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COVID-19 scenario modelling for the mitigation of 

capacity-dependent deaths in intensive care 

 

Abstract 

Managing healthcare demand and capacity is especially difficult in the context of the COVID-19 

pandemic, where limited intensive care resources can be overwhelmed by a large number of cases 

requiring admission in a short space of time. If patients are unable to access this specialist resource, 

then death is a likely outcome. In appreciating these ‘capacity-dependent’ deaths, this paper reports on 

the clinically-led development of a stochastic discrete event simulation model designed to capture the 

key dynamics of the intensive care admissions process for COVID-19 patients. With application to a 

large public hospital in England during an early stage of the pandemic, the purpose of this study was to 

estimate the extent to which such capacity-dependent deaths can be mitigated through demand-side 

initiatives involving non-pharmaceutical interventions and supply-side measures to increase surge 

capacity. Based on information available at the time, results suggest that total capacity-dependent deaths 

can be reduced by 75% through a combination of increasing capacity from 45 to 100 beds, reducing 

length of stay by 25%, and flattening the peak demand to 26 admissions per day. Accounting for the 

additional ‘capacity-independent’ deaths, which occur even when appropriate care is available within 

the intensive care setting, yields an aggregate reduction in total deaths of 30%. The modelling tool, 

which is freely available and open source, has since been used to support COVID-19 response planning 

at a number of healthcare systems within the UK National Health Service. 

 

Keywords:  Operational research, Capacity management, Intensive care, Simulation, Coronavirus, 

COVID-19. 
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Article highlights 

 Specifically addresses COVID-19 deaths resulting from a potential lack of intensive care 

capacity 

 Simulates a range of scenarios considered plausible at the early stage of COVID-19 outbreak 

or subsequent phases 

 Documents frontline use by a multidisciplinary team in responding to COVID-19 challenges 

 Accompanying modelling tool is open source and freely available to use, re-use and modify 

 Assumptions are based on limited early COVID-19 data and will require updating over time 
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1. Introduction 

 

Coronavirus disease 2019 (COVID-19) is a highly contagious and virulent infectious disease caused by 

severe acute respiratory syndrome coronavirus 2, otherwise known as SARS-CoV-2 [1]. Given the 

speed at which the virus can infect populations and the severity of the resulting symptoms, it represents 

a significant and unprecedented challenge for many healthcare services; and one with which even the 

most developed countries have struggled to cope [2]. 

 

Managing a co-ordinated response to pandemics such as COVID-19 is critical. Unchecked, with a basic 

reproduction rate (R0) estimated at various magnitudes up to 6.5 [3, 4] and up to 14.7% of those infected 

requiring hospitalisation [5], the virus can propagate rapidly through a population, leading to peaks in 

demand for hospital care which are simply not possible to match with existing capacity [2, 3]. If, at such 

times, patients are unable to access the bedded care required then otherwise-avoidable death is likely to 

result [6]. The likelihood of this is particularly heightened when intensive care beds are required, since 

the necessary invasive ventilation and organ support cannot readily or safely be delivered in other 

settings [7]. Early case fatality rates from Wuhan are not expected to appreciate these capacity-

dependent deaths (i.e. deaths that can be attributed to a patient unable to access the care they need due 

to lack of available capacity), since drastic efforts were taken by authorities to avoid health services 

becoming overwhelmed, in enforcing restrictions on movement and rapidly upscaling capacity through 

the building of two new hospitals [8]. Without improved treatment options, there is little that can be 

done to reduce COVID-19 deaths occurring when the patient has otherwise been cared for in the most 

appropriate hospital setting (i.e. capacity-independent deaths – see Figure 1), and so national and local 

planners should focus on minimising the capacity-dependent deaths that are within their influence. That 

is, efforts should be made to ensure the right level of care is available to patients at the right time. 

 

The principal levers to reduce capacity-dependent deaths relate to managing the demand for and supply 

of intensive care resources. On the demand side, in absence of the means to treat or prevent disease, the 

slowing down of cases requiring admission using measures such as school closures and social distancing 

can reduce peak excess demand for intensive care, the so-called ‘flattening the curve’ [1]. On the supply 

side, efforts to create new and expand existing intensive care units increases the capacity to care for 

critically ill COVID-19 patients, resulting in fewer patients rejected with either no care or care in a sub-

optimal setting (which increases the risk of death). 

 

The ability to use a mathematical or computer model to experiment with ‘what if’ scenarios involving 

these levers is crucial to planners on the ground, in ensuring deaths over the course of the pandemic can 

be kept at a minimum. Public health authorities need to know what effect their policies on social 

distancing, home isolation and school closures (i.e. policies to reduce the effective reproduction number 
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R from the basic reproduction number in absence of intervention R0) can have on decreasing or 

changing the shape over time of demand and, in turn, capacity-dependent deaths. Healthcare service 

planners and managers need to be cognisant of the likely benefits of their options around the flexing of 

bedded capacity, especially regarding the allocation between acute and intensive care beds (where the 

substantial efforts involved in increasing the latter must be well justified). With an appropriate model, 

the effect of these scenarios can be projected and used to make better informed strategic decisions when 

planning the response to the COVID-19 pandemic. 

 

There has been much interest in the quantitative and mathematical modelling of COVID-19 for purposes 

of epidemiological forecasting [3, 9 ,10], risk prediction [11], and health system vulnerability [12]. 

However, to the best of the authors’ knowledge there has been no explicit modelling of capacity-

dependent deaths based on predicted demand. While Ferguson et al [3] provide a detailed model of 

demand and the resulting deaths under various mitigation strategies, their work assumes a fixed 

mortality rate that is not dependent on the available capacity of the healthcare system. Our study 

addresses this limitation by estimating the excess mortality resulting from demand exceeding intensive 

care capacity under several mitigation scenarios.  

