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Abstract: A discontinuous change in sequential velocity fields is known to generate laminar flow
mixing through the mechanism of streamline crossing. However, previous research has suggested that
a small degree of continuous transition between velocity fields may not necessarily be detrimental.
This study therefore used a modified blinking vortex system with varying degree of continuous
transition to assess the precise effect that this continuous transition has on mixing performance. This
system was studied for the parameters: blinking period, vortex spacing, and the fraction of time spent
in transition. Continuous Eulerian indicators were computed to investigate their correspondence
with Lagrangian-based metrics, such as Intensity of Segregation, under such conditions. The results
showed that up to 30% transition time yielded improvements in mixing, most notably when vortex
spacing was large, and this was consistent across different time periods. The mixing prediction by the
Eulerian indicators, particularly mobility, showed good agreement with actual mixing quality, albeit
not perfectly, suggesting room for refinement in these metrics. Overall, the findings imply that mixing
systems, such as continuous pipe flow-based devices, which are designed assuming a discontinuous
change in velocity fields, might benefit from the presence of a small degree of continuous transition
between discrete states.

Keywords: blinking vortex; chaotic advection; mixing; Eulerian indicators; laminar flow; stirring;
streamline crossing

1. Introduction

Since Aref’s [1] introduction of the blinking vortex system, discontinuous change in
velocity fields, embedding streamline crossing, has been known to be an effective route to
laminar flow mixing by chaotic advection. This discontinuous property has been studied
in other systems such as a partitioned pipe mixer [2–5], a twisted pipe [6,7], a mixer using
helical geometry [8–10], etc.

The partitioned pipe mixer devised by Khakhar et al. [2] contains two rectangular
plates which are orthogonally fixed in a rotating cylinder through which fluids travel by an
axial pressure gradient. The fluids are mixed not only by axially superimposed streamlines
but also by the baker’s transform, which squeezes/stretches fluid material elements and
then cuts and stacks them to create additional layers of the different fluids [11]. This
device was studied further by bifurcation analysis [3], as a generalised partitioned pipe
mixer [4], and as a partitioned pipe mixer with a barrier embedded, under different rotation
protocols [5].

Jones et al. [6] created a twisted pipe to induce chaotic mixing by connecting in
series curved pipe segments at twist angle in the range of 0 to π. The chaotic region was
found to be maximised for π/2, when streamline crossing is at a maximum. Similarly,
Jen et al. [7] tested twisted microchannels in T-shaped mixers from the assumption that
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chaotic advection could be achieved with a simple velocity field by periodically alternating
the angle of the bottom in the channels.

An analogous effect has been implemented in curved channels and helical tubes.
By changing the channel dimension or the sign of curvature, two different flow patterns
are periodically switched like the blinking vortex, which generates chaotic mixing in the
laminar regime without additional microstructures [8,9]. More recently, it was harnessed
by Cookson et al. [10], as a way to generate enhanced mixing in a biological context, by
concatenating in series small amplitude helical pipes. It had previously been found that
small amplitude helical tubes induced swirling flow and in-plane mixing [12], and such
effects could be enhanced by discontinuously connecting velocity fields from different
helical amplitudes.

There are also other papers using the concept of blinking flow patterns. Chaotic
mixing can be produced in cavity flows by alternatively moving the upper and lower
walls [13], in channels by varying shape of grooves (a staggered herringbone mixer) [14],
by embedding barriers [15], and by having a separatrix with secondary flows [16], and in
a micromixer with two-layer serpentine crossing channels [17]. All mixing devices listed
induce a periodic change in velocity fields to give the ‘blinking’ effect, thereby generating
chaotic mixing. This effect was generalised theoretically by Sturman, Ottino, and Wiggins
within the framework of Linked Twist Maps [18], which allowed for rigorous proofs of
mixing bounds for simple mixing scenarios.

This discontinuous change in velocity fields is therefore clearly an important and
useful mechanism for generating mixing. However, Cookson et al. [10] found that the
strict discontinuity in velocity fields that was assumed for their design did not occur in
practice, as there was a short distance over which a continuous transition between the
vortical structures of each component pipe occurred. Comparing the mixing results to those
from an idealised prediction where this discontinuity could be strictly enforced, showed
very similar mixing values and Lagrangian structures, suggesting that some degree of
continuous transition may not necessarily degrade the mechanism behind a discontinuous
change. Only two such geometries were studied in this way, therefore leaving it unclear as
to how general or robust this effect is. Furthermore, Lagrangian-based mixing analysis for
optimisation in their study was computationally expensive.

Attempting to capture the principle mechanisms described in the theory of Linked
Twist Maps, Sturman and Wiggins proposed Eulerian indicators (EIs) [19] as a means
of predicting mixing performance from Eulerian properties alone. The EIs were refined
by others [20,21] to handle continuously varying velocity fields, and may offer a route
to accelerated design optimisation reducing need for Lagrangian calculations as the effi-
ciency of the EIs has been proved in [16,19–22]. However, these metrics are not absolutely
quantitative and different mixing devices are best predicted by a different subset of the
Eulerian indicators.

Therefore, the aims of this study are to assess: (1) the impact, whether detrimental
or beneficial, of a continuous transition regime on a mixing system designed around
discontinuous operation, and (2) how well current Eulerian indicators are able to predict
this mixing. As the degree of transition between velocity fields is not an independent
variable in the helical pipe system, a modified blinking vortex model is chosen here as
the simplest such mixing system and which gives control over this variable and others.
The key findings are that continuous transition improved mixing when vortex spacing
was large, but reduced mixing when vortex spacing was small. Such a trend was quite
constant across different blinking periods although the effects of the vortex spacing were
more noticeable for longer periods. Among the EIs investigated, mobility showed the best
overall prediction of mixing quality but not for all cases, suggesting that current EIs may
need further refinement.
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2. Materials and Methods
2.1. Blinking Vortex with Continuous Transition

