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Grid-Functioned Neural Networks

Javier Dehesa 1 2 Andrew Vidler 2 Julian Padget 1 Christof Lutteroth 1

Abstract
We introduce a new neural network architecture
that we call “grid-functioned” neural networks. It
utilises a grid structure of network parameterisa-
tions that can be specialised for different subdo-
mains of the problem, while maintaining smooth,
continuous behaviour. The grid gives the user
flexibility to prevent gross features from overshad-
owing important minor ones. We present a full
characterisation of its computational and spatial
complexity, and demonstrate its potential, com-
pared to a traditional architecture, over a set of
synthetic regression problems. We further illus-
trate the benefits through a real-world 3D skeletal
animation case study, where it offers the same
visual quality as a state-of-the-art model, but with
lower computational complexity and better con-
trol accuracy.

1. Introduction
In the last decades, a huge variety of neural network models
and architectures have been put forward with the purpose of
exploiting particular structures or the properties of different
problem domains. Such is the case with convolutional neural
networks for computer vision or recurrent neural networks
for sequential data. However, beyond the structure of the
data, network architectures rarely look at the data itself
to condition their behaviour. The reason is simple: the
analysis of the data values is left to the individual network
units, according to the parameters that are learnt through
the training process. That is, indeed, the whole intent of
a neural network, whereby data can be largely regarded
as an opaque container of information that is only made
intelligible through the model. Nevertheless, this means
the neural network must attempt to learn a single common
function for the entire domain of the problem at hand. This
is entirely possible, but in some cases it can be challenging
for one model to reliably learn all the patterns hidden in data
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points scattered throughout the whole problem space. For
example, predicting a geographical feature given a latitude
and a longitude can be difficult for a neural network if it
does not have an architecture that reflects the coordinate
system articulating the data.

We introduce grid-functioned neural networks (GFNN), a
novel kind of network architecture that overcomes this limi-
tation through the definition of a multidimensional grid of
neural network experts specialised in different subspaces
of the input domain. The grid experts’ parameters are com-
bined according to the given data, using an interpolation
scheme, to produce a network configuration tailored to each
particular input. As we will show, the result is a continuous
and differentiable model that is able to capture complex
local patterns better than conventional configurations, and
in many cases with smaller inference complexity. Further-
more, GFNN supports a variety of inference methods that
can be used to trade off between accuracy, memory use, and
inference speed. Specifically, our contributions are:

1. The mathematical definition of GFNN.
2. An analysis of the computational complexity of in-

ference for GFNN, as well as different approximate
inference methods.

3. A comparison between the performance of GFNN and
other architectures, namely a standard multilayer per-
ceptron, using a small set of synthetic problems, and a
state-of-the-art 3D animation synthesis model, as part
of a case study.

2. Related Work
Ensembles of experts, in the general sense, have been used
in machine learning for a long time. Classic algorithms like
bagging (Breiman, 1996) or AdaBoost (Freund & Schapire,
1997), which aggregate the results of a collection of learners,
take advantage of the diversity in the ensemble to mitigate
the shortcomings of individual models. This kind of learner
aggregation is very well suited for classification, and it can
also be extended for regression (Drucker, 1997). However,
traditional ensembles are unstructured sets of “weak” learn-
ers for the whole problem, as opposed to a structure of
“strong” models for specific subspaces of it. This prevents
them from exploiting the continuity and simplicity of lo-
cal patterns in the data. In the field of neural networks,
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collections of experts have also appeared in some forms.
The filters of convolutional networks used in computer vi-
sion have been shown to correspond to specific shapes and
patterns of increasing complexity (Zeiler & Fergus, 2014),
forming what could be regarded as an emergent hierarchy
of experts. Variational autoencoders (Kingma & Welling,
2014) feature a probabilistic latent vector that also disen-
tangles the space of the problem into a reduced number of
expert parameters that “describe” the data. The success of
these models comes from the structure they impose in the
way they learn, which proves to be more effective than let-
ting the optimisation process alone find these structures by
itself. Nevertheless, these experts are all still emergent from
the training data. As such, it is not always straightforward
to tell what is the purpose of each expert, and whether the
model will contain adequate experts for a given domain.