 

Computer simulations of patient flow, demand and capacity have been used extensively to inform 

decision-making in healthcare [13, 14, 15, 16]. This is especially true for the stochastic, discrete-event 

approach to simulation, as it is particularly suited to situations where entities (e.g. patients) ‘compete' 

for limited resources such as hospital beds and operating room time [17]. Many simulation studies that 

have tackled questions around demand and capacity in healthcare, both under typical health system 

conditions (for example [18, 19]) and in periods of increased pressure such as mass casualty events [20] 

and winter bed crises [21, 22]. Specifically in the context of intensive care, simulation studies have 

addressed bed requirements by using the system dynamics simulation approach to evaluate different 

management policies [23], and applying analytical queuing models and simulations to the management 

of patient flow [24, 25]. For a general guide of how simulation modelling may be used in responding to 

the challenges of COVID-19, refer to [26]. 

 

This paper reports on the development and early real-life application of a purpose-built computer 

simulation model, designed for evaluating scenarios to mitigate capacity-dependent deaths in intensive 

care resulting from the COVID-19 pandemic. The remainder of this paper is structured as follows. 

Development of the model is covered in Section 2 alongside data requirements for model 

parameterisation and the scenarios considered for the simulation experiments. Illustrative results, 

obtained from application to a large teaching hospital in England at an early stage of the outbreak, are 

presented in Section 3. Finally, Section 4 contains a discussion on practical application, limitations, and 

possible further development of the model and tool. 
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< Figure 1 here > 

 

 

Figure 1. Illustrated difference between capacity-dependent and capacity-independent deaths (see 

Section 2 for further description of the probabilities 𝑃𝑑
𝑟𝑒𝑗

 and 𝑃𝑑
𝑎𝑑𝑚). 

 

 

 

2. Materials and methods 

 

2.1 Model  

 

The COVID-19 intensive care admission process is modelled as a multi-channel queuing system 

operating with loss. That is, patients requiring intensive care are rejected if there is no available service 

channel (bed). In Kendall’s notation [27] this is an 𝑀(𝑡) | 𝐺 | 𝐶 | 𝐶 queuing system: that is, in turn, a 

time-inhomogeneous Poisson arrivals process representing the epidemic curve for cases requiring 

intensive care admission; a general service distribution approximating patient length of stay in intensive 

care; C service channels; and a total system capacity of C patients, i.e. no space for waiting. For rejected 

intensive care presentations (lost arrivals), death occurs with probability 𝑃𝑑
𝑟𝑒𝑗

 and survival with 

probability 1 − 𝑃𝑑
𝑟𝑒𝑗

. For admitted intensive care presentations, death occurs with probability 𝑃𝑑
𝑎𝑑𝑚 and 

survival with probability 1 − 𝑃𝑑
𝑎𝑑𝑚. 

 

Implementation of this model is through the iterative three-phased method of discrete event simulation 

[28]. In the case of this study, the types of simulation event consist of:  

 

a. Arrival of patient requiring intensive care admission (unconditional event) 

b. Patient admitted to intensive care (conditional event) 

c. Patient died within intensive care (unconditional event) 

d. Patient discharged alive from intensive care (unconditional event) 

e. Patient admission rejected and patient died (conditional event) 

f. Patient admission rejected and patient survived (conditional event) 

 

The basis of the three-phased approach is in maintaining a calendar of unconditional events. The first 

phase is to step to the next chronological event in the calendar. This could be arrival or intensive care 
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discharge or death (i.e. event type a, c or d as above). In the second phase the selected event is executed. 

In the third phase, any associated conditional event is also executed. So, for example, if a patient arrives 

(event type a) and there is an available service channel (e.g. a free intensive care bed) then the 

conditional event is that the patient is admitted (event type b) and the associated bed is flagged as 

unavailable. If, instead, there is no available service channel (bed) then the admission is rejected and 

the simulated patient either dies (event type e) or ultimately survives (event type f). 

 

As the simulated events progress with each iteration, it is necessary to capture the state of the system 

over time. This keeps the event calendar up-to-date. For instance, if one of the events within an iteration 

involves a patient entering service (event type b), then the time at which they are discharged (sampled 

from the given length of stay distribution) is recorded in the calendar, as a future unconditional event 

of type d. Capturing the state of the system is also necessary in the generation of performance measures 

of interest, such as occupancy levels and patient outcomes. 

 

During the simulation, events are iterated in line with the three-phased method until some terminating 

criterion is met. Here, this is given by the time at which some outcome has been reached for all simulated 

admissions for the given epidemic curve (for cases requiring intensive care admission), i.e. each sought 

admission has been either rejected or admitted and discharged or died (event types c-f). In other words, 

and given the time-inhomogeneous nature of the epidemic curve, this is a transient simulation model. 

As such, and in contrast to simulation models exploring steady-state behaviour, an otherwise necessary 

warm-up period is not required [29]. 

 

Running this simulation from start to finish offers just one possible explanation of how the pathway 

dynamics can play out and so, in order to capture the inherent stochasticity, it is necessary to perform 

an ensemble of replications. Each replication repeats the simulation with a different stream of random 

numbers from which the simulated arrivals, lengths of stay, and rejection probabilities of death and 

survival are generated. Outputs are then aggregated across these replications, with central estimates 

(based on the mean) and confidence intervals (at the 95% level) calculated for all simulation measures. 

 

Note that the Strengthening the Reporting of Empirical Simulation Studies (STRESS) research checklist 

for discrete-event simulation studies (STRESS-DES) is provided within the supplementary material. 

 

 

2.2 Application, data, and calibration 

 

The model was applied to intensive care services at a major public hospital in England during the early 

stage of the outbreak in the UK (late March and early April 2020). Demand for intensive care admission 
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at the hospital was estimated through local interpretation of nationwide projections contained in [3], 

which were made publicly available on 16 March 2020. This involved adjusting for local population 

size, demographics and hospital catchment area (Table 1) in our effort to interpret the national demand 

profiles. As similarly performed in [30], such data pre-processing was necessary given the absence of 

more granular projections during the early stages of the outbreak. The modelling reported in this study 

made use of two hypothetical strategies contained in [3] – a ‘do nothing’ and one involving ‘case 

isolation, home quarantine, and social distancing of those over 70’. The modelling also considers a 

‘flattened’ version of this latter strategy, in order to appreciate the possibility that measures would have 

a greater effect than envisaged in slowing transmission of the disease, with the same level of demand 

but over a 50% longer period of time (Figure 2). 

