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Abstract  

Lameness can be described as painful erratic movements, which relate to a locomotor system 

and result in the animal deviating from its normal gait or posture. Lameness is considered one 

of the major health and welfare concerns for the sheep industry in the UK that leads to a 

substantial economic problem and causes a reduction in overall farm productivity. According 

to a report in 2013 by ADAS entitled ‘Economic Impact of Health and Welfare Issues in Beef, 

Cattle and Sheep in England’, each lame ewe costs £89.80 due to the decline in body condition, 

lambing percentage, growth rate, and reduced fertility. Thus, early lameness detection 

eliminates the negative impact of lameness and increase the chance of favourable outcome 

from treatment. The development of wearable sensor technologies enables the idea of remotely 

monitoring the changes in animal behaviours or movements which relate to lameness. 

 

The aim of this thesis was to evaluate the feasibility and accessibility of a proposed data mining 

approach (SLDM) to detect the early signs of lameness in sheep via analysing the retrieved 

data from a mounted wearable motion sensor within a sheep’s neck collar through investigating 

the most cost effective factors that contribute to lameness detection within the whole data 

mining process including; sensor sampling rate, segmentation methods, window size, extracted 

features, feature selection methods, and applicable classification algorithm. Three classes are 

recognised for sheep while their walking throughout the data collection process (sound, mild, 

and severe lameness classes). The sheep data were collected using three different sensor 

applications (Sheep Tracker, SensoDuino, SensorLog) which collect sheep data movements at 

different sampling rates 10, 5, and 4 Hz. Various sensing data were retrieved in 𝑋,𝑌, and 𝑍 

dimensions; however, only accelerometer, gyroscope, and orientation readings are considered 

in the current study. Four sheep datasets are aggregated each of which includes 31, 10, 18, and 

7 sheep. The conducted work in this thesis evaluates the performance of ensemble classifiers 

(Bagging, Boosting, or RusBoosting) using three different validation methods (5-fold, 0.3 

hold-out, and proposed one ‘Single Sheep Splitting’) in comparison to three sampling rates (10, 

5, 4 Hz), two segmentation approaches (FNSW and FOSW), three feature selection methods 

(ReliefF, GA, and RF) and three window sizes (10, 7, 5 𝑠𝑒𝑐.).  

 

Promising results of lameness prediction accuracies are achieved over most of the 

combinations (3 sampling rates, two segmentation methods, 3 window sizes, 183 extracted 

features, 3 feature selection methods, 3 ensemble classification models, and 3 model validation 
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methods). However, the highest accuracy is revealed by using the `Bagging ensemble classifier 

88.92% with F-score of 87.7%, 91.1%, 88.2% for sound walking, mildly walking, and severely 

walking classes, respectively. The results are obtained using 5-fold cross-validation over a 

10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for sheep data collected at 10 Hz sampling rate using only the accelerometer 

hardware sensor reading and calculated orientation readings. The number of features selected 

is 46 optimised by GA using CHAID tree as a fitness function. Conversely, the lowest 

prediction accuracy of 56.25% with F-score (63.4% sound walking, 51.9% mildly walking, 

48.8% severely walking) is recorded when RusBoosting ensemble is applied using 5-fold cross-

validation over a 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for dataset collected at the 4 Hz. sampling rate.  

 

So, the major research findings recommend that 10 Hz sampling rate is adequate for collect 

sheep movements, while the best segmentation method is FOSW as 20% of data-points are 

shared between two successive windows. Whereas, the preferable number of data-points (sheep 

movements) to be pre-processed is around 100, which is obtained when a 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 

or 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 is applied. Additionally, the 20 features selected by RF out of 183 

features could reveal good accuracy results compared to the whole set of extracted features. 

Although that GA feature selection method has slower execution time than RF, competitive 

prediction accuracy could be achieved when the selected features by GA were fed to the 

classifier. Finally, the acceleration sensor data alone are capable of making the decision about 

the lame sheep. So no extra hardware sensors like Gyroscope is required for decision making; 

moreover,  the orientation sensor features could be directly derived from 𝐴𝑐𝑐 which contribute 

most to lameness detection.  

