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This study investigates a clustered coverage orienteering problem (CCOP), which is a generalization of the

classical orienteering problem. The problem is widely motivated by the emerging unmanned techniques (e.g.,

unmanned surface vehicles and drones) applied to environmental monitoring. Specifically, the unmanned

surface vehicles (USVs) are used to monitor reservoir water quality by collecting samples. In the CCOP, the

water sampling sites (i.e., the nodes) are grouped into clusters, and a minimum number of nodes must be

visited in each cluster. With each node representing a certain coverage area of the water, the objective of

the CCOP is to monitor as much as possible the total coverage area in one tour of the USV, considering

that overlapping areas provide no additional information. An integer programming model is first formulated

through a linearization procedure that captures the overlapping feature. A two-stage exact algorithm is

proposed to obtain an optimal solution to the problem. The efficiency and effectiveness of the two-stage

exact algorithm are demonstrated through experiments on randomly generated instances. The algorithm can

effectively solve instances with up to 60 sampling sites.

Key words : unmanned surface vehicle; clustered coverage orienteering problem; exact algorithm; water

sampling.

1. Introduction

The clustered coverage orienteering problem (CCOP) is motivated by the emerging applications

of unmanned surface vehicles (USVs) and unmanned aerial vehicles (UAVs) in environmental

monitoring, e.g., water pollution monitoring by USVs (Steimle and Hall 2006, Dunbabin et al.

2009, Water Supplies Department 2018) and air pollution monitoring by UAVs (Wivou et al. 2016,

Xia et al. 2019). Given a set of nodes representing sampling sites, the CCOP consists of selecting a

subset of them to perform monitoring tasks. Each node represents a coverage area and once a node

is visited, the information associated with its coverage area is obtained. However, for overlapping
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areas associated with visited nodes, no additional information is provided. Moreover, the candidate

nodes are grouped into clusters representing regions, and a minimum number of nodes must be

visited in each cluster so that efficient information can be gathered in the region. The CCOP

aims to design a tour maximizing the information union of the coverage areas associated with

the selected nodes, with respect to possible restrictions on the travel time (or distance) and the

capacity of the USV.

The CCOP generalizes a problem belonging to the class of the traveling salesman problems with

profits (Vidal et al. 2015, Feillet et al. 2005), namely the orienteering problem (OP), which is also

known as the selective travelling salesman problems (Laporte and Martello 1990, Gendreau et al.

1998). In the OP, each node has a profit. The aim is to maximize the collected profits associated

with the visited nodes subject to a travel time budget. The CCOP differs from the classical OP as

follows: (i) the CCOP maximizes the profits of the union of the coverage areas associated with the

visited nodes rather than the sum of the profits associated with all coverage areas (overlapping areas

count only once); (ii) the CCOP relates to the node clusters, and cluster-dependent restrictions can

be imposed. The concept of coverage area is frequently applied in robotics control studies (Choset

2001, Hokayem et al. 2007, Faigl 2010, Fazli et al. 2013, Franco et al. 2015). However, to the best

of our knowledge, it has not yet been considered in routing studies.

In this paper, we describe the CCOP to model a USV performing water quality monitoring

tasks by taking samples. A detailed illustration of the USV water sampling procedure in practice is

provided by Water Supplies Department (2018). The USV departs from the depot, travels through

the selected sampling sites (or nodes) to pick up water samples, and then returns to the depot.

The CCOP captures the traditional time budget of the OP with respect to the battery depletion of

the USV. The capacity budget is included in the CCOP regarding the maximum volume of water

samples that can be loaded by the USV. Aside from the budget constraints, two special features

are considered. The first feature relates to the “clusters” of sampling sites: the candidate sampling

sites belong to different clusters, and at least a given number of sampling sites must be selected

in each cluster. Figure 1 represents a water reservoir with three clusters having five, three, and

three candidate sampling sites. The second feature relates to the “coverage” of water samples: a

water sample collected from each sampling site can represent the water quality information of a

circle area called the “coverage (water) area”. In Figure 1, repeated information is indicated by the

overlapping coverage area of different sampling sites in one region. In particular, three coverage

areas in Region 1 overlap with one another, and two coverage areas in Region 3 overlap with

each other. The overlapping coverage areas provide no additional water quality information. To

maximize the information obtained in one trip performed by the USV, the objective of the CCOP

is to maximize the union of the coverage areas of the selected sampling sites.
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Figure 1 Example of coverage area of water samplings.

The concepts of the area coverage and overlapping in the CCOP are self-explanatory. The reason

for clustering the candidate sampling sites in the CCOP relates to the spatial characteristics of the

reservoir. For instance, eutrophication (i.e., the process by which a body of water becomes enriched

in dissolved nutrients that stimulate the growth of aquatic plant life) is the most common problem

in a reservoir, whose sensitivity is highly related to the spatial characteristics of the hydrodynamics

of the reservoir (e.g., retention ratio and sluggish flow ratio). Even within the same reservoir, the

hydrodynamic characteristic varies in different regions. In the Three Gorges Reservoir in China,

the flow speed changes from the head region to the tail region: in the head region, the flow speed

is much slower, and the nutrition deposits more easily (Zhang et al. 2006). Thus, the head region

has a much lower threshold value of eutrophication and algal bloom than the tail region, which

yields different nutrition level indices and water quality standards. Henceforth, the reservoir under

consideration will be divided into several regions, each having a specific spatial characteristic. A

minimum number of sampling sites should be selected in each region to assess the water quality.

1.1. Literature review

The CCOP is related to two mainstreams of studies: the OP for routing and the informative pathing

problem for robotics control where the idea of area “coverage” is widely discussed and applied.

The orienteering problem for routing. The CCOP generalizes the OP which was introduced

by Tsiligirides (1984) and Golden et al. (1987). Comprehensive reviews of OP have recently been

provided by Vansteenwegen et al. (2011) and Gunawan et al. (2016), including recent variants,

solution approaches, and applications. The CCOP defined in this paper is most related to the

clustered orienteering problem (COP) and the correlated orienteering problem (CorOP).
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The COP is an OP variant, in which nodes are clustered. It was investigated by Angelelli et al.

(2014) who assumed that the profit associated with a cluster is collected if and only if all nodes of

the cluster are visited. The CCOP introduced here generalizes the COP studied by Angelelli et al.

(2014). Specifically, not all nodes must be visited in a cluster; in addition, a profit is associated

with each node but not with each cluster.

The CorOP was investigated by Yu et al. (2014) and Yu et al. (2016), in which a quadratic

score function captures the spatial correlations among points close to each other, and a mixed

integer quadratic programming model maximizes the quadratic function, then the proposed model

is solved by an off-the-shelf solver. This particular CorOP applies to the planning of a robot tour

in order to monitor an environment with spatial correlations. Spatial correlations also exist in the

CCOP, captured by overlapping coverage areas of sampling sites of each cluster.

Informative pathing problem for robotics control. Several informative path studies fall

in the category of robotics control. Although the focus of the CCOP in this study is routing, we

can still draw some insights from the related robotics literature, in which, as in the CCOP, the aim

is to monitor the environment.

According to Yu et al. (2016), applications of informative path study belong to several domains,

including aerial surveillance (Girard et al. 2004, Nigam and Kroo 2008, Michael et al. 2011), under-

water surveillance (Smith et al. 2011), and multidomain surveillance (Grocholsky et al. 2006).

Smith et al. (2011) proposed a path planning algorithm and a speed control algorithm for under-

water gliders, such that informative trajectories were provided for a glider to persistently monitor

a patch of ocean. Information values along the path were maximized, while the deviation from the

planned path affected by ocean currents was minimized. As in the CCOP, informative path studies

design a path to collect as much as possible of the useful information of the environment.

