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Learning to Warp for Style Transfer

Figure 1. Our method performs non-parametric warping to match artistic geometric style. Output has comparable quality (or better) than state-of-the
art, but warping is two orders of magnitude faster. The teaser shows content, style (geometry+texture), and output images for a Picasso style
transfer (left) and a Salvaor Dali style transfer (right).

Xiao-Chang Liu Yong-Liang Yang Peter Hall
University of Bath
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Abstract

Since its inception in 2015, Style Transfer has focused on
texturing a content image using an art exemplar. Recently, the
geometric changes that artists make have been acknowledged
as an important component of style [42, 55, 62, 63]. Our
contribution is to propose a neural network that, uniquely,
learns a mapping from a 4D array of inter-feature distances
to a non-parametric 2D warp field. The system is generic in
not being limited by semantic class, a single learned model will
suffice; all examples in this paper are output from one model.

Our approach combines the benefits of the high speed of
Liu et al. [42] with the non-parametric warping of Kim et
al. [55]. Furthermore, our system extends the normal NST
paradigm: although it can be used with a single exemplar, we
also allow two style exemplars: one for texture and another for
geometry. This supports far greater flexibility in use cases than
single exemplars can provide.

1. Introduction
Neural style transfer (NST) is a current area of research

in Non-photorealistic rendering (NPR), with applications in
games, artistic design, architecture, and many other fields. By
mimicking a wide gamut of artistic styles from visual examples,
it greatly enriches the expressiveness of digital images. To
reach its fullest extent, NST must be able to mimic not just the
textural elements of style that are related to (e.g., brush strokes),
but geometric warps that artists use. This paper considers
the problem of image stylization using deep neural networks,

specifically focusing on artistic warping.

NST was first proposed by Gatys et al. [15], a paper set
the paradigm for a great deal of work. The algorithm receives
a content image, Ic, and an artistic style exemplar, Is. These
images provide the subject and rendering style for an output im-
age: Io=τ(Ic,Is). The key idea is to construct a loss function
of two parts, for content LC(Io,Ic) and for style LS(Io,Is).

All of NST to date define both loss functions in terms of
kernel responses, typically drawn from the convolutional layers
within a network. The details of how the loss functions are
formed and how the network is trained largely explain the
development and diversification of current NST (see Section 2
for an overview). Such diversity notwithstanding, what is
common among all the techniques is that the kernel responses
depend on spatial color patterns and are spatially fixed. This
means that NST can be regarded as a sophisticated form of
tracing over the content image, which uses texture elicited from
the style image to construct the artwork.

The approach is limiting because artists change the shape
of the objects they render, that is: artists use geometric warping
in their work. Warping is evident across all of art, here we
give just a few examples among countless others. Caricaturists,
such as Ronald Searle, exaggerate semantic features in an
obvious way. English landscape artist George Stubbs painted
bulls to look much larger, stronger, “beefier” than in real life
– a kind of caricature. In his famous “Great Wave”, Hokusai
uses geometry to help emphasize natural power. Across the
world, and in all times, cultures have employed geometrical
distortions for expressive purpose. The art of children bears
little correspondence with geometric reality, yet often remains



recognizable and is always cute. Figure 1 shows two artists
for whom geometric changes are an intrinsic part of their
style. Picasso took full advantage of the human capacity to
recognize highly distorted objects as he helped invent 20th
century Western art. Surrealist artist Salvador Dali’s melting
watches are instantly recognizable and attributable to him.

The importance of geometric warping is becoming recog-
nized in the NST literature. Recent work has included geometric
warping within an NST framework. The earliest of these are
designed for single classes such as faces [63] or text [62].
Later work has provided more generic solutions [42,55]. Our
contribution is an NST architecture that performs a geometric
warp and is uniquely characterized by the possession of all of
the following properties:

• unlike Yaniv et al. [63] and WarpGan [52], it is not
restricted to a single semantic class;

• unlike Kim et al. [55] who rely on forward and back-
ward optimizations, we train a specifically designed
feed-forward network to output warp fields given content
and geometric images;

• warping is up-to two orders of magnitude faster than
Kim et al. [55], while producing competitive results (see
Section 4);

• unlike Liu et al. [42] who are limited to parametric warp
fields, we produce a non-parametric warp;

• unlike every other NST algorithm other than Liu et
al. [42], we support the use of two images to specify style,
which adds versatility to image creation that is absent in
other NST algorithms.

