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Abstract 18 

Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in activated 19 

sludge water resource recovery facilities (WRRF). Mathematical models for predicting activated 20 

sludge solids settling velocity include parameters that show irreducible epistemic uncertainty. 21 

Therefore, reliable and periodic calibration of the settling velocity model is key for predicting 22 

activated sludge process capacity, thus averting possible failures under wet-weather flow- and 23 

filamentous bulking conditions. The two main knowledge gaps addressed here are: (1) Do 24 

constitutive functions for hindered and compression settling exist, for which all velocity parameters 25 

can be uniquely estimated? (2) What is the optimum sensor data requirement of developing reliable 26 

settling velocity functions? Innovative settling column sensor and full-scale data were used to 27 

identify and validate amended Vesilind function for hindered settling and a new exponential function 28 

for compression settling velocity using one-dimensional and computational fluid dynamics 29 
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simulations. Results indicate practical model identifiability under well-settling and filamentous 30 

bulking conditions. 31 

 32 

Keywords 33 

Hindered and compression solid settling velocity; Compression solid concentration and effective 34 

solid stress; settling column sensor; one-dimensional model; computational fluid dynamics (CFD); 35 

practical model identification. 36 

 37 

 38 

1. INTRODUCTION 39 

The impact of climate change on influent flow conditions, arising from snow melting and storms 40 

events, will require adaptation on the part of water resource recovery facilities (WRRFs) to maintain 41 

stringent water quality standards, in the future. The increasing frequency of hydraulic shock events – 42 

as a result of climate change – necessitates more effective operation and control of secondary settling 43 

tanks (SSTs) in WRRFs (Ramin et al., 2014a). Theoretically, the maximum permissible SST loading 44 

capacity determines the maximum permissible hydraulic WRRF load. However, the SST capacity 45 

varies with activated sludge settleability. As such, stable operation and control necessitates effective 46 

sensor technology and identifiable simulation models (Jeppsson et al., 2013; Plósz et al., 2009). 47 

Settling sensors should ideally provide experimental data for estimating settling velocity parameters; 48 

yet, up to date, no simple and robust methods exist to calibrate hindered and compression settling 49 

parameters. Parameter identifiability of activated sludge settling velocity models therefore remains a 50 

challenge. Experimental data typically collected during offline sludge settleability monitoring (e.g., 51 

sludge volume index) are unreliable (e.g., Wágner et al., 2015) and insufficient means, considering 52 

the complexity of settling velocity models. In contrast, De Clercq et al. (2005) present the hitherto 53 

most complex observations on solids concentration profiles in batch settling of activated sludge using 54 

solids radiotracer and gamma cameras – a technique, whilst capable of revealing hindered and 55 
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compression settling behaviours in high resolution, deemed too expensive to be implemented in 56 

WRRFs. To improve data collection, Vanrolleghem et al. (1996) propose recording batch settling 57 

curves using a scanner to measure the sedimentation of the sludge blanket over time (SettloMeter). 58 

Furthermore, Derlon et al. (2017) present a cost-effective camera-based method to monitor sludge 59 

blanket height (SBH). Ramin et al. (2014b) propose a sensor setup with a TSS sensor installed in the 60 

bottom of a settling column, thus inferring SBH and the TSS concentration (Xbottom) time-series. 61 

Valverde-Pérez et al. (2017) demonstrate, however, that SBH and Xbottom time-series do not provide 62 

sufficient information for reliable identification of the settling velocity model by Ramin et al. (2014b), 63 

and propose a novel multi-probe sensor setup, monitoring TSS concentration at multiple heights at 64 

the side of the column sensor (Xside), besides SBH. Despite the extensive experimental data measured, 65 

it is still not guaranteed that a unique set of model parameters can be reliably estimated for constitutive 66 

functions for hindered and compression settling velocity. Results obtained using state-of-the-art 67 

settling velocity models (Li and Stenstrom, 2016; Ramin et al., 2014b) still suggest limitations in 68 

terms of practical identifiability of compression settling velocity model parameters. Consequently, 69 

besides experimental planning that proposes additional measurements to reduce parameter 70 

uncertainties, model reduction is also necessary to adjust model complexity to the information 71 

provided in the experimental data. To this end, Guyonvarch et al. (2015) assess the setting of the 72 

variable compressive threshold concentration (XC) parameter using state-of-the-art models (Bürger et 73 

al., 2013; Ramin et al., 2014; De Clercq, 2006, De Clercq et al., 2008). Setting XC as a function of the 74 

initial solid concentration and the SST feed solid concentration for simulating batch tests and SST, 75 

respectively, is found superior over other methods (see also Supporting Information). 76 

In the Bayesian framework, the parameter θ is treated as a random quantity with a specific prior 77 

distribution p(θ), from which we can obtain the posterior distribution p(θ | x) via Bayes theorem, with 78 

x denoting the input data. If the p(θ | x) are in the same probability distribution family as that for the 79 
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p(θ), the prior and posterior are then called conjugate distributions (Raiffa and Schlaifer, 1961; 80 

Bernardo, 2000). Latin-Hypercube-Sampled priors for Simplex (LHSS) is a global approximate 81 

Bayesian optimisation method, whereby uniform probability distribution of priors is used (Wágner et 82 

al., 2016).  One of the criteria for practical model identifiability in LHSS is that p(θ | x) is of 83 

normal/Gaussian distribution. The question arises whether, once practical identifiability is established 84 

through LHSS, results obtained in terms of uniqueness of normal posterior parameter distribution and 85 

mean parameter values for each model structure with the available data series, estimates could be 86 

improved by considering normally distributed (conjugate) priors in a subsequent run of parameter 87 

estimation – a focal area chosen for this study.  88 

As for the sources of uncertainty associated with settling velocity model identification, the design 89 

of settling column setups can significantly influence measured data and thus the parameter estimates 90 

(Vanrolleghem et al., 1996; Ekama et al., 1997). More research is still needed to understand how the 91 

impact of column size affects model parameter estimates. Therefore, this study also addresses this 92 

uncertainty source represented by the approach of using 1-D simulation models for estimating model 93 

parameters, which are then used to calibrate CFD simulation models with higher complexity. As for 94 

model validation, triangulation is the strategic use of multiple inquiries to address the same question, 95 

each depending on different set of assumptions with their strengths and weaknesses (Lawlor et al., 96 

2016). Results agreeing across different inquiries are more likely to be replicated reliably. 97 

The aims set in this study are (1) identifying constitutive functions for hindered-compression 98 

settling velocity for which all parameters can be estimated using the sensor data with both good 99 

settling and moderate filamentous bulking; (2) evaluating the feasibility of the sensor setup as a means 100 

to infer experimental data on the effective compressive solid stress; (3) assessing uncertainty sources 101 

associated with the model identification method and the settling column design; and (4) evaluating 102 

and validating the new settling velocity constitutive functions using the triangulation approach. 103 
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 104 

 105 

2. MATERIALS AND METHODS 106 

 107 

2.1. Sampling and settling sensor setup 108 

Activated sludge samples were collected in two WRRFs in Denmark (Fredericia and Avedøre 109 

WRRFs) and one in Sweden (Ellinge WRRF) with well-settling characteristics (Fredericia and 110 

Ellinge with SVI3.5≤90 ml/g) and moderate filamentous bulking (Avedøre, SVI3.5~200 ml/g). The 111 

three activated sludge processes differed in terms of operating conditions. Secondary biological 112 

treatment in Avedøre WRRF (320 000 PE – mostly municipal sewage) and Fredericia WRRF (350 113 

000 PE – municipal sewage with significant industrial contribution) were operated at solids retention 114 

time, SRT=10-15 days, and used polymers and chlorination for bulking control, respectively. Ellinge 115 

WRRF (330 000 PE – mostly food industrial wastewater) was operated as a high-rate system, SRT~2 116 

days, without any bulking control measure taken. Settling tests were carried out using the multi-probe 117 

sensor prototype (Valverde-Pérez et al., 2017), consisting of a column (height: 0.7 m; bottom 118 

diameter: 0.2 m) equipped with TSS SOLITAX (Hach, USA) infrared sensors installed at 0.21m 119 

height in the side-wall (XSide) and in the bottom of the column (XBottom). Measurements in a full-scale 120 

SST were carried in the OBVA WRRF, Vila-Real, Spain (46 773   PE – mostly municipal sewage) 121 

was operated at SRT~10 days under moderate filamentous bulking conditions (SVI3.5~270 ml/g) and 122 

without any bulking control measure taken. A SOLITAX and a SONATAX (Hach, USA) probes 123 

were used to measure the SBH and the TSS in the bottom of the SST, respectively. For measuring 124 

the SBH, the threshold TSS concentration was set to 0.3 kg m-3. Radial velocity was measured in the 125 
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SST using a Vectrino (Nortek, USA) high-resolution acoustic velocimeter. More information on the 126 

sensor positions in the SST is shown in the SI. 127 

 128 

2.2. Regression analysis to estimate XInfi parameter 129 

Values of the maximum solids concentration parameter (XInfi, kg m-3) are estimated with the XBottom 130 

data series (e.g., Fig. 1b) obtained for each settling experiment using the regression equation  131 

𝑋 (𝑡) = 𝑓 + 𝑋 − 𝑓 ∙ (1 − 𝑒 ∙ ),     (1) 132 

in the software, SigmaPlot 13 with kX and fX, denoting additional regression parameters.  133 

