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Abstract

We model and solve several families of Location-Arc Routing Problems on an
undirected graph. These problems extend the Multi-Depot Rural Postman Problem
to the case where the depots are not fixed. The aim is to select the facility loca-
tions and to construct a set of routes traversing each required edge of the graph,
where each route starts and ends at the same facility. The models differ from each
other in their objective function and on whether or not they include a capacity con-
straint. Alternative formulations are presented that use only binary variables, and
are valid even when the input graph is not complete. This applies, in particular, to
a compact two-index formulation for problems minimizing the overall routing costs,
with or without facilities set-up costs. This formulation incorporates a new set of
constraints that force the routes to be consistent and return to their original de-
pot. A polyhedral study is presented for some of the formulations, which indicates
that the main families of constraints are facet defining. All formulations are solved
by branch-and-cut, and instances with up to 200 vertices are solved to optimality.
Despite the difficulty of the problems, the numerical results demostrate the good
performance of the algorithm.

Key words: Arc routing; location; polyhedral analysis; facets; branch-and-cut.

1 Introduction

Location-Arc Routing Problems (LARPs) combine location and routing decisions
in contexts where the arcs of a network must be serviced, as opposed to the nodes.
These problems arise in most of the classical Arc Routing Problems (ARPs) such as
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newspaper delivery, garbage collection, road gritting, snow removal, meter reading,
etc. (see, e.g., Chapters 13 to 16 in [6]). In such problems the objective function is
typically the total routing cost or the makespan, i.e., the length of the longest route.
LARPs were formally introduced by Ghiani [13] but an earlier publication by Levy
and Bodin [20] described an application in the United States Postal Service in which
a postman parks his van in several locations from which he proceeds to deliver mail
on foot.

LARPs are the arc routing counterpart of Location Routing Problems (LRPs)
occurring in node routing contexts (see [1, 10, 23, 24, 27] for surveys), but have
been less extensively studied. According to Albareda-Sambola [1], this may be due
to the fact that ARPs can often be transformed into node routing problems, as
in [4, 21, 25]. To the best of our knowledge, [15] and [3] present the only exact
algorithms for uncapacitated LARPs. Ghiani and Laporte [15] reduce the original
problem to an undirected Rural Postman Problem (RPP) and solve it by means
of an exact branch-and-cut algorithm. Arbib et al. [3] present a mathematical
programming formulation and a branch-and-cut algorithm for a directed profitable
LARP in which the facilities are located at both endpoints of the selected arcs
according to the facility opening costs, to the profit collected on these arcs, and to
the cost of traversing them.

Some authors have focused on capacitated LARPs. Thus Hashemi Doulabi and
Seifi [17] presented two formulations on mixed graphs: one for the general case, and
one for the case of a single facility. They proposed a simulated annealing heuristic
incorporating several arc routing heuristics. Lopes et al. [22] presented a four-index
flow formulation as well as constructive heuristics, classical improvement heuristics
and metaheuristics. Several authors have studied extensions of the Capacitated
Arc Routing Problem (CARP) with a location component. In Ghiani, Improta and
Laporte [14] these are intermediate facilities at which vehicles such as garbage trucks
can unload in order not to exceed their capacity. Pia and Filippi [26] considered a
CARP with mobile depots, Amaya, Langevin and Trépanier [2] solved a CARP in
which extra vehicles replenish the main fleet at meeting points to be located. The
authors formulated the problem and solved it by branch-and-cut. Salazar-Aguilar,
Langevin and Laporte [28] studied a related problem in the context of road marking.

The purpose of this paper is to study, model and solve exactly several families of
LARPs defined on undirected graphs. We develop models that differ from each other
in their objective function, on whether the number of facilities to be located is upper
bounded, or on whether the facilities are capacitated. In particular, we consider two
types of objective functions: min-cost objectives aiming at minimizing the overall
routing costs, and min-max objectives aiming at minimizing the makespan. While
some of the models assume that there are no capacity limitations, we also study
problems that include a cardinality constraint on the number of users that can be
served from an open facility. Finally, some of the models ignore facilities set-up costs
but include a limitation on the maximum number of facilities to be located, whereas
in other models the number of open facilities is not limited but the facilities set-up
costs are included in the objective function. Dealing with both types of models
allows us to analyze the trade-off between models with a simple objective function,
focusing only on routing costs but requiring a cardinality constraint on the number
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Table 1: Summary of models

Objective function Capacity Limit on the number

of open facilities

MC-p-LARP Min routing cost No Yes

MM-p-LARP Min makespan No Yes

MC-LARP Min facilities set-up cost plus routing cost No No

MC-p-LARP-UD Min routing cost Yes Yes

MM-p-LARP-UD Min makespan Yes Yes

MC-LARP-UD Min facilities set-up cost plus routing cost Yes No

of facilities, and models without such constraint but with a richer objective function
with set-up costs for the open facilities.

To a large extent this work extends our previous works on the MDRPP [11,
12] where we proposed exact solution algorithms based on three- and two-index
formulations for the arc routing problem in which the set of depots for the routes
is given. As we will see, when location decisions are incorporated into arc routing
problems, several non-trivial extensions of the MDRPP arise.

This paper makes the following scientific contributions:

• We study six LARP models (see Table 1), discuss their modeling assumptions
and derive optimality conditions.

• We present two types of formulations. The first class uses disaggregated deci-
sion variables (three-index variables) that link routes with open facilities. All
models can be handled with this type of formulation. The second class of
formulations aggregates the information of all the routes. This leads to two-
index variables, associated with the edges traversed by the routes, but that do
not explicitly link them to the facilities from which the routes operate. This
approach indeed reduces the number of required variables at the expense of
presenting some additional difficulties.

• The formulations that we study exploit optimality conditions, which allow the
use of binary variables only. Preliminary testing showed that for the problems
that we study, such formulations clearly outperform those that do not exploit
optimality conditions, producing tighter lower bounds and smaller enumera-
tion trees.

• We perform a polyhedral study for the disaggregated three-index formulations,
and we prove that the main families of constraints are facet defining. To the
best of our knowledge no polyhedral study has ever been carried out for three-
index variables formulations of arc routing problems with multiple depots,
with or without location decisions.

• For the MC-p-LARP and MC-LARP models we exploit of the optimal condi-
tion on location variables to reinforce the three-index formulation.

• For the compact two-index formulation we prove that there exists an optimal
solution in which no edge is traversed more than twice. As a consequence
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of this optimality condition, the two-index formulation is valid even when
the input graph is not complete. This is an important difference with the
MDRPP for which this optimality condition does not hold, and where two-
index formulations are only valid when the input graph is complete.

• For the two-index formulation we present a new set of constraints guarantee-
ing that the routes are consistent and return to their original depot. These
inequalities incorporate location decisions and are not immediate to derive
from the case of the MDRPP.

The remainder of the paper is organized as follows. Section 2 contains a formal
definition of the problems. The mathematical models are presented in Section 3,
followed by the branch-and-cut algorithm in Section 4. Extensive computational
results are presented in Section 5. The paper closes with some conclusions in Section
6.

2 Location-Arc Routing Problems

We consider LARPs defined on an undirected connected graph G = (V,E), where
V is the vertex set, |V | = n, and E is the edge set, with |E| = m. The set D ⊂ V
denotes a set of potential locations where facilities may be established. A given set
R ⊂ E of edges must be traversed (served), which are referred to as required edges.
The connected components induced by the required edges are referred to as required
components and are denoted by Ck = (Vk, Rk), k ∈ K. Hence, R =

⋃
k∈K Rk. Let

also VR =
⋃
k∈K Vk. There is a traversal cost ce ≥ 0 associated with each edge e ∈ E,

and a value fd ≥ 0, associated with each potential location d ∈ D, which indicates
the set-up cost of opening a facility at d. Let p be an upper bound on the number
of facilities to be located. When there is a limitation on the service capacity of open
facilities, we use bd to denote the maximum number of required edges that can be
served from a facility located at d ∈ D. We use the term route to denote a closed
walk that starts and ends at a selected location d ∈ D. We say that a required edge
e ∈ R is served if a route traverses it at least once. The cost of a route is the sum
of the costs of edges, where the cost of each edge is counted as many times as it is
traversed.

Feasible LARP solutions consist of a subset of open facilities D∗ ⊆ D, together
with a set of non-empty routes, at least one for each selected facility, that serve
all the required edges. Alternative objective functions or additional constraints
characterize the different problems under study:

Definition 2.1

• The MC-p-LARP is to determine a feasible solution with at most p open fa-
cilites, i.e. |D∗| ≤ p, that minimizes the sum of the routing costs.
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• The MM-p-LARP is to determine feasible solution with at most p open fa-
cilites, i.e. |D∗| ≤ p, that minimizes the makespan.

• The MC-LARP is to determine a feasible solution that minimizes the sum of
the set-up costs of the selected facilities, plus the routing costs.

We also consider capacitated versions of each of the above defined problems,
where we assume that each required edge has a unit demand, and for each potential
facility there is a constraint on the maximum demand that it can serve if it is opened.
Since we consider unit demands, these capacitated versions reduce to cardinality
constraints on the maximum number of required edges served by each facility. We
denote by MC-p-LARP-UD, MM-p-LARP-UD, and MC-LARP-UD the capacitated
versions of MC-p-LARP, MM-p-LARP, and MC-LARP, respectively.

The MC-MDRPP where the location of the facilities is known in advance, is a
particular case of both the MC-p-LARP and the MC-LARP. Moreover, the MC-
MDRPP is also a particular case of the MC-p-LARP-UD and the MC-LARP-UD,
where the location of the facilities are known and there are no facilities capacity
constraints. Similarly, the MM-MDRP is a particular case of both the MM-p-LARP
and the MM-p-LARP-UD. Since the MC-MDRPP and the MM-MDRP are known
to be NP-hard [12], we can state the following proposition:

Proposition 2.2

• The MC-p-LARP and the MC-p-LARP-UD are NP-hard

• The MM-p-LARP and the MM-p-LARP-UD are NP-hard.

• The MC-LARP and the MC-LARP-UD are NP-hard.

In the remainder of this paper we assume that G has been simplified so that V is
the set of vertices incident to the edges of R, plus the set of potential locations D, i.e.
V = VR ∪D. The set E contains the edges of R, plus additional unrequired edges
connecting every pair of vertices, and representing shortest paths in the original
graph. To this end, following the procedure described in [5], we first add to GR =
(VR ∪ D,R) an edge between every pair of vertices of VR ∪ D having a cost equal
to the shortest path length on G. We then remove all unrequired edges (i, j) for
which cij = cik + ckj for some k ∈ V , and one of two parallel edges whenever they
both have the same cost. Hence the costs of the simplified graph satisfy the triangle
inequality.

Without loss of generality we also assume that |D| ≥ 3. Indeed, if |D| = 1 no
location decision must be made, so we just have an arc-routing problem. If |D| = 2
we can define an additional potential location placed at a fictitious node and connect
it with only one vertex of VR with an edge of cost greater than twice the sum of the
costs of all other edges. This hypothesis will be used in the proofs of our polyhedral
analysis, where we sometimes use three different depots to obtain the number of
affinely independent points of the studied polyhedron that are needed.
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We denote by TC a Minimum Spanning Tree (MST) with respect to cost function
c, of the multigraph GC = (VC , EC) induced by the connected components, plus the
potential locations that do not belong to any component D \ VR. In addition, we
will use the following usual notation. For any non-empty vertex subset S ⊂ V ,
δ(S) = {(u, v) ∈ E|u ∈ S, v ∈ V \ S} = δ(V \ S) is the set edges in the cut between
S and V \S and γ(S) = {(u, v) ∈ E|u, v ∈ S} the set of edges with both vertices in
S. In particular, for k ∈ K, we use the notation Ek = γ(Vk) ⊇ Rk. For a singleton
S = {v}, with v ∈ V , we simply write δ(v) instead of δ({v}). For H ⊂ E we use
δH(S) = δ(S) ∩ H and γH(S) = γ(S) ∩ H. Furthermore, a vertex v ∈ V is H-
odd if |δH(v)| is odd; otherwise v is H-even. Finally, we use the standard compact
notation f(A) ≡

∑
e∈A fe where f is a vector defined over a set Ω and A ⊆ Ω.