Our technique is explained in Section 3 but is easy to summarise:
we warp an input image using our trained network, then apply
regular NST.

To test the importance of geometric warping in human
recognition of style, we performed an experiment. Details
are provided in Section 4, but we summarise here. Given a
style exemplar and outputs from two randomly selected NST
algorithms, humans were asked to select the most similar pair,
leaving the other as the odd-one-out. If neither NST algorithm
used geometric warping, the style exemplar was the odd-one-out
about 60% to 70% of the time, i.e., the two NST outputs were
said to be more similar to one another than to the exemplar. In
contrast, if one of the NST algorithms used geometric warping
and the other did not, the non-warped image was odd-one-out
between 60% and 70% of the time, leaving the non-warped
NST as the odd-on-out. We emphasize that all of the outputs
were subject to regular NST. This result shows that geometric
warping is a major contributor to style recognition by humans, in
addition to textural elements. The code is available at https:
//github.com/xch-liu/learning-warp-st.

2. Related Work
Prior to Neural Style Transfer (NST), Non-Photorealistic

Rendering (NPR) algorithms were used to create artistic images.

NPR algorithms accept 3D models, photographs, or videos
as input, while no exemplar is necessary. NPR is capable
of reaching many styles including Cubism [10], symbolic
substitution [25], non-linear cameras that warp images [20],
and caricature [2, 3]. The broader history of NPR is well
documented elsewhere, see (e.g., [32]).

Most, but not all NPR algorithms are prescriptive, Image
Analogies [23] being an exception. All NST algorithms learn,
from Gatys et al. [15] onwards. The core innovation was to
match the style of an output image to that of an exemplar. More
specifically, the network receives a photographic content image,
Ic, and an artistic style exemplar, Is. It outputs the content in
the style of the exemplar: Io=f(Ic,Is).

2.1. Texture NST

Until very recently, Texture-NST has been the dominant,
indeed sole, form of NST and was called NST with no further
qualification. Jing et al. [27] use a full partition of (Texture)
NST, which we follow.
Image-Optimization-Based Online: Methods in this category
are characterized by transferring the style through iteratively
optimizing an image. The first algorithm was proposed by
Gatys et al. [15,16]. They used the feature responses in higher
layers of the VGG-Network [53] to represent the content of
an image. The image style was represented by the feature
correlations (also called Gram matrix) between different layers
of the VGG. Some latter works used additional loss functions
(e.g., Histogram loss [48] and Laplacian loss [34]) to help
eliminate irregular artifacts. Li and Wand [33] were the first
to propose an MRF-based NST algorithm.
Model-Optimization-Based Offline: Methods in this category
optimize a generative model offline and generate the stylized
image with a single forward pass at the testing stage. The
first two algorithms were proposed by Johnson et al. [28] and
Ulyanov et al. [58]. Ulyanov et al. [59] further replaced batch
normalization with single image normalization and improved
the stylization quality. However, the trained models in these
methods are style-specific, which means separate models have
to be trained for images with particular styles. To improve the
flexibility, some works [6,13,35] incorporated multiple styles
into one single model, or used one model to transfer arbitrary
artistic style [18,26,36,46,56,60,61].
Variations of Texture NST: To date, NST has been extended for
many different tasks (e.g., portrait painting style transfer [50], vi-
sual attribute transfer [9,31,39,41,64], semantic style transfer [4,
8,45], video style transfer [5,19,24,49], 3D style transfer [7,29],
and photorealistic style transfer [37,43,44]). Interested readers
can refer to reviews [27,51] and the explanation [38] on NST.