Informative pathing problems have mostly been defined in the context of monitoring studies,

in which several methods are involved (i.e., the graph-based method, minimalism process design,

continuously evolving scalar field monitoring, and stochastic data harvesting). The graph-based

method is closely related to the CCOP. In graph-based methods of robotics study for path planning,

vertices represent regions of interest, edge lengths give travel times between regions, and vertex

weights show the importance of each region. Alamdari et al. (2014) depicted the environment as

a graph with vertex weights and edge lengths to plan a path for a robot. As the robot repeatedly

performs a closed walk on the graph, they define the maximum weighted latency as the maximum

time between visits to a vertex, weighted by the importance (vertex weight) of that vertex. The

objective is to minimize the “maximum weighted latency” of any vertex of a closed walk of the

robot in order to monitor the environment.
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Referring to the sampling tasks in the CCOP, a similar approach (i.e., sampling-based approach)

is also adopted in informative path studies in robotics area. The sampling-based approach selects

observation locations to minimize prediction uncertainty or to maximize some measure of infor-

mation gain (Karaman and Frazzoli 2011, Hollinger and Sukhatme 2014). For instance, Karaman

and Frazzoli (2011) adopted stochastic sampling-based path planning algorithms to measure the

quality of solution paths. They analyzed the asymptotic behavior of the solutions at the increase

in the number of samples. Hollinger and Sukhatme (2014) found a trajectory that maximizes an

information quality metric (e.g., variance reduction, information gain, or mutual information) and

that falls within a prespecified budget constraint (e.g., fuel, energy, or time).

The area coverage feature of path planning has been studied in robotics and is also considered in

the CCOP. Unlike the conventional point-to-point path planning, the coverage path planning can

be applied to demining, floor scrubbing, and inspection, and can also be utilized in the reservoir

monitoring discussed in this paper. Choset (2000) determined a path for a robot to pass each point

in an area by an exact cellular decomposition approach for the purposes of coverage. Choset (2001)

performed a comprehensive review of studies on the coverage for robotics, in which the coverage

algorithms are divided into four categories: heuristic, approximate, partial-approximate, and exact

cellular decompositions. Additional coverage path problems that mostly emphasized on robotics

control can be found in the works of Hokayem et al. (2007), Faigl (2010), Fazli et al. (2013), and

Franco et al. (2015).

1.2. Contributions

The scientific contribution of this paper includes the introduction of a new generalization of the

OP and the design of a novel exact algorithm to solve it. First, we introduce the CCOP, which is

motived by emerging applications in environmental monitoring. It embeds the concepts of clusters

and coverage areas into the classical OP and thus generalizes the problem. Second, to solve the

CCOP effectively, we design an exact two-stage algorithm based on a new framework. The first

stage includes a sampling task generator and two CCOP bounding procedures. The second stage

iteratively considers each of the sampling tasks and solves the corresponding travelling salesman

problem (TSP) to check whether the travel time required to perform the sampling task exceeds

the available budget or not. This is done by applying two bounding procedures before solving the

TSP to optimality. On the basis of the feasibility of the current sampling task, each iteration ends

running sampling task deleters on the set of sampling tasks not yet considered. This framework

can be easily adopted to other problems with a structure similar to that of the CCOP. We test the

model and the algorithm on randomly generated instances. Results show that the two-stage exact

algorithm generally provides Pareto improvements over the CPLEX implementations, resulting in
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superior solutions and shorter computational times. Our algorithm can solve large-size instances

with up to 60 nodes and reduce the computational time by over 70% on average compared with

CPLEX implementations.

The remainder of this paper is organized as follows. In Section 2, the CCOP is formally defined

and is formulated as non-linear and linearized models. The framework of the two-stage exact

algorithm designed for the CCOP is described in Section 3. We then specifically explain the first and

the second stage of the algorithm in Section 4 and 5, respectively. Section 6 presents computational

experiments conducted to assess the effectiveness and the efficiency of the proposed model and

algorithm. Section 7 concludes the study.

2. Problem description and model formulation

In this section, we formally define the CCOP for water sampling, and we propose the non-linear

and linearized mathematical models.

2.1. Problem description

The CCOP for reservoir water sampling is defined on an undirected graph G(V +,A). The vertex

set V + = V ∪{s, t} consists of a set of sampling sites V and one depot s with its replica t. A single

USV departs from the depot s, travels through the selected sampling sites (to be determined) to

take water samples, and then returns to the depot t. An arc (i, j)∈A is the travelling leg between

any two vertices for i ∈ V ∪ {s}, j ∈ V ∪ {t}, i 6= j, with the travelling time tij. The travelling

times satisfy the triangle inequality. In the CCOP, both time and capacity budgets of the USV are

considered:

(i) The time budget refers to the maximum travelling time Tmax.

(ii) Regarding the capacity budget, we consider that the water sample collected from each site

has the same volume, and this budget can be simplified as the maximum number of sampling sites

to be selected, denoted as Cmax.

The detailed descriptions referring to clusters of the CCOP are as follows:

(iii) The whole reservoir is divided into different regions r ∈R, and each region r has a cluster of

candidate sampling sites Vr ⊂ V . Each sampling site belongs to at most one cluster (i.e., ∪r∈RVr = V

and Vr ∩Vr′ =∅, ∀r, r′ ∈R, r′ 6= r).

(iv) The minimum number of selected sampling sites in each region r ∈R is Smin
r to ensure suf-

ficient water samples taken from region r for analysis, where
∑

r∈R S
min
r ≤Cmax should be satisfied

to guarantee the feasibility of the tour. Without loss of generality, we assume that the given time

budget Tmax is sufficient for the USV to pick up Smin
r water samples in all the regions; otherwise,

no feasible solution exists.
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Specifications referring to coverage of the CCOP are as follows. As shown in Figure 1, we consider

that the water sample collected from each sampling site i ∈ Vr, r ∈R indicates the water quality

of a certain area, i.e., a circle coverage water area Ci(di), with the location of sampling site i as

the center and di as the diameter for the coverage range. The detailed information of di can be

collected from historical data. Ci (di) represents both the coverage area positionally and the value

of the coverage area numerically. Considering that sampling sites i∈ Vr jointly monitor one region

r ∈R, the water samples collected from one cluster Vr, r ∈R may share common information.

(v) The coverage areas of sampling sites in different regions have no overlap, i.e., no overlap

exists between Ci(di) of sampling site i∈ Vr and Ci(dj) of j ∈ Vr′ , r′ 6= r.

(vi) The coverage area of sampling sites in the same region may overlap with each other, and

the overlapping area can only be counted once in the union coverage area. We define Area (yr) =

∪i∈Vr :if yi=1Ci(di) as the size of the union coverage area of the selected sampling sites in region r,

where binary vector yr = (yi, i∈ Vr) indicates whether the sampling site i∈ Vr is selected or not.

(vii) The objective function can be represented as
∑

r∈RArea(yr) or as Area (y), in which vector

y= (yi, i∈ V ).

2.2. Notations

Some notations are listed as follows.

Sets and indices:

V Set of all sampling sites.

V + Set of all vertices (including the depot s and its replica depot t).

i, j, k Index of a vertex of V +.

r Index of each region.

R Set of all regions.

Vr Set of all sampling sites of region r ∈R.

Parameters:

tij Traveling time between vertices i and j.

Tmax Time budget.

Cmax Capacity budget, maximum number of the selected sampling sites.

Smin
r Minimum number of the selected sampling sites in region r ∈R.