 

Since the most cost effective factors are identified in this research, the practice in the 

meanwhile could be applicable for farmers, stakeholders, and manufacturers as no available 

sensor to detect the lame sheep developed yet. Therefore, the multidisciplinary nature of the 

conducted research opens diverse paths towards applying further research studies to develop 

various data mining approaches and practical sensor kits to detect the early signs of sheep’s 

lameness for better farm productivity and sheep industry prosperity in the UK.  
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1 Chapter One: Introduction 
 

1.1 Problem Description 

The current research is a multidisciplinary research study that has been conducted as a 

collaborative project between the animal welfare department in Moulton College and the 

Computing Department at the University of Northampton. The current thesis identifies a way 

of solving a real-world problem (sheep lameness) by utilising sensor technologies for data 

collection and sophisticated machine learning approaches for data analysis to build a robust 

model that could adequately predict the early signs of lameness in sheep. The built model could 

predict a sheep’s future status of mildly lame conditions that might be difficult to recognise 

with the observer’s naked eye, sheep as prey species often disguising signs of vulnerability 

such as limping. The developed approach enriches the field of knowledge that lacks sheep 

lameness detection studies; furthermore, the application of the proposed system could decrease 

the prevalence of lameness and enable the shepherd to react quickly to enable better treatment.   

 

1.2 Thesis Outline 

This introduction Chapter is started by describing the research problem, then it is followed by 

sections including lameness definition, welfare and economic implications, and the benefits of 

early detection of it. The gap in the literature is highlighted followed by stating the aims and 

objectives of the thesis. A brief structure of the applied methodology is given in a clear 

flowchart. Finally, this chapter is closed by listing possible research contributions.  

 

The next chapters of the thesis are organised as follows. Chapter Two, investigates the current 

multidisciplinary research studies in cows and sheep lameness detection approaches and the 

field of behaviour classification using machine learning techniques. However, the intersection 

between utilising motion sensors in sheep lameness detection and applying machine learning 

techniques for lameness prediction in sheep is rarely found. Thus, from this point, the gap in 

the literature is identified. In Chapter three, an overview of the sensor application used for data 

collection is given; in addition, sensor deployment and challenges faced in the data collection 

process are mentioned. It also provides details on developing a data mining approach for the 

detecting of sheep lameness; including data pre-processing, segmentation, extract walking 

segments, features extraction and selection, model development, and model validation. Chapter 
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four introduces two parts; the first part demonstrates the Graphical User Interface GUI 

application that is uniquely designed for the purpose of this study. The second part of Chapter 

four presents a wide range of intermediate results in addition to the final prediction result 

accuracies for the built model. These are illustrated with wide-ranging discussions and fair 

comparisons with other semi-related works to formulate the final recommendations. The thesis 

is closed with Chapter five, which includes an overall conclusion and inspiring future work 

ideas to be implemented for enhancing the model and optimising the sensor requirements to 

save its battery life. 

 

1.3 Lameness in Sheep 

1.3.1 Definition and Causes 

Lameness is a painful impaired movement disorder, which relates to an animal’s locomotory 

system and causes a deviation from normal gait or posture (Van Nuffel et al., 2015a). The 

leading causes of lameness in sheep are Footrot (FR) which is a bacterial disease caused by 

Dichelobacter nodosus, Interdigital dermatitis (scald) caused by Fusobacterium necrophorum, 

and Contagious Ovine Digital Dermatitis (CODD) which is caused by the Spirochaete 

Treponema in addition to pre-mentioned causative agents (Gelasakis et al., 2019; 

(Olechnowicz and Jaśkowski, 2011; Winter, 2008). FR is reported as the most common cause 

of lameness, resulting in 90% of all sheep lameness cases in the UK (Groenevelt et al., 2015; 

Scott et al., 2017). Figure 1-1 shows the percentages of lameness caused by FR, scald, and 

other producers of lameness according to a postal survey conducted by the Royal Veterinary 

College in 1997 (Defra, 2003).    

 

 
Figure 1-1 Lameness causes based on the Royal Veterinary College survey in 1997 (Defra, 2003). 
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The infectious nature of FR is commonly increased above 10o C and reaches its peak between 

April and June and then August to the end of October in the UK (Defra, 2003). So, the UK 

damp temperature climate changes between mild winter and wet summer provide a perfect 

environmental condition for FR infectious bacteria to grow and transmit easily and rapidly 

within the flock. The invasion of the FR bacteria to the horn of the sheep’s foot and then its 

surrounding tissue leads to horn separation in the heel area and could extend beneath the horn, 

sole, and even the entire hoof in the worst cases, causing different levels of lameness that starts 

from mild and then develops to moderate and severely lame. As the infected sheep could remain 

out on pasture for up to twelve days and spread the infectious agents (Defra, 2003; Anzuino et 

al., 2019), this can have negative implications for the UK sheep industries.  