2.2. Geometric NST

There is a growing consensus that the geometric deforma-
tions artists used to make imaginative recreations of objects
are worthy of consideration within NST. The literature is far



Figure 2. Our algorithm consists of two modules: D (geometric
deformation) and R (texture rendering). For a given image pair{Ig,
Ic}, module D estimates a pixel-wise warp field and computes the
corresponding warping result Iw. Module R further renders Iw in the
texture style of It. Artworks are by Egon Shiele.

less voluminous than for texture NST, but the subject is no less
important. Some methods are limited to specialized content
domains such as faces [63], and text [62]. These methods
produce excellent results. Yaniv [63] manages to characterize
the geometric style of individual artists – analysis of style is
absent from the literature otherwise, style is defined by example.

More recently Kim et al. [55] and Liu et al. [42] described
more generic methods that operate over many classes. This
added flexibility does not appear to cost much in terms of
quality, see Section 4.

Kim et al. [55] proposed Deformable Style Transfer. They
used Neural Best-Buddies (NBB) [1] to match points between
the content image and the style exemplar, filtered matches with
low activations, incorporated a warping loss in STROTSS-based
texture style transfer [31]. While producing high-quality results,
this method is computationally expensive since both NBB
and STROTSS are optimization-based approaches and require
back-and-forth passes through the pretrained network. Each
step takes several minutes on a modern GPU.

Liu et al. [42] posited a mapping from a 4D function of
distance measures, M(i,j,k,l) to a 2D parametric warp field,
w(i,j|θ). EachM(i,j,k,l) measures the distance between filter
responses at two response locations, i.e., (i,j) in the content and
(k,l) in the exemplar. The output is a 2D warp field covering
the content image. The mapping is learned, making is very fast
to use. Liu et al. [42] demonstrate their method with affine and
bi-quadratic warps.

The approach we present in this paper has the speed of
Liu et al. [42], yet supports the same arbitrary deformations
as DST [55]. DST [55] is akin to Image Optimization, we use
Model Optimization.

3. Geometric & Texture Style Transfer
The inputs to our neural style transfer algorithm are: 1) a

content image Ic to be transferred, 2) an exemplar Ig to guide
geometric transfer, and 3) an exemplar It to guide texture
transfer. Note that we can set Ig = It, so that a single style
exemplar is sufficient.

As shown in Figure 2, our neural style transfer algorithm con-
tains two main modules. Our geometric warping moduleD com-
putes a non-parametric vector field to warp the content image
Ic to match the geometric style in the exemplar Ig. The texture

Figure 3. Geometric deformation module D. Geometric exemplar and
content image (Ig, Ic) are passed through the geometric deformation
module to generate a pixel-wise warping field.

rendering moduleR uses the texture exemplar It to produce the
final result Io. The modules are independent, but in use need to
be ordered. Rendering texture which is then warping also warps
the texture, we prefer to warp the content before texturing. All
the outputs in this paper we produced under the following model:

Io=R(D(Ig,Ic),It). (1)

The warp moduleD and the texture moduleR are detailed in
Section 3.1 and Section 3.2, respectively.

3.1. Geometric Style

The role of module D is to warp the content image Ic to
match the geometric exemplar Ig. The key idea is to train a
neural network that is able to infer a two-dimensional warp field
w given a four-dimensional scalar function M that measures
feature similarity. As shown in Figure 3, the module has three
major components: 1) feature extraction to get features Fc from
Ic, and Fg from Ig; 2) feature correlation to measure feature
similarity M(Fc,Fg); and 3) training a warp network to output
a function f such that w=f(M). Once trained, the network
f can be used on new inputs without modification. All outputs
in this paper were produced with a single warp network.

Note that the warp field is determined by w is non-
parametric. Also, training and using the network are very
efficient (see Section 4). The approach is not limited to a narrow
range of semantic content, (e.g., faces, text), yet combines the
advantages of the diverse deformations of Kim et al. [55] and
the computational efficiency of Liu et al. [42]. In the following,
we elaborate on each of the three components in detail.

