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ABSTRACT 

For the next generation of aero-engines, manufacturers are planning to increase the 

overall compressor pressure ratio from existing values around 50:1 to values of 70:1. 

The requirement to control the tight clearances between the blade tips and the casing 

over all engine-operating conditions is a challenge for the engine designer attempting 

to minimise tip-clearances losses. Accurate prediction of the tip clearance requires an 

accurate prediction of the radial growth of the compressor rotor, which depends on the 

temperature distribution of the disc. The flow in the rotating cavities between adjacent 

discs is buoyancy-driven, which creates a conjugate heat transfer problem: the disc 

temperature depends on the radial distribution of Nusselt number, which in turn 

depends on the radial distribution of disc temperature.   

This paper focuses on calculating the radial growth of a simplified compressor disc 

in isolation from the other components. Calculations were performed using steady one-

dimensional (1D) theoretical and two-dimensional finite-element computations (2D 

FEA) for overall pressure ratios (OPR) of 50:1, 60:1 and 70:1. At each pressure ratio, 

calculations were conducted for five different temperature distributions; the distribution 

based on an experimentally-validated buoyancy model was used as the datum case, and 

results from this were compared with those from linear, quadratic, cubic and quartic 

power laws. 
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The results show that the assumed distribution of disc temperature has a significant 

effect on the calculated disc growth, whereas the pressure ratio has only a relatively 

small effect. The good agreement between the growth calculated by the 1D theoretical 

model and the FEA suggests that the 1D model should be useful for design purposes. 

Although the results were obtained for steady-state conditions, a method is outlined for 

calculating the growth under transient conditions.   

 

1 INTRODUCTION 

Figure 1 is a schematic of a generic HP (high-pressure) compressor rotor in an aero 

engine [1]. In the external annulus, the compressed air heats the blades and shrouds at 

the periphery of the discs. At the bore of the discs an axial throughflow of air, extracted 

from an upstream stage, is used for cooling purposes.  

For the next generation of aero-engines, manufacturers are planning to increase the 

overall compressor pressure ratio from existing values around 50:1 to values of 70:1; 

this will result in shorter blades. Blade-tip leakage represents a significant source of 

loss for a turbomachinery stage [2], especially if the rotor is unshrouded, as in aero 

engine compressor. As the blade height is reduced at the higher pressure ratios, the 

requirement to control tight clearances between the blade tips and the casing over a 

wide range of engine-operating conditions is a challenge for the engine designer.  

The tip gap 𝑮 at any operating point is given by a cold-built clearance (when the 

engine is at an ambient condition) 𝑮𝑪𝑩, plus the casing radial growth 𝜹𝑪𝑺  (computed 

at the inner radius), minus the radial growth of the blade tip 𝜹𝑩𝑻: 

𝐺 = 𝐺𝐶𝐵 + 𝛿𝐶𝑆 − 𝛿𝐵𝑇 (1) 

The radial growth of the blade tip 𝛿𝐵𝑇 depends strongly on the radial growth of the 

discs to which the blades are attached. The overall radial growth of a compressor disc, 



GTP-19-1728 Scobie  3
                                                           

considered without the blades, depends on the following: (i) the thermal expansion 

𝛿𝐸 of the material; (ii) the rotational growth 𝛿𝑅 due to the stresses created by the 

rotational speed of the disc; and (iii) the thermal growth 𝛿𝑇 of the disc due to the 

stresses created by the temperature gradients. The total radial growth 𝛿𝑇𝑂𝑇  of a 

compressor disc is the sum: 

𝛿𝑇𝑂𝑇 = 𝛿𝐸 + 𝛿𝑅 + 𝛿𝑇 (2) 

It is the calculation of the thermal growth 𝛿𝑇 - which depends on an estimate of the 

radial distribution of temperature - that creates the largest uncertainty for the designer.  

 

Figure 1: Simplified representation of a high pressure compressor [1] 

The object of this paper is to calculate, for different pressure ratios, the effect of 

temperature distribution on the radial growth of a compressor disc. The temperature 

distribution based on an experimentally-validated buoyancy model was used as the 

datum case, and results from this were compared with those from linear, quadratic, 

cubic and quartic power laws. The growth was determined using 2D FEA (finite-

element analysis) and a 1D theoretical stress model. 

A literature review is given in Section 2. The disc geometry, model and material are 

presented in Section 3. The three components of the disc radial growth are computed 

for a 50:1 pressure ratio, using FEA and the theoretical model in Section 4. In Section 
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5, the effects of the temperature distributions on the disc growth are calculated for future 

compressor designs operating at steady conditions for pressure ratios of 60:1 and 70:1. 

The main conclusions are summarised in Section 6. Appendices A and B summarise 

the equations used in the buoyancy model and the 1D stress model. Appendix C shows 

how the method could be extended to predict radial growth under transient conditions. 

The definition of symbols not defined in the text below can be found in the 

Nomenclature. 

