciplinary approach sought to elucidate clinically relevant 

bacteria/CAP interactions to increase the clinical impact of what could be a great tool against 

the ever-mounting threat of antimicrobial resistant bacterial infections. The overarching 

objectives of this research were to further understand the biological interactions of CAP with 

bacteria, both their ability to mitigate and respond to CAP induced damage and the 

mutagenic potential of sub-lethal CAP treatment, and to develop a therapeutic hydrogel 

wound dressing for the delivery of an antibiofilm moiety for the inhibition or eradication of 

a bacterial biofilm within an infected wound. 

 

After optimisation of operating conditions, the He-CAP jet was found to have little impact 

on the viability of planktonic bacteria, while administering He-CAP at various times during 

biofilm development was found to reduce the final viable cell counts of the biofilms after 24 

h growth, overall, the He-CAP was not found to produce sufficient reductions in bacterial 

cells for the application of wound decontamination. Unsurprisingly the limited impact of 

He-CAP treatment was further diminished with the addition of a hydrogel wound dressing.  

 

The developing bacterial biofilm impacted the delivery of He-CAP generated hydrogen 

peroxide, whereas the biofilm matured there was an increased reduction of hydrogen 

peroxide recovered beneath it, in both Gram-positive and negative strains of bacteria. This 

was subsequently found to be partially the result of He-CAP treatment upregulating the 

oxidative stress response in the treated bacteria. Their upregulation of catalase, an enzyme 

which breaks down hydrogen peroxide was found to significantly reduce the lethality of He-

CAP treatment. This understanding somewhat explains the insufficiency of the He-CAP jet, 

its low concentration of hydrogen peroxide cannot overcome the bacterial response to induce 

a significant reduction in bacterial bioburden. Further to this, the mutagenic potential of He-

CAP treatment was investigated. CAP generates a cocktail of RONS, some of which are 

known to be mutagenic to mammalian cells. While the mutagenic effects on human cells is 

relatively well understood, CAPs mutagenic potential upon bacteria is unknown. As already 

explained, He-CAP treatment is sub-lethal, which increases the likelihood that exposed cells 
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could mutate post treatment. The He-CAP was found to induce a spectrum of mutations in 

E. coli which resulted in increased tolerance to the antibiotic ciprofloxacin. Within wound 

care the impacts of the could be huge. As such, the application of CAP within wound care 

should be administered with caution until further research into the phenomenon is 

conducted.  

 

It was thought that the mutagenic risk of CAP application on mammalian cells and, 

theoretically, bacterial cells could be elevated through the addition of a hydrogel wound 

dressing. It was hypothesised that the hydrogel “screen” could filter out harmful RONS 

while providing a moist, protected healing environment for the wound. Two potential 

hydrogels were developed, one which releases an antibiofilm agent, ARS, which prevented 

the formation of MRSA biofilms the other combined povidone-iodine (PVP-I) which 

polyvinyl alcohol (PVA) into a hydrogel which acted synergistically with CAP to 

significantly reduce the bioburden of Pseudomonas aeruginosa biofilms. Theoretically 

either of the hydrogel systems could be combined with the diagnostic hydrogel developed 

by the Jenkins group to form a theragnostic hydrogel.  

 

Although the presented findings are novel there are certain limitations which are important 

to address for the continuation of the research. The work on the biological interactions 

between CAP and bacteria predominantly use Escherichia coli, which is a Gram-negative 

bacterium. Further, the only oxidative stress related enzyme investigated is catalase whereas 

it is likely that superoxide dismutase and glutathione peroxidase play a role also. The ARS 

hydrogel system, while it releases ARS in response to hydrogen peroxide and plasma 

activated water, the application of He-CAP jet causes serious structural impact on the 

hydrogel, therefore optimisation of He-CAP conditions for this specific application would 

be required. Alternatively, the argon-driven CAP (Ar-CAP) jet could be assessed for 

interactions with the ARS hydrogel, owing to its more favourable interactions with PVA it 

is possible it would work well with the ARS gel. The PVP-I and PVP-I hydrogel shows great 

promise for clinical application; however, further quantification is required to fully 

understand the interactions between PVP-I and CAP generated RONS to confirm if the 

bactericidal moiety formed is HOI.  
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While future work has been outlined in individual chapters, the overall future of cold plasma 

medicine appears very promising, there are multiple CAP devices available for clinical use, 

with new clinical trial data being published monthly. While CAP provides a promising 

alternative therapy to traditional antibiotics, the excitement should be tempered with caution. 

While CAP has been shown to effectively reduce bacterial loads, further robust testing in 

the clinic and in vitro in the laboratory is required to assess the potential for resistance to for 

to CAP as well as further understanding the mutagenic effects of CAP treatment upon 

bacteria. A concerted multidisciplinary approach is required to further understand the risks 

of CAP, particularly within wound care.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


