

Citation for published version:
Wøhlk, S & Laporte, G 2018, 'A fast heuristic for large-scale capacitated arc routing problems', Journal of the
Operational Research Society, vol. 69, no. 12, pp. 1877-1887. https://doi.org/10.1080/01605682.2017.1415648

DOI:
10.1080/01605682.2017.1415648

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of the Operational
Research Society on [date of publication], available online:
https://www.tandfonline.com/doi/full/10.1080/01605682.2017.1415648

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jul. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/444077905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1080/01605682.2017.1415648
https://doi.org/10.1080/01605682.2017.1415648
https://researchportal.bath.ac.uk/en/publications/a-fast-heuristic-for-largescale-capacitated-arc-routing-problems(125631a1-8b39-4b3e-a034-f82debb734e0).html

A Fast Heuristic for Large-Scale Capacitated Arc

Routing Problems

Sanne Wøhlk1 and Gilbert Laporte2

1 CORAL - Cluster for Operations Research and Logistics, Department of

Economics and Business Economics, Aarhus University, Fuglesangs Allé 4,

DK-8210 Aarhus V, Denmark. sanw@econ.au.dk

2GERAD and Canada Research Chair in Distribution Management, HEC

Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7.

gilbert.laporte@cirrelt.ca

Abstract

The purpose of this paper is to develop a fast heuristic called Fast-

CARP for the solution of large-scale capacitated arc routing problems,

with or without duration constraints. This study is motivated by a

waste collection problem in Denmark. After a preprocessing phase,

FastCARP creates a giant tour, partitions the graph into districts,

and construct routes within each district. It then iteratively merges

and splits adjacent districts and reoptimises the routes. The heuristic

was tested on 264 benchmark instances containing up to 11,640 nodes,

12,675 edges, 8,581 required edges, and 323 vehicles. FastCARP was

compared with an alternative heuristic called Base. On small graphs,

it was better but slower than Base. On larger graphs, it was much

1

faster and only slightly worse than Base in terms of solution quality.

Keywords Arc routing, Districts, Heuristics, Waste collection, Denmark.

1 Introduction

The purpose of this paper is to develop a fast constructive heuristic called

FastCARP for a large-scale Capacitated Arc Routing Problem (CARP)

arising in waste collection operations in Denmark, but also in several other

settings.

The CARP, introduced by (Golden and Wong, 1981), is defined as follows.

Let G = (N,E) be an undirected connected graph, where N is the set of

nodes and E is the set of edges. A subset ER, of the edges require service.

Each such edge e ∈ ER has a demand qe. The traversal cost of edge e is

denoted by ce and is independent of whether the edge is being serviced or

merely deadheaded. A special depot node holds a fleet of identical vehicles

of capacity W . The CARP amounts to identifying a closed route Rk for each

vehicle k such that 1) every route starts and ends in a common depot, 2)

every required edge is serviced by one of the vehicles, 3) the vehicle capacities

are not exceeded by the sum of the demands qe on their route, and 4) the

total routing cost is minimised. A mathematical description of the problem

can be found in (Golden and Wong, 1981). See (Muyldermans and Pang,

2015) and (Kiilerich and Wøhlk, 2017) for a discussion of various CARP

variations, as well as (Ahr and Reinelt, 2015) and (Prins, 2015) for a recent

review of lower bounds and algorithms for the CARP.

2

In our application, we also impose a route duration constraint. For this

purpose, let sij (tij) be the service (deadheading) time for edge (i, j) and

let T be the duration limit of a route. Then every route Rk starts at time

zero and must be completed by time T .

Denmark. Zoom on Copenhagen.

Figure 1: The six counties providing the data.

1.1 The Danish Application

In Denmark, waste collection falls under the responsibility of 98 counties.

Our study concentrates on six of these counties (Figure 1) of which are two

urban (Frederiksberg (F) and Odense (O)), two are semi-urban (Skanderborg

3

and Odder (K)), and two are rural (North (N) and South (S) Djurs). Figure

2 depicts the graphs of these counties.

Frederiksberg (F) Odense (O) Skanderborg and Odder (K)

North Djurs (N) South Djurs (S)

Figure 2: The five data areas. Blue edges are required and green edges are
non-required. The depot is marked by a red square.

The study of waste collection as an operational research topic dates back to

the 1970s (Clark and Gillean, 1977). Waste collection systems are designed

and analysed at the strategic level (Adamides et al., 2009). They involve

the location of treatment facilities, of transfer points, and of landfills (Khan,

1987; Kim and Lee, 2015). At the tactical level, decisions must be made on

the type and amount of waste that should be sorted, and collection dis-

tricts must also be designed (Muyldermans et al., 2003; Mourão et al., 2009;

Butsch et al., 2014). Finally, at the operational level, routes are planned

(Mourão and Amado, 2005; Ghiani et al., 2015) and one must also decide

4

whether different types of waste should be co-collected (Muyldermans and

Pang, 2010). Finally, collection schedules must be constructed. For further

information on waste collection systems, we refer the reader to (Letcher and

Vallero, 2011), and (Ghiani et al., 2015).

Our study focuses on the operational level. We consider route planning

for kerbside collection in the six counties mentioned above, both with and

without route duration constraints. To give the reader an idea of the size

of the operations, in Odense approximately 57 tons of waste are collected

annually by kerbside mode from a total of 95,199 households spread over

305 km2 (2015 statistics). Because each county is responsible for planning

its own waste collection system, there are some where citizens are free to

choose from a set of collection intervals, and others where the collection

days are imposed by the authority. In some counties, only general waste

is kerbside collected, whereas up to seven different waste types are kerbside

collected in others: general waste, organic waste, plastic, metal, glass, paper,

and cardboard. Furthermore, some counties handle the waste collection

operations themselves, whereas others outsource the operations to a logistics

provider. This is further discussed in (Kiilerich and Wøhlk, 2017).

In the course of this work, we collected information from the planners in the

six Danish counties and we found that their fleet mix and their constraints

vary slightly across the counties. In order to make our contribution as generic

as possible, we have made some simplifications to the problems faced by the

six counties and we work with representative figures. Namely, we work with

a single vehicle type, only one type of waste, and a common maximal route

5

duration of 7.5 hours.

The instances under consideration are highly variable in size, but the ma-

jority are of large scale, attaining up to 11,640 nodes, 12,675 edges, 8,581

required edges, and 323 vehicles.

1.2 Available Algorithms for the CARP

There are three types of algorithms for solving problems like the CARP:

exact algorithms, metaheuristics, and classical (simple) heuristics.