 

2 LITERATURE REVIEW 

Various simple models have been used to compute the time-response of the tip 

clearance of the compressor blades during typical aero-engine transients. These simple 

models are quick to solve, but their accuracy is questionable. 

The transient response - during operations such as acceleration from idle to 

maximum take-off, deceleration and hot re-slam - was considered by Atkins [3].  

Agarwal et al. [4] used a unique bulk temperature for the whole disc and blades when 

computing with FEA the tip clearance of a turbine rotor during transient. 

Kypuros and Melcher [5] considered an air-cooled turbine disc from idle to 

maximum power. They assumed that only the external shroud was in contact with the 

hot annulus gas, and the blades were treated separately to the disc. The radial 

temperature gradient was neglected - the disc reference temperature was determined by 

the compressor discharge temperature – and consequently only the disc thermal 

expansion and the rotational growth were calculated from this model. 

Pilidis and Maccallum [6] developed a transient model for both compressors and 

turbines. They used a correlation to estimate the radial temperature distribution on the 
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disc, which was simplified into three parts: hub, diaphragm and shroud. The model was 

not validated against FEA nor experimental data.  

Yepifanov et al. [7] used a transient model of a complete engine to calculate changes 

to the turbine performance using empirical correlations for the heat transfer at the disc 

surfaces. They solved three different 2D models: a full turbine-rotor model, with blades 

simulated by a distributed force; a single-blade model; and a casing model. The 

displacements were computed by means of finite element analysis, and the 

displacements for the three models were subsequently merged to determine the tip 

clearance. 

Dong et al. [8] used a steady model to estimate the tip clearance in a multistage 

axial compressor, validating their results with experimental data. The model was based 

on three sub-models for the blade, disc and shroud. The shroud sub-model consisted of 

a ring-element subject to thermal expansion and to the balance between annulus and 

cavity pressures. Empirical correlations of the Nusselt numbers were used to calculate 

the disc temperatures. 

Figure 1 shows the disc cavities between compressor rotors where the rotating flow 

is driven by buoyancy effects. Calculation of the disc temperature is a conjugate 

problem: the heat transfer from the disc is coupled with the air temperature inside the 

cavity. The buoyancy-induced flow is three-dimensional, unsteady and unstable. 

Obtaining reliable solutions from computational fluid dynamics is a challenge at the 

high Grashof numbers, 𝐺𝑟𝑓, found in modern compressors. Engine designers often rely 

on empirical equations for the Nusselt number, often based on inappropriate physical 

models. Recently physically-based theoretical modelling of the buoyancy-induced flow 

has been used to predict the Nusselt numbers and disc-temperature distributions inside 

compressor rotors [9-13]. Predictions from these buoyancy models, all of which are for 
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laminar flow, have been validated using steady flow measurements made in open and 

closed compressor rigs up to 𝐺𝑟𝑓 ~ 1012. Figure 2, taken from [11], compares the 

predicted nondimensional disc temperatures and Nusselt numbers with experimentally-

determined values.  

The fact that laminar buoyancy models can be used for large Grashof numbers, 

where most engineers expect the flow to be turbulent, was attributed to the large 

Coriolis accelerations in the fluid core and to the fact that there is only a small difference 

between the rotational speed of the core and that of the discs. As many as 223 separate 

tests were analysed in the validation of the models, and good agreement between the 

predictions and measurements was achieved for most cases. In this paper. the buoyancy 

model is used for cases where 𝐺𝑟𝑓> 1013, beyond the point it has been validated against 

experiment. 

 

 

 

a) Nondimensional temperature 
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b) Nusselt numbers 

Figure 2: Distributions of nondimensional temperature and Nusselt numbers for 

𝑹𝒐 ≈ 𝟎. 𝟔. (Symbols denote measured temperatures; broken and solid lines 

represent experimental and theoretical results respectively; shading shows 95% 

confidence intervals on experimental Nusselt numbers) [11].  

 

3 DISC MODELING AND METHODOLOGY 

Here the modelling and methodology to determine the disc stresses and growth are 

presented. The disc geometry is taken from that published by the University of Sussex. 

 

3.1 Geometry and material 

The multi-cavity rig at the University of Sussex, which was made from titanium, is 

a 70% model-to-engine scale of a compressor cavity stack similar to that found in a 

Trent engine, as reported by Alexiou [14], Long et al. [15], and Atkins and Kanjirakkad 

[16]. The dimensions for the disc considered here were for the 100% engine size.  

The disc comprised three parts: a thick hub, a thin diaphragm and a peripheral 

shroud; fillets were used to blend the geometry at the two interfaces. The shroud radial 

thickness was assumed equal to that of the diaphragm and a summary of the dimensions 

of the disc is given in Figure 3. 
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Figure 3: Dimensions of the disc model (mm) 

Cumpsty [17] reported that titanium alloys are not suitable for the last two HP 

compressor discs of modern aero-engines where the temperatures are higher than 870 

K. Inconel 718, which is one of the super-alloys widely used in turbomachinery rotors 

[18], is the material used for the discs considered here. The physical properties of 

Inconel 718 as a function of temperature are shown in Table 1. The variation of density 

in the analysed temperature range is low compared to the other physical properties and 

is therefore neglected. 