While Aref’s blinking vortex model employs two point vortices which alternately
turn on and off, thereby giving a discrete change in velocity fields, a continuous transition
phase was introduced to that system here. Specifically, the point vortex can now move
continuously with a constant velocity between the two fixed points for some or all of
the total time, thus causing the velocity fields to change in a continuous, rather than
discontinuous, manner. The period of the system, T, can be expressed as the sum of the
time spent in the fixed state, t f ixed, and time spent in the transition state, ttrans, as follows:

T = t f ixed + ttrans (1)

Figure 1a is a schematic of the blinking vortex system with the path of the moving
vortex indicated. Figure 1b–d illustrate how the angle of a velocity vector at a given point
(defined with respect to the positive x-axis) varies during a single period of the system.
Figure 1b describes Aref’s blinking vortex system, where the angle is constant for each
fixed vortex, but experiences a discontinuous change at the half period. A pure transition
model is described in Figure 1c where the angle continuously and linearly changes and
returns to the initial point within a period. Figure 1d shows the change in angle for a
system composed of both fixed and transition stages. To reflect the operating order of the
fixed and moving vortex, Equation (1) can be more specifically stated as:

T =
t f ixed

2
+

ttrans

2
+

t f ixed

2
+

ttrans

2
(2)

As in Aref’s system, this model is two-dimensional, with the fluid both incompressible
and inviscid. Particle motion is determined solely by advection via the velocity field, that
is, with no diffusion. To clarify terms used in this paper, the vortex in static and transition
stages will be defined as the fixed and moving vortex, respectively, and a vortex centre will
represent the fixed vortex centre unless it is specified as the moving vortex centre.

2.2. Particle Tracking

Particle trajectories by the fixed vortex were computed by Aref’s mapping [1]. The
equation of motion for a particle in Aref’s blinking vortex model is:

.
ζ =

Γ
2πi

a2 − R2

(ζ − a)(aζ − R2)
(3)

where ζ, Γ, a, and R are a particle position, fixed/moving vortex strength, fixed vortex
centre, and domain radius, respectively. The particle position can be expressed with its
circular trajectory’s centre ζc, radius ρ, and phase angle φ, as follows [1]:

ζ = ζc + ρeiφ (4)

Once the phase angle φt, after time t, is computed, the new position of the particle
after t is [1]:

ζt = ζc + ρeiφt (5)
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Figure 1. A schematic diagram of (a) Aref’s blinking vortex model with moving vortex and the angle
of velocity with respect to the positive x-axis for (b) Aref’s blinking vortex model with motion of the
point vortices between the fixed points of the original vortex positions; (c) pure transition model;
and (d) a system with fixed and moving vortices. Γ, a, and R are vortex strength, vortex centre, and
domain radius, respectively, and the arrows indicate the direction of the vortex or the trajectory of
the moving vortex. A period from 0 to t4 is not (necessarily) equally divided, but t1 and t3 − t2 are
identical and t2 is half of t4.

With t f ixed, 1 and t f ixed, 2 (t f ixed, 1 = t f ixed, 2 = t f ixed/2) being the first and second times
spent in the stationary state within a period, the final particle position during the second
fixed state, ζ f ixed,2 f , can be obtained using ζ f ixed,1, which is calculated by Equation (5),
without switching the vortex centre. With the initial position at ζ f ixed,2i, the trajectory
from ζ f ixed,2i to ζ f ixed,2 f by the second fixed vortex is inverted against the domain centre or
origin, which is identical, by symmetry considerations, to the trajectory from −ζ f ixed,2i to
−ζ f ixed,2 f by the first fixed vortex. The final position by the second vortex is obtained by
returning −ζ f ixed,2 f to ζ f ixed,2 f by inversion again after −ζ f ixed,2 f is calculated by the first
vortex. The merits of this algorithm are that it does not require a generic time integration
scheme for particle tracking and that its simulation time is independent of the period,
which enables faster run-time independent of system parameters.

The particle trajectories during the vortex transition state are however computed by
the MATLAB (Release 2019b, The MathWorks, Inc., Natick, MA, USA) functions ode23
and ode45, which are three-stage and six-stage Runge-Kutta methods to solve ordinary
differential equations, respectively. As the function names indicate, ode23 and ode45 include
both second/third and fourth/fifth order methods in a single step, respectively. This
dual order approach provides an error estimate that enables these adaptive time stepping
schemes to achieve a specified tolerance, unless a fixed time step size is specified instead.
The moving vortex centre varies over time as:

at = (−1)m+1·a
(

1− 4t
ttrans

)
(6)
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where

m =

{
odd numbers, at the f irst moving stage
even numbers, at the second moving stage

(7)

So that at = a at t = 0 and at = −a at t = ttrans
2 for the first half moving period,

and at = −a and at = a for the second. Note that at is defined considering the code
implementation, and, hence, the range of t is from 0 to ttrans

2 , not to ttrans. In practice, ode23
was used to calculate particle distributions, for reasons of computational efficiency as the
difference in accuracy, compared to using ode45, was negligible under a small number
of system iterations. However, Poincaré sections were drawn by ode45 due to the much
greater number of system iterations required to construct these plots. The time step was
tested in the range 10−2 to 10−6 by 10−1. When the time step is smaller than 10−4, a decrease
in RMS error was not noticeably reduced while the run-time significantly increased by a
factor of up to 10. Both a smaller RMS error and shorter simulation time were achieved by
allowing the solver to adjust the timestep automatically. The MATLAB code written for
computing particle distributions, Poincaré sections, and Eulerian indicators is available for
download in the Supplementary Materials.

2.3. Mixing Analysis and Prediction
2.3.1. Lagrangian Approaches

Mixing performance was evaluated qualitatively and quantitively by Poincaré sections
and intensity of segregation, respectively. Poincaré sections provide a useful visualisation
of structures underlying observed mixing behaviour. They represent a periodic sampling of
particle trajectories across a large number of iterations. They may draw out a region of reg-
ular flow, often corresponding to a physical streamline or may have an unstructured region,
generally corresponding to chaotic regions that are associated with good mixing. To create
the Poincaré sections presented here, 15 particles were initially placed at (x, y) = (±0.05, 0),
(±0.2, 0), (±0.35, 0), (0, 0), (0, 0.125), (0, 0.25), (0, 0.375), (0, 0.5), (0, 0.625), (0, 0.75), (0, 0.875),
and (0, 1), and the system was run for 5000 iterations.