 

 

Table 1. Distribution of age within estimated hospital catchment area. 

 

 

Age bands Proportion of hospital catchment 

0-9 11% 

10-19 10% 

20-29 21% 

30-39 15% 

40-49 10% 

50-59 10% 

60-69 7% 

70-79 6% 

80+ 11% 

 

 

 

< Figure 2 here > 

 

 

Figure 2. Epidemic curve for cases requiring intensive care, derived from modelling results in 

Ferguson et al (2020). The No isolation strategy assumes no non-pharmaceutical intervention; 

Isolation strategy assumes case isolation, home quarantine, and social distancing of those over 70; and 

Isolation (flattened) represents a flattening of the Isolation strategy over a 50% lengthened period of 

time. 
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At the collaborating hospital there are typically 45 beds available for patients requiring intensive care 

(21 general and 24 cardiac). In the first instance, plans were in place for capacity to be increased to a 

maximum of 76 beds, through making use of operating theatres and other specialist bays (which have 

become available due to the cancellation of routine surgery). There remained some potential to increase 

this number further, should additional surge capacity be required (this is considered within the scenario 

analysis of Section 3). 

 

At the time this study was conducted, there was an insufficient number of COVID-19 patients that had 

been admitted to intensive care at the hospital, and so information regarding intensive care length of 

stay is taken from the literature. A gamma distribution (used also in fitting to COVID-19 intensive care 

length of stay in [30]) was parameterised based on fitting to length of stay data for 4078 COVID-19 

intensive care admissions in England, Wales and Northern Ireland [31]. The shape and rate parameters 

were estimated at α = 1.66 and β = 0.206 respectively, giving rise to a median of 6.52 days and mean 

of 8.07 days (note the mean is similar to the 8 day mean used in [30]). The probability of death resulting 

from rejected admission to intensive care (𝑃𝑑
𝑟𝑒𝑗

) was also informed by the literature. Given the pivotal 

dependence of survival on mechanical ventilation [6] and already substantial mortality rates for cases 

actually receiving such intervention [31], it was assumed that all but a very small minority of rejected 

admissions would result in death. For the simulation study conducted here, a figure of  𝑃𝑑
𝑟𝑒𝑗

= 0.99 is 

used based on the clinical advice received from practicing intensive care consultants (noting the 

assumption that transfer to another hospital with available intensive care capacity could not take place). 

Finally, the probability that a COVID-19 patient admitted to intensive care dies within intensive care 

(𝑃𝑑
𝑎𝑑𝑚) is estimated at 𝑃𝑑

𝑎𝑑𝑚 = 0.507, based on such a proportion of intensive care admissions having 

died as sourced from the afore-mentioned observational report representing 4078 intensive care 

admissions [31]. 

 

 

2.3 Scenario analysis 

 

A number of scenarios relating to possible COVID-19 mitigations were modelled in order to inform 

planning of intensive care services at the hospital during the early stage of the outbreak. These relate to 

changes in the epidemic curve for cases requiring intensive care (informed by government-led strategy 

regarding isolation, quarantine and social distancing), capacity at the hospital in terms of number of 

intensive care beds, and patient length of stay in intensive care. The No isolation strategy involving no 

government-led effort with respect to isolation, quarantine and social distancing is considered within 

Scenario 1, alongside the current available capacity of 45 beds and the literature-informed gamma-

distributed length of stay with mean 8.07 days [31]. Given the UK Government’s decision on 16 March 
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2020 to implement isolation measures, the remainder of scenarios (2 through 8) were configured on the 

basis of this afore-mentioned Isolation strategy (Section 2.2).  

 

Scenarios 3 and 4 model the hospital’s actual planned increases in intensive care bed numbers to surge 

capacities of 76 and 100 respectively. Scenario 5 models the potential benefits of reducing COVID-19 

length of stay by 25% through use of weaning protocols for patients receiving mechanical ventilation, 

as estimated in a previous study [32]. In exploring sensitivity of model outputs to length of stay, an 

increase of 25% was also considered (Scenario 6) in order to appreciate the effect of possible delays to 

discharge that reasonably may exist [33]. In appreciating the possibility that non-pharmaceutical 

interventions would have a greater effect than envisaged in slowing transmission of the disease under 

the Isolation strategy, the remainder of considered scenarios are based upon the ‘flattened’ version as 

introduced in Section 2.2 (Figure 2). Scenarios 7 through 9 account for this in respect of the various 

surge capacities (45, 76, 100 beds), with Scenario 10 presenting the ‘best case’ option in bringing 

together this flattened demand accompanied by increased capacity to 100 beds and 25% reduced length 

of stay. 

 

In order to gauge the ‘ideal world’ capacity required to readily accommodate all demand for intensive 

care admission, additional scenarios are considered for which no constraint on the number of beds is 

assumed. This is with respect to the 8.07 day mean length of stay and demand profiles equivalent to the 

No isolation, Isolation, and Isolation (flattened) strategies. 

 

 

2.4 Simulation  

 

Key simulation output measures of interest consist of the duration of time at maximum capacity (to 

inform workforce requirements), peak capacity-dependent and capacity-independent deaths per day (for 

mortuary planning), and total deaths over the course of the pandemic (as an ultimate marker of 

intervention efficacy, in balancing demand and capacity). Confidence intervals, at 95% level, were 

calculated based on the variation in output measure observed across the 1000 replications performed 

for each scenario, with each replication using a different stream of random numbers. This number of 

replications was selected based on the resulting reduction of simulation error to magnitudes deemed 

sufficiently negligible (<0.25%) when assessed against the output measures of interest (this was 

performed using different seeds for which the random number streams were drawn for each replication 

within the simulations considered). The model was implemented as a package within 64-bit R version 

3.6.0. For each scenario, computational time was approximately five minutes when performed on a 

Windows 10 desktop computer. 
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3. Results 

Estimates for the key output measures of interest are presented alongside each of the considered 

scenarios in Table 2. Transient outputs corresponding to each of these key areas of interest are presented 

in Figure 3 across all scenarios, highlighting the key dynamical relationships between these variables. 