The exact algorithms can solve the problem to optimality (Belenguer et al.,

2015). However, because exact algorithms are only able to solve instances

of limited sizes, heuristics are typically used in practice.

Due to their ability to obtain high quality solutions and their high degree

of flexibility regarding incorporation of side constraints, metaheuristics are

usually preferred. The first metaheuristic for the CARP was a simulated

annealing heuristic used for the solution of a winter gritting application

(Eglese, 1994). Since then, several metaheuristics have been suggested for

the CARP, including tabu search (Hertz et al., 2000; Brandão and Eglese,

2008), variable neighbourhood search (Polacek et al., 2008), guided local

search (Muyldermans, 2003; Usberti et al., 2013), and many more. The

most recent metaheuristic contribution for the CARP is described in (Vidal,

2017), in which neighbourhood evaluations are performed very efficiently.

See (Prins, 2015) for an overview. Typically, metaheuristics require a very

large number of iterations to obtain high quality solutions. As a result,

6

they are time consuming for large instances and impractical for very large

instances. They are usually tested on benchmark instances, the largest

being those of (Li and Eglese, 1996) with up to 140 nodes, 190 edges, and

190 required edges and of (Brandão and Eglese, 2008) with up to 255 nodes,

375 edges, and 375 required edges.

When solutions are needed faster than what the metaheuristics can deliver,

simpler constructive heuristics are preferred. Several constructive heuristics

have been suggested for the CARP, the classical ones being the Augment-

Merge algorithm of (Golden and Wong, 1981) and the Path-Scanning algo-

rithm of (Golden et al., 1983) and more recently, the Double Outer-Scan

heuristic of (Wøhlk, 2005). Recently, (Zbib, 2017) presented results for the

large scale instances presented in (Kiilerich and Wøhlk, 2017) using a large

number of path scanning variations. See (Prins, 2015) for an overview of

constructive heuristics for the CARP.

Given the fact that we are interested in the solution of large-scale instances,

the time it would take to run a metaheuristic to completion would be pro-

hibitive. Since our aim is to develop a fast heuristic for large instances, we

cannot reasonably compare it with any of the available metaheuristics. We

have therefore chosen to compare our heuristic, FastCARP, with the most

natural constructive heuristic in which a giant route is first created and sub-

sequently partitioned into several vehicle routes. We refer to this benchmark

heuristic as Base. We also compare our results to the path scanning results

(PS) obtained by (Zbib, 2017).

7

1.3 Contribution and Organization of the Paper

The contribution of this paper is to present a fast heuristic for solving large

CARPs. The heuristic is sufficiently flexible to easily incorporate additional

constraints, such as route duration limits. This paper is the first to provide

solutions for the large CARP benchmark instances provided in (Kiilerich

and Wøhlk, 2017).

The remainder of this paper is organised as follows. In Section 2, we describe

our heuristic. In Section 3, we present our computational results, and in

Section 4, we provide our conclusions.

2 Description of FastCARP

The overall idea of FastCARP is quite simple. After some preprocessing,

an giant tour R is created using the algorithm of (Frederickson, 1979), and

is partitioned into a number of districts, where the term district is used to

describe a partial giant tour, often requiring the use of several vehicles and

rarely possessing traditional district attributes such as compactness and con-

vexity. The districts are stored in an ordered list D = (D0, D1, . . . , D|D|−1).

We then iterate through the list in a cyclic manner and consider two ad-

jacent districts at a time. The two districts are merged into one, which

is then optimised and split into two districts again. During this process,

which is repeated until an overall time limit is reached, we are careful about

maintaining the ordering of the districts. Throughout the algorithm, we

keep track of the best known feasible solution. The heuristic is outlined

8

in Algorithm 1, whereas the district optimisation is detailed in Algorithm

2. With respect to Base, FastCARP takes advantage of the natural geo-

graphical decomposition of an instance into districts. It considers fewer and

more meaningful cutting moves than Base. Consequently, as our results

will show, it tends to be faster and usually better than Base.

Algorithm 1 FastCARP

G← Preprocessing
R← CreateGiantTour
D = (D0, D1, . . . , D|D|−1)← CreateDistricts(R)
Set U = ∅
k1 = 0, k2 = 1
while Runtime < RunTimeLimit do

D ← MergeDistricts(Dk1 , Dk2)
D,U ← OptimiseDistrict(D,U)
Dk1 , Dk2 ← SeparateDistrict(D)
k1 ← k1 + 1(mod|D|), k2 ← k2 + 1(mod|D|)

end while

The OptimiseDistrict procedure uses and modifies some of the procedures

developed by (Hertz et al., 1999) for the Rural Postman Problem (RPP)

and by (Hertz et al., 2000) for the CARP (the latter algorithm is called

Carpet), but it contains some important differences as described below.

OptimiseDistrict takes as input a district containing a list of routes. In

the main loop, the procedure Paste concatenates all routes into a giant tour

R. In Switch (Hertz et al., 1999), a node v occurring multiple times in R

is identified and the subsequences of the route between any two succeeding

occurrences of v are reversed, after which v is added to the set U of used

nodes. The Shorten procedure (Hertz et al., 1999) is then applied to the

resulting giant tour which is again partitioned into feasible routes by the

9

Split procedure. Finally, the individual routes are optimised by Shorten

if possible.

2.1 Preprocessing and Creation of a Giant Tour

We first consider the part of FastCARP (Algorithm 1) that comes before

the main loop. In the preprocessing, we merge sequences of edges that end in

a dead-end edge and which have no side edges. We also tried merging other

sequences of edges without a side edge, but this resulted in worse solutions

due to the limitations of the Split procedure.

In order to create the initial giant tour, we apply the algorithm of (Freder-

ickson, 1979) for the creation of an RPP solution, with a slight modification.

The original procedure is as follows. First, a minimum cost spanning tree is

determined in a graph where each node represents a connected component

with respect to required edges in G and costs are the minimum cost between

edges in the components. After adding the edges of this minimum spanning

tree to G, the set S of odd-degree nodes with respect to required edges and

the edges of the tree is identified. (Frederickson, 1979) computes a minimum

cost perfect matching among the nodes in S. However, according to (Wøhlk

and Laporte, 2017) it is not practical to seek an optimal solution to the

matching problem for instances as large as those considered in this paper.

We therefore use the heuristic Sum of that paper to solve the matching prob-

lem. The heuristic of (Wøhlk and Laporte, 2017) yields solutions that are

on average 13.6 percent above the optimum. After adding the edges of the

matching to G, the graph induced by the required edges, the spanning tree

10

edges, and the matching edges is Eulerian and the algorithm by (Hierholzer,

1873) is applied to find a giant tour in G.