Holden et al.’s (2017) phase-functioned neural network
model (PFNN) takes a different approach, where the expert
structure consists of four neural network parameterisations
that become more or less active depending on the given
input data. Each expert specialises in a different, predefined
aspect of the problem at hand (in the original work, 3D
bipedal locomotion animation), which improves the accu-
racy of the model and significantly reduces the averaging
effect commonly seen in neural networks, and together they
cover the whole domain of the problem. However, param-
eterisations in PFNN can only specialise on one feature of
the input data (the locomotion phase), so PFNN is only ap-
plicable to a limited range of scenarios. Subsequent models,
like mode-adaptive neural networks (Zhang et al., 2018) or
neural state machines (Starke et al., 2019), attempt to solve
this limitation by using instead an unstructured pool of ex-
pert parameterisations that become active depending on the
output of a second neural network. This again obscures the
purpose of each expert and makes the overall model signifi-
cantly more sensitive to initialisation. Our proposed GFNN
model starts from PFNN, extending its applicability to an
arbitrary number of specialisation dimensions and experts.

An alternative approach to exploiting locality was intro-
duced by Liu et al. (2018) in their CoordConv model. Their
work showed how conventional convolutional models fail
on an apparently simple coordinate classification task. This
is solved by extending the convoluted data with additional
channels encoding the input coordinate, which allows the
network to learn local patterns. Unlike our proposal, though,
CoordConv does not impose any structure on the model
itself, so the patterns are still discovered and encoded in the
parameters of the whole network, instead of in dedicated
subspaces.

Finally, our work can be examined from the point of view
of implicit neural representations. This is a growing area
in which recent advances are showing great promise (Peng

et al., 2020; Sitzmann et al., 2020), and where our grid
model could be directly applied. The recent work by
Takikawa et al. (2021) for 3D surfaces is comparable to
our approach, as it too associates vectors of parameters with
particular points in space to learn highly-detailed local fea-
tures. Similar to GFNN, these vectors are also interpolated
across the space, with the difference that the interpolated
vector is used as input to a neural network, and not as its
parameters. While we do not analyse GFNN from the per-
spective of implicit representations here, we believe it has
potential for application in this way.

3. Model Construction
Though the underlying concept of GFNN can be applied to
any kind of neural network architecture (e.g. a convolutional
network), we will consider here the case where it is applied
to a traditional multilayer perceptron (MLP) model. Let us
consider the problem of estimating a function f : RDIn →
RDOut from a set of examples X ⊂ f . An MLP for this
problem would be comprised of H ∈ N hidden layers with
corresponding sizes {D1, . . . , DH} ⊂ N. Assuming the
same activation function a is applied to all hidden and output
layers, the perceptron function MLP : RDIn → RDOut is
then expressed as:

MLP(x;θMLP ) = xH+1

x0 = x

xi = a(Wix
i−1 + bi) 0 < i ≤ H + 1

(1)

Where ΘMLP = {(W1, b1), . . . , (WH+1, bH+1)} ∈ RT is
the collection of T parameters to MLP , each pair Wi ∈
RDi×Di−1 and bi ∈ RDi being the weight matrix and bias
vector of the i-th layer, withD0 = DIn andDH+1 = DOut .
This defines a basic neural network model to estimate f .

We now consider the case where f can be “characterised”
by some features of the input. By this we mean there are
K > 0 scalar functions computable from the input of f that
are strongly correlated to the behaviour of the function in
some sense. This set of functions, {p1, . . . , pK}, only have
the requirement that their value must be within a finite inter-
val, which by convention we fix to [0, 1], and so each of them
is notated as pi : RDIn → R. Each function can be assigned
the property of being either “periodic” or “non-periodic”,
which in this context is meant to represent the quality of
being a cyclic feature. For example, a feature representing
an angle (with zero being 0◦ and one being 360◦) can be
considered periodic, as the behaviour of f is expected to be
similar when the feature takes values close to zero and close
to one. The goal is to build a model with multiple parame-
terisations that specialise in the different possible combina-
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Figure 1. Diagram of a GFNN model with a 4× 4 grid of experts.
The set of p functions determines a point in the expert grid space,
which is used to blend the surrounding expert parameterisations (in
orange) using the multidimensional cubic interpolation scheme de-
fined by ψ0. The result is used as the parameterisation to evaluate
the input x on the base network architecture.