For instance, when full capacity is reached (left plots) then capacity-dependent deaths start to occur 

(middle plots) based on the extent to which demand continues to exceed supply; with the magnitude of 

this determining the rate at which deaths accumulate (right plots). 

 

 

< Figure 3 here > 

 

 

Figure 3. Simulation output results for intensive care bed occupancy and projected capacity-

dependent and capacity-independent deaths (per day and cumulative) across the ten scenarios 

considered. Black solid lines represent the mean and grey bands the 95% confidence intervals from 

1000 replications per scenario. Dashed lines represent inputted capacity associated with the respective 

scenarios. 
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Table 2. Simulation key output measures of interest obtained over 1000 simulation replications. Strategies relate to the epidemic curves for cases requiring 

intensive care equivalent to those contained in Figure 2. 

 

 

Scenario Strategy Capacity 

(intensive 

care beds) 

Mean 

length of 

stay 

(days) 

Continuous days 

at maximum 

capacity; mean 

(95% CIs) 

Peak daily 

capacity-dependent 

deaths; mean (95% 

CIs) 

Peak daily capacity-

independent deaths; 

mean (95% CIs) 

Capacity-dependent 

deaths over the 

pandemic; mean (95% 

CIs) 

Capacity-independent 

deaths over the 

pandemic; mean (95% 

CIs) 

Total deaths over the 

pandemic; mean (95% 

CIs) 

1 No 

isolation 

45 8.07 67 (55-79) 107 (79-136) 3 (0-6) 3778 (3086-4494) 257 (229-285) 4031 (3325-4761) 

2 Isolation 45 8.07 76 (53-91) 33 (19-48) 3 (0-6) 1509 (1182-1853) 340 (306-377) 1849 (1500-2205) 

3 Isolation 76 8.07 64 (47-77) 29 (15-45) 5 (1-9) 1202 (892-1527) 498 (453-543) 1699 (1355-2057) 

4 Isolation 100 8.07 56 (41-69) 26 (12-42) 6 (2-11) 996 (702-1308) 604 (552-658) 1598 (1268-1940) 

5 Isolation 45 6.05 69 (44-85) 31 (17-46) 4 (1-8) 1360 (1032-1696) 417 (377-459) 1776 (1424-2132) 

6 Isolation 45 10.09 82 (59-97) 34 (21-49) 2 (0-6) 1607 (1272-1956) 290 (257-323) 1896 (1543-2257) 

7 Isolation 

(flattened) 

45 8.07 104 (42-125) 20 (9-32) 2 (0-6) 1310 (973-1655) 440 (398-481) 1750 (1405-2115) 

8 Isolation 

(flattened) 

76 8.07 82 (43-104) 16 (5-29) 5 (1-9) 907 (606-1229) 647 (588-703) 1552 (1213-1903) 

9 Isolation 

(flattened) 

100 8.07 68 (29-88) 13 (2-26) 6 (2-11) 652 (392-945) 778 (706-846) 1428 (1115-1761) 

10 Isolation 

(flattened) 

100 6.05 48 (0-74) 10 (0-22) 8 (3-14) 382 (180-627) 917 (814-1004) 1296 (1000-1614) 
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In the absence of any intervention to reduce the effective reproduction number (R) from the basic 

reproduction number (R0) through case isolation, home quarantine and social distancing (i.e. the No 

isolation strategy of Scenario 1), the estimated total death toll is significantly higher than in other 

scenarios. Employing these measures reduces capacity-dependent deaths by an estimated three-fifths 

and cuts the peak daily capacity-dependent deaths by 69% ceteris paribus (Scenario 2). Incorporating 

capacity-independent deaths (occurring within intensive care following admission), total deaths over 

the pandemic are reduced by 2182 (54%). Increasing capacity from 45 to 76 intensive care beds 

(Scenario 3) further reduces capacity-dependent deaths by 307 (20%), with total deaths reducing by a 

lesser 150 (8%) given the additional capacity-independent deaths that consequently occur (recalling 

𝑃𝑑
𝑎𝑑𝑚 = 0.507). This also starts to reduce the number of subsequent days at maximum capacity, from 

76 to 64 (16%). This is brought down further (to 56 days) should capacity increases to 100 beds be 

possible (Scenario 4), which also brings down capacity-dependent deaths to under 1000 and reduces 

total deaths by approximately 100. Curtailing mean length of stay by one-quarter appears to have a 

relatively small improvement to the total number of deaths (Scenario 5 c.f. Scenario 2), which is in part 

due to the right-skewed nature of the length of stay distribution (i.e. the number of longer-staying 

patients in the tail is unchanged since the shape of the distribution is presumed unaltered). When 

intensive care length of stay is increased by one-quarter (Scenario 6 c.f. Scenario 2), the additional 98 

(6.5%) capacity-dependent deaths are offset by fewer capacity-independent deaths given the reduced 

intensive care throughput, resulting in a lesser 47 (2.5%) total deaths. 

 

Should any additional government-led isolation strategies be effective in further flattening the epidemic 

curve for cases requiring intensive care, then a substantial reduction in peak capacity-dependent deaths 

from 33 to 20 would be expected (i.e. Scenario 7 c.f. Scenario 2). However, without increases to capacity 

this simply spreads the deaths over a longer period of time, rather than reducing the total by a significant 

amount (1750 c.f. 1849). To achieve a significant reduction in total deaths then any further ‘flattening’ 

of demand must be accompanied by increases in capacity. If first and second surge capacity levels can 

be met then total deaths reduce by 198 (11%) and 322 (18%) respectively (i.e. Scenarios 8 and 9 c.f. 