To calculate the intensity of segregation measure of mixing, an initial distribution of
red and green particles (503,424 particles in total) is perfectly segregated in the left half and
right half of the domain, respectively. A grid is superimposed onto the domain, permitting
a local concentration, c, to be calculated within a circle located at each grid point as [19]:

c =
number o f red particles

number o f red particles + number o f green particles
(8)

The circle radius was chosen as 0.04 to ensure a sufficient number of particles were
included and a grid size of 0.025 was selected by running convergence tests. The average
concentration over the entire domain is 0.5, with the variance of concentration across the
domain given by [20]:

V(t) = 1
Ngridpoint

Ngridpoint

∑
i=1

(
ci(ri, t)− cavg

)2 (9)

where Ngridpoints, ci(ri, t), and cavg are the number of grid points, a local concentration
at (ri, t), and the averaged concentration over the domain, respectively. The intensity of
segregation is obtained by rescaling Equation (9):

I = 4·V(t) (10)

A value of I equal to 0 and 1 indicates a perfect mixture of particles, and perfect
segregation of particles, respectively.
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2.3.2. Eulerian Approaches

The chaotic nature of particle trajectories in systems with good mixing means that time
steps must in general be very small to obtain acceptable accuracy, meaning that Lagrangian
analysis of mixing is usually computational expensive. Eulerian based methods of mixing
performance are attractive due to their much lower computational cost. The EIs devised by
Sturman and Wiggins [19] (which will be called discontinuous Eulerian indicators or d-EIs)
attempted to predict mixing behaviour from several properties of the discontinuously
changing velocity fields produced in a system. The velocity field in Aref’s blinking vortex
model is [19]:

.
x = − Γ

2π

[
y

(x− a)2 + y2
+

y

(x− R2/a)2 + y2

]
(11)

.
y =

Γ
2π

[
x− a

(x− a)2 + y2
+

x− R2/a

(x− R2/a)2 + y2

]
(12)

By analogy to linked twist maps, Sturman and Wiggins proposed that perpendicular
streamline crossing and strong shear rate applied to adjacent fluid elements would generate
good mixing. The product of those two properties showed good correspondence with
the actual mixing performance, although investigating only one factor would not be
enough to reflect fluid movements by the velocity fields. Note that the comparison was
conducted by examining the qualitative agreement between the corresponding graphs of
Lagrangian and Eulerian results, not by computing numerical errors, as the EIs only enable
relative comparisons and do not provide absolute values, nor are these values within a
predetermined normalised range, as is the case for intensity of segregation.

Those results, however, were dependent on a discrete change of the velocity field.
Therefore, the EIs modified by McIlhany and Wiggins [20] (which will be called continuous
Eulerian indicators or c-EIs) were adopted in this paper to capture the characteristics of
continuously varying conditions. The c-EIs have four indicators: streamline crossing, the
relative rate of velocity change, mobility, and the product of the streamline crossing and
mobility. With the method being based on the time-averaged scheme,

1
T
∫ T

0 f (t)dt = 1
T

[∫ 1
2 t f ixed

0 f1(t)dt +
∫ 1

2 (t f ixed+ttrans)
1
2 t f ixed

f2(t)dt

+
∫ 1

2 (t f ixed+ttrans+t f ixed)
1
2 (t f ixed+ttrans)

f3(t)dt +
∫ T

1
2 (t f ixed+ttrans+t f ixed)

f4(t)dt
] (13)

The integration was numerically calculated using the trapezium rule with a time step
of 10−4, with the singularities at the vortex centres, in Equations (11) and (12), excluded
from the calculations.

The streamline crossing of the c-EIs is conceptually the same as one of the d-EIs but
with a different mechanism, thereby giving the identical result for the pure blinking system.
The angle of a velocity vector with respect to the positive x-axis is averaged by time as [20]:

〈θ(r; ε)〉t ≡
1
T

∫ T

0
θ(r, t; ε)dt (14)

where r and ε include space and system parameter information, respectively. After
Equation (14) is adjusted to be between −π

2 and π
2 , the RMS value is computed, which

is followed by the second rescaling, α(r; ε), to make the range between 0 and π
2 . The

streamline crossing is obtained by a spatial average [20]:

α(ε) = 〈α (r; ε)〉r (15)
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The second indicator is computed by averaging the relative rate of velocity change
over time and then on the domain, as follows [20]:

dw(r, t; ε) = lim
∆t→0

||v(r, t + ∆t; ε)− v(r, t; ε)||
||v(r, t + ∆t; ε)||+||v(r, t; ε)|| (16)

w̃(r; ε) =
1
T

∫ T

0
dw(r, t; ε)dt (17)

ζ(ε) = 〈w̃ (r; ε)〉r (18)

As for the mobility, the velocity for fast-changing flows and slow-changing flows are
defined as [20,23]:

v f ast(r; ε) ≡ 1
T

∣∣∣∣∫ T

0
v(r, t; ε)dt

∣∣∣∣ (19)

vslow(r; ε) ≡ 1
T

∫ T

0
|v(r, t; ε)|dt (20)

which is based on the notion that the cancellation of velocity vectors has greater importance
for fast-changing flows. The integrated velocity magnitude can be expressed as [20]:

vsum(r; ε) ≡
(

1− e−w̃(r;ε)
)

v f ast(r; ε) + e−w̃(r;ε)vslow(r; ε) (21)

which implies that v f ast(r; ε) is dominant with the high relative rate of velocity change
while vslow(r; ε) is the main contributor to vsum(r; ε) with the low rate. To calculate the
mobility, the threshold velocity is defined as [20,23]:

vthresh =
〈
〈vsum (r; ε)〉r〉ε (22)

If vsum(r; ε) exceeds vthresh(r; ε), I(r; ε) is assigned a value of 1, and the mobility is
computed by averaging I(r; ε) on the domain, as follows [20]:

I(r; ε) =

{
1 i f vsum(r; ε) ≥ vthresh
0 otherwise

(23)

η(ε) ≡ 〈I (r; ε)〉r (24)

The final indicator, γ(ε) is the product of the streamline crossing and mobility:

γ(ε) = α(ε)η(ε) (25)

2.4. Study Methods

As in Aref’s paper, dimensionless parameters were defined as [1]:

µ =
ΓT

2πR2 (26)

ν =
a
R

(27)

So that µ = T and ν = a when Γ = 2π and R = 1, and the ratio of transition time to a
period is:

rtrans =
ttrans

T
=

ttrans

µ
(28)

These three parameters were varied to observe their effects on mixing performance and
how they interact to improve or worsen the mixing quality. The comparisons were carried
out for both a fixed number of system iterations and for fixed total time (= µ× iterations).
Lagrangian analysis was conducted mainly for the interpretation of the mixing behaviour
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and determination of the system parameters’ effects. These results were compared to the
Eulerian indicator results to assess their accuracy at predicting mixing quality.