Thus, if x is a vector defined on the edge set E and H ⊆ E, then x(H) =
∑

e∈H xe.
Similarly, if z is a vector defined on the set of potential locations D and D′ ⊆ D,
then z(D′) =

∑
d∈D′ zd.

Remark 2.1 We assume that all opened facilities will be used, in the sense that
there will be at least one non-empty route at each open facility. Note that, except
for the LARPs with facilities set-up costs (MC-LARP and MC-LARP-UD), it is
necessary to explicitly impose this condition since otherwise, alternative optimal
solutions could exist, where some facility is open but never used. As we will see
below, this basic requirement also justifies the hypothesis that at most p facilities be
used, instead of the usual condition that exactly p facilities be opened. Intuitively,
one could think that, when only routing costs are considered, opening more facilities
would necessarily lead to solutions with smaller routing costs, since required edges
could be served from closer facilities. However, imposing to open (and use) exactly p
facilities, may lead to suboptimal routing decisions or may even force the activation
of a route that does not serve any required edge and deteriorates the value of the
objective function. In [11] it was proven that the optimal value of an MDRPP where
all depots must be used can asymptotically be twice the optimal value of the RPP
on the same input graph. Indeed, this result can be extended to the MC-p-LARP
and one can find instances where, asymptotically, the optimal value of an instance
with p open facilities is twice the optimal value of the same instance with just one
open facility.

Also for the case of the MM-p-LARP, forcing exactly p facilities to be opened
may produce undesirable solutions. A simple example is given in Figure 1 which
depicts two components and three potential locations for the facilities, where the
solid lines represent required edges and the dotted lines the remaining edges. As can
be seen, the optimal solution for the MM-p-LARP in that instance, when exactly
two facilities must be opened, will activate facilities L1 and L2 and serve from each
of them the required edges in their respective components. The makespan of that
solution is three. This solution has a better objective than a solution in which three
facilities are opened. Indeed when p = 3, facility L3 must also be opened and a
route must be associated with it, for instance (L3, B, L3), which does not serve any
required edge, and gives an objective function value of four units.

Hence, we avoid potential awkward situations, like the one of the above example,
by assuming that p represents the maximum number of facilities that can be opened,
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Figure 1: Example of instance with better solution for p = 2 than for p = 3

so the models that we study also dictate the optimal decision in terms of the number
of facilities to open.

2.1 Optimality conditions

All the formulations that we propose use only binary variables. This follows from
various optimality conditions that have been established for uncapacitated arc rout-
ing problems on undirected graphs when non-negative costs satisfy the triangle in-
equality [5, 8, 16], and were later extended to multi-depot problems [11, 12]. These
conditions apply to the maximum number of times that edges are traversed in each
individual route in an optimal solution, and they obviously apply to LARPs:

O1: (Valid for MC-p-LARP, MC-LARP, and MM-p-LARP) There exists an optimal
solution in which each required edge is served by exactly one route.

O2: (Valid for MC-p-LARP, MC-LARP, and MM-p-LARP) There exists an optimal
solution in which no edge is traversed more than twice in each route.

O3: (Valid for MC-p-LARP, MC-LARP, and MM-p-LARP) There exists an opti-
mal solution where no non-required edge with the two end-nodes in the same
component (e ∈ γ(Vk) \ R) is traversed more than once in each route. Fur-
thermore, because of the triangle inequality, the only edges of γ(Vk) \R, that
are used are those connecting two R-odd vertices.

O4: (Valid for MC-p-LARP and MC-LARP) There exists an optimal solution in
which the only non-required edges that are traversed twice in the same route
are edges of the TC . As shown in [12] this condition does not hold when the
objective is to minimize the makespan, even when the set of depots for the
routes is given. Thus, the adaptation of this condition to models with min-max
objectives must take into account the fact that any least cost edge connecting
any pair of components can be traversed twice in an optimal solution.

Optimality conditions O1–O4 refer to the edges that may appear in optimal
solutions and to their number of traversals. The optimality condition O5 that we
introduce below is based on the number of facilities that can be opened on optimal
solutions to the MC-p-LARP and the MC-LARP.

O5: (Valid for MC-p-LARP, MC-LARP) There exists an optimal solution in which
every connected component of the graph induced by the edges that are used
contains exactly one open facility.
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Property O5 is obviously true for the MC-LARP. If some component of the graph
induced by the edges used in an optimal solution contained more than one open
facility, closing one of them would produce a solution with a better objective function
value. In the case the MC-p-LARP a similar process will produce an alternative
optimal solution.

When dealing with arc routing problems with multiple depots, the counterpart
of condition O2 applies to the number of edge traversals in individual routes, but
not to the total number of edge traversals in optimal solutions. In particular, unless
the underlying graph is a complete graph, it is possible to construct examples where
an optimal MD-RPP solution traverses an edge up to 2|D| times, where |D| is the
number of depots (which is fixed) [11]. Unfortunately, completing the input graph
becomes impractical, except for small-size graphs, due to the increase in the number
of edges (and thus of variables) that it may require.

In contrast, when dealing with min-cost LARPs (with or without set-up costs),
the fact that the number of operational depots is not known in advance allows us
to prove that there exist optimal solutions in which no edge is traversed more than
twice, provided that non-negative costs satisfy the triangle inequality, independently
of whether or not the graph is complete. This is a very useful property that we will
exploit in some of the formulations that we propose.

Proposition 2.3

• There exists an optimal MC-p-LARP solution in which no edge is traversed
more than twice.

• There exists an optimal MC-LARP solution in which no edge is traversed more
than twice.

Proof: First we note that, since capacity constraints are not present, we can assume
that only one route is carried out from each depot.

• Consider an optimal solution to a given MC-p-LARP in which an edge e ∈ E is
traversed by two routes T1 and T2, operating from two different open facilities,
d1, d2. The solution obtained by merging T1 and T2 into a single route T , and
arbitrarily closing one of the depots (for instance, d2) is feasible for the MC-
p-LARP, since the parity of the vertices does not change and the connectivity
of the merged route with the remaining depot is guaranteed. Moreover, the
merged solution is also optimal, since its routing cost has not changed. Edge e
is traversed exactly twice in the merged route T , since otherwise two traversals
of e could be removed, contradicting the optimality of the solution. This
process can be repeated until all the routes traversing the same edge have
been merged.

• For the MC-LARP we proceed as above, but now closing at each step the
facility with the largest set-up cost. Moreover, the merged solution will have
the same routing cost and smaller set-up costs.
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3 Mathematical programming formulations

We now present linear integer formulations for the LARPs we have defined. The
main difficulty in the formulation of LARPs is to ensure that the routes are well-
defined (connected and closed, and preserving the parity of the vertices) and that
each route starts and ends at the same facility without traversing any other facility.

A natural modeling option is to link routes with open facilities. This leads
to formulations with three-index variables, associated with the edges traversed in
the routes of the open facilities. Despite the large number of variables that such
formulations entail, they can be very useful, since they allow to easily recreate
the routes from each facility once the values of the decision variables are known.
Moreover, such a representation is necessary in some cases like, for instance, when
the objective function depends on the cost of some specific route (makespan) or when
capacity constraints are present. The three-index variables formulation presented in
Section 3.1 can thus be adapted to all six LARPs defined in Section 2.

An alternative modeling option is to work with formulations that aggregate the
information of all the routes. This leads to the use of two-index variables asso-
ciated with the edges traversed by the routes, but does not explicitly define the
routes themselves. This approach reduces the number of required variables at the
expenses of requiring a final post-processing phase to specify the route associated
with each open facility. Furthermore, in order to guarantee the consistency of the
routes produced with these variables, specific constraints are needed to impose that
no route traverses more than one facility. Finally, such models are only valid for
problems in which the objective is an aggregate measure of all routes (MC-p-LARP
and MC-LARP), and the feasibility of the solutions can be derived from the aggre-
gated information. Therefore they are not valid if the objective is to minimize the
makespan, which reflects the cost of one specific route, or for problems with capacity
constraints, where the arcs traversed by each of the routes need to be known. A
formulation with two-index variables valid for the MC-p-LARP and MC-LARP will
be presented in Section 3.2.

All the formulations that we propose exploit the optimality conditions presented
in Section 2.1 and use binary variables only. In particular, we apply O3 and O4
to identify the set of edges Ey that can be traversed twice in an optimal solution.
Recall that for MC-p-LARP and MC-LARP, Ey contains all the required edges plus
the edges of TC , whereas for the remaining models Ey contains all the required edges
plus all edges connecting two distinct components.

3.1 Three-index variable formulations

For each e ∈ E, let xde be a binary variable indicating whether or not edge e is
traversed by route from depot d. For each e ∈ Ey, let yde be a binary variable taking
the value one if and only if edge e is traversed twice in the solution by route from
facility d. For each d ∈ D, let zd be a binary variable designating whether or not
facility d is opened.

1. MC-p-LARP
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The MILP for the MC-p-LARP is as follows:

minimize
∑
d∈D

∑
e∈E

cex
d
e +

∑
d∈D

∑
e∈Ey

cey
d
e (1)

subject to

(xd + yd)(δ(d)) ≥ 2zd d ∈ D \ VR (2)

(xd + yd)(δ(S)) ≥ 2xde d ∈ D,S ⊆ V \ {d},
e ∈ E(S) (3)

(xd − yd)(δ(S) \H) + yd(H) ≥ xd(H)− |H|+ 1 S ⊂ V, H ⊆ δ(S),

|H| odd, d ∈ D (4)∑
d∈D

xde ≥ 1 e ∈ R (5)

yde ≤ xde e ∈ Ey, d ∈ D (6)

xde ≤ zd e ∈ E, d ∈ D (7)

yde ≤ zd e ∈ Ey, d ∈ D (8)

z(D) ≤ p (9)

xde ∈ {0, 1} e ∈ E, d ∈ D (10)

yde ∈ {0, 1} e ∈ Ey, d ∈ D (11)

zd ∈ {0, 1} d ∈ D. (12)

Observe that the compact notation introduced in Section 2 is used in con-
straints (2), (3), (4), and (9). Inequalities (2) ensure that if a potential loca-
tion is opened, then there are at least two edges incident to it. Inequalities
(3) are an adaptation of the well-known connectivity constraints, and ensure
the connectivity of each route to its depot. This is guaranteed by imposing
that if edge e is traversed by the route associated with facility d ∈ D, then the
cutset of any vertex set containing the two end-nodes of e but not containing
d must be crossed by at least two edges of that route. Inequalities (4) were
proposed in [12] for the MDRPP and ensure the parity (even degree) of every
subset of vertices. They state that if the route associated with a given facility
d ∈ D uses a set H consisting of an odd number of edges incident to a set of
vertices S, then it must use at least one additional traversal of some edge in the
cut-set δ(S). We further exploit the precedence relationship of the x variables
with respect to the y variables. Therefore, the additional edge will either be a
second traversal of some edge of H or a first traversal of some edge of δ(S)\H.
Constraints (5) impose that all required edges be served and (6) that no edge
is traversed for the a second time unless it also has been traversed for a first
time. By (7)–(8) no edge is traversed by the route of a facility that has not
been opened. Inequality (9) means that at most p facilities are opened. The
domains of the variables x, y and z are defined in constraints (10)–(12).

The are |E||D| x variables, |Ey||D| y variables, and |D| z variables. Moreover,
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the number of inequalities (2) is |D \ VR|, |R| inequalities of type (5), |Ey||D|
inequalities (6), and (|E|+ |Ey|) |D| inequalities of types (7)–(8). The size of
the families inequalities (3) and (4) is exponential in |V |.