 134 

2.3. 1-D simulation model 135 

Solids settling in the column sensor is described as a PDE of second-order parabolic type as 136 

= −
( ( )∙ )

+ 𝐷 (𝑋) ,                  (2) 137 

where X is the solid concentration, z is the vertical direction variable, vH is the hindered solid 138 

settling velocity, DComp denotes the compression settling (Eq. 5). The numerical scheme applied in 139 

the simulation model implementation – in MATLAB® (Mathwork, Natick USA) – is according to 140 

Guyonvarch et al. (2015). Briefly, the second-order PDE is discretized using 60 layers. The 141 

Godunov approach is used to comply with the minimum settling flux conditions (e.g., Plósz et al., 142 

2007). The height of the sludge blanket is calculated as the distance between the bottom layer and 143 

the first layer where the concentration is reduced below 0.9 g l-1. Constitutive functions for vH and 144 

DComp are those shown in Eq. 4 and Eq. 6, respectively.  145 

 146 
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2.4. Practical model identifiability analysis 147 

A three-level practical identification process (Table 1) was employed in this study, including the 148 

(Level 1) assessing the normality (Gaussian) of posterior probability distribution of parameters by 149 

employing uniform a priori probability distributions; and (Level 2) re-estimation of posterior 150 

parameter distributions using normally distributed (conjugate) priors. Level 3 is carried out to assess 151 

the goodness of experimental design and data inferred to achieve practical identifiability.  152 

Level 1 was carried out using the Latin-Hypercube-Sampled priors (250 samples were found 153 

sufficient to reach convergence) with uniform a priori probability distributions (LHSS) global 154 

method (Wágner et al., 2015). The minimization of the sum of square of relative errors (SSRE), 155 

obtained between 1-D model predictions and the experimental results, is carried out using the 156 

MATLAB® function fminsearch, employing the Nelder-Mead algorithm – also known as the 157 

Simplex method (Nelder and Mead, 1965). For selected constitutive functions with posterior 158 

parameter values obtained in narrow, normally-distributed intervals (i.e. Eq. 4 and Eq. 6), posterior 159 

parameter probability distributions are re-estimated using LHSS employing normally-distributed 160 

priors. Therefore, in Level 2 (Table 1), parameter estimation is carried out by sampling from Gaussian 161 

conjugate parameter probability ranges. In the LHSS, the Janus coefficient (J) is used to assess the 162 

impact of parameter variability by considering a collinearity threshold for identifiability to be 0.7 163 

(Ramin et al., 2017). This is done by comparing the relative predictive accuracy – calculated as the 164 

sum of the root mean square of relative error for SBH, Xbottom and Xside – obtained using the upper and 165 

lower parameter boundaries, calculated as the posterior mean parameter values +/- the 95% 166 

confidence intervals obtained. For J~1, it is concluded that parameters are uniquely identifiable. 167 

Additionally, we report the Akaike’s and Bayesian information criteria, AIC & BIC (Bozdogan, 168 

1987) calculated for the new constitutive functions for hindered and compression settling velocity. 169 

Dynamic global sensitivity (GSA) and uncertainty analysis were carried out using linear regression 170 
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of Monte Carlo simulation results obtained in Level 3 (Saltelli et al., 2008; Sin et al., 2011). In the 171 

dynamic GSA, values of the standardised regression coefficient (SRCj,p) is computed for each 𝜃j and 172 

for each output (Yk) at each time-step using the multivariate linear regression between the pth LHS 173 

sampled parameter value 𝜃j,p(ti) and the kth simulation output Yk(ti) obtained using Monte Carlo 174 

simulations, according to 175 

( )
= 𝑆𝑅𝐶 ,

, ( )
+ 𝜖 ,     (3) 176 

including the mean (Yk and j) and standard deviation (Yk and j) values of the simulation outputs 177 

and parameters, respectively. Furthermore, 𝜖𝑘 is the error vector of the regression model (intercept). 178 

The coefficient of determination, R2 indicates the proportion of the total uncertainty of the model 179 

output explained by the linear model. The SRC values are reliable to be used as sensitivity measures 180 

when R2 > 0.6. Also, only parameters with SRC>0.1 are considered to be influential in predicting a 181 

given output. GSA and uncertainty analysis can be used to inform and improve model calibration 182 

exercises. Dynamic SRCj,p results were used to assess the sensitivity of predicting different 183 

experimental data sets to model parameters and to locate specific experimental periods more 184 

conducive to practical identifiability. For more on the calculation of SRC and R2, the reader is referred 185 

to Saltelli et al. (2008). In addition to the settling function Eq. 4 and Eq. 6, the 3-parameter (3P) 186 

logistic function for hindered settling by Diehl (Diehl, 2015; Torfs et al., 2017) in combination with 187 

the compression settling function by De Clercq (2006) – i.e. the so-called Diehl-DeClercq model – 188 

was tested through Levels 1-3. Furthermore, the hindered-transient-compression (HTC) settling 189 

function by Ramin et al. (2014b) was assessed. The example of the Fredericia sludge (Initial 190 

concentration: 3.44 g l-1; Supporting Information) was chosen as experimental data for benchmarking 191 

the different settling functions. 192 

For the implementation of the 1-D simulation models and executing simulations the software Matlab 193 

(The MathWorks, Inc., http://www.mathworks.com/) was used. Calculations of SRC were carried out 194 
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by transferring to and processing simulation results using Python (Python Software Foundation, 195 

https://www.python.org/). 196 

 197 

2.5. CFD simulations 198 

The software ANSYS-CFX® (Academic Res. Release 17.2) was used to implement the solver, 199 

according to Ramin et al. (2014b). Briefly, the solver employs an average Eulerian 2-phase flow 200 

model. Turbulence is modelled using the k-modelMolecular viscosity of sludge is predicted using 201 

the Herschel-Bulkley model (more information on model calibration is shown in the Supporting 202 

Information, SI). For the full-scale SST simulations, the solver implementation development included 203 

two scenarios, i.e. (1) the novel hindered-compression settling velocity function, (2) simple Vesilind 204 

hindered settling function (the model calibration is described in the SI and Fig. S1). The initialization 205 

of the 2-day transient state was carried out by converging a previous steady-state case with a constant 206 

influent flow. For predicting activated sludge settling in the column sensor, the wall-with-no slip and 207 

smooth roughness boundary conditions were used (more information on CFD simulations shown in 208 

the SI).  209 

 210 

2.6. Model validation by triangulation (MVT) 211 

The MVT addresses the question of reliabile prediction of hindered and compression solid settling 212 

using the constitutive functions developed. MVT comprises two independent approaches, i.e. (A) 213 

practical model identification using two independent sets of laboratory-scale measurements (samples 214 

from Ellinge and Avedøre WRRFs) carried out with the new settling sensor setup (Fig. 1) and using 215 

the new constitutive functions for hindered-compression settling; and (B) transient-to-steady-state 216 

simulations using independent sets of dynamic full-scale measurement data (SBH and TSSRAS) using 217 

a CFD simulation model developed. Key sources of  bias for approaches A and B are the highly 218 
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degenerated simulation model structure in 1-D and the lack of estimation of parameter values other 219 

than settling velocity parameters through the calibration of the CFD simulation model, respectively. 220 

No specific direction of bias of these sources can be explicitly identified. Results from these two 221 

approaches are then compared through the 3-D CFD simulation of column tests for well-settling and 222 

filamentous sludges in terms of SBH, Xbottom and Xside.  223 

 224 

2.7. Assessment of two sources of uncertainty  225 

One of the sources of uncertainty assessed using CFD simulations, involved the design boundary 226 

conditions of the settling column setup, characterised with a design factor (F). The impact of the 227 

column sensor design on the model parameter estimates was tested via CFD simulations, whereby 228 

the CFD solver was calibrated with model parameters obtained for the Fredericia sludge at 3.44 g l-1 229 

as initial concentration and for the Avedøre sludge at 3.86 g l-1 as initial concentration. The base case 230 

scenario (F=1) was that of the real setup (Fig. 1a), and factors (e.g., F=0.7 means 70%) were applied 231 

to resize the height and diameter of the column – maintaining the original proportions – using five 232 

scenarios. Additionally, the approach of using 1-D simulation models for estimating parameters using 233 

batch experimental data – that are then used to calibrate CFD simulation models – was identified and 234 

assessed as an additional uncertainty source. The uncertainties in parameter values introduced as a 235 

result of using different settling column designs were quantified using CFD simulations by 236 

considering the settling characteristics of the Fredericia and Avedøre sludge samples at Xini=3.44 and 237 

3.9 g/l as initial concentrations, respectively. 3-D profiles obtained were converted into 1-D 238 

concentration profiles that were then used to re-estimate the posterior model parameter values. The 239 

posterior parameter estimates were then benchmarked against that obtained using the 1-D simulation 240 

model and the column sensor measurement data. 241 

 242 
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 243 

3. RESULTS AND DISCUSSIONS 244 

 245 

3.1. Practical model identification 246 

3.1.1. Hindered-compression settling velocity functions 247 

An iterative approach was taken to test the practical identifiability of parameters in a plethora of 248 

potential rate equations (more information shown in SI). Using practical identifiability as a selection 249 

criterion, a four-parameter model was identified to describe hindered-compression settling as  250 