Decision variables:

xij Binary, set to one if vertex i is immediately followed by vertex j in the tour.

yi Binary, set to one if vertex i is selected.

yr Vector defined as yr = (yi, i∈ Vr), and we define y= (yi, i∈ V ).

Area (yr)
Coverage area size determined by yr of region r ∈ R, and we define Area (y) for
the covered area size of the reservoir including all regions.

ui Position of vertex i on the tour (the depot s is the first vertex).
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2.3. Mathematical model

[M1] maximize
∑
r∈R

Area (yr) (1)

subject to: ∑
j∈V ∪{t}

xsj =
∑

i∈V ∪{s}

xit = ys = yt = 1 (2)

∑
i∈V ∪{s}

xik =
∑

j∈V ∪{t}

xkj = yk k ∈ V (3)

∑
i∈V ∪{s}

∑
j∈V ∪{t}

tijxij ≤ Tmax (4)

∑
i∈V

yi ≤Cmax (5)

∑
i∈Vr

yi ≥ Smin
r r ∈R (6)

2≤ ui ≤ |V |+ 2 i∈ V ∪{t} (7)

ui−uj + 1≤ (|V |+ 1)(1−xij) i, j ∈ V ∪{t} , i 6= j (8)

xij ∈ {0,1} i∈ V ∪{s} , j ∈ V ∪{t} , i 6= j (9)

yi ∈ {0,1} i∈ V. (10)

Objective (1) aims to maximize the total coverage area size of the selected sampling sites of all

the clusters. Constraints (2) impose the tour to start at the depot and to return to the depot after

finishing sampling. Constraints (3) ensure the connectivity of the path, and each sampling location

can only be taken once. Constraints (4) and (5) concern the time and capacity budgets, respectively.

Constraints (6) ensure that the minimum number of selected sampling sites are collected from one

region. Constraints (7) and (8) prevent the subtours (Miller et al. 1960). Constraints (9) and (10)

define the domains of the decision variables.

2.4. Model linearization

The overlapping of coverage areas induces complexity in modelling the CCOP, because the objective

cannot be easily represented by a linear or a non-linear function. We provide here a linearization

procedure toward an integer programming model.

The geographical area of each region can be discretized by using polygons of a given shape.

The smaller the polygons, the better the approximation of the area covered by the sampling sites.

However, smaller polygons (associated with the granularity of the discretization) do not increase

the numbers of variables and constraints of the model if we package the polygons: As indicated in

Figure 2, disjoint subareas q including polygons that are covered by the same subset of sampling

sites can be considered independently. Let Qr be the set including all the subareas in region r ∈R.
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Define γq as the size of subarea q ∈Qr and let δiq be a binary coefficient that equals one if subarea

q ∈Qr is covered by sampling site i∈ Vr. We introduce the binary decision variable zq, which is set

to one if subarea q ∈Qr, r ∈R is covered by one or more than one sampling site that is visited,

then we can formulate the model:

Figure 2 To package polygons into disjoint subareas q ∈Qr of region r.

[M2] maximize
∑
r∈R

∑
q∈Qr

zqγq (11)

subject to (2)–(10), and

zq ≤
∑
i∈Vr

yiδiq q ∈Qr, r ∈R (12)

zq ∈ {0,1} q ∈Qr, r ∈R. (13)

Although model [M2] is a linearized model with a reasonable number of decision variables, it can

only solve small-scale instances by using off-the-shelf solvers directly, such as CPLEX. However,

for large-scale instances, we need a more effective exact solution approach.

2.5. Model Implementations

We consider two additional options as benchmarks in addition to the direct implementation of

model [M2]. Let continuous variables wij represent the arrival time at vertex j of the USV when

coming from vertex i, and we introduce the following constraints:

wsj = tsjxsj j ∈ V, (14)∑
j∈V ∪{t}

wij −
∑

j∈V ∪{s}

wji =
∑

j∈V ∪{t}

tijxij i∈ V, (15)



Zhang et al.: Clustered coverage orienteering problem

10

wij ≤ (Tmax− tjt)xij i∈ V ∪{s} , j ∈ V ∪{t} , i 6= j, (16)

wij ≥ (tsi + tij)xij i∈ V ∪{s} , j ∈ V ∪{t} , i 6= j, (17)

where by convention tss = 0, ttt = 0. Constraints (14)–(17) are alternatives to constraints (7)–(8)

in model [M2] to prevent subtours (Maffioli and Sciomachen 1997). We implement model [M2],

model [M2′] obtained from model [M2] by replacing constraints (7)–(8) with (14)–(17), and model

[M2′′] obtained from model [M2] adding with constraints (14)–(17) as three benchmarks.

3. Framework of a two-stage exact algorithm for the CCOP

We have designed a two-stage exact algorithm to obtain an optimal CCOP solution. The framework

of the two-stage exact algorithm consists of procedures (a)–(h), which are illustrated in Figure

3 and explained in the following. Note that we aim to provide a general framework to solve the

CCOP or problems with a similar structure, so the described procedures can be substituted by

other efficient ones with the same functions, e.g., other lower or upper bounding methods. Recall

that three resource limits are present in the CCOP, which are (i) the capacity budget Cmax, (ii)

the requirement that at least Smin
r sample sites must be selected in region r ∈R, and (iii) the time

budget Tmax. In the first stage of this algorithm, we generate a sampling task set, in which all tasks

satisfy limits (i) and (ii).

Let sampling task y= (yi, i∈ V ) be a selection of sampling sites, which embeds the information

as to whether a candidate sampling site i∈ V is selected or not. The sampling task generator, i.e.,

procedure (a), will generate a set Y , in which any y ∈ Y satisfies two restrictions:∑
i∈V

yi ≤Cmax ∧
∑
i∈Vr

yi ≥ Smin
r , r ∈R. (18)

Since the visiting sequence of the selected sites is not embedded, a task y ∈ Y may not be necessarily

feasible concerning travel time limit, but all the feasible tasks are covered in Y . Naturally, each

sampling task y ∈ Y yields a profit Area(y) given the fixed selected sampling sites. We can search

for the optimal ones in the total of |Y | tasks, i.e., by comparing Area(y) of those feasible tasks in

Y . Note that the travel time feasibility check will be performed in the second stage.

To reduce the number of feasibility checks, especially when |Y | is large, we execute two CCOP

bounding procedures in the first stage. The procedure (b), i.e., a CCOP heuristic, is applied to

obtain the initial lower bound (incumbent best solution for the CCOP), denoted as Area(L). Mean-

while, a cut generation procedure (c) is applied to solve the CCOP relaxation problem to obtain

an upper bound, denoted as Area(U). Let y ∈ Y ′ be the tasks bounded by Area(L) ≤ Area (y)≤
Area(U), and thus set Y is reduced to set Y ′(Y ′ ⊂ Y ).

In the second stage, we validate the travel time limit for tasks y ∈ Y ′. Once the feasibility of

one task is validated, the corresponding sampling task deleter, i.e., procedure (g) or (h), can be
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Figure 3 Framework of the two-stage exact algorithm for the CCOPa.

a The shaded area in set Y or Y ′ represents the tasks waiting for feasibility checks, the unshaded area represents the
inferior or infeasible tasks which have been removed.

executed to directly remove some other tasks. We introduce the following proposition, in which

statements (i) and (ii) correspond to sampling task deleters (i) and (ii), respectively.

Proposition 1. (i) If a sampling task y is validated to be feasible, inferior tasks y′ ∈ Y ′ sat-

isfying Area (y′) < Area(y) can be removed from Y ′. (ii) If a sampling task y is validated to be

infeasible, all infeasible tasks y′ ∈ Y ′ satisfying y′ > y can be removed from Y ′.

