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Abstract 

BACKGROUND: Images that deviate from natural scene statistics in terms of spatial frequency and 

orientation content can produce visual stress (also known as visual discomfort), especially for 

migraine sufferers. These images appear to over-activate the visual cortex.  OBJECTIVE: To connect 

the literature on visual discomfort with a common chronic condition presenting in neuro-otology 

clinics known as persistent postural perceptual dizziness (PPPD).  Sufferers experience dizziness 

when walking through highly cluttered environments or when watching moving stimuli. This is 

thought to arise from maladaptive interaction between vestibular and visual signals for balance. 

METHODS: We measured visual discomfort to stationary images in patients with PPPD (N=30) and 

symptoms of PPPD in a large general population cohort (N=1858) using the Visual Vertigo Analogue 

Scale (VVAS) and the Situational Characteristics Questionnaire (SCQ). RESULTS: We found that 

patients with PPPD, and individuals in the general population with more PPPD symptoms, report 

heightened visual discomfort to stationary images that deviate from natural spectra (patient 

comparison, F (1, 1865) = 29, p < 0.001; general population correlations, VVAS, rs (1387) = 0.46, p < 

0.001; SCQ, rs (1387) = 0.39, p < 0.001). These findings were not explained by co-morbid migraine. 

Indeed, PPPD symptoms showed a significantly stronger relationship with visual discomfort than did 

migraine (VVAS, zH = 8.81, p < 0.001; SCQ, zH = 6.29, p < 0.001). CONCLUSIONS: We speculate that 

atypical visual processing – perhaps due to a visual cortex more prone to over-activation – may 

predispose individuals to PPPD, possibly helping to explain why some patients with vestibular 

conditions develop PPPD and some do not.  
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Introduction 

Persistent postural perceptual dizziness (PPPD) is a condition characterised by postural instability 

and dizziness when exposed to self-movement and challenging visual environments [15, 63].  

Common triggers include supermarket aisles, action movies, and crowded streets. The condition is 

common, chronic and debilitating [14, 56, 61, 67]. It often develops following a vestibular insult [1, 6, 

51, 63], but it is also associated with other central disorders such as anxiety  [5, 31, 53, 62, 64, 65] 

and migraine [51-53, 63, 66].   

A leading theory suggests that PPPD is caused by a persistent over-dependence on visual 

information for postural control relative to vestibular cues, even after the original vestibular insult 

recovers [6, 10, 11, 23, 55].  However, we have recently reported that symptoms of PPPD are also 

common in the general population, with 9% of individuals scoring above the patient 25th percentile 

score on questionnaire measures of PPPD [52]. Furthermore, the distribution of PPPD symptoms lies 

on a continuous spectrum in the general population rather than being bimodal (i.e., with or without 

symptoms). Therefore, we now posit that some visual/vestibular systems have a predisposition to 

eliciting such symptoms, even before any vestibular damage.  

Most research on PPPD has focused on the interactions between visual, vestibular and 

proprioceptive cues for postural control and locomotion, alongside associated psychogenic factors 

such as anxiety, and differences in brain structure and connectivity between vestibular, visual and 

spatial processing areas [27, 39, 40, 43, 44, 48, 50, 70, 74, 75]. A consensus picture is emerging of 

reduced activity and structural differences in areas associated with vestibular processing and spatial 

cognition, and altered connectivity within and between these regions [27, 30, 40, 44, 70, 75], 

consistent with down-weighting of vestibular information. In turn, there appears to be greater 

connectivity for visual areas, suggesting up-weighting of visual information [39, 48, 70], as well as 

altered connectivity with areas associated with attention and emotion [39, 48].  

However, little research has explored whether individuals with PPPD, beyond relying more 

on visual information, might also process visual information in an atypical way.  One fMRI study has 

reported that the strength of visual cortical activity correlates positively with dizziness symptoms in 

PPPD patients when visual motion stimuli are presented [54], which raises the question of whether 

the visual cortex is hyper-responsive in individuals with visually-induced dizziness.  

If visual processing is in some way atypical in PPPD, this could exacerbate difficulties when 

vision becomes the primary sense for maintaining postural control.  This paper explores whether 
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individuals with PPPD, or those with increased symptoms of PPPD, report differences in their visual 

experience when viewing complex and challenging – but static – visual images.  

Natural and unnatural visual scenes 

Human visual systems are thought to be optimised to process scenes with the characteristics 

of the natural environment, which tends to contain a broad range of orientations and a 

predominance of low spatial frequencies [19, 49]. For example, a natural Welsh landscape, with 

gentle hills, clouds and foliage has the consistent structure of natural scenes, with big objects 

providing most of the contrast variation in the scene and small objects or details providing less 

contrast variation. This property is reflected in the amplitude spectrum of the spatial frequencies 

that compose the scene: as spatial frequency increases, amplitude tends to reduce in a characteristic 

way [19, 21].  

Efficient information processing requires sparse coding [60]. Having more neural activity in 

the visual cortex is not necessarily a good thing for processing visual information. Efficient 

processing would be expected to entail relatively sparse activity. Natural scenes and images that 

share these properties require less neural energy to process – perhaps because they are the 

environments in which we evolved and developed to perceive [19, 20, 46, 60]. Images that deviate 

from these statistical properties appear to be processed less efficiently: they are discriminated less 

well [22, 35, 47], they are subordinate in binocular rivalry [3], and they tend to produce a larger 

neural response [28, 38].  