2. MC-LARP
The formulation MC-LARP can be obtained from (2)–(12), by removing con-
straint (9), which limits the number of facilities to open, and adding the facil-
ities set-up costs to the objective function, resulting in

min
∑
d∈D

fdzd +
∑
d∈D

∑
e∈E

cex
d
e +

∑
d∈D

∑
e∈Ey

cey
d
e . (13)

3. MM-p-LARP
To minimize the makespan is necessary to define a new variable w that rep-
resent the length of the longest route. Hence, the objective function becomes
the minimization of w, subject to (2)–(12). Furthermore, a new family of
constraints is needed, which relates the new variable w to the route lengths.
These inequalities, also ensure that w represents the longest route:

w ≥
∑
e∈E

cex
d
e +

∑
e∈Ey

cey
d
e d ∈ D. (14)

4. MC-p-LARP-UD, MC-LARP-UD and MM-p-LARP-UD
Dealing with the unit customer demands and the maximum number of cus-
tomers to serve from each potential location bd only requires adding to the
corresponding uncapacitated formulation the following family of capacity con-
straints, one for each facility:∑

e∈R
xde ≤ bdzd d ∈ D. (15)

3.1.1 Valid inequalities

We next introduce some families of valid inequalities that can be used to reinforce
the formulations presented above.

• Since the vertices incident to required edges must be visited, for singletons
S = {i} with i ∈ VR the connectivity constraints (3) can be replaced with the
tighter constraints ∑

d∈D
(xd + yd)(δ(i)) ≥ 2. (16)

• The connectivity constraints (3) associated with components containing no
potential facility can also be replaced with a tighter set of constraints. In
particular for all k ∈ K such that Vk ∩D = ∅, we have∑

d∈D
(xd + yd)(δ(Vk)) ≥ 2. (17)
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• In principle, only constraints (4) associated with singletons S = {v} with
v ∈ V , are needed to guarantee the parity of vertices in solutions. However,
they are also valid for general vertex sets S ⊆ V , and imposing them for the
general case leads to a formulation with a tighter linear programming (LP)
relaxation. In fact, these inequalities can be further reinforced as we show
below:

Proposition 3.1 The inequality (4) associated with a given d ∈ D, S ⊂ V ,
H ⊆ δ(S), with |H| ≥ 3 odd, is dominated by the valid inequality

(xd − yd)(δ(S) \H) + yd(H) ≥ xd(H)− |H|+ 2− zd. (18)

Proof: Let d ∈ D, S ⊂ V , H ⊆ δ(S), with |H| ≥ 3 and odd. To see that
(18) is valid, recall that zd ∈ {0, 1} in any feasible solution. If zd = 0, then
xde = yde = 0, for all e ∈ E, so (18) reduces to 0 ≥ −|H| + 2, which holds by
hypothesis. When zd = 1, then (18) becomes (4). Indeed (18) are tighter than
(4) since 2− zd ≥ 1. �

Since the only inequalities (4) that are not dominated by the set (18) are
those associated with odd edge sets H ⊂ δ(S) with |H| < 3, in the following
we substitute the complete set of inequalities (4) by only its small family
corresponding to singletons S = {v} with v ∈ V , and subsets H ⊂ δ(S)
consisting of just one edge, i.e. |H| = 1, plus the complete set of reinforced
parity constraints (18).

3.1.2 Reinforcing MC-p-LARP and MC-LARP with condition O5

The optimality condition on the location variables O5 can be used to reinforce the
three-index formulations for MC-p-LARP and MC-LARP. Modeling O5 requires
adding the following set of constraints:

z(Vk ∩D) ≤ 1 k ∈ K (19)

xde = zd e ∈ Rk, d ∈ D ∩ Vk, k ∈ K (20)∑
d∈D\Vk

xde + z(Vk ∩D) ≤ 1 e ∈ Ek ∪ δ(Vk), k ∈ K (21)

xde ≤ xde′ e ∈ (Ek \Rk) ∪ δ(Vk), e′ ∈ Rk, k ∈ K,
d ∈ D \ Vk. (22)

By (19) at most one facility per component will be opened. Moreover, (20)
ensure that if a facility is opened in a component, then all the required edges in
that component will be served from that facility. In its turn, (21) prevent any
edge in the cut-set of a component where a facility is opened to be traversed from
any facility located at any other component. The correct propagation of the route
associated with an open facility is guaranteed by (22) together with the original set
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of constraints (7). Note that the constraints (22) corresponding to required edges
are not needed, since they are already implied by (20). In addition the following
sets of inequalities can be used to reinforce the resulting formulation:

∑
d∈D\S

(
xd + yd

)
(δ(S)) ≥ 2 (1− z(D ∩ S)) S = ∪k∈K′Vk,K ′ ⊂ K (23)

The reinforced connectivity constraints (23) impose that if no open facility be-
longs to the group of components defining S, then the cutset of S must contain at
least two edges of some route associated with a depot that does not belong to S.

3.1.3 Polyhedral analysis

In this section we study some properties of the polyhedron associated with the
three-index formulation. In the following, the convex hull of vectors (x, y, z) with
components in [0, 1] that satisfy (2)–(9) is denoted by P(MC−LARP ). The proofs of
the propositions are presented in Appendix A.

Proposition 3.2 dim(P(MC−LARP )) = |E||D| + |Ey||D| + |D| − |R| if and only if
every cut-edge set δ(S), S ⊂ V \D, contains at least three edges, and every cut-edge
set δ(S) such that S =

⋃
i∈K′ Vi \D, ∅ 6= K ′ ⊂ K, contains at least four edges.

Proposition 3.3 The inequality xde ≥ 0, e ∈ E, d ∈ D, defines a facet of P(MC−LARP )

if and only if every cut-set δ(S), S ⊂ V \D, containing e contains at least four edges,
every δ(S) such that S =

⋃
i∈K′ Vi \D (∅ 6= K ′ ⊂ K) contains at least five edges.

Proposition 3.4 The inequality xde ≤ 1, e ∈ E, d ∈ D, induces a facet of P(MC−LARP )

if and only if every cut-set δ(S) containing e contains at least four edges.

Proposition 3.5 The connectivity inequality (3) associated with S =
⋃
i∈K′ Vi (∅ 6=

K ′ ⊂ K), S
⋂
D = ∅, e ∈ E(S), induces a facet of P(MC−LARP ) if and only if the

graphs induced by the connected components G(S) and G(V \S) satisfy the following:
i) G(S) is connected and each connected component of G(V \S) contains at least one
open facility. ii) For every subset of components in S′ ⊂ S (or S′ in V \S) with
S′
⋂
D = ∅, the inequality |δ(S′)\δ(S)| ≥ 2, holds.

Proposition 3.6 The reinforced parity constraints (18) induce facets of P(MC−LARP )

for S and H such that |δ(S)| ≥ |H|+ 1 and H ∩ δ(D) = ∅.

3.2 Two-index variable formulations

Here we propose a new formulation for MC-p-LARP and MC-LARP in which the
routes are represented by two-index variables, solely associated with edge traversals
but not with the facilities they are linked to. The formulation exploits Proposition
2.3. Regardless of whether or not G is a complete graph, there exists an optimal
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solution to both MC-p-LARP and MC-LARP in which no edge is traversed more
than twice. Therefore, in both cases the total number of traversals of each edge can
be represented by means of only two binary variables, one for the first one and one
for the second one. Unlike the three-index formulations above, these variables now
represent aggregated information over all the routes. In such a formulation connec-
tivity and parity conditions are no longer sufficient to guarantee that the routes start
and end at the same facility. Hence, additional constraints are required in order to
guarantee the consistency of routes. To this end, we introduce an extension of a
set of constraints proposed in [11] for the MDRPP, which now integrate locational
decision variables as well.

We use the same location variables as above so the binary variable zd, d ∈ D,
indicates whether or not a facility is established at d. As for the routing, let xe
denote the binary variable for the first traversal of edge e ∈ E, and let ye the binary
variable indicating whether or not edge e ∈ Ey is traversed a second time.

3.2.1 Return-to-facility constraints

Before presenting the formulation we discuss the return-to-facility constraints (Rt-
FCs) which guarantee that all routes start and end at the same facility. These are a
variation of the parity inequalities which stated that the set of open facilities involved
in the edges of the cut-sets is needed to guarantee consistent routes in LARPs. In
fact, the RtFCs extend the family of inequalities introduced in [11] for the MDRPP,
which ensure that routes return to the appropriate depot. These inequalities are no
longer valid for LARPs since they assume that the set of depots from which routes
originate is known. However, since the set of potential locations that will actually
become depots for the routes is not known in advance for LARPs, location variables
are required in the proposed inequalities. As we will see the resulting inequalities
are quite involved.

In Figure 2 the gray squares represent potential facilities and the solid lines
correspond to required edges. This figure illustrates not only that connectivity and
parity constraints are not sufficient to guarantee well-defined routes, but also that
the conditions needed to guarantee consistent routes in LARPs necessarily depend
on the set of open facilities. Observe that if only one or two of the three potential
locations are opened, the displayed solution would be feasible and, depending on the
case, it would consist of one or two well-defined routes. Instead, if all three potential
facilities opened, the displayed solution would be infeasible since it is not possible
to decompose it into three routes, each starting and ending at the same facility.
Moreover, if all three potential facilities opened, any feasible solution should have at
least three more edges (or additional traversals of the existing edges) in the cut-set
of S = {1, 2}. This idea is formalized below.

Consider a vertex set S ⊂ V \ D and a subset of potential facilities D′ =
{d1, . . . , dr} ⊂ D. Consider also a subset of edges H ⊂ δ(S) ∩ δ(D′). Denote
by Hi 6= ∅ the set of edges of H incident with facility i ∈ D′ and assume that each
Hi contains an odd number of edges. Finally, partition δ(S)\H in the following two
sets: FD

′
S,H = (δ(S) \H)\δ(D \D′), the set of edges of δ(S)\H that are not incident

to any potential facility different from those of D′, and QD
′

S,H = (δ(S) \H)∩δ(D\D′),

14
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Figure 2: Infeasible solution satisfying connectivity and parity constraints

the set of edges of δ(S) \ H incident to some potential facility not in D′. The in-
equality that we propose contains bilinear terms that will be discussed and linearized
later on.

Proposition 3.7 The RtFC

(x− y)
(
FD

′
S,H

)
+

∑
d∈D\D′

(1− zd)(x− y)
(
QD

′
S,H ∩ δ(d)

)
+ y(H) ≥ x(H)− |H|+ z(D′)

(24)

associated with S, D′, and H as defined above is valid for MC-p-LARP and MC-
LARP.

Proof: Let (z, x, y) be a feasible LARP solution and note that the RtFC (24) is
only active if x(H)− |H|+ z(D′) > 0. Since x(H)− |H| ≤ 0, a necessary condition
is that z(D′) ≥ 1. Consider the following cases:

a) x(H) = |H| and z(D′) ≥ 1. The right-hand side of the RtFC reduces to
z(D′) ≥ 1. Since x(H) = |H|, then xe = 1, for all e ∈ Hi, i ∈ {1, . . . , r}.
Given that all the edges in each Hi are incident with the same potential facility
and |Hi| is odd, there must be at least one additional traversal of some edge
in the cut-set associated with each open facility of the set D′. That is, in
total z(D′) additional traversals are needed, which must correspond either to
second traversals of edges in H (term y(H)), or to first traversals of edges in
δ(S) \ H. In the latter case, the first traversal may correspond to edges not
incident with potential locations of D \ D′, represented by the first term of

the left-hand side (x− y)
(
FD

′
S,H

)
, or to potential locations of D \D′, provided

that the involved potential locations are not open, represented by the second

term of the left-hand side
∑

d∈D\D′(1−zd)(x−y)
(
QD

′
S,H ∩ δ(d)

)
. The bilinear
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terms are necessary since the edges incident with potential locations in D \D′
may contribute to the overall count only when the potential facility involved
remains closed.

b) x(H) = |H| − 1 and z(D′) ≥ 2. The right-hand side of the RtFC reduces to
z(D′) − 1 ≥ 1. In this case exactly one of the edges of H is not traversed
in solution (z, x, y). In full, let us assume that x(H1) = |H1| − 1 (which is
even), and x(Hi) = |Hi|, i ∈ {2, . . . , r}. Consider now D′ = D′ \ {d1}, and
H = H \H1.

– The RtFC associated with S, D′, and H corresponds to case a), since
x(H \ H1) = (|H \ H1|) and z(D′) = z(D′ \ {d1}) ≥ 1. Therefore it is
valid.