3.1.1 Feature Extraction

Like many NST algorithms, we use the VGG network [53],
trained for object recognition as a feature source. We
extract features from pool4 layer of VGG, followed by an
L2-normalization. The output is a feature fieldF of sizeW×H.
This is 16 × 16 in our case, which balances computational
efficiency with warp quality. Each F(i,j) is anN dimensional
vector of unit length. We use this network on the content image
Ic and the geometric style exemplar Ig to get feature fields Fc

and Fg, respectively.



Figure 4. Warp field estimation. The warp field is iteratively estimated by repeating the forward propagation. The upper row shows the predicted
field after each forward propagation, the final w was got by adding them to the initial w0. The lower row shows the intermediate results. Cat
target is by Ronald Searle.

3.1.2 Feature Correlation

This component computes feature correlation scores between
every position (i,j) in Fc and every position (k,l) in Fg. The
result is stored in a four dimensional scalar function M ∈
RW×H×W×H . Each element Mc,g(i,j,k,l) is computed as:

Mcg(i,j,k,l)=
〈Fc(i,j)|Fg(k,l)〉√∑W

p=1

∑H
q=1〈Fc(i,j)|Fg(p,q)〉2

, (2)

where 〈Fc(i,j)|Fg(k,l)〉 is the inner product between vectors.
This form of correlation volume has been used in tasks such
as flow estimation [12,57], correspondence estimation [30,66],
and exemplar-based colorization [65].

3.1.3 Warp Network: Training and Using.

Our key technical contribution is to train a neural network f to
output a non-parametric warp field w, given a four dimensional
correlation volume M. We can write this as w = f(M).
Formally, the network f is a mapping as follows:

f :<W×H×W×H 7→<WI×HI×2, (3)

withW ,H being the size of the feature arrays, andWI ,HI the
image size. The warp field is used to warp the content image
to get w[Ic], which is the output of the warp moduleD.

In principle, training is not required as it is sufficient to solve
an optimization problem of the form minwh(w[Ic],Ig) for any
pair of images Ic and Ig, with h a measuring function. This
optimization-based approach is followed by Kim et al. [55], and
we optimize during training. But per-instance optimization is
slow when compared to computing the warp field directly from
a trained network f . Our results show that direct computation is
two orders of magnitude faster than Kim et al. [55] (see Table 2
in Section 4).
Training: Our network is trained with a set of image pairs that
are semantically related or have geometrically similar parts.
The image pairs cover a wide range of semantic content: faces,
animals, and so on. To improve the model’s generalization
on artistic domains, we use artistic augmentation to create a
texture-augmented copy of every training image. Once trained
the deformation network can be applied to any image regardless
of its semantic content.

The underlying idea is to locally move pixels in the content
image and (re-)compute features in the newly warped image un-
til a loss function is minimized. More specifically, letFm denote
the elements within a feature field that are influenced by pixel
m. Let w(Fc) denote the content feature field after the content
image is warped. Let M(w(Fc),Fg) denote the measure field
computed after the warp. The loss function is specified to be:

L(Fc,Fg|w)=−
∑
m∈Ic

∑
n∈Nm

log(p(w(Fm
c ),Fn

g )), (4)

whereNm is a search window centered on m, we use a 9×9
region. p(., .) is the probability that two features should be
classified together, we use the softmax function:

p(w(Fm
c ),Fn

g )=
exp(M(w(Fm

c ),Fn
g )∑

t∈Nm
exp(M(w(Fm

c ),F t
g)
. (5)

The goal of training is to find the network parameters (i.e.,
its connection weights) that minimise the loss. The derivatives
of L with respect to the warp field w (∂L/∂w(Fc), ∂w(Fc)/∂w)
can be back-propagated into the warp net f to learn parameters.
Improving the Result: To achieve a high-precision estimation,
we iteratively refine the warp field during training. At each step
we use the current warp field wi to transform the content image,
then (re-)extract the features Fc so that a new measure M can
be computed. Notice that each step estimates the change from
the previous step, which is a differential. We express this as:

wi−wi−1=f(M(wi−1(Fc),Fg)), (6)

where wi represents the estimated transformation field at the ith

iteration. The final transformation field w is the accumulated
differential fields:

w=w0+

K−1∑
k=0

f(M(wk(Fc),Fg)), (7)

wherew0 is the initial transformation field which was computed
through Equation 3 using the original feature pair{Fc, Fg},
and K is the chosen number of iterations (in practice we
find K = 3 is enough, giving four fields w0 to w3). As
shown in Figure 4, the estimated transformation fields become
increasingly accurate with respect to the geometric exemplar.



