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This paper investigates the effect of Fe substitution on the structural, magnetic and 

transport properties of the La0.7Sr0.3MnxFe1-xO3 (LSMO) system where x ranged between 0 and 

0.15.  Samples were prepared using a non-aqueous sol-gel synthesis method. Structural and 

chemical analysis confirmed the Fe3+ substitution at Mn3+ sites without any impurity phase resulted 

in a small change in structural parameters of the LSMO. The change in magnetic behavior and 

Curie temperature of the Fe-doped LSMO is explained through competitive exchange interactions 

developed in the system. The temperature-dependent resistivity demonstrated that the resistivity 

of the samples increased with Fe concentration due to different conduction mechanisms related to 

the ferromagnetic-metallic and paramagnetic-insulating regions. The magneto-transport 

measurement showed significant improvement in the magnetoresistance due to Fe doping at Mn 

site, which was attributed to enhancement of the spin-glass phase in Fe doped LSMO system. The 

reduction in magnetoresistance for higher Fe concentration is explained with the help of 

percolation threshold mechanism. 

1. Introduction 
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The perovskite manganite (ABO3: A=trivalent rare earth, and B=transition metal) is an 

important compound with interesting magnetic and transport properties and several promising 

applications. Among these systems, La0.7Sr0.3MnO3 (LSMO) is one of the most important members 

of the perovskite manganite family due to its interesting properties such as colossal 

magnetoresistance (CMR), metal-insulator transition, ferromagnetic-paramagnetic transition, 

excellent catalytic properties that make it suitable for application in magnetic field sensors, 

biomedical devices, EMI shielding, fuel cell technology, and electrochemical charge storage 

applications1-5. The magnetic and transport behavior of LSMO is explained in terms of the 

exchange interaction (double exchange and superexchange) between Mn ions through oxygen 

ions6. Different methods for improving the magnetic, transport, and catalytic properties of the 

LSMO have been reported, including different synthesis methods, varying particle size, strain 

engineering, doping at A- and B-sites with other rare-earth and transition metal ions, and tuning 

the nature of the grain boundary7-12.  

Among these methods, doping at A- and B-sites in the LSMO system is an important field 

of research because it changes the structure and charge transport mechanism of the system. There 

are different reports available on the study of the substitution of La3+ (A-site) with other rare-earth 

ions (Y, Sm, Ce, Bi, Gd, and Nd etc.) in addition to the Sr on the magnetic and transport parameters 

of LSMO12-17. Doping at the A-site directly affects the Mn-O-Mn bond angle which modifies the 

magnetic and transport properties. The doping at the A-site results in improvement in 

magnetocaloric effect, temperature coefficient of resistance (TCR), and magnetoresistance of the 

LSMO17.  Furthermore, the doping by other transition metals at the B-site is also of interest as it 

directly affects the charge transport mechanism involved in LSMO. The substitution of the 

transition metal at Mn sites disrupts the Mn3+-O2--Mn4+ chain leading to the alternation of the 
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Mn3+/Mn4+ ratio.  Previous research has investigated doping with other transition metals including 

Cu, Fe, Ni, Co, and Ru at the Mn site in the LSMO system11, 18-24. Substitution at the Mn-site with 

transition metals has been reported to have a significant effect on the magnetic and transport 

behavior of LSMO18. The resistivity of the sample increases with doping at the Mn-site along with 

a suppression of the magnetic transition and metal-insulator transition temperature of the system20. 

Doping at the B-site by Co, Ni and Fe have also been reported to have weakened the magnetic 

behavior of LSMO due to a decrease in the double exchange interaction between Mn ions11, 18, 20. 

The low field magnetoresistance (LFMR) shows significant improvement due to the doping of 

other transition metals at the Mn site. The study of the effect of Fe doping at the B-site in LSMO 

is particularly important from the fundamental understanding of its properties and applications due 

to nearly similar ionic radii and electronic configurations of Fe and Mn [Fe3+(t2g↑
3eg↑

2) = 0.645Å, 

Mn3+(t2g↑
3eg↑

1) = 0.645Å, Mn4+( t2g↑
3eg↑

0) = 0.53Å] ions. It has been observed that the 

magnetoresistance increases for the lower doping level of Fe at the Mn site, due to the formation 

of the spin-glass phase in the system. Therefore, a systematic study of the effect of Fe doping at 

the Mn site on the magnetic and transport properties of LSMO becomes essential. 