2.2 Creation of Districts

The next step in the algorithm is the procedure CreateDistricts which

partitions the giant tour into an ordered sequence of districts

D = (D0, D1, . . . , D|D|−1). This is essentially done by the CutMax pro-

cedure (described in Section 2.3) where the time duration constraints are

ignored and the vehicle capacity is replaced by βW , where β > 1 is deter-

mined during tuning. If the last district is sufficiently small (corresponding

to a demand of at most 1.1W), it is immediately concatenated with the sec-

ond to last. We have tested the following three ways of determining β. Let

K = d
∑

e∈E qe/W e be the estimated number of routes in the solution (and

indeed a lower bound on the number of routes). 1) Then the first approach

is to aim for a fixed (small) number of routes in each district (e.g. β = 3),

which stabilises the time for OptimiseDistrict and allows for more iter-

ations than the other two approaches. 2) The second is to set β = d
√
Ke

and thereby aim for the same number of districts as the number of routes in

each district. This tends to yield larger districts and thereby more options

for optimisation, but also longer run times. 3) Finally, we have tried to

use a fixed number of districts. However, due to the varying sizes of the

instances, this was discarded. Indeed, our tuning experiments showed that

setting β = d
√
Ke performed best overall and this is the value that we used

in the final implementation of the algorithm. This value provides a balance

11

between flexibility and speed, in the sense that it results in districts that are

large enough to provide the flexibility needed to optimise them thoroughly,

but are small enough not to be too time consuming to optimise, thereby

allowing the algorithm to cycle through the districts multiple times.

2.3 Optimisation of the Districts

The main loop of OptimiseDistrict is repeated ψ times, where ψ = 25

have been determined during our tuning phase. At each iteration of the

main loop, a new node v ∈ N \U is selected in Switch (Hertz et al., 1999).

If no such node can be found, the set U is cleared (U = ∅) and the search

is reiterated. We have also tried to clear U whenever OptimiseDistrict

is entered, but this turned out to be less successful. We have tested the

following four methods to select v ∈ N \U . 1) Consider the nodes v ∈ N \U

in the order in which they occur in the list of nodes as read from the data file,

which is an arbitrary order, and use the first node that occurs more than once

in the giant tour under consideration. 2) Consider the nodes v ∈ N \ U in

the order in which they appear on the giant tour and select the first one that

occurs more than once. 3) Select the node v ∈ N \U that occurs most often

on the giant tour and break ties arbitrarily. 4) Select the node v ∈ N\U with

the most serviced edges between any two succeeding occurrences. Tuning

indicates that method 1 generally performs best (closely followed by method

4) and is the one used in our final implementation. We believe that the

superiority of this rule comes from the fast that it does not favour any of the

extreme situations of the selection nodes (many occurrences, long distance

12

between them, early on the route), but rather uses nodes with a mix of

these attributes. After identifying the node v ∈ N \U , Switch reverses the

orientation of the cycles between any two successive occurrences of v.

Algorithm 2 Optimise District

procedure OptimiseDistrict(D = (R1, R2, . . .))
for i = 1 to ψ do

R← Paste(R1, R2, . . .)
R,U ← Switch(R,U)
R← Shorten(R)
(R1, R2, . . .)← Split(R)
Rk ← Shorten(Rk) ∀ k

end for
end procedure

An essential part of OptimiseDistrict is the Split procedure, where the

giant tour of a district is partitioned into routes that are feasible with respect

to both capacity and duration constraints. We have tested five variants of

it in our tuning phase. 1) The first variant is the Cut procedure of the

Carpet algorithm (Hertz et al., 2000), which searches for a feasible point

to end the first route yielding the smallest additional cost, splits the giant

tour at that point, and reiterates the process. The advantage of Cut is

that it is fast. However, for large-scale instances, it results in poor solutions

due to a tendency to split the tour very early, which results in significantly

more routes than necessary. 2) The second version is the Split procedure

(without flipping), presented in (Prins et al., 2009), which splits the giant

tour in an optimal fashion using a shortest path algorithm. This version is

clearly the best of the four, but it is far too time consuming to be used within

our algorithm for large-scale instances. 3) The third version, CutMax,

13

splits the route as late as possible while ensuring that the first route is

feasible, and repeats this operation. Its advantage is that it tends to create

long routes, while its drawback is that it often does not select good points

where to cut the giant tour. This is remedied in the last two variants. 4)

CutLimit, which is a simple combination of CutMax and Cut, works

as follows. Let α be a number between zero and one, determined in the

tuning phase. Scanning from the beginning of the giant tour, the procedure

first identifies a safety point as the latest possible node where to split the

tour so that the demand serviced on the first route is at most αW and the

route duration is at most T . Between this point and the latest feasible split

point, the rule defined in Cut is used to identify a good splitting point. If

no such point is found, the tour is split at the safety point. This process

is then repeated for the next route. This version is as fast as CutMax,

but performs better. 5) The fifth and final version, CutLimit′, combines

features from CutLimit and Split. Here, for each possible start required

edge of the giant tour, we consider the α′ latest points where to cut the

route while feasible. Using a shortest path algorithm, we then determine

the best combination of splitting points. In order to keep the computation

time low, no flipping is performed. This is the version that proved the most

successful for large instances and it is the one we have used in our final

implementation.

The idea in Shorten, which is originally developed by (Hertz et al., 1999),

is to follow the route from a starting point and every time an edge is be-

ing serviced, postpone the service of that edge to a later traversal of the

14

same edge. This results in sequences of deadheading edges, which can be

replaced by a shortest path. In the original description, the process stops

when demand of an edge cannot be postponed, but then the whole process is

restarted using another starting point, thereby viewing the tour as one large

cycle. In our implementation, we consider the tour in a linear fashion. We

therefore only start from the beginning of the route, but after we encounter

a required edge were we cannot postpone the demand, we continue the post-

ponement and shortening from that point. This causes the postponement

in our procedure to differ from the original implementation.

2.4 Illustration of FastCARP

We illustrate FastCARP in Figure 3, where the top shows a simplified

version of the giant tour of three districts in the starting state and the

middle (bottom) shows the situation after the first (second) iteration of the

main loop in Algorithm 1.

Consider first the starting state. District 1 (dashed) starts at the leftmost

point, continues through point v along the dashed line until point x. At x,

district 2 (solid line) takes over, continues through v and u to y. District 3

(dotted) ranges from y through u to the rightmost point.

In FastCARP, we merge two adjacent districts, optimise them jointly and

separate them again. Without this merge, the starting situation in our

illustration would not provide opportunities for further optimisation.