Here, statement (i) implies that if a task y is feasible, its profit Area (y) can be updated as the

best-known CCOP lower bound (solution), and procedure (g) is triggered to remove all tasks y′

whose coverage area is less than Area (y). Meanwhile, as indicated by statement (ii), when a task

y is infeasible, procedure (h) is triggered to remove all tasks y′ where the selected sites of y is a

subset of the selected sites of y′. Statement (ii) is valid since an infeasible task y indicates that the

travel time limit associated with the corresponding shortest elementary circuit is violated. Given
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that the triangular inequality holds, we can conclude that the shortest elementary circuit for task

y′ > y also violates the travel time limit.

The shortest elementary circuit for task y is checked by applying TSP procedures (d), (e) and

(f), in which the first two are bounding procedures, and the last one solves the TSP to optimality.

Note that the sampling task deleter is triggered once the feasibility or infeasibility of a task is

validated by any one(s) of the three TSP procedures.

Procedures (d) and (e) aim at accelerating the algorithm by skipping the more time-consuming

exact procedure (f). We show in Figure 3 that procedure (d) is executed before (e), while this

precedence order can be reversed. We apply procedure (d), the TSP heuristic, to obtain the TSP

upper bound TSP (y); or procedure (e), the TSP relaxation, for the TSP lower bound TSP (y),

both of which run very fast. If TSP (y)≤ Tmax (i.e., task y is feasible) or TSP (y)>Tmax (i.e., task

y is infeasible), we can skip procedure (f). If necessary, we apply the exact TSP procedure (f) to

obtain the minimum travel time for completing task y, denoted as TSP ∗(y), and we validate the

feasibility by checking whether TSP ∗ (y)≤ Tmax or TSP ∗ (y)>Tmax.

Procedures from (d) to (h) of the second stage are iteratively executed, until completing the

feasibility checks of all tasks y ∈ Y ′. At each iteration, we check the feasibility for one task, then

directly determine the feasibility or infeasibility of some other tasks, and execute the sampling task

deleter. The last remaining task(s) in Y ′ not deleted should be the optimal solution(s) y∗ of the

CCOP with profit Area(y∗).

In summary, our algorithm is built on the fact that given a task y, its associated profit Area(y)

is fixed, and the travel time feasibility of each task y needs to be checked in order to find an

optimal feasible one. The algorithmic steps of our exact method are presented in the Appendix.

We describe the detailed procedures in the next sections.

4. First stage of the two-stage exact algorithm for the CCOP

The first stage of the two-stage exact algorithm focuses on the original CCOP. We will introduce

the sampling task generator (a), the CCOP upper bounding procedure (b), and the CCOP lower

bounding procedure (c) in Sections 4.1, 4.2 and 4.3, respectively. We will generate a non-necessary

feasible task set Y by (a), and reduce Y to Y ′ by both (b) and (c), where the tasks y ∈ Y ′ may

be infeasible with respect to the travel time limit.

4.1. Sampling task generator

We generate a set of sampling tasks Y =
{
y ∈ {0,1}|V | |

∑
i∈V yi ≤Cmax,

∑
i∈Vr yi ≥ S

min
r , r ∈R

}
,

where each task y, denoted by a vector (yi, i∈ V ), specifies the selected sampling sites to visit, i.e.,

those i ∈ V with yi = 1. Since that travel time limit is not guaranteed, y ∈ Y may be infeasible,

while the optimal feasible solution y∗ of the CCOP must be included in Y .
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The generator includes two steps, where (19) and (20) are ensured respectively in each step,

together equivalent to (18). First, we generate the set Λ in which ε= (sr, r ∈R), ε∈Λ is a feasible

combination of different numbers of selected sites of each region r ∈R, by ensuring that∑
r∈R

sr ≤Cmax ∧ sr ≥ Smin
r , r ∈R. (19)

Then, for each ε, we generate the set Yε, in which y = (yi, i ∈ V ), y ∈ Yε is a feasible selection of

sampling sites satisfying ∑
i∈Vr

yi = sr, r ∈R. (20)

Finally, we can obtain Y =∪ε∈ΛYε as all possibilities of sampling tasks.

We put aside the task set Y , until we complete the two bounding procedures of the CCOP

(described in Sections 4.2 and 4.3). After having obtained Area(L) and Area(U), we go back to deal

with task set Y , i.e., reduce Y to Y ′, in which all y ∈ Y ′ are bounded by Area(L) ≤ Area (y)≤

Area(U).

4.2. CCOP heuristic to obtain the initial lower bound

The CCOP dynamic programming-based heuristic (CCOP heuristic) is designed to quickly produce

an initial lower bound Area(L) for the CCOP. This lower bounding procedure is fast as we apply

two heuristic components in the dynamic programming (DP) algorithm: (i) As will be described

in State extension on the reduced graph, this DP will be executed based on a reduced graph

instead of the complete graph G(V +,A) of the CCOP. The reduced graph is defined by discarding

some arcs (i, j) ∈A. (ii) As will be described in Heuristic dominance rule II, some states are

shortsightedly deleted even though they are not necessarily dominated by others and not exactly

fathomed as the non-pareto optimal ones.

The CCOP heuristic aims to find an elementary path associated with two components, i.e., the

sampling sites and the travel time (battery usage) of the USV. Let a state (y, T, i) represent a path

from the depot s to a vertex i ∈ V ∪ {t} (a sampling site or the depot), where T is the time at

which the USV visits vertex i; and y ∈ {0,1}|V | is the |V |-dimensional binary vector, in which the

kth element yk represents whether a candidate sampling site k ∈ V is already visited (yk = 1) or

not (yk = 0).1 Each state (y, T, i) corresponds to a profit, a coverage area size Area(y), that only

depends on the already visited sampling sites. The initial state is defined as (0|V |,0, s), where the

USV is positioned at the depot s at time 0, has yet to visit any candidate site. A state (y, T, i) is

feasible only if ∑
k∈V

yk ≤Cmax (21)

1 The depot s and its replica depot t are fixed as the start and end vertices.
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and

T ≤ Tmax. (22)

From (21) and the requirement
∑

k∈Vr yk ≥ S
min
r for r ∈R,

∑
k∈Vr

yk ≤Cmax−
∑

r′∈R\{r}

Smin
r′ r ∈R, (23)

should also be satisfied. The feasibility checks of (21), (22) and (23) are conducted once a new state

is explored, whereas the feasibility check of (24) described below can only be performed when the

state extends to the last vertex, i.e., the depot t. Formally, a state (y, T, t) associated with vertex

t is feasible only if ∑
k∈Vr

yk ≥ Smin
r r ∈R. (24)

This ensures that the number of selected sampling sites in each region is no less than Smin
r .

For a current feasible state (y, T, i), only its feasible successors (y′, T ′, j) can be generated. The

state extension of the CCOP heuristic is based on the reduced graph described as follows.

State extension on the reduced graph. A label (y, T, i) of vertex i only extends to its

feasible successors (y′, T ′, j) if arc (i, j)∈A satisfies

tij ≤ σ1t, (25)

where t=
∑

i∈V ∪{s}
∑

j∈V ∪{t} tij
|V |2+|V | as the average travelling time between two vertices, and parameter

σ1 affects the size of the reduced graph. Since the extension discards all arcs (i, j)∈A with tij >σ1t,

a smaller value of σ1 can speed up the algorithm but may yield an inferior solution, and vice versa.

To ensure that at least one feasible solution is generated, a very small value of σ1 should be avoided.