 

1.3.2 Welfare and Economic Implication 

Lameness is considered one of the most significant health and welfare concerns for the sheep 

industry in the UK, that leads to a substantial economic problem and overall farm productivity 

decline. Furthermore, the cost of lameness treatment and control consumes a large amount of 

money in the farm business as described by Lovatt, (2014) see Figure 1-2. According to 

Nieuwhof and Bishop, (2005), half of the FR cost is spent for preventive measures while the 

other half is consumed by treatment and lost production; therefore, a reduction in FR incidence 

could save up to £10 million for UK industries.  

 

 
Figure 1-2 The cost of lameness (Lovatt, 2014). 
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The cost of FR disease to the British sheep industry per year was estimated to be £24 million 

(Nieuwhof and Bishop, 2005), although statistics from the Agriculture and Horticulture 

Development Board (AHDB) (an organisation that provides services to beef and lamb levy 

payers in England) reported that the annual loss from FR alone was around £10 for each ewe 

in Great Britain (Brian, 2016). Additionally, the latest report from ADAS, ‘Economic Impact 

of Health and Welfare Issues in Beef, Cattle and Sheep in England’, reveals that each lame ewe 

costs approximately £89.80 because the decline in its performance must be accounted for 

alongside extra labour and treatment cost (Mary and Wright, 2013). The underlying reasons 

for the commercial loss in the sheep industry in the UK can be related to various outcomes 

which are summarised as the decline in the sheep' body condition, lambing percentage, lamb 

birth weight, growth rate in lambs, wool growth, milk production and poor fertility in the rams 

(Defra, 2003). This is why lameness is listed as one of the main causes of sheep culling besides 

infertility and mastitis (Alsaaod et al., 2012; AHDB, 2016). 

 

Consequently, lameness would have an adverse influence on both sheep welfare and farm 

economy. Preclinical detection of lameness at the farm could increase the level of protection 

regarding sheep health and the farm's commercial decline and could allow it to be controlled 

from being spread within the whole flock. Therefore, sheep lameness research studies would 

be required to assist the farmers in spotting lameness on-farm, as lameness comes at the fifth 

ranked issue that concerned farmers from 44 farms in a survey for husbandry and health in the 

UK (Anzuino et al., 2019).  

 

1.3.3 Early Detection Advantages 

Since lameness is an endemic disease that cannot be entirely eradicated; however, the early 

detection of lameness will reduce the disease from spreading very quickly within the flock. A  

study by Gaudy and Green, (2016); reported on the AHDB website, at the University of 

Warwick to develop a lameness control plan looking at flocks on three different farms in the 

UK indicated that the quicker the lame sheep are treated, the less prevalent the disease is and 

fewer sheep require treatment; these effects are seen primarily if the treatment has been applied 

within three days of sheep becoming lame. Thus, early lameness detection could actively 

eliminate the negative impact of lameness and increase the success ratio of treatment by 

preventing it from being a chronic illness (Alsaaod et al., 2012). Furthermore, the advantages 

of early lameness detection may be also seen in maximising the total farm income, enhancing 

https://en.wikipedia.org/wiki/Agriculture_and_Horticulture_Development_Board
https://en.wikipedia.org/wiki/Agriculture_and_Horticulture_Development_Board
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the sheep welfare, which leads to improving the entire flock performance and reducing the 

veterinary, medicine and labour costs (Defra, 2003). 

 

1.4 Research Gap 

Reviewing the literature related to lameness detection in sheep yielded inadequate research 

studies in terms of data collection tools and analysis methods. The existing research studies 

have used Infrared Thermography (Byrne et al., 2019a), load cells weight platform (Byrne et 

al., 2019b), and radar sensing (Shrestha et al., 2018) for data collection. However, these tools 

are costly and require someone to guide the sheep into testing areas such as the load cells or 

radar sensor place. This is contradicting with the aim of the current research of monitoring 

sheep in an unattended, not expensive way. Additionally, traditional observations by the trained 

observer are very time consuming, subjective, and require a lot of effort. 

