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Abstract 

K+-channels are responsible for the efficient and selective conduction of K+ ions across the 

plasma membrane. The bacterial K+ channel KcsA has historically been used to characterize 

various aspects of K+ conduction via computational means. The energetic barriers associated 

with ion translocation across the KcsA selectivity filter have been computed in various studies, 

leading to the proposal of two alternate mechanisms of conduction, involving or neglecting the 

presence of water molecules in between the permeating ions. Here, the potential of mean force 

of K+ permeation is evaluated for KcsA in lipid bilayers containing anionic lipids, which is 

known to increase the open probability of the channel. In addition, the effect of the 

protonation/deprotonation of residue E71, which directly interacts with the selectivity filter 

sequence, is assessed. Both conduction mechanisms are considered throughout. The results 

obtained provide novel insights into the molecular functioning of K+ channels including the 

inactivation process. 

Keywords: molecular dynamics simulations; umbrella sampling; conduction mechanism; cell 

membrane; lipid-protein interactions 

  



2 

 

Introduction 

The plasma membrane is a critical regulator of ion channel function. Various membrane lipids 

have been shown to exert an effect on ion channels from a diverse range of families, including 

cholesterol, and several types of phospholipids (such as phosphatidylinositol 4,5-bisphosphate) 

and sphingolipids (such as sphingosine-2-phosphate) [1-3]. Membrane lipids can regulate ion 

channel activity by several mechanisms among which are: (i) direct binding to specific sites on 

the channel surface, (ii) perturbation of the physical properties of the phospholipid bilayer, and 

(iii) modulation of complex formation with other protein assemblies. In the K+-channel family, 

the regulation of several channel types by membrane lipids has been investigated, including 

inward-rectifying and voltage-gated K+-channels [1, 4, 5]. In KcsA, a bacterial K+-channel, it 

has been shown that anionic phospholipids are instrumental to channel function. For instance, 

the conductance and open probability of KcsA increases in the presence of anionic lipids [6, 7] 

Moreover, anionic lipids enhance the structural stability of KcsA, in conditions of thermal or 

chemical denaturation [8-10]. In addition, correct folding in vitro is assisted by anionic lipids 

[11]. However, the exact role of anionic lipids in these processes remains unclear. 

The landmark crystal structure of KcsA revealed the structure of the K+-channel pore domain 

in atomic detail [12]. The homotetramer is formed from the assembly of four identical 

subunits, each containing two transmembrane helices, connected by a loop which converges at 

the center of the channel (Figure 1). The pore-loop, as this is known, contains an α-helix and 

the selectivity filter sequence (TVGYG), which is conserved in prokaryotic and eukaryotic K+-

channels [13, 14]. This region is responsible for permitting fast and efficient permeation of K+ 

ions, whilst excluding other ionic species. A symmetric arrangement of the backbone carbonyl 

groups of the selectivity filter sequence and the sidechain of the included threonine form four 

adjacent binding sites, named S1-S4, which can accommodate dehydrated K+ ions (Figure 2A). 

Ions enter from the cytoplasm to a water-filled cavity in the center of the protein, and then 

penetrate the selectivity filter before exiting to the periplasm. Numerous computational studies 

have been devoted to conduction in K+-channels [15-20] . On the base of molecular dynamics 

(MD) simulations, two alternative mechanisms were proposed for ion movements across the 

selectivity filter, referred here as KWK and KK [21]. In the KWK mechanism, two consecutive 

ions in the selectivity filter are separated by an intervening water molecule, while in the KK 

mechanism, the filter is completely depleted from water molecules, and ions occupy 

consecutive sites or are separated by empty sites. Ion conduction is regulated at the lower gate 

by opening and closing of the transmembrane helices, and at the upper gate by activation and 
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inactivation of the selectivity filter. It is, therefore, possible that anionic lipids can act at two 

distinct sites to modulate ion conductance in KcsA. 

Several clues into the mechanism of lipid regulation have been gained from the abundance of 

high-resolution structural information available for the KcsA channel. Re-examination of an 

early KcsA structure has disclosed the location of a binding site for anionic lipid POPG (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol), in a cleft at the interface between adjacent 

subunits, and in close proximity to the selectivity filter [22-24]. In these sites, typically referred 

to as ‘non-annular sites’ [25], several arginine residues are thought to be involved in the 

selective, high-affinity binding of phospholipids [4, 6, 26-28]. The behaviour of non-annular 

lipids has been directly implicated in the dynamics of selectivity filter residues [28, 29], 

providing a plausible mechanism of action of anionic lipids on the selectivity filter. Marius et 

al suggested that the inhabitance of three or four identical sites by anionic lipids is a 

prerequisite for channel opening [6]. What is more, the occupation of non-annular sites has 

been shown to encourage the formation of KcsA clusters, which exhibit altered conduction 

properties than isolated channels [30]. 