Scenario 7). Finally, if second surge bed numbers can be accompanied by the afore-mentioned one-

quarter reduction in length of stay then total deaths can be reduced by 454 (26%), peak capacity-

dependent deaths reduced to ten per day, and the duration of time operating at full capacity shortened 

by one half (Scenario 10 c.f. Scenario 7). Note that while further ‘flattening’ of demand and 

accompanying capacity increases lead to greater capacity-independent deaths (due to higher numbers 

admitted) this is more than offset by the reduction in capacity-dependent deaths, meaning total deaths 

are reduced. 

 

These mortality projections can be contextualised against those theoretically achievable were intensive 

care bed capacity not a constraint. With an 8.07 day mean length of stay, total deaths are estimated at 
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2191 (95% CI 1822 to 2564) for No isolation and 1111 (920 to 1311) for both Isolation and Isolation 

(flattened), noting of course that these figures are composed solely of capacity-independent deaths. 

Thus under an Isolation (flattened) strategy with 25% reduced length of stay and 100 beds (Scenario 

10), the total number of deaths is within 185 (15%) of the theoretical lower bound (at least in the absence 

of vaccine or treatment). The peak bed requirement corresponding to these lower bound mortality 

estimates under the three strategies are 853 (704 to 1012), 303 (243 to 363) and 206 (163 to 250) 

respectively (Figure 4). 

 

 

< Figure 4 here > 

 

 

Figure 4. Simulation output results for no constraint to bed number availability. This shows the 

number of intensive care beds that would be required to satisfy all demand. 

 

 

4. Discussion 

 

4.1 Application 

 

This paper details the approach taken to evaluate the effect of various potential mitigations on COVID-

19 deaths resulting from a lack of intensive care capacity at a hospital in England. Performed at an early 

stage of the outbreak, the analysis presented here has allowed intensivists and planners insight into the 

number and cause of deaths that could result under various scenarios informed through clinical opinion 

and early findings within the literature. In implementing the model as an open source tool, the approach 

has been used across a number of healthcare systems within the UK National Health Service. This has 

been facilitated through making the model code publicly available as an R package [34] and promoting 

the tool through social media and national webinar series [35]. 

 

Modelling insights have proved valuable to decision-making in a number of ways. First, it has enabled 

a more objective assessment of the potential gain from efforts required to convert existing clinical areas 

to intensive care specification. This has allowed consideration of the opportunity cost of such actions, 

e.g. if theatre space is used then this may limit the ability to perform emergency surgery. Second, it has 

facilitated consideration of the gain from investing in efforts to reduce length of stay through 

potentially-effective weaning protocols [32]. Third, it has enabled consideration of the effect of delays 

to discharge that may reasonably exist from intensive care to downstream services [33], particularly in 

the COVID-19 setting where other acute and community services may be overwhelmed. Fourth, it has 
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informed an understanding of workforce requirements, through measuring the duration of time at 

maximum occupancy (and thus estimating staff burnout [36]). Fifth, through sharing the modelling 

results with public health colleagues at various stages of the modelling, it has informed the capacity 

requirements of temporary mortuaries within the region. And sixth, through estimating the reduction of 

COVID-19 related occupancy, it has facilitated consideration of the timing and scale of when certain 

elective surgeries may resume. 

 

4.2 Limitations 

 

Turning to limitations, any modelling study performed during the early stages of outbreak of a novel 

disease must address the lack of available data and information [26]. The modelling of this study was 

based upon the same projections which prompted the UK Government’s movement towards ‘lockdown’ 

[3]. These estimates appear to have forecasted demand for intensive care at many multiples of available 

supply (even at surge levels), yet it has become clear in the weeks that have followed that these 

projections were over-estimates [31]. The model can, however, be readily updated in response to the 

latest projections. Doing so has ensured modelled results have continued to reflect the best-known 

information at the time.  

 

Another limitation relates to the assumption that all intensive care beds are available for newly-arriving 

COVID-19 patients. While elective procedures requiring post-operative intensive care have been 

postponed [37], there remains other sources of non-elective non-COVID-19 demand. Estimations of 

this, once the effect of societal isolation becomes appreciable (e.g. any reduced road traffic accidents, 

alcohol-related injuries), can be incorporated within the capacity parameter simply by deducting the 

average beds occupied by such patients.  

 

An additional possible limitation relates to the assumption that death occurs immediately if a bed in the 

required setting is not available. Realistically, death is unlikely to be immediate [38], yet at an early 

stage of the pandemic no reliable data exists to meaningfully capture this parameter in the model. This 

has no effect on the ultimate number of deaths estimated, but will affect their specific timing and the 

thus, the peak daily number.  

 

4.3 Further research 

 

It is important to acknowledge that capacity has been considered only with regard to the number of beds 

within intensive care, and not the size or quality of clinical workforce. If the higher volumes of patients 

being looked after, as produced here through scenarios in which more beds are converted to intensive 

care specification, are not met with proportionate increases in the numbers of suitably-qualified doctors 
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and nurses, then poorer patient outcomes (i.e. greater 𝑃𝑑
𝑎𝑑𝑚) and longer lengths of stay may result [39].

Further research is thus required to investigate and incorporate the effect of workforce size and skill-

mix on these model parameters. On the demand side, these parameters may also be affected by the 

possible implementation of an intensive care triage policy, which would result in a different case-mix 

admitted to intensive care. Additional modelling may thus be needed to understand the effects of 

rejecting intensive care admissions from patient cohorts known to have negligible survival likelihood, 

in the interests of maintaining available beds for those known to have more favourable chances. If those 

patients less likely to benefit from admission are triaged-out (as considered in [6, 40]), then modelling 

would need to capture the different outcome and length of stay distributions for the new patient cohort. 

Ultimately, such a policy could potentially reduce further the total deaths over and above those 

considered in this study. 

