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ABSTRACT
Eye-gaze is a technology for implicit, fast, and hands-free input
for a variety of use cases, with the majority of techniques focusing
on single-user contexts. In this work, we present an exploration
into gaze techniques of users interacting together on the same
surface. We explore interaction concepts that exploit two states
in an interactive system: 1) users visually attending to the same
object in the UI, or 2) users focusing on separate targets. Interfaces
can exploit these states with increasing availability of eye-tracking.
For example, to dynamically personalise content on the UI to each
user, and to provide a merged or compromised view on an object
when both users’ gaze are falling upon it. These concepts are ex-
plored with a prototype horizontal interface that tracks gaze of two
users facing each other. We build three applications that illustrate
different mappings of gaze to multi-user support: an indoor map
with gaze-highlighted information, an interactive tree-of-life visu-
alisation that dynamically expands on users’ gaze, and a worldmap
application with gaze-aware fisheye zooming. We conclude with
insights from a public deployment of this system, pointing toward
the engaging and seamless ways how eye based input integrates
into collaborative interaction.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Pointing; Collaborative interaction.

KEYWORDS
gaze input, eye-tracking, collaboration, multi-user interaction, shared
user interface
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1 INTRODUCTION
Eye gaze input is long established in HCI [Bolt 1981]. The basic
technique enables to simply look at a target of interest to enter a
command, and to adapt the content to one’s visual interest [Bolt
1981]. The technology assists the user with hands-free, covert and
hygienic input with low effort [Pfeuffer and Gellersen 2016; Zhai
et al. 1999], that can be useful for instance in public settings [Zhang
et al. 2014]. However, while gaze has been widely studied as an
explicit interaction modality, this has mostly focused on single-user
interfaces.

For manual interfaces, there exists a body of literature on collab-
orative interaction techniques [Hinckley 2003; Hinckley et al. 1997;
Morris et al. 2006, 2004]. Typically, an interactive object in the UI
is designed to map to a single UI command, independent of how
many users are providing input toward it. In contrast, these works
show that interactive systems can be enriched when considering
a distinction between input by a single or multiple users. For ex-
ample, objects of the UI can adapt to the users’ combined input in
order to enable more expressive command invocation or to provide
personalised views on the content.

Past work on multi-user eye-tracking focused on the implicit
gaze awareness technique between users [D’Angelo and Gergle
2018; Newn et al. 2017; Siirtola et al. 2019; Steptoe et al. 2009; Zhang
et al. 2017]. This offers, for instance, inferences of the intention
and current activity of the collaborators [Newn et al. 2017; Zhang
et al. 2017]. However, this leaves out the opportunities for more
interactive use, where users explicitly direct their gaze, and the UI
adapts according to single- or multi-user input. For gaze, only little
work exists with regards to collaborative interaction techniques.
Early work suggested theoretical concepts [Holman 2007]. A prior
work of us focused on a game application [Pfeuffer et al. 2016],
which we extend to amore general consideration of gaze interaction
for multi-user UI.

In this paper, we investigate interaction techniques that exploit
multiple users’ gaze to enhance the interaction on a shared display.
Figure 1 illustrates three cases where the system can adapt to a
particular gaze interaction to the advantage of the users. First,
targets can be personalised to users when each user views separate
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Figure 1: Collaboration surfaces enhanced with eye-tracking offer new interaction states based on gaze, exploitable for UI
adaptation beneficial to the users. For example, to personalise content and automatically orient text to the viewer (a). It also
affords adaptive object representations when gazes converge, to enable a collaborative interaction technique (b) or compro-
mised views (c).

targets on the same UI. For example, the text can be oriented to
each user, and the appropriate language could be displayed. Second,
when users view the same target, the system can enable a merged
view. Thus, the detection of shared attention toward a target can
be used for, e.g., an advanced system state that is in line with both
users’ goals. Lastly, viewing the same target can as well lead to a
compromised view – the visuals could be split between the users.

We explore these types of interaction states on a shared hori-
zontal touchscreen. Each users’ gaze can be sensed through eye-
trackers placed in front of the users that are located at distinct
positions around the display. We explore the interaction states
through three applications that demonstrate novel use cases for
multi-user gaze interaction. Each adapts the target toward single
or multiple viewers. For example, a map application adapts the
annotations to each users’ gaze, and an educational application
unfolds a visualisation gradually based on both users’ attention.
We evaluate the applications in a public setting to get insights into
feasibility, learnability, and collaboration aspects.