𝑣 =
𝑣 (𝑋) = 𝑣 𝑒 ∙ 0 ≤ 𝑋 ≤ 𝑋

𝑣 (𝑋) ∙ 1 − 𝑋 > 𝑋 ,
 ,    (4) 251 

where 252 

𝐷 =
0 0 ≤ 𝑋 ≤ 𝑋

𝑣 (𝑋) 𝑋 > 𝑋 ,      (5) 253 

 with   254 

= 𝑣 𝑒
∙

,         (6) 255 

where the effective solids stress () derivative is formulated using an exponential term with vC (m2 256 

s-2) and rC (-) parameters. The maximum solids concentration (XInfi, kg m-3) is used to normalise 257 

local biomass concentration values, X. For hindered settling velocity (vH, m s-1), the model includes 258 

a pseudo 2-parameter exponential constitutive function with v0 (m s-1) and rH (m3 kg-1), denoting the 259 

hindered settling velocity parameters. In Eq. 4, S and f are the sludge and water density, 260 

respectively; g denotes the gravitational acceleration constant; z is the depth in the settling column.  261 

The setting of the compressive threshold concentration (XC) is according to Guyonvarch et al. 262 

(2015). That is, for simulating batch column tests, 1-D advection-dispersion and 2-D CFD 263 

modelling of SSTs, XC=Xini; XC=Xfeed+1 and XC=Xfeed, respectively; where Xfeed+1 is the solid 264 
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concentration located just below the dynamic feed-layer in 1-D simulation model, and Xfeed is the 265 

solid concentration in the SST influent.  266 

Compared to previous models, including the exponential term (Vesilind, 1968; Takács et al., 1991), 267 

instead of letting parameters independently vary, the ratio of v0/rH is estimated with v0 set as 268 

constant at v0 =0.0025 (m s-1). The v0/rH ratio (kg m-2 s-1) – same unit as solid flux – can be linked 269 

to the degree of sludge bulking (Ekama et al., 1997; Wágner et al., 2015), making it a suitable 270 

controlled variable at WRRFs. Previous experimental studies (Daigger, 1995; Weiss et al., 2007) 271 

also indicate a constant v0. In fact, Daigger’s database show a value (0.0022, m s-1) that is in very 272 

close agreement with our observations obtained through practical model identification, thereby 273 

providing experimental evidence to consider v0 as constant. 274 

The new settling velocity functions require the estimation of three parameters (v0/rH, vC, rC) using 275 

global optimisation and the parameter, XInfi is directly deducible from experimental data using 276 

regression analysis. Uncertainty plots (Fig. 2a) show 95% confidence intervals effectively covering 277 

most of the measured data. Values of relative dynamic sensitivity (Fig. 2c) and coefficient of 278 

determination (Fig. 2d) suggest potential benefits of the set of experimental data for parameter 279 

identifiability: high sensitivity of predicting SBH and TSS side sensor concentration data to v0/rH 280 

parameter. Moreover, the prediction of TSS bottom and side concentration data show relatively high 281 

sensitivity to the compression settling parameters, rC and vC. Based on the trajectories of SRC, an 282 

extended experimental time beyond one hour does not seem to add any significant benefit to 283 

parameter estimation. That is SRC does not increase significantly beyond the experimental time set 284 

in here. Posterior parameter distributions (Fig. 3) show comparably narrow confidence intervals (CI), 285 

i.e. CI-to-mean parameter ratios are <50% (Supporting information). Although, the covariance 286 

matrices show values up to ~0.83 for compression parameters, parameter variability does not 287 

significantly influence simulation outputs, i.e. J~1 obtained, thereby indicating practically 288 
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identifiability of model parameters using the experimental data. Additionally, increasing the initial 289 

solids concentration increases the SRC values only for v0/rH parameter (Fig. S2-S5) – whilst no 290 

significant benefits in terms of identifiability of compression parameters can be drawn. Part of the 291 

reason for this observation may stem from the position of the side sensor – perpendicular to the 292 

direction of the settling solids in the column – that can possibly lead to deteriorating quality of sensor 293 

data, in particular, at higher solid concentrations (e.g., Fig. S5). This shortcoming of the sensor; 294 

however, does not seem to influence the overall quality of unique parameter sets obtained, i.e. mean 295 

values of v0/rH, vC, rC are obtained with relatively narrow ranges of mean parameter values and with 296 

overlapping 95% confidence intervals (Fig. 3) – except for the lowest rC value obtained with 297 

filamentous bulking sludge. Therefore, to improve parameter identifiability, future research should, 298 

focus on optimising the position of the side sensor. In addition to Eq. 4 and Eq. 6 functions, the Diehl-299 

DeClercq and the HTC models were assessed, and were found practically non-identifiabile based on 300 

Step 6a & 6b@Level 1 (Table 1, Supporting Information). That is, for the Diehl-DeClercq functions, 301 

histograms obtained (Step 6a@Level 1) indicate non-identifiability for v0, q,  (Supporting 302 

Information). Comparably high SRC values were obtained only for v0, 𝑋 and Cg – an outcome that 303 

reasonable agrees with the parameter identifiability results (Level 1), except for v0 for which high 304 

SRC values do not result in identifiability. Relatively high parameter correlation is found for v0-𝑋 305 

and 𝑋-Cg parameter pairs (Janus test not done). For the HTC functions, histograms obtained (Step 306 

6a@Level 1) indicate non-identifiability for rH, C1 and C2 (Supporting Information). Comparably 307 

high SRC values were not obtained for any of the parameters, thus indicating major limitations of 308 

practical identifiability. Relatively high parameter correlation is found for v0-𝑋 and 𝑋-XC parameter 309 

pairs (Janus test not done). Despite failing the identifiability criteria, to provide a comparison between 310 

different settling functions, AIC and BIC values (Table 2) were also computed for the Diehl-DeClercq 311 

and the HTC functions. Based on the information criteria, the strength of the evidence (e.g., BIC) 312 
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against the functions with the higher BIC value is reasonably strong, i.e. BIC>6-10 (Kass and 313 

Raftery, 1995).  314 

3.1.2. Modelling compression settling 315 

The present paper proposes a compression settling function to predict any effects of solid stress 316 

propagating through the sludge blanket (i) by setting XC = XIni and (ii) by formulating the solids stress, 317 

in contrast to previous approaches, independently from the XC value and from the relative 318 

concentration (X–XC). DeClercq (2006) suggest modelling sedimentation transport by considering 319 

hindered and compression settling, and by employing a time-dependent onset of compression through 320 

XC. Partly because DeClercq (2006)’s model overestimate the transient settling velocity (in the falling 321 

hindered settling rate region characterised with straight isoconcentration lines) and due to challenges 322 

in implementing the proposed XC models in SST simulation models, Ramin et al. (2014) propose a 323 

model that additionally (A) includes a first-order transient settling function, formulated analogously 324 

to hindered settling, and (B) employes two threshold concentrations for the onset of transient (XT) 325 

and for compression settling, XC.   326 

In Fig. 4a, at relatively low X values, upward propagating straight isoconcentration lines are shown, 327 

above which, tangential isoconcentration lines propagate from the sediment-suspension interface. 328 

These simulation results demonstrate the consistency of the simulation model with the actual physical 329 

phenomena, i.e. with theory (Diplas and Papanicolaou, 1997, Kinnear, 2002) and experimental 330 

observations (DeClercq et al., 2008 – the Destelbergen sludge). There is also a close agreement 331 

between the evolution of the effective solid stress derivative obtained with the Destelbergen sludge 332 

(DeClercq et al., 2008) – i.e. 0.25 – 1.95 m2 s-2 for Xini=2.4, 3.2 g l-1 – and that shown in this study 333 

(Fig. 10). With well-settling solids (Fig. 4b,c), isoconcentration lines indicate a comparably fast 334 

compressive solid consolidation behaviour compared to that obtained with filamentous sludge (Fig. 335 

4a). 336 
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Additionally, the physical justification for setting XC at the feed solid concentration for SST 337 

modelling (Guyonvarch et al., 2015) is that the density current of the feed slurry tends towards zero 338 

buoyancy, thus propagating through volumes, under which, the descending particles shall increase 339 

the local concentration only if they exhibit compressive solids settling. For more information, the 340 

reader is referred to the Supporting Information. 341 

 342 

3.2. Model validation  343 

3.2.1. Independent batch settling experiments 344 

Independent experimental settling data – obtained using solids with well-settling (Ellinge WRRF) 345 

and filamentous bulking (Avedøre WRRF) characteristics – were used to test the practical 346 

identifiability and the validity of the simulation model, including the new hindered-compression 347 

settling functions. As for the Ellinge data (Fig. S6-S8), results obtained show close agreement with 348 

the outcomes in the Fredericia case (Fig. 2) in terms of predictive accuracy for SBH, TSSside, TSSbottom 349 

sensor data outputs and of parameter covariance. Parameter covariance obtained with the comparably 350 

narrow probability density ranges (Fig. S6-S8; covariance indices up to ~0.8 for vC and rC) does not 351 

significantly influence simulation outputs, i.e. J~1. However, the uniqueness of vC parameter 352 

estimates is not significantly impacted (Fig. 3). Values of SRC>0.8 values for both v0/rH and rC 353 

indicate high sensitivity of model predictions to both parameters that can potentially benefit practical 354 

model identifiability (Fig. S6-S8). In contrast to the Ellinge dataset, prediction of settling of solids 355 

collected in Avedøre WRRF extends the validity of the simulation model to filamentous bulking 356 

conditions (Fig. 5; Fig. S9-S12). Again, the outcomes of the identifiability test closely agree with the 357 