Further work may also investigate how the effect of discharge delays from intensive care to the acute 

wards can be better captured in the modelling. Firstly, any confounding in the empirically-calibrated 

length of stay distribution should be assessed, in examining the extent to which discharge delays are 

already accounted for within the length of stay data. This would require patient-level data including 

admission date and date ready for discharge alongside ultimate discharge date. While a 25% (2-day) 

addition to length of stay has been considered here (Scenario 6), further research could consider 

modelling the downstream acute bed base in order to assess the capacity required to reduce delays to 

discharge to a given length of time (with greater fidelity achievable through modelling the conjoint 

admission and discharge process between intensive care and the acute wards, within a pathway model 

similar to that of [16]).  

A greater understanding of the dynamics between intensive care and the acute bed bases could also 

permit further work regarding the timing and magnitude of intensive care surge capacities. Converting 

existing specialist beds to intensive care specification for periods of time when there are relatively few 

COVID-19 presentations could reduce the availability or quality of service for other elective and 

emergency procedures. Through simulating the performance of elective pathways [41], modelling is 

now being performed at the authors’ organisation in order to more optimally balance the capacity 

allocated to these various competing demands. 
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Strengthening the Reporting of Empirical Simulation Studies (STRESS) 

Discrete-event simulation guidelines STRESS-DES  

 

Section/Subsection Item Recommendation Submitted paper 

1. Objectives    

Purpose of the 

model 

1.1 Explain the background and objectives for the 

model.  

 

To support decisions around intensive care bed capacity and planning in the context 

of a pandemic, specifically the current COVID-19 outbreak. 

Model Outputs 1.2 Define all quantitative performance measures 

that are reported, using equations where 

necessary.  Specify how and when they are 

calculated during the model run along with how 

any measures of error such as confidence 

intervals are calculated. 

  

Key simulation output measures of interest consist of the duration of time at 

maximum capacity (to inform workforce requirements), peak capacity-dependent 

deaths per day (for mortuary planning), and total capacity-dependent deaths over 

the course of the epidemic (as an ultimate marker of intervention efficacy, in 

balancing demand and capacity). Quantiles, including inter-quartile range (IQR) and 

95% confidence intervals, are calculated based on the variation in output measure 

observed across the 1000 replications performed for each scenario. 

 

See Section 2.3 in paper. 

Experimentation 

Aims 

1.3 If the model has been used for experimentation, 

state the objectives that it was used to 

investigate. 

   

a.) Scenario based analysis – Provide a 

name and description for each 

scenario, providing a rationale for the 

choice of scenarios and ensure that 

item 2.3 (below) is completed. 

 

b.) Design of experiments – Provide details 

of the overall design of the experiments 

with reference to performance 

measures and their parameters 

(provide further details in data below).      

 

Scenario based analysis. Full details of scenarios included in Table 2 with explanations 

as to why each is investigated provided in Section 2.3. 

 

 

Supplementary Material
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c.) Simulation Optimisation – (if 

appropriate) Provide full details of what 

is to be optimised, the parameters that 

were included and the algorithm(s) that 

was be used.  Where possible provide a 

citation of the algorithm(s). 

 

2. Logic    

Base model overview 

diagram 

2.1 Describe the base model using appropriate 

diagrams and description.  This could include 

one or more process flow, activity cycle or 

equivalent diagrams sufficient to describe the 

model to readers.  Avoid complicated diagrams 

in the main text.  The goal is to describe the 

breadth and depth of the model with respect to 

the system being studied.  

  

 
 

 

Base model logic 2.2 Give details of the base model logic. Give 

additional model logic details sufficient to 

communicate to the reader how the model 

works.   

 

The COVID-19 hospital admission process is modelled as a multi-channel queuing 

system operating with loss. That is, patients requiring hospitalisation are rejected if 

there is no available service channel (bed). In Kendall’s notation (Kendall, 1953) this is 

an M(t)  | G |  C | C queuing system: that is, in turn, a time-inhomogeneous Poisson 

arrivals process representing the epidemic curve for cases requiring hospitalisation; a 

general service distribution approximating patient length of stay in hospital; C service 

channels; and a total system capacity of C patients, i.e. no space for waiting. For 

rejected admissions (lost arrivals), death occurs with probability P_d and survival 

with probability (1-P_d). The model can be applied in the context of general acute 

beds or intensive care beds, assuming the parameters are calibrated accordingly. 

 



STRESS-DES          Version 1.0 

See Section 2.1 in the paper. 

Scenario logic 2.3 Give details of the logical difference between 

the base case model and scenarios (if any).  This 

could be incorporated as text or where 

differences are substantial could be 

incorporated in the same manner as 2.2. 

 

The difference between the base case model and the scenarios is in the values of the 

input parameters (clearly described in Table 2 of the paper). 

Algorithms 2.4 Provide further detail on any algorithms in the 

model that (for example) mimic complex or 

manual processes in the real world (i.e.  

scheduling of 

arrivals/appointments/operations/maintenance, 

operation of a conveyor system, machine 

breakdowns, etc.). Sufficient detail should be 

included (or referred to in other published work) 

for the algorithms to be reproducible.  Pseudo-

code may be used to describe an algorithm. 

Implementation of this model is through the iterative three-phased method of 

discrete event simulation (Pidd, 1998). In our case, the types of simulation event 

consist of:  

 

a. Arrival of patient requiring hospital admission (unconditional event) 

b. Patient admitted (conditional event) 

c. Patient discharged (unconditional event) 

d. Patient admission rejected and patient died (conditional event) 

e. Patient admission rejected and patient survived (conditional event) 

 

Full details are provided in Section 2.1 of the paper. 

Components 2.5 2.5.1 

Entities 

 

 

 

Give details of all entities within 

the simulation including a 

description of their role in the 

model and a description of all their 

attributes.   

Individual patients, each patient has an arrival time and a planned discharge time as 

sampled from the appropriate length of stay distribution (based on the latest 

available information, Deasy et al, 2020). 

 

See Section 2.1 in the paper. 

2.5.2 

Activities  

 

Describe the activities that entities 

engage in within the model.  

Provide details of entity routing 

into and out of the activity.   

A patient arrival is generated in the model. If a service channel (i.e. intensive care 

bed) is available, then the patient will occupy it for a duration sampled by the 

calibrated length of stay distribution. If all beds all full then the patient is not 

admitted to the unit and the outcome is recorded as survived (with probability P_d) 

or died (with probability 1-P_d).  