tions of values these feature functions may take. Figure 1
describes the overall approach for a two-dimensional case.
We consider the feature vector space P = [0, 1]K and slice
it into an integer number of divisions across each dimension,
{N1, . . . , NK} ⊂ N. These divisions are then arranged in
a grid G = {1, . . . , N1} × . . . × {1, . . . , NK}, and each
g ∈ G has then an associated feature space location given
by c : G→ P :

c(g)i =

{
(gi − 1)/Ni if pi is periodic
(gi − 1)/(Ni − 1) otherwise

(2)

This means that, for non-periodic features, the first and
last divisions are located exactly at zero and one in the
corresponding dimension, while for periodic features the
first division corresponds to both zero and one, while the
last division is located before one.

The GFNN model is composed of a set of expert parameter-
isations Θ = {θKg | g ∈ G} ⊂ RT , each one specialised in
its corresponding c(g). The value of the feature functions,
however, will rarely fall exactly into any of these points.
In the general case, a specialised parameterisation for the
given input is computed as a blend of those in Θ. This
blend could be defined in a variety of ways. Frequently,
models with a smooth behaviour are preferable, and so C1-
continuity may be desirable. Multidimensional cubic spline
interpolation satisfies this property (Catmull & Rom, 1974),
so it is a good choice for us. This is built on the basis
of the one-dimensional cubic spline interpolation function
S : [0, 1]× RT×4 → RT , defined as:

S(α, τ1, τ2, τ3, τ4) = τ1

(
−1

2
α+ α2 − 1

2
α3

)
+ τ2

(
1− 5

2
α2 +

3

2
α3

)
+ τ3

(
1

2
α+ 2α2 − 3

2
α3

)
+ τ4

(
−1

2
α2 +

1

2
α3

)
(3)

This defines a T -dimensional curve from τ2 to τ3 such
that it can be concatenated to another curve from from τ1
to τ2 on one side and from τ3 to τ4 on the other side in
a C1-continuous fashion. Specifically, given a set of pa-
rameterisations {θ1, . . . ,θN} across a grid dimension cor-
responding to a feature function p (evaluated on an input
vector x ∈ RDIn ), we can define the interpolating curve
across all of them as:

Ŝ(p(x), {θ1, . . . ,θN}) = S(α,θt1 ,θt2 ,θt3 ,θt4)

α = β − bβc

β =

{
Np(x) if p is periodic
(N − 1)p(x) otherwise

ti =

{
1 + (bβc+ i− 2 mod N) if p is periodic
min(max(bβc+ i− 1, 1), N) otherwise

(4)

To break down the expression, p is a value that falls in the
interval between the divisions t2 and t3. θt2 and θt3 are
therefore the closest expert parameterisations to the left and
right of p respectively, while θt1 and θt4 are the second
closest experts to the left and right respectively. The value
α ∈ [0, 1) is the relative position of p within the interval.
The definition of the spline interpolation function ensures
that the complete curve (open for non-periodic features,
closed for periodic ones) traverses all the given parameteri-
sations, all while preserving smooth continuity.

The function Ŝ interpolates parameterisations across one
dimension of the grid. Applying it multiple times we can
then interpolate across all of its dimensions. We express this
in terms of a set of functions ψi

∗ : RDIn → RT recursively
defined as:

ψK
j1...jK (x) = θKj1...jK

ψi
j1...ji(x) = Ŝ(pi+1(x), {ψi+1

j1...ji1
, . . . , ψi+1

j1...jiNi+1
})

0 ≤ i < K

(5)
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Each Ψi(x) = {ψi
h(x) | h ∈ NN1×...×Ni} is an i-

dimensional grid of parameterisations obtained after K − i
dimensions have been interpolated. The process ends
at ψ0(x) = Ŝ(p1,Ψ1(x)). This is the interpolated ex-
pert parameterisation for the given value of x. The final
expression of the grid-functioned neural network model
GFNN : RDIn → RDOut , parameterised by Θ, is:

GFNN (x; Θ) = MLP(x;ψ0(x)) (6)

That is, the GFNN model can be summarily described as
an MLP in which the parameters are computed as a smooth
interpolation of a grid of experts.