In the first iteration of Algorithm 1, districts 1 and 2 are concatenated at v.

15

v u

x
y

Optimise districts 1 and 2:

A

x′

u

y

Optimise districts 2 and 3:

B

y

District 1 District 2 District 3

Figure 3: Illustration of two iterations of FastCARP

16

This provides the option of selecting v as switch node, which causes the cycle

through v and x to change orientation. Shorten is then applied and causes

a route reduction near v. This is marked with an A in the middle picture.

Finally, the union of the two districts is split into routes using CutLimit′

and the joint district is separated into two by assigning the first half of the

routes to district 1 and the remaining routes to district two. This causes

the separation point between the districts to move from x to x′ as shown in

the middle picture.

In the second iteration, districts 2 and 3 are merged at node u. Now, u can

be selected as switch node and the cycle through u and y changes orientation.

Applying Shorten leads to an improvement near u (marked with B in the

button picture). CutLimit′ is used to split the giant tour into routes and

the joint district is separated into two again. This time the separation point

remains unchanged at point y.

Besides the improvements directly illustrated in Figure 3, district 2 is now

in a good position for further optimisation in subsequent iterations.

3 Computational Results

We have tested our algorithm on the 264 CARP benchmark instances of

(Kiilerich and Wøhlk, 2017) which consist of 88 graphs, each combined with

three different vehicle capacities. The largest instance contains 11,640 nodes,

12,675 edges, and 8,581 required edges. The number of vehicles needed to

service all demand ranges from 2 to 323, and using the minimum number of

17

vehicles results in three to 440 required edges being serviced by each vehicle.

The instances are available at http://www.optimization.dk/CARP/.

For the tests with inclusion of duration constraints, we need a common travel

speed. We have chosen to use an estimated average speed, which will by

default overestimate speed in urban regions and underestimate it in more

rural areas. Likewise, after consulting one of the logistics providers, we have

estimated the time for empting waste bins. The true time depends on the

number of workers assigned to each vehicle and an analysis of this aspect is

beyond the scope of this paper. We have used the following settings, where

the numbers of bins to be serviced on each edge are provided in the graph

files, and the distances are given in meters:

travel speed: 60 km/h,

additional service time: 1.5 minute per bin,

route duration limit: 7.5 hours.

As mentioned in Section 1, we used the Base algorithm as a benchmark for

the assessment of FastCARP. It was implemented by successively execut-

ing Preprocessing, CreateEulerTour, and Split.

Tuning of FastCARP was performed on 15 of the 264 CARP instances.

In total, approximately 200 combinations of parameters and algorithmic

choices were tested in the tuning phase, leading to the final choices described

in Section 2.

Both algorithms were implemented in C++ in MS Visual Studio Professional

2015 and executed on an Intel Xeon CPU with 12 cores running at 3.5 GHz

and 64 GBs RAM. They were executed sequentially, i.e. without taking

18

advantage of the multiple cores, and the programs were run simultaneously

on two threads. Since our aim was to design a fast algorithm, we only

allowed one minute of runtime per 1,000 nodes in the graph. This means

that the largest instances are solved within less than 12 minutes, excluding

the time needed to read the graph and create the shortest path matrix. The

run time for the Base algorithm is not limited since the algorithm stops

after Split.

For the CARP without duration constraints, we also use the results pre-

sented in (Zbib, 2017) as benchmark. Those results represent the best so-

lutions obtained by five runs of each of 21 Path Scanning algorithms (PS)

based on seven different evaluation criteria and three different degrees of

randomization. Those results were obtained on a VMware virtual machine

with the following specs: Intel(R) Xeon(R) CPU E5-2680 0 at 2.70GHz with

64GB of vRAM. The run times reported are the aggregated time for the 105

algorithm runs for each instance.

We first illustrate our algorithm on an example instance, S12 g-3, which

covers a rural area with a few villages. The graph contains 755 nodes and 866

edges, of which 407 are required. When this instance is solved, four routes

are needed, each servicing on average 102 required edges. Figure 4 depicts

the routes traversed and the edges services by each of the four vehicles in the

solution produced by FastCARP. As can be seen from these figures, the

solution is quite visually appealing. This is often, but not always, the case.

To illustrate, Figure 5 shows the edges services by each of four vehicles in

instance S7 g-4. The graph contains 2,099 nodes and 2,591 edges of which

19

Figure 4: The four routes of instance S12 g-3 solved by FastCARP.

864 are required. In this solution, it can be seen that the red and the gold

routes are intertwined.

Figure 5: Example of solution. Instance S7 g-4.

Due to the very large number of instances we have solved, we only show

detailed results for a limited number of them and report summarised results

over all 264 instances. For future comparison, we provide detailed results at

http://www.optimization.dk/CARP/. Figure 6 shows the cost obtained by

20

Figure 6: Relative cost of FastCARP compared to Base for CARP and
CARP with duration constraint. Positive values indicate that FastCARP
obtained better cost.

CARP CARP with duration constraint
Base PS FastCARP Base FastCARP

Average % above best 1.6 19.1 0.6 1.3 0.4
Max % above best 12.5 41.8 8.7 11.8 7.6
Total number 264 264 264 264 264
Number of best 125 1 141 133 135
Average number of routes 34.5 - 33.6 51.9 51.1
Max number of routes 185 - 185 323 230

Table 1: Summary of the computational results over all 264 instances. In-
formation regarding individual routes are not available for PS.

21

FastCARP relative to the one obtained by Base for all instances solved as

a standard CARP (top) and as a CARP with duration constraints (bottom).

It is computed as 100× C(Base)−C(FastCARP)
C(FastCARP) . Hence positive values indicate

that FastCARP is better and negative values mean that Base is better.

Table 1 provides a summary of the results. Note that in the figure, some of

the results of the Base algorithm are hidden behind those of FastCARP.

For instances with up to about 3,000 nodes, FastCARP generally performs

better than Base, whereas the Base algorithm yields slightly better results

for the larger graphs. However, as can be seen from Figure 7, Base spends

significantly more time for the large graphs. For instance, it takes more than

eight hours to solve instance O1 p-4 with 9,957 nodes, while only about ten

minutes are allowed. This large run time is due to the very high number of

required edges per route in this instance. For this instance, the cost obtained

by FastCARP in ten minutes is only 0.7% higher than that yielded by the

Base algorithm. From Table 1 is is clear that PS is not competitive on

these large graphs, even when the best over many variations is considered.

As is evident from Table 1, FastCARP exhibits a better average perfor-

mance than Base, and in the light of the runtime, we conclude that Fast-

CARP is indeed a fast algorithm for finding quite good solutions for the

CARP.