In this work, Fe-doped LSMO [La0.7Sr0.3Mn1-xFexO3; x=0, 0.03, 0.06, 0.09, 0.12, and 0.15] 

has been synthesized using the non-aqueous sol-gel method. The structural, magnetic, transport 

and magneto-transport behavior of the Fe-doped LSMO have been systematically investigated. 

The transport behavior of the La0.7Sr0.3Mn1-xFexO3 system has been explained with different 

conduction processes involved in different temperature regions.  

 

2.Experimental details 
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(a) Synthesis method 

La0.7Sr0.3Mn1-xFexO3 [x=0 (LSMO), 0.03 (LF3), 0.06 (LF6), 0.09 (LF9), 0.12 (LF12), and 

0.15 (LF15)] samples are synthesized using a sol-gel method. Fig.1 shows the flow diagram for 

synthesis of Fe-doped LSMO samples. The stoichiometric amount of metal acetate precursors was 

mixed with ethylene glycol and the solution obtained was then refluxed at 120ºC for 12 h. The 

obtained gel was dried at 120ºC to remove the solvent.  The resulting brown colored powder was 

ground well and calcined at 600ºC to form the Fe-doped LSMO.  The powder obtained was then 

pressed to form a pellet which was subsequently sintered at 800°C for 4 h. 

(b) Characterization  

X-ray diffraction (XRD) (Bruker-D8 Advanced, Cu-Kα radiation λ=1.54Å), Field emission 

scanning electron microscopy (Zeiss Ultra FESEM), and Transmission electron microscopy (TEM 

CM 200) was used to structurally analyze the samples. The structural parameters of the XRD 

pattern were determined by Rietveld refinement by using the FULLPROF computer program25. 

Compositional and chemical analysis of the samples was performed using energy dispersive 

spectroscopy (EDAX) and X-ray photoelectron spectroscopy (XPS). The magnetization with 

temperature (M-T) and isotherm magnetization (M-H) of the samples was measured using SQUID-

VSM (Quantum design Inc.). The isotherm magnetization was measured at 10 K and 300 K in a 

magnetic field of -4 T to 4 T. The temperature-dependent resistivity (ρ-T) was measured using the 

four-probe technique in an MPMS system (Quantum design Inc.) in the temperature range of 10 

K to 300 K. The magnetoresistance measurement was performed as a function of magnetic field 

at 10 K and 300 K.  
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3. Results and discussion 

3.1 Structural analysis 

XRD patterns of the Fe-doped (x=0, 0.03, 0.06, 0.09, 0.12, 0.15) LSMO samples are shown 

in Fig.2. The peaks of the diffraction patterns are indexed with the rhombohedral structure (𝑅3̅𝑐, 

JCPDS-50-0308) which confirms the single-phase nature of the as prepared perovskite samples 

without any peaks relating to impurities. To clarify the effect of Fe doping on the XRD pattern, 

the diffraction patterns were enlarged in the range of 2θ=32-33.5º (Inset of Fig.2). A very small 

peak shift towards the higher angle side of the diffraction pattern with an increase in the doping 

concentration of Fe ions is clearly visible, indicating a small change in the structural parameters 

of the sample due to Fe doping at the Mn site. The structural parameters were obtained from the 

refinement of the XRD pattern of the Fe-doped LSMO samples. Fig.3 (a) shows the refined XRD 

data of the LSMO and LF-15 samples and structural parameters are summarized in the Table-1. 

The crystal structure observed from the structural parameters are shown in Fig.3 (b). It has been 

reported that the doping of Fe at B-site in LSMO results in the replacement of Mn3+ ion by Fe3+  

20. Thus, a negligible change in lattice parameter and cell volume is expected because of the similar 

ionic radii of the Mn3+ and Fe3+ (0.645Å). However, a small change observed in the lattice 

parameters of the Fe doped samples is attributed to the formation of magnetic polarons26. The 

magnetic polaronic state results in the change in Mn-O bond length and thus results in the change 

in other structural parameters of the Fe doped LSMO samples.  