Fredericia and Ellinge cases. Disparities to the Fredericia and Ellinge cases, include the improved 358 

prediction of the SBH and TSSbottom with bulking sludge, whereas the accuracy of TSSside prediction 359 

is compromised at both low and high initial solids concentrations (Fig. 5a,d). Finally, according to 360 
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the increasing values of SRC for compression settling parameters for TSSside, under filamentous 361 

bulking conditions, practical identifiability tests may benefit from extending the length of experiment 362 

over an hour at low initial solids concentration, i.e. <3.3 g L-1 (Fig. S11). In terms of uniqueness of 363 

posterior parameter estimates (Fig. 3), the identifiability of compression settling parameters seems to 364 

be compromised at higher initial solids concentrations – possibly, as a result of wall-effects – though, 365 

this effect is not significant, based on the confidence intervals obtained (Fig. 3). 366 

Taken together, the independent results obtained with Ellinge and Avedøre solids suggest the validity 367 

of the identifiability approach and the simulation model structure for well-settling and filamentous 368 

bulking conditions – an important aspect for future development of model-based control design 369 

structures for WRRFs.  370 

 371 

3.2.2. CFD simulations of a full-scale SST 372 

As part of the MVT approach, forward CFD simulations were carried out to validate the hindered-373 

compression settling model. Simulations of the SBH, XRAS reasonably agree with the measured full-374 

scale SST data collected during more than 40 hours (Fig. 6a and 6b). Furthermore, radial velocity 375 

measurements (see also SI) indicate close agreement with that predicted using the new settling 376 

velocity model. We note that CFD model prediction is somewhat compromised when predicting the 377 

transient SST behaviour – in terms of SBH and TSSRAS between maximum and minimum loading 378 

conditions (between 20 and 30 hours). It is assumed that the lack of undertaking a more in-depth 379 

optimisation of the e.g., SBH sensor calibration, CFD simulation model can explain the prediction 380 

inefficiency observed.  381 

Taken together, both approaches involved in the MVT support the hypothesis that the novel 382 

constitutive functions for hindered and compression settling velocity combined with the XC setting 383 

method can reliably predict the real physical phenomena. 384 
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 385 

3.3. Posterior parameter estimation and parameter intervals 386 

Fig. 3 summarises all parameter values with confidence intervals obtained with the sludge samples 387 

taken from the three WRRFs. As for Fig. 3a., fixing v0 was found to allow the estimation of v0/rH 388 

values in a narrow range (Fig. 3) for the different initial concentrations and independently from the 389 

compression parameters. This was otherwise impossible to achieve with any of the hindered and 390 

compression functions and their combinations thereof tested (see more on this in the SI). Fig. 3a also 391 

supports the hypothesis of v0/rH effectively gauging sludge settling properties (Wágner et al., 2015). 392 

Furthermore, an arbitrary threshold value v0/rH ~ 0.005 is proposed to distinguish between well-393 

settling and filamentous bulking solids. Despite the considerable difference between the three 394 

WRRFs in terms of operating conditions – notably, SRT and bulking control measures – all four 395 

settling velocity parameters obtained show consistent and comparable trends. That is, hindered and 396 

compression parameters are independent of initial solids concentration and the parameter values 397 

obtained for well-settling solids versus filamentous bulking sludge vary significantly at low initial 398 

solid concentrations. In the practical identification analysis (Level 1), posterior values of mean ± 399 

confidence intervals obtained (Table 1; Fig. 7) suggest the dependence of most compression 400 

parameter sets on the initial solid concentration – a possible physical phenomenon, agreeing with that 401 

reported in literature (Ramin et al., 2014b; DeClercq et al., 2008). Furthermore, once practical 402 

identifiability of model parameters is established through Level 1 (Table 1), Gaussian conjugate 403 

priors are used in Level 2 (Table 1; Fig. 3). Posterior parameter estimates obtained in Level 2 indicate 404 

the independence of hindered (v0/rH) and compression settling parameters (vC and rC) of the initial 405 

solids concentration, thereby suggesting the effect, being a result of error propagation rather than of 406 

real physical phenomena.  407 

 408 
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3.4. Practical guidance on sensor application for parameter 409 

estimation 410 

The settling column sensor application presented here has clear benefits and shortcomings. On the 411 

one hand it can be used to infer data for practical identification and parameter estimation of the 412 

constitutive function (Eq. 4 and Eq. 6). The results (Fig. 2, Fig. S2-S12) indicate the benefits of using 413 

the bottom- and the side-TSS sensors to decrease the uncertainty of rC and vC, compression 414 

parameters. This however, is only true at comparably low initial solid concentrations. On the other 415 

hand, low parameter variability is obtained for all settling velocity parameters in the initial solid 416 

concentration range examined (Fig. 3). Consequently, from a practical point of view, employing the 417 

column sensor setup in 1 or 2 batch experiments – at initial solid concentrations ≤3 g L-2 – to infer 418 

data for parameter estimation seems reasonable and a reliable way of settling parameter estimation. 419 

 420 

3.5. Assessing sources of uncertainty using CFD simulations 421 

For selected initial solids concentrations with well-settling and bulking sludge, the close agreement 422 

of measured and CFD simulation results (Fig. 8 at design factor F=1) indicate negligible uncertainties 423 

introduced by the 1-D parameter estimation approach, and thus suggest the reliability of the parameter 424 

estimation approach. Interestingly, compared to the 1-D case (compare Fig. 8a-c to Fig. 2), closer 425 

agreement between the simulated and measured SBH data is achieved using the CFD simulation 426 

model. This result suggests that the overestimation of the compressive SBH tail by the 1-D simulation 427 

model may be a bias caused by the degenerated 1-D simulation model structure rather than the settling 428 

velocity model structure – an impact that will be investigated in the future. The latter was the same 429 

in both the 1-D and the 3-D CFD model. Torfs et al., (2017) assessed the effect of overestimation of 430 

the compressive SBH tail in more depth, suggesting the 1-D simulation model structure - in terms of 431 
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hindered settling velocity formulation – as the potential cause of this bias. Furthermore, to assess the 432 

variability of parameter values as a result of settling column design, CFD simulations, carried out 433 

within a wide range of column design boundary conditions (Fig. 8), were used to re-estimate the 434 

posterior model parameter values (Fig. 9). Results obtained suggest that, assuming negligible wall 435 

effects in the column sensor, the estimated rC values can be expected to vary significantly in the 436 

design boundary range studied for both well-settling and filamentous sludge settling. However, it is 437 

not expected to introduce significant bias in the predictive accuracy based on J~0.91 obtained using 438 

the 1-D simulation model calibrated with the lowest and highest values obtained for rC (Fig. 9). 439 

 440 

3.6. Quantifying the effective solid stress derivative using sensor 441 

data 442 

This study also addressed the question whether the multi-probe sensor setup could be used to quantify 443 

the  derivative – a variable approximated using the sensor data according to  444 

=
( )∙ ∙  

( ) ( )
,        (7) 445 

where the density difference between water and sludge (𝜌 − 𝜌 ) was assumed constant. Eq. 7 was 446 

formulated based on force balance analysis – assuming only the gravitational, buoyancy and solids 447 

pressure acting on particles – and by assuming quasi steady-state conditions (Xu et al., 2017). 448 

Simulation results obtained (Fig. 10) reasonably agree with the sensor-derivative values for sludge 449 

with well-settling and filamentous bulking characteristics, thereby indicating the feasibility of the 450 

sensor approach to quantify the solid stress derivative. This outcome is extremely important as it 451 

indicates that the sensor setup presented herein can be used by practitioners to estimate compression 452 

settling parameters directly from the measurements using simple regression analysis – similar to that 453 

conventionally used for hindered settling parameter estimation. To test the approach vC and rC values 454 

were estimated using exponential curve fitting of the -derivative – X/Xinfi (Fig. 10). Discrepancies 455 
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between vC and rC values obtained and those estimated through global optimisation (Fig. 3) are 456 

between 4 – 260%. The fitness of settling model calibration by means of simple regression analysis 457 

should be evaluated, in the future, thereby also assessing the error introduced by assuming quasi 458 

steady-state in approximating compressive solids stress using the sensor data. 459 

De Clercq et al. (2008) present a study of calculating solids stress in settling column tests carried out 460 

with the aid of radiotracers. These tests allow the spatial-temporal quantification of complete 461 

concentration profiles. In contrast, our setup offers a simpler cost-effective technical solution for 462 

practitioners with temporal TSS measurements only at two spatial points. In our study, in contrast to 463 

De Clercq (2006), estimating the solids stress gradient and employing XC fixed at the initial 464 

concentration allowed the implementation of constitutive functions with reduced complexity and 465 

number of parameters. 466 

 467 

 468 

4. OUTLOOK AND PERSPECTIVES 469 

Practical model identifiability of the constitutive functions, Eq. 4 and Eq. 6, describing hindered and 470 

compression settling velocity is important because, it can, for the first time, allow for the estimation 471 

of reliable, unique, posterior parameter values using sensor data. Bürger et al. (2011) propose a 472 

consistent modelling methodology (CMM) for SST that requires the use of consistent and reliable 473 

numerical method (solver) to satisfy the entropy condition – an admissibility criterion, ensuring 474 

physically relevant (stable) discontinuities appear in the numerical approximate solution. Practical 475 

identifiability as a criterion, extending the CMM, can alleviate ill-conditioned and ill-posed 476 

calibration problems, thereby reducing uncertainties, propagating to the simulation results. Compared 477 

to former constitutive assumptions (e.g., Takács et al., 1991; Torfs et al., 2017), the first study 478 

assessing practical identifiability, i.e., Ramin et al. (2014b), indicate partial compliance with 479 



 Plósz et al. 