3. Results
3.1. Lagrangian Mixing Analysis

Mixing performance was evaluated for three parameters—continuous transition time
(ttrans), vortex spacing, and blinking period—which interact with one another, thereby
providing different results with a different set of the parameters. Mixing analysis was
conducted with continuous transition varying either µ or ν to observe their interactions and
mainly focused on phenomena occurring between the fixed vortices where the essential
effect of the continuously moving vortex appears to be focused. First, the analysis was
conducted comparing results from a fixed number of iterations to discover the effects of
the parameters at each µ. However, as a longer period, for an equal number of iterations,
gives more time for the system to mix, the effects were re-examined, keeping the total run
time constant.

3.1.1. Qualitative Analysis

Before making quantitative comparisons, it is useful to compare the mixing produced
in the different systems qualitatively. Poincaré sections are visually instructive for under-
standing and comparing the nature of the mixing behaviour of a system, particularly for
identifying islands of regular flow. Figure 2 shows Poincaré sections and particle distribu-
tions for µ = 1 and ν = 0.5 and includes the minimum I (or the best mixing) at rtrans = 0.3
and maximum at rtrans = 0.9. From rtrans = 0.0 to 0.3, there are no significant islands of
no-mixing in the Poincaré sections, only some small islands near the circular boundary. At
rtrans = 0.4, however, a noticeable island appears due to overlapped analogous streamlines
around the moving vortex centre, and this island grows as rtrans increases. The islands
observed in these Poincaré sections are spatially co-located with the areas of unmixed
coloured particles in the particle distribution plots, which demonstrates that the islands
are functioning as a barrier to particle transport, and thus are preventing the mixing of
fluid between the inside and outside of the islands. In contrast, in the chaotic regions, it is
observed that particles are well mixed.

Although Poincaré sections may provide an intuitive understanding of chaotic be-
haviour and mixing performance, it is somewhat difficult to clearly distinguish which
system produces better mixing quality when significant differences between the Poincaré
sections are not readily apparent. Such differences are quantified by the intensity of segre-
gation (in Section 3.1.2), but it remains unsolved to explain why mixing performance does
not straightforwardly increase or decrease in the presence of islands. The Poincaré sections
show how well particles are mixed in the system given sufficient time, but not the rate of
mixing or rate of approach to an asymptotic state.

Examining the sequence of particle distributions within a single iteration reveals the
physical processes that generate the fluid mixing. Figure 3 shows snapshots of the particle
distributions, within one iteration, for the best mixing case (as quantified by I), that is
rtrans = 0.3 with µ = 1 and ν = 0.5. As seen in Figure 3a, the first half period initially
contributes less directly to the fluid mixing but rather acts to bring different species near
to the fixed vortices. Figure 3b reveals that the second fixed vortex in the period creates
circular layers of stretched material filaments around the vortex centre, which appear to
be beneficial once the moving vortex is able to take particles from one side to the other
(see Figure 3c,d).
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Figure 3. Particle distribution at (a) t = 0.5 (half period); (b) 0.85 (after the second fixed vortex); (c) 0.9 (under moving
vortex); and (d) 1.0 (after a single period) with µ of 1, ν of 0.5, and rtrans of 0.3.

The mixing performance of the system was found to depend on the ratio of t f ixed and
ttrans. As the stationary vortex produces filament layers while the moving vortex transports
particles between the fixed vortex centres, the system’s mixing performance is reduced
if the time spent in either stationary or moving regimes is too short. In Figure 4, the best
mixing performance is at rtrans = 0.3 while the worst is at rtrans = 0.9. When the rtrans is
lower than 0.3, the moving vortex cannot take particles to the other side effectively due
to its near-instantaneous movements, whereas the higher rtrans would not allow the fixed
vortex to create sufficient filament layers. Given that the fixed vortex produces no layers at
rtrans = 0.9 and the moving vortex creates the layer along its trace, the pure transition is
more beneficial to enhance mixing quality than rtrans of 0.9.
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3.1.2. Quantitative Analysis

The coloured particle distribution plots were then analysed using the intensity of
segregation metric, I, to provide a quantitative comparison of mixing performance. The
effect of continuous transition and source spacing on mixing quality at each period for
a fixed number of iterations of 10 is shown in Figure 5, where I is plotted against rtrans,
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varying from 0.0 to 1.0 in increments of 0.2, for different values of ν and µ. Given that
a smaller value of I corresponds to better mixing performance, with the introduction of
the moving vortex, the mixing quality is improved for large ν while the inverse is true
for small ν. The continuous transition contributes to efficient particle transport and a
decrease in discrete properties. When the vortices are adjacent, the mixing is already very
effective due to the strong interactions between the point vortices, and the movement of
the vortex removes the benefit of the discontinuously changing velocity fields. On the other
hand, the stationary vortices positioned near the boundary (i.e., without any continuous
transition) do not benefit from the discontinuous change in velocity fields due to the weak
vortex interactions arising from the inverse relationship between velocity and radius. This
means that the strongest part of each vortex’s velocity field is in the region where only a
single species (colouring) exists. This poor mixing can be enhanced by the moving vortex,
which acts to physically transport particles as the vortex centre moves between the two
fixed positions.
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Figure 5. The effect of the transition time (rtrans) and fixed vortex centre (ν) on mixing performance (I) with fixed iterations
of 10, which indicates that (a) total time is 0.5; (b) 1.25; (c) 2.5; (d) 5; and (e) 10 with different periods (µ).