The crystallite size of the Fe-doped samples as calculated from the Debye Scherrer method 

were 18.2nm, 15.9nm, 15.38nm, 15.64nm, 15.24nm, and 16.39nm for LSMO, LF3, LF6, LF9, 

LF12, and LF15 samples respectively. Thus, the crystallite size of the samples decreased with the 

increase in Fe concentration at the Mn site [Fig.3(c)]. The morphological and compositional 
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analysis of the LSMO and LF-15 are shown as FESEM and TEM micrographs in Fig.4(a-c). They 

clearly show that both samples have a spherical or ellipsoidal shape, and the particle size is reduced 

in the B-site doped LSMO. The average particle size was calculated as 35.5 nm and 19.4 nm for 

LSMO and LF-15 samples respectively. The energy dispersion spectroscopy was performed for 

the elemental analysis of the samples, as shown in Fig.4(a-c). It shows the presence of all the 

elements in the required elemental ratio in the sample. The elemental ratio obtained from the EDS 

measurement is shown in Fig.4 for LSMO and LF-15 samples, which is very close to the required 

stoichiometry of the sample.  

2. X-ray photoelectron spectroscopy (XPS) analysis 

The XPS measurement is used to determine the chemical nature of the LSMO and                           

Fe-doped LSMO samples. The core-level XPS spectra of the LSMO, LF6, and LF-15 samples are 

shown in Fig.5. The survey spectrum of the LSMO, LF6 and LF15 is shown in Fig.5(a), which 

confirms the existence of all constituent elements (La, Sr, Mn, Fe, and O) in the sample. The 

enlarged spectrum of the Mn 2p, and Fe 2p is deconvoluted to examine chemical state and 

composition with the help of Voigt function with Shirley background.  

Fig.5(b) shows the Mn 2p XPS core level spectra of the LSMO, LF6 and LF15 samples. 

The Mn 2p XPS spectra show two peaks related to the Mn 2p1/2 and Mn 2p3/2 due to spin-orbit 

splitting, which is deconvoluted using Mn3+, Mn4+, and satellite peaks27. The ratio of the 

Mn4+/Mn3+ calculated for the LSMO and Fe doped LSMO samples showed an increase due to Fe 

doping [Fig.5(c)].  This confirmed the substitution of Fe ions at the Mn3+ sites. The core-level 

spectra of the Fe 2p is shown in Fig.5(d). The Fe 2p spectra is deconvoluted into Fe 2p3/2 (~ 711 

eV), Fe 2p1/2 (~724 eV), and shake-up satellite peaks28. The Fe 2p spectra confirms the presence 
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of Fe in the +3 state within the sample, which agrees with previous studies of the Fe doped samples 

29, 30. 

3.3 Magnetic properties 

Fig.6 shows M-H measurement of the Fe-doped LSMO samples at 10 K. The M-H plots 

clearly show the ferromagnetic behavior of Fe-doped LSMO, for x ≥ 0.09 the M-H loop remains 

unsaturated up to a magnetic field of 4 T. The saturation magnetization (Ms) also decreases with 

Fe concentration at the Mn site as shown in Table-2 [Fig.7(a)]. The magnetic properties of the 

LSMO can be described with the help of a double exchange (DE) mechanism between Mn ions                

(Mn3+-O2--Mn4+). When the Mn ion is replaced by Fe (Fe3+) the ratio of the Mn4+/Mn3+ increases, 

which is confirmed by the XPS analysis. As a result, the long-range ferromagnetic order of the 

Mn3+-O2--Mn4+ is disturbed and the resulting antiferromagnetic contribution (Mn3+-O2--Mn3+) 

increases leading to a decrease in the overall magnetization of the sample26. An increase in Fe 

concentration at the Mn-site weakens the DE interaction between Mn ions, as a result, Ms decreases 

with Fe doping.  An increase in the coercivity of the sample with the doping concentration of Fe 

[Fig.6(a)] was also observed and is explained in terms of the pinning of the domain wall motion 

by Fe ions18. In addition, the blocking of the glass state generated by the random distribution of 

the Fe ion in the Mn network is also responsible for the higher coercivity observed in the samples11. 

  

The temperature-dependent magnetization (H=0.01 T) of the LSMO, LF6 and LF15 

samples are shown in Fig.7(b). The bifurcation in the ZFC-FC curve is attributed to the spin-glass 

system or superparamagnetic nature of the system31. The spin-glass like behavior of LSMO 

nanoparticles has been reported due to the presence of spin disorder present in the system9. The 
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random distribution of Fe in the LSMO system increases the presence of the spin-glass phase.  