22

Figure 7: Run time for FastCARP and the base algorithm for CARP and
CARP with duration constraint.

23

In
st

an
ce

in
fo

rm
at

io
n

B
a
se

P
S

F
a
st

C
A
R
P

In
st

an
ce

|N
|

|E
|
|E

R
|

%
N

C
o
st

%
|R
|

T
im

e
C

o
st

%
T

im
e

C
o
st

%
|D
|
|R
|

T
im

e
F

1
g-

4
81

2
11

24
78

0
1
.0

8
0
4
8
7
7

4
.8

1
1
8

0
.2

8
4
3
4
1
8

9
.8

9
.0

7
6
8
2
0
9

-
1
0

1
1
3

4
8
.7

F
1

g-
6

81
2

11
24

78
0

1
.0

4
9
1
4
4
5

3
.5

6
5

0
.3

5
3
0
6
8
7

1
1
.8

6
.5

4
7
4
8
0
9

-
7

6
3

4
8
.8

F
1

p
-2

79
5

11
06

72
8

1
.1

2
7
2
2
8
7

4
.0

2
7

1
.3

2
8
7
5
8
1

9
.9

4
.2

2
6
1
7
4
3

-
5

2
7

4
7
.7

F
1

p
-6

79
5

11
06

72
8

1
.1

1
6
3
0
0
9

0
.4

9
9
.3

1
8
2
6
5
6

1
2
.5

3
.3

1
6
2
3
7
6

-
2

8
4
8
.0

F
9

g-
4

78
8

10
96

68
6

1
.3

7
5
1
0
1
5

4
.6

1
0
9

0
.2

7
9
5
8
6
8

1
0
.8

8
.0

7
1
8
1
4
5

-
9

1
0
5

4
7
.3

F
9

g-
6

78
8

10
96

68
6

1
.3

4
5
8
2
8
9

3
.1

6
0

0
.4

4
9
6
1
6
4

1
1
.7

5
.9

4
4
4
3
6
9

-
7

5
9

4
7
.3

K
1

g-
2

11
64

0
12

67
5

85
66

9
.3

6
4
5
3
4
2
7

-
1
5
0

1
5
6
4
.2

7
5
4
9
0
9
4

1
7
.0

1
3
8
6
.5

6
5
0
1
2
1
0

0
.7

1
1

1
4
7

7
0
0
.2

K
1

g-
6

11
64

0
12

67
5

85
66

9
.3

3
7
1
1
9
4
5

-
4
4

1
7
2
5
4
.9

4
8
8
6
3
4
5

3
1
.6

1
1
3
1
.0

3
7
3
9
7
2
4

0
.7

6
4
2

6
9
8
.5

K
2

g-
2

11
63

6
12

67
1

85
63

9
.3

6
2
4
8
9
4
2

-
1
4
6

1
7
3
0
.6

7
4
3
4
4
9
1

1
9
.0

1
5
6
8
.5

6
2
4
9
7
3
3

0
.0

1
1

1
4
3

6
9
9
.5

K
2

g-
4

11
63

6
12

67
1

85
63

9
.3

4
4
0
1
6
9
0

-
7
4

6
4
7
1
.6

5
6
2
9
1
1
2

2
7
.9

1
4
3
0
.6

4
4
3
4
2
0
3

0
.7

8
7
1

7
0
1
.0

K
5

g-
2

11
40

5
12

43
5

82
67

9
.3

6
0
2
9
3
2
7

-
1
4
0

1
6
7
8
.7

7
1
3
6
3
2
4

1
8
.4

1
5
8
8
.3

6
0
3
1
5
7
9

0
.0

1
1

1
3
9

6
8
5
.6

K
5

g-
6

11
40

5
12

43
5

82
67

9
.3

3
5
7
1
7
6
8

-
4
2

1
6
3
2
8
.5

4
7
0
7
9
9
0

3
1
.8

1
4
4
1
.1

3
5
7
8
6
2
7

0
.2

6
3
9

6
8
5
.5

N
1

g-
2

85
37

97
25

63
39

7
.3

6
4
7
2
5
7
5

-
9
0

1
2
6
2
.6

7
2
9
9
8
5
3

1
2
.8

7
1
6
.6

6
4
7
6
4
4
8

0
.1

9
8
9

5
1
3
.5

N
1

g-
6

85
37

97
25

63
39

7
.3

3
1
8
0
9
9
7

-
2
6

1
3
6
9
2
.1

4
0
8
9
4
4
1

2
8
.6

5
9
9
.9

3
2
0
7
1
2
5

0
.8

5
2
6

5
1
4
.0

N
2

g-
3

85
37

97
25

63
39

7
.3

4
7
1
6
3
9
0

-
5
7

3
0
2
9
.4

5
5
8
9
9
2
0

1
8
.5

7
5
0
.0

4
7
4
9
0
4
4

0
.7

7
5
7

5
1
2
.5

N
2

g-
5

85
37

97
25

63
39

7
.3

3
4
3
6
3
4
8

-
3
1

9
5
6
6
.8

4
3
3
7
0
5
5

2
6
.2

6
9
2
.7

3
4
9
2
3
5
5

1
.6

5
3
1

5
1
6
.5

N
5

g-
2

84
44

96
31

61
65

7
.3

5
9
1
4
2
4
0

0
.1

8
2

1
8
5
4
.0

6
7
2
3
9
5
4

1
3
.8

7
7
6
.2

5
9
0
8
8
6
3

-
8

8
0

5
0
8
.1

N
5

g-
5

84
44

96
31

61
65

7
.3

3
3
2
5
6
6
7

-
3
0

1
0
0
6
3
.5

4
2
2
0
2
1
6

2
6
.9

7
0
7
.9

3
3
9
2
1
8
7

2
.0

5
2
9

5
0
9
.7

O
1

g-
4

10
28

3
11

86
3

85
81

2
.8

3
2
8
2
8
6
6

0
.1

1
3
3

2
8
9
6
.3

4
1
7
3
4
0
8

2
7
.3

1
3
5
7
.1

3
2
7
8
6
6
6

-
1
1

1
3
3

6
1
9
.1

O
1

g-
6

10
28

3
11

86
3

85
81

2
.8

2
7
0
0
6
0
9

-
7
8

7
0
3
5
.4

3
5
9
6
5
0
4

3
3
.2

1
2
7
4
.0

2
7
2
4
8
4
8

0
.9

8
7
7

6
1
8
.4

O
1

p
-2

99
57

11
49

2
82

20
3
.1

2
4
9
9
2
8
3

-
7
0

8
9
4
4
.0

3
4
6
5
9
1
6

3
8
.7

1
2
1
7
.4

2
5
0
9
0
4
7

0
.4

8
6
8

5
9
7
.9

O
1

p
-4

99
57

11
49

2
82

20
3
.1

2
1
7
9
0
6
0

-
3
6

3
1
4
1
7

3
0
8
9
1
8
5

4
1
.8

1
1
6
3
.1

2
1
9
4
6
2
9

0
.7

5
3
3

6
0
0
.7

O
6

g-
2

95
63

11
07

3
78

31
2
.6

3
5
3
4
4
3
0

0
.1

1
5
8

1
6
7
0
.5

4
3
4
5
9
6
1

2
3
.1

1
2
1
7
.5

3
5
3
1
2
4
6

-
1
1

1
5
6

5
7
4
.7

O
6

g-
6

95
63

11
07

3
78

31
2
.6

2
2
7
3
4
9
3

-
4
6

1
0
6
5
6
.6

3
1
0
0
2
1
3

3
6
.4

1
0
7
0
.1

2
2
7
6
8
2
9

0
.1

6
4
3

5
7
5
.4

S
1

g-
1

61
49

71
10

37
97

3
.7

3
6
5
1
3
1
8

0
.7

1
3
8

7
8
.1

3
9
8
7
6
0
5

1
0
.0

4
9
4
.4

3
6
2
4
5
0
2

-
1
1

1
3
7

3
6
9
.3

S
1

g-
6

61
49

71
10

37
97

3
.7

1
4
7
0
6
7
9

-
2
1

4
2
1
2
.5

1
8
8
6
6
3
2

2
8
.3

4
1
6
.3

1
4
7
8
1
9
3

0
.5

4
1
9

3
7
0
.4

S
2

g-
1

61
49

71
10

37
97

3
.7

3
4
8
0
7
3
2

0
.6

1
2
8

8
5
.7

3
8
2
2
1
3
6

1
0
.5

4
9
3
.4

3
4
5
9
8
1
1

-
1
0

1
2
7

3
6
9
.3

S
2

g-
6

61
49

71
10

37
97

3
.7

1
4
3
9
1
4
0

-
1
9

4
6
8
5
.6

1
8
5
1
5
7
8

2
8
.7

4
1
7
.6

1
4
7
8
3
2
8

2
.7

4
1
9

3
6
9
.2

S
5

g-
2

61
04

70
63

37
32

3
.8

2
1
9
1
4
4
1

-
6
0

6
8
4
.5

2
5
8
8
8
0
1

1
8
.1

4
3
7
.5

2
1
9
7
6
3
2

0
.3

7
5
9

3
6
7
.0

S
5

g-
6

61
04

70
63

37
32

3
.8

1
4
1
3
1
3
4

-
1
8

5
2
3
8

1
8
4
1
2
0
6

3
0
.3

4
1
0
.3

1
4
4
3
0
8
4

2
.1

4
1
7

3
6
7
.3

T
ab

le
2:

C
om

p
u

ta
ti

on
al

re
su

lt
s

fo
r

C
A

R
P

.