Many of the environments that elicit PPPD symptoms appear to deviate dramatically from 

natural scene statistics. A supermarket, for example, is highly cluttered with small objects and 

contains many more cardinal (horizontal/vertical) than oblique orientations. We informally observed 

that these types of environment show similarities to images that are known to produce visual 

discomfort (also known as visual stress) in individuals without dizziness. These uncomfortable 

images contain a limited range of orientations and a predominance of mid-high spatial frequencies 

[18, 33, 45, 49]. Particularly uncomfortable are images with an excess of aligned orientations with 

contrast energy at spatial frequencies around 3 cycles/degree, which corresponds to the peak 

sensitivity of the visual system [4, 7].  

In the present study, we asked patients with PPPD and a large general population sample to 

rate a set of images for the amount of visual discomfort they experienced when viewing them. It 

should be emphasised that all the images were static, so discomfort did not depend on image 

motion or simulated self-motion that would be expected to be problematic in PPPD through 
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interaction with balance processing. Instead, discomfort to static images could indicate that 

individuals with PPPD respond to visual information differently – compared to individuals without 

PPPD. This could potentially exacerbate dizziness symptoms if vision is relied upon for postural 

control.  

The static images had previously been rated as either low or high discomfort by general 

population participants, and this was supported by an analysis of their spectral content that 

measured the degree to which they deviated from natural scenes in terms of orientation distribution 

and spatial frequency content [49] (cf. below).  We investigated whether patients with PPPD, and 

individuals in the general population with more PPPD symptoms, rated the ‘high-discomfort’ images 

as more uncomfortable than did those with fewer PPPD symptoms.  

Association with Migraine 

It has been known for some time that individuals with migraine report a general increase in 

visual discomfort to images that deviate from the statistical properties of natural scenes [25, 41, 59, 

72, 73]. They also show heightened neural responses in the visual cortex when viewing these 

images, suggesting that visual processing areas may be hyper-responsive in migraine [9, 28].  

Migraine is associated with PPPD [52, 63], so we would expect that individuals with both 

migraine and visually-induced dizziness symptoms might also report increased visual discomfort.  Of 

greater interest is whether the relationship between PPPD symptoms and visual discomfort only 

exists when there is co-occurring migraine, or if it exists irrespective of migraine. Therefore, when 

assessing the association between PPPD symptoms and visual discomfort, we control for the 

presence of co-morbid migraine.  

Method 

Participants 

Patient cohort: Thirty patients were recruited from the vestibular clinic at University Hospital Wales 

(UHW). All patients had received a diagnosis of PPPD from a clinical scientist in Audiology or a 

Consultant Audiovestibular Physician, following the ICVD criteria [63] and common tests to examine 

vestibular functioning, including Halmagyi bedside head thrust testing, Video Head Impulse testing 

(vHIT using Synapsys system, Synapsys Solutions Ltd, West Sussex, UK), Videonystagmography 

(typically saccades, pursuit, gaze using GN system) and (sometimes) caloric testing if deemed 

necessary.  Some patients had additional vestibular conditions (see table 1).  The average age of 

participants was 44 (sd = 14.3, range 11-67), 60% were female.  



5 

 

General population cohort: Surveys were sent to 18,683 members of a community public health 

participant list in Wales, and we received approximately 2000 responses. Participants who reported 

a current diagnosis of any common vestibular-related conditions were excluded from all analyses (N 

= 193). Following this exclusion, we obtained 1858 responses for discomfort image ratings and 

migraine screening questionnaire. Of these, 1845 provided age and 1853 provided gender 

information. Of these, 1797 completed the visual vertigo analogue scale (VVAS) and 1435 completed 

the situational characteristics questionnaire (SCQ). A total of 1392 participants had a full set of 

responses on all measures. The average age of participants was 55 (range 18-88), 74% were female.  

No payment or compensation was offered to participants.  All procedures were approved by the 

School of Psychology, Cardiff University, ethics committee.  

 

Materials  

All aspects of the survey were delivered via Qualtrics (Provo, UT), an online survey tool.  

Visual discomfort images: We selected a random subset of 20 images from Penacchio and Wilkins 

(2015), which had been rated as high discomfort (n=10) or low discomfort (n=10). Images were taken 

from three categories: photographs of buildings, abstract art, and geometric shapes. Examples are 

shown in Figure 1. Spectral analysis from Penacchio and Wilkins (2015) showed that the high-

discomfort images contain a predominance of medium-high spatial frequencies and a narrower 

range of orientations, while the low-discomfort images conformed more to the statistical properties 

of natural scenes.  This was reflected by a greater deviation of the amplitude spectrum of high-

discomfort images, than low-discomfort images, from the average amplitude spectrum of 2000 

natural images (the mean ratio of deviation of the high-discomfort images in the Van Hateren and 

van der Schaaf database [69] is 32.2, sd = 28.5, compared a mean deviation ratio of 3.9, sd = 2.4, for 

low-discomfort images).  