Our work makes the following contributions. First, we present
three concepts on how multi-user gaze input can provide distinct
interaction states when interacting on the same surface. Second, we
present three example applications that demonstrate the concepts
in example scenarios on an interactive interface for two users. Third,
we present an informal feedback from a multi-user eye-tracking
study in a public setting, gathering insights into learnability and us-
ability of multi-user gaze interaction. Collectively, our work opens
new perspectives to consider where eye gaze interaction in a much
more integrated way into the UI, which can in principle be ap-
plied to many situations where multiple users interact on the same
computer system.

2 RELATEDWORK
Bolt’s seminal work presented an early example gaze interaction
where a set of video clips was displayed but only the one visually
attended was active [Bolt 1981]. This aligns with non-command-
based interfaces, where “the computer passively observes the user
and provides appropriate responses” [Jacob 1993]. Zhai’s MAGIC
technique uses gaze to implicitly eliminate cursor movement [Zhai
et al. 1999]. Gaze-contingent displays adapt information density to

the user’s visual focus [Duchowski 2002], and Attentive User Inter-
faces adapt display content to fit the user’s attentive capabilities
[Vertegaal 2003]. We investigate how gaze can be implicitly used
in multi user scenarios. Gaze as explicit pointer is an alternative
that has been long researched in HCI [Duchowski 2002; Jacob 1990;
Zhai et al. 1999]. Jacob’s early work on gaze interaction revealed
the “Midas Touch” problem, where gaze-only methods are prone to
accidental activations [Jacob 1990], which needs to be overcome by
using explicit triggers such as dwell-time [Majaranta et al. 2006],
mouse click [Jacob 1990; Zhai et al. 1999], or touch [Pfeuffer et al.
2014; Stellmach and Dachselt 2012].

Multimodal gaze and touch interaction received increased atten-
tion in recent times. Pfeuffer et al. for instance have explored how
gaze extends multi-touch gestures [Pfeuffer et al. 2014], digital pens
[Pfeuffer et al. 2015], and mobile tablets [Pfeuffer and Gellersen
2016]. Newn et al. devised techniques to reach out-of-reach targets
on large tabletops [Newn et al. 2016]. Serim and Jacucci utilised
gaze on touchscreens to support users when providing input at
varying degrees of visual attention [Serim and Jacucci 2016]. Rivu
et al. assessed how the touch button concept can be enhanced by
gaze input [Rivu et al. 2019], and how text selection can be improved
through gaze pointing [Rivu et al. 2020].

Eye-tracking research for multiple users focused on gaze aware-
ness for remote collaborations. Gaze awareness depicts the user’s
knowledge aboutwhere other users look at and can increaseworkspace
awareness and group coordination [Gutwin and Greenberg 2001;
Ishii and Kobayashi 1992]. Particular advantages were found for
video conferencing, problem solving in software programming, vi-
sual search, games, and travel planning [Brennan et al. 2008; Newn
et al. 2018; Stein and Brennan 2004; Vertegaal 1999]. There is only
little work focusing on multi-user interaction. Serim et al. utilised
gaze (by head direction) to enable multiple users to manage infor-
mation access on a vertical surface [Serim et al. 2018]. Pfeuffer et
al.’s work explores multi-user gaze specifically in a shooter game
[Pfeuffer et al. 2016]. Our work extends their work by a broader
consideration of interaction states and exploration across use cases.

Research on interactive surfaces investigated techniques that
incorporate multi-user input at the same objects, involving three
cases. First, a conflict can arise when each user interacts on the
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same target. Zanella and Greenberg proposed transparent objects
to enable synchronous interaction without occlusion [Zanella and
Greenberg 2001]. Morris et al. developed multi-user coordination
policies that approach the different types of conflict that can oc-
cur; e.g. a voting between all users can resolute a conflict [Morris
et al. 2004]. Second, input on the same target can enable different
semantics than its single-user counterpart. This can be helpful in
a file-sharing scenario for collaborative techniques [Ringel et al.
2004]; e.g. when the owner and the receiver of a file both touch
on the same target’s center, the ownership is automatically trans-
ferred to the receiver. Collaborative Gestures [Morris et al. 2004]
provide different gesture semantic when performed together, e.g.
when all users drag the corner of the same image, it enlarges to
the screen’s background [Morris et al. 2004]. Third, interaction on
separate targets can offer personalised views, such as private dis-
play devices for private windows [Wigdor et al. 2009], or touch
actions to create personal windows on-surface [Schmidt et al. 2010;
Valdes et al. 2012]. Implicit methods overlay the user’s view by a
special dual-view screen where different user perspectives map
to different views [Karnik et al. 2012; Kim et al. 2012], or shutter
glasses that augment the whole vision of the user [Agrawala et al.
1997; Lissermann et al. 2014]. In our work, we explore these three
cases from the perspective of the eye gaze modality.