In this work, the energetics of ion conduction through the KcsA selectivity filter is evaluated 

using umbrella sampling simulations, in zwitterionic and mixed zwitterionic/anionic lipid 

bilayers. The potential of mean force is calculated when non-annular sites are unoccupied and 

occupied by both anionic and zwitterionic lipids. Although interaction between anionic lipids 

and the KcsA channel has been examined in several simulation studies [4, 28], none have 

systematically calculated conduction energetics in systems with anionic lipid components, 

providing the novel aspect to this work. This is supplemented by analogous calculations, where 

the protonation state of residues E71 is modified, which increases the negative charge density 

directly behind the selectivity filter and alters the conformation of proximal residues. The data 

obtained provides important insights into the molecular functioning of the selectivity filter in 

response to the introduction of anionic components. 

Materials and Methods 

Model Setup 

Coordinates from the high-resolution crystal structure of KcsA in a closed state (PDB ID 

1K4C), residues 26-114, were used to model the channel [31]. This particular structure was 

used to allow direct comparison with previous studies [21]. N- and C-termini were acetylated 

and methylated respectively. The amino acid E71 of KcsA was modelled in the protonated 
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state to form a diacid hydrogen bond with D80 [32]. Default ionisation states were used for the 

remaining amino acids. Four water molecules were placed at the back of the selectivity filter, 

in agreement with crystallographic data and previous MD simulations [23]. SOLVATE 1.0 was 

used to solvate internal cavities of the protein. The structures were aligned perpendicular to the 

bilayer and inserted into two membrane systems: (i) a neutral membrane containing 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) molecules and (ii) a charged 

membrane constituted of POPC and 1-palmitoyl-2-oleoylphosphatidylserine (POPS) molecules 

in a 3:1 ratio, which were generated using the CHARMM-GUI online server [33-35]. 

Simulations where the protein is embedded in the POPC bilayer will be labelled POPC, and those 

where the protein is embedded in the mixed bilayer will be labelled POPS in what follows. The 

structures of POPC and POPS are shown in Figure 1B. The VMD solvate plugin was then used 

to create a cubic water box around the membrane-protein system [36]. The overlapping water 

and lipid molecules around the ion channel structure were removed with the cut-off distance 

1.2 Å. Potassium and chloride ions were added using the Autoionize plugin of VMD to 

neutralize the systems up to a concentration of 150 mM [36]. The final system size was 

approximately 90,000 atoms; a representation of the system is shown in Figure 1A. Ions were 

initially placed in the S0, S2 and S4 positions, with water molecules in the remaining sites. The 

selectivity filter structure and the associated binding sites are defined in Figure 2. These 

simulations were denoted POPC/E71H/KWK and POPS/E71H/KWK (Table 1). 

     (A) (B) 

  

Figure 1. (A) Side and top view of a representative final simulation system. The protein is 

shown in cartoon representation, with individual subunits colored differently. Lipid molecules 

are shown in licorice representation, and K+ and Cl- ions are shown as white and ochre spheres, 

respectively. (B) Structure of POPC and POPS lipid molecules with carbon, oxygen, nitrogen 

and phosphorous atoms shown in grey, red, blue and gold, respectively. 
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(A)        Canonical Structure (B)  

 

E71H 

 

E71 

 

 

 

(C) 

           POPS+POPC                       POPC 

 

Figure 2. (A) Illustration of the structure of the KcsA selectivity filter in ‘licorice’ representation 

from the original crystal structure with binding sites labelled, along with relevant residues. (B) 

Representative structures of the selectivity filter of the systems considered are illustrated where the 

main difference lies in the presence of E71 protonated or not. Only two opposite subunits are shown 

for simplicity. KcsA is a homo-tetramer, and there are four identical non-annular sites, each of them 

acting on just one of the four sequence of Thr75-Val76-Gly77-Tyr78-Gly79 residues from each subunit. 

This sequence contributes its carbonyl groups to configure the selectivity filter. (C) Two 

representative snapshots illustrating the protein-lipid interactions described in the main text in 

simulations with POPC-POPS or POPC-only membranes. Top view of the protein and non-annular 

sites occupied by POPS or POC lipids that interact with the protein. The protein backbone is shown in 

‘cartoon’ in cyan. Atoms of two arginine side chains (R64 and R89) at the extracellular membrane 

side forms an electrostatic interaction with a POPS head group. These two Arg residues are shown in 

CPK representation, and the selectivity filter residues are shown in licorice representation. The lipid 

surfaces of non-annular POPS or POPC molecules are shown in licorice and Quicksurf 

representations superimposed. Potassium ions at the selectivity filter are represented by an ochre 
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sphere. 