– The RtFC associated with S, D′, and H is dominated by the RtFC associ-
ated with S, D′, and H. Both inequalities have the same right-hand side,
and the left-hand side of the former is weaker than the right-hand side

of the latter since y(H) ≥ y(H) and (x− y)
(
FD

′
S,H

)
≥ (x− y)

(
FD

′

S,H

)
+

(1− zd1)(x− y) ((δ(S) \H) ∩ δ(d1)).

Hence, the RtFC associated with S, D′, and H is valid.

c) x(H) = |H|−2 and z(D′) ≥ 3. The right-hand side of the RtFC is z(D′)−2 ≥
1. There are exactly two edges of H, say e1, e2 that are not traversed in the
solution (z, x, y). Consider the two possible subcases:

c1) e1, e2 ∈ H1. Then, quite similarly to case b, the RtFC associated with S,
D′, andH is dominated by that associated with S, D′, H = {H1, H2, . . . ,Hr},
with H1 = H1 \ {e1, e2}, which corresponds to case a).

c2) e1 and e2 are incident with two different depots, i.e. e1 ∈ H1, e2 ∈ H2.
Then, the RtFC associated with S, D′, and H is dominated by that
associated with S, H = H \ {H1, H2} and D

′
= D′ \ {d1, d2} which also

corresponds to case a).

Hence, the RtFC associated with S, D′, and H is valid.

d) All other cases can be handled similarly. �

To illustrate, consider again the solution depicted in Figure 2 with two alternative
values for the location variables: one where all three potential facilities are open,
i.e. z1L1 = z1L2 = z1L3 = 1 which, as explained, is infeasible, and another one where
only L1 and L2 are open, i.e. z2L1 = z2L2 = 1, z2L3 = 0, which is feasible. Consider
the vertex set S = {1, 2}, H1 = {(1, L1)} and H2 = {(2, L2)}. In both cases let
D′ = {L1, L2}, so FD

′
S,H = {(2, 3)} and QD

′
S,H = {(2, L3)}.

For the infeasible solution z1 we have z1(D′) = z1L1 + z1L2 = 2. Since z1L3 = 1

we also have hd3(2,L3) = 0, so
∑

d∈D\D′ h
d
(
QD

′
S,H ∩ δ(d)

)
= 0. Therefore, the asso-

ciated RtDC (32) is violated since x(H) − |H| + z(D′) = 2, but (x − y)
(
FD

′
S,H

)
+∑

d∈D\D′ h
d
(
QD

′
S,H ∩ δ(d)

)
+ y(H) = 1.
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If we instead consider the feasible solution z2, we also have z2(D′) = z2L1 +z2L2 =

2, but now hd3(2,L3) = 1, since z2L3 = 0. Hence,
∑

d∈D\D′ h
d
(
QD

′
S,H ∩ δ(d)

)
= 1 and

the left-hand side of the RtDC is becomes 1 + 1, which coincides with the value
of the right-hand side that does not change. Hence, as expected, the RtFC is not
violated for this feasible solution.

In order to integrate the set of inequalities (24) within a MILP formulation it
is necessary to linearize the bilinear terms that they include. For this we define
additional decision variables representing the products hed = (1 − zd)(xe − ye) for
the edges e ∈ δ(d), with d ∈ D. These variables will take the value 1 if and only
if edge e, which is incident with potential facility d, is traversed exactly once and
the facility located at d is not open. Observe that the number

∑
d∈D |δ(d)| of new

variables is very moderate since we are assuming that |Vk ∩D| ≤ 1, for all k ∈ K.
This number is clearly smaller than the number of two-index variables. The new
set of variables h and variables x, y and z can be related with the usual linearizing
constraints:

hed ≤ (1− zd) d ∈ D, e ∈ δ(d) (25)

hed ≤ (xe − ye) d ∈ D, e ∈ δ(d) (26)

(1− zd) + (xe − ye) ≤ 1 + hed d ∈ D, e ∈ δ(d). (27)

3.2.2 MILP formulation for MC-p-LARP and MC-LARP

The MILP for the MC-p-LARP is presented below:

minimize
∑
e∈E

cexe +
∑
e∈Ey

ceye (28)

subject to

(x+ y)(δ(d)) ≥ 2zd d ∈ D (29)

(x+ y)(δ(S)) ≥ 2(1− z(S)) S ⊆ V, S ∩ VR 6= ∅
(30)

(x− y)(δ(S) \H) + y(H) ≥ x(H)− |H|+ 1 S ⊂ V, H ⊆ δ(S),

|H| odd (31)

(x− y)
(
FD

′
S,H

)
+

∑
d∈D\D′

hd((δ(S) \H) ∩ δ(d)) + y(H) ≥ x(H)− |H|+ z(D′)

S ⊂ V \D, D′ = {d1, . . . , dr} ⊂ D
H = H1 ∪ . . .Hr, Hi ⊆ δ(S) ∩ δ(di)
|Hi| odd, i = 1, . . . , r, r > 1

(32)

xe = 1 e ∈ R (33)

ye ≤ xe e ∈ Ey (34)

z(D) ≤ p (35)
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hed + zd ≤ 1 d ∈ D, e ∈ δ(d) (36)

hed + ye ≤ xe d ∈ D, e ∈ δ(d) (37)

xe ≤ zd + ye + hed d ∈ D, e ∈ δ(d) (38)

xe ∈ {0, 1} e ∈ E (39)

ye ∈ {0, 1} e ∈ Ey (40)

zd ∈ {0, 1} d ∈ D (41)

hed ∈ {0, 1} d ∈ D, e ∈ δ(d). (42)

Inequalities (29) ensure that open facilities are used and the family (30) is an adap-
tation of the well-known connectivity inequalities: there must be at least two edge
traversals in the cut-set of a given set of vertices S containing no open facility when-
ever S contains some vertex that must be visited. Inequalities (31) have a similar
explanation to that of (4) and ensure the parity (even degree) of every subset of
vertices. They have been used in the two-index formulation for the MDRPP pro-
posed in [11] (observe that they do not involve any location variable). The RtFCs
(32) have been discussed above. Equalities (33) ensure that all required edges are
served whereas constraints (34) mean that an edge cannot be traversed for a second
time unless it also has been traversed for the first time. The limit on the maximum
number of facilities that can be opened is imposed by (35). The linearization of
the set of new variables h and its relation to the other decision variables is given in
(36)–(38). Finally, the domains of the different sets of decision variables are stated
in (39)–(42).

The above formulation contains |E| x and |Ey| y variables, and |D| z variables.
As mentioned, the number of h variables is

∑
d∈D |δ(d)|. There are |D| inequalities

of type (29), |R| inequalities (33), |Ey| inequalities of type (34). The number of
constraints in each family (36)–(38) is

∑
d∈D |δ(d)|. The number of inequalities

(30), (31), and (32) is exponential in |V |.

MC-LARP
Since the domains of MC-p-LARP and MC-LARP are the same, except for
constraint (35) on the maximum number of open facilities, in order to adapt
the above formulation to the MC-LARP, we only need to discard this constraint
and to update the objective function to

min
∑
d∈D

fdzd +
∑
e∈E

cexe +
∑
e∈Ey

ceye. (43)

Proposition 3.8 Formulation (29)–(42) is valid for the MC-p-LARP and for the
MC-LARP.

Proof: By Proposition (3.7) inequalities (32) are valid. Therefore, if a solution
(x, y, z) is feasible for the MC-p-LARP or the MC-LARP no violated inequality of
this family exists. We now show that if a solution (x, y, z) satisfying (29)–(31), (33)–
(35), and (39)–(40) is not feasible for the MC-p-LARP or the MC-LARP, then there
exists a constraint (32) violated by the solution. Because of the connectivity and
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parity constraints (30)–(31), if (x, y, z) is not feasible then in any decomposition of
the solution in edge-disjoint simple tours, there is one simple tour T traversing at
least two open facilities. Let d1, d2 ∈ D be two open facilities that are consecutive
in the tour T , and let Pd1d2 the subpath of T connecting d1, and d2 and ST =
V (Pd1d2) \D.

• If the decomposition contains no simple tour T ′ incident with some vertex
of ST , i.e., ST ∩ V (T ′) 6= ∅, then the RtFC (32) associated with S = ST ,
D′ = {d1, d2}, H1 = S ∩ δ(d1), H2 = S ∩ δ(d2), FD

′
S,H = (δ(S) \H) \ δ(D \D′)

and QD
′

S,H = (δ(S) \H) ∩ δ(D \D′) is violated by (x, y, z), since all the terms
in the left-hand side of (32) take the value zero, but the right-hand side takes
the value two, since zd1 = zd2 = 1.

• Suppose now that the decomposition contains a simple tour T ′ incident with
some vertex of S. Let {v} ∈ S ∩ V (T ′) (arbitrarily selected, if there is more
than one such vertex). Consider the following subcases:

– T ′ does not intersect with V (T ) \ Pd1d2 . Consider ST
′

consisting of all
vertices of V (T ′) which are not open facilities in z (possibly all V (T ′)).
Then the RtFC (32) associated with S = ST ∪ ST ′ , D′ = {d1, d2}, H1 =
S ∩ δ(d1), H2 = S ∩ δ(d2), FD

′
S,H = (δ(S) \H) \ δ(D \ D′) and QD

′
S,H =

(δ(S) \H) ∩ δ(D \D′) is violated by (x, y, z). Again all the terms in the
left-hand side of (32) take the value zero,but the right-hand side takes
the value two.

– T ′ intersects with V (T ) \ Pd1d2 . Let {v′} ∈ V (T ′) ∩ (V (T ) \ Pd1d2). If
several such vertices exist v′ the first vertex after d2 following the same
orientation as that of Pd1d2 . Observe that now T ′ must traverse some open
facility, say d′ ∈ D ∪ V (T ′), different from those of {d1, d2}. Otherwise
a different decomposition of the solution of simple tours would exist,
where d1 and d2 are no longer consecutive open facilities in the same
simple tour. Consider now the subpaths of T ′, Pv,v′ and Pv,d′ , and define
ST
′

= V (Pv,v′) ∪
(
V (Pv,d′) \D

)
. Then, the RtFC (32) associated with

S = ST ∪ ST ′ , D′ = {d1, d2}, H1 = S ∩ δ(d1), H2 = S ∩ δ(d2), FD
′

S,H =

(δ(S) \H) \ δ(D \D′) and QD
′

S,H = (δ(S) \H) ∩ δ(D \D′) is violated by
(x, y, z). Now the left-hand side of (32) takes the value one (corresponding
to the last edge of the path Pv,v′ , but the left-hand side is two. �

Remark 3.1 An additional consequence of the above proof is that RtFC inequal-
ities (32) associated with subsets D′ with two depots suffice to guarantee that the
proposed formulation is valid.

Some of the valid inequalities presented in Section 3.1.1 can be adapted to rein-
force formulation above. In particular, the reinforced connectivity inequalities (16)
associated with singletons that must be visited S = {i} with i ∈ VR can be expressed
in terms of the aggregated x and y variables as
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(x+ y)(δ(i)) ≥ 2. (44)

Analogously, (17) can be expressed in terms of the aggregated x and y variables
to reinforce constraints (30) associated with components containing no potential
facility as

(x+ y)(δ(Vk)) ≥ 2. (45)

Finally, the logical relation between the z and x variables associated with edges
connecting two facilities can be written as

xe + zd + zf ≤ 2 e = (d, f) ∈ γ(D). (46)

Modeling optimality condition O5 for the two-index formulations is not easy.
In fact, we do not know how to impose this condition without incorporating addi-
tional decision variables, and preliminary experiments clearly indicate that such an
alternative would not be competitive with the original formulations.

4 Branch-and-cut algorithm

We have developed an exact branch-and-cut algorithm to solve each of the models
presented, based on the formulations proposed in Section 3. The overall solution
algorithm is similar for three- and two-index formulations. As usual, we initially
relax the families of constraints of exponential size. After each LP iteration these
are then separated to detect whether or not there are constraints of any of these
families violated by the current LP solution. If so, the detected violated constraints
are incorporated in the current formulation, and the reinforced formulation is solved.