Bifurcation of the ZFC-FC curve also indicates pinning of the domain wall motion due to the spin 

-glass phase in the system. The increase in coercivity of the sample with Fe doping also confirms 

the enhanced role of spin-glass phase on the domain wall motion18. The ferromagnetic-

paramagnetic transition (Tc) temperature of the LSMO, LF6, and LF15 samples are calculated as 

352 K, 255 and 226 K, respectively. A drastic decrease in the Tc of Fe doped samples are due to 

the strong competition between the ferromagnetic double exchange mechanism and 

antiferromagnetic interaction. Therefore, the magnetic contribution of Fe doping at the Mn site is 

explained in terms of the increased antiferromagnetic state that weakens the ferromagnetic 

exchange interaction in the LSMO system. 

3.4 Transport properties 

The temperature-dependent resistivity of the Fe-doped LSMO sample in the temperature 

range of 10K-300K is shown in Fig.8. The results show that the resistivity of the samples is 

extremely sensitive to the extent of Fe substitution at the Mn site. Fig.9 shows that the resistivity 

increases and the transition temperature (TM-I) decreases with Fe doping. The double exchange 

mechanism is used to explain the conduction of charge carriers in LSMO.  In the case of the Fe-

doped LSMO samples, Fe3+ ions replace the Mn ions and change the Mn3+/ Mn4+ ratio weakening 

the double exchange mechanism that results in the decrease of the active sites available for charge 

carrier hopping32. The number of ferromagnetic clusters used for the conduction decreases and 

antiferromagnetic clusters increase with Fe doping.  This results in the scattering of charge carriers 

and an increase in the overall resistivity of the sample33. Thus, the Fe substitution weakens the 

double exchange process that increases the resistivity of the sample and decreases the value of the 

transition temperature. In addition, it has been also reported that doping at B-site results in the 
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modification of the grain boundary region due to interdiffusion of the dopant atoms that result in 

the augmentation of the resistivity of the sample34. 

A different charge transport mechanism is used to explain the resistivity variation with 

temperature of the Fe-doped LSMO samples. In metallic regions (T<TMI), the resistivity can be 

explained with the model given as 𝜌 = 𝜌0 + 𝜌2𝑇2 + 𝜌4.5𝑇4.5, where, ρ0 is related to the grain 

boundary scattering, ρ2T
2 is the electron-electron scattering, and ρ4.5T

5 is electron-magnon 

scattering process35, 36. The parameters obtained from the resistivity fitting in the ferromagnetic 

metallic region are summarized in Table-3. For T>TMI (paramagnetic-semiconducting region), the 

resistivity of the sample decreases with increases in temperature. The resistivity in this region is 

explained with the adiabatic small polaron hopping (ASPH) model: 𝜌 = 𝜌0 exp (𝐸𝑎 𝑘𝐵𝑇⁄ ) for TMI< 

T > θD/2 range, where ρ0 is residual resistivity, Ea is the activation energy, kB is Boltzmann 

constant, and θD is the Debye temperature37. Resistivity is fitted with the ASPH model [ln(ρ/T) 

vs.1000/T], and the parameters obtained are summarized in Table-3. The activation energy (Ea) 

increases with Fe doping concentration at the B-site which indicates that electrons become 

localized with Fe doping and are unable to cross the potential barrier (Ea), which also results in an 

increase in the sample resistivity26.  

The temperature (TMI< T< θD/2) at which the resistivity diverged from linearity [in ln(ρ/T) 

vs.1000/T plot] is described with the VRH model: 𝜌 = 𝜌0exp(𝑇0 𝑇⁄ )1 4⁄ , where T0=16α3/kB N(EF),  

N(EF) is the density of states at Fermi level, α=2.22 nm-1 38. The resistivity is fitted using the VRH 

model [ln(ρ) vs. T-0.25] and parameters obtained are shown in Table-3. The value of To increases 

while N(EF) decreases with Fe doping which indicates an increase in the localization of charge 

carriers39.  
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The field dependence magnetoresistance [MR=(ρ0-ρH)/ρ0] of the Fe doped LSMO samples 

at 10 K and 300 K are shown in Fig.10 (a). The MR is divided into the low field region                              

(H< 0.5 T), and high field region (H>0.5 T) with respect to the different mechanisms involved.  In 

the low field region, the sharp drop of resistivity due to the magnetic field is attributed to the spin 

polarized tunneling or scattering of the conduction electron.  The high magnetic field region of the 

MR is explained in terms of the noncollinear structure near the grain boundary region. The MR 

behavior of the Fe doped LSMO is strongly dependent on the Fe doping concentration at Mn sites. 