24

In
st

an
ce

in
fo

rm
at

io
n

B
a
se

w
it

h
d

u
ra

ti
o
n

co
n
st

ra
in

ts
F
a
st

C
A
R
P

w
it

h
d

u
ra

ti
o
n

co
n

st
ra

in
ts

In
st

an
ce

|N
|

|E
|
|E

R
|

C
o
st

%
|R
|

T
im

e
C

o
st

%
|D
|
|R
|

T
im

e
F

1
g-

4
81

2
11

24
7
8
0

8
1
3
0
6
1

4
.4

1
1
9

0
.2

7
7
8
7
5
6

-
1
0

1
1
4

4
8
.7

F
1

g-
6

81
2

11
24

7
8
0

5
4
2
6
3
2

3
.0

7
4

0
.3

5
2
6
9
8
3

-
7

7
2

4
8
.7

F
1

p
-2

79
5

11
06

7
2
8

2
7
5
5
1
1

4
.0

2
8

1
.2

2
6
4
8
7
4

-
5

2
8

4
7
.7

F
1

p
-6

79
5

11
06

7
2
8

2
1
0
2
2
1

1
.3

1
7

2
.4

2
0
7
4
3
4

-
2

1
7

4
7
.9

F
9

g-
4

78
8

10
96

6
8
6

7
5
1
0
1
5

5
.3

1
0
9

0
.2

7
1
3
0
8
5

-
9

1
0
3

4
7
.3

F
9

g-
6

78
8

10
96

6
8
6

4
6
4
0
4
8

3
.6

6
2

0
.3

4
4
8
1
2
6

-
7

5
9

4
7
.3

K
1

g-
2

11
64

0
12

67
5

8
5
6
6

6
5
3
3
8
4
2

-
1
5
1

1
6
2
5
.4

6
5
7
7
3
9
3

0
.7

1
1

1
5
0

6
9
8
.9

K
1

g-
6

11
64

0
12

67
5

8
5
6
6

5
8
7
8
5
6
4

-
1
1
8

2
0
8
8
.0

5
8
8
8
6
2
5

0
.2

6
1
1
7

7
0
2
.8

K
2

g-
2

11
63

6
12

67
1

8
5
6
3

6
5
1
9
3
2
6

-
1
5
1

1
6
7
0
.5

6
5
3
6
2
0
8

0
.3

1
1

1
4
8

7
0
0
.4

K
2

g-
4

11
63

6
12

67
1

8
5
6
3

5
8
7
9
5
2
9

-
1
1
9

2
1
2
1
.2

5
8
9
7
6
1
0

0
.3

8
1
1
8

6
9
9
.8

K
5

g-
2

11
40

5
12

43
5

8
2
6
7

6
0
9
7
0
3
5

-
1
4
2

1
9
3
6
.6

6
1
0
6
5
0
2

0
.2

1
1

1
4
1

6
8
5
.6

K
5

g-
6

11
40

5
12

43
5

8
2
6
7

5
4
4
2
3
4
6

-
1
1
0

2
3
5
6
.7

5
4
5
9
3
4
3

0
.3

6
1
1
0

6
8
7
.3

N
1

g-
2

85
37

97
25

6
3
3
9

6
8
6
7
1
1
8

0
.1

9
5

1
7
9
1
.5

6
8
5
9
6
3
8

-
9

9
4

5
1
4
.0

N
1

g-
6

85
37

97
25

6
3
3
9

6
5
5
4
4
4
1

-
8
4

1
7
9
5
.8

6
5
6
3
2
0
3

0
.1

5
8
4

5
1
9
.9

N
2

g-
3

85
37

97
25

6
3
3
9

6
5
7
7
5
4
2

-
8
5

2
3
7
4
.0

6
6
2
6
1
8
1

0
.7

7
8
6

5
1
8
.6

N
2

g-
5

85
37

97
25

6
3
3
9

6
5
4
9
2
0
3

-
8
4

2
1
3
9
.6

6
6
2
2
5
8
9

1
.1

5
8
4

5
3
5
.5

N
5

g-
2

84
44

96
31

6
1
6
5

6
3
8
5
4
1
7

-
8
8

3
1
4
2
.7

6
4
1
0
5
9
7

0
.4

8
8
6

5
0
7
.7

N
5

g-
5

84
44

96
31

6
1
6
5

6
0
9
1
0
8
8

-
7
8

3
0
0
6
.2

6
1
0
3
1
4
6

0
.2

5
7
7

5
1
8
.4

O
1

g-
4

10
28

3
11

86
3

8
5
8
1

4
3
8
7
0
3
9

-
2
3
2

2
1
9
8
.5

4
3
9
1
0
8
2

0
.1

1
1

2
3
0

6
1
8
.0

O
1

g-
6

10
28

3
11

86
3

8
5
8
1

4
3
5
7
8
7
8

0
.2

2
3
0

2
2
2
9
.4

4
3
4
8
0
3
3

-
8

2
2
6

6
2
3
.7

O
1

p
-2

99
57

11
49

2
8
2
2
0

3
9
9
9
1
2
5

0
.1

1
9
6

2
4
7
2
.2

3
9
9
4
2
6
2

-
8

1
9
5

6
0
1
.9

O
1

p
-4

99
57

11
49

2
8
2
2
0

3
9
9
9
1
2
5

0
.2

1
9
6

2
4
7
6
.1

3
9
9
2
1
8
1

-
5

1
9
6

6
5
1
.6

O
6

g-
2

95
63

11
07

3
7
8
3
1

3
8
1
4
0
8
3

-
1
7
5

1
9
0
5
.4

3
8
3
3
8
5
0

0
.5

1
1

1
7
8

5
7
4
.7

O
6

g-
6

95
63

11
07

3
7
8
3
1

3
8
1
3
2
6
3

-
1
7
5

2
1
7
9
.3

3
8
2
5
3
6
2

0
.3

6
1
7
6

5
9
5
.5

S
1

g-
1

61
49

71
10

3
7
9
7

3
6
5
4
1
5
6

-
1
3
8

2
2
0
.2

3
6
5
8
2
8
7

0
.1

1
1

1
3
8

3
7
0
.5

S
1

g-
6

61
49

71
10

3
7
9
7

2
2
8
0
8
9
7

-
6
0

1
1
5
1
.6

2
2
8
9
3
3
1

0
.4

4
5
9

3
7
0
.3

S
2

g-
1

61
49

71
10

3
7
9
7

3
4
8
5
1
4
9

0
.1

1
2
8

2
1
3
.0

3
4
8
2
8
3
1

-
1
0

1
2
9

3
7
1
.0

S
2

g-
6

61
49

71
10

3
7
9
7

2
2
7
8
9
1
4

-
6
0

1
1
5
4
.5

2
3
0
2
6
1
8

1
.0

4
5
8

3
6
9
.5

S
5

g-
2

61
04

70
63

3
7
3
2

2
2
5
5
0
7
5

0
.2

6
1

1
1
2
0
.9

2
2
5
0
2
7
7

-
7

6
0

3
6
7
.4

S
5

g-
6

61
04

70
63

3
7
3
2

2
1
6
7
3
1
7

-
5