21 

identifiability criteria, and suggest further research on methods to infer experimental data and on 480 

mathematical functions. These recommendations formed the main aims of the present study. 481 

Regarding the column sensor setup presented here, the side TSS sensor indicate considerable 482 

shortcomings at comparably high initial solid concentration. This inefficiency, once overcome, can 483 

potentially decrease the uncertainties in compression settling model calibration by means of global 484 

optimisation and simple regression analysis. The constitutive functions for hindered-compression 485 

settling combined with the probe settling column setup proposed here can, for the first time, allow 486 

practitioners to develop reliable and updatable model-based decision support and process control 487 

structures to mitigate the impacts of hydraulic shocks on WRRFs. An example for such a decision 488 

support system includes aeration tank settling (Thornberg et al., 1998; Gernaey et al., 2004) – an 489 

effective means reducing the by-passed untreated sewage under wet-weather flow conditions. 490 

 491 

 492 

5. CONCLUSIONS 493 

The concluding remarks drawn in the study include: 494 

 A pseudo two-parameter and a three-parameter exponential term were identified to describe 495 

hindered settling velocity and the effective compressive solids stress gradient, respectively. 496 

The ratio of v0/rH was estimated with v0 set as constant in the hindered settling function. 497 

Solids concentration is normalised using the XInfi parameter easily obtainable in regression 498 

analysis. The three parameters required to estimate using the global optimisation method are 499 

v0/rH, vC and rC – all practically identifiable using the data obtained using the innovative 500 

multi-probe column sensor setup. 501 

 It is demonstrated that uncertainties, propagating from Bayesian prior settings to posterior 502 

parameter estimates can cause significant bias; and that the three-level parameter estimation 503 
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method is effective in reducing this uncertainty propagation, and thus resulting in the 504 

uniqueness of posterior parameter estimate solutions by employing the sequential uniform-505 

Gaussian Bayesian priors method; 506 

 The novel constitutive functions for hindered-compression settling developed are validated 507 

using independent batch column sensor data obtained with well-settling and filamentous 508 

bulking solids. Additionally, model validation was carried out using independent full-scale 509 

measurement and CFD simulation results.  510 

 It is demonstrated that negligible uncertainties are introduced into CFD simulations by the 511 

1-D parameter estimation approach using the column sensor data. Additionally, the multi-512 

probe settling sensor setup developed can be used to quantify the -gradient, and future 513 

research should assess the benefits of using -gradient sensor data for settling model 514 

calibration. 515 

 516 
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FIGURES  617 

Hindered and compression solid settling functions – sensor data 618 

collection, practical model identification and validation 619 

 620 
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A  B  

 626 

Figure 1. The multi-probe column sensor prototype – (A) equipped with two SOLITAX TSS 627 
sensors installed in the bottom (not visible in the photo) and the sidewall of the settling column; and 628 
(B) TSS values measured at the bottom of the settling column (XTSS,Bottom) versus experimental time 629 
and regression lines (Eq. 1) used to estimate XTSS,Infi values (Fig. 3d) - example shown here include 630 
the settling experiments with Fredericia WRRF sludge. 631 
  632 
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Figure 2. Practical model identification using data obtained with well-settling solids – measured 633 
and simulated data for activated sludge collected in Fredericia WRRF using the new hindered-634 
compression settling velocity functions; Initial solid concentration: 3.44 g L-1; Proposed/a priori 635 
probability ranges: v0/rH=[0.0052 0.0063]; vC=[0.005 0.025]; rC=[2.5 5.5]; (A) Global uncertainty 636 
plots with 95% confidence intervals, (B) posterior parameter density distributions with parameter 637 
intervals showing the a priori probability ranges, (C) values of dynamic sensitivity (SRC) and (D) 638 
coefficient of determination (R2) computed for SBH, XTSS,bottom and XTSS,side concentration state-639 
variables. Further results obtained with different dilutions of the activated sludge collected in 640 
Fredericia WRRF are shown in Fig. S2-S5. 641 
 642 

  643 
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Figure 3. Posterior mean v0/rH (A), vC (B), rC (C) parameter values with 95% confidence interval 644 
denoted with error bars obtained with well-settling solids (Fredericia and Ellinge WRRFs) and solids 645 
with filamentous bulking (Avedøre WRRFs); and (D) XTSS,Infi values obtained using regression 646 
analysis for Fredericia, Ellinge and Avedøre WRRFs. 647 
  648 
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Figure 4. Iso-concentration contour plots (X shown in colour fill legend) predicted in the batch 649 
settling tests of (A-B) Avedøre WRRF – filamentous bulking sludge (XIni=3.9 g l-1) with experimental 650 
times of 60 and 300 minutes; (C-D) Fredericia WRRF – well-settling sludge (XIni=2.95 g l-1) with 651 
experimental times of 60 and 300 minutes. 652 
 653 
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Figure 5. Model validation using data obtained with filamentous bulking solids – measured and 655 
simulated data for activated sludge collected in Avedøre WRRF using the new hindered-compression 656 
process model; Initial solid concentration: 2.4 g L-1 (A, B, C); Proposed probability ranges: 657 
v0/rH=[0.003 0.004]; vC=[0.02 0.2]; rC=[0.5 3]; Initial solid concentration: 3.9 g L-1 (D, E, F); 658 
Proposed probability ranges: v0/rH=[0.003 0.004]; vC=[0.01 0.2]; rC=[0.1 3]; Global uncertainty plots 659 
with 95% confidence intervals, posterior parameter density distributions; SRC and R2 values shown 660 
in Fig. S9. 661 
 662 
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 663 

a 

  

b  

 

C 

 

Figure 6. Measured and simulated (a) sludge blanket height, SBH, (b) TSSRAS concentration, and (c) 664 
vertical radial velocity profile (more information on the velocity metering shown in SI) in the full-665 
scale SST in OBVA WRRF, Vila-Real, Spain. 666 
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  669 

a  
b  c  

Figure 7. Posterior mean settling velocity parameter values with confidence interval (denoted with 670 
error bars) obtained for Fredericia, Ellinge and Avedøre datasets in Level 1 (Table 1) using LHSS 671 
with uniform a priori/proposed parameter probability density distribution; Parameter estimates 672 
obtained in Level 2 (Table 1) using Gaussian a priori (conjugate) parameter probability distribution 673 
is shown in Fig. 3. 674 
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A B 
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Figure 8. Measured and CFD simulation results obtained for the settling column sensors, sized 677 
according to different design similarity factors (F) and compared to the real setup (F=1; Fig. 1a), in 678 
terms of SBH, XBottom and XSide using solver calibrated according to parameter values obtained with 679 
(A, B, C) Fredericia WRRF sludge at Xini=3.44 g/l (Fig. 2); and (D, E, F) Avedøre WRRF sludge at 680 
Xini=3.9 g/l (Fig. S12). 681 
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 684 

Figure 9. Settling model parameters estimated with the different column designs (see Fig. 5) using 685 
CFD simulation output data obtained using calibration parameter sets for (A) well-settling sludge 686 
from Fredericia WRRF and (B) sludge with filamentous bulking collected in Avedøre WRRF. 687 
Reference parameter values shown were obtained using measured settling data (Fig. 2 and Fig. S12). 688 
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  691 

a  b  

Figure 10. Calculated based on measured data (Eq. 4) and simulated compressive solid stress 692 
derivative values plotted as a function of the XSide/XInfi values using (a) well-settling sludge from 693 
Fredericia WRRF and (b) sludge with filamentous bulking collected in Avedøre WRRF. 694 
  695 



 Plósz et al. 