 21°C 93°C 204°C 316°C 538°C 649°C 

ρ [kg/m2] 8193 

E [GPa] 204 199 194 187 176 169 

υ 0.294 0.288 0.280 0.272 0.271 0.283 

α [10-5 °C-1] (from ambient) / 1.28 1.35 1.39 1.44 1.51 

k [W/(m°C)] 11.0 12.4 14.2 16.0 19.5 21.2 

Table 1: Properties of Inconel 718 

The results presented here were obtained assuming constant properties independent 

of temperature. The values in the table were linearly interpolated and calculated at the 

mean temperature between the disc bore and the outer shroud. Extended FEA 

computations, not shown here, revealed that the constant-property results were not 

significantly different from those that were temperature dependent. 
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The FEA was conducted using Ansys v18.1 for a 2D axisymmetric disc. Using 

centreline symmetry, only half the disc geometry shown in Figure 3 was modelled. The 

chosen element size was 0.4 mm, resulting in ~ 12,000 elements. Grid independence 

was verified by the repeatability of the temperature, stresses and growth calculations 

with smaller element sizes. 

For the buoyancy model and the 1D stress model, the fillets shown in Figure 3 were 

removed. The disc was reduced to three rectangular parts: a thick hub, a thin diaphragm, 

and a shroud. 

 

3.2 Application of buoyancy model  

The principal equations used in the buoyancy model are given in Appendix A. The 

model was used, together with a 1D circular fin equation, to predict the radial 

temperature distribution and the Nusselt numbers of the compressor disc.   

The model requires a cavity air pressure at 𝑟 = 𝑎, and disc temperatures at 𝑟 = 𝑏 

and 𝑟 = 𝑎 (see Figure 3). The assumptions made to produce these values are given 

below for a flight Mach number of 0.85 and a cruise altitude of 10,000 m, with an 

ambient static air temperature and pressure of -50 ˚C and 0.265 bar respectively. The 

rotational speed of the compressor was taken to be 10,000 rpm. 

The cavity static air pressure at 𝑟 = 𝑎  was assumed equal to that of the axial 

throughflow of cooling air at the centre of the cavity (see Figure 1). This was taken to 

be the pressure after the IPC (intermediate pressure compressor); for an OPR = 50 this 

is typically about 14 times the engine inlet total pressure. The cavity air pressure was 

assumed to increase proportionally with OPR. The air temperature for the final stages 

of the HPC and IPC were calculated from the pressure ratio and a polytropic efficiency 

of 0.95.  
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The ratio of the temperature differences between the disc bore and the HPC, and 

between the IPC and the HPC, were assumed to be constant at 0.3 for all OPRs. This 

leads to a constant value of 𝛽Δ𝑇 ~ 0.3, which is a typical value for HPCs [13]. The disc 

temperature at 𝑟 = 𝑏 was assumed to be the same as the temperature of the inner surface 

of the shroud; this inner temperature was estimated using 1D heat transfer through the 

shroud. The model requires a Coriolis parameter, Co, and a value of 0.030 was chosen 

to match engine-representative conditions [13].   

A cautionary note is added here. The above assumptions are used to produce values 

that are thought to be representative of those in aeroengine compressors; the actual 

values are unknown. In addition, it should be noted that the Grashof numbers based on 

the above assumed values are around 1.5 x 1013, whereas the buoyancy model has only 

been validated for values up to 1012.  

 

3.3 FEA calculation of temperature distribution  

The heat transfer coefficients used here were derived from the Nusselt numbers 

calculated from the buoyancy model. The boundary conditions are indicated in Figure 

4. 

- A: Radial distribution of heat transfer coefficient from the inner radius to the 

inner shroud radius, including the fillet. 

- B: Adiabatic centreline for symmetry. 

- C: Adiabatic boundary at edge of the shroud. 

- D: Inner shroud heat transfer coefficient. 

- E: HPC temperature at the outer shroud, to simulate the thermal effect of the hot 

annulus flow. 

- F: 𝑇 = 𝑇𝑎 at the disc bore. 
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The buoyancy model, together with the 1D fin equation, gives both the disc 

temperature and the Nusselt numbers, from which the heat transfer coefficients, ℎ𝑓, 

were calculated. Figure 5 shows that the temperatures obtained from the buoyancy 

model are in good agreement with those produced from the FEA, using the above values 

of ℎ𝑓. Note that the fillets alter the disc area exposed to the heat transfer. 

 

Figure 4: Thermal FEA model and boundary conditions 

 

Figure 5: Variation of disc temperature with radius: comparison of FEA and 

buoyancy model for OPR = 50. Temperature from the FEA taken at the 

centreline 

 

3.4 1D stress model 
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The geometry used in the 1D stress model was the same as that shown in Figure 3 

but without fillets. The stresses and radial growth of the discs were calculated at 10,000 

rpm using the temperature distribution predicted by the buoyancy model.  