The algorithm starts with all integrality conditions relaxed and only a subset of
constraints. In the initial formulations we include all non-exponential sets of con-
straints, plus a small subset of connectivity and parity inequalities. More precisely,
the initial connectivity constraints considered are associated with the singletons that
must be visited, i.e. S = {i}, i ∈ VR, and with the components that contain no
potential facility, i.e. S = Vk, k ∈ K, with Vk ∩ D = ∅. The initial set of parity
constraints is restricted to those associated with R-odd singletons. That is, for the
three-index formulations, constraints (3) are initially replaced with (16)–(17) and
the only parity constraints initially included are the inequalities (4) associated with
R-odd singletons S = {v}, with |δR(v)| odd. For the two-index formulations, con-
straints (30)–(32) are initially replaced with (44)–(45), the only parity constraints
(31) initially included are those associated with R-odd singletons S = {v} with
|δR(v)| odd, and all logical inequalities (46) are added.

RtFCs (32) are handled as lazy constraints, so they are only separated at the
nodes with an integer LP solution. In contrast, all other families of relaxed in-
equalities are separated whenever the current LP solution is fractional. We then
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first apply a heuristic separation and only resort to the exact separation when the
heuristic fails in finding any violated cut. Below we detail the separation procedures
that are applied in each case.

4.1 Separation of inequalities for the three-index formulations

Let (x, y, z) denote the current LP solution and let G(x, y) be the support graph
associated with (x, y) at any iteration of the algorithm. For each facility d ∈ D, we
denote by (xd, yd) the partial LP solution associated with the potential facility d and
by Gdx,y = (V d, Exd,yd) its corresponding support graph, which can be obtained from

G by eliminating all edges in E with xde = 0 and all vertices that are not incident
with any edge of Exd,yd .

Separation of the connectivity constraints (3)

For each potential facility d ∈ D, we check whether Gdx,y is connected. If not,

each connected component C with vertex set V (C) ⊆ V d \ {d} defines a violated
connectivity constraint (3). When the current LP solution is integer, then zd = 1
and the above separation procedure is exact. However, when the current LP solution
is fractional, it may fail to find a violated constraint (3) even if one exists. There-
fore, when Gdx,y contains one single connected component we search for connected

components in the subgraph of Gdx,y that contains only those edges with values

xde + yde ≥ ε, where ε is a given parameter. We then compute the current value of
(xde + yde)(V (C)) for each connected component C with vertex set V (C) ⊆ V d \ {d}.
If for some edge e ∈ γ(V (C)) the inequality (xd + yd) (δ(V (C))) < 2xde is satisfied,
then the connectivity inequality (3) associated with V (C) is violated by (xd, yd).
Finally, if no violated constraint has been found with the above heuristic, we build
the tree of min-cuts T d of Gdx,y with capacities given by xde + yde . For each edge
e = (u, v) in Exd,yd with u, v 6= d, the minimum cut δ(S) such that e ∈ γ(S) is easily

obtained from the min-cut tree T d. If the value of the min-cut is smaller than 2xde ,
then the inequality (3) associated with S and d is violated by (xd, yd). The above
separation procedure is exact and similar to that applied in [12] to the connectivity
constraints of the three-index formulation for the MDRPP. The complexity of this
separation procedure is dominated by that of solving the max-flow problems, which
allow determining the min cuts. Thus, the overall complexity is O(n4).

Separation of the parity inequalities (18)

Since the initial formulation includes all parity constraints (4) associated with
singletons, for integer solutions (x, y, z) the reinforced parity inequalities (18) are
always satisfied. When (x, y, z) is not integer, we first apply a heuristic and we
only resort to the exact separation if the heuristic fails. The heuristic and exact
method for inequalities (18) are adaptations of those applied in [12] to the simple
parity constraints (4) of the three-index formulation for the MDRPP, where now the
right-hand side of the inequality is 2− zd, instead of 1.

Concerning the heuristic for each potential facility d ∈ D, we find the connected
components of the subgraph Gd(x, y) induced by edges with values bde = min{(xde −
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yde), 1−(xde−yde)} > ε, where ε is a given parameter. Then, if S ⊂ V is the vertex set
of one of the components, its associated edge set is H = {e ∈ δ(S) | 1− (xde − yde) <
xde − yde}. If bd(δ(S)) < 2 − zd and |H| is odd, then the parity constraint (18)
associated with S and H is violated by (xd, yd, zd). If |H| is even, we obtain an odd
set |H| by either removing one edge from |H| (and transferring it to δ(S) \H) or by
adding to H one edge currently in δ(S) \H. In particular, the smallest increment
is obtained with

∆ = min
{

min{xde − yde : e ∈ δ(S) \H},min{1− (xde − yde) : e ∈ H}
}
.

Then, if bd(δ(S)) + ∆ < 2 − zd, the parity constraint (18) associated with S and
the updated set H is violated by (xd, yd). Otherwise, the heuristic fails to find a
constraint violation.

The exact method constructs, for each d ∈ D, the tree of min-cuts T d of the
support graph Gd with capacities bd. When T d has a cut δ(S) of capacity smaller
than 2− zd, i.e. b(δ(S)) < 2− zd, we consider its vertex set S, and the set of edges
H = {e ∈ δ(S) | (xde − yde) ≥ 0.5}. If |H| is odd, then H defines, together with S, a
violated inequality of type (18). Otherwise, if |H| is even, we update the set H to
an odd set by moving an edge as mentioned above. When bd(δ(S)) + ∆ < 2 − zd,
the updated set H defines a violated inequality (18) for d and S for the current
solution (xd, yd). The complexity of this separation procedure is the same as that
of the connectivity constraints: O(n4)

4.2 Separation of inequalities for the two-index formulations

Let G(x, y) denote the support graph associated with the LP solution (x, y, z) at
any iteration of the algorithm.

Separation of the connectivity inequalities (30)

The separation of constraints (30) is an adaptation of the procedure presented in
[11] for the connectivity constraints of the two-index formulation for the MDRPP.
Now we need to take into account that the right-hand side is 2 (1− z(S)) instead
of 2. We first check whether G(x, y) is connected. If not, the vertex set of any
component containing no depot defines a violated cut. As before, when (x, y, z) is
integer the above separation is exact, but it may fail for fractional solutions. In
such a case, the connected components are identified in the subgraph of G(x, y)
with only those edges with xe + ye ≥ ε, where ε is a given parameter. Then, the
value (x + y) (δ(V (C))) is computed for each component V (C) and compared to
2(1− z(S)). If (x+ y) (δ(V (C))) < 2(1− z(S)), the constraint (30) associated with
V (C) is violated by (x, y, z).

For the exact separation we build the tree of min-cuts of G(x, y) with capaci-
ties given by xe + ye, and look for min-cuts δ(S) of value (x, y) (δ(S)) < 2. When
(x, y) (δ(S)) < 2(1− z(S)), then the inequality (30) associated with S is violated by
(x, y, z).
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Separation of the parity inequalities (31)

We use the separation of constraints (31) presented in [11] for the two-index
formulation for the MDRPP. Since the initial formulation includes the inequalities
associated with singletons, we only separate them at fractional solutions. We first
apply a heuristic that finds the connected components in the subgraph G(x, y, z)
induced by edges with values be = min{(xe − ye), 1 − (xe − ye)} > ε, where ε is a
given parameter. Then, if S ⊂ V is the vertex set of one of the components, we
proceed as above to identify its associated edge set H. If b(δ(S)) < 1 and |H| is
odd, then the parity constraint (31) associated with S and H is violated by (x, y).
Otherwise, if b(δ(S)) + ∆ < 1, the parity constraint (31) associated with S and the
updated set H is violated by (x, y). If |H| is odd and b(δ(S)) + ∆ ≥ 1, then it is
necessary to apply the exact method.

For the exact separation we construct the tree of min-cuts T of Gx,y,z with capac-
ities given by be. When T b has a cut δ(S) of capacity smaller than one, we consider
its vertex set S, and the set of edges H = {e ∈ δ(S) | (xe− ye) ≥ 0.5}. If |H| is odd,
a violated inequality is defined by H and S. When |H| is even, an update odd set
H can be identify by moving an edge. Then if b(δ(S)) + ∆ < 1, the updated set H
defines a violated cut (31) for S.

Separation of the return-to-facility inequalities (32)

RtFCs (32) are handled as lazy constraints, so they are only separated when the
LP solution (x, y, z) is integer. In such a case violated inequalities can be easily iden-
tified by first finding a tour decomposition of the current solution (see, for instance,
[19]) and then checking whether any of the tours contains a path Pd1d2 connecting
two (consecutive) open facilities. If so, D′ = {d1, d2} and S = V (Pd1d2) \D′ defines
a violated cut. The complexity of the separation procedure is dominated by that of
finding the tour decomposition, which is O(m).

5 Computational Experiments

In this section we present the results of computational experiments we have con-
ducted to assess the behavior of our formulations on the different LARPs studied.

5.1 Description of the instances

The sets of instances used in the computational experiments are adapted from
MDRPP benchmark instances used in [11, 12], which, in turn, were adapted from
the following sets of well-known RPP instances: the ALB set from [8, 9]; the “P”
set from [5]; four sets of instances of each of the following classes from [18]: “D” in-
stances with vertices of degree four (labeled “D”), grid instances (labeled “G”), and
randomly generated instances (labeled “R”); and, larger sets of instances (“ALB2”,
“GRP”, “MAD”, “URP5”,“URP7”) from [7]. We have preserved from the original
instances the set of required edges and the routing cost function c. The maximum
number of facilities to be located has been fixed to p = 4. The potential locations for
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the facilities were randomly chosen from the set of vertices, ensuring that no compo-
nent has more than one potential location. To define the potential locations for the
facilities, we first consider the connected components of the input graph, where each
vertex non-incident to any required edge defines one component. Then, potential
locations were assigned to components according to some weights pk, k ∈ K, defined
as the sum of a fixed parameter r = 0.2, plus a parameter based on the required
edges, defined as the ratio between the number of required edges in that compo-
nent and the total number of required edges. That is pk = 0.2 + |Rk|/|R|, for all
k ∈ K. For the considered set of benchmark instances the resulting values were al-
ways smaller than one. Then, for each component a number rk was randomly drawn
from a continuous uniform distribution U [0, 1], and the component was allocated
a potential site when pk ≤ rk. In that case, the vertex of Vk where the potential
location was actually located was obtained by randomly generating a number v from
a discrete uniform distribution U [1, |Vk|]. To generate the set-up costs of the poten-
tial locations, for each instance I we have taken from [11] the optimal value of the
instance solved as an MDRPP with two and four depots, V 2

I and V 4
I , respectively.

Then the value VI = |(V 2
I − V 4

I )|/2 was taken as the average set-up cost for that
instance, and the values fd, d ∈ D for instance I have been randomly generated
from a discrete uniform distribution U [VI/2, 3VI/2]. Finally, the capacity of each
potential location, bd,was randomly generated from a discrete uniform distribution
U [|R|/4, 3|R|/4]. Note that on average four open facilities are sufficient to serve all
all the demand, which is consistent with the selected value of p.

Table 2: Characteristics of the instances

# inst |V | |E| |R| |K| |D|

ALB 2 90–102 143–159 88–99 10–11 5

P 24 7–50 10–183 4–78 2–8 4–6

D16 9 8–16 12–30 3–16 2–5 4–6

D36 9 25–36 52–71 10–38 4–11 4–10

D64 9 40–63 92–120 27–75 5–15 5–16

D100 9 76–100 161–197 50–121 9–22 5–17

G16 9 11–16 15–24 3–13 3–5 4–7

G36 9 22–36 34–60 11–35 5–9 4–7

G64 9 45–63 74–110 24–68 4–14 5–15

G100 9 69–100 121–180 41–113 4–20 5–18

R20 5 13–15 24–72 4–7 3–4 5–8

R30 5 15–23 28–99 7–11 4–6 5–8

R40 5 24–32 58–161 8–18 5–9 7–13

R50 5 23–39 82–169 13–20 6–12 5–17

ALB2 15 78–114 133–172 44–122 2–23 4–26

GRP 10 77–113 138–171 52–126 4–34 5–23

MAD 15 149–195 274–318 86–238 2–42 4-33

URP5 7 298–493 597–1403 206–671 19–99 5–37

URP7 8 452–744 915–2089 321–1003 15–140 7–43

Table 2 shows the characteristics of the instances. The column headings repre-
sent the number of instances in the set (# inst), the number of vertices (|V |), the
number of edges (|E|), the number of required edges (|R|), the number of connected

24



components in the graph induced by the required edges (|K|), and the number of
potential locations (|D|). In each column, when not all the instances of the group
have the same value, the minimum and maximum values are given.