38 

TABLES 696 

Hindered and compression solid settling functions – sensor data 697 

collection, practical model identification and validation  698 

 699 

 700 

Benedek G. Plósz1,3,*, Javier Climent2, Christopher T. Griffin1, Sergio Chiva2, Rani Mukherjee1, Elena 701 

Penkarski-Rodon3, Matthew Clarke1, and Borja Valverde-Pérez3 702 

 703 

  704 

  705 
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Table 1. The two-level practical model identification and parameter estimation method 706 
Algorithm – Level 1 : Assessing practical model identifiability using LHSS (discrimination of functions) 
1. Definition of a priori parameter ranges, p(𝜽), where 𝜽 = {𝜃1, … , 𝜃j} denotes a j-vector of model 

parameters using uniform probability distribution; 
2. Latin hypercube sampling, LHS from p(𝜽); 
3. A priori LHS parameter sets are used as initial values for the local optimisation MATLAB® function, 

fminsearch (Nelder-Mead algorithm, Simplex), employing the sum of square of relative errors (SSRE) 
as objective function to estimate posterior parameter values; 

4. Visualisation of posterior parameter probability density distribution, p(𝜽|x) – with x = {x1, … , xn} an 
n-vector of measurements - using histograms, excluding any parameter values with SSRE values 
higher than a selected threshold (10% of the minimum SSRE) – considered as local minima; 

5. Average parameter values, standard deviations and correlation matrix are computed; 
6. Practical model identifiability 

a. (p(𝜽|x)): histograms are interpreted in terms of (i) probability distribution: Gaussian distribution 
indicate parameter identifiability vs. uniform distribution indicates non-identifiability; (ii) 
narrow histograms indicate parameter identifiability;  

b. Correlation matrix, cov(𝜃): correlation of parameters are assessed by considering a 
collinearity threshold (CT) for identifiability to be 0.7; If for any pairs of parameters, 𝜃𝑗𝜃𝑗, 

CT>0.7, then these parameters are considered identifiable; If  𝐽 =
∑ , , , ( , )

∑ , , , ( , )
=

∑ , , , ( , )

∑ , , , ( , )
~1 

 
where, J2 is the Janus coefficient, yexp,p,i is the ith experimental data of the pth variable, y, and 

ysim,i(ti,𝜃𝑗 + 𝜎𝑗) is the simulation model output at the ith time point, 𝜃𝑗 is the mean optimal 

parameter value, 𝜎𝑗 is the corresponding standard deviation of 𝜃j, and n is the number of 
experimental data used; else the parameters are considered non-identifiable; 

7. Selection between candidate model structures. Calculate the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) values for the practically identifiable models (Supporting 
Information), and use AIC and BIC as selection criteria to compare alternative model structures. 

Algorithm – Level 2 : Re-estimation of p(𝜽|x) by considering Gaussian conjugate priors 
8. Definition of a priori parameter ranges p(𝜽) using normal, Gaussian probability distribution;  
9-12. These steps follow Steps 2-5 in Level 1. 
Algorithm – Level 3 : Assessing experimental design conducive to practical identifiability 
13. The standardised regression coefficient (SRC) is calculated; experimental data with high SRC indicate 

high probability of parameter identifiability.  

 707 
 708 

  709 
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Table 2. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values 710 
calculated using the objective functions (OF) calculated for 𝜃 ± 𝜎 . Lower AIC/BIC values indicate 711 
a superior set of functions. See also (Step 7@Level 1, Table 1). 712 

 New functions Diehl-DeClercq functions HTC functions 
AIC (OF1, 𝜃 + 𝜎 ) 10.7 16.4 18.4 

AIC (OF1, 𝜃 − 𝜎 ) 10.6 16.8 18.5 

AIC (OF2, 𝜃 + 𝜎 ) 12.5 17.8 19.9 

AIC (OF2, 𝜃 − 𝜎 ) 12.4 18.8 20.1 

BIC (OF1, 𝜃 + 𝜎 ) 21.6 38.1 43.7 

BIC (OF1, 𝜃 − 𝜎 ) 21.5 38.5 43.8 

BIC (OF2, 𝜃 + 𝜎 ) 23.4 39.5 45.2 

BIC (OF2, 𝜃 − 𝜎 ) 23.2 40.5 45.4 

 713 
 714 

 715 

  716 
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SUPPORTING INFORMATION 717 

 718 

Hindered and compression solid settling functions – sensor data 719 

collection, practical model identification and validation  720 
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 734 

1. Discrimination of the hindered – compression settling functions 735 

based on practical identifiability criteria 736 
 737 
With the exception of the the process model by Ramin et al. (2014), the hindered – compression 738 
settling functions tested in this study – other than that presented in the main body of text – can be 739 
described with the equation  740 
 741 

𝑣 =

𝑣 𝑋 ≤ 𝑋 ,

𝑣 1 −
𝜌

𝜌 − 𝜌 𝑔𝑋

𝜕𝜎

𝜕𝑋

𝜕𝑋

𝜕𝑧
𝑋 > 𝑋 ,

 742 

,  743 
where vH is the hindered settling velocity; X is the sludge concentration; XTC is the threshold 744 
concentration for the onset of compression settling,  𝜕𝜎 𝜕𝑋⁄  is the effective solid stress gradient, z is 745 
the vertical direction variable, and g is the gravity acceleration constant. Di denotes generic model 746 
parameters with a subscript representing the number of parameters in each constitutive function. We 747 
note that the process model by Ramin et al. (2014) also includes a transient settling velocity function; 748 
and for the formulation of the process model, the reader is referred to the original publication. 749 
 750 
Briefly, the HTC model and the Diehl hindered settling function were tested, and results are presented 751 
in this chapter. In summary, the practical identifiability of the HTC model was assessed for all three 752 
sets of experiments, and related shortcomings – further detailed below - with the functions formed 753 
the main motivation for the present study. The practical identifiability of the compression function 754 
by De Clercq et al. (2008) was assessed by Ramin et al. (2014b), and shortcomings with the function 755 
– reported in the same paper - then formed the main motivation for developing the compression 756 
settling model presented as the HTC model by Ramin et al. (2014b). Noteworthy is that these 757 
shortcomings of the De Clercq’s compression settling function were also shown by Li and Stenstrom 758 
(2016).  759 
For discrimination of hindered – compression settling functions, the Diehl-DeClercq and the HTC 760 
models, both including hindered and compression settling functions were assessed in-depth using 761 
practical identifiability criteria.  762 
 763 

764 
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Table SI-i1. Alternative constitutive functions for hindered-transient-compression settling assessed 765 
in this study.  766 

Name of function, references Constitutive functions  
  

Hindered settling (vH)  
Diehl (2008); Torfs et al. (2017) 

Function in the Diehl-DeClercq model 
v0/(1+(X(i)/ 𝑋)^q) 

Vesilind (1968) 
Function in the HTC model 

v0*exp(-rH*X(i)) 

  
Transient settling  
Ramin et al. (2014) 

Function in the HTC model 
vt*exp(-rt*X(i)) 

  
Compressive/effective solid stress  

Ramin et al. (2014) 
Function in the HTC model 

((X(i) – XC,limit)/C1)^C2,  
where C2 is found dependent (exponential 

function) on the initial solids concentration. 
The exponential function includes two 

regression parameters. 
De Clercq et al. (2008) 

Function in the Diehl-DeClercq model 
*ln((X(i) – Cg + )/) 

where D2 is found dependent (power function) 
on the initial solids concentration. The power 
function includes two regression parameters. 

Note: other functions were also tested; however, are not shown herein. 
 767 

 768 
Figure. SI-i1 Examples drawn from the process model development study using the HTC model. 769 
(top chart) Posterior mean v0/rH values estimated with the HTC model (Ramin et al., 2014), 770 
showing high variability in parameter estimates as a function of initial sludge concentration. For the 771 
Avedoere WRRF, v0/rH values show both reasonably good and poor settling for the same sludge 772 
sample, which is one of the main drawbacks (other than those described in Ramin et al., 2014) that 773 
prompted the present study to be undertaken. 774 

775 



 Plósz et al. 

44 

2. Calculation of the AIC and BIC values (Table 1) 776 
 777 
The two-level practical model identification and parameter estimation method is carried out 778 
according to Table 1. In Step 7@Level 1, the selection between candidate model structures is 779 
carried out Calculate the Akaike Information Criterion (AIC) and Bayesian Information Criterion 780 
(BIC) values, including the objective functions (OFf) of mean sum of the squared errors (SSE) 781 
calculated for  𝜃 ± 𝜎  782 

           𝑂𝐹1 =
𝑆𝑆𝐸

𝑛
=

∑ 𝑦𝑒𝑥𝑝,𝑝,𝑖−𝑦𝑠𝑖𝑚,𝑖(𝑡𝑖,𝜃𝑗±𝜎𝑗)
2𝑛

𝑖=1

𝑛
 783 

and and the root mean squared errors (RMSE):  784 

𝑂𝐹2 = 𝑅𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛
 785 

in the AIC as   786 
𝐴𝐼𝐶 = 2 ∙ (log(𝑂𝐹) + 𝑗) 787 

and use AIC as a selection criterion to compare model structures; alternatively, one can also use 788 
e.g., the BIC, given as   789 
 𝐵𝐼𝐶 = 2 ∙ log(𝑂𝐹) + 𝑗 ∙ log (𝑛) 790 
where, yexp,p,i is the ith experimental data of the pth variable, y, and ysim,i(ti,𝜃𝑗 + 𝜎𝑗) is the simulation 791 
model output at the ith time point, 𝜃𝑗 is the mean optimal parameter value, 𝜎𝑗 is the corresponding 792 
standard deviation of 𝜃j, and n is the number of experimental data used. 793 

 794 
  795 
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 796 
Figure. SI-ii2 Practical model identification using the HTC model; Posterior histograms obtained in 797 
Step 6@Level 1 (Table 1) as well as values of SRC and Goodness-of-fit for linear regression (R2). 798 
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 801 
Figure. SI-ii3 Practical identifiability test of the Diehl-DeClercq model. Posterior histograms 802 
obtained in Step 6@Level 1 (Table 1) as well as values of SRC and Goodness-of-fit for linear 803 
regression (R2). 804 
 805 
 806 
  807 
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3. Confidence interval as parameter estimator for the new settling 808 

velocity function 809 
 810 

 811 
Figure. SI-iii1 Width of confidence intervals, CI [%] – Values of confidence interval normalised to 812 
the mean posterior parameter values estimated times 100. 813 
  814 



 Plósz et al. 