3 PROTOTYPE SYSTEM
We implemented a prototype system to explore example techniques
and applications, and as a basis for a user study. Our prototype
consists of a table-mounted 27" Acer T272 touchscreen (60x32.5cm,
1920x1080px), and two Tobii EyeX eye trackers that come with
an accuracy of about 1-2◦ at 30Hz (Figure 2a). Each eye tracker is
connected to a separate computer, of which one serves as the server
and displays the content on the interface. The software is written
in Java with MT4J. The applications are designed to fit potential
technical limitations such as tracking range and accuracy [Newn
et al. 2016], in order to be able to provide first insights into UI issues
and user experience.

We adapt the Pursuit Calibration [Pfeuffer et al. 2013] method to
multiple users. This enables us to calibrate users ad-hoc, important
for our walk-up multi-user scenario in our evaluation. The calibra-
tion takes 10 seconds and the procedure is performed separately
for each user. At any time during use, the calibration for either user
can be triggered by a button press of the experimenter. This will
instance a moving target to pursue with the eyes to collect eye data
to establish a calibration mapping.

To avoid jittery cursor movement, we used a simplistic fixa-
tion detection where gaze data is sampled for 150ms for fast eye
movements (>75px or 2.3cm between two frames at 30 Hz), while
raw data is used when users rapidly move across the screen. In
addition, applications that are based on discrete objects use target
assistance/snapping (as in [Turner et al. 2014]). Thus, when users
look closely enough to a target (≈100px or 3.1cm), the system auto-
matically locks on to it; the closer target is selected when multiple
objects intersect.

4 APPLICATIONS
We now present example applications. Each demonstrates multiple
types of the multi-user states presented in Figure 1.

4.1 Gaze-aware Map
This application demonstrates how implicit gaze interaction can aid
users with individual goals. A typical map has a fixed orientation,
requiring users to be located side by side, or to perform frequent
reorientation. In this gaze-aware map application, the content is
implicitly adapted towards each user when they view the same or
view separate targets. We envision such an application in foyers
of buildings such as a hospital, university, or a museum to provide
users with information about building structure and organisation.
The whole table surface displays a two-dimensional map of the
building (Figure 2a). The map consists of many rooms, such as a
laboratory, radiology, or cafeteria. These rooms can have additional
information, such as the name, description, people involved, his-
torical events, etc. When no users gaze upon the screen, no textual
information is shown on the interface, only the overall map is dis-
played with dots indicating 19 gaze-aware targets. Each target is in
the center of a room, and has the following functionality.

4.1.1 Personalisation (Separate target). When a user looks at a
room, the name of its function is displayed. The system also provides
more information over time. Each two seconds users gaze at the
location, new text is given to the user. The previous displayed text
is gradually faded out while new text is faded in. The texts are
fictional information about the room, including the room’s name,
the built date, or people who work in the location.

We use two methods to personalise the content toward the user.
First, information about the room is automatically oriented toward
the viewer. The system fades in name and other information about
the room on-gaze; all of these information are adjusted to the user’s
view direction. This is beneficial as it makes explicit functionality
implicit, by automating an explicit rotation gesture (Figure 2b). Sec-
ond, the text is displayed in the language the user prefers. This can
be beneficial in a museum which is frequented by tourists speaking
different languages; other application areas might be airport maps.
Users can choose between four languages with a direct touchable
menu close to their seating position.

4.1.2 Shared View: Same target × Compromised Effect. In case mul-
tiple users look at the same location, users are provided with a
merged view (Figure 2b (right). Information about the location is
copied, shown in both directions, and adapted to both users’ lan-
guage setting. Copied information is offset to not interfere between
the users, but still close to the location so the association of the text
to the location is obvious.

4.1.3 Implementation Considerations and Issues. Inspired by prior
work that use automatic content orientation forming like a ‘circle’
around the user [Vernier et al. 2002], we also oriented content
exactly to the user’s seat position. We quickly noticed that this
is unnatural: only when users move their head, exact orientation
toward user was correct; but for reading activity, users mainly move
their eyes, so that the actual orientation needs to keep horizontal
toward the user.
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Figure 2: (a) The setup with a touchscreen and two eye trackers facing the users. (b) The gaze-aware map where content is
adapted to the user, for separate attention (each directed toward user) and (c) shared attention (information is split) .

We also considered to constantly orient all targets, even when
users do not look at it. A target would then always be oriented
toward the user who is looking closer to it. This initially seemed
more convenient: when users view several close targets in sequence,
the targets would already be correctly aligned toward the user. In
practice however, users frequently glance over the whole screen.
With two users doing this, all targets constantly changed their ori-
entation, which was confusing. For this reason, we kept adaptation
to single targets, and only when users looked at them.