Label (y′, T ′, j) is updated from (y, T, i) by

y′ = y+ej if j ∈ V, y′ = y if j is the depot t, (26)

to forbid the repeated selection of a sampling site, where ej is a binary vector with |V | elements

whose jth component equals one and the others equal zero. Meanwhile, the travel time resource is

updated as

T ′ = T + tij. (27)

Once a state is feasibly extended, dominance rules are performed as follows.
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Exact dominance rule I. The exact dominance rule exactly fathoms some states that cannot

lead to the optimum. If a state is necessarily dominated by another state, then it will be discarded.

State (y2, T 2, j) is dominated by state (y1, T 1, j) if

(a)y1 = y2 and

(b) T 1 ≤ T 2, and at least one of the inequalities is strict.

Note that y1 = y2 implies Area(y1) =Area(y2) because of the natural property of the CCOP,

i.e., the corresponding coverage area size of visited sampling sites are equal.

To quickly produce feasible solutions, we apply Heuristic dominance rule II before the Exact

dominance rule I in the CCOP heuristic procedure as follows.

Heuristic dominance rule II. Each state (y, T, i) is mapped onto a new state (φ,T, i), where

φ=
∑

k∈V yk. Although (φ2, T 2, j) is not necessarily dominated by (φ1, T 1, j), we still delete state

(φ2, T 2, j) if

(c) φ1 = φ2,

(d) T 2 ≥ σ2T
1, where σ2 ≥ 1 is a control parameter.

A smaller value of σ2 speeds up the procedure but may affect the quality of the initial lower

bound Area(L) of the CCOP. The sequence of implementing the dominance rules will not affect

the quality of Area(L), while applying rule II before rule I can accelerate the procedure.

To the end, we derive the initial lower bound Area(L) of the CCOP, that is the maximum

coverage area size of a feasible state (y, T, t) extended to the depot t. The two control parameters

σ1 and σ2 aim at reducing the number of the states to accelerate this CCOP heuristic procedure.

However, excessively small values of σ1 and σ2 should be avoided, because they may prevent finding

a feasible solution satisfying the requirement that at least Smin
r sample sites must be visited in

a region r ∈ R. The control parameters can be adjusted on a case by case basis to balance the

computation time and the quality of the initial lower bound Area(L). We could conceivably run an

exact implementation of this DP in order to derive an optimal CCOP solution; however, the exact

DP implementation is very time-consuming.

4.3. CCOP cut generation for upper bounding

The cut generation procedure is applied to obtain a CCOP upper bound Area(U) by solving its

relaxation problem with two classes of additional valid inequalities.

The relaxation problem of the CCOP without additional inequalities is described as model [M3]

(i.e., a relaxation of model [M2]), in which the integrality restriction of yi is always retained while

only xij is set to be fractional.

[M3] maximize
∑
r∈R

∑
q∈Qr

zqγq (28)
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subject to (2)–(6), (10), (12)–(13), (14)–(17), and

0≤ xij ≤ 1 i∈ V ∪{s} , j ∈ V ∪{t} , i 6= j. (29)

Constraints (14)–(17) are applied in model [M3] as more efficient alternatives to Constraints (7)–

(8), which will be connotated by our experiments. This model can be solved by off-the-shelf solvers

(e.g., CPLEX) very fast to obtain an upper bound of the CCOP, but its quality is proven to be

unstable in our experiments. Hence, a cut generation procedure is applied to dynamically generate

additional valid inequalities that are added back to model [M3] for tightening its formulation.

Two classes of valid inequalities (30) and (31) are used. Inequalities (30) are derived from the

cycle relaxation, considering that subtours are not necessarily prevented when xij is fractional.

Thus, inequalities (30) are formulated as

∑
i∈Θ

∑
j∈Θ

xij ≤ |Θ| − 1 Θ⊂ V, 2≤ |Θ| ≤ σ3, (30)

where σ3 is a control parameter, and σ3 ≤ |V | − 1. A smaller value of σ3 may affect the quality

of the upper bound of the CCOP but let the procedure run faster. Inequalities (31) have been

proposed in Fischetti et al. (1998) for the OP and are formulated as

∑
(i,j)∈τ

xij ≤ |τ | − 1 τ ⊆A′, (31)

where A′ = {τ ′ ⊆A|
∑

(i,j)∈τ ′ tij >Tmax}. These inequalities stipulate that not all the edges of τ can

be selected in a feasible path of the CCOP.

We refer to model [M3] augmented by valid inequalities associated with (30) and (31) as to

augmented relaxation model. The total number of inequalities increases with σ3, and the augmented

relaxation model is correspondingly harder to solve with more valid inequalities. A cut generation

procedure is executed to add the valid inequalities iteratively, which can speed up the procedure

compared with adding all the inequalities to model [M3] in one batch: First, we solve model [M3]

and draw an initial solution. As none of the valid inequalities is imposed so far, the initial solution

may violate some of the inequalities (30) and (31). The violated inequalities will be added back

to model [M3] defining an augmented relaxation model. This model is then solved to yield a new

solution (a tighter upper bound), then other violated inequalities may be found and added back to

the previous augmented relaxation model. With iteratively added inequalities, the corresponding

augmented relaxation model is resolved at each iteration. In the end, we can obtain the upper

bound Area(U) for the CCOP.
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5. Second stage of the two-stage exact algorithm

The second stage of the two-stage exact algorithm iteratively considers TSPs, in order to check

the travel time feasibility condition for each task y ∈ Y ′. The TSP is defined over graph

G (V +(y),A(y)), where the vertex set V +(y) includes vertices of sampling sites of task y and a

vertex of depot. (In the TSP, the depot is represented by one vertex rather than being split into

two vertices with the same location as we did in the CCOP.) An arc (i, j) ∈A(y) is between any

two vertices for ∀i, j ∈ V +(y), i 6= j, with the travelling time tij satisfying the triangle inequality.

Here we give the formal formulation for the TSP of task y ∈ Y ′ as model [M4]:

[M4] minimize
∑

i∈V +(y)

∑
j∈V +(y)

tijxij (32)

subject to ∑
i∈V +(y)

xik +
∑

j∈V +(y)

xkj = 2 k ∈ V +(y) (33)

∑
i∈Θ

∑
j∈Θ

xij ≤ |Θ| − 1 Θ⊂ V +(y), |Θ| ≥ 2 (34)

xij ∈ {0,1} i, j ∈ V + (y) , i 6= j. (35)

Equation (33) defines the degree of each vertex, constraints (34) eliminate the subtours, and con-

straints (35) are the integrality constraints.

In Section 5.1, 5.2 and 5.3, we will introduce the TSP heuristic procedure (d), the TSP relaxation

procedure (e), and procedure (f) to solve the TSP to optimality, respectively. Once the feasibility

or infeasibily is validated by anyone(s) of these three procedures, the others can be skipped, then

the sampling task deleter (g) or (h) is triggered to remove inferior or infeasible tasks (described in

Section 5.4). We iteratively execute procedures (d)–(h) until completing all the feasibility checks

and removing all the inferior and infeasible tasks, then the task(s) left in Y ′ should be the optimal

feasible task(s) y∗ of the CCOP.

5.1. TSP heuristics to accelerate the feasibility check

The heuristics introduced in this section aim at fast producing an upper bound TSP (y) for the

TSP of task y for its feasibility check. An initial TSP tour κ0 is first constructed by a greedy

construction heuristic, i.e., the nearest neighborhood heuristic. It starts from the depot, builds a

tour of task y by adding the closest vertex to the previous vertex added to the tour, and returns

to the depot.