48 

 815 

4. CFD simulations 816 
 817 
4.1.Full-scale secondary settling tank, OBVA WRRF, Vila-Real, Spain 818 
 819 
A 3-D axi-symmetrical domain was developed for the SST (Circular; diameter: 30 m; Q=22486 820 
m3/day). Turbulence was predicted in the simulation model using the Shear Stress Transport model. 821 
Transient simulations Herschel-Bulkley model was implemented to predict the rheological 822 
behaviour of sludge 823 

 824 
where 0 is the yield stress; K is the consistency index; n is the flow behaviour index; and h is the 825 
apparent viscosity of sludge. These three variable parameters were calculated using the regression 826 
equations  827 

 828 

 829 

 830 
where A =0.00066 [kg1-Bm3B-1s-2], B=2.18 [-], C=0.28 [m3kg-1], D=0.00083 [m3E kg-E], E= 2.57 [-] 831 
according to Ramin et al. (2014). 832 
For calibrating the hindered settling function, a sequence of six batch settling column tests were 833 
carried out onsite (Fig. S1), and the v0/rH parameter value (0.0024 kg m-2 s-1) was estimated by 834 
considering v0 =0.0025 (m s-1) and using the exponential regression function, f = 0.0025*exp(-835 
rH*X(i)) in SigmaPlot 13. The rH value obtained is 0.98 (m3 kg-1). In the absence of column sensor 836 
data in terms of solids concentration in the bottom and side-wall – as proposed in this study – the 837 
compressive solid stress was calibrated in the CFD model using the average vC and rC parameter 838 
values (0.1 [m2 s-2] and 1.5 [-]) obtained for the Avedøre WRRF. This was done based on the v0/rH 839 
values and due to the similarity in terms of SVI values obtained in the two WRRFs. 840 
 841 
In the on-site measurements, radial velocity was measured using a Vectrino (Nortek, USA) high-842 
resolution acoustic veloci-meter at five equidistant positions.  843 
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 844 
Figure. SI-iv1 The location of velocimeter measurements done in one of the SSTs in the OBVA 845 
WRRF, Vila-Real, Spain. Red solid line indicates the position where the velocity meter profile 846 
(VECTRINO), shown in Fig. 4, were recorded at. The positions of other sensors including the 847 
SONATAX and SOLITAX sensors are indicated with dashed line and circle, respectively. 848 
 849 

 850 
 851 

Figure. SI-iv2 Experimental and simulation results obtained in the measurement campaign in the 852 
Vila Real WWTP, Spain. % values were calculated by dividing each value with the mean measured 853 
value times 100. Simulation results were obtained using only Vesilind and the new settling velocity 854 
function, including the hindered-compression constitutive functions.  855 
 856 

 857 
Figure. SI-iv3 TSS performance of the clarifier at t=14 hours of the 48-hour long measurement 858 
campaign. 859 
  860 
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 861 
4.2.Development of a CFD simulation model of the experimental sludge settling column  862 
A Computational Fluid Dynamics (CFD) model of the sludge settling column was developed in the 863 
commercial software package: ANSYS® CFX. The fundamental two-phase modelling approach 864 
used was Eulerian. More specifically, the single-phase Eulerian Drift Flux Model (DFM) was used 865 
to describe the behaviour of the dispersed phase (biological flocs) relative to the constrained 866 
continuous phase (pure water). The DFM solves a single set of continuity (Eqn. 1) and momentum 867 
(Eqn. 2) equations for a fictitious variable composition mixture, with an additional ‘drift’ equation 868 
(Eqn. 3) describing the relative motion of the dispersed to the continuous material. This modelling 869 
approach is commonly applied to activated sludge modelling (Brennan, 2001; Ramin et al., 2014). 870 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌 𝑣 ) = 0 (1) 

𝜕𝜌 𝑣

𝜕𝑡
+ ∇ ∙ (𝜌 𝑣 𝑣 )

= −∇ ∙ 𝑃 + ∇ ∙ [𝜏 + 𝜏 ] − ∇ ∙
𝛼

1 − 𝛼

𝜌 𝜌

𝜌
𝑣 𝑣 + 𝜌 𝑔 + 𝑀  

(2) 

𝜕𝛼

𝜕𝑡
+ ∇ ∙ (𝛼 𝑣 ) = −∇ ∙

𝛼 𝜌

𝜌
𝑣 + ∇ ∙ Γ∇𝛼  (3) 

Implementing the above modelling approach and the Hindered-Compression settling velocity model 871 
developed in this stufy, a prototype CFD model of the experimental settling column was produced 872 
in ANSYS® CFX. This prototype model used a set of model parameters and activated sludge 873 
physical data and could hence be benchmarked against their experimental settling data during the 874 
subsequent column meshing studies. These meshing studies considered a column geometry 875 
identical to that of the experimental sludge settling column and tested mesh sizes ranging from 876 
coarse (3,360 elements) to very-fine (57,288). It was concluded that the medium mesh size, 877 
comprising 7,708 elements, resulted in an accurate reproduction of experimental data while 878 
minimising computational effort and avoiding issues associated with numerical instability and poor 879 
convergence in near-wall regions experienced when using a very-fine mesh.  880 

   
Figure. SI-iv4 The basic column geometry considered for the CFD model, (3.1) the coarsest 881 
(‘coarse’) column mesh tested (3,360 elements), (3.2) the finest (‘very-fine’) column mesh tested 882 
(57,288 elements) 883 

 884 
In further developing the sludge settling column CFD model, it was necessary to consider both the 885 
sludge rheology and turbulence modelling approaches taken. This was done via scenario simulation, 886 
once again using the experimental data as a benchmark for sludge blanket height (SBH) and sludge 887 
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concentration at the bottom (𝑋 ) and side (𝑋 ) of the column over the course of the 60 minute 888 
settling experiment. It was determined, by the comparison of a simple Newtonian viscosity model 889 
and the non-Newtonian Ostwald de Waele or Power Law model, that the treatment of sludge 890 
rheology in the CFD model had little to no impact on the accuracy with which experimental data 891 
sets could be replicated. For this reason, the simpler Newtonian model was adopted to minimise the 892 
complexity of the simulation. Alternatively, the chosen turbulence modelling approach was found 893 
to greatly impact the replication of experimental SBH, 𝑋  and 𝑋  profiles, particularly within the 894 
so-called ‘lag-phase’ at the commencement of the settling experiment. The Re-Normalisation 895 
Group (Yakhot et al., 1992) and Shear Stress Transport (Menter, 1994) k-𝜀 derivatives were 896 
compared via scenario simulation and the latter found far superior with regard to the present 897 
application, particularly in the prediction of 𝑋 . 898 
 899 
  900 
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5. Compression settling and compression solids concentration 901 
 902 
For modelling of the onset of compression settling, Guyonvarch et al. (2015) assess the setting of 903 
the variable compressive threshold concentration (XC) using state-of-the-art models (Bürger et al., 904 
2013; Ramin et al., 2014; De Clercq, 2006, De Clercq et al., 2008). Based on the relative predictive 905 
error, computational time and a separate model validation test, the approach of setting XC as a 906 
function of the initial solid concentration and the SST feed concentration for simulating batch tests 907 
and SST, respectively, is found superior over other methods. 908 
Notably, the two models of time-dependent XC by DeClercq (2006) are of interest as they are 909 
identified based on in-depth radiotracer experiemental data, i.e. (a) XC=XSBH+5 where XSBH+5 is the 910 
concentration of the layer located 5 layers below the top of the sludge blanket (De Clercq, 2006); 911 
and (b) the concentration of the highest layer within the sludge blanket where the concentration 912 
gradient falls below 200g/L/m (De Clercq et al., 2008). It is noteworthy that both of these models 913 
failed the discrimination tests (Table SI-v.1), which partly promted the present research as well. 914 
 915 
Table SI-v.1 Comparison of different second-order 1-D-model structures in terms of feed-layer 916 
location and compression threshold concentration – a model discrimination study carried out by 917 
Guyonvarch et al. (2015). For the discretization of the Model 0, 90 layers are used and pseudo-918 
dispersion Df is considered only around the feed layer, at a distance min(Hin;SWD-Hin)/2 (Bürger et 919 
al., 2013). For Model 1 to 8, the number of layers used is 60 layers and a single pseudo-dispersion 920 
D0 constant along the tank (Plósz et al., 2007). For more details on the validation test, see Chapter 921 
2.3.3 in Guyonvarch et al. (2015). a - Computational time evaluation is expressed as Low (few 922 
seconds), High (hours) and Too high (up to several days). An Acceptable computational time is 923 
considered from several seconds to few minutes. b - The validation test is considered as failed if the 924 
mean SSRE between 1-D model predictions and CFD outputs is significantly higher than 1. 925 