Another feature of Figure 5 is that the longer period produces better mixing quality
when comparing across a fixed number of iterations; for example, the performance with
ν of 0.1 (blue lines in Figure 5) is improved as µ increases, which is also true for other
cases. However, it does not guarantee that long periods are beneficial for mixing, in that
the total time that each system experiences is different for the same number of iterations.
For instance, the total time is only 0.5 for the shortest period while it is 10 for the longest of
those studied here. Therefore, the better mixing performance may simply be caused by the
longer total time that the system operates for and so results will also be compared for fixed
total time.

The results with the same set of parameters but now with the fixed total time (equal
to 10), are found in Figure 6 where the trend observed for fixed total iterations is no longer
always the case. It is still true for low rtrans, but the improvements can be achieved with
short µ as rtrans increases with exceptions for the large spacing. Since the mixing behaviour
with zero transition is governed by discrete properties, that is streamline crossing, it is
more beneficial to specify a long time period, so that a particle can escape from its previous
streamline and then travel in a different direction on a new streamline as in Aref’s system.
In contrast, the system with pure transition is wholly driven by the moving vortex; thus,
the more frequently the moving vortex stirs the fluid or the region between the fixed vortex
centres experiences the stronger regions of the velocity fields, the better mixing quality can
be obtained. However, the trend does not hold for the combination of large spacing and
small period. In Figure 6e, an I of 0.3052 with µ = 1.0 improves to 0.1099 with µ = 0.25
in Figure 6c, but worsens to 0.2335 when µ = 0.05 in Figure 6a. As shown in Figure 7a–f,
increasing the system period produces larger islands of regular flow, thereby producing an
unmixed area. The same appears the case for the large source spacing in Figure 7g–i where
the island at the domain origin becomes large as µ increases. In Figure 7g, however, the
seemingly chaotic region actually consists of many small-scale islands which trap particles
inside separating them from the rest of the domain. Although this may be difficult to
discern in a Poincaré section created with a full set of sample particles, it was found that the
large chaotic regions were indeed divided into smaller chaotic regions when the Poincaré
sections were created from a single particle in turn. Figure 7j shows the resultant patterns
of layers of unmixed particles separated by such areas.
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In both Figures 5 and 6, the effect of vortex spacing appears to be qualitatively the same
across the plots. The results for the pure blinking model agree with those of [1,19], that is,
the conclusions that longer periods and small source spacing enhance mixing performance.
As the total time of system operation is longer in the plots of Figure 6 (except for µ of
1.0 when it is equal), the results in Figure 6 reveal better mixing performance than the
corresponding plots in Figure 5. Specifically, for large vortex spacing running the system for
more iterations only improves mixing by less than 10%, whereas the mixing performance
can be improved by up to 68% for small vortex spacing, for the pure blinking model.
Vortices with a large spacing do not interact effectively (unless some continuous transition
has been introduced), such that additional iterations provide little benefit. Furthermore, it
is more noticeable in Figure 6 that the positive correlations between I and rtrans for small v
do not reveal noticeable differences, compared to the broad source spacing. The continuous
transition has relatively little effect on the mixing performance for small spacing while a
sharp drop in I is found with even a small fraction of transition time for large spacing,
as the inefficiency of the largely spaced vortex system can be significantly improved by
the moving vortex. If the transition time is long enough to give the effects described in
Figure 3c,d, increasing rtrans becomes less important afterwards. However, as for short µ,
the transition time is also short in absolute terms, so the effect of rtrans is less significant
than for long µ.

3.2. Eulerian Mixing Analysis
3.2.1. Discontinuous Eulerian Indicators

The tests with the d-EIs varying the vortex centre at different rtrans showed good
prediction by the product of streamline crossing and shear rate, but only when the system
was operated by a pure blinking vortex. With continuous transition introduced, the
agreements with the actual mixing performance were mainly eliminated. The d-EIs,
which capture discrete properties, were no longer suitable once rtrans was greater than 0.2;
therefore, the c-EIs were chosen for the more thorough investigation into how to predict
mixing performance for these cases. Figure 8 compares the mixing prediction of the d-EIs
and c-EIs. Even in the case of the pure blinking model without continuous transition, the
c-EIs provide a better prediction, albeit only for mobility.

3.2.2. Continuous Eulerian Indicators

Table 1 summaries a qualitative assessment of the strength of the correlation between
various Eulerian indicators and intensity of segregation, for a range of values of vortex
centre and period. The correlation was classified as Poor (P), Medium (M), and Good (G),
with each table cell representing a graph of the intensity of segregation, (I) (left y-axis) and
one of the Eulerian indicators (α, ζ, η, or γ) (right y-axis) versus the ratio of continuous
transition (rtrans). Minor or localised discrepancies were ignored when the mixing quality
was assessed as Good. For instance, the evaluation of the first plot in Figure 9a is found
in Table 1 with µ of 0.05 and ν of 0.1, which is the upper left box for streamline crossing,
denoted as G. Due to the c-EIs not being an absolutely quantiative measure, each evaluation
was conducted with qualitative criteria instead of computing numerical errors. If the overall
trend between the Lagrangian and Eulerian results was agreed, it was assessed as Medium,
and if not, it was classed as Poor. Only when both the overall trend and the shape of the
graph were in general agreement was the prediction classified as Good. Some examples
for the classifications can be found by comparing Table 1 and Figures 9 and 10. Note that
the y-axis of the c-EIs, whose correlation with mixing performance is positive, has been
reversed to make clearer that the agreement with intensity of segregation indicates that the
particular c-EI is a good predictor of mixing.



Fluids 2021, 6, 10 16 of 23

Fluids 2021, 6, x FOR PEER REVIEW 16 of 24 
 

 
(a) (b) (c) 

(d) (e) (f) 

Figure 8. Comparison between d-EIs (the first row) and c-EIs (the second). The indicators are (a) streamline crossing; (b) 
shear rate; (c) the product of the streamline crossing and shear rate; (d) streamline crossing; (e) the relative rate of velocity 
change; and (f) mobility. 