Network-based Warping: Once trained, the network will di-
rectly compute a warp field given a pair of feature maps. Each
pass takes about 0.3 seconds. Multiple passes can be used to in-
crease accuracy, as described above. We stop iterating when the
result changes little, or after 4 passes, whichever is sooner. Four
passes consume 1.2 seconds, compared with about 6 seconds for
a single pair during training, and between 80 and 133 seconds for
using Kim et al.’s optimisation [55]. Table 2 has more details.

3.2. Texture Style

In this sub-section, we detail the texture rendering stage with
moduleR. As shown in Figure 2, this module accepts warped
image Iw and texture exemplar It as input, to yield an output
image: Io=R(Iw,It).

In line with the majority of the NST literature, we formulate
this as an optimization task to minimize both content loss
∆C(Io,Iw), and texture style loss ∆S(Io,It), both of which
depend on feature maps from a neural network trained for object
detection. Our only change is to adopt a coarse-to-fine strategy
that preferentially transfers texture with increasing details into
different areas of the output image. This strategy has been
used for decades in prescriptive texture synthesis [22,47], and
more recently in texture-only NST [14,17,54] where it helps
improve the style transfer results. In our work, we leverage it
to resolve blur and other artifacts that would otherwise occur
due to geometric warping.

We follow the parametric modeling strategy proposed by
Gatys et al. [16] to represent texture style and content in
the domain of a CNN. Specifically, we use a Gram-based
representation, which is the correlation between filter responses
in different layers of VGG, to model textures. The content
representation is relatively straightforward, we use the
inter-layer filter response directly.

Denote the feature activation map of input image I at layer
l of VGG by F l(I). This map is of size Wl×Hl, and each
feature element is a vector of Cl components corresponding
to the number of channels. Then the texture style of image I
at layer l can be represented by the Gram matrix as:

G(F l(I))=[F l(I)]ᵀ[F l(I)], (8)

where [F l(I)] is the reformatted feature map such that each
feature is a row vector in a matrix of Wl×Hl columns, and
G is a Cl×Cl symmetric matrix. The texture style distance is
specified to be:

∆S(Io,It)=
∑
l∈lt

∥∥G(F l(Io))−G(F l(It))
∥∥2, (9)

where lt is the set of selected layers for texture style represen-
tation. The content distance is specified to be the L2-norm
between feature maps:

∆C(Io,Iw)=
∥∥F lc(Io)−F lc(Iw)

∥∥2, (10)

Figure 5. Texture rendering at multiple scales: larger scales fill regions
stretched by warping, smaller scales deal with compressed regions
with fruitful details. The complement of multiple scales improves the
rendering quality. Upper right shows the image rendered with a single
pyramid layer, P=1.

where lc is the selected layer for content representation.
Texture style transfer is then instantiated as the following

optimization problem:

Io=argmin
I

[α∆S(I,It)+β∆C(I,Iw)], (11)

where α and β are the balancing weights used to control the
extent of stylized effects.

Multi-scale Strategy. We apply the texture rendering process to
the images involved (Io, Iw, and It) at multiple scales. Images
at different scales are obtained by feeding them into a Gaussian
pyramid, where each pyramid layer is formed by blurring and
downsampling the previous layer. Let Ip, Ipw, and Ipt be the
images at the pth scale of the Gaussian pyramid. Rather than
solve Equation 11 for each layer, we solve across all scales:

Io=argmin
I

P−1∑
p=0

α∆S(Ip,Ipw)+β∆C(Ip,Ipt ), (12)

where P is the number of scales (we use P=4).
As shown in Figure 5, higher pyramids level will compensate

and strengthen regions that are not well covered by lower levels
(typically where an image region has been stretched). On the
other hand, low-levels fill in the small-scale details that the
higher levels tend to blur (where regions have been compressed).