 926 
 927 
Theoretically, the solid concentration in the volume of slurry settling in the hindered regime in a 928 
settling column test corresponds to that of the initial concentration. Any increase of the local 929 
concentration in the volume of slurry settling in the hindered settling regime is caused by some 930 
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degree of solid stress through interactions with the increasing cake in the bottom of batch column 931 
(Fig. SI.v.2). According to Kynch’s theory, in the falling hindered settling rate region, also referred 932 
to as transient settling, straight isoconcentration lines propagate from the bottom of the cylinder. 933 
Furthermore, tangential isoconcentration lines propagate from the sediment-suspension interface 934 
during compression settling. Straight isoconcentration lines suggest a first-order process, same as 935 
hindered settling, whereas the curved isoconcentration lines indicate a second-order phenomenon, 936 
i.e. compression settling. 937 
DeClercq (2006) suggest modelling sedimentation transport by considering only hindered and 938 
compression settling, and by employing a time-dependent onset of compression through the 939 
aforementioned XC models. 940 
Partly because DeClercq (2006)’s models seem to overestimate the transient settling velocity and 941 
due to challenges in implementing the proposed XC models in SST simulation models, Ramin et al. 942 
(2014) propose a model that additionally includes a first-order transient settling function, 943 
formulated analogously to hindered settling (straight isoconcentration lines), and by employing two 944 
threshold concentrations for the onset of transient (XT) and then for compression settling, XC. 945 
In contrast to these previous approaches, besides the hindered settling, the present paper proposes a 946 
compression settling function to predict any effects of solid stress propagating through the sludge 947 
blanket (i) by setting XC = XIni and (ii) by formulating the solids stress independently from the XC 948 
value and from the relative concentration (X– XC) that can allow first-order solid settling behaviour 949 
to occur at relatively low X.  950 
Additionally, the physical justification for setting XC at the feed solid concentration for SST 951 
modelling is that the density current of the feed slurry tends towards zero buoyancy, and propagates 952 
through volumes, under which, the descending particles shall increase the local concentration only 953 
if they exhibit compressive solids settling (Fig. SI.v.3; Guyonvarch et al., 2015). 954 
 955 

  956 
Figure SI.v.2. Solid sedimentation – (left) Theory according to (Diplas and Papanicolaou, 1997) 957 
and (right) measurements according to DeClercq et al. (2008) - Iso-concentration contour plot 958 
during batch settling of Destelbergen Sludge. 959 
 960 
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 961 
Figure SI.v.3. The SST influent density current – the rationale for the XC modeling approach in 962 
CFD as well as feed-layer selection in 1-D SST modelling (Guyonvarch et al., 2015). The velocity 963 
vectors (arrows) are coloured according to the magnitude of the horizontal velocity component (UX 964 
in m/s) – not scaled according to the velocity magnitude. X (g/L) is represented across the tank, and 965 
the iso-contour corresponds to the inlet/feed concentration XFeed (solid black line). 966 
 967 
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6. Figures specifically referred to in the main body of text 1006 
 1007 

 1008 
Figure S1. Hindered settling velocity model calibration in the CFD simulation model using 6 1009 
dilutions of activated sludge samples in the full-scale secondary settling tank, OBVA WRRF, Vila-1010 
Real, Spain. 1011 
 1012 
 1013 
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Figure S2. Practical model identification using data obtained with well-settling solids – measured 1015 
and simulated data for activated sludge collected in Fredericia WRRF using the new hindered-1016 
compression process model; Initial solid concentration: 2.95 g L-1; Proposed/a priori probability 1017 
ranges: v0/rH=[0.005 0.0062]; vC=[0.005 0.027]; rC=[2.5 5.5]; Global uncertainty plots with 95% 1018 
confidence intervals, posterior parameter density distributions, values of dynamic global sensitivity 1019 
(SRC) and Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side 1020 
concentration state-variables.    1021 

  1022 
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Figure S3 Practical model identification using data obtained with well-settling solids – measured 1023 
and simulated data for activated sludge collected in Fredericia WRRF using the new hindered-1024 
compression process model; Initial solid concentration: 3.44 g L-1; Proposed/a priori probability 1025 
ranges: v0/rH=[0.0052 0.0063]; vC=[0.005 0.025]; rC=[2.5 5.5]; Global uncertainty plots with 95% 1026 
confidence intervals, posterior parameter density distributions, values of dynamic global sensitivity 1027 
(SRC) and Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side 1028 
concentration state-variables.  1029 
 1030 
 1031 
 1032 
 1033 
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 1035 
Figure S4. Practical model identification using data obtained with well-settling solids – measured 1036 
and simulated data for activated sludge collected in Fredericia WRRF using the new hindered-1037 
compression process model; Initial solid concentration: 4.2 g L-1; Proposed/a priori probability 1038 
ranges: v0/rH=[0.0052 0.0063]; vC=[0.005 0.025]; rC=[2.5 5.5]; Global uncertainty plots with 95% 1039 
confidence intervals, posterior parameter density distributions, values of dynamic global sensitivity 1040 
(SRC) and Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side 1041 
concentration state-variables. 1042 
 1043 
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 1046 
Figure S5. Practical model identification using data obtained with well-settling solids – measured 1047 
and simulated data for activated sludge collected in Fredericia WRRF using the new hindered-1048 
compression process model; Initial solid concentration: 4.5 g L-1; Proposed/a priori probability 1049 
ranges: v0/rH=[0.0052 0.0063]; vC=[0.005 0.025]; rC=[2.5 5.5]; Global uncertainty plots with 95% 1050 
confidence intervals, posterior parameter density distributions, values of dynamic global sensitivity 1051 
(SRC) and Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side 1052 
concentration state-variables. 1053 
 1054 
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 1059 
Figure S6. Model validation using data obtained with well-settling solids – measured and simulated 1060 
data for activated sludge collected in Ellinge WRRF using the new hindered-compression process 1061 
model; Initial solid concentration: 3.0 g L-1; Proposed/a priori probability ranges: v0/rH=[0.0051 1062 
0.0076]; vC=[0.01 0.07]; rC=[0.5 6]; Global uncertainty plots with 95% confidence intervals, 1063 
posterior parameter density distributions, values of dynamic global sensitivity (SRC) and 1064 
Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side concentration 1065 
state-variables.  1066 
 1067 
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 1070 
Figure S7. Model validation using data obtained with well-settling solids – measured and simulated 1071 
data for activated sludge collected in Ellinge WRRF using the new hindered-compression process 1072 
model; Initial solid concentration: 3.4 g L-1; Proposed/a priori probability ranges: v0/rH=[0.005 1073 
0.0077]; vC=[0.01 0.07]; rC=[0.5 6]; Global uncertainty plots with 95% confidence intervals, 1074 
posterior parameter density distributions, values of dynamic global sensitivity (SRC) and 1075 
Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side concentration 1076 
state-variables. 1077 
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 1080 
Figure S8. Model validation using data obtained with well-settling solids – measured and simulated 1081 
data for activated sludge collected in Ellinge WRRF using the new hindered-compression process 1082 
model; Initial solid concentration: 3.8 g L-1; Proposed/a priori probability ranges: v0/rH=[0.0051 1083 
0.0075]; vC=[0.01 0.07]; rC=[0.8 6]; Global uncertainty plots with 95% confidence intervals, 1084 
posterior parameter density distributions, values of dynamic global sensitivity (SRC) and 1085 
Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side concentration 1086 
state-variables. 1087 
 1088 
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 1091 
Figure S9. Model validation using data obtained with filamentous bulking solids – measured and 1092 
simulated data for activated sludge collected in Avedøre WRRF using the new hindered-1093 
compression process model; Initial solid concentration: 2.4 g L-1; Proposed/a priori probability 1094 
ranges: v0/rH=[0.003 0.004]; vC=[0.02 0.2]; rC=[0.5 3]; Global uncertainty plots with 95% 1095 
confidence intervals, posterior parameter density distributions, values of dynamic global sensitivity 1096 
(SRC) and Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side 1097 
concentration state-variables. 1098 
 1099 
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 1102 
Figure S10. Model validation using data obtained with filamentous bulking solids – measured and 1103 
simulated data for activated sludge collected in Avedøre WRRF using the new hindered-1104 
compression process model; Initial solid concentration: 2.8 g L-1; Proposed/a priori probability 1105 
ranges: v0/rH=[0.003 0.004]; vC=[0.02 0.2]; rC=[0.5 4]; Global uncertainty plots with 95% 1106 
confidence intervals, posterior parameter density distributions, values of dynamic global sensitivity 1107 
(SRC) and Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side 1108 
concentration state-variables. 1109 
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 1112 
Figure S11. Model validation using data obtained with filamentous bulking solids – measured and 1113 
simulated data for activated sludge collected in Avedøre WRRF using the new hindered-1114 
compression process model; Initial solid concentration: 3.3 g L-1; Proposed/a priori probability 1115 
ranges: v0/rH=[0.003 0.004]; vC=[0.02 0.2]; rC=[0.8 4]; Global uncertainty plots with 95% 1116 
confidence intervals, posterior parameter density distributions, values of dynamic global sensitivity 1117 
(SRC) and Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side 1118 
concentration state-variables. 1119 
 1120 
 1121 
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 1126 
Figure S12. Model validation using data obtained with filamentous bulking solids – measured and 1127 
simulated data for activated sludge collected in Avedøre WRRF using the new hindered-1128 
compression process model; Initial solid concentration: 3.9 g L-1; Proposed/a priori probability 1129 
ranges: v0/rH=[0.003 0.004]; vC=[0.01 0.2]; rC=[0.1 3]; Global uncertainty plots with 95% 1130 
confidence intervals, posterior parameter density distributions, values of dynamic global sensitivity 1131 
(SRC) and Goodness-of-fit for linear regression (R2) computed for SBH, TSS bottom and side 1132 
concentration state-variables. 1133 
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