4.2 Tree-of-Life Exploration
This application shows how implicit gaze interaction can support
collaboration of the users. Previous work showed successful de-
ployments of tree-of-life explorations in public museums [Horn
et al. 2012; Hornecker 2008]. We implemented a variation with eye
trackers where collaborative viewing is used to gradually unfold
the tree of life. The goal of the application is to implicitly guide
the user through the various stages of the evolution of species and
their subspecies. However, the application’s concept can be applied
to other exploratory and didactic material that is based on progres-
sive information as well, such as an animation that is based on a
sequence of scenes, a presentation showing slides one by one, or
the operation of a computer that consists of multiple components.

4.2.1 Gradually-revealing Exploration: Same target × Collaborative
Effect. The exploration begins with the origin of life, and guides the
user sequentially from the first species, their subspecies, and so on.
The users’ gaze is implicitly used to proceed to the next elements.
For example, both users look at the ‘origin of life’ (Figure 3a), which
then unfolds to four subspecies (b). Users then look at the ‘animals’
subspecies (b) which again unfolds four subspecies of animals (c).
The next element, ‘sponges’ is final and thus unfolds several exam-
ple images when looked (d). The whole exploration ends when all
22 species were unfolded (Figure 3). Thus when both users looked at
the element, the system proceeds to the next item. The progression
is on hold until the users viewed the object, making sure users do
not miss important steps of the sequence.

4.2.2 Image and Text Adaptation (Separate target). The name of the
species is displayed on each element. This name is automatically ori-
ented towards the user. For the conflict of both users looking at the
same target, we implemented a first-come-first-serve mechanism.
The first users who looks keeps the orientation until looked away.
The species without further subspecies present several example life

forms in form of images. These images have the same orientation
functionality as the text. In addition, the size of an image increases
with increasing time spent looking at the image (Figure 3).

4.2.3 Implementation Considerations and Issues. Activation of next
elements occurs if any gaze data of both users is sensed on the
same object. Unfolding is triggered which in itself is a 1 second
process, during which the next elements are not gaze-activatable
yet. The image up-scaling is based on gaze dwell-time (1 second)
on the target. Image size increases to 150-300% when users look,
and decreases when not looked. First user tests showed that this
often leads to confusing behaviour as users often shortly glanced
away, because they got distracted by or wanted to get the attention
of the second user. We therefore implemented a hold mechanism,
that keeps the current scale for two seconds after a user looked
away, and only then begins scaling down.

4.3 Shared Zooming Map
This application shows how explicit gaze interaction supports users
with individual goals. Enabling multi-user navigation on a shared
map is challenging, as zooming operations typically affect the whole
map. Researchers proposed the use of local zooming windows for
this issue, where each user zooms where they perform a direct
pinching gesture [Forlines et al. 2006]. Direct gestures, however,
can be difficult to perform when other users occlude the area of
interest with their own zooming operation, or when multiple user’s
hands and arms spatially interfere. As one potential approach, we
leverage gaze-touch to perform the zooming operation, which ren-
ders the gesture indirect. The application also provides an additional
functionality. Users can set a different zooming filter. Users can use
the close-by menu to either select a fisheye or a magnification lens.

4.3.1 Multi-user Zoom: Separate target. The gaze-touch techniques
is used to enable pinch-to-zoom into the user’s gaze position. Each
user can look at a target, and touch down two fingers to create a
zooming window (Figure 4a). By pinching these fingers, the window
changes size and zooming factors (4b). Users can either begin with
a short finger distance, to gradually increase the zoom into the
looked region. Or, users can directly begin with a larger distance
between both fingers, in order to instantly view a magnified area.
When users touched down, they can also move their finger position
on the surface to indirectly drag the zooming window.

4.3.2 Zoom Conflict: Same target × Compromised Effect. When
both users perform the gaze-touch zooming into the same position,
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Figure 3: Tree-of-Life: The tree begins with the ‘origin of life’, and when both users looked at it (a), the successor species are
faded in (b). Each further species is gaze-aware, and a joint gaze (c) unfolds its subspecies (d). The whole tree comprises 22 life
species with additional image examples, that can be individually viewed in corrected orientation on-gaze (e).