3.3. Implementation

The geometric warping network is trained with images
from PF-PASCAL [21] and MS COCO [40]. All images are
resized to 256×256. We trained the network with batch size
16 and learning rate 1×10−5. Training takes about two hours
on a single GPU. Please see the supplementary for a detailed
description of the architecture of the warp network f . After
warping, empty background regions are inpainted. For the
texture rendering module, we compute content distance at
layer relu4 2 and texture distance at layers relu1 1, relu2 1,
relu3 1, relu4 1, and relu5 1.



Content Style NST [16] AdaIN [26] DST [55] Ours
Figure 6. By using a single style exemplar, we compare style transfer results with Gatys et al. [16], AdaIN [26], and DST [55]. Texture-based
NST methods [16,26] do not change the geometric style of the content image. In contrast, both DST [55] and our approach deform the content
image to match the geometry of the style exemplar. Our method not only warps, but positions and proportions the main object to be consistent
with the style exemplar. From top to bottom the artists are: Picasso, Bacon, an anonymous child, and Hokusai.

4. Results

We present qualitative and quantitative results, over a variety
of artistic styles and comparing with several alternative methods.
All results are generated from the same trained deformation
module. Further results, including tests of our method’s
performance on annotated dataset and robustness to the artistic
domain, can be found in the supplementary material.

4.1. Qualitative Comparisons

We provide images for qualitative comparison against both
generic and class-specific NST algorithms. The class-specific
geometric NST algorithms rely on extensively trained models
– there is no guarantee a model we train would reproduce the
results. Therefore we have used their results directly from their
literature, producing our results using the same source material.
General Comparison. Figure 6 allows readers to gauge the
impact of geometric warping. It shows texture-only NST [16,
26] alongside the non-parametric warped outputs from both
DST [55] and our system. We believe is easy to see the effective-
ness of geometry transfer. The texture-only NST methods [16,
26] fail to capture the shape changes that are an inherent part of

the style. This limits their capacity for mimicry to artistic styles
that exhibit no geometric warping. In contrast, DST [55] and
our method are capable of capturing the geometric style of the
exemplar images. Our coarse-to-fine warping strategy achieves
better deformation on multiple object classes, such as the head
shape/posture of portraits and the size/proportion of the main
objects. Meanwhile, the texture styles are also well transferred.
Non-parametric vs. Parametric Warp. GST [42] provides
a neural architecture for geometric warping, but is limited to
global bilinear warps. Figure 7 compares the output from GST
with ours, using a cow image as content and a bull painting by
Stubbs as the single exemplar. GST increases the body mass

Content Style Ours GST
Figure 7. Deformation comparison with GST [42]. The results are
directly adopted from their paper. An animal painting by Stubbs is
used as a single exemplar. Due to non-parametric warp, our method
better transfers the head in terms of its size compared with the body.



Content Style DST [55] FoA [63] Ours
Figure 8. Comparison of our method with DST and FoA [63] on face
art. The style images are from Leger.

of the cow, which is in line with the geometric style of Stubbs,
who painted bulls to look bigger and stronger than the actual
case. However, because their parametric warp is global, the
cow’s head also increases in size – but should not. Our result is
closer to Stubbs’s style in keeping the head size small compared
to the body.

Face-of-Art and WarpGAN. The ST literature includes
geometric warping designed for specific cases. Yaniv et al. [63]
use a strong model of faces (a point distribution model [11])
that needs to be trained with many examples from the same
artist. The model can be analyzed to elicit artistic style, and
high-quality images can be generated. However, the use of
a strong model restricts its scope to a single semantic class.
Figure 8 shows the comparison with DST [55] and FoA [63]
using portraits by Fernand Leger as the style exemplar. All
methods echo the geometric style of the exemplar, although in
slightly different ways; texture transfer differs too. The final
output is of high quality in all cases.