On a standard 22 inch monitor with a viewing distance of 60cm, the images subtended 25o x 15 o 

visual angle.  The images were imbedded in a Qualtrics questionnaire and were viewed on 

participants’ personal devices, so they were rendered at different sizes and resolutions across 

participants; we asked participants at the beginning of the questionnaire to use the device with the 

biggest screen available (e.g., tablet preferable over a phone). The majority of general population 

participants used a computer monitor or a tablet to view the images (computer = 53%, tablet = 24%, 

phone = 23%). The visual angle of the images may not have differed much between computers and 
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tablets, since the latter are generally held closer. But the visual angle is likely to have been smaller 

for phones. Since this was a large population survey, we had to accept this source of variability.  

 

------- Figure 1 about here ------- 

 

Visual Vertigo Analogue Scale (VVAS): The VVAS [13] is a short questionnaire that asked respondents 

to indicate on a rating scale from 0-10 the amount of dizziness they experience in 9 different 

situations. These situations are known triggers for patients with PPPD and include walking down a 

supermarket aisle, walking across a patterned floor, and going to the cinema.  The items are then 

averaged, and this average score is multiplied by 10. The total score an individual could achieve by 

rating all situations a 10 (maximum dizziness) is 100.  Note that the original version of the VVAS asks 

patients to place a mark on a continuous line on a piece of paper. We had to adapt this for delivery 

online. In our version, participants were asked to place a virtual line between 0 and 10, delimitated 

by increments of 1. However, since we do not use the score of the VVAS in an absolute sense, but 

merely to correlate with visual discomfort, this difference in method is not important here. 

Furthermore, the scale worked well insofar as patients scored higher than members of the general 

population and internal consistency was excellent (Cronbach's alpha above 0.9, [52]).  

Situational Characteristics Questionnaire (SCQ): The SCQ [32] was originally developed as a measure 

of space and motion discomfort, however, this condition is now considered to fall under the 

umbrella term of PPPD [63].  The SCQ is a 20 item questionnaire that, like the VVAS, also asks about 

discomfort in situations that trigger visually-induced dizziness and discomfort. Situations are rated 

between 0 and 3 and scores are normalised by subtracting responses to paired situations that are 

not commonly associated with visually-induced dizziness.  The final score is obtained by dividing the 

summed ratings across all items by the total number of items and then multiplying by 10, therefore, 

the maximum score that can be given is 30.  The SCQ was an optional questionnaire in the survey 

and consequently we are missing data for 425 participants (total N= 1465). The SCQ in our sample 

had acceptable internal consistency with a Cronbach’s alpha of 0.79. 

Migraine Screen Questionnaire (MS-Q): This is a five item screening tool developed to identity 

migraine based on the criteria of the International Headache Society [37]. Participants answer 

yes/no questions about headache episodes they experience, such as ‘Do you usually suffer from 

nausea when you have a headache?’ and ‘Does light or noise bother you when you have a 

headache?’. Participants must response ‘yes’ to four or more of the five questions to have a result of 
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probable migraine.  The MS-Q is found to have good internal consistency (Cronbach’s alpha = 0.82) 

and high sensitivity (0.82 - 0.93) and specificity (0.81 - 0.97) in both neurological clinics and primary 

care [36] [37].  

Analysis 

Our measure of visual discomfort was the ‘discomfort index’, defined as the difference in ratings 

between the low and high discomfort images. A greater score indicates an aversion to images that 

deviate from natural scene statistics rather than a bias to use higher ratings for all images. To 

provide reassurance that participants were appropriately using the scale, we checked that the high 

discomfort images were consistently rated as producing more visual discomfort than the low 

discomfort images: patients, t (29) = 11, p <0.001, d = 1.96; general population, t (1857) = 42, p < 

0.001, d = 0.97).  To compare patient scores to controls whilst controlling for age, gender and 

migraine, we used ANCOVA. To assess the correlation between discomfort scores and PPPD 

symptoms in the general population we used Spearman correlations. For each analysis we used the 

maximum number of participants with complete responses for the information needed for that 

analysis.  

 

Results 

As hypothesised, patients with PPPD had a significantly higher discomfort index than participants 

from the general population cohort, after controlling for age, gender and migraine (see figure 2; F (1, 

1865) = 29, p < 0.001; this analysis used all general population participants who returned discomfort 

scores, age, gender and migraine information, and did not report vestibular deficits; note also that 

patients also scored the low-discomfort images more highly than controls, ruling out an explanation 

that the difference in index reflects lower scores for low-discomfort images rather than higher 

scores for high-discomfort images).  

 

------- Figure 2 about here ------- 

 

Secondly, as hypothesised, the visual discomfort index correlated positively with both 

measures of PPPD symptoms in general population cohorts, while controlling for age, gender and 

migraine (VVAS, rs (1387) = 0.46, p < 0.001; SCQ, rs (1387) = 0.39, p < 0.001); these analyses used all 

general population participants who returned discomfort scores, VVAS or SCQ, and age, gender and 
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migraine information, and did not report vestibular deficits). Importantly this correlation was 

strongly present both in participants with migraine and those without migraine; see figure 3.  