5.2 Experimental results

The branch-and-cut algorithm was implemented in C++ and experiments were run
on a 2.80 GigaHertz Intel Core i7 machine with 16 Gigabytes of memory. We have
used the IBM CPLEX 12.7 Concert Technology with default parameters, except
for the cuts generated by CPLEX, which were disabled, since preliminary testing
indicated that activating the CPLEX cuts produced worse results. The maximum
computing time, which has been set to four hours for instances in groups D, G, R,
and P, ALB, ALB2, GRP, and MAD and to 24 hours for the larger instances in
groups URP5 and URP7. Connectivity and parity cuts were separated at all nodes
of the enumeration tree for all the tested formulations. As mentioned, the RtFCs
(32) used in the 2-index formulations are handled as lazy constraints.

Tables 3 and 4 show, for MC-p-LARP and MC-LARP, respectively, the aggre-
gated results obtained, for each group of instances, with the three-index formula-
tion (3IF), its reinforcement with the optimality condition O5 (3IF-O5), and the
two-index formulation (2IF). Columns under ]Opt0 and Gap0 report the number of
instances in the group that were optimally solved at the root node and the average
percentage gap at the root node with respect to the optimal or best known solution
at termination. Similarly, the next two columns under ]Opt and Gap give the same
information at termination: the number of instances solved to optimality and the
average percent gap with respect to the optimal or best known solution. Columns
under Nodes represent the average number of nodes explored in the search tree.
Finally, the columns under CPU give the average of the total computing times in
seconds.

Note that the last two sets corresponding to the large instances were solved only
with the two-index formulations. Furthermore, for these sets, we also increased the
maximum computing time to 24 hours.

Our results show that, both for MC-p-LARP and MC-LARP, the two-index for-
mulation is more efficient and faster than the two three-index formulations. The
formulation 2IF allowed us to solve all the small instances within a few minutes,
reducing the computing times of 3IF by 98%. In contrast, the three-index formula-
tions 3IF and 3IF-O5 could not find an optimal solution on 18 instances within the
limit time of four hours (15 MC-p-LARP instances and three MC-LARP instances).
Moreover, with the two-index formulation 2IF we could also solve all medium in-
stances and one third of the large ones. Finally, note that the number of nodes in the
search tree is also smaller with 2IF. Comparing Tables 3 and 4, it can be observed
that the results are quite similar regardless of whether the number of facilities to be
opened is restricted or set-up costs are included in the objective function.

The superiority of 2IF relative to 3IF and 3IF-O5 is also reflected in the number
of cuts required by each type of formulation, which is remarkably smaller on the two-
index formulations. While the number of connectivity cuts generated with 3IF for
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the 100 nodes instances in groups D100 and G100 is on average around 25,000 (both
for MC-p-LARP and MC-LARP), with 2IF this number is usually smaller than 100
for the same instances. The situation is similar, although less extreme, with the
parity cuts. For the mentioned instances, 3IF requires, on average, 2,500 to 3,000
parity cuts while 2IF generates around 200 such cuts. One difference that can be
observed between the two types of formulations is that three-index formulations
require many more connectivity cuts than parity cuts, whereas the formulations
with two index variables are much more balanced in terms of the number of cuts of
each type that are generated, although they tend to generate more parity cuts than
connectivity cuts. Concerning the RtFCs inequalities used in 2IF to guarantee that
routes return to their starting depot, we have observed that they are very seldom
needed. The vast majority of the instances were optimally solved without generating
any RtFC. Only one or two RtFCs were generated for about 10% of the considered
instances.

Comparing the two three-index formulations it is easy to see that 3IF-O5 outper-
forms 3IF, in terms of the number of instances solved to optimality and, particularly,
in terms of computing times. Nevertheless, as mentioned before, the original two-
index formulations still outperform the three-index formulations even when these
are reinforced with condition O5.

Tables 5 and 6 show the results for the models MC-p-LARP-UD and MC-LARP-
UD, respectively, which extend the previous models including cardinality constraint
on the number of users that can be served from each open facility. As mentioned
above, these models had be treated with the three-index formulation to recreate
the routes from each facility once the values of the decision variables are known.
As before, the behavior of the two models MC-p-LARP-UD and MC-LARP-UD is
similar. However, comparing the results with the corresponding version without
cardinality constraints we can see, as expected, that the cardinality version is more
difficult. This translates into a lower number of instances optimally solved, a larger
number of explored nodes and an increase in the computing time.

Tables 7 and 8 report the results obtained with the two-index formulation for
the models in which the min-max objective function is considered. Dealing with this
kind of objective is typically difficult. Consequently, the results obtained for these
models are the worst ones, with the lowest number of instances optimally solved and
the largest computing time. In spite of this, the proposed algorithm found a proven
optimal solution for the 62% of the tested instances.

As mentioned, in the benchmark instances that we have generated, there is no
component with more than one potential facility. As we explain below, this char-
acteristic has very little effect on the results we have obtained. On the one hand,
for the models where optimality condition O5 holds, instances with more than one
potential facility in some component can be a priori transformed into equivalent
instances with at most one potential facility per component by arbitrarily select-
ing one potential facility for components with several candidates in the case of the
MC-p-LARP, or by identifying the candidate facility of the component with mini-
mum set-up cost for the MC-LARP. On the other hand, for the models where the
optimality condition O5 does not hold, the results reported in Table 9 suggest that
allowing for several potential facilities in some of the components would have no
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significant effect on the performance of our algorithms. From Table 9 it can be seen
that for MC-p-LARP-UD and MC-LARP-UD, the average number of open facilities
is smaller than the number of potential facilities. Moreover, for MC-p-LARP-UD
this number is smaller than the parameter p. The lack of effect of having at most
one potential facility per component has been confirmed with an additional compu-
tational test using the instances of group D16, but with more potential locations in
some components. The results with the modified instances show that the difference
in the behavior of the algorithm in terms of computational time or number of nodes
on the exploration tree is negligible.

5.3 Analysis of the solutions: cross-comparison of the models

We close the computational experiments section by analyzing some characteristics of
the solutions produced by the different models. The results concerning the number
of facilities open in the optimal solutions of the different formulations are summa-
rized in the Table 9. As could be expected, when the objective takes into account
the overall routing costs, models with facilities set-up costs (MC-LARP and MC-
LARP-UD) produce, in general, solutions with a smaller number of open facilities
than the models where the maximum number of open facilities is only limited by
the parameter p (MC-p-LARP, MC-LARP). In particular, MC-LARP produces so-
lutions which, on average, have 33% fewer open facilities than MC-p-LARP. This
reduction is not so evident for the corresponding models with unit demands and
capacity constraints, where MC-LARP-UD produces solutions which, on average,
have a around 13% fewer facilities than MC-p-LARP-UD. Similarly, models with
unit demands (MC-p-LARP-UD, MC-LARP-UD) produce, in general, optimal solu-
tions with more open facilities than their non-demand counterparts (MC-p-LARP,
MC-LARP). On the contrary, it can be observed that unit demand constraints have
very little effect on the number of open facilities in the optimal solutions of models
with a makespan objective. MM-p-LARP and MM-p-LARP-UD produce solutions
with a very similar number of open facilities; there are only five instances out of
98 where the optimal MM-p-LARP-UD solution opens one more facility than the
optimal MM-p-LARP solution.

Since the models with capacity constraints have shown to be notably more diffi-
cult to solve than their uncapacitated counterparts we have also investigated how of-
ten optimal solutions to models without capacity constraints are feasible (and there-
fore optimal) for their capacitated versions. Figure 3 illustrates that the makespan
model is clearly more successful in this respect, producing a percentage of feasible
solutions for its capacitated counterpart, which ranges in 60–100, depending on the
type and size of the instances. In contrast, the capability of producing feasible so-
lutions for their capacitated versions of the models that include the overall routing
costs in their objective is quite small, particularly for the more time-consuming in-
stances. It is worth noting that no optimal solution to MC-p-LARP or MC-LARP
was feasible for MC-p-LARP-UD and MC-LARP-UD, respectively, with the D64
and the D100 sets of instances.

We also analyze the robustness of the uncapacitated models (MC-p-LARP, MC-
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Figure 3: Percentage of optimal solutions of uncapacitated models that are feasible
for the capacitated counterpart

LARP, MM-p-LARP), measured in terms of their capability of producing good qual-
ity solutions for the other models. For this, the optimal solutions to each model in
F = {MC−p−LARP,MC−LARP,MM−p−LARP} have been evaluated relative
to the objectives of the other models, and compared to their optimal values. In par-
ticular, let xi, denote an optimal solution to formulation i ∈ F for a given instance,
and vi its optimal value. Let also vij denote the objective function value of solution
xi, relative to the objective function of formulation j ∈ F , j 6= i. Table 10 gives,
for each model i ∈ F , the averages of the percentages 100(vij − vi)/vi, over all the
instances of each set of benchmark instances, for each model j 6= i.

As can be seen from Table 10, the models that include the overall routing costs
produce, in general, solutions that are not good for the makespan objective. This
is particularly true for MC-LARP, which includes the facilities set-up cost in the
objective. The converse holds since the makespan model also produces optimal
solutions that, in general, are not of good quality for MC-p-LARP or MC-LARP. On
the other hand, not surprisingly, MC-p-LARP produces, in general optimal solutions
that are good for MC-LARP, and vice versa. In this sense, the obtained results show
a slight superiority of MC-LARP over MC-p-LARP.

Finally, Tables 11 and 12 show the impact of parameters p and fd on the char-
acteristics of optimal solutions. The average number of facilities opened, the total
cost of all the routes in the group, and the average computing times in seconds, are
given in columns under the headings ]D, Total cost and CPU(s), respectively. As
was expected, reducing the maximum number of open facilities increases the total
cost (see Table 11). Table 12 illustrates the effect of the magnitudes of the set-up
costs on the relation between the number of facilities opened and the total cost.
Smaller set-up costs allow the opening of a larger number of facilities without in-
creasing the overall cost. In contrast, the instances with larger set-up costs produce
solutions with fewer opened facilities, thus increasing the total cost. Furthermore,
from Tables 11 and 12 it can be seen that the behavior of the algorithm in terms of
computing time remains stable when varying the values of the analyzed parameters.
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6 Conclusions

We have modeled and solved several LARPs with different characteristics. The
models differ from each other in their objective function, on whether the number of
facilities to be located is upper bounded, or on whether the facilities are capacitated.
We have considered min-cost objectives aiming at minimizing the overall routing
costs (possibly incorporating facilities set-up costs as well), and min-max objectives
aiming at minimizing the makespan. Some of the studied models assume that there
are no capacity limitations, whereas other models include a cardinality constraint
on the number of users that can be served from an open facility.

Three-index variable formulations have been presented for all the models. The
polyhedral analysis carried out for the three-index formulation of the uncapacitated
models proves that the main families of constraints are facet defining. Moreover,
a two-index variable formulation was introduced for the min-cost models without
capacity constraints, which incorporates a new set of constraints forcing the routes
return to their departing facility. All the formulations exploit optimality conditions,
which allows using binary decision variables only.

Exact and heuristic separation procedures have been studied for the large-size
families of inequalities and an exact branch-and-cut solution algorithm was imple-
mented for the solution of the proposed formulations. Our numerical results demon-
strate the good behavior of the algorithm, which was tested on several sets of bench-
mark instances. For the uncapacitated min-cost models, all instances involving up
to 200 depots, as well as most instances involving up to 744 vertices, were solved to
optimality. Despite the difficulty of the models with a makespan objective or with
capacity constraints, instances with up to 100 vertices were optimally solved for the
makespan objective and for the capacitated versions of the min-cost models. When
comparisons are possible, our results show the superiority of the two-index formu-
lation in terms of efficiency and speed with respect to the three-index formulations.