4. Inference Complexity
Given a base MLP with T parameters, a grid model con-
structed on top of it (where each expert has T parameters)
will have a computational cost of inference significantly
higher than of the base model. However, since each expert
in the grid deals with a subset of the problem, the size of
the base model should be only a fraction of that of a regular
MLP attempting to solve the entire problem. In terms of
space, the grid model will have a total of TK = T

∏K
j=1Nj

parameters. This establishes a hyperparameter for the model
by which, given a budget of model parameters, we can
choose how to distribute them across grids of different sizes.
In terms of time, we must consider two factors: the cost
of the cubic spline interpolation and the cost of the MLP
inference. The cost of the MLP inference depends on the
specific architecture (number and size of layers), and it is
well understood. The cost of the spline interpolation, on
the other hand, is worth analysing. This cost can be esti-
mated as the number of floating point operations carried
out in the process, and it can be derived from eq. (5). Each
intermediate interpolation ψi

j1...ji
(0 ≤ i < K) aggregates

Ni+1 parameterisations. According to eq. (4) and eq. (3),
this involves four interpolation weights (the coefficients that
multiply each τ term) for the four parameterisations closest
to pi+1(x). Note these four coefficients are the same for
every interpolation computed as part of Ψi, and they take a
fixed number of floating point operations FW to compute.
The aggregation itself of the four vectors of T parameters
(after computing the coefficients) takes four multiplications
and three additions per parameter, totalling 7T floating point
operations. The computation of each Ψi(γ) requires inter-
polating

∏i
j=1 min(Nj , 4) grid parameterisations (note that

even for grid dimensions with more than four divisions
only four parameterisations participate in the interpolation).
Putting everything together, the number of floating point
operations required by the cubic spline interpolation FInterp

results in:
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Figure 2. One-dimensional parameter interpolation using spline
interpolation (blue) and linear (orange) and stepwise (green) piece-
wise approximations. Original grid has four points, linear approxi-
mation uses eight precalculated points and stepwise approximation
uses sixteen precalculated points.

FInterp =

K−1∑
i=0

FW + 7T

i∏
j=1

min(Nj , 4)

 (7)

Or more simply:

FInterp ∈ O
(
KT

K∏
i=1

min(Ni, 4)

)
(8)

Following the same method proposed by Holden et al.
(2017) for approximate inference of PFNN, it is possible
to reduce the cost of the interpolation at the expense of
more space and reduced accuracy. Specifically, once the
grid model has been trained, parameter interpolations can
be precalculated for a denser grid of locations, which can
then be used to approximate the spline interpolation. This
approximation can be linear, taking only the pair of parame-
terisations closer to each p, or stepwise, simply taking the
value of the closest one. Figure 2 exemplifies this for one
dimension. Using a larger number of precalculated parame-
terisations in the grid, a linear and a stepwise approximation
can provide a reasonable estimation of the actual spline
interpolation of the parameter.

In the case of linear interpolation, the computation involves
taking the closest 2K parameterisations across all dimen-
sions in the grid and computing the weight for each of
them, which takes KFL operations, where FL is a constant.
The interpolation consists of multiplying the T parameters
of each of those parameterisations with the corresponding
weight and then adding them all. The total number of float-
ing point operation FLinear is then:

FLinear = 2K (T +KFL) ∈ O
(
2K (T +K)

)
(9)
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Grid size Hidden layers Parameters FLOPS

1× 1 (MLP) 100, 100 10 501 20 801
3× 3 31, 31 10 053 24 587
5× 5 18, 18 10 375 15 352
7× 7 12, 12 10 045 7 594

Table 1. Evaluated models. All models have two input units, one
output unit and two hidden layers with the specified number of
neurons.

For stepwise approximation, all the computation is reduced
to finding the closest parameterisation in the grid. This
takes a fixed number of floating point operations FC per
dimension, and thus the total FStepwise is:

FStepwise = KFC ∈ O (K) (10)

This range of evaluation methods offer a degree of flexibility
over the usage of the model, particularly in contexts where
computational resource for inference are limited.

5. Evaluation
In order to evaluate the potential of GFNN as compared
to a conventional MLP model, we take a set of synthetic
regression problems and compare the performance of differ-
ent models with a comparable number of parameters. The
problems are built from two 2D real functions, the Rosen-
brock function (Rosenbrock, 1960) and the Ackley function
(Ackley, 1987), shown in fig. 3. For each problem, 200
points are randomly sampled, 80% of which are used for
training and 20% for evaluation.