Molecular Dynamics Simulations 

MD simulations were performed with NAMD version 2.12 [37]. CHARMM36 parameters 

were used for the protein and lipids [38], the TIP3P model was used for water [39]. Parameters 

for K+ ions inside the selectivity filter were selected according to ref. [40]. Default CHARMM 

parameters were used for potassium ions in bulk solution and chloride ions. The particle mesh 

Ewald method was used for the treatment of periodic electrostatic interactions, with an upper 

threshold of 1 Å for grid spacing [41]. Electrostatic and van der Waals forces were calculated 

every time step. A cutoff distance of 12 Å was used for Van der Waals forces. A switching 

distance of 10 Å was chosen to smoothly truncate the non-bonded interactions. Only atoms in a 

Verlet pair list with a cutoff distance of 13.5 Å (reassigned every 20 steps) were considered. 

The SETTLE algorithm was used to constrain all bonds involving hydrogen atoms, to allow 

the use of a 2 fs time step throughout the simulation [42]. MD simulations were performed in 

the NPT ensemble. The Nose-Hoover-Langevin piston was employed to control the pressure 

with a 200 fs period, 50 fs damping constant, and the desired value of 1 atmosphere [43, 44]. 

The system was coupled to a Langevin thermostat to sustain a temperature of 300 K 

throughout. In the equilibration process, the same protocol was used for all the systems. The 

systems were subjected to 10,000 steps of minimization, with harmonic constraints (force 

constant 20 kcal mol−1Å−2) on protein atoms, lipid headgroups and crystallographic water and 

ions. Harmonic restraints were gradually reduced to a force constant of 2 kcal mol−1Å−2 and 

removed in consecutive steps from the lipid headgroups, protein sidechains and protein 

backbone over the course of a 3.5 ns trajectory. Initial 500 ns unbiased MD simulations 

(POPC/E71H/KWK and POPS/E71H/KWK) identified binding of charged and zwitterionic 

phospholipids in non-annular sites on the interface between two adjacent subunits. On account 

of this, analogous systems were then prepared by docking lipid molecules in the vacant sites, 

and new simulations were started from there after equilibration with full occupancy of the four 

non-annular binding sites (POPC4/E71H/KWK and POPS4/E71H/KWK) [6]. In other words, 

we had to artificially place lipid molecules in non-annular sites to set-up these other systems 

because their exchange time is much longer than the time-scale of the simulations we 

performed and lipid molecules did not spontaneously fil all the non-annular sites. 

A representative snapshot illustrating the protein-POPS interactions in two out of the four non-

annular sites is shown in Figure 2B. Additional unbiased simulations with residue E71 

deprotonated were undertaken, with non-annular lipids present (POPC4/E71/KWK and 
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POPS4/E71/KWK). Coordinates from the first 50 ns of unconstrained MD simulations from 

these systems were used as the starting point for subsequent biased simulations, shown in 

Figure 2C. To prepare the equivalent simulations for the alternative conduction mechanism 

without water molecules separating the ions, the ions and water molecules in the selectivity 

filter were manually moved to the S1/S2/G/S4/SCAV configuration, where G is shorthand for 

gap, and SCAV indicates the intracellular cavity of the channel. SEXT refers to the ion at the 

extracellular side. A summary of the systems used for umbrella sampling is provided in Table 

1.  

Table 1. Summary of umbrella sampling simulations performed. W and G are shorthand for 

water and gap, respectively. 

Umbrella Sampling Simulations 

The umbrella sampling technique has been widely used to calculate the Potential of Mean 

Force (PMF) of ion conduction in K+-channels [21, 45-47]. Here, the technique has been 

employed to calculate the PMF of potassium ions translocation through the KcsA selectivity 

filter. 

Considering the time scales associated with lipid exchanges, the times scales available to 
atomistic simulations, and the time scales associated to free energy simulations 

 Ion permeation involving four ions was examined. To simulate the KWK mechanism, where 

water molecules fill sites not containing K+ ions, the events connecting the S0/S2/S4/SCAV and 

SEXT/S0/S2/S4/ configurations were examined, with water molecules in remaining sites. To 

simulate the KK mechanism, where sites not containing K+ ions are empty, the events 

connecting the S1/S2/S4/SCAV and SEXT/S1/S2/S4/ were examined. As validated in previous 

studies [21], the initial and final configurations are considered to be equivalent. The ions 