Migraine prevalence was 12%, and as expected this correlated both with visual discomfort 

(rs (1388) = 0.21, p < 0.001) and with PPPD symptoms (VVAS, rs (1388) = 0.2, p < 0.001; SCQ, rs (1388) 

= 0.18, p < 0.001), while controlling for age and gender. However, as already shown in figure 3, 

migraine does not account for the association between visual discomfort index and PPPD symptoms. 

Indeed, the correlation between PPPD symptoms and visual discomfort was significantly stronger 

than the correlation between migraine and visual discomfort (VVAS, zH = 8.81, p < 0.001; SCQ, zH = 

6.29, p < 0.001; only participants who had complete data on all questionnaires were included in 

these partial correlation analyses; N = 1392).  

 

------- Figure 3 about here ------- 

 

  

 

Discussion 

Images that deviate from natural scene statistics in terms of the distribution of spatial frequencies 

and edge-orientations tend to produce some visual discomfort or visual stress [18, 33, 45, 49].  

These same images seem to over-activate visual cortex and are processed less well [3, 22, 24, 26, 28, 

35, 47].  We found that patients with PPPD report greater visual discomfort to a random selection of 

these images than do individuals from a large general population cohort. Likewise, within the 

general population, individuals with more symptoms of PPPD tended to report greater visual image 

discomfort.  

Visual processing of static images 

All the images were static, so discomfort did not depend on the kind of motion in a video or 

simulated self-motion that would be expected to interact with balance processing and would be 

expected to be problematic in PPPD. These findings were not explained by co-morbid migraine, 

which has a known association with visual discomfort [25, 41, 59, 72, 73] and PPPD [51, 63, 66].  

Indeed, PPPD symptoms showed a significantly stronger relationship with visual discomfort than did 

migraine.  
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 We believe that these findings constitute preliminary evidence that visual processing itself 

(not just reliance on, and integration of, visual signals for balance) might be atypical in individuals 

with PPPD. A possible hypothesis is that some visual cortices are prone to a type of over-activation 

that renders them inefficient at processing certain kinds of scenes – ones that deviate markedly from 

natural scene statistics. These scenes are already known to be processed less well on average than 

images with natural statistics [22, 35, 47]. There is some initial evidence that dizziness symptoms in 

PPPD might correlate with increased neural activity in the visual cortex [54] – although that study 

explored motion stimuli and not static images. What such over-activation means remains unknown, 

and the reason why some visual systems may be more prone to it would only be speculation at this 

time.  

In migraine and in Meares-Irlen Syndrome (visual stress) it has been suggested that 

increased visual discomfort might be due to hyper-responsivity in the visual cortex, though again, 

what this means mechanistically remains unknown [9, 12, 17, 28, 71-73]. There is some indication of 

greater or wider response in visual cortex when viewing pattern-glare-inducing stimuli or simply 

reading words [8, 28, 29]. If the visual cortex is hyper-responsive, this could be associated with 

higher levels of neural noise and lower levels of inhibition, which results in poorer visual 

discrimination abilities [16, 42 , 45]. In psychophysical experiments, individuals with migraine tend to 

show higher contrast sensitivity thresholds and motion discrimination thresholds [12, 57, 68], which 

could be driven by a lack of inhibition relative to excitation in the visual cortex [2, 34, 45].  Poorer 

contrast sensitivity in migraine is also related to poorer performance on motion processing tasks 

[58]. It is not known if individuals with PPPD also show higher contrast sensitivity thresholds or 

general difficulties with spatial and motion discrimination, and this would seem to be an important 

avenue for future research. Poorer visual discrimination, or more aversive responses to visual 

scenes, might render the visual signal a less reliable cue for postural control, which could especially 

destabilise PPPD patients.   

Relationship to moving images or self-movement 

While our study explored discomfort in response to static, not moving, images, it remains 

the case that PPPD is normally associated with moving around environments or watching moving 

images on a screen. But symptoms tend not to occur for movement through all environments; some 

are worse than others. It seems that a combination of movement and cluttered scenes – such as 

supermarkets – are especially problematic. It seems plausible – though it is currently speculation - 

that hyper-activity to scenes with structured repetition deviating from natural scenes could make it 

especially difficult for a visual system to extract efficiently accurate self-movement signals. In this 
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view, static deviation from natural scenes is merely uncomfortable; adding movement to such 

scenes introduces a further problem of integration across senses, and becomes potentially 

nauseating. If vestibular signals have also been compromised for some reason, or if vestibular 

processing networks are atypical [27, 30, 39, 40, 44, 48, 70, 75], this cumulation of factors may be 

what leads to debilitating PPPD.  

In the future, it would be interesting to extend the approach of studying visual discomfort 

when viewing static images to the types of visual motion stimuli that individuals with PPPD are 

particularly sensitive to.  It may be possible to build a computational model that captures the spatial 

frequency and orientation content of moving images and combines this with a measurement of the 

visual motion within the stimuli. This tool could be used to predict the types of stimuli that are most 

likely to trigger symptoms in individuals with PPPD or are more effective for visual desensitization.  

Limitations  

 One limitation of the current research is that the high discomfort images could have 

produced feelings of dizziness or nausea in individuals with high PPPD symptoms, and participants 

might have relied on these feelings to rate the images, rather than visual discomfort per se. 