Being naturally two-dimensional problems, these cannot
be properly modelled with a one-dimensional structure of
experts like PFNN. We compare the performance of an MLP
and several GFNN models with a 2D grid. Table 1 shows the
evaluated model configurations, all of which have approx-
imately 10 000 parameters. As can be seen, even with the
added parameter interpolation cost, GFNN quickly becomes
less computationally expensive than MLP for larger grid
sizes with smaller experts. ReLU activation (Nair & Hinton,
2010) is used for the hidden layers and linear activation in
the output. Input and output data is normalised with respect
to the mean and standard deviation of the training data. For
the GFNN models, the non-periodic functions p1 and p2 that
determine the point in the grid to activate are derived from
the input x and y values, applying the sigmoid function to
their normalised values. The grids are therefore directly
correlated with the domain of the functions, and each expert
will be specialised in a particular subspace of the problem.

Every model was trained on each problem to minimise the
mean squared error at the output using Adam optimisation

Rosenbrock

Model Median Mean SD

MLP 145.1 266.5 368.3
3× 3 7.7 20.6 50.6
5× 5 4.5 15.9 30.9
7× 7 13.5 43.6 120.0

Ackley

Model Median Mean SD

MLP 1.723 1.776 1.083
3× 3 0.489 0.581 0.402
5× 5 0.492 0.689 0.573
7× 7 0.411 0.615 0.492

Ackley (small region)

Model Median Mean SD

MLP 0.393 0.484 0.228
3× 3 0.028 0.068 0.151
5× 5 0.018 0.052 0.110
7× 7 0.020 0.057 0.106

Table 2. Absolute error statistics of the evaluated models for each
problem.

(Kingma & Ba, 2015). The training ran for 100 000 steps
on batches of 32 examples per step with a fixed learning
rate of 0.001. For the sake of simplicity, and to reduce
the amount of confounding factors affecting the results, no
regularisation mechanisms were used. Results of the exper-
iments can be found in table 2. In general, GFNN models
clearly surpass the MLP in all problems, even though 5× 5
and 7 × 7 models require fewer floating point operations.
The mean and median errors are reduced between 60% and
95% for GFNN, and standard deviation is also significantly
decreased in all cases. It is interesting to note that differ-
ent grid sizes are better suited for different problems. This
shows the potential of the GFNN grid size as a hyperpa-
rameter to the model. The function reconstructions in fig. 3
offer a more intuitive interpretation of the results. Even in
the more difficult case of Ackley, GFNN models can give
a closer approximation of the overall shape of the function.
In the case of Rosenbrock and Ackley (small region), the
MLP reconstructions are very poor in comparison with the
fairly accurate GFNN models.

In order to evaluate the scalability of the models, we ran
another set of experiments over a revised version of the
Ackley problem. We take now 1 200 training samples and
300 testing samples, which should allow the models to cap-
ture the high-frequency detail of the function, and train
more complex configurations with around 60 000 parame-
ters to increase the capabilities of the models, as shown in
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Figure 3. Evaluation problems and reconstructions. Green points in the problem functions represent training data, and orange points
represent evaluation data.
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Figure 4. Reconstructions of the Ackley function for the revised
problem.

table 3. The design of GFNN allows us to adapt the grid
size to the problem, so we can use even larger grids with
smaller experts for this case. This also means that the num-
ber of floating point operations of the GFNN models is even
smaller than before with respect to the MLP. All models are
trained in the same manner as before. The results in table 4
show that, while the new MLP only reduces the mean error
by about 10% with respect to its previous configuration, the
GFNN models improve the best previous result by more
than 60%. It also shows a progression in the accuracy as
the grid size increases, in accordance with the high local
variance of the problem. These results are less practical,
since the size of the training dataset is big enough to get
good estimations by simply interpolating the available data;
nevertheless, GFNN models can even surpass that result, in
stark comparison with the MLP. The function reconstruc-
tions in fig. 4 reveal that, while the MLP is barely any closer
to the actual function shape than before, the GFNN models

Grid size Hidden layers Parameters Flops

1× 1 (MLP) 250, 250 63 751 190 752
7× 7 33, 33 61 495 46 402
10× 10 22, 22 59 500 22 004
14× 14 15, 15 58 996 11 140

Table 3. Evaluated models for the revised Ackley problem. All
models have two input units, one output unit and two hidden layers
with the specified number of neurons.