 

See Section 2.1 in the paper. 

2.5.3 

Resources 

List all the resources included 

within the model and which 

activities make use of them. 

 

A hospital bed, taken to be an intensive care bed in this study. But the model/tool 

can be used equivalently for an acute bed, or indeed to model ventilator resource. 

 

See Section 2.1 in the paper. 
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2.5.4 

Queues  

 

Give details of the assumed 

queuing discipline used in the 

model (e.g. First in First Out, Last 

in First Out, prioritisation, etc.). 

Where one or more queues have a 

different discipline from the rest, 

provide a list of queues, indicating 

the queuing discipline used for 

each.  If reneging, balking or 

jockeying occur, etc., provide 

details of the rules. Detail any 

delays or capacity constraints on 

the queues. 

 

No waiting is allowed in the model (see also 2.5.2 in this checklist). This is a queuing 

system operating with loss. 

 

See Section 2.1 in the paper. 

2.5.5 

Entry/Exit 

Points  

 

Give details of the model 

boundaries i.e. all arrival and exit 

points of entities.  Detail the 

arrival mechanism (e.g. ‘thinning’ 

to mimic a non-homogenous 

Poisson process or balking) 

 

Entry: patient arrival requiring intensive care admission 

Exit point: discharged from intensive care bed (dead or alive) 

Exit point: rejected admission and died (P_d) 

Exit point: rejected admission and survived (probability 1-P_d) 

 

The complete list of discrete events appears in 2.4 of this checklist, and is explained 

in detail in Section 2.1 of the paper. 

3. Data    

Data sources 3.1 List and detail all data sources. Sources may 

include: 

 

 Interviews with stakeholders, 

 Samples of routinely collected data, 

 Prospectively collected samples for the 

purpose of the simulation study,  

 Public domain data published in either 

academic or organisational literature.   

Provide, where possible, the link and 

DOI to the data or reference to 

published literature. 

Public domain data as reported in a number of recently published studies.  

Empirical data from the collaborating hospital in terms of number of beds in the care 

unit (current, additional, surge capacity limits). 

 

See Section 2.2 in the paper. 
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All data source descriptions should include 

details of the sample size, sample date ranges 

and use within the study.  

 

Pre-processing 3.2 Provide details of any data manipulation that 
has taken place before its use in the simulation, 
e.g. interpolation to account for missing data or 
the removal of outliers. 
 

Following a similar approach to Deasy et al (2020), demand for intensive care 

admission is estimated through local interpretation of nationwide projections 

contained in Ferguson et al, 2020 (controlling for local population size, demographics 

and hospital catchment area – see Table 1). This is according to two scenarios, as 

presented in Ferguson et al (2020). The first is effectively a “do nothing” involving no 

restrictions on movement, while the second involves “case isolation, home 

quarantine, and social distancing of those over 70” (Figure 1). 

 

See Section 2.2 in the paper. 

Input parameters 3.3 List all input variables in the model. Provide a 

description of their use and include parameter 

values.  For stochastic inputs provide details of 

any continuous, discrete or empirical 

distributions used along with all associated 

parameters.  Give details of all time dependent 

parameters and correlation. 

 

Clearly state: 

 

 Base case data 

 Data use in experimentation, where 

different from the base case. 

 Where optimisation or design of 

experiments has been used, state the 

range of values that parameters can 

take. 

 

Where theoretical distributions are used, state 
how these were selected and prioritised above 
other candidate distributions. 

Patient arrivals over time (see Figure 1 and github.com/nhs-bnssg-analytics for the 

full data).  

Patient length of stay (see Table 2 in paper). 

Probability of death for a rejected admission P_d = 0.99. 

Bed capacity = {45, 76, 100} depending on scenario (see Table 2 in paper). 

 

See Sections 2.2 and 2.3 in the paper. 
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Assumptions 3.4 Where data or knowledge of the real system is 

unavailable what assumptions are included in 

the model?  This might include parameter 

values, distributions or routing logic within the 

model. 

 

 

As with any modelling study, a number of simplifying assumptions were made. There 

is the assumption that death occurs immediately if a bed in the required setting is not 

available. Realistically death will not be immediate (World Health Organization, 

2020), yet at this early stage of the pandemic there exist no reliable data to capture 

this parameter in the model in a meaningful way. This has no effect on the ultimate 

number of deaths estimated, but will affect their specific timing and the thus, the 

peak daily number. This should therefore be considered if seeking validation against 

actual number deaths over time (i.e. it should be expected that there will be a lag). It 

should also be acknowledged that the model does not mechanistically capture delays 

to discharge or transfer, which are commonplace in hospital patient flow (Landeiro et 

al, 2019). An example for the application considered here would be the inability to 

discharge a patient from intensive care due to the lack of an available acute bed. 

While this has not been modelled (this would be possible at the cost of additional 

complexity, see Wood & Murch, 2019), the effects can be understood by adjusting 

the length of stay distribution used within the simulation according to estimated or 

hypothetical delay times. Finally, it is assumed in this study that all intensive care 

beds are available for newly-arriving COVID-19 patients. While elective procedures 

requiring post-operative intensive care have been cancelled, there remains other 

sources of non-elective non-COVID-19 intensive care demand. Estimations of this, 

once the effect of societal isolation becomes appreciable (e.g. any reduced road 

traffic accidents, alcohol-related injuries), can be incorporated within the model 

parameter for capacity simply by deducting the average beds occupied by such 

patients. 

 

See Section 4 in the paper. 

4. Experimentation     

Initialisation 4.1 Report if the system modelled is terminating or 

non-terminating.  State if a warm-up period has 

been used, its length and the analysis method 

used to select it.  For terminating systems state 

the stopping condition. 

 

State what if any initial model conditions have 

been included, e.g., pre-loaded queues and 

Terminating system thus no need for warm-up period. 

Stopping condition: This is given by the time at which some outcome has been 

reached for all simulated admissions for the given epidemic curve (for cases requiring 

hospitalisation), i.e. each sought admission has been either rejected or admitted and 

discharged. 