Bilayer 

Composition 

E71 

Protonation 

State 

Non-

Annular 

Lipids 

Permeation 

Mechanism 

Starting 

Configuration Ions in 

SF 

Notation 

POPC Protonated NO KWK S0/W/S2/W/S4/SCAV POPC/E71H/KWK 

NO KK S1/S2/G/S4/SCAV POPC/E71H/KK 

YES KWK S0/W/S2/W/S4/SCAV POPC4/E71H/KWK 

YES KK S1/S2/G/S4/SCAV POPC4/E71H/KK 

Deprotonated YES KWK S0/W/S2/W/S4/SCAV POPC4/E71/KWK 

YES KK S1/S2/G/S4/SCAV POPC4/E71/KK 

POPS+POPC Protonated NO KWK S0/W/S2/W/S4/SCAV POPS/E71H/KWK 

NO KK S1/S2/G/S4/SCAV POPS/E71H/KK 

YES KWK S0/W/S2/W/S4/SCAV POPS4/E71H/KWK 

YES KK S1/S2/G/S4/SCAV POPS4/E71H/KK 

Deprotonated YES KWK S0/W/S2/W/S4/SCAV POPS4/E71/KWK 

YES KK S1/S2/G/S4/SCAV POPS4/E71/KK 
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studied are denoted K1 (exterior ion), K2 (central ion 1), K3 (central ion 2) and K4 (interior 

ion). The position along the axis of K2 and K3 was controlled by a harmonic potential acting 

on the center of mass of the pair. The center of the biasing potential acting on K4 moved from 

the intracellular cavity to the binding site S4, while the biasing potential acting on K1 moved 

from the binding site S0 to the extracellular milieu. The position of the center of mass of the 

backbone oxygen atoms of the TVGY motif was chosen as reference. Individual simulations 

were predominantly spaced 1 Å apart, adopting a force constant of 10 kcal mol−1Å−2 for the 

harmonic potential. In the barrier regions, additional windows with a force constant of 20 kcal 

mol−1Å−2 for the harmonic potentials were used. In order to avoid degenerate states due to ions 

K2 and K3 switching positions with K1 and K4, simulations with alternative biasing potentials 

were added. In POPC4/E71/KK, alternative biasing potentials acted upon the K1 ion, the K2 

ion and the center of mass of both K3 and K4 ions. In POPS4/E71/KK, alternative biasing 

potentials acted upon the K3 ion, the K4 ion and the center of mass of both K1 and K2 ions. At 

the start of each window, ions were manually moved to their starting configurations. 

Simulations of 500 ps were then performed for each configuration. The positions of water 

molecules in the selectivity filter were monitored throughout, and simulations exhibiting 

transitions between the KWK and KK mechanism were removed from subsequent analyses. 

The initial 100 ps of the trajectories were considered as equilibration, and also removed. The 

weighted histogram analysis method [48] was used to unbias the data and obtain the PMF in 

three or four (POPC4/E71/KK and POPS4/E71/KK) dimensions, which were then projected 

onto two-dimensions for visualization as previously described [21, 45-47]. The minimum 

energy path between the extreme ion configurations, that is, the energy barriers for the 

permeation process, was then computed on the 3-dimensional maps by the string method [49] 

as previously described [21]. Error estimates were obtained by calculating PMF profiles for 

100-ps portions of the trajectory and combining them. These PMF profiles are representative of 

complete conduction events under the assumption that the entrance/exit of a K+ ion to/from the 

intracellular cavity is not associated with large energetic barriers. In agreement with this 

hypothesis, the difference in solvation energy for a K+ ion in the cavity or SEXT, defined by the 

free energy difference between configuration (SEXT/S0/S2/S4) and (S0/S2/S4/SCAV), is ≈1 

kcal/mol in both mechanisms. Structural data [50] as well as electrostatics calculations [51] 

also support this hypothesis.  

Results 
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Umbrella sampling simulations have been used to calculate the energetics of ion conduction 

through the KcsA selectivity filter. In the first section, three independent parameters have been 

modified in order to assess their effect: (i) ion permeation mechanism, either KK or KWK, (ii) 

membrane composition, and (iii) presence of non-annular lipids. The structure of the selectivity 

filter, with labelled binding sites, and the specific simulation frame used to seed the umbrella 

sampling simulations are shown in Figure 2, demonstrating the hydrogen-network. The results 

are organised by conduction mechanism to avoid repetition. In the following sections, the 

effect of deprotonating E71 is examined. Note that in the simplified representations of the 

selectivity filter shown along with the maps, only the ions at binding sites S0-S4 are explicitly 

depicted, while the remaining ion included in the PMF calculations at the 

intracellular/extracellular side of the selectivity filter is not considered. The consequence is that 

the free-energy of states identified by the same label might differ between the left and the right 

panels, because of the position of the fourth ion. The energy barriers were estimated using the 

full four-dimensional energy profiles. 