Alternative sensor technologies have emerged to collect sheep motion data in Barwick et al., 

(2018b); however, the sheep in their experiments were not in real lame conditions; instead, 

they were simulated by restraining the sheep’s front leg using an adhesive bandage. Although 

Vazquez Diosdado et al., (2018) investigate sheep lameness using motion sensors, the resulted 

accuracies still need further enhancements. In addition, commercial sensors for detecting sheep 

lameness have not been developed yet for the benefits of the stakeholders. In contrast to the 

cattle sector where the IceRobotics company, founded in 2002 and based in Edinburgh 

(ICEROBOTiCS, 2019), provides a commercial CowAlert application sensing system capable 

of monitoring cow’s health and producing an alert concerning health issues. Recently, a cow 

lameness alert within CowAlert has been launched by IceRobotics (Chomiak, 2017) to provide 

daily lameness alerts.  

 

Although this project is not aiming to produce a commercial ‘Fitbit’ for sheep to monitor their 

health, including lameness detection, the findings of the current research study would pave the 

way for other researchers to develop a sensor device which performs monitoring and alarming 

tasks. This would help the shepherd to identify sheep health issues on the farm and enhance 

Precision Livestock Farming (PLF) in the sheep sector compared to their cow counterparts. 

Therefore, the current research could enrich the lack of sheep lameness research studies in term 

of utilising convenient data collection tools (motion sensors), conducting validated 

experiments, and developing an original lameness prediction model. 



CHAPTER ONE: Introduction 
 

6 
 

1.5 Research Aims and Objectives 

The goal of the conducted thesis was to evaluate the implementation of a data mining approach 

to detect the early stage of lameness in sheep (mildly lame sheep) by analysing the data being 

retrieved from a mounted wearable motion sensor within a sheep’s neck collar. The validated 

approach was aimed at being feasible and easy to be accessed by farmers with no extra need 

for continuous monitoring of the whole flock. Furthermore, the built model was targeted to be 

economical as data collection, pre-processing, analysis and decision making are all processed 

into one sensor kit to be mounted in the sheep’s collar. Thus, investigating the most cost 

effective factors contributing to lameness detection is the key focus of this work such as; sensor 

sampling rate, segmentation method and window size, the most powerful features, the best 

feature selection methods, and applicable classification algorithm are all experienced to serve 

the purpose of the research.  

 

The objectives of the current research are as follows:  

1- Investigating the lameness detection methods for cows and sheep; including data 

mining techniques to identify the gap in the literature.  

2- Reviewing the data mining classification techniques that have been utilised to classify 

cows or sheep behaviour to deduce the proper technique for the indication of lameness 

in sheep.  

3- Collecting real-world sheep data from Moulton College Lodge Farm via a wearable 

sensor device mounted around a sheep’s neck at different sampling rates to identify the 

most convenient sampling rate for identifying sheep lameness.  

4- Pre-processing of the sheep sensor raw data in many stages; including data cleaning, 

missing data manipulation, segmentation, walking segment extraction, features 

computation, and best features selection.   

5- Training the best set of features via various machine learning techniques to determine 

the most satisfactory prediction accuracy algorithms for sheep lameness detection.  

6- Evaluating the trained model using three validation techniques (k-fold, hold-out, Single 

Sheep Splitting).  
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1.6 Research Methodology Structure 

The sensor-based collected data requires a professional approach to pre-processing, analysing, 

and decision making in order to classify the sheep status into sound, mildly lame, or severely 

lame. Figure 1-3 depicts the applied stages of the data mining methodology for lameness 

detection in sheep in this thesis. Although the full details for each step are explained in Chapter 

Three, a brief visualise flowchart is presented here as a methodology introductory part within 

the current Chapter. The proposed approach for Sheep Lameness Detection Model (SLDM) 

properly provides full data mining steps that could be recommended to future research studies 

into sheep lameness, as the literature search results are evidently lacking these kinds of studies.  
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Figure 1-3 The stages of thesis’s methodology for developing Sheep Lameness Detection Model 

(SLDM). 
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1.7 Possible Research Contributions 

No study to date has utilised data mining approaches to classify motion sensor-based data 

retrieved from a sheep’s neck for the purpose of detecting lameness. Instead, some studies have 

investigated sheep behavioural classification into standing, walking, laying, grazing, 

ruminating, and other classes for the purpose of grazing at pasture. Thus, the study that has 

been conducted in this thesis contributes to the field of knowledge as follows:  

 

1- Real-world sheep movement data are collected via a wearable motion sensor at Lodge 

Farm, Moulton College, Northamptonshire at three different sampling rates 10, 5, 4 Hz. 