3.2.2. Continuous Eulerian Indicators 
Table 1 summaries a qualitative assessment of the strength of the correlation between 

various Eulerian indicators and intensity of segregation, for a range of values of vortex 
centre and period. The correlation was classified as Poor (P), Medium (M), and Good (G), 
with each table cell representing a graph of the intensity of segregation, (𝐼) (left y-axis) 
and one of the Eulerian indicators (𝛼 , 𝜁 , 𝜂 , or 𝛾 ) (right y-axis) versus the ratio of 
continuous transition (𝑟 ). Minor or localised discrepancies were ignored when the 
mixing quality was assessed as Good. For instance, the evaluation of the first plot in Figure 
9a is found in Table 1 with 𝜇  of 0.05 and 𝜈  of 0.1, which is the upper left box for 
streamline crossing, denoted as G. Due to the c-EIs not being an absolutely quantiative 
measure, each evaluation was conducted with qualitative criteria instead of computing 
numerical errors. If the overall trend between the Lagrangian and Eulerian results was 
agreed, it was assessed as Medium, and if not, it was classed as Poor. Only when both the 
overall trend and the shape of the graph were in general agreement was the prediction 
classified as Good. Some examples for the classifications can be found by comparing Table 
1 and Figures 9 and 10. Note that the y-axis of the c-EIs, whose correlation with mixing 
performance is positive, has been reversed to make clearer that the agreement with 
intensity of segregation indicates that the particular c-EI is a good predictor of mixing. 

  

Figure 8. Comparison between d-EIs (the first row) and c-EIs (the second). The indicators are (a) streamline crossing; (b)
shear rate; (c) the product of the streamline crossing and shear rate; (d) streamline crossing; (e) the relative rate of velocity
change; and (f) mobility.

In Table 1, patterns dividing the classifications can be found for streamline crossing and
relative rate of velocity change, although the patterns are less obvious for both mobility, and
the product of streamline crossing and mobility. Configurations with the fixed iterations,
denoted in the round brackets, are found not to significantly alter the trend with the fixed
total time; that is, such variations do not appear globally and there were no jumps between
the highest and worst assessment. In terms of the vortex spacing, it can be roughly said
that the mixing performance would become worse for the small spacing while it would be
improved for the large spacing as the ratio of continuous transition increases; therefore, in
this case, the values of I and the c-EIs should increase and decrease, respectively, when the
vortices are close, and vice versa.

For the first c-EI, streamline crossing, increasing continuous transition eliminates the
discrete change of velocity fields, so perpendicular streamline crossing rarely occurs. To be
more specific, the effect of the continuous transition can be interpreted as either positive or
negative with respect to the angle of velocity vectors. Note that the streamline crossing
metric only views the perpendicular angle as beneficial without considering the direction
of velocity vectors. The angle between the velocities by two fixed vortices is almost 90◦ just
above/below each vortex centre; for example, above the left vortex centre, the velocity by
the left vortex is horizontal while one by the right vortex is almost vertical. This should
be beneficial for the pure blinking model, but the angle would be divided into smaller
angles with the continuous transition, meaning continuous transition has a negative effect
on mixing around the vortex centres. On the other hand, the direction of the velocities
between the vortex centres is almost opposite just over/below the x-axis. By dividing
this angle, it can be reduced to close to 90◦ when only one single point of the transition is
considered. Although the continuous transition would not cause the angle to be divided
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into approximately two right angles, it still gives a positive influence, meaning continuous
transition has a positive effect on mixing between the vortex centres. Between the vortex
centres, however, the velocity vectors by the left/right vortices and transition are aligned
vertically on the x-axis and around the domain centre, meaning a roughly neutral effect
around the domain centre. Thus, the value of streamline crossing is always small regardless
of the continuous transition. When the fixed vortices are adjacent, the effect between the
centres is negligible and therefore the negative effect of continuous transition dominates the
calculation, thus decreasing α for small vortex spacing, while both positive and negative
effects combined effects are detected for a larger vortex spacing. As the region between
the fixed vortices is larger, the positive effects spread first until the expansion is prohibited
by the domain centre, and the value starts to decrease by the negative effects around the
vortex centres (see Figure 11a–c).

Table 1. Comparisons between Lagrangian and Eulerian results for fixed total time. The agreements
are assessed as Poor (P; yellow, overall trend disagreed), Medium (M; green, overall trend agreed),
and Good (G; blue, overall trend and the shape of graph agreed). The indicators in parentheses
represent the corresponding results for the case of fixed iterations, where this is different to the trend
for fixed total time.

µ

0.05 0.125 0.25 0.5 1.0
Streamline crossing

ν

0.1 G(M) M(G) M G(M) G
0.3 P P M(P) M G
0.5 P P P P M
0.7 P P P P P
0.9 P P P P P

Relative rate of velocity change

ν

0.1 P P P P P
0.3 M(P) P P P P
0.5 M M M P P
0.7 G G(M) M M P
0.9 G M(G) M(G) M(G) M

Mobility

ν

0.1 G(M) M(G) M M M
0.3 P P M(P) M G
0.5 G G G P P
0.7 G G(M) M M P
0.9 M(G) M(G) M M(G) M

Product of streamline crossing and mobility

ν

0.1 G(M) M(G) M G(M)↑ G↑
0.3 P P M(P) M G
0.5 P↓ P↓ P↓ M↑ M↑
0.7 G G(M) M M P
0.9 M(G) M(G) M M(G) M



Fluids 2021, 6, 10 18 of 23

Fluids 2021, 6, x FOR PEER REVIEW 17 of 24 
 

Table 1. Comparisons between Lagrangian and Eulerian results for fixed total time. The agreements are assessed as Poor 
(P; yellow, overall trend disagreed), Medium (M; green, overall trend agreed), and Good (G; blue, overall trend and the 
shape of graph agreed). The indicators in parentheses represent the corresponding results for the case of fixed iterations, 
where this is different to the trend for fixed total time. 