KWK Mechanism 

In the KWK mechanism of conduction, K+ ions occupy non-adjacent sites in the selectivity 

filter i.e. S2/S4 or S1/S3, interspersed by water molecules. Ion transport occurs by concerted 

transitions between these configurations, associated with an incoming intracellular ion, and an 

outgoing extracellular ion. This has been supported experimental studies [52-54] and prior 

computational [15, 16, 21]. The PMFs corresponding to the KWK mechanism are shown in 

Figure 3A-D, and the estimated energetic barriers are reported in Table 2. When non-annular 

lipids are bound (POPS4/E71H/KWK and POPC4/E71H/KWK), an energetic cost of 3-4 

kcal/mol is associated with loss of the exterior ion from S0 (transition I→II), as well as with 

the attachment of the cavity ion to the lower border of the S4 site (denoted S4B from this point 

forward) and the concurrent movement of selectivity filter ions from S2/S4 to S1/S3 (transition 

II→III). The subsequent ion movements to reform the S0/S2/S4 configuration poses the 

highest barrier to conduction, approximately of the order of 5 kcal/mol. The calculated barriers 

are consistent in POPS/E71H/KWK, albeit slightly higher in transition III→IV. In contrast, in 

POPC/E71H/KWK the barrier for transitions III→IV and II→III are elevated and decreased 

respectively. This difference can be attributed to alternate positions of the S1 ion in the 

S1/S3/S4B configuration: in POPC/E71H/KWK a pronounced well is seen in the center of the 

site, opposed to other simulations where the S1 and S1B positions (where S1B denotes the 
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lower border of the S1 site) are of equal energy (POPS4/E71H/KWK and POPS/E71H/KWK) 

or the energy of S1B is slightly lower (POPC/E71H/KWK). 

Table 2. Energetic barriers (>2 kcal/mol) calculated from umbrella sampling simulations for 

the KWK mechanism with residues E71 protonated (E71H). 

 

Simulation Energy Barrier (kcal/mol ± SD) 

I → II II → III III → IV 

POPS4/E71H/KWK 4.2 ± 0.6 3.6 ± 0.9 4.8 ± 1.2 

POPS/E71H/KWK 3.4 ± 0.5 3.8 ± 0.7 6.7 ± 0.9 

POPC4/E71H/KWK 3.7 ± 0.8 3.3 ± 0.8 5.5 ± 0.9 

POPC/E71H/KWK 5.5 ± 0.4 2.0 ± 0.6 6.7 ± 0.5 

 

POPS4/E71H/KWK POPS/E71H/KWK 

 
 

POPC4/E71H/KWK POPC/E71H/KWK 

  
Figure 3. PMF profiles for (A) POPS4/E71H/KWK, (B) POPS/E71H/KWK, (C) 

POPC4/E71H/KWK and (D) POPC/E71H/KWK from umbrella sampling simulations. The ion 

configurations are shown in a simplified representation of the selectivity filter. K+ ions and 

water molecules are displayed as red and blue spheres, respectively. It should be noted that 

four ions are tracked in all cases but are not shown in the configuration when they are distant 

from the selectivity filter. 

KK Mechanism 

An alternative mechanism of conduction has also been proposed, excluding the involvement of 

water molecules [21]. In this mechanism, the selectivity filter contains two or three K+ ions 

simultaneously, whilst the remaining sites are vacant, and direct ion-ion repulsion is 

responsible for low-energy conduction. The PMF for the KK mechanism can be found in 

Figure 4A-D. In POPS4/E71H/KK and POPC4/E71H/KK simulations, the energetic costs of 

ion exit to the extracellular solution (transitions I → II and II → III) and entrance from the 
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central cavity (transition III → IV) are between 2-4 kcal/mol. After this point, the computed 

barriers are of the order of 1 kcal/mol. In comparison to POPC4/E71H/KK, the barriers 

reported for POPC/E71H/KK increase by between 1-1.5 kcal/mol. Similar to the KWK 

simulations, this is attributed to the preference of the S1 ion to bind centrally, increasing the 

energy required to leave S1 (transitions I → II and II → III) and pass through S1B (transition 

III → IV). Also related to this observation, configurations V (S1/S3/S4B), VI (S1/S3/S4) and 

VII (S1/S2/S4) merge into a single minimum. 

Table 3. Energetic barriers (>2 kcal/mol) calculated from umbrella sampling simulations for 

the KK mechanism with residues E71 protonated (E71H). 

Simulation Energy Barrier (kcal/mol ± SD) 

I → II II → III III → IV 

POPS4/E71H/KK 3.8 ± 0.3 4.0 ± 0.5 3.0 ± 0.9 

POPS/E71H/KK 1.6 ± 0.7 3.5 ± 0.5 4.1 ± 0.5 

POPC4/E71H/KK 2.3 ± 0.2 4.1 ± 0.5 3.7 ± 0.9 

POPC/E71H/KK 3.6 ± 0.5 5.0 ± 0.5 5.2 ± 0.8 

 

POPS4/E71H/KK POPS/E71H/KK 

  

POPC4/E71H/KK POPC/E71H/KK 

 
 

Figure 4. PMF profiles for (A) POPS4/E71H/KK, (B) POPS/E71H/KK, (C) POPC4/E71H/KK 

and (D) POPC/E71H/KK from umbrella sampling simulations. The ion configurations are 

shown in a simplified representation of the selectivity filter. K+ ions and water molecules are 

displayed as red and blue spheres, respectively. It should be noted that four ions are tracked in 

all cases but are not shown in the configuration when they are distant from the selectivity filter. 