No initial model conditions (the system starts from zero). 

 

See Section 2.1 in the paper. 
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activities.  Report whether initialisation of these 

variables is deterministic or stochastic. 

 

Run length 4.2 Detail the run length of the simulation model 

and time units. 

 

Determined by the stopping condition outlined in 4.1 of this checklist. 

 

Estimation approach 

 

4.3 State the method used to account for the 

stochasticity: For example, two common 

methods are multiple replications or batch 

means. Where multiple replications have been 

used, state the number of replications and for 

batch means, indicate the batch length and 

whether the batch means procedure is standard, 

spaced or overlapping. For both procedures 

provide a justification for   the methods used 

and the number of replications/size of batches. 

1000 multiple replications were used for each scenario. 

 

See Section 2.3 in the paper. 

5. Implementation     

Software or 

programming 

language 

5.1 State the operating system and version and 

build number.  

 

State the name, version and build number of 

commercial or open source DES software that 

the model is implemented in.   

 

State the name and version of general-purpose 

programming languages used (e.g. Python 3.5).  

 

Where frameworks and libraries have been used 

provide all details including version numbers. 

 

The model was coded from scratch in R and has been released as an open source tool 

(hosted on github.com/nhs-bnssg-analytics and promoted via social media). 

 

See Section 4 in the paper. 

Random sampling  5.2 State the algorithm used to generate random 

samples in the software/programming language 

used e.g. Mersenne Twister. 

 

Uses the inbuilt random number generator in R. Each replication uses a different 

seed call to this function. This provides the necessary stochastic variation within each 

replication, yet also allows reproducible model scenarios to be created and assessed 

(useful when evaluating specific changes in the model parameters). 
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If common random numbers are used, state how 

seeds (or random number streams) are 

distributed among sampling processes. 

 

 

 

 

Model execution 5.3 State the event processing mechanism used e.g. 

three phase, event, activity, process interaction.   

 

Note that in some commercial software the 

event processing mechanism may not be 

published. In these cases authors should adhere 

to item 5.1 software recommendations. 

 

State all priority rules included if 

entities/activities compete for resources.  

 

If the model is parallel, distributed and/or use 

grid or cloud computing, etc., state and 

preferably reference the technology used.  For 

parallel and distributed simulations the time 

management algorithms used.  If the HLA is used 

then state the version of the standard, which 

run-time infrastructure (and version), and any 

supporting documents (FOMs, etc.) 

 

Implementation of this model is through the iterative three-phased method of 

discrete event simulation (Pidd, 1998). In our case, the types of simulation event 

consist of:  

 

a. Arrival of patient requiring intensive care admission (unconditional event) 

b. Patient admitted to intensive care (conditional event) 

c. Patient died within intensive care (unconditional event) 

d. Patient discharged alive from intensive care (unconditional event) 

e. Patient admission rejected and patient died (conditional event) 

f. Patient admission rejected and patient survived (conditional event) 

 

The basis of the three-phased approach is in maintaining a calendar of unconditional 

events. The first phase is to step to the next chronological event in the calendar. This 

could be arrival or intensive care discharge or death (i.e. event type a, c or d as 

above). In the second phase the selected event is executed. In the third phase, any 

associated conditional event is also executed. So, for example, if a patient arrives 

(event type a) and there is an available service channel (e.g. a free intensive care bed) 

then the conditional event is that the patient is admitted (event type b) and the 

associated bed is flagged as unavailable. If, instead, there is no available service 

channel (bed) then the admission is rejected and the simulated patient either dies 

(event type e) or ultimately survives (event type f). 

 

As the simulated events progress with each iteration, it is necessary to capture the 

state of the system over time. This keeps the event calendar up-to-date. For instance, 

if one of the events within an iteration involves a patient entering service (event type 

b), then the time at which they are discharged (sampled from the given length of stay 

distribution) is recorded in the calendar, as a future unconditional event of type d. 
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Capturing the state of the system is also necessary in the generation of performance 

measures of interest, such as occupancy levels and patient outcomes. 

 

During the simulation, events are iterated in line with the three-phased method until 

some terminating criterion is met. Here, this is given by the time at which some 

outcome has been reached for all simulated admissions for the given epidemic curve 

(for cases requiring intensive care admission), i.e. each sought admission has been 

either rejected or admitted and discharged or died (event types c-f). In other words, 

and given the time-inhomogeneous nature of the epidemic curve, this is a transient 

simulation model. As such, and in contrast to simulation models exploring steady-

state behaviour, an otherwise necessary warm-up period is not required [30]. 

 

Running this simulation from start to finish offers just one possible explanation of 

how the pathway dynamics can play out and so, in order to capture the inherent 

stochasticity, it is necessary to perform an ensemble of replications. Each replication 

repeats the simulation with a different stream of random numbers from which the 

simulated arrivals, lengths of stay, and rejection probabilities of death and survival 

are generated. Outputs are then aggregated across these replications, with central 

estimates (based on the mean) and confidence intervals (at the 95% level) calculated 

for all simulation measures. 

 

See Section 2.1 in the paper. 

 

System Specification 5.4 State the model run time and specification of 

hardware used.  This is particularly important for 

large scale models that require substantial 

computing power.  For parallel, distributed 

and/or use grid or cloud computing, etc. state 

the details of all systems used in the 

implementation (processors, network, etc.)  

Processing time is insubstantial, typically taking less than five minutes for each 

scenario evaluated on a desktop computer (note that scenarios with larger 

projections of number of admissions than those considered here take longer due to 

more “discrete events” taking place). Computational constraints are on processing 

time and not computer memory. 

6. Code Access    

Computer Model 

Sharing Statement 

6.1 Describe how someone could obtain the model 

described in the paper, the simulation software 

and any other associated software (or hardware) 

The tool is open source and available for free: github.com/nhs-bnssg-analytics 
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needed to reproduce the results.  Provide, 

where possible, the link and DOIs to these. 

 

 