We believe that developments similar to those presented in this paper can be
carried out for some problems where the demand is located at the nodes of the input
graph. A promising avenue of research is to develop two-index variable formulations
for some node routing problems with multiple routes. The limitations of such an
approach would be similar to those of this paper. Thus, in principle it seems viable
for problems with min-cost objectives and without capacity constraints like the
m-TSP, uncapacitated multidepot VRPs or some location node-routing problems.
In all these cases constraints guaranteeing that the routes return to their starting
depot would be needed in order to ensure the validity of the formulations with the
two-index variables.
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[6] Á. Corberán and G. Laporte. Arc Routing: Problems, Methods, and Applica-
tions, volume 20. MOS-SIAM Series on Optimization, Philadelphia, 2014.
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Appendix A: Polyhedral analysis

In the proofs below we assume that there exists an edge connecting each pair of
vertices. When such edges are non-existing in E, they represent T -joins, connecting
given pairs of vertices, that only use existing edges of the set E. Examples of
such non-existing edges are, for instance, T -joins connecting two even-vertices in
the same component that are not connected with an existing edge of E. Using
edges associated with such T -joins in the solutions that we will build, simplifies the
presentation of the proofs, but has no effect on their validity, since the parity of the
intermediate vertices in the T -joins will not be affected and the connectivity and
other requirements will be preserved. We also use O ⊆ V to denote the set of R-odd
vertices, and Ok = O ∩ Vk, k ∈ K.

Proof of Proposition 3.2: The condition is necessary. We follow the same idea
as in [11] for the MDARP which, in turn, is based on [16] for the RPP. To simplify
the presentation, e ∈ E and e ∈ Ey are counted as two distinct edges.

• If there exists a cut-edge set with only one edge, then e should be a required
edge and

∑
d∈D x

d
e = 1. Therefore, P (MC − LARP ) ⊂ {x :

∑
d∈D x

d
e = 1}.

• Assume now there exists a subset S ⊂ V \D, with δ(S) = {e(1), e(2)}.

– If S = ∪i∈K′Vi \ D, ∅ 6= K ′ ⊂ K, then P (MC − LAPP ) ⊂ {x :∑
d∈D x

d
e(1)

= 1 and
∑

d∈D x
d
e(2)

= 1}.

– Otherwise, if δ(S) is R-even, P (MC − LARP ) ⊂ {x :
∑

d∈D x
d
e(1)

=∑
d∈D x

d
e(2)
}, and if δ(S) is R-odd, P (MC −LARP ) ⊂ {x :

∑
d∈D x

d
e(1)

+∑
d∈D x

d
e(2)

= 1}.

• Finally, there exists S = ∪i∈K′Vi\D, ∅ 6= K ′ ⊂ K with δ(S) = {e(1), e(2), e(3)},
then P (MC − LAPP ) ⊂ {x :

∑
d∈D x

d
e(1)

+
∑

d∈D x
d
e(2)

+
∑

d∈D x
d
e(3)

= 2}.

The condition is sufficient. Let us find |E||D| + |Ey||D| + |D| − |R| + 1 affinely
independent solutions satisfying the connectivity, parity inequalities, associated with
routes that start and terminate at the same open facility.

Consider a set of |D| reference solutions (x(d), y(d), z(d)), one associated with
each potential facility d ∈ D. The reference solution associated with a given d ∈ D,
consists of opening only facility d ∈ D, i.e. z(d)d = 1 and z(d)d

′
= 0 for all

d′ ∈ D \ {d}, together with a route carried out from d consisting of: (i) a traversal
of all the required edges; (ii) one traversal of edge (v, d) with v ∈ O (this will be
a second traversal for the required edges incident to d if both end-vertices are R-
odd); and, (iii) two traversals of all the edges of TC . By construction any reference
solution is feasible.

A sufficiently large set of additional solutions, all of them affinely independent,
can be obtained with slight modifications of the reference solutions. These modified
solutions are linked both to the facilities of their corresponding reference solutions
and to edges. We use the notation (x(d, e), y(d, e), z(d, e)), to denote the solution
linked to the reference solution of facility d ∈ D and edge e ∈ E. In particular,
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x(d, e)d
′
e′ denotes the component corresponding to the first traversal of edge e′ ∈ E

in the route associated with facility d′ in the solution linked to facility d and edge
e. A similar notation will be used for the y and z components. When the reference
solution and edge linked to a solution are clear from the context we will drop the
parentheses and just write xd

′
e′ . Let d0 ∈ D be an arbitrarily selected potential

location. The set of affinely independent solutions linked with each potential facility
d ∈ D is defined below:

a) For each non required edge e = (u, v) ∈ E\R we generate one or two solutions,
depending on whether or not e ∈ Ey. In particular,

a1) if e = (u, v) /∈ Ey, then we generate just one solution (x(d, e), y(d, e), z(d, e))
with xde = 1−x(d)de . Furthermore, to guarantee that the parity of u and v
does not change we also set xde(u,r) = 1− x(d)de(u,r) , x

d
e(v,r)

= 1− x(d)de(v,r) .

All other components remain as in the reference solution (x(d), y(d), z(d)).

a2) if e = (u, v) ∈ Ey, then e is one of the edges of TC and x(d)de = y(d)de =
1. In this case we generate two new solutions (x(d, e), y(d, e), z(d, e))
and (x′(d, e), y′(d, e), z′(d, e)). For (x(e, d), y(e, d), z(e, d)), we keep xde =
x(d)de = 1 but set yde = 0. To guarantee the parity of vertices u and v
and the connectivity, the components corresponding to edges eu = (d, u)
and ev = (d, v), take the value 1, i.e. xdeu = xdev = 1. All other
components remain as in the reference solution (x(d), y(d), z(d)). For
(x′(d, e), y′(d, e), z′(d, e)), we set x′de = y′de = 0, so the parity is not com-
promised. In contrast, the connectivity may be lost. To restore connec-
tivity, it is enough to include the three edges connecting vertices u, v and
the potential facility d via a triangle.

b) For each required edge e = (u, v) ∈ R we generate one or two solutions,
depending on whether or not d = d0. In particular,

b1) if d = d0, then we generate just one solution (x(d0, e), y(d0, e), z(d0, e))
with xd0e = x(d0)

d0
e = 1 and yd0e = 0, for all e = (u, v) ∈ R. Further-

more, we set xd0eu = 1 − x(d0)
d0
eu and xd0ev = 1 − x(d0)

d0
ev where, as before,

eu = (d0, u) and ev = (d0, v). This guarantees the parity of vertices u
and v and the connectivity of (x(d0, e), y(d0, e), z(d0, e)). All other com-
ponents remain as in the reference solution (x(d0), y(d0), z(d0)).

b2) if d 6= d0, then we generate two new solutions: (x(d, e), y(d, e), z(d, e))
and (x′(d, e), y′(d, e), z′(d, e)), with one and two traversals of edge e, re-
spectively. Solution (x(d, e), y(d, e), z(d, e)) is defined exactly as in item
b1). For (x′(d, e), y′(d, e), z′(d, e)) we open one additional potential facil-
ity d′ 6= d, and define its associated route, taking into account that it is
not possible to visit d′ in the route from open facility d. For this d′ is ar-
bitrarily selected from D \ {d} ensuring that is not an end-vertex of edge
e. Then, we open both facilities d and d′, i.e. z′(d, e)d

′
= z′(d, e)d = 1.

Furthermore, associated with facility d, we set x′de = x′deu = x′dev = 1, and
all other x′d and y′d components at value zero. The first traversal of all
other required edges is allocated to facility d′. That is, x′d

′
e′ = 1 for all

33



e′ ∈ R \ {e, eu, ev}. To make consistent the route of facility d′, we also
allocate to d′ one traversal of each edge connecting an R-odd vertex with
facility d′, plus two traversals of all the edges of TC . All other components
take the value 0.

The number of solutions defined in each of the items above is |D| in the reference
set, (|E| − |Ey|)|D| in a1), 2(|Ey| − |R|)|D| in a2), |R| in b1), and 2|R|(|D| − 1) in
b2). Hence, we have found |E||D|+ |Ey||D|+ |D|−|R| affinely independent solutions
that satisfying the connectivity and parity inequalities. The remaining affinely in-
dependent solution consist of opening exactly p locations d ∈ D and associate with
each open location a consistent route, guaranteeing that all required edges incident
a potential location are allocated to that facility. Two traversals of the edges of TC
can be arbitrarily allocated to the depots in order to guarantee the connectivity of
the obtained solution. All the solutions considered are affinely independent, since
each of the |E||D| + |Ey||D| + |D| − |R| feasible solutions obtained in item a) and
b) above contains at least one component with a different value from the values of
that component in all other solutions. �

Proof of Proposition 3.3: The condition is necessary. The condition that every
δ(S) such that S =

⋃
i∈K′ Vi \ D (∅ 6= K ′ ⊂ K) has at least five edges is already

necessary for the MDRPP when the set of available depots is fixed [11].

The condition is sufficient. If e ∈ E \ R, the face {x ∈ P (MC − LARP ) : xde = 0}
has the same dimension as the polytope associated with the MC-LARP defined
on the graph obtained after removing edge e from G. Suppose now that e ∈ R.
Observe that all the solutions obtained in the proof of Proposition 3.2 linked to
depots d′ ∈ D different from d satisfy x(d′, e′)de = 0, for all edges e′ ∈ E. The
number of such solutions depends on whether or not d = d0. If d 6= d0, this
number is (|D| − 1) (|E|+ |Ey|+ 1) − |R|, whereas if d = d0 this number will
be (|D| − 1) (|E|+ |Ey|+ 1). In order to generate additional solutions satisfying
xde = 0, affinely independent with the previous ones, let d′ ∈ D \ {d} be an arbitrar-
ily selected potential location, and consider the solution (x, y, z), where only facility
d′ is open, i.e. zd′ = 1 and zf = 0 for all f 6= d′. The route of facility d′ traverses
all required (xd

′
e′ = 1, e′ ∈ R), and contains one traversal of every edge (v, d′) with

v ∈ O, plus two traversals of all the edges of TC . Then, for all e′ ∈ E, we proceed
as in the proof of Proposition 3.2 for generating solutions linked to facility d (all of
them with x(d, e′)de = 0), using (x, y, z) as reference solution. In this way, we will
obtain |E|+ |Ey| solutions if d 6= d0, or |E|+ |Ey| − |R| solutions when d = d0. In
both cases we have obtained |D| (|E|+ |Ey|+ 1)−|R| affinely independent solutions
that satisfy xde = 0. �

Proof of Proposition 3.4: The condition is necessary. Suppose there exists a cut-
edge set with only three edges, δ(S) = {e, f, g}. Then, either {x ∈ P(MC−LARP ) :

xde = 1} ⊂ {x ∈ P(MC−LARP ) : xde = 1, xdf + xdg = 1} if δ(S) is R-even, or {x ∈
P(MC−LARP ) : xde = 1} ⊂ {x ∈ P(MC−LARP ) : xde = 1, xdf − xdg = 0} otherwise.