Model Median Mean SD

MLP 1.556 1.597 0.918
7× 7 0.303 0.380 0.486
10× 10 0.194 0.289 0.264
14× 14 0.148 0.225 0.233

Interp. (1 200 samples) 0.174 0.248 0.238

Table 4. Absolute error statistics for the revised Ackley problem.
Last row shows the error statistics using linear interpolation over
the training data.

are now capable of reproducing most of the detail in the
function surface accurately.

These experiments suggest that not only can GFNN models
learn complex functions more effectively with a lower com-
putational cost, but also they scale better when the parameter
budget is increased, thanks to the flexible grid design.

6. Case Study: Quadruped Locomotion
The capabilities of GFNN have been further evaluated in the
context of a real-world 3D animation problem: quadruped
locomotion synthesis as studied by Zhang et al. (2018) in
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their discussion of mode-adaptive neural networks (MANN).
This is an example of a problem where PFNN (Holden et al.,
2017), which proposed a one-dimensional structure of ex-
perts specialised in the bipedal locomotion phase, cannot be
directly used, due to the inherent complexities of quadruped
locomotion patterns. Instead, the MANN model uses an
unstructured pool of experts activated according to a second
neural network, thus acquiring a specialisation defined by
the training process itself. We compare this model with
GFNN to demonstrate the benefits of a structured grid of
experts and the flexibility of our approach.

The goal of this problem is to predict the pose that a
quadruped character will adopt in the next frame given the
current pose and additional control information (namely
past and future trajectory). We use the same dataset and
input and output encoding presented by Zhang et al., chang-
ing only the model doing the prediction. We define two
non-periodic specialisation dimensions for our models: the
velocity of the character and the angle of the future trajec-
tory. This means our GFNN model will contain a 2D grid
of experts specialised in different combinations of character
speed and control direction. Refer to the supplementary
material for more details on the grid dimension definitions
and data preparation.

We trained a 3 × 3 GFNN model with a base architecture
of two hidden layers with 512 units and ReLU activation,
similar to the expert architecture in the original MANN
model. Following the discussion in section 4 on inference
approximation, we test different model approximations us-
ing linear parameter interpolation with a varying number
of precalculated values in the grid. This offers a level of
control over the cost of evaluating the model, which is crit-
ical in the context of real-time animation. These models
are compared against one MANN model with eight experts,
as proposed by Zhang et al., and another with nine experts,
which matches the number of experts (and thus the number
of parameters) in our GFNN model. Table 5 summarises the
evaluated models. Note that all linear approximation models
have the same inference cost, as the number of experts that
participate in each individual evaluation is independent of
the grid size. In the case of MANN, all experts are always
involved in the inference. Linear approximations accelerate
the evaluation of the slower cubic interpolation model to
make it more than 30% faster than both MANN models.

All models are evaluated over an identical scenario where
the character is instructed to follow a given trajectory at a
certain speed. We first evaluate the accuracy of the models
adhering to the requested control commands, measuring the
deviation from the marked path and the difference between
the requested and actual speed of the character. Table 6
shows these results. While all models exhibit comparable
behaviour in terms of trajectory accuracy, GFNN models

Model MFLOPS Time (ms) Size (MiB)

GFNN
Cubic 3× 3 12.12 7.91 18.9
Linear 3× 3 3.31 3.89 18.9
Linear 5× 5 3.31 3.85 52.5
Linear 7× 7 3.31 3.87 102.9
Linear 9× 9 3.31 3.82 170.2

MANN
8 experts 9.37 5.67 16.8
9 experts 10.47 6.13 18.9

Table 5. Evaluated model configurations for the quadruped loco-
motion problem. All models use a base architecture with two
hidden layers with 512 units each. Grid size of all GFNN models
is 3 × 3. Evaluation time measured on an Intel Core i7-7700K
CPU running at 4.20GHz.

are clearly superior at matching the requested control speed.
Linear approximations have a slightly lower accuracy than
the cubic interpolation model, but are still significantly bet-
ter than MANN, demonstrating the potential of the accuracy,
memory and speed trade-off in inference approximation. We
believe this stark difference between GFNN and MANN
is due to the fact that GFNN has explicitly defined experts
for the different speeds of the character, which results in
a much more reliable behaviour than the emergent exper-
tise on which MANN relies. It is also worth noting that,
seemingly for the same reason, MANN models were also
far more sensitive to training initialisation.