WarpGAN [52] is designed specifically for stylized portraits
or caricatures. It falls into the category of collection style
transfer, in which the target style is defined by a collection
of images rather than one. In contrast, our approach and DST
belong to example-guided style transfer, in which the target style
comes from a single example. This means only our approach
and DST can handle every single content/style image pair.
Figure 9 compares our results, outputs of DST taken from [55]
and outputs of WarpGAN taken from [52]. All methods produce
high-quality results. Our coarse-to-fine warp strategy helps to
preserve details such as face contours, eyebrow shapes, etc.

Table 1

Method 1 Method 2 1 and style 2 and style 1 and 2 votes for 1 votes for 2 Total votes

Ours Gatys 18 2 5 23 7 25

Ours    AdaIN 22 1 2 24 3 25

Ours DST 15 7 3 18 10 25

Ours Ours(texture only) 11 6 8 19 14 25

Ours(texture only) Gatys 7 5 13 20 18 25

Ours(texture only) AdaIN 10 3 12 22 15 25

Ours(texture only) DST 6 10 9 15 19 25

DST Gatys 12 4 9 21 13 25

DST AdaIN 15 4 6 21 10 25

Gatys    AdaIN 7 6 12 19 18 25

Table 2

Total Selects Selects for similar 
with Style Image

Ours 84 66 25.53%

Ours(texture) 71 29 21.58%

Gatys 57 18 17.33%

AdaIN 46 14 13.98%

DST 71 44 21.58%

Sum 329 98 100.00%

Table 4

Gatys AdaIN DST Ours(textur
e only)

Ours Similar with 
another 4

Total

Gatys 31.58% 21.05% 15.79% 22.81% 8.77% 68.42% 100.00%

AdaIN 26.09% 30.43% 13.04% 26.09% 4.35% 69.57% 100.00%

DST 12.68% 8.45% 61.97% 12.68% 4.23% 38.03% 100.00%

Ours(texture only) 18.31% 16.90% 12.68% 40.85% 11.27% 59.15% 100.00%

Ours 5.95% 2.38% 3.57% 9.52% 78.57% 21.43% 100.00%

Table 3

Style image Other methods

Gatys 31.58% 68.42%

AdaIN 30.43% 69.57%

DST 61.97% 38.03%

Ours (texture only) 40.85% 59.15%

Ours 78.57% 21.43%

21%
59%38%

70%68%
79%

41%62%
30%32%

Style exemplars Results of other algorithms

Gatys el al. AdaIN DST Ours(unwarped) Ours(full)

 1

Table 1. Subjective similarity.

Content Style DST WarpGAN Ours
Figure 9. Comparison of our method with DST [55] and Warp-
GAN [52] on facial caricature.

4.2. Quantitative Comparisons

Here we provide comparison results from quantitative
experiments, to assess the subjective similarity between the
output and GPU running times.
Subjective Similarity. The aim of NST is to transfer style, here
we ask “how well the style was transferred?” To quantitatively
gauge this subjective assessment, we performed an on-line simi-
larity experiment. Each of the 50 participants was shown a style
exemplar and two output images from NST algorithms as listed
below. The three images were presented on a row in random
order. The participant was asked to pick two they judged to be
the most similar. Each participant repeated this 5 times.

The output images were created using five different NST
methods: Gatys et al. [16], AdaIN [26], DST [55], our method
without warping, and our method with warping. We used ten
content-style pairs to generate results. In each case a single
exemplar was used to represent both geometry and texture
styles. In this way, we created a group of five outputs for each
exemplar. At each trial, the exemplar was selected at random,
and then two output images from its group were selected at
random. We obtained 25 votes for each pair of methods.