4

1
2
2
6
.5

2
1
6
8
3
4
6

0
.0

4
5
2

3
7
2
.8

T
ab

le
3:

C
om

p
u

ta
ti

on
al

re
su

lt
s

fo
r

th
e

C
A

R
P

w
it

h
d

u
ra

ti
on

co
n

st
ra

in
ts

.

25

Table 2 provides detailed results for the three largest instances in each of

the five sets with each their smallest and largest vehicle for the CARP,

and Table 3 gives the same results for CARP with duration constraints.

The naming convention for the instances reflects the graph name as well

as the vehicle identification number. The tables first provide the number

of nodes, edges, and required edges for each of the instances, as well as

the percent of nodes (% N) that were removed during preprocessing. The

latter is only relevant for the CARP without duration constraints. Then, for

each of the three algorithms, the tables provide the cost of the solution, the

cost as percentage (%) above the best of the three (a “-” indicates that the

algorithm was the better of the three), the number |R| of vehicles used in

the solution (not available for PS), and the run time. For FastCARP, the

table also provides the number |D| of districts generated by the algorithm.

From these results, one can see how large these instances are as evidenced

by the number of routes. It is also clear that even though FastCARP does

not always obtain the best solution, it is superior when the run time is taken

into account.

Comparing the two tables, we see that the change in cost when duration

constraints are added vary from a small improvement, which is due to the

fact that we are dealing with heuristics, to a doubling of the cost. This

is also true for the number of routes in the solutions. Indeed, for a few

instances, the solutions use the same number of vehicles, whereas for other

instances, up to four times as many vehicles are used. This large increase in

the number of vehicles for some of the instances reflects the impact of the

26

route duration constraints. As a side effect, we see that the Base algorithm

is generally significantly faster when duration constraints are present, due

to the reduction in the number of required edges of each route.

4 Conclusions

We have developed a fast and simple heuristic called FastCARP for the

solution of large-scale capacitated arc routing problems, with or without

duration constraints. The development of this algorithm was motivated by

the need to solve real-life waste collection problems arising in Denmark.

The instances considered in this study are of large scale, containing up to

11,640 nodes, 12,675 edges, 8,581 required edges, and 323 vehicles. These

sizes preclude the use of exact algorithms and even of metaheuristics since

these tend to perform a deep exploration of the search space and are time

consuming. FastCARP is based on a decomposition of the graph into

districts which are iteratively optimized, merged, and split. This mechanism

avoids working on the full graph at each iteration and yields substantial time

savings. FastCARP was compared with an elementary algorithm called

Base and to a number of Path Scanning variations. On small graphs it

was better but slower than Base, but on larger graphs it was much faster

and only slightly worse than Base in terms of solution quality. Our results

indicate that FastCARP is highly suitable for the solution of large-scale

instances such as those we have encountered in Denmark.