Finally, in order to evaluate the visual quality of the results,
we conducted a user study showing the animated character
traversing the same evaluation path. In this case we limited
the models to the MANN with 8 experts, corresponding
to the originally proposed model, and the GFNN linearly
interpolated on a 7 × 7 grid, which offers a reasonable
balance between quality and size while being significantly
faster than MANN. A total of 43 participants were shown
videos of the character driven by each of the models and
asked to complete a questionnaire about their impressions.
This included questions from a set of scales defined in the
“Animacy” section of the Godspeed questionnaire (Bartneck
et al., 2009), as well as a scale measuring the perceived
realism for each part of the character. The results of the
questionnaire are shown in fig. 5. As can be seen, there
is no significant difference in visual quality as perceived
by the participants. Thus, our model delivers comparable
quality with a more predictable behaviour and more accurate
control, all while reducing the computational cost of the
evaluation. A more extensive discussion of this case study
and results can be found in the supplementary material.



Grid-Functioned Neural Networks

Trajectory (cm)

Median Mean SD

GFNN
Cubic 3× 3 5.7 8.8 8.7
Linear 3× 3 5.0 10.6 11.6
Linear 5× 5 6.5 11.9 11.5
Linear 7× 7 6.0 10.3 10.4
Linear 9× 9 6.2 9.5 9.4

MANN
8 experts 6.9 9.1 7.9
9 experts 7.7 10.0 7.8

Speed (cm/s)

Median Mean SD

GFNN
Cubic 3× 3 22.5 32.2 29.9
Linear 3× 3 23.9 45.0 51.8
Linear 5× 5 21.1 42.0 48.0
Linear 7× 7 21.2 39.3 43.9
Linear 9× 9 21.5 37.0 40.0

MANN
8 experts 79.0 90.9 66.0
9 experts 47.0 65.3 53.9

Table 6. Error statistics for the evaluated quadruped locomotion
models.

7. Discussion
We have introduced GFNN as a new kind of neural network
architecture, that uses a structured grid of expert parame-
terisations to learn local patterns that are integrated in a
single, continuous model. Our evaluation shows that GFNN
can significantly surpass the performance of regular MLP
models, with very promising results both in terms of accu-
racy and inference complexity, and it also offers important
benefits over a state-of-the-art model like MANN due to its
flexibility and predictability.

As described in our model definition, GFNN can be used to
define a grid of arbitrary dimension, making it a particularly
flexible architecture adaptable to any domain where the
space of the problem can be meaningfully broken down into
subspaces. In spite of the complexity introduced by the
cubic spline parameter interpolation, we have shown that
GFNN can actually be faster to evaluate with the appropriate
grid and expert sizes. It also offers different approximate
inference methods that permit trade-off between memory
and accuracy on the one hand and inference time on the other.
This makes it a viable candidate for real-time applications
and other resource-constrained contexts.

It is worth noting that GFNN only defines how the parame-
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Figure 5. Results of the quadruped animation study. Bar size rep-
resents mean value, black lines are 95% confidence intervals.

ters of a given neural network model are computed, but it
does not restrict the shape of that model. That is, it is en-
tirely possible to build convolutional or recurrent networks
that use grid-functioned parameters as described here. Un-
derstanding the utility of GFNN in these and other contexts
is an open question deserving of its own analysis in future
research.

The encouraging results yielded by GFNN in the problems
studied here open the door to a broader exploration of the
possibilities of this architecture in other domains. Although
the origins of the model, as well as the presented case study,
lie in the area of computer animation, we believe fields such
as spatial reasoning or implicit representation, among others,
could take great advantage of our proposal. Future study
of these applications will shed more light on the impact of
the hyperparameters that GFNN introduces (grid shape and
expert size) and the domains for which it holds promise.
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