Previous lameness walking movement sheep data could not be found online.  

 

2- Due to the fact that lameness tends to be identified when sheep are walking, only sheep 

walking data are extracted (aside from standing or trotting movements) to be pre-

processed and classified by integrating sheep forward-backwards acceleration (𝐴𝑐𝑐_𝑦) 

to obtain sheep speed. This process prolongs the sensor battery life as the classification 

procedure could only work when the sheep are walking. Alternatively, the sensor could 

be set to sleep mode when the sheep behave differently and not in a walking rhythm.  

 

3- The important features that actively contribute to lameness detection are determined. 

The Orientation sensor data around the sheep neck (Pitch and Roll angles) are mostly 

contributing to decision-making as the top-ranked features resulted from three feature 

selection FS methods are orientation related features.  

 

4- Identification of Acceleration sensor data is able to make a satisfactory decision about 

a sheep’s lameness status without extra energy spend for collecting gyroscope data from 

the mounted sensor around the sheep neck.  

 

5- Implementation of a genetic algorithm (GA) for feature optimisation and selection 

reveals competent results compared to other FS techniques such as ReliefF and Random 

Forest RF.  

 

6- Proposing a method for model validation which is named ‘Single Sheep Splitting’ that 

guarantees a proportion of data movement from every single sheep in a dataset to be 
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included in the training and testing set to provide acceptable validation results when 

compared with to 5-fold and 0.3 hold-out validation methods.  

 

7-  A unique user interface application (SLDM) has been designed for the purpose of this 

thesis. The designed software is enabling the developer to interact, alter the input 

parameters, and retrain the model as many times as required until acceptable prediction 

results are achieved.  
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2 Chapter Two: Multidisciplinary Literature Review and 

Background 
 

2.1 Introduction 

Previous studies in lameness in animals have utilised different types of data collection and data 

analysis methods, which have been applied in various ways for either animal’s illness detection 

such as lameness or classifying behaviours. Literature studies relating to lameness detection 

are quite diverse because of the multidisciplinary nature of these research studies. Utilising 

Computer Science concepts of data mining for knowledge discovery provides a beneficial 

solution for animal welfare problems such as lameness in sheep. Although the problem of 

lameness in cattle has been widely addressed and studied, there is a paucity of research to 

identify sheep lameness in its early stage via using wearable sensors to collect important 

information that may help to tackle the problem. The divergence in literature could be 

manifested in Data collection methods, Data analysis techniques, Analysis purpose, and even 

Target animal. The structure of the reviewed literature is illustrated in Figure 2-1; however, 

this thesis follows the pathway where boxes with red boundaries appear towards detecting 

lameness in sheep. 

 

 
Figure 2-1 Research diversity in data collection, analysis methods, purpose, and target animal. 

 

 

 



CHAPTER TWO: Multidisciplinary Literature Review and Background 
 

12 
 

Originally, lameness has been directly detected using a manual/visual scoring system (Section 

2.2.1). However, progress has been made for such lameness detection systems to be worked 

automatically without human interaction. Therefore, more objective methods for automatic 

scoring to indicate lameness have been suggested to measure both kinetic (the study of the 

force in motion) and kinematic (the study of changes in the body’s position segments over time  

(Flower and Weary, 2009). Kinetic can be managed by extracting force information applied to 

lame limbs and measuring the ground reaction caused by infected hooves, while kinematic 

principles include assessing specific body changes in respect to time interval using an 

automatic measurement system (Viazzi et al., 2014; Ramanoon et al., 2018).  

 

2.2 Lameness Detection in Cows 

In cattle, the main signs of lameness are identified by Van Nuffel et al., (2015b), who relate 

the indications for lameness to the changes that are happened in either animal posture (back 

arch posture or body movement pattern), animal gait (step overlap, stride duration, and 

walking) or animal behaviour (lying, resting and standing time). In their review, although these 

changes refer to cows rather than sheep, the collected information could be quite useful to 

differentiate between lame and non-lame sheep.  