The condition is sufficient. Under the hypotheses, it is easy to show that there
exist |E||D|+ |Ey||D|+ |D| − |R| feasible and affinely independent solutions on the
hyperplane xde = 1. Let the first solution be solution (x, y, z), where only facility
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d is open. Its associated route contains one traversal of all required edges e ∈ R,
one traversal of each edge (v, d) with v ∈ O, and two traversals of all the edges of
TC . In addition, if e does not belong to any of the previous sets of edges, then the
route also traverses edge e, to guarantee that xde = 1, plus the two edges eu = (d, u)
and ev = (d, v) to ensure parity. The remaining |E||D| + |Ey||D| + |D| − |R| − 1
solutions can be obtaining following a similar process to that applied in Proposition
3.2, where in each new solution one of the components is modified. �

Proof of Proposition 3.5: The condition is necessary. Suppose G(S) is not
connected, and let S1 be a component of G(S). Then the connectivity inequality (3)
associated with G(S) is dominated by the connectivity inequality (3) corresponding
to G(S1). A similar situation arises if some component of G(V \S) contains no open
facility. Suppose now there exists a subset of components S′ ⊂ S such that there is
only one edge connecting S′ and S\S′. Then, the connectivity constraint associated
with G(S) is dominated by the sum of the connectivity constraints (3) associated
with S′ and S\S′.
The condition is sufficient. It is easy to show that under the hypotheses, the set
of |E||D| + |Ey||D| + |D| − |R| affinely independent feasible solutions with xde = 1
considered in the proof of Proposition 3.4 lie in the hyperplane

∑
e∈δ(S)(x

d
e′ + yde′) =

2xde . �

Proof of Proposition 3.6: We first show that under the hypotheses, there exist
|E||D|+ |Ey||D|+ |D| − |R| affinely independent feasible solutions that satisfy the
inequality as equality. For given sets S and H under the above conditions, let d ∈ D
be an arbitrarily selected potential facility and vk ∈ Vk an arbitrarily selected vertex
in component k ∈ K. Let also ê ∈ δ(S) \ H and h1 ∈ H be arbitrarily selected
edges in their respective sets. Consider a feasible solution (x, y, z) in which d is the
only open facility and its associated route contains: i) one traversal of each required
edge e ∈ R; ii) one traversal of each edge (v, vk) with v ∈ Ok \ {vk} (this will be
a second traversal traversal for required edges with some R-odd end-vertex); iii)
two traversals of all the edges of TC \ δ(S) (edges with both end-vertices either in
S or in V \ S); and iv) one traversal of edge ê ∈ δ(S) \ H and of all |H| edges of
set H. By construction, (x, y, z) is feasible and satisfies (x + y)(δ(S)) = |H| + 1.
The |E||D|+ |Ey||D|+ |D| − |R| − 1 additional solutions are obtained from (x, y, z),
linked to the different edges e ∈ E as explained next.

a) For all e = (u, v) /∈ H, we proceed as in the proof of Proposition 3.2 and for
each depot d′ ∈ D, we obtain one or two points linked to edge e. The number
of points that be obtain for each depot, depends on the case or subcase that
applies to e depending on whether or not it belongs to R. In total we obtain
D points if e ∈ E \R \ Ey, 2|D| points if e ∈ Ey, and 2|D| − 1 if e ∈ R.

b) For all e = (u, v) ∈ H we define solutions (x(d′, e), y(d′, e), z(d′, e)) linked to
each d′ ∈ D and considered edge e, according to the following subcases:

b1) e ∈ E \ Ey and d′ 6= d. Then xd
′
e = yd

′
e = 0. We set xd

′
e = 1 and we use

edges eu = (d′, u) and ev = (d′, v), so we set xd
′
eu = xd

′
ev = 1. All other

components remain as in (x, y, z).
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b2) e ∈ Ey \ R and d′ = d. Now xde = 1 and yde = 0. We set yde = 1 and
xdê = 0. All other components remain as in (x, y, z).

b3) e ∈ Ey\R and d′ 6= d. We now generate two solutions: (x(d′, e), y(d′, e), z(d′, e))
and (x′(d′, e), y′(d′, e), z′(d′, e)). For the first solution, (x(d′, e), y(d′, e), z(d′, e)),
we set xd

′
e = 1 and traverse edges eu = (d′, u) and ev = (d′, v) in order to

guarantee the parity. Hence, we set xd
′
eu = xd

′
ev = 1. All other components

remain as in (x, y, z). For the second solution (x′(d′, e), y′(d′, e), z′(d′, e))
we set x′d

′
e = y′d

′
e = 1. Now the parity is guaranteed but connectivity

may be lost. To restore the connectivity, it is enough to include the three
edges connecting vertices u, v and the potential facility d via a triangle.

b4) e ∈ R and d′ 6= d. Now xde = 1 and yde = 0. We generate two solutions:
(x(d′, e), y(d′, e), z(d′, e)) and (x′(d′, e), y′(d′, e), z′(d′, e)). For the first so-
lution, (x(d′, e), y(d′, e), z(d′, e)), we set xd

′
e = 1 and use edges eu = (d′, u)

and ev = (d′, v). Thus, we set xd
′
eu = xd

′
ev = 1. We also set xde = xdê = 0. All

other components remain as in (x, y, z). For (x′(d′, e), y′(d′, e), z′(d′, e))
we set x′d

′
e = y′d

′
e = 1. We also set x′de = x′dê = 0. Parity is guaranteed

although connectivity may be lost. To restore it, it is enough to include
the three edges connecting vertices u, v and the potential facility d via a
triangle.

Furthermore, when e 6= h1 we generate the following additional points linked
to depot d and edge e, (x(d, e), y(d, e), z(d, e)), according to the following sub-
cases:

b′1) e ∈ E \ Ey. We set xde = xdê = 0. All other components remain as in
(x, y, z).

b′2) e ∈ Ey \ R. We set xde = xdê = 0. All other components remain as in
(x, y, z).

b′3) e ∈ R. We set xde = yde = 1 and xdê = 0. All other components remain as
in (x, y, z).

In total we have generated |E||D|+ |Ey||D|+ |D| − |R| feasible solutions, all
of which satisfy the inequality (18) associated with S and H as equality. The
result follows, since all points are affinely independent. �
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Table 5: Computational results for the MC-p-LARP-UD

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 4/9 8.01 9/9 0 7.11 0.49

D36 0/9 9.97 9/9 0 951.56 579.66

D64 0/9 15.14 3/9 11.04 2079.11 10947.88

D100 0/9 50.23 0/9 48.58 859.11 14401.60

G16 4/9 6.74 9/9 0 21.56 0.78

G36 0/9 6.42 9/9 0 1022.67 673.96

G64 1/9 22.53 4/9 19.95 1668.78 10712.95

G100 0/9 51.00 1/9 50.48 583.11 12957.32

R20 2/5 4.19 5/5 0 10.20 0.75

R30 1/5 1.75 5/5 0 33.20 5.48

R40 1/5 7.18 5/5 0 551.40 1130.02

R50 0/5 6.61 5/5 0 234.20 460.44

P 7/24 4.66 23/24 0.44 207.67 612.74

ALB 0/2 53.13 1/2 50.00 967.00 7863.31

Table 6: Computational results for the MC-LARP-UD

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 2/9 8.01 9/9 0 16.44 0.62

D36 0/9 8.20 9/9 0 934.22 570.73

D64 0/9 16.76 4/9 12.75 2151.56 10355.26

D100 0/9 44.04 0/9 42.45 871.78 14403.16

G16 3/9 6.93 9/9 0 18.22 1.11

G36 0/9 6.60 9/9 0 819.11 532.60

G64 0/9 24.11 4/9 21.50 1185.44 9107.25

G100 0/9 45.51 0/9 44.95 725.11 14402.83

R20 3/5 3.17 5/5 0 5.80 0.68

R30 2/5 2.52 5/5 0 42.00 7.01

R40 1/5 8.84 4/5 1.25 517.60 2985.65

R50 0/5 7.43 5/5 0 160.60 545.64

P 6/24 4.61 23/24 0.52 269.96 620.02

ALB 0/2 51.03 1/2 50.00 642.00 7810.20
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Table 7: Computational results for the MM-p-LARP

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 1/9 34.65 9/9 0 114.67 5.56

D36 0/9 51.08 5/9 1.37 8729.11 9586.92

D64 0/9 55.09 1/9 42.94 1352.56 13620.39

D100 0/9 100.00 0/9 100.00 121.11 14401.83

G16 1/9 37.78 9/9 0 60.89 5.07

G36 0/9 39.62 5/9 3.31 2377.22 7530.66

G64 0/9 56.92 0/9 42.25 530.78 14400.59

G100 0/9 100.00 0/9 100.00 20.44 14401.47

R20 0/5 57.03 5/5 0 286.20 16.13

R30 0/5 54.30 5/5 0 482.60 69.92

R40 0/5 64.63 3/5 9.81 377.00 6496.05

R50 0/5 69.24 2/5 47.86 7716.00 9633.41

P 2/24 27.75 18/24 2.62 2169.04 3715.40

ALB 0/2 75.79 0/2 69.66 329.50 14401.47

Table 8: Computational results for the MM-p-LARP-UD

]Opt0 Gap0 ]Opt Gap Nodes CPU(s)

D16 0/9 45.37 9/9 0 204.78 12.20

D36 0/9 51.24 6/9 1.65 7676.11 9670.18

D64 0/9 55.48 1/9 40.34 1400.00 13208.01

D100 0/9 100.00 0/9 100.00 201.11 14405.84

G16 1/9 37.76 9/9 0 50.22 6.21

G36 0/9 47.13 6/9 12.68 1405.00 6726.02

G64 0/9 58.91 0/9 46.28 2551.89 14400.05

G100 0/9 100.00 0/9 100.00 9.11 14400.61

R20 0/5 55.93 5/5 0 272.20 22.47

R30 0/5 54.16 5/5 0 844.20 259.71

R40 0/5 64.66 4/5 8.82 3311.20 6300.43

R50 0/5 68.19 0/5 62.26 1440.80 11523.14

P 0/24 33.39 19/24 2.38 2681.96 3487.50

ALB 0/2 100.00 0/2 100.00 370.00 14400.09
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Table 9: Average number of open facilities in the optimal solutions of the different
models.

MC-p-LARP
MC-
LARP

MC-p-LARP-UD
MC-
LARP-
UD

MM-p-LARP
MM-p-
LARP-
UD

D16 3.33 3.11 3.56 3.22 3.67 4.00

D36 2.56 1.56 4.00 3.44 4.00 4.00

D64 2.22 1.44 3.67 3.00 3.56 4.00

D100 3.67 1.89 2.44 2.71

G16 2.33 1.22 3.11 2.78 3.78 4.00

G36 2.56 1.22 3.67 2.78 4.00 4.00

G64 1.78 1.00 3.38 2.50 4.00 4.00

G100 2.56 1.11 3.00 2.50

R20 2.00 2.00 2.60 2.60 4.00 3.80

R30 2.60 2.20 3.20 3.20 4.00 4.00

R40 2.80 2.40 3.60 3.60 4.00 4.00

R50 3.20 2.40 3.60 3.20 3.80 4.00

P 3.38 1.13 3.46 2.67 3.67 3.58

ALB 3.50 3.00 4.00 3.00 3.00

Avg. 2.75 1.83 3.38 2.94 3.79 3.94

Table 10: Cross-comparison of optimal values to the different models.

MC-p-LARP MC-LARP MM-p-LARP

MC-LARP MM-p-LARP MC-p-LARP MM-p-LARP MC-p-LARP MC-LARP

D16 1.20 12.63 3.25 20.00 7.86 8.35

D36 2.66 128.20 1.34 178.05 21.82 29.92

D64 1.08 104.65 0.50 138.48 14.15 18.07

D100 2.04 0.56

G16 9.61 63.89 5.00 187.96 30.57 66.67

G36 8.60 85.40 1.96 168.47 14.13 30.58

G64 3.36 130.23 0.51 159.87 36.80 45.82

G100 3.59 2.17

R20 1.38 55.06 1.78 55.06 49.46 54.44

R30 2.50 52.10 1.33 93.45 36.09 40.56

R40 1.40 118.75 1.19 138.99 20.63 21.82

R50 1.08 29.49 2.94 51.90 30.83 30.92

P 14.79 36.21 15.23 197.06 14.18 26.23
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Table 11: Sensitivity analysis on the value of p.

]D Total cost CPU(s)

p = 4 p = 3 p = 2 p = 4 p = 3 p = 2 p = 4 p = 3 p = 2

MC-p-LARP 3.33 2.89 1.89 5274 5486 6215 0.02 0.10 0.27

MC-p-LARP-UD 3.56 3.00 2.00 6181 6533 32621 0.40 0.64 1.67

Table 12: Sensitivity analysis on the set-up costs f .

]D Total cost CPU(s)

fd
1
2
fd 2fd fd

1
2
fd 2fd fd

1
2
fd 2fd

MC-p-LARP 3.00 3.33 2.56 6120 5710 6854 0.08 0.08 0.27

MC-p-LARP-UD 3.22 3.56 3.00 7060 6637 7821 0.62 0.76 0.80

42