The disc was divided into three subparts: hub, diaphragm and shroud. The radial 

stress 𝜎𝑟, the tangential stress 𝜎𝑡 and the total radial growth 𝛿𝑇𝑂𝑇 can be expressed as 

functions of the disc radius for each subpart (see Appendix B). These functions are the 

general stresses and growth equations for a constant-thickness rotating disc with a 

temperature distribution [19]. They were determined with known integration constants. 

There are two constants for each subpart, resulting in a linear system of six equations 

with six unknowns. The boundary conditions are as follows: 

• As no blades are considered, the radial stress for the shroud at 𝑟 = 𝑏∗ is equal 

to zero 

• As the disc is not constrained at 𝑟 = 𝑎, the radial stress for the hub at 𝑟 = 𝑎 

must be zero 

• For the radial equilibrium at the shroud – diaphragm interface, the radial stress 

at the shroud is equal to the radial stress at the diaphragm, with 𝑡𝑑/𝑡𝑏 the scaling 

factor. There is a similar scenario at the hub – diaphragm interface, with 𝑡𝑑/𝑡𝑎 

the scaling factor. These result in two boundary conditions. 

• The geometric compatibility implies that the radial growth at 𝑟 = 𝑏 (see Figure 

3) for the shroud and for the diaphragm must be the same; there is a similar 

scenario at 𝑟 = 𝑎∗. This results in two further boundary conditions.  

The calculated radial and circumferential stresses (denoted by 𝜎𝑟 and 𝜎𝑡), and radial 

growth 𝛿𝑇𝑂𝑇, are shown in Section 4 as functions of the radius. 

Solving the problem for a constant disc temperature isolates the stresses and growth 

due to rotation; these are denoted by 𝜎𝑟,𝑅 , 𝜎𝑡,𝑅  and 𝛿𝑅 . For the case of constant 
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temperature and no rotation, the growth is reduced to the thermal expansion of the disc 

from a reference temperature (the cold-built temperature, 𝑇𝐶𝐵 = 15 ˚𝐶). The disc inner 

temperature 𝑇𝑎 (again with no rotation) is taken as the reference temperature, and the 

solution of the system represents the thermal expansion 𝛿𝐸, with the associated stresses 

𝜎𝑟,𝐸 and 𝜎𝑡,𝐸 equal to zero.  

Finally, consider the case of imposing only the temperature distribution from the 

buoyancy model; the thermal stresses 𝜎𝑟,𝑇  and 𝜎𝑡,𝑇  are retrieved, but the resulting 

thermal growth will be the sum 𝛿𝐸 + 𝛿𝑇 , from which the thermal growth 𝛿𝑇  is 

computed. 

The thermal stresses and growth depend only on the radial temperature gradients 

and not on the actual temperature extremes. That is, the thermal growth depends only 

on the shape of the radial temperature profile. 

Referring to equation (1), it follows that: 

𝜎𝑟 = 𝜎𝑟,𝑅 + 𝜎𝑟,𝑇 
(3) 

𝜎𝑡 = 𝜎𝑡,𝑅 + 𝜎𝑡,𝑇 (4) 

 

3.5 FEA stress and growth calculation 

The geometry used in the 2D FEA model was the same as that shown in Figure 3. 

The stresses and radial growth of the discs were calculated at 10,000 rpm using the 

temperature distribution predicted by the buoyancy model. There was no axial 

displacement on the centreline. 

 

4 COMPARISON BETWEEN FEA AND 1D MODEL FOR OPR = 50:1  

The results for the FEA are compared with those for the 1D model at cruise 

conditions and an OPR 50:1. This OPR is typical of state-of-art turbofan engines. 
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Figure 6 shows the variation of the radial and tangential stress with disc radius, 

comparing the solutions from the 1D theoretical model and the 2D FEA. There is 

general qualitative and quantitative agreement between the two solutions. The largest 

differences occur at the hub – diaphragm interface and at the diaphragm – shroud 

interface where the 1D theoretical model does not account for the fillet radii. The fillets 

remove the non-physical discontinuities in stress and reduce the tangential stress at all 

radii of the disc. 

 

a) Radial stresses 

 

b) Tangential stresses 

Figure 6: Comparison of radial and tangential stresses from the 1D theoretical 

model and 2D FEA (OPR = 50) 

Calculations were performed to isolate the rotational and thermal stresses; these are 

shown in Figures 7 and 8 respectively. Qualitatively, there are similar features to those 

discussed above for Figure 6. The stress equations, Eqs (3 & 4) have a linear solution; 
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thus the sum of both the radial and tangential stresses in Figures 7 and 8 are equal to 

the radial and tangential stresses in Figure 6.  