This experiment is similar to those conducted by Liu et
al. [42] and by Kim et al. [55], although the latter also asked
about the preservation of content. We have yet to find an
example where the warp is so extreme as to make content
unrecognizable, so we opted for the simpler, one question
experiment. As shown in Table 1, our results agree with the
previous literature: geometric warping has a significant impact
on subjective similarity. Our method achieved the highest user

Methods
Runtime (s)

Geometric
Warping

Texture Rendering
2562 5122 10242

Gatys et al. [16] N/A 14 33 116
AdaIN [26] N/A 0.037 0.14 0.55
DST [55] 83–133 62 100 165

Ours 0.3–1.2 16 48 140

Table 2. Computational efficiency comparison on RTX 2080 Ti. Run-
ning times are in seconds. Artistic warping is not applicable to [16,26].



preference, i.e., is subjectively deemed closer to the target style.
GPU Time. In Table 2 we compare the running time of
our method and [16, 26, 55] for several image sizes. Note
that the geometric warpings of DST [55] and our method
are all independent of the image size. The warping of DST
consists of two steps: (1) find matching points with Neural
Best-Buddies [1], which takes about two minutes on a GPU;
and (2) clean (NBB) points, which takes a few seconds. For
texture rendering, compared to model optimization based
offline method [26], [16, 55] and our work are advantageous
for quality at the cost of speed. Our geometric warping module
could be combined with offline NST methods such as [26].

5. Discussion

In this section, we discuss potential applications of our
method, followed by its limitations.
Applications. Since we explicitly model both geometry and
texture styles, we can easily use two exemplars to produce
an output as Io =µ(Ic,Ig,It). This provides the potential for
previously unavailable versatility and control. Figure 10 shows
several practical examples benefiting from separated geometry
and texture style transfer.

The first example uses a face and an African mask made of
clay, along with two different textures to produce two different
outputs. One warps the face to the mask, which is then textured
using a marble example to create an image of a statuette. The
second example warps the mask onto the face, which is then
textured with wood to create a wooden mask to snugly fit
the face. This shows that the model learned by the network
“goes both ways”. Our second example is inspired by Picasso’s
famous remark, “Every child is an artist. The problem is how
to remain an artist once he grows up.” Child art is notoriously
difficult – perhaps impossible – for adult artists to reproduce.
Our approach makes it possible to emulate child art using
child art exemplars. In this case, we have warped a chicken
to a child’s drawing, which we then “crayoned” over. A third
example is virtual try-on. In our example, a dress that might be

Figure 10. Example applications. Left: a face, clay mask, and two
textures make a wooden mask and marble statuette. Top: emulating
a child’s crayon drawing. Bottom: virtual try-on.

Figure 11. The in-principle limit is the 1-1 mapping assumption. Left:
A low-feature count in the Matisse (detail) leads to unexpected results
in the warped dancer. Middle: Hindu god Brahma, with many similar
faces having too many features. Right: a cycle of starfish, doughnut,
eight-shaped octopus cause failures due to topological differences.

bought is warped onto the dress being worn, and then textured.
This is not an art example, rather it shows that applications of
our system may extend beyond its original design intent.
Limitations. Our approach is limited by its assumptions in
terms of both geometric and texture transfer. The limitations
on texture transfer are shared with many other NST algorithms.
We will focus on discussing geometric transfer, since our
contribution is in geometric warping.

The key limiting assumption is that the content image and ge-
ometric exemplar each exhibit local discriminative features that
can be mapped 1-1. The mapping struggles when the geometric
exemplar has too few features, or has too many nearly identical
features. Both of these cases are shown in Figure 11. Another
interesting failure case occurs when the topology of the shapes
involved differ, again shown. All of these are fundamental in
that they will require changes to our algorithm to address.

The reader may be surprised we have not included cases
where the semantic content of source and target differ. Output
can vary in such case, but acceptability is a value judgment that
depends on the intentions of the user. We anticipate that most
people wish to follow the majority of artistic practice and deform
objects within semantic class limits, most of the time. They will
rarely if ever wish to warp an owl into a house, for example, and
if they choose to do so, the output may be acceptable (there may
be some artistic reason to have a house-shaped owl). This dis-
cussion is expanded upon in the supplementary, with examples.

6. Conclusion

Our paper presents a novel method for neutral style transfer
with more flexible and efficient non-parametric geometric
deformations. While generating competitive results, our method
significantly improves speed. The impact of geometric warping
on style is clear – warping is needed to better mimic many
artistic styles. Partitioning texture from geometry allows greater
flexibility in use allowing two exemplars to influence the
outcome, including potential applications beyond NST.
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