However, anecdotal reports from patients suggest that stationary images are much less likely to 

trigger dizziness symptoms, especially if they are fairly small in size, as ours were. Furthermore, the 

instructions were clear that participants should rate the images based on visual discomfort.  In 

future studies, it might be best practice to also ask participants to report any dizziness they 

experience when viewing the images, so that this can be controlled for in the analysis.   

Another limitation is that image size could not be controlled across participants because 

different viewing devices were used. However, we still observed a very strong difference in ratings 

between high and low discomfort images, and replicated previous findings of a relationship between 

discomfort ratings and migraines.  

 PPPD is associated with anxiety [5, 31, 53, 62, 64, 65] and therefore it is always important to 

consider whether anxiety mediates the relationship between PPPD and other factors. In a parallel 

paper exploring the role of anxiety in PPPD, we found that anxiety is also related to visual 

discomfort, but it does not entirely explain the relationship between visual discomfort and PPPD 

[53].  There is shared variance between all three factors, and it is plausible that experiencing 

discomfort in some visual environments could elicit anxiety and this could mediate some of the 

relationship with dizziness.  

Conclusion 
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 In summary, we found that patients with PPPD and individuals with more PPPD symptoms 

report higher visual discomfort to images that deviate from natural spectra than individuals with few 

PPPD symptoms.  Images that produce visual discomfort tend to share similarities with the types of 

challenging, highly cluttered environments that trigger PPPD symptoms. Although PPPD is often 

described as a condition driven by vestibular deficiencies and later visual dependence, our results 

suggest that visual processing in PPPD may also be atypical. Future research should explore whether 

known associations in migraine between visual discomfort, cortical hyper-excitability and visual 

discrimination deficits are also observed in PPPD.  

 

Acknowledgements: This study funded by Wellcome [104943/Z/14/Z], Wellcome and Cardiff 

University ISSF [097824/Z/11/Z], and Health and Care Research Wales [SCF-18-1504]. The project was 

facilitated by HealthWise Wales, the Health and Care Research Wales initiative, which is led by Cardiff 

University in collaboration with SAIL, Swansea University. We would also like to thank the Clinical 

Audiology team at University Hospital Wales for their assistance in recruiting the patients.  

  



12 

 

References 

[1] I. Adamec, S.J. Meaški, M.K. Skorić, K. Jažić, L. Crnošija and M. Habek, O-01 Persistent 
postural-perceptual dizziness: clinical and neurophysiological study, Clinical Neurophysiology 130 
(2019), e21. 
[2] S. Aurora and F. Wilkinson, The brain is hyperexcitable in migraine, Cephalalgia 27 (2007), 
1442-1453. 
[3] D.H. Baker and E.W. Graf, Natural images dominate in binocular rivalry, Proceedings of the 
National Academy of Sciences 106 (2009), 5436-5441. 
[4] P.G. Barten, Contrast sensitivity of the human eye and its effects on image quality, Spie 
optical engineering press Bellingham, WA, 1999. 
[5] T. Brandt and M. Dieterich, Phobischer attacken-schwankschwindel, ein neues syndrom, 
Münch Med Wochenschr 128 (1986), 247-250. 
[6] A.M. Bronstein, Visual vertigo syndrome: clinical and posturography findings, Journal of 
Neurology, Neurosurgery & Psychiatry 59 (1995), 472-476. 
[7] F.W. Campbell and J.G. Robson, Application of Fourier analysis to the visibility of gratings, 
The Journal of Physiology 197 (1968), 551. 
[8] B.D. Chouinard, C.I. Zhou, S. Hrybouski, E.S. Kim and J. Cummine, A functional neuroimaging 
case study of Meares–Irlen syndrome/visual stress (MISViS), Brain topography 25 (2012), 293-307. 
[9] G. Coppola, F. Pierelli and J. Schoenen, Is the cerebral cortex hyperexcitable or 
hyperresponsive in migraine?, Cephalalgia 27 (2007), 1427-1439. 
[10] S. Cousins, N.J. Cutfield, D. Kaski, A. Palla, B.M. Seemungal, J.F. Golding, J.P. Staab and A.M. 
Bronstein, Visual dependency and dizziness after vestibular neuritis, PloS one 9 (2014), e105426. 
[11] S. Cousins, D. Kaski, N. Cutfield, Q. Arshad, H. Ahmad, M.A. Gresty, B.M. Seemungal, J. 
Golding and A.M. Bronstein, Predictors of clinical recovery from vestibular neuritis: a prospective 
study, Annals of clinical and translational neurology 4 (2017), 340-346. 
[12] B. Cucchiara, R. Datta, G.K. Aguirre, K.E. Idoko and J. Detre, Measurement of visual 
sensitivity in migraine: validation of two scales and correlation with visual cortex activation, 
Cephalalgia 35 (2015), 585-592. 
[13] E. Dannenbaum, G. Chilingaryan and J. Fung, Visual vertigo analogue scale: an assessment 
questionnaire for visual vertigo, Journal of Vestibular Research 21 (2011), 153-159. 
[14] M. Dieterich, J. Staab and T. Brandt, Functional (psychogenic) dizziness, in: Handbook of 
clinical neurology, Elsevier, 2016, pp. 447-468. 
[15] M. Dieterich and J.P. Staab, Functional dizziness: from phobic postural vertigo and chronic 
subjective dizziness to persistent postural-perceptual dizziness, Current Opinion in Neurology 30 
(2017), 107-113. 
[16] R.A. Edden, S.D. Muthukumaraswamy, T.C. Freeman and K.D. Singh, Orientation 
discrimination performance is predicted by GABA concentration and gamma oscillation frequency in 
human primary visual cortex, Journal of Neuroscience 29 (2009), 15721-15726. 
[17] B. Evans, A. Wilkins, J. Brown, A. Busby, A. Wingfield, R. Jeanes and J. Bald, A preliminary 
investigation into the aetiology of Meares—Irlen syndrome, Ophthalmic and Physiological Optics 16 
(1996), 286-296. 
[18] D. Fernandez and A.J. Wilkins, Uncomfortable images in art and nature, Perception 37 
(2008), 1098-1113. 
[19] D.J. Field, Relations between the statistics of natural images and the response properties of 
cortical cells, Journal of the Optical Society of America 4 (1987), 2379-2394. 
[20] D.J. Field, What is the goal of sensory coding?, Neural Computation 6 (1994), 559-601. 
[21] W.S. Geisler, Visual perception and the statistical properties of natural scenes, Annu. Rev. 
Psychol. 59 (2008), 167-192. 
[22] W.S. Geisler, J.S. Perry, B. Super and D. Gallogly, Edge co-occurrence in natural images 
predicts contour grouping performance, Vision Research 41 (2001), 711-724. 