 

a) Rotational part of the radial stresses 

 

b) Rotational part of the tangential stresses 

Figure 7: Comparison of rotational stresses from 1D theoretical model and 2D 

FEA (OPR = 50)  

 

a) Thermal part of the radial stresses 
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b) Thermal part of the tangential stresses 

Figure 8: Comparison of thermal stresses from 1D theoretical model and 2D 

FEA (OPR = 50)  

The total radial growth of the disc with all components expressed in Eq. (2) is shown 

in Figure 9. The total growth is the sum of the rotational growth, the thermal growth 

and the thermal expansion. For a given temperature difference, the thermal expansion 

only depends linearly on the radius; hence the corresponding curves for this element 

collapse for all the three cases. The 1D theoretical model slightly overestimates the 

other growth components relative to the 2D FEA. 

 

Figure 9: Variation of disc growth as a function of radius: a) total; b) thermal 

expansion; c) rotational growth; d) thermal growth. (OPR = 50) 

A summary of the growths at the outer radius is shown in Table 2. The thermal 

expansion is the largest component, followed by the rotational and the thermal growth. 

The average difference between the 1D and FEA growths is around 6%. 
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Thermal 

Expansion [mm] 

Rotational 

Growth [mm] 

Thermal 

Growth [mm] 

Total Growth 

[mm] 

Theoretical 

Model 

1.58 0.58 0.35 2.51 

FEA 1.58 0.55 0.33 2.46 

Table 2: Growth components at disc outer radius 

(OPR = 50) 

The tip clearance of a compressor blade can be expressed relative to the blade chord 

or the blade height. These ratios change over the full range of engine operating 

conditions. For the last compressor stage of a large turbofan engine, these values are 

around 1% of the chord before, and 3% after, the endurance test [20]. With 

measurement-based predictions, the same reference reports, again for the last 

compressor stages, a tip clearance of 0.4 and 0.1 mm for respectively 90% and 95% of 

the nominal rotational speed. According to Dong et al. [7], the last (tenth) rotor of an 

HP compressor has a measured running clearance of 0.3 mm. The thermal growth in 

Table 2 is of the same scale as the running tip clearances reported for engines. 

Importantly, this growth is directly related to the assumed temperature distribution over 

the compressor disc.  

The combined solution of the coupled 1D stress and buoyancy equations took only 

seconds to solve on a laptop. The good agreement between the growths predicted by 

the 1D theoretical model and the FEA computations suggests that the combination of 

the 1D model and the buoyancy model should be useful in the preliminary calculation 

of blade clearances. However, as shown below, the accuracy of the predicted thermal 

growth depends on the accuracy of the predicted temperature distribution. 
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5 EFFECT OF OPR AND TEMPERATURE DISTRIBUTION 

 In the previous section, the temperature distribution based on an experimentally-

validated buoyancy model was used. In this section, all results were obtained using 

FEA. 

The results from the datum case are compared below with those obtained using 

power-law temperature profiles. Power laws, which are often used for simplicity for the 

temperature distributions of rotating discs, provide a reasonable approximation to the 

temperature predictions obtained from the validated buoyancy model. However, 

although power laws might be suitable for the steady-state cases considered here, no 

single power law could fit the changing temperature profile during a thermal transient. 

Since higher pressure ratios increase the temperatures and Nusselt numbers, 

predictions were extended up to OPR = 70. The Grashof numbers for each pressure 

ratio (50:1, 60:1 and 70:1) were 1.2 × 1013, 1.5 × 1013 and 1.7 × 1013.  

 The generic power-law profile is given by 

𝑇(𝑟) = 𝑇𝑎 + 𝐾(𝑟 − 𝑎)𝑛 (5) 

Here the constant 𝐾 for each value of 𝑛 is determined by imposing the relevant outer-

shroud temperature, which is assumed to be the total temperature in the HPC. The 

exponent 𝑛 determines the shape of the profile, which determines the thermal stress. 

The power laws considered are linear, quadratic, cubic and quartic (i.e. 𝑛 =  1,2,3,4 

Neither the change of temperature profile nor the overall pressure ratio alters the 

rotational growth, 𝛿𝑅, which depends only on rotational speed (assumed constant here). 

However, the thermal expansion 𝛿𝐸, is affected by the OPR, as the temperature at the 

bore ( 𝑇𝑎 ) increases with OPR. The thermal growth 𝛿𝑇  is affected by both the 

temperature distribution and the OPR. 
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Figures 10-12 show the variation of thermal growth with radial position for OPR = 

50, 60 and 70, respectively. These figures illustrate the effect of the different 

temperature profiles. In all cases the buoyancy model, which is used as a datum, yields 

a thermal growth bounded by those obtained from the temperature profiles for n = 3 

and 4. Generally, results from the buoyancy model are very close to the n = 3 power 

law at the lower radii, with some deviation at the higher radii. At higher OPR (towards 

70:1) results from the buoyancy model are very close to the n = 4 power law. 

Figure 13 shows the variation of calculated thermal growth at the disc outer radius 

with OPR. The gradient of the thermal growth obtained using the buoyancy model is 

lower than any analysed power law. The model thus gives a thermal growth which is 

less sensitive to the overall pressure ratio. 