The 2-opt heuristic is then executed to reorder the initial tour κ0 so as to reduce its total travel

time (tighten the TSP upper bound). Two non-adjacent arcs are randomly selected and removed

in iteration ω, such that the cycle tour κω is broken into two subpaths. The two subpaths are then
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reconnected to create a new cycle κ′ different from the previous one. If the total travel time of the

TSP is reduced, set κω+1 = κ′, otherwise, set κω+1 = κω. We run several iterations in this fashion

until it encounters a local minimum.

Each time a local minimum is encountered, we rerun the 2-opt heuristic described above, attempt-

ing to reach other local minima. Although the same initial tour κ0 is employed, it may still jump

to another local minimum as long as the two arcs are randomly selected and broken. The upper

bound is updated by comparing the newly generated local minimum with the previous ones. These

local minima are compared to obtain the best-known TSP upper bound TSP (y).

In our experiments, the best-known upper bound has a high probability of reaching the TSP

optimality. Nevertheless, the heuristics can stop whenever the updated upper bound for the TSP

is lower than the travel time limit Tmax, where task y can be confirmed to be feasible.

If TSP (y)≤ Tmax, task y is feasible, and the TSP relaxation (Section 5.2) and exact TSP solving

procedures (Section 5.3) can be skipped. Otherwise, the algorithm proceeds to the other bounding

procedure described in Section 5.2.

5.2. TSP relaxation to accelerate the feasibility check

This procedure solves the TSP relaxation problem to obtain the TSP lower bound TSP (y) for the

feasibility check. Constraints (34) and (35) in model [M4] are relaxed to constraints (37) and (38)

in the TSP relaxation model [M5]:

[M5] minimize
∑

i∈V +(y)

∑
j∈V +(y)

tijxij (36)

subject to (31), and ∑
i∈Θ

∑
j∈Θ

xij ≤ |Θ| − 1 Θ⊂ V +(y), 2≤ |Θ| ≤ σ4 (37)

0≤ xij ≤ 1 i, j ∈ V +(y), i 6= j, (38)

where σ4 is a control parameter, and σ4 ≤ |V + (y)|−1. A smaller value of σ4 speeds up the algorithm

but may affect the quality of the TSP lower bound. Model [M5] can be solved efficiently to obtain

the TSP lower bound because the number of vertices of y is limited.

If TSP (y) > Tmax, task y is confirmed to be infeasible. If the feasibility or infeasibility is still

undetermined after applying the two bounding procedures described in Sections 5.1 and 5.2, we

execute the exact TSP solving procedure in Section 5.3.

5.3. Exact TSP solving procedure

Here we describe an exact DP procedure for the TSP in order to finally complete the feasibility

check for task y. Recall that the TSP is based on the complete graph of G (V +(y),A(y)). Each
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state (η, T, i) of this DP represents a path from the depot to a vertex i; the vector η has |V (y)|

elements corresponding to the |V (y)| selected sampling sites for task y; T is the time at which the

USV reaches vertex i. The initial state is defined as (0|V (y)|,0,depot) when the USV departs from

the depot at time 0 and has yet to visit any sampling site. Once a site is visited, the corresponding

element in η is updated from 0 to 1, and the travel time T is updated accordingly. A state (η1, T 1, i)

dominates a state (η2, T 2, i), if (a) η1 ≥ η2, (b) T 1 ≤ T 2, and at least one of the inequalities is

strict.

The optimal solution value TSP ∗(y) is the minimum travel time of a state (1|V (y)|, T,depot)

associated with the USV located at the depot after having visited all the sampling sites of V (y).

If TSP ∗ (y)≤ Tmax, then task y is feasible; if TSP ∗ (y)>Tmax, then task y is infeasible. To avoid

unnecessary label extensions, we can also impose the travel time limit by ensuring T ∈ [0, Tmax]

in this DP. If no feasible solution is obtained in the end, we can directly confirm that task y is

infeasible; otherwise, task y is feasible.

5.4. Sampling task deleter

After validating the feasibility or infeasibility for a task y, we can directly determine some other

infeasible or inferior tasks and then remove them by invoking the corresponding sampling task

deleter as procedure (g) or (h).

If task y is proven to be feasible, its coverage area size Area(y) can be updated as the best-

known lower bound for the CCOP. Then, inferior tasks y′ ∈ Y ′ with Area (y′)<Area(y) can be

removed from Y ′ by procedure (g), whereas tasks y′′ with Area(y′′) ≥ Area(y) are waiting for

the feasibility check. Thereafter, whenever we obtain a feasible task, i.e., still denoted as y′′, its

coverage area size Area(y′′) is directly updated as the best-known CCOP solution, considering

that Area(y′′) must be at least equal to the previously known CCOP lower bound. This sampling

task deleter applies whenever a feasible task is found, not necessarily only after solving the exact

TSP, but may also after using the TSP heuristics, as long as the feasibility is proven.2

If task y is proven to be infeasible, all tasks y′ ∈ Y ′ that satisfy y′ > y are also infeasible and

can be removed from Y ′ by procedure (h), because of the triangular inequality and V (y)⊂ V (y′).

Following this principle, in the second stage of our algorithm, a task y with a smaller number of the

selected sites |V (y)| is checked first, so that more infeasible tasks can be directly removed without

executing any TSP procedures if task y is infeasible, reducing the overall computation time. This

sampling task deleter applies whenever an infeasible task is detected, and the exact TSP procedure

is not required if the TSP relaxation has already proven the infeasibility.

2 Procedure (g) can be replaced by a preliminary check at each iteration (for task y′′) of the second stage: as y is
the best incumbent (feasible) sampling task found so far, if Area(y′′)≥Area(y), task y′′ is going to be evaluated;
otherwise, task y′′ is removed. It can avoid double checks involved in procedure (g) and thus speed up the algorithm.
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6. Computational experiments

The proposed two-stage exact algorithm for the CCOP is tested in this section. Performance tests

under small-scale and large-scale instances are conducted, and the algorithm is compared with

CPLEX by solving model [M2], model [M2′], model [M2′′] directly. Then, sensitivity analyses of

time and capacity budget of the CCOP are conducted, from which some insights can be drawn.

All tests are performed using a PC with Intel® Core� i7-3770 CPU (3.40 GHz) and 8 GB RAM.

For small-scale instances, we solve all tests to optimality by all the three model benchmarks [M2],

[M2′], and [M2′′] and the two-stage exact algorithm. For large-scale instances, the two-stage exact

algorithm and benchmarks are tested with a CPU time limit of two hours. In our experiments,

to implement the CCOP heuristic procedure (Section 4.2), we set the speed control parameter

σ1 = 0.8 for small-scale instances, σ1 = 0.6 for large-scale instances, and the relaxation control

parameter σ2 = 1 for all instances. For the CCOP cut generation procedure (Section 4.3), we set

the subtour elimination parameter σ3 = 6. For the TSP relaxation (Section 5.2), we also set the

subtour elimination parameter σ4 = 6 for all tests.

6.1. Computational performances on small-scale and large-scale instances

The two-stage exact algorithm is first executed on small-scale instances. Tests of instances with

around 30 samplings sites are conducted, for which instance details are shown in Table 1 and

computational results are reported in Table 2. For each instance (Inst.), Table 1 provides the total

number of vertices, the number of sampling site clusters, the number of candidate sampling sites

of each cluster and the minimum selected number of each cluster, e.g., |V +|, |R|, and e.g., |V1| and

Smin
1 of cluster 1. In Table 2, three combinations of capacity budget (Cmax) and time budget (Tmax)

are set for each instance in Table 1 to test the performances of all solution methods. We present

here the time budget Tmax as a distance because we assume a constant speed of the USV.

Table 1 Characteristics of small-scale instances.