The results obtained from the MR are summarized in Table-2 and variation of MR with Fe 

concentration is shown in Fig.10 (b).  MR values, at 10 K with 0.5 T magnetic field, of 27.9%, 

30.7 %, 32.1 %, 33.8 %, 23.12 %, and 19.8 % for the LSMO, LF3, LF6, LF9, LF12, and LF15 

samples were obtained respectively. Similar MR behavior has been reported earlier for the B-site 

doped LSMO system18, 20. The MR value increased with Fe concentration to a maximum value of 

x=0.09%, before decreasing for higher Fe doping concentrations. The MR behavior with Fe doping 

at Mn site can be explained using a percolation threshold mechanism40.  The formation of metallic 

clusters due to Fe doping below the threshold doping concentration enhanced the spin polarized 

tunneling of the conduction electron thereby increasing MR. The increase in Fe doping above 

x≥0.9 increases the localized charge carrier by destroying the ferromagnetic state                                 

(Mn3+-O2--Mn3+) which is responsible for the decrease in MR at higher doping concentrations.  

4. Conclusions 

The effect of Fe doping on the structural, magnetic and, transport, properties of the 

La0.7Sr0.3Mn1-xFexO3 (x=0-0.15) has been studied. Structural analysis confirmed the single-phase 

nature of the Fe-doped LSMO samples prepared, with a small change in lattice parameters due to 

the similar ionic radii of the Mn and Fe.  Chemical analysis confirmed that Fe doping results in an 
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increase of the Mn4+/Mn3+ ratio attributed to Fe3+ ions replacing Mn3+ in LSMO. Decreased 

magnetization and increased coercivity of Fe-doped LSMO is described as increased 

antiferromagnetic super exchange interaction and depletion of ferromagnetic double exchange 

interaction due to disruption of the long-range ferromagnetic order of Mn ions. The ferromagnetic-

paramagnetic transition temperature also decreases with Fe doping due to weakening of the 

ferromagnetic interaction in the system. The resistivity of the samples increases and TMI decreases 

with Fe doping concentration due to a depletion of the double exchange mechanism between Mn 

ions. The MR increased at lower Fe doping concentrations (x≤0.09), and a maximum value of MR 

was obtained as 33.8 % at 10 K with a magnetic field of 0.5 T. Above x≥0.09, a decreased MR 

due to Fe doping can be explained through the percolation threshold mechanism and was attributed 

to the localization of the charge carriers. Thus, Fe doping at Mn sites provides an efficient way to 

improve low field magnetoresistance in the LSMO system for MR based device applications.   
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Figure Captions 

 

Figure.1. Flow diagram of the synthesis process of Fe doped LSMO. 

Figure.2. XRD pattern of the Fe doped LSMO samples. 

Figure.3. (a) Rietveld refinement of the LSMO and LF15 samples, (b) crystal structure of the 

LSMO, and (c) Variation of the crystallite size and cell volume with x (% Fe).  

Figure.4. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and 

Energy dispersive spectra and quantitative analysis of (a) LSMO, (b) LF15 samples, (c) EDS maps 

of the LF15 sample for La, Sr, Mn O and Fe. 

Figure.5. X-ray photoelectron spectroscopy (XPS) data of the LSMO, LF6, and LF15 samples (a) 

Survey spectrum (b) Mn 2p state, (c) Mn4+/Mn3+ ratio, and (d) Fe 2p state. 

Figure.6. M-H data of the Fe doped LSMO at 10 K. 

Figure.7. (a) Variation of Saturation magnetization (Ms) and Coercivity (Hc) with Ni 

concentration, (b) M-T measurement of LSMO and LN15 

Figure.8. Resistivity with temperature measurement of the Fe doped LSMO samples. Inset shows 

the fitting of resistivity data by different conduction model. 

Figure.9. Variation of resistivity (at TMI) and TMI with Fe doping. 

Figure.10. (a) Magnetoresistance (MR) variation with magnetic field at 10K and 300 K, and (b) 

MR variation with Fe concentration at 10K and 300K. 
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Table Captions 

 
Table-1: Structural parameters obtained from the X-ray diffraction (XRD) data. 

Table-2: Magnetic and transport properties of Fe doped LSMO samples. 