 

Figure 10: OPR = 50: Comparison between thermal growths determined from 

buoyancy model and power law temperature profiles 
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Figure 11: OPR = 60: Comparison between thermal growths determined from 

buoyancy model and power law temperature profiles 

 

Figure 12: OPR = 70: Comparison between thermal growths determined from 

buoyancy model and power law temperature profiles 

 

Figure 13: Variation of thermal growth at disc outer radius with OPR 
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= 4 order profile. By contrast, a linear power-law causes errors the same magnitude as 

the thermal growth itself.  

 
OPR = 50 OPR = 60 OPR = 70 

Thermal 

Expansion 

1.58 1.76 1.92 

 Thermal  Total Thermal  Total Thermal  Total 

Buoyancy Model 0.33 2.47 0.34 2.66 0.36 2.85 

𝑛 = 1 0.56 2.70 0.59 2.91 0.62 3.11 

𝑛 = 2 0.43 2.57 0.45 2.77 0.48 2.97 

𝑛 = 3 0.36 2.50 0.38 2.70 0.40 2.89 

𝑛 = 4 0.31 2.45 0.33 2.65 0.35 2.84 

Table 3: Effect of temperature distribution and pressure ratio on thermal 

expansion, thermal growth and total growth of the disc; values in mm 

 

6 CONCLUSIONS 

The blade clearances in a compressor depend strongly on the radial growth of the 

discs to which the blades are attached. The overall radial growth of a compressor disc 

depends on: (i) the thermal expansion of the material; (ii) the rotational growth due to 

the stresses created by the rotational speed of the disc; and (iii) the thermal growth of 

the disc due to the stresses created by the temperature gradients. For (iii), the 

temperature gradients depend on the Nusselt numbers created by the buoyancy-induced 

rotating flow in the fluid core in the cavity between adjacent discs. As the Nusselt 

numbers depend on the radial temperature distribution in the disc, this is a complex 

conjugate problem, which represents a challenge for the designer. 
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In this paper, the three growth components were calculated separately for a single 

disc operating at the steady-state conditions associated with compressor pressure ratios 

of 50, 60 and 70 to 1. At each pressure ratio, calculations were conducted for five 

different temperature distributions: the distribution based on a published physically-

based buoyancy model was used as the datum case, and results from this were compared 

with those from linear, quadratic, and cubic and quartic power laws. For the 50:1 

pressure ratio, the calculations were conducted using both FEA and a theoretical 1D 

stress model. 

 

• For the cases considered here, the main conclusion is that the radial distribution 

of temperature has a significant effect on the disc growth and consequently on 

the blade clearance in a compressor. Although the growth due to the thermal 

stress is small relative to the total growth of the disc, it is the same magnitude 

as the blade clearance.  

• Using the buoyancy model as a datum for comparison with the growth predicted 

using power-law temperature distributions shows that a quartic power-law 

produces the most accurate results. By contrast, a linear power-law causes errors 

the same magnitude as the thermal growth itself. (Although a power-law profile 

might be suitable for the steady-state cases considered here, no single power 

law could fit the changing temperature profile during a thermal transient.) 

• For the assumptions used in the calculations, the pressure ratio has a relatively 

small effect on the thermal growth. 

• There was good agreement between the growths predicted by the 1D theoretical 

model and the FEA computations. This suggests that the combination of the 1D 

model and the buoyancy model could be useful in the preliminary calculation 
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of blade clearances. (The combined solution of the coupled 1D stress and 

buoyancy equations took only seconds to solve on a laptop.) 

 

Caveat: the results presented in this paper were based on conditions thought to be 

representative of those in aeroengine compressors; they might not apply to actual 

conditions. In addition, it should be noted that the Grashof numbers based on the 

assumed conditions were higher than the values used to validate the buoyancy model.  

The authors are currently commissioning a compressor rig at the University of Bath. 

As well as other measurements, the radial growth of the discs will be determined under 

steady-state and transient conditions. (An outline of a method that could be used to 

calculate the disc growth under transient conditions is included in Appendix C.) 
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NOMENCLATURE 

a   disc inner radius 

A   Area 

a*   diaphragm inner radius 

b   diaphragm outer radius 

http://dx.doi.org/10.15125/BATH-00116


GTP-19-1728 Scobie  24
                                                           

b*   disc outer radius 

c   specific heat capacity 

C1,C2   constants for the 1D stress model 

Co   Coriolis parameter 

E   Young’s modulus 

G   gap between the blade tip and casing 

Grc   Grashof number in theory 

   (=
𝜌𝑐,𝑏

2 Ω𝑐
2𝑏4

𝜇𝑐,𝑏
2  

𝑇𝑜−𝑇𝑐,𝑏

𝑇𝑐,𝑏
) 

Grf   Grashof number in experiments 

                (= (1 −
𝑎

𝑏
)