 

Various combinations of automatic kinetic and/or kinematic approaches that have been applied 

for lameness detection (in respect to cows) are explored starting from Section 2.3. However, 

lameness detection approaches can be divided in many different ways. One classification could 

depend on the assessment methods used for lameness detection to be into direct, kinetic, and 

kinematic approaches (Alsaaod et al., 2019; Ramanoon et al., 2018). Conversely, lameness 

detection approaches could also be classified according to how the animal’s gait or posture-

related information is obtained, i.e. according to data collection tools. Hence, the present 

research planned to follow the latter mentioned classification for lameness detection 

approaches illustrated in Figure 2-2. The aforementioned approaches are explored in the 

following sections by mentioning advantages and drawbacks of these approaches in 

comparison to the motion-based sensor methods which are used to collect data for this research 

study. 
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Figure 2-2 Lameness Detection (in cow) according to data collection methods. 

 

2.2.1 Human Observation Approaches 

The scale description of lameness varies from mild lame, moderate lame, lame, to severe lame 

(Helwatkar et al., 2014). Therefore, the assessment of lameness has to be recorded for further 

analysis and proper treatment action to be taken afterwards. The traditional way of recording 

the scale of lameness within the flock was done by the trained observer, skilled veterinarian, 

or agricultural consultant. This scaling method takes enormous effort, is very time-consuming; 

especially when the whole flock needs to be observed (Wang et al., 2018), and tends to be 

subjective due to different points of view among observers (Blackie et al., 2011; Van Nuffel et 

al., 2015b). Basically, two subjective assessment methods for rating the scale of lameness of 

the individual sheep were used, one is called the Numerical Rating System (NRS), which scales 

the lameness degree from 0 to 5 points; where ‘0’ represents the non-lame sheep, and ‘5’ 

represents the severely lame sheep, while the second method is named the Visual Analogue 

Scale (VAS) that uses a 10 cm line; ‘0’ corresponds to a healthy sheep, with ‘10’ corresponding 

to a painfully lame sheep (Flower and Weary, 2009; Welsh et al., 1993). Nevertheless, the 

subjective method for scoring lameness can be implemented with no technical equipments and 

could suit in-farm assessment; it lacks reliability since it follows the observers' experiences and 

their biased nature, in addition to the changeable score over time (Flower and Weary, 2009). 

Therefore, automatic objective kinetic /or kinematic methods have been combined with 
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original direct gait scoring methods; used as a reference standard for system validation, to 

produce an enhanced automatic lameness detection system.  

 

2.3 Automatic Sensing Approaches  

 In the last two decades, several sensor technologies have been sought to apply health 

monitoring due to their reliability and sensitivity compared to the traditional subjective 

methods (Van Nuffel, et al., 2015b). Moreover, the sensors that have been used for remotely 

monitoring animal’s physical behaviour or movement are favourable because of their small 

size, weight, low cost, and their ability to record behavioural data for an extended period 

(Vázquez Diosdado et al., 2015; Moreau et al., 2009; Helwatkar et al., 2014). Although the 

initial monitoring sensing research studies have been applied in the military field, many other 

global issues are also examined. For example, an indication of a natural disaster, lack of non-

sustainable resources alarms, and detection of health monitoring disease, including animals 

(Helwatkar et al., 2014).  

 

A developed monitoring system for cattle has been intensively reviewed by Rutten et al., 

(2013) who present sensors which support health management on dairy farms at four levels 

according to what extent these sensors inform the farmer. The first stage of such a monitoring 

system is represented by how the data have been collected from animals which means the 

sensor itself. However, the sensor-based raw data are still hard to understand, unless they are 

translated into a form that is relevant to cattle gait scoring (Van Nuffel et al., 2015b). The 

second stage of such system is to use sensor-based information as inputs to the algorithms that 

provide information related to the individual animal's health (Rutten et al., 2013); for example, 

such algorithms can identify the changes in the sensor data that are relevant to walking 

behaviour in order to detect lameness. The third stage is to utilise the output information from 

the algorithm with a combination of economic information and any other farmers to build a 

decision support model. The final stage of Rutten et al., (2013) structure represents a final 

decision regarding the animal's health status as detected by the sensor, which is done either by 

a farmer or by the automated system itself. 