 
𝝁 

0.05 0.125 0.25 0.5 1.0 
Streamline crossing 

𝝂 

0.1 G(M) M(G) M G(M) G 
0.3 P P M(P) M G 
0.5 P P P P M 
0.7 P P P P P 
0.9 P P P P P 

Relative rate of velocity change 

𝝂 

0.1 P P P P P 
0.3 M(P) P P P P 
0.5 M M M P P 
0.7 G G(M) M M P 
0.9 G M(G) M(G) M(G) M 

Mobility 

𝝂 

0.1 G(M) M(G) M M M 
0.3 P P M(P) M G 
0.5 G G G P P 
0.7 G G(M) M M P 
0.9 M(G) M(G) M M(G) M 

Product of streamline crossing and mobility 

𝝂 

0.1 G(M) M(G) M G(M)↑ G↑ 
0.3 P P M(P) M G 
0.5 P↓ P↓ P↓ M↑ M↑ 
0.7 G G(M) M M P 
0.9 M(G) M(G) M M(G) M 

In Table 1, patterns dividing the classifications can be found for streamline crossing 
and relative rate of velocity change, although the patterns are less obvious for both 
mobility, and the product of streamline crossing and mobility. Configurations with the 
fixed iterations, denoted in the round brackets, are found not to significantly alter the 
trend with the fixed total time; that is, such variations do not appear globally and there 
were no jumps between the highest and worst assessment. In terms of the vortex spacing, 
it can be roughly said that the mixing performance would become worse for the small 
spacing while it would be improved for the large spacing as the ratio of continuous 
transition increases; therefore, in this case, the values of 𝐼 and the c-EIs should increase 
and decrease, respectively, when the vortices are close, and vice versa. 

 
(a) 𝜈 = 0.1 

Fluids 2021, 6, x FOR PEER REVIEW 18 of 24 
 

 
(b) 𝜈 = 0.3 

 
(c) 𝜈 = 0.5 

 
(d) 𝜈 = 0.7 

 
(e) 𝜈 = 0.9 

Figure 9. Comparison between 𝐼 (blue lines) and c-EIs (orange lines) with 𝜇 of 0.05. From the left, the indicators are 
streamline crossing, the relative rate of velocity change, mobility, and the product of streamline crossing and mobility. 
The intensity of segregation was calculated with the identical total time, equal to 10. 

 
(a) 𝜈 = 0.1 

Figure 9. Comparison between I (blue lines) and c-EIs (orange lines) with µ of 0.05. From the left, the indicators are
streamline crossing, the relative rate of velocity change, mobility, and the product of streamline crossing and mobility. The
intensity of segregation was calculated with the identical total time, equal to 10.



Fluids 2021, 6, 10 19 of 23

Fluids 2021, 6, x FOR PEER REVIEW 18 of 24 
 

 
(b) 𝜈 = 0.3 

 
(c) 𝜈 = 0.5 

 
(d) 𝜈 = 0.7 

 
(e) 𝜈 = 0.9 

Figure 9. Comparison between 𝐼 (blue lines) and c-EIs (orange lines) with 𝜇 of 0.05. From the left, the indicators are 
streamline crossing, the relative rate of velocity change, mobility, and the product of streamline crossing and mobility. 
The intensity of segregation was calculated with the identical total time, equal to 10. 

 
(a) 𝜈 = 0.1 

Fluids 2021, 6, x FOR PEER REVIEW 19 of 24 
 

 
(b) 𝜈 = 0.3 

 
(c) 𝜈 = 0.5 

 
(d) 𝜈 = 0.7 

 
(e) 𝜈 = 0.9 

Figure 10. Comparison between 𝐼 (blue lines) and c-EIs (orange lines) for 𝜇 = 1.0. From the left, the indicators are stream-
line crossing, the relative rate of velocity change, mobility, and the product of streamline crossing and mobility. The in-
tensity of segregation was calculated with the identical total time, equal to 10. 

For the first c-EI, streamline crossing, increasing continuous transition eliminates the 
discrete change of velocity fields, so perpendicular streamline crossing rarely occurs. To 
be more specific, the effect of the continuous transition can be interpreted as either 
positive or negative with respect to the angle of velocity vectors. Note that the streamline 
crossing metric only views the perpendicular angle as beneficial without considering the 
direction of velocity vectors. The angle between the velocities by two fixed vortices is 
almost 90  just above/below each vortex centre; for example, above the left vortex centre, 
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This should be beneficial for the pure blinking model, but the angle would be divided into 
smaller angles with the continuous transition, meaning continuous transition has a 

Figure 10. Comparison between I (blue lines) and c-EIs (orange lines) for µ = 1.0. From the left, the indicators are streamline
crossing, the relative rate of velocity change, mobility, and the product of streamline crossing and mobility. The intensity of
segregation was calculated with the identical total time, equal to 10.
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Figure 11. Time-averaged EI values over the domain for (a–c) streamline crossing and (d–f) relative rate of velocity change
and (g–i) the contour of vsum with µ of 1.0 and ν of 0.9. From the left, each column represents rtrans = 0.0, 0.5, and 1.0. The
white line in the last row denotes vthresh, equal to 14.4992. Note, the colour bar range for mobility is fixed at 0 to 100 in order
to highlight the region where vsum is greater than vthresh.

As seen in Figures 9 and 10, the value of the relative rate of velocity change linearly
increases regardless of the system parameters. Given that the velocity field has a singularity
at the vortex centre, the velocity magnitude near to the centre is extremely large, and
therefore the higher values of rtrans would result in the larger calculated values of this EI
(see Figure 11d–f). As for the mobility, from Figure 11d–f and Equations (20)–(22), w̃ is high
around/between the vortex centres, so ν f ast dominates the calculation of νsum and velocity
cancellation is important. For the pure blinking model, the directions of the velocity vectors
by the fixed vortices are (nearly) opposite, and the differences in velocity magnitude are
trivial unless the velocities are very close to the vortex centres. However, in the region
around the centres where the velocities are aligned, it is not meaningful to distinguish
ν f ast and νslow , and only the magnitude contributes to the EI. As the former effect of the
continuous transition is positive and the latter would be negative, the resultant effect would
be beneficial for large vortex spacing but not for the small spacing. Although a value of
νsum at each point can be reduced with the continuous transition, η is computed based on
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the size of the region where νsum is faster than νthresh (indicated by the white contour in
Figure 11g–i). Therefore, η decreases and increases for the small and large vortex spacing,
respectively. Unlike for streamline crossing, the combined effect of α for large ν was not
observed, as the mobility is only contingent on the region having νsum bigger than νthresh.
Consequently, it could be concluded that the trend of mixing performance with small and
large ν would be more likely to be predicted by the first and second c-EI, respectiely, while
the mobility is expected to predict both cases.