13 

 

[23] M. Guerraz, L. Yardley, P. Bertholon, L. Pollak, P. Rudge, M. Gresty and A. Bronstein, Visual 
vertigo: symptom assessment, spatial orientation and postural control, Brain 124 (2001), 1646-1656. 
[24] S.M. Haigh, L. Barningham, M. Berntsen, L.V. Coutts, E.S. Hobbs, J. Irabor, E.M. Lever, P. Tang 
and A.J. Wilkins, Discomfort and the cortical haemodynamic response to coloured gratings, Vision 
Research 89 (2013), 47-53. 
[25] D.E. Harle, A.J. Shepherd and B.J. Evans, Visual stimuli are common triggers of migraine and 
are associated with pattern glare, Headache: The Journal of Head and Face Pain 46 (2006), 1431-
1440. 
[26] P.B. Hibbard and L. O'Hare, Uncomfortable images produce non-sparse responses in a model 
of primary visual cortex, Royal Society open science 2 (2015), 140535. 
[27] C.W. Hoppes, P.J. Sparto, S.L. Whitney, J.M. Furman and T.J. Huppert, Changes in cerebral 
activation in individuals with and without visual vertigo during optic flow: A functional near-infrared 
spectroscopy study, NeuroImage: Clinical 20 (2018), 655-663. 
[28] J. Huang, T.G. Cooper, B. Satana, D.I. Kaufman and Y. Cao, Visual distortion provoked by a 
stimulus in migraine associated with hyperneuronal activity, Headache: The Journal of Head and 
Face Pain 43 (2003), 664-671. 
[29] J. Huang, X. Zong, A. Wilkins, B. Jenkins, A. Bozoki and Y. Cao, fMRI evidence that precision 
ophthalmic tints reduce cortical hyperactivation in migraine, Cephalalgia 31 (2011), 925-936. 
[30] I. Indovina, R. Riccelli, G. Chiarella, C. Petrolo, A. Augimeri, L. Giofrè, F. Lacquaniti, J.P. Staab 
and L. Passamonti, Role of the insula and vestibular system in patients with chronic subjective 
dizziness: an fMRI study using sound-evoked vestibular stimulation, Frontiers in behavioral 
neuroscience 9 (2015), 334. 
[31] R.G. Jacob, M.S. Redfern and J.M. Furman, Space and motion discomfort and abnormal 
balance control in patients with anxiety disorders, Journal of Neurology, Neurosurgery & Psychiatry 
80 (2009), 74-78. 
[32] R.G. Jacob, S.R. Woody, D.B. Clark, S.O. Lilienfeld, B.E. Hirsch, G.D. Kucera, J.M. Furman and 
J.D. Durrant, Discomfort with space and motion: a possible marker of vestibular dysfunction 
assessed by the situational characteristics questionnaire, Journal of Psychopathology and Behavioral 
Assessment 15 (1993), 299-324. 
[33] I. Juricevic, L. Land, A.J. Wilkins and M.A. Webster, Visual discomfort and natural image 
statistics, Perception 39 (2010), 884-899. 
[34] N. Khalil and N. Legg, Pathophysiology of migraine: a study using VEP and contrast 
sensitivity, New advances in headache research. 3rd edn. London: Smith-Gordon (1989), 57-61. 
[35] D.C. Knill, D.J. Field and D. Kerstent, Human discrimination of fractal images, JOSA A 7 
(1990), 1113-1123. 
[36] M.J. Láinez, J. Castillo, M. Domínguez, G. Palacios, S. Díaz and J. Rejas, New uses of the 
Migraine Screen Questionnaire (MS-Q): validation in the Primary Care setting and ability to detect 
hidden migraine. MS-Q in Primary Care, BMC neurology 10 (2010), 39. 
[37] M.J. Láinez, M. Domínguez, J. Rejas, G. Palacios, E. Arriaza, M. Garcia‐Garcia and M. 
Madrigal, Development and validation of the Migraine Screen Questionnaire (MS‐Q), Headache: The 
Journal of Head and Face Pain 45 (2005), 1328-1338. 
[38] A.T. Le, J. Payne, C. Clarke, M.A. Kelly, F. Prudenziati, E. Armsby, O. Penacchio and A.J. 
Wilkins, Discomfort from urban scenes: Metabolic consequences, Landscape and Urban Planning 
160 (2017), 61-68. 
[39] J.O. Lee, E.S. Lee, J.S. Kim, Y.B. Lee, Y. Jeong, B.S. Choi, J.H. Kim and J.P. Staab, Altered brain 
function in persistent postural perceptual dizziness: a study on resting state functional connectivity, 
Human Brain Mapping 39 (2018), 3340-3353. 
[40] K. Li, L. Si, B. Cui, X. Ling, B. Shen and X. Yang, Altered spontaneous functional activity of the 
right precuneus and cuneus in patients with persistent postural-perceptual dizziness, Brain imaging 
and behavior (2019), 1-11. 