Inst. |V +| |R| |V1|(Smin
1 ) |V2|(Smin

2 ) |V3|(Smin
3 ) |V4|(Smin

4 ) |V5|(Smin
5 ) |V6|(Smin

6 )

I–1 25 5 4(1) 7(4) 4(4) 4(1) 4(1) –

I–2 27 5 4(2) 7(1) 3(2) 4(4) 7(1) –

I–3 29 6 5(3) 6(3) 4(2) 4(1) 4(2) 4(1)

I–4 31 5 6(1) 7(5) 3(3) 5(1) 8(3) –

I–5 33 6 4(2) 6(3) 5(3) 5(3) 6(2) 5(3)

For all instances, we consider that the number of regions and candidate sampling sites increases

with the size of the reservoir under consideration. For instance I–1, the reservoir captured by the

coordinate range of [0,1200]× [0,800] has five regions. The region sizes can be set differently, e.g.,
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400×400 and 400×800, so that coordinate ranges of the five regions can be set as [0,400]× [0,400],

[0,400] × [400,800], [400,800] × [0,400], [400,800] × [400,800], and [800,1200] × [0,800]. In each

region, candidate sampling site coordinates are generated randomly, whereas the diameter of the

coverage area of each sampling site is generated within [80,120] by also considering that the coverage

area cannot exceed its region boundary. To make the instances more general, the USV depot can

be located anywhere in the reservoir. The distance tij is computed via the Euclidean norm after

generating coordinates of candidate sampling sites and the USV depot.

Table 2 Computational results comparing CPLEX in model [M2], model [M2′], model [M2′′] and the two-stage

exact algorithm for the CCOP on small-scale instances.

Model [M2] Model [M2′] Model [M2′′] Two-Stage Exact Algorithm

Inst. Cmax Tmax Sol. CPU Sol. CPU Sol. CPU Sol. CPU Area(L) Area(U) |Y | |Y ′|

I–1 15 3000 107044 5416 107044 10 107044 10 107044 4 100540 107044 135760 35719

15 3400 121876 4195 121876 5 121876 11 121876 2 117292 121876 135760 5726

16 3200 123524 7238 123524 9 123524 10 123524 3 120168 123524 175612 10565

I–2 15 3000 130212 3466 130212 5 130212 7 130212 3 121092 130212 309680 61646

17 3000 136344 1622 136344 9 136344 9 136344 6 124444 136344 565446 190881

19 3200 156836 4926 156836 7 156836 11 156836 4 145068 156836 685538 54357

I–3 13 2500 103472 7428 103472 17 103472 85 103472 8 96712 104348 758400 271462

14 2500 110776 6771 110776 27 110776 46 110776 13 104824 110776 2511680 569523

14 2600 113408 5020 113408 40 113408 32 113408 12 104824 113816 2511680 626989

I–4 13 2700 103936 13090 103936 50 103936 63 103936 2 103936 103936 35280 0

13 2800 109956 8336 109956 93 109956 182 109956 2 103936 109956 35280 9216

14 3000 123696 2785 123696 47 123696 22 123696 3 115712 123696 249900 19628

I–5 16 2800 134740 2116 134740 47 134740 41 134740 20 122992 134740 1800000 734761

17 2900 145600 4833 145600 34 145600 33 145600 22 135496 145600 9450000 1277054

17 3000 148312 3189 148312 31 148312 34 148312 18 135496 148312 9450000 1311126

Avg. 5362 29 40 8

Table 2 reports the solution (Sol.) and the computational time (CPU, in seconds) of all solution

methods, in all instances. The first observation is that the direct implementation of model [M2]

is not efficient even for small-scale instances. In 10 of these 15 instances, model [M2] takes more

than one hour to derive the optimal solution. However, models [M2′] and [M2′′] can derive the

optimal solution in less than four minutes in all these 15 instances, for which model [M2] runtimes

span 1622–13090 seconds (i.e., 27 minutes to 3.6 hours). As model [M2′] and model [M2′′] are

much more efficient than model [M2], it shows that constraints (14)–(17) are more effective than

constraints (7)–(8). Constraints (14)–(17) are also applied in the CCOP bounding procedure in the

two-stage exact algorithm. As indicated by the column Area(U) in Table 2, the upper bounds are

very close to the corresponding optimal solutions to the problem, which speeds up the algorithm.
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We now compare the outputs of the two-stage exact algorithm to the results of benchmarks:

our algorithm dominates all the CPLEX-based implementations, returning the optimal solutions

in shorter computational times in all tests; on average, it reduces by 72.4% the computational time

of model [M2′] and reduces by 80% the computational time of model [M2′′]. Besides, for each

test of the two-stage exact algorithm, the lower and upper bounds for the CCOP are listed, i.e.,

Area(L) and Area(U), and the sizes of sampling task set and the remaining set after two bounding

procedures, i.e., |Y | and |Y ′|, are also listed. The largely decreased size by comparing |Y | and |Y ′|

indicates that the bounding procedures can efficiently remove a large number of sampling tasks

that cannot be optimal solutions.

Table 3 Characteristics of large-scale instances.

Inst. |V +| |R| |V1|(Smin
1 ) |V2|(Smin

2 ) |V3|(Smin
3 ) |V4|(Smin

4 ) |V5|(Smin
5 ) |V6|(Smin

6 ) |V7|(Smin
7 )

I–6 40 6 6(4) 6(4) 6(6) 6(2) 7(1) 7(1) –

I–7 45 6 7(4) 7(4) 7(7) 8(2) 7(1) 7(1) –

I–8 50 6 8(5) 8(5) 8(8) 9(2) 8(1) 7(1) –

I–9 55 7 10(8) 6(1) 7(1) 7(6) 7(1) 6(1) 10(1)

I–10 60 7 7(5) 7(6) 10(1) 6(5) 11(1) 7(6) 10(1)

The two-stage exact algorithm is then tested on large-scale instances, including a larger number

of candidate sampling sites and site clusters, as well as a large-capacity budget, i.e., |V +|, |R|, and

Cmax. The characteristics of large-scale instances are listed in Table 3, and computational results

are reported in Table 4. Considering results for small-scale instances have already shown that model

[M2] is not efficient, Table 4 only reports the performance for CPLEX implementations of models

[M2′] and [M2′′] as benchmarks.

We first compare the performance of models [M2′] and [M2′′]: In three instances, both models

cannot find a feasible solution (i.e., “Null”). For the eight instances in which both models find

the same solution: model [M2′] is faster than model [M2′′] in six instances and slower than model

[M2′′] in one instance; while in the other instance, both models [M2′] and [M2′′] actually reach

the optimal solution but have not proven the optimality i.e., they do not terminate within 7200

seconds. Moreover, model [M2′] finds a better solution in three instances but a worse solution in

one instance compared with model [M2′′].

We now analyze the performance of the two-stage exact algorithm: our algorithm provides Pareto

improvements over all the CPLEX implementations in all tests, resulting in superior solutions and

shorter computational times. In six of the 15 instances, our algorithm provides the best overall

solution, for which the CPLEX implementation may not derive a feasible solution. Our algorithm
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Table 4 Computational results comparing CPLEX in model [M2′], model [M2′′] and the two-stage exact

algorithm for the CCOP on large-scale instances.