Comparison of KWK and KK simulations 
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The maximum barrier to conduction is lowest in the POPS4/E71H/KK and POPC4/E71H/KK 

simulations (<~4 kcal/mol) suggesting the presence of non-annular lipids (both zwitterionic 

and anionic) and absence of water molecules from the selectivity filter are the most favorable 

conditions for conduction. Similar energies are observed during the KK mechanism when 

POPS is present in the membrane, but not in the non-annular sites (POPS/E71H/KK). In both 

conduction mechanisms, the highest barriers are observed in POPC/E71H simulations. In this 

scenario, the average RMSD of the selectivity filter residues in the umbrella sampling 

simulations is higher (Table 4). It should be noted that only windows common throughout the 

KWK or KK sets of simulations were included, therefore effects resulting from the position of 

ions can be considered negligible. The increased RMSD can be attributed to the interaction 

between non-annular arginine R89 and D80. In POPC/E71H simulations, the R89-D80 

interaction is stable in three out four subunits. Instead, this interaction is observed in only 1 out 

of 4 subunits in POPS/E71H, and it is absent in POPS4/E71H and POPC4/E71H simulations. 

Further to this, the presence of the D80-R89 interaction, is associated with side-chain rotation 

of E71 to a Χ1 dihedral in the range 160 to -160o (Table 4), The Χ1 dihedral is typically in the 

range 40 to 100o, consistent with the crystal structure (60o), or it can spontaneously flip to 

occupy a conformation -50 to -80o in a single subunit in each simulation. It can be speculated 

that the deviation of the E71 sidechain contributes to the altered PMF profiles. 

Table 4. Structural features of the KcsA selectivity filter in the umbrella sampling simulations. 

The RMSD of residues E71 to D80 is measured relative to the starting structure. The Χ1 

dihedral is measured as N-CA-CB-CG in the initial structure used for the simulation in 

individual subunits, denoted A-D. Subunits where the D80-R89 interaction is formed are 

denoted with an asterisk. 

Simulation Average RMSD (Å) ± SD Χ1 Dihedral (o) 

KWK KK A B C D 

POPS4/E71H 0.58 ± 0.07 0.50 ± 0.08 -78 53 76 101 

POPS/E71H 0.68 ± 0.06 0.63 ± 0.07 -77 49 165* 73 

POPC4/E71H 0.65 ± 0.07 0.58 ± 0.07 67 67 80 -55 

POPC/E71H 0.74 ± 0.06 0.68 ± 0.05 -70 84* 170* -171* 

E71 Deprotonated and KWK Simulations 

When considering POPS4/E71H/KWK vs. POPS4/E71/KWK, negligible differences are 

observed in the calculated energetic barriers (Tables 2 and 5 and Figure 5). In contrast, the 

maximum barrier is reduced in POPC4/E71/KWK (transitions III → IV: 2.0 ± 1.0 kcal/mol), in 

comparison to POPC4/E71H/KWK (transitions III → IV: 5.5 ± 0.9 kcal/mol). This can be 
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attributed to the central position of the S1 ion in POPC4/E71/KWK, in contrast to the alternate 

S1B site in POPC4/E71H/KWK. This can be easily rationalized by considering the altered 

orientation and charge of E71. When protonated, the conformation of E71 is locked by 

coexistent hydrogen bonds with Y78 and D80, which in turn hydrogen bonds with W67. When 

deprotonated, the aforementioned hydrogen bond network is ruptured; instead, negatively 

charged E71 is oriented between the amide groups of G77 and Y78. In POPS4/E71/KWK, the 

E71-Y78 hydrogen bond can be maintained, even though D80 is detached, resulting in the 

entire S1 site being hospitable and with negligible differences in energies in comparison to the 

protonated state (POPS4/E71H/KWK). Therefore, it can be surmised that the rotation of the 

E71 side tampers with the energetics of the S1 site.  

Table 5. Energetic barriers (>2 kcal/mol) calculated from umbrella sampling simulations for 

the KWK mechanism with residues E71 deprotonated. 

Simulation Energy Barrier (kcal/mol ± SD) 

I → II II → III III → IV 

POPS4/E71/KWK 3.4 ± 0.9 2.7 ± 0.9 5.2 ± 1.0 

POPC4/E71/KWK 3.0 ± 0.8 3.0 ± 0.3 2.0 ± 1.0 

 

POPS4/E71/KWK POPC4/E71/KWK 

  
Figure 5. PMF profiles for (A) POPS4/E71/KWK and (B) POPC4/E71/KWK from umbrella 

sampling simulations. The ion configurations are shown in a simplified representation of the 

selectivity filter. K+ ions and water molecules are displayed as red and blue spheres, 

respectively. It should be noted that four ions are tracked in all cases but are not shown in the 

configuration when they are distant from the selectivity filter. 