14 

 

[41] D.A. Marcus and M.J. Soso, Migraine and stripe-induced visual discomfort, Archives of 
neurology 46 (1989), 1129-1132. 
[42] A. McKendrick and D. Badcock, Motion processing deficits in migraine, Cephalalgia 24 
(2004), 363-372. 
[43] S. Na, J.J. Im, H. Jeong, E.-S. Lee, T.-K. Lee, Y.-A. Chung and I.-U. Song, Cerebral perfusion 
abnormalities in patients with persistent postural-perceptual dizziness (PPPD): a SPECT study, 
Journal of Neural Transmission 126 (2019), 123-129. 
[44] S. Nigro, I. Indovina, R. Riccelli, G. Chiarella, C. Petrolo, F. Lacquaniti, J.P. Staab and L. 
Passamonti, Reduced cortical folding in multi-modal vestibular regions in persistent postural 
perceptual dizziness, Brain imaging and behavior 13 (2019), 798-809. 
[45] L. O'Hare and P.B. Hibbard, Visual processing in migraine, Cephalalgia 36 (2016), 1057-1076. 
[46] B.A. Olshausen and D.J. Field, Sparse coding with an overcomplete basis set: A strategy 
employed by V1?, Vision Research 37 (1997), 3311-3325. 
[47] C.A. Parraga, T. Troscianko and D.J. Tolhurst, The human visual system is optimised for 
processing the spatial information in natural visual images, Current Biology 10 (2000), 35-38. 
[48] L. Passamonti, R. Riccelli, F. Lacquaniti, J.P. Staab and I. Indovina, Brain responses to virtual 
reality visual motion stimulation are affected by neurotic personality traits in patients with 
persistent postural-perceptual dizziness, Journal of Vestibular Research (2019), 1-10. 
[49] O. Penacchio and A.J. Wilkins, Visual discomfort and the spatial distribution of Fourier 
energy, Vision Research 108 (2015), 1-7. 
[50] L. Pollak, M. Osherov, N. Berkovitz, I. Beckerman, R. Stryjer and S. Tal, Magnetic resonance 
brain imaging in patients with visual vertigo, Brain and behavior 5 (2015), e00402. 
[51] S. Popkirov, J.P. Staab and J. Stone, Persistent postural-perceptual dizziness (PPPD): a 
common, characteristic and treatable cause of chronic dizziness, Practical neurology 18 (2018), 5-13. 
[52] G. Powell, H. Derry-Sumner, D. Rajenderkumar, S.K. Rushton and P. Sumner, Persistent 
postural perceptual dizziness is on a spectrum in the general population, Neurology (2020). 
[53] G. Powell, H. Derry-Sumner, K. Shelton, S. Rushton, C. Hedge, D. Rajenderkumar and P. 
Sumner, Visually-induced dizziness is associated with sensitivity and avoidance across all senses, 
Journal of Neurology (2020). 
[54] R. Riccelli, L. Passamonti, N. Toschi, S. Nigro, G. Chiarella, C. Petrolo, F. Lacquaniti, J.P. Staab 
and I. Indovina, Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients 
with Persistent Postural-Perceptual Dizziness, Frontiers in Neurology 8 (2017). 
[55] R. Schniepp, M. Wuehr, S. Huth, C. Pradhan, T. Brandt and K. Jahn, Gait characteristics of 
patients with phobic postural vertigo: effects of fear of falling, attention, and visual input, Journal of 
Neurology 261 (2014), 738-746. 
[56] A.E.I. Sezier, N. Saywell, G. Terry, D. Taylor and N. Kayes, Working-age adults’ perspectives 
on living with persistent postural-perceptual dizziness: a qualitative exploratory study, BMJ open 9 
(2019), e024326. 
[57] A.J. Shepherd, Visual contrast processing in migraine, Cephalalgia 20 (2000), 865-880. 
[58] A.J. Shepherd, H.M. Beaumont and T.J. Hine, Motion processing deficits in migraine are 
related to contrast sensitivity, Cephalalgia 32 (2012), 554-570. 
[59] A.J. Shepherd, T.J. Hine and H.M. Beaumont, Color and spatial frequency are related to 
visual pattern sensitivity in migraine, Headache: The Journal of Head and Face Pain 53 (2013), 1087-
1103. 
[60] E.P. Simoncelli and B.A. Olshausen, Natural image statistics and neural representation, 
Annual Review of Neuroscience 24 (2001), 1193-1216. 
[61] J.P. Staab, Chronic subjective dizziness, CONTINUUM: Lifelong Learning in Neurology 18 
(2012), 1118-1141. 
[62] J.P. Staab, Psychiatric Considerations in the Management of Dizzy Patients, in: Vestibular 
Disorders, Karger Publishers, 2019, pp. 170-179. 