Model [M2′] Model [M2′′] Two-Stage Exact Algorithm

Inst. Cmax Tmax Sol. CPU Sol. CPU Sol. CPU Area(L) Area(U) |Y | |Y ′|

I–6 19 3100 154530 >7200 152720 >7200 154832 219 154832 162448 3344250 1060404

20 3200 165468 >7200 161872 >7200 165764 745 162568 174200 14987385 4825033

20 3300 171100 765 171100 1351 171100 303 162568 176204 14987385 4894259

I–7 19 3300 170268 >7200 170268 >7200 170268 35 155420 170268 1680700 888359

20 3300 Null >7200 178132 >7200 178132 108 165088 181208 17143140 6449713

21 3200 154532 >7200 Null >7200 176792 3783 171700 183000 90858642 35993225

I–8 22 3200 Null >7200 Null >7200 178424 94 157304 182252 2709504 2552676

23 3300 Null >7200 Null >7200 187420 897 167016 192236 30256128 25067395

23 3400 191100 6353 191100 2139 191100 858 167016 193632 30256128 25079299

I–9 19 3700 144944 1093 144944 2757 144944 208 124084 145056 5556600 4723383

20 3500 Null >7200 Null >7200 141528 6989 137916 155096 93712500 41392922

20 3600 149628 4538 149628 >7200 149628 3328 140356 156048 93712500 26874519

I–10 25 4200 187080 2187 187080 5715 187080 1243 182636 194336 6791400 2516060

25 4300 197012 756 197012 2416 197012 387 182636 198160 6791400 2611900

26 4300 207764 3374 207764 >7200 207764 2611 191600 209608 107207100 35466246

Avg. 5111 5759 1454

returns the optimal solutions in all of these 15 instances within two hours, and our algorithm

terminates much faster than both models [M2′] and [M2′′]. For instance, we derive the optimal

solution in less than 600 seconds (i.e., ten minutes) in seven instances, for which the corresponding

runtimes of the CPLEX implementation at least span 756–7200 seconds. In four other instances,

we derive the optimal solution in less than 1500 seconds (i.e., 25 minutes), while the corresponding

computational time of CPLEX implementation at least span 2139–7200 seconds (i.e., 35 minutes to

over two hours). On average, for the large-scale instances, our algorithm reduces by 71.6% the com-

putational time of model [M2′] and reduces by 74.8% the computational time of model [M2′′]. In

both small-scale and large-scale instances, the two-stage exact algorithm significantly outperforms

the CPLEX implementations.

6.2. Sensitivity analyses for the CCOP

To test the effects of increasing battery endurance and capacity load of a USV, we conduct sensitiv-

ity analyses with regard to time and capacity budgets based on Instance I–4 of Table 1 (sensitivities

of other instances are similar to Instance I–4). Optimal results are obtained for 66 combinations of

different time and capacity budgets by conducting the proposed two-stage exact algorithm of the

CCOP, as illustrated in Figures 4 and 5, respectively.



Zhang et al.: Clustered coverage orienteering problem

24

Figure 4 Sensitivity analysis for the capacity budget of the CCOP.

Figure 5 Sensitivity analysis for the time budget of the CCOP.

Figure 4 shows a series of polylines that are approximately concave, i.e., the additional benefit

of increasing the capacity generally becomes marginal when Cmax is large. With increasing Cmax,

the optimal result Area(y∗) is further limited by the time budget Tmax. In real-life applications of

water sampling by a USV, an operator can decide which of the budgets to increase. As shown in
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Figure 4, if the cost of increasing 100 units of battery endurance is the same as that of increasing

by one unit of USV load capacity, then increasing the USV load capacity is more effective when

the current capacity is under 18. If the current load capacity is sufficient, e.g., more than 20, then

the operator should invest in increasing USV battery endurance to increase benefits. The previous

insight can also be explained by interpreting Figure 5. The six polylines with Cmax under 18 of the

lower part of Figure 5 remain distributed separately when Tmax increases from 3000 to 3500 because

USV load capacity is the dominant budget. The other five lines of the upper part of Figure 5 may

intersect with each other with increasing Tmax, whereas the intersecting nodes indicate the USV

battery endurance limits.

7. Conclusion

The clustered coverage orienteering problem (CCOP) is in a generalization of the orienteering

problem (OP). It was described in the context of performing water sampling tasks by unmanned

surface vehicles. Two special characteristics distinguish the CCOP from the traditional OP, which

are “cluster” and “coverage” of the CCOP. In order to monitor the whole reservoir considering

the special correlation and differentiation, candidate sampling sites are grouped into clusters. For

each cluster, the minimum sampling sites should be selected to assess the water quality of different

special areas. The water sample collected from each sampling site can represent a certain area of

the water, called the “coverage area”, whereas water samples collected from one cluster may share

common information indicated by the overlapping coverage area of different sampling sites. The

aim of the CCOP is to collect samples to maximize the coverage area of the selected sampling sites.

The total coverage area is the area of the union of the coverage areas of the selected sites but not

their sum. To deal with this non-linear objective function, we linearized the model so that it can

be solved by off-the-shelf solvers for small-scale instances.

The two-stage exact algorithm for the CCOP was then proposed to deal with large instances that

cannot be solved by the off-the-shelf solver. Our two-stage exact algorithm generally provides Pareto

improvements, resulting in superior solutions and shorter computational times compared with

CPLEX implementations: it solves instances with up to 60 vertices and reduces the computational

time by over 70% on average. Hence, the two-stage exact algorithm has the advantages of being

applicable in practice, especially for emergent water sampling tasks, e.g., when facing pollution of

the reservoir. The efficiency and effectiveness of the two-stage exact algorithm can be attributed to

the exploration of the specific problem structure of the CCOP. In the first stage of the two-stage

exact algorithm, the capacity limit of the CCOP and the minimum number of selected sites of each

cluster are both guaranteed. Meanwhile, the second stage only deals with the time limit, which is

a TSP. We believe our work may inspire the construction of future algorithms for the OP, which

is a special case of the CCOP.
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Fischetti M, Salazar González JJ, Toth P (1998) Solving the orienteering problem through branch-and-cut.

INFORMS Journal on Computing 10(2):133–148.
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Appendix A: Two-stage exact algorithm for the CCOP.

Stage 1: A sampling task generator (procedure (a)) produces a set of sampling tasks Y ={
y ∈ {0,1}|V | |

∑
i∈V yi ≤Cmax,

∑
i∈Vr

yi ≥ Smin
r , r ∈R

}
. The coverage area size of y ∈ Y is denoted by

Area (y). A CCOP heuristic (procedure (b)) obtains the initial lower bound for the CCOP, that is, Area(L).

A cut generation (procedure (c)) solves the CCOP relaxation problem to obtain the upper bound for the

CCOP, that is, Area(U). We obtain a remaining task set Y ′(Y ′ ⊂ Y ), in which all the tasks y ∈ Y ′ satisfy

Area(L) ≤Area (y)≤Area(U).

Stage 2: For each y ∈ Y ′, a TSP heuristic (procedure (d)) obtains the TSP upper bound, TSP (y). If

TSP (y)≤ Tmax, remove all inferior tasks y′ ∈ Y ′ that satisfy Area (y′)<Area (y) from Y ′ (procedure (g)).

If TSP (y) > Tmax, a TSP relaxation problem (procedure (e)) obtains the TSP lower bound, TSP (y). If

TSP (y)>Tmax, remove all infeasible tasks y′ ∈ Y ′ that satisfy y′ ≥ y from Y ′ (procedure (h)). If TSP (y)≤

Tmax, an exact TSP solving procedure (procedure (f)) solves the TSP to optimality, that is, TSP ∗(y). If

TSP ∗ (y) ≤ Tmax, remove all inferior tasks y′ ∈ Y ′ that satisfy Area (y′) < Area (y) from Y ′ (procedure

(g)). If TSP ∗ (y)>Tmax, remove all infeasible tasks y′ ∈ Y ′ with y′ ≥ y from Y ′ (procedure (h)). The final

elements in Y ′ are the optimal solutions.
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