E71 Deprotonated and KK Simulations 

In this conduction mechanism, the exact sequence of movements during ion translocation 

diverges when the protonation state of E71 is modified (Figure 6). When E71 is deprotonated 

(POPS4/E71/KK and POPC4/E71/KK), a configuration involving ions in the adjacent S2/S3 

sites emerges (configurations II and III in Figure 6), which is absent when E71 is protonated. 
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This is likely because the heightened negative charge density in this region increases the 

tendency of positively charged ions to enter such conformations in the absence of water. The 

PMF profiles are considered in 4D to account for the additional configurations. The maximum 

barrier to conduction in both cases is ~5 kcal/mol (Table 6); this is a slight increase from the ~4 

kcal/mol barrier in POPS4/E71H/KK and POPC4/E71H/KK simulations. As negligible 

differences are observed when comparing POPS4/E71/KK and POPC4/E71/KK, it can be 

suggested that the elevated charge density behind the selectivity filter is responsible for altering 

the energetics of different ion configurations, rather than the variable H-bonding attributes of 

E71, as mentioned for the KWK mechanism. 

Table 6. Energetic barriers (>2 kcal/mol) calculated from umbrella sampling simulations for 

the KK mechanism with residues E71 deprotonated. 

Simulation Energy Barrier (kcal/mol ± SD) 

I → II IV → V 

POPS4/E71/KK 4.6 ± 0.6 2.8 ± 0.2 

POPC4/E71/KK 5.2 ± 0.8 < 2 

 

 

POPS4/E71/KK 

 
POPC4/E71/KK 

 
Figure 6. PMF profiles for (A) POPS4/E71/KK and (B) POPC4/E71/KK from umbrella 

sampling simulations. The ion configurations are shown in a simplified representation of the 

selectivity filter. K+ ions and water molecules are displayed as red and blue spheres, 
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respectively. It should be noted that four ions are tracked in all cases but are not shown in the 

configuration when they are distant from the selectivity filter. 

Discussion 

The umbrella sampling technique is an established method to characterize PMF of ion transport 

across the KcsA selectivity filter [55]. In several studies, the maximum energy barrier for the 

KWK mechanism has been calculated to be in the range between 2-3 kcal/mol [15, 16, 21]. 

However, a recent study utilizing the same closed KcsA structure has reported larger energy 

barriers of approximately 6 kcal/mol, corresponding to the transition between S1/S3/S4B and 

S0/S2/S4 configuration [56], similar to the PMFs presented in this study. By comparison with 

an artificial open-state structure formed from combination of an open-state structure and the 

closed-state selectivity filter, the authors of this study advocate that opening of the intracellular 

gate enable greater fluctuations in the selectivity filter, transforming the selectivity filter from a 

prohibitive closed state to a permissible open state [56]. Our results show that several pathways 

exist where ions can traverse the selectivity filter in the closed-state structure (PDB 1K4C: 

used in both studies) [31] with energies around 5 kcal/mol or less (POPS4/E71H/KWK, 

POPS4/E71H/KK, POPS/E71H/KK and POPC4/E71H/KK). Overall, the maximum barrier to 

conduction is reported to be between 4.0 ± 0.5 and 6.7 ± 0.9 kcal/mol, considering all the 

situations presented where E71 is protonated. Remarkably, the lowest barrier calculated overall 

is observed for POPC4/E71/KWK (3.0 ± 0.8 kcal/mol), suggesting ions can feasibly traverse 

the selectivity filter when E71 is deprotonated. 

Comparison of the PMF profiles of conduction in zwitterionic and zwitterionic/anionic lipid 

bilayers, in the presence and absence of non-annular lipids reveals several important 

conclusions. Bearing in mind the fact that the free energy surfaces presented in this study are 

obtained in the period of POPC or POPS binding respectively with no exchange, somewhat 

surprisingly, differences in membrane composition can have a negligible impact to the 

maximum barrier to conduction, in the canonical structure of the selectivity filter. However, 

both non-annular lipids and the orientation of E71 can tune the occupancy of individual 

binding sites in the selectivity filter. This is significant considering that individual sites in K+-

channel selectivity filter have previously been shown to be critical for K+ selectivity [57], 

maintaining the structural stability of the filter [58], and regulating both the rate of inactivation 

and recovery from it [55].  