3

𝑅𝑒𝜙
2 𝛽∆𝑇) 

hc   heat transfer coefficient (= 𝑞𝑜/(𝑇𝑜 − 𝑇𝑐)) 

hf   heat transfer coefficient (= 𝑞𝑜/(𝑇𝑜 − 𝑇𝑓)) 

ℎ̅   area-averaged heat transfer coefficient 

I   integral in the buoyancy model 

K   temperature distribution constant 

k   thermal conductivity of air 

ks   thermal conductivity of disc 

Mac    Mach number in core (= 𝛺𝑐𝑏/√𝛾𝑅𝑇𝑐,𝑏) 

n   power-law exponent 

Nuc   Nusselt number in theory (= ℎ𝑐𝑟/𝑘) 

Nuf   Nusselt number in experiments (= ℎ𝑓𝑟/𝑘) 

r   radius 

𝑅   gas constant for air 

Reϕ   rotational Reynolds number (= 𝜌𝑓Ω𝑏2/𝜇𝑓) 
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Ro   Rossby number (=
𝑊

𝛺
𝑎) 

T   temperature 

t   thickness 

V   volume 

W   axial velocity of throughflow 

x   nondimensional radius (= 𝑟/𝑏 ) 

α   thermal expansion coefficient 

βΔT   buoyancy parameter (= (𝑇𝑜,𝑏 − 𝑇𝑓)/𝑇𝑓) 

γ   ratio of specific heats  

δ   radial growth 

𝜃   nondimensional disc temperature in theory 

                (= (𝑇𝑜 − 𝑇𝑐)/(𝑇𝑜,𝑏 − 𝑇𝑐,𝑏)) 

Θ   nondimensional disc temperature in experiment 

                (= (𝑇𝑜 − 𝑇𝑓)/(𝑇𝑜,𝑏 − 𝑇𝑓)) 

ν   Poisson’s ratio 

ρ   density 

σ   normal stress 

τ   time constant 

Ω   rotational speed of disc 

 

Subscripts 

a   value at 𝑟 = 𝑎 

b   value at 𝑟 = 𝑏 

BT    blade tip 

c   fluid core 
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CB    cold-built 

CS   casing 

d    diaphragm 

E    expansion 

f   reference value 

o   disc surface 

r    radial 

R    rotation 

SS    steady-state 

t    tangential 

T    thermal 

TOT    total 

 

Acronyms 

FEA    Finite-Element Analysis 

HP    High Pressure 

HPC   High Pressure Compressor 

IPC    Intermediate Pressure Compressor 

OPR    Overall Pressure Ratio 
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APPENDIX A: EQUATIONS FOR BUOYANCY MODEL 
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The model assumes that the buoyancy-induced flow in a rotating cavity is controlled 

by the Ekman-layer flow in the boundary layers on the discs [9]. It also assumes that 

the rotating flow in the fluid core outside the Ekman layers is adiabatic. 

The Nusselt numbers for heat transfer from the disc to the core is given by: 

Nuc =
1

2

𝑥𝑎
1/2

𝐼1/4
Gr𝑐

1/4
[(𝜃 − Co) (

𝜌𝑐

𝜌𝑐,𝑏
)

2

𝑥5]

1/3

 (A1) 

where Grc, the Grashof number, Co, the Coriolis parameter, 𝜃,  a nondimensional 

temperature, I, an integral, and the density ratio are defined below: 

Grc ≝
𝜌𝑐,𝑏

2 Ω𝑐
2𝑏4

𝜇𝑐,𝑏
2  

𝑇𝑜 − 𝑇𝑐,𝑏

𝑇𝑐,𝑏
 (A2) 

Co ≝ 2(1 −
𝛺𝑐

𝛺
)

𝑇𝑐,𝑏

𝑇𝑜,𝑏 − 𝑇𝑐,𝑏
 (A3) 

𝜃 =
𝑇𝑜 − 𝑇𝑐

𝑇𝑜,𝑏 − 𝑇𝑐,𝑏
 (A4) 

𝐼 = ∫ 𝑥11/3 [(𝜃 − 𝐶𝑜) (
𝜌𝑐

𝜌𝑐,𝑏
)

2

]

1/3

𝑑𝑥
1

𝑥𝑎

 (A5) 

𝜌𝑐

𝜌𝑐,𝑏
= [

1 +
𝛾 − 1

2 𝑀𝑎𝑐
2(𝑥2 − 𝑥𝑎

2)

1 +
𝛾 − 1

2 𝑀𝑎𝑐
2(1 − 𝑥𝑎

2)
]

1/(𝛾−1)

 (A6) 

The Coriolis parameter, which can be thought of as the ratio of Coriolis forces to 

buoyancy forces, is treated as an empirical constant. The integral I represents the 

momentum exchange between the flow in the core and that in the Ekman layers on the 

discs. Equation (A5) for the density ratio is based on the assumption that the flow in the 

core is adiabatic. 
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This is a conjugate problem, and the nondimensional temperature, 𝜃, couples the 

heat transfer from the disc to the temperature difference between the disc and the core. 