15 

 

[63] J.P. Staab, A. Eckhardt-Henn, A. Horii, R. Jacob, M. Strupp, T. Brandt and A. Bronstein, 
Diagnostic criteria for persistent postural-perceptual dizziness (PPPD): consensus document of the 
committee for the classification of vestibular disorders of the bárány society, Journal of Vestibular 
Research 27 (2017), 191-208. 
[64] J.P. Staab, D.E. Rohe, S.D. Eggers and N.T. Shepard, Anxious, introverted personality traits in 
patients with chronic subjective dizziness, Journal of psychosomatic research 76 (2014), 80-83. 
[65] J.P. Staab and M.J. Ruckenstein, Which comes first? Psychogenic dizziness versus otogenic 
anxiety, The Laryngoscope 113 (2003), 1714-1718. 
[66] J.P. Staab and M.J. Ruckenstein, Expanding the differential diagnosis of chronic dizziness, 
Archives of Otolaryngology–Head & Neck Surgery 133 (2007), 170-176. 
[67] M. Strupp, M. Glaser, C. Karch, N. Rettinger, M. Dieterich and T. Brandt, The most common 
form of dizziness in middle age: phobic postural vertigo, Der Nervenarzt 74 (2003), 911-914. 
[68] M.S. Tibber, M.G. Kelly, A. Jansari, S.C. Dakin and A.J. Shepherd, An inability to exclude visual 
noise in migraine, Investigative ophthalmology & visual science 55 (2014), 2539-2546. 
[69] J.H. Van Hateren and A. van der Schaaf, Independent component filters of natural images 
compared with simple cells in primary visual cortex, Proceedings of the Royal Society of London. 
Series B: Biological Sciences 265 (1998), 359-366. 
[70] A. Van Ombergen, L. Heine, S. Jillings, R.E. Roberts, B. Jeurissen, V. Van Rompaey, V. Mucci, 
S. Vanhecke, J. Sijbers and F. Vanhevel, Altered functional brain connectivity in patients with visually 
induced dizziness, NeuroImage: Clinical 14 (2017), 538-545. 
[71] A. Wilkins, J. Huang and Y. Cao, Prevention of visual stress and migraine with precision 
spectral filters, Drug development research 68 (2007), 469-475. 
[72] A.J. Wilkins, Visual stress, Oxford University Press, 1995. 
[73] A.J. Wilkins, I. Nimmo-Smith, A. Tait, C. McMANUS, S.D. SALA, A. Tilley, K. Arnold, M. Barrie 
and S. Scott, A neurological basis for visual discomfort, Brain 107 (1984), 989-1017. 
[74] J. Woll, A. Sprenger and C. Helmchen, Postural control during galvanic vestibular stimulation 
in patients with persistent perceptual–postural dizziness, Journal of Neurology 266 (2019), 1236-
1249. 
[75] S. Wurthmann, S. Naegel, B.S. Steinberg, N. Theysohn, H.-C. Diener, C. Kleinschnitz, M. 
Obermann and D. Holle, Cerebral gray matter changes in persistent postural perceptual dizziness, 
Journal of psychosomatic research 103 (2017), 95-101. 

 

Tables 

 

  
Number (percent) 

Vestibular Migraine 4 (13%) 

Labyrinthitis 5 (17%) 

Ménière's disease 2 (7%) 

BPPV 4 (13%) 

Vestibular Neuritis 3(10%) 

  

Table 1. Number and percent of patients who reported a secondary vestibular condition in addition to PPPD.  
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Figure legends 

 

Figure 1.  Example low discomfort images (top row) and high discomfort images (bottom row) used 

in the study.  

 

Figure 2.  Violin plots showing higher discomfort index (difference in discomfort ratings between 

high and low discomfort images) in patients than in the general population controls, separated by 

migraine. In the statistical analysis (see text) we also controlled for age and gender. Black solid lines 

indicate mean, and dotted lines median.   

 

Figure 3. Scatterplots showing Spearman correlations between the two measures of PPPD (A = Visual 

Vertigo Analogue Scale (VVAS), B = Situational Characteristics Questionairre (SCQ) and visual 

discomfort index (high discomfort image rating – low discomfort image rating) for both participants 

with migraine (blue) and those without (grey), controlling for age and gender.  
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Fig 2 
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Fig 3 
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