As is clear from the discussion found in (Kiilerich and Wøhlk, 2017), the

27

CARP that we have sought to solve in this paper is merely one of the prob-

lems that occur in kerbside collection of waste. Other problem variants

include multi-compartment problems and problems where vehicle services

are coordinated. Large amounts of work and challenges lies in the devel-

opment of algorithms that can solve these even more challenging problems

and eventually support decision makers in selection of preferred collection

design.

Acknowledgements

This project was funded by the Danish Council for Independent Research

- Social Sciences. Project ‘Transportation issues related to waste manage-

ment’ [grant number 4182–00021] and by the Natural Sciences and Engineer-

ing Research Council of Canada [grant number 2015–06189]. This support

is gratefully acknowledged. Thanks are due to the referees for their valuable

comments.

References

Adamides E D, Mitropoulos P, Giannikos I, and Mitropoulos I. A multi-

methodological approach to the development of a regional solid waste

management system. Journal of the Operational Research Society, 60(6):

758–770, 2009.

Ahr D and Reinelt R. The capacitated arc routing problem: Combinato-

28

rial lower bounds. In Corberán Á and Laporte G, editors, Arc Routing:

Problems, Methods, and Applications. Society for Industrial and Applied

Mathematics, Philadelphia, 2015.

Belenguer J M, Benavent E, and Irnish S. The capacitated arc routing

problem: Exact algorithms. In Corberán Á and Laporte G, editors, Arc

Routing: Problems, Methods, and Applications. Society for Industrial and

Applied Mathematics, Philadelphia, 2015.

Brandão J and Eglese R W. A deterministic tabu search algorithm for the

capacitated arc routing problem. Computers & Operations Research, 35

(4):1112–1126, 2008.

Butsch A, Kalcsics J, and Laporte G. Districting for arc routing. INFORMS

Journal of Computing, 26(4):809–824, 2014.

Clark R M and Gillean J I. Solid waste collection: A case study. Operational

Research Quarterly, 28(4):795–806, 1977.

Eglese R W. Routing winter gritting vehicles. Discrete Applied Mathematics,

48(3):231–244, 1994.

Frederickson G N. Approximation algorithms for some postman prob-

lems. Journal of the Association for Computing Machinery, 26(3):538–

554, 1979.

Ghiani G, Mourão C, Pinto L, and Vigo D. Routing in waste collection ap-

plications. In Corberán Á and Laporte G, editors, Arc Routing: Problems,

29

Methods, and Applications. Society for Industrial and Applied Mathemat-

ics, Philadelphia, 2015.

Golden B L and Wong R T. Capacitated arc routing problems. Networks,

11(3):305–315, 1981.

Golden B L, DeArmon J S, and Baker E K. Computational experiments

with algorithms for a class of routing problems. Computers & Operations

Research, 10(1):47–59, 1983.

Hertz A, Laporte G, and Nanchen Hugo P. Improvement procedures for the

undirected rural postman problem. INFORMS Journal of Computing, 11

(1):53–62, 1999.

Hertz A, Laporte G, and Mittaz M. A tabu search heuristic for the capacited

arc routing problem. Operations Research, 48(1):129–135, 2000.

Hierholzer C. Über die Möglichkeit, einen Linienzug ohne Wiederholung

und ohne Unterbrechung zu umfahren. Mathematische Annalen, 6:30–32,

1873.

Khan A M. Solid-waste disposal with intermediate transfer stations: An ap-

plication of the fixed-charge location problem. Journal of the Operational

Research Society, 38(1):31–37, 1987.

Kiilerich L and Wøhlk S. New large-scale data instances for CARP and new

variations of CARP. INFOR, Forthcoming, 2017.

Kim J-S and Lee D-H. An integrated approach for collection network design,

30

capacity planning and vehicle routing in reverse logistics. Journal of the

Operational Research Society, 66(1):76–85, 2015.

Letcher T and Vallero D. Waste: A Handbook for Management. Elsevier,

Amsterdam, 2011.

Li L Y O and Eglese R W. An interactive algorithm for vehicle routeing

for winter gritting. Journal of the Operational Research Society, 47(2):

217–228, 1996.

Mourão M C and Amado L. Heuristic method for a mixed capacitated arc

routing problem: A refuse collection application. European Journal of

Operational Research, 160(1):139–153, 2005.

Mourão M C, Nunes A C, and Prins C. Heuristic methods for the sectoring

arc routing problem. European Journal of Operational Research, 196(3):

856–868, 2009.

Muyldermans L. Routing, Districting and Location for Arc Traversal Prob-

lems. PhD thesis, Catholic University of Leuven, Leuven, Belgium, 2003.

Muyldermans L and Pang G. On the benefits of co-collection: Experiments

with a multi-compartment vehicle routing algorithm. European Journal

of Operational Research, 206(1):93–103, 2010.

Muyldermans L and Pang G. Variants of the capacitated arc routing prob-

lem. In Corberán Á and Laporte G, editors, Arc Routing: Problems,

Methods, and Applications. Society for Industrial and Applied Mathe-

matics, Philadelphia, 2015.

31

Muyldermans L, Cattrysse D, and Van Oudheusden D. District design for

arc-routing applications. Journal of the Operational Research Society, 54

(11):1209–1221, 2003.

Polace M K, Doerner K F, Hartl R F, and Maniezzo V. A variable neigh-

borhood search for the capacitated arc routing problem with intermediate

facilities. Journal of Heuristics, 14(5):405–423, 2008.

Prins C. The Capacitated arc routing problem: Heuristics. In Corberán Á

and Laporte G, editors, Arc Routing: Problems, Methods, and Applica-

tions. Society for Industrial and Applied Mathematics, Philadelphia, 2015.

Prins C, Labadi N, and Reghioui M. Tour splitting algorithms for vehicle

routing problems. International Journal of Production Research, 47(2):

507–536, 2009.

Usberti F L, Frana P M, and Frana A L M. GRASP with evolutionary

path-relinking for the capacitated arc routing problem. Computers &

Operations Research, 40(12):3206–3217, 2013.

Vidal T. Node, edge, arc routing and turn penalties: Multiple problems -

one neighborhood extension. Operations Research, 65(4):992–1010, 2017.

Wøhlk S. Contributions to Arc Routing. PhD thesis, University of Southern

Denmark, Odense, 2005.

Wøhlk S and Laporte G. Computational comparison of several algorithms

for the minimum cost perfect matching problem. Computers & Operations

Research, 87:107–113, 2017.

32

Zbib H. Variants of the Path Scanning Construction Heuristic for the No-

Split Multi-Compartment Capacitated Arc Routing Problem. Working

Paper, Aarhus University, 2017.

33