Knowing Nuc, the disc temperature can be calculated using the circular fin equation [10]. 

This involves iteration until there is convergence between 𝑁𝑢𝑐 and 𝜃. 

 

APPENDIX B: EQUATIONS FOR 1D STRESSES AND GROWTH 

Considering the effects of the thermal expansion, rotation and temperature 

gradients, the general equations for the radial stress, tangential stresses and radial 

growths are [19]: 

𝜎𝑟(𝑟) = −
3 + 𝑣

8
 𝑟2𝜌Ω2 −

𝛼𝐸

𝑟2
∫ (𝑇 − 𝑇𝐶𝐵)𝑟𝑑𝑟

𝑏∗

𝑎

+
𝐶1𝐸

2(1 − 𝜈)
−

𝐶2𝐸

𝑟2(1 + 𝜈)
𝜎𝑟 

(B1) 

𝜎𝑡(𝑟) = −
1 + 3𝑣

8
 𝑟2𝜌Ω2 + 𝛼𝐸 [

1

𝑟2
∫ (𝑇 − 𝑇𝐶𝐵)𝑟𝑑𝑟

𝑏∗

𝑎

− (𝑇 − 𝑇𝐶𝐵)]

+
𝐶1𝐸

2(1 − 𝜈)
+

𝐶2𝐸

𝑟2(1 + 𝜈)
 

(B2) 

𝛿(𝑟) = −(1 − 𝜈2)
𝑟3𝜌Ω2

8𝐸
+

𝛼(1 + 𝑣)

𝑟
∫ (𝑇 − 𝑇𝐶𝐵)𝑟𝑑𝑟

𝑏∗

𝑎

+ 𝐶1

𝑟

2
+

𝐶2

𝑟
 

(B3) 

These equations, which are valid for a constant-thickness disc, can be specified for 

the hub, diaphragm and shroud, obtaining three pairs of unknown integration constants 

(𝐶1 and 𝐶2 for each subpart). The first term of each of the eqs [B1-B3] accounts for the 

rotation, the second for the temperature distribution, the last two terms are the 
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homogeneous term, defined by the boundary conditions. The unknowns are determined 

using the constraints described in section 4.3. The radial growth of the disc 𝛿𝑇𝑂𝑇 is the 

value of 𝛿(𝑟) at 𝑟 = 𝑏∗. 

 

APPENDIX C: APPLICATION OF THE METHOD FOR TRANSIENT 

CONDITIONS 

Aircraft engines are required to maintain the performance and avoid damages 

during all transient conditions. The incompatibility in thermal inertia between the HPC 

rotor and the casing, together with the changing engine speed, can result in minima in 

the tip clearance, with the possibility of rub. This flight scenario is often referred to “hot 

re-slam.” 

A typical transient approach for rotor growth calculation consists in modelling the 

single rotor parts with concentrated – or “lumped” – parameters [6, 7] - which involves 

a constant temperature and a single time constant for an entire compressor disc. That 

approach provides no details of the temperature gradient, and hence it cannot calculate 

the transient thermal growth. The method outlined below can be used together with a 

lumped transient model to show the transient response of each growth component. 

First, the buoyancy model is solved for the initial and final steady-states to calculate 

the two separate distributions of the radial temperature and heat transfer coefficient. 

The area-averaged heat transfer coefficients are then used to estimate a time-constant, 

𝜏, for each steady-state ([3]): 

𝜏 =
𝜌𝑉𝑐

ℎ̅𝐴
 (C1) 

The time-constant for the whole transient evolution is assumed to be the mean of the 

two values. The transient temperature is then given by: 
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𝑇(𝑟, 𝑡𝑖𝑚𝑒) = 𝑇𝑆𝑆1(𝑟) + [𝑇𝑆𝑆2(𝑟) − 𝑇𝑆𝑆1(𝑟)](1

− 𝑒−
𝑡𝑖𝑚𝑒

𝜏 ) 

(C1) 

This equation can then be applied to a transient finite-element simulation to calculate 

the transient growth. 

A realistic flight scenario is when a reduction of cruise speed occurs, and the initial 

and final steady-states (SS1 and SS2) are reported in Table C1. The calculated mean 

time-constant is about 15 minutes, and Figure C1 shows the corresponding steady 

temperature distributions.  

 SS1 SS2 

Altitude [m] 10,000 10,000 

N [rpm] 10,000 9,500 

OPR 50 45 

Flight Mach number 0.85 0.77 

Table C1 – Cruise steady-states considered for the transient analysis 

 

Figure C1 – Initial (SS1) and final (SS2) temperature distributions 
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calculated using FEA – are shown in Figure C2. The rotational growth decreases with 

decreasing speed, and the thermal expansion also decreases owing to the monotonic 

decrease of the bore temperature caused by deceleration. The thermal growth depends 

on the temperature gradient of the initial and final states, and – as the temperature 

gradient is lower at SS2 – the thermal growth decreases. 

     

Figure C2 – Transient response of the disc growth components for a cruise speed 

reduction 
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