 

Understandably, the following sections are divergent according to where the sensors are located 

with respect to the animal body. Thus, fixed location sensor approaches are reviewed in Section 

2.3.1.1, while the attached motion sensors are presented in Section 2.3.1.2. Moreover, some 

file:///C:/Documents/WebsiteKoc/Writing/CohesiveDevices/understandably.html
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methods for lameness detection employ both fixed and/or attached sensors which are explored 

in Section 2.3.1.3.   

2.3.1.1 Fixed-location Sensor Approaches 

The types of sensors that have been used for kinetic gait analysis are usually located in a fixed 

location on a farm; therefore, they are also called non-attached sensors because of their static 

location away from the animal's body, in contrast to attached sensors that will be discussed in 

Section 2.3.1.2. Despite the advantage that only a few sensors are required to monitor a herd, 

the availability of the data collected via this type of sensor is limited because of the short 

recording time intervals as well as the off-line reaction by farmers (Helwatkar et al., 2014). In 

real-time applications when the decision needs to be taken, it may not be a useful way to detect 

lameness. Moreover, these types of non-attached sensors might be impractical in the case of 

sheep as they left on the farm without shepherd interaction for a more extended period than 

cows. However, the followings sub-sections will explore some of the research studies that 

employ static sensors for their data collection process to detect kinetic/kinematic measurements 

relating to lameness in cattle.  

2.3.1.1.1 Camera Sensors  

Due to the subjectivity; long time; and effort needed by the observers, surveillance cameras 

could be an alternative as their features include: continuous recording without human 

interference besides its objectivity, being less time consuming, and economic (Poursaberi et 

al., 2010). Cameras have been used as a fixed location sensor that is installed in a specific 

location on farms to continuously record video footage which is subsequently analysed via 

computer vision techniques for the sake of lameness detection. The gait characteristics that 

have been tested and analysed with computer vision techniques in relationship to lameness 

detection are: back arch curvature (Poursaberi et al., 2010; Viazzi et al., 2013; Viazzi et al., 

2014; Van Hertem et al., 2014), body movement pattern BMP (Poursaberi et al., 2011), step 

overlap (Song et al., 2008; Pluk et al., 2010), hoof release angles (Pluk et al., 2012), variations 

in the hip joint during walking (Abdul Jabbar et al., 2017), or leg swing (Zhao et al., 2018). 

Table 2-1 shortly explores the computer vision approaches that have been exploited to detect 

lameness in cattle.   

 

 

 



CHAPTER TWO: Multidisciplinary Literature Review and Background 
 

16 
 

Table 2-1 Cow lameness detection research studies based on computer vision approaches. 

References Sample size Data collection tool Observed features Analysis methods 

Song et al., 
(2008) 

15 lactating 
cows 

AVI video, 
locomotion scoring  

walking cow’s hoof 
locations (step overlap) 

Vision Analysis/ validated 
with manually locomotion 
scoring system 

Pluk et al., 
(2010) 

85 lactating 
cows 

side-view videos, gait 
scoring 

step overlap, body size, 
and relative step 

Computer vision 
techniques to find the 
correlation between GS 
and step overlap 

Pluk et al., 
(2012) 

75 lactating 
Holstein 
cows 

AVI video, pressure-
sensitive mat, visual 
LS  

touch and release of 
hooves angle and range 
of motion. 

Vision Analysis/ gait 
scoring 

Poursaberi et 
al., (2010) 

28 lactating 
Holstein 
cows 

JPEG images are 
extracted from AVI 
video 

back posture 
Image analysis techniques 
+ statistical analysis (back 
posture analysis) 

Poursaberi et 
al., (2011) 1200 cows RGB image back posture, head 

position 

Image processing/ Body 
Movement Pattern (BMP) 
algorithm 

Viazzi et al., 
(2013) 90 cows Video recordings, 

visual LS back arch curvature 
BMP algorithm’s output 
classifies into 3 classes by 
decision tree  

Viazzi et al., 
(2014) 273 cows  

2D (side view), 3D 
(top view) camera, 
visual LS 

back arch, the position 
of the muzzle 

BMP, decision tree 
learning to classify into a 
lame and non-lame cow 

Van Hertem 
et al., (2014) 186 cows 3D-camera, LS 

back arch, four 
individual consecutive 
BMP measurements 

Multinomial logistic 
regression model 
improves Viazzi et al., 
(2014) to optimise the 
classification rate   

Abdul 
Jabbar et al., 
(2017) 