Several lines of inquiry have been investigated previously to fathom how the K+ selectivity 

filter inactivates. Increasing the concentration of the permeant ion (K+) or substitution of K+ 
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with Rb+ has been shown to decrease the rate of C-type inactivation [59, 60] and alter the ion 

occupancy at particular binding sites at the filter [61, 62], indicating a relationship between the 

two factors may exist [63, 64]. Considering this, it has been proposed that ion binding at a 

specific site prevents inactivation from occurring [59, 65]. The S2 site has been implicated in 

this mechanism in several studies [66, 67]. In opposition to this, Matulef and coworkers 

propose that the lack of ion binding in S2 reduces inactivation [68]. In this study, KcsA amide-

to-ester (G77-ester, Y78-ester and G79-ester) substitutions are shown to reduce the single-

channel conductance relative to wild type KcsA, in a similar manner. Y78-ester and G77-ester 

mutations also significantly reduce inactivation, relative to wild type KcsA and G79-ester 

mutant. The amide-ester mutation adjusts the H-bonding and electrostatic properties of the 

residue; quantitively, the electronegativity on the carbonyl oxygen is approximately halved in 

the ester [69]. The crystal structure of the Y78-ester, resolved in the same publication, reveals 

that these properties eliminate ion binding at S2. The ion occupancy is considered to be the 

major contributing factor to inactivation, considering the S2 ion occupancy is also lessened in 

the Rb+ wild type structure, relative to the K+ wild type, yet the H-bond interactions are 

maintained.  

The noted structural and functional properties of the Y78-ester mutant, and the PMF profiles 

presented in this study, lead us to propose through what medium membrane lipids modulate 

inactivation of KcsA by facilitating or preventing networks of interactions with key residues. 

In the PMF profiles, the energetics of the S1B site, which is equivalent to the Y78 carbonyl 

oxygen above the S2 site, are divergent throughout. For example, in POPC/E71H/KWK and 

POPC/E71H/KK configurations involving S1 occupation are noticeably lower in energy than 

those involving S1B, in contrast to other simulations (POPC4/E71H, POPS4/E71H, 

POPS/E71H, KWK or KK), where configurations involving S1 and S1B are roughly equivalent 

or S1B configurations are lower in energy than the S1/S3/S4B configuration. The absence of an 

energy minima in the plane of the four Y78-carbonyl oxygen atoms (S1B) in 

POPC/E71H/KWK and POPC/E71H/KK is significant considering the observed interactions 

between R89 (an arginine residue in the non-annular sites) and D80 in three out of four 

subunits, and the side-chain rotation of E71 in those subunits, which is absent elsewhere. The 

D80-R89 interaction has been reported previously [28]. With this in mind, we hypothesize that 

membrane lipids modulate the conformation and interactions of residues surrounding the 

selectivity filter, which biases the occupancy of individual selectivity filter sites and regulates 
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the inactivation process. Further experimental and simulation studies will be required to 

examine this theory in detail. 

Conclusions 

There have been an increasing number of studies illustrating the importance of protein-lipid 

interactions in the context of structures and the stability of K+-channels [70]. Ion conduction in 

K+-channels is regulated at the lower helix-bundle crossing gate that may be mechanically 

coupled to other regulatory domains. Besides, the lower helix-bundle is in many cases 

functionally coupled to the opening or closing of the selectivity filter gate. In KcsA, the inner 

gate is destabilized at acidic pH shifting the equilibrium toward its open conformation. In 

contrast, the outer gate at the selectivity filter defines primarily the channel opening probability 

and fluctuates between an open state and a non-permeation state, a process known as inactivation. In 

this context, the function of K+-channels, and in particular KcsA, has been shown to be 

regulated by membrane lipids [22, 71]. High-resolution structural information available for 

KcsA reveals that it contains non-covalently bound lipid identified as phosphatidylglycerol 

(PG) [4, 6, 22, 24, 26-28]. We have previously showed that the presence of 1-palmitoyl-2-

oleoyl phosphatidic acid (POPA) drastically reduces inactivation in macroscopic current 

recordings. Effects akin to those of POPA on wild type KcsA were observed when either one 

or both R64 and R89 were mutated to alanine in the absence of added anionic lipids. These 

results were interpreted as a consequence of the interactions between the arginine residues and 

the anionic POPA molecules bound to the non-annular sites [29]. 

In this study, umbrella sampling simulations have been used to compute the energetics of ion 

permeation through the KcsA selectivity filter, via two mechanisms of conduction involving 

either water or vacant sites. The effect of membrane composition, specifically anionic lipids, 

and E71 protonation state are assessed, serving as contemporary aspects of this work. The 

information gained brings to light several novel prospects concerning the behaviour of the 

KcsA selectivity filter: (i) anionic lipids do not affect the energetic barriers of K+ through the 

canonical selectivity filter structure, (ii) selectivity filter conformations involving the 

deprotonated E71 residue are associated with similar energetic barriers, and (iii) the 

occupancies of individual selectivity filter sites are affected by the presence and identity of 

non-annular lipids. The latter observation has been discussed in the context of KcsA 

inactivation, and a mechanism which might explain the known relationship between membrane 

composition and inactivation rate has been proposed. This hypothesis can be used as a starting 

point for future studies.  
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