Figure 4: Zooming application: multiple users can perform
zooming operations on a single shared map without inter-
ference or occlusion issues. To select the zooming position,
users look at the remote target and touch down two fingers
at a local position (a). Pinching increases the zooming focus
(b). Users can select the preferred zooming mode, i.e. a mag-
nifying glass (green) or a fisheye zoom (red).

a conflict occurs. This conflict occurs when users want different
zooming scales, or when they selected a distinct zooming type
(fisheye versus magnification lens). We use a first-come-first-serve
mechanism here to avoid conflicting behaviour. The first user who
touched down obtains precedence.

5 INFORMAL USER FEEDBACK IN PUBLIC
DEPLOYMENT

We evaluate the Gaze-aware Map and Tree-of-Life Exploration, fo-
cusing on the user experience, particularly assessing system issues,
learning and behaviour observations.

We use an uncontrolled, public setting to evaluate our concepts
with spontaneous users without preparation, representing a real-
istic multi-user scenario. This can involve rapid group changing

dynamics and unexpected behaviours, often experienced in real-
world rather than in laboratory settings. We set the system in a
public cafe during a student event at Lancaster University. The
system was set in the center of the cafe on a high table, enabling
spontaneous interactions with the system in standing position. The
whole study session lasted 7 hours (11am to 6pm). Notes taken from
interviews and impromptu feedback from the users were included
in the post-hoc analysis.

Thus, users either spontaneously approached the system, or got
interested from comrades telling them about the system. The exper-
imenter briefly explained the system at the beginning, and assisted
users in interacting with the system when needed. The explana-
tion involved where users had to stand (in front of eye tracker), to
look at the surface, and that it is gaze-aware. During interactions,
users were further introduced to features of the application. We
switched between the applications for the users so that many users
can experience the applications.

60 users (21 female, 24 children), in 24 groups of sizes of 3 to
4 users participated. Users interacted on average 5.85 minutes
(SD=3.85 minutes, a session lasts as long as users interact with
system). A group typically consisted of adults (students, or random
visitors) or a family. 37 users interacted with the campus map, 47
with the tree-of-life exploration.

5.1 System Challenges and Feedback
Regarding eye-tracking, the calibration went well as the majority
of users successfully used the applications pre-calibrated. This was
still the case for varying user age (children, adult, seniors) or eye-
correction (normal sight, glasses, contact-lenses). Only a few users
needed recalibration as the gaze cursor was reported as very offset.
We did not conduct an accuracy test to measure the quality, but
observed that for most users the quality was sufficient to use the
apps. Our system was initially not designed for young children.
As their height disallowed to be in tracking range of the table-
mounted tracker, a chair was added on which they could stand
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and successfully interact with the system. Regarding UI design,
for the Map application, a few users stated that the gaze-based
text appearance is too quick, and therefore becomes confusing
when gazing around. With the Exploration application, some users
stated inaccurate selection of images, caused by tracking errors.
The gaze cursor that was displayed on the screen was reportedly
often not precisely at the user’s gaze, but did not really harm the
user experience which we account mostly to the smoothing.

5.2 Learning and Behaviour Observations
Users immediately grasped how the system implicitly adapts con-
tent toward their gaze on the map and exploration applications,
as only visual inspection was required. While the Map application
was the simplest as it only highlighted text per gaze-location, the
Exploration was similarly learned. The feature that users look at
the same item to unfold its successors seemed difficult before trial;
however after practical trial, users immediately understood and
focused on exploring elements of the tree of life. The other fea-
ture, that images scale up when looking longer, did not require
explanation by the experimenter as it became apparent in trial.

With regards to the map application, part of the users did not im-
mediately understand the purpose of the application, only after the
experimenter explained the concept of having personalised content
towards each user (here: orientation). The Exploration application
was found useful from adults for didactic and exploratory material,
as an additional method that can aid learning activities. Children
were positive about this application for two reasons. First, that the
system reacted to them looking at images of animals and insects;
even after unfolding the whole tree, they were still interested in
seeing different example species. When a particularly interesting
animal was found, they drew the attention of the partner to look as
well. Thus, the UI rendered it easy for users to quickly grasp where
the other user was focusing on and to direct attention.

6 CONCLUSION
In this paper, we presented an exploration into collaborative gaze
and touch interactions. We designed three applications and inter-
action techniques that specifically exploit the user’s gaze that is
sensed on the same user interface. The deployment of our multi-
user system and the positive feedback gained from the broad range
of users that interacted with our system showed the high potential
of gaze for multi-user scenarios. Gaze input did not hamper commu-
nication between users, instead users interacted with our system
and at the same time synchronised their actions through verbal
and gestural cues. Challenges such as calibration remain, but with
current attachable eye trackers collaborative gaze interaction is
becoming increasingly feasible. We have shown how it can become
an integrative part in the user interface for several application cases,
and that it can enrich the user’s collaborative experience with a
public interactive system.
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