Although such graph trends are inferred by rough explanations, and the graph shape
can be somewhat different, especially for I, the expectation is, notwithstanding, quite
precise in Table 1. It is observed that the mixing prediction is strong at small ν for the
streamline crossing while the relative rate of velocity change shows good prediction at
large ν. As for the mobility, the prediction is quite well achieved overall, but is Poor in
a few cases. This could be because the inversion of the trend from small to large ν is
inaccurately predicted, such as is shown in the third plots in Figures 9b and 10c. Another
explanation might be that the prediction of mobility appears monotonically, so that the
detailed properties of the mixing behaviour are not captured well, as seen in Figure 10d.

The product of the steamline crossing and mobility was expected to provide a better
prediction than the previous two c-EIs, based on the conclusions of McIlhany and Wig-
gins [20], which was however found to not always be the case in this study. In Table 1, the
evaluations for the product of these two quantities in bold type indicates a difference from
the mobility, and the up/down arrows denote an improved/worsened prediction by the
product, respectively. The improvements in prediction seem to be randomly distributed,
with no clear pattern, and in some case reducing the correlation between the c-EI and
mixing. Overall, mobility appears to be a better predictor of mixing performance with
more Good correlations and fewer Poor.

3.3. Computational Efficiency

The high computational cost of Lagrangian mixing analysis has motivated the creation
of EIs. Though they are less accurate and do not provide absolute quantification of the
mixing performance, their substantially lower computational cost is attractive. For particle
tracking, the run-time is dependent on the number of iterations, system period, and for
this study, it was also affected by the ratio of the continuous transition, as particle tracking
for the fixed vortex position was computed using Aref’s mapping, which has a fixed
computational cost.

The total run-time for the Lagrangian approaches ranged between 5668 s and 110,234 s
while it was between 1.14 s and 686 s for the c-EIs. Although the c-EIs require a longer
run-time than the d-EIs (which had an averaged run time of just 0.2034 s), c-EIs can give a
more precise prediction of mixing, for both discontinuous and continuous states, than the
d-EIs, for a total run time still much shorter than Lagrangian-based methods.

4. Discussion
4.1. Findings and Implications

Previous research [1,19] into the blinking vortex model highlighted that vortices
placed closed together and run for a long period, led to good mixing performance, which
was confirmed here for cases without continuous transition. Introducing a continuous
transition phase did not improve mixing for small vortex spacing, however when mixing
was poor, such as for large vortex spacing, the transition regime enhanced the interaction of
these vortices and improved the mixing. Similarly, in some cases the continuous transition
also improved mixing performance in systems with a shorter time period.

Such findings imply that, as in [10], a complete discontinuity is not strictly necessary
for good mixing in systems based on a streamline crossing principles. This is useful for
engineering applications, particularly for continuous flow pipe-based systems, where a
strict discontinuity may be impossible to achieve.
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Discontinuous EIs were no longer accurate once more than a small amount of continu-
ous transition was introduced to the system. The continuous EIs, mobility and the product
of the streamline crossing and mobility, in general showed good agreement with the actual
mixing performance. Although it was not explicitly stated whether the latter showed a
better performance than the former did in [20], it did not for this study. The prediction of
mixing by this product was improved in some cases and worsened in others. In contrast to
the monotonic prediction of the c-EIs, the variations of I were not as simple, due to a range
of physical effects, as discussed in Section 3.1.1, which the c-EIs appear unable to capture.

4.2. Limitations and Future Work

The blinking vortex model is somewhat unrealistic in that it is inviscid and contains
singularities at the vortex centres. The point vortices could be renormalised to remove
these singularities, though it is expected that the overall phenomena would be preserved.
A more significant limitation is that there is only a single region of closed streamlines. A
more complicated flow, such as one containing at least one separatrix should be tested to
see if the key findings still apply.

The system parameters and the transition motion were kept simple here. However,
there are many system parameters that could be varied, for example, asymmetric vortex
positioning, more than two vortices, order of vortex activation, and nonlinear trajectories
of the point vortices. Appropriate manipulation of the latter variable might help to reduce
the size of islands of regular flow, particularly for large vortex spacing.

The c-EIs showed good performance for predicting overall mixing behaviour in
the presence of the moving vortex. However, given that the assessment conducted in
Table 1 was quite generous and the c-EIs were less likely to capture finer details of the
mixing, it seems that further improvements are required to Eulerian indicators so that they
can capture all of the flow features that contribute to mixing.

5. Conclusions

The results showed that up to 30% transition time between discrete states was either
neutral or beneficial for the mixing performance, with the biggest benefit observed for cases
where the mixing from the blinking protocol was poor, e.g., due to large vortex spacing.
The biggest improvement in mixing, observed for rtrans of 0.2, was an increase of 62.4%
when µ = 1.0 and ν = 0.9, while the worsened performance for ν = 0.1 was less than 5%.
This effect was generally consistent across the different blinking periods although very
short blinking periods did not follow the same trend. Finally, for this system, mobility was
the EI that most accurately characterised the mixing performance. However, there were
still some parameter cases where its agreement with actual mixing performance was poor,
with the EIs unable to capture the benefits of this small amount of transition, suggesting
that improved EIs may be needed. Overall, these results suggest that mixing systems, such
as continuous pipe flow-based devices, which are designed assuming a discontinuous
change in velocity, might actually benefit from the presence of a small degree of continuous
transition between discrete states.

Supplementary Materials: The following are available online at https://www.mdpi.com/2311-5
521/6/1/10/s1, MATLAB code for performing particle tracking, generating Poincaré sections, and
computing Eulerian indicators.
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