Table-3: Fitting parameters obtained by fitting the resistivity by different conduction model. 
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Figure.1. Flow diagram of the synthesis process of Fe doped LSMO. 
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Figure.2. XRD pattern of the Fe doped LSMO samples. 
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Figure.3. (a) Rietveld refinement of the LSMO and LF15 samples, (b) crystal structure of the 

LSMO, and (c) Variation of the crystallite size and cell volume with x (% Fe). 
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Figure.4. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and 

Energy dispersive spectra and quantitative analysis of (a) LSMO, (b) LF15 samples, (c) EDS maps 

of the LF15 sample for La, Sr, Mn O and Fe. 
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Figure.5. X-ray photoelectron spectroscopy (XPS) data of the LSMO, LF6, and LF15 samples (a) 

Survey spectrum (b) Mn 2p state, (c) Mn4+/Mn3+ ratio, and (d) Fe 2p state. 
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Figure.6. M-H data of the Fe doped LSMO at 10 K. 
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Figure.7. (a) Variation of Saturation magnetization (Ms) and Coercivity (Hc) with Ni 

concentration, (b) M-T measurement of LSMO and LN15 
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Figure.8. Resistivity with temperature measurement of the Fe doped LSMO samples. Inset shows 

the fitting of resistivity data by different conduction model. 
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Figure.9. Variation of resistivity (at TMI) and TMI with Fe doping. 
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Figure.10. (a) Magnetoresistance (MR) variation with magnetic field at 10K and 300 K, and (b) 

MR variation with Fe concentration at 10K and 300K. 
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Table-1: Structural parameters obtained from the X-ray diffraction (XRD) data. 

 

 

 

Table-2: Magnetic and transport properties of Fe doped LSMO samples. 

 

 

 

 

 

 

 

Parameters 

 

Samples 

 

Saturation 

magnetization (Ms) 

(emu/g) 

Coercivity 

(Hc)  

(kOe) 

R (Ω) 

 at TMI 

TMI (K) 

 

MR (%) 

H=0.5 T 

10K 300K 

LSMO 78.5 0.192 2.5 222 27.9 2.3 

LF3 57.56 0.205 2.7 181 30.7 0.72 

LF6 52.02 0.248 2.9 178 32.1 1.55 

LF9 50.27 0.407 3.15 171 33.8 0.67 

LF12 47.12 1.370 3.36 162 23.1 0.33 

LF15 45.9 1.470 3.87 135 19.8 0.10 

Parameters 

 

Samples 

Crystallite 

size (nm) 

Structure Lattice 

parameters 

(Å) 

Cell Volume 

(Å3) 

Bond 

length (Å)  

(Mn-O) 

 

Bond Angle 

(º)  

(Mn-O-Mn)  

LSMO 18.2 Rhombohedral 

(𝑅3̅𝑐) 
a=b=5.4724   

c=13.4663 

349.247 1.947 168.78 

LF3 17.03 Rhombohedral 

(𝑅3̅𝑐) 
a=b=5.4767 

c=13.4832 

350.231 1.952 167.19 

LF6 16.27 Rhombohedral 

(𝑅3̅𝑐) 
a=b=5.4775 

c=13.4824 

350.314 1.950 168.38 

LF9 16.56 Rhombohedral 

(𝑅3̅𝑐) 
a=b=5.4785 

c=13.4808 

350.401 1.950 168.51 

LF12 16.43 Rhombohedral 

(𝑅3̅𝑐) 
a=b=5.4820 

c=13.4895 

350.826 1.951 168.28 

LF15 15.58 Rhombohedral 

(𝑅3̅𝑐) 
a=b=5.4789 

c=13.4893 

350.676 1.951 167.87 
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Table-3: Fitting parameters obtained by fitting the resistivity by different conduction model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 

 

 

Sample 

ρ=ρ0+ρ2T
2+ρ4.5T

4.5 ρ=ρ0 exp (T0/T)1/4 ρ=ρ0T exp (Ea/kBT) 

ρ0 

(Ω.cm) 

ρ2 

(Ω.cm K-2) 

× 10-4 

ρ4.5 

(Ω.cm K-4.5) 

× 10-10 

T0 

(K) 

N (EF) 

(eV-1cm-3) 

θD 

(K) 

Ea 

(meV) 

LSMO 1.30 0.432 0.28 5.7 × 104 3.56× 1022 342 33.7 

LF3 2.5 0.112 0.130 3.32 ×105 6.12× 1021 121 43.96 

LF6 2.69 0.130 0.165 4.25×105 4.77×1021 151.5 45.74 

LF9 2.91 0.147 0.19 1.75×106 1.16×1021 147.8 48.07 

LF12 3.09 0.155 0.19 9.56×106 2.12×1020 166 52.95 

LF15 3.53 0.198 0.33 1.73×107 1.17×1020 110..2 55.23 
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