22 Holstein 
Friesian 
dairy cows 

3D depth video 
camera, LS 

variations in the hip 
joint during walking,  
gait symmetry, spine 
and hind limbs 
movements  

Linear Support Vector 
Machine (SVM) 

(Zhao et al., 
2018) 98 cows Side view video 

camera, LS 
6 features of swing leg 
motion.  Decision Tree Classifier  

(Jiang et al., 
2019) 

30 dairy 
cows video camera 

pixel distribution 
characteristics of each 
frame image (10 videos 
for the lame cow, 6 
videos for sound cows) 

double normal distribution 
statistical model 

 

Despite the extraction of the features that seemingly relate to gait variables from computer 

vision techniques that have been investigated by many authors, the implementation of computer 

vision techniques on the farm is still facing challenges (Hertem et al., 2014). Since surveillance 

2D cameras have some limitations due to installation space on the farm that is needed for the 

side view (Van De Gucht et al., 2017). In addition, the final image might be affected by many 

factors; for example, lighting conditions and mixed background (Poursaberi et al., 2009; Van 

De Gucht et al., 2017). On the other hand, the surveillance 3D cameras could solve the problem 

of 2D continuous changing background and shadows, and overcome the restriction of space 
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required for 2D cameras; however, 3D cameras' field of view is smaller, gait variables to be 

measured are fewer, and they are more sensitive to the natural light (Viazzi et al., 2014; 

Vázquez-Arellano et al., 2016; Abdul Jabbar et al., 2017). Ultimately, surveillance cameras 

might not be practically implemented in the field of detecting lameness in sheep as sheep are 

left unattended for long periods of time while cows can be monitored at least twice a day when 

they are milked.  

2.3.1.1.2 Ground Force Plate Sensors 

Preliminary work on lameness detection in cows was undertaken by Rajkondawar et al., (2002) 

who propose a walk-through scale system to measure the Ground Reaction Force (GRF) as an 

indicator for lameness. The GRF system consisted of two parallel force plates each of which 

with four load cells. When the cow is walking over the parallel plates, the peak of GFR is 

measured, and seven variables on both left and right hind legs are calculated to identify between 

a lame and non-lame cow. Then, a later study developed by Tasch and Rajkondawar, (2004) 

introduces an enhanced algorithm to eliminate the gates causing congestion when a group of 

cows are walking through the proposed system. More developments are made by Rajkondawar 

et al., (2006) to their previous model which included adding extra variables to the prior 

calculated peak of GFR, such as average GFR, stance time, impulse, the area under Fourier 

transformed curve of GFR which could help to distinguish the lame cow from the non-lame 

one. Even more, developments have been made to the previous system to measure the GFR in 

3 dimensions (Dunthorn et al., 2015) in which sensitivity and specificity are noticeably 

enhanced.  

 

A further study was conducted by Pastell et al., (2008) who introduced a mat with 

electromechanical film could be set in any passage within the cow’s walkway. This proposed 

mat would identify the leg that has a problem by detecting the dynamic of different force-time 

behaviour where step force is calculated in addition to the stance time. The proposed 

electromechanical film mat (Emfit) could overcome the drawbacks of the earlier GRF model 

where the measurements over time were not considered, and the ability to detect the individual 

lame limb was not addressed. A broader study of gait patterns that used two parallel 3-

dimensional force plates to differentiate the gait patterns for sound and lame cows after claw 

trimming was done by Thorup et al., (2014). Their study reveals that lame cows would display 

less left-right vertical leg symmetry than healthy cows. Although the study employed a small 

number of animals, the study potentially provided a base for lameness detection compared with 
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the 1D force plate of (Rajkondawar et al., 2006). 

2.3.1.1.3 Weight distribution Platforms Sensors 

An initial study that advocated the idea of measuring the weight distribution of the cow's leg 

as a method for lameness detection was done by Pastell et al., (2006). Strain gauge balances 

were installed into the milking robot where the weight of each limb was calculated separately 

using load cells. Several measurements were calculated; for instance, the average and the total 

weight, each limb’s weight variation, the number and the frequency of kicks, and the total time 

in the milking robot. The primary results of this earliest study illustrate that the limb with foot 

disorder could be detected (Pastell et al., 2006). Furthermore, Pastell and Kujala, (2007) 

developed a 4-balance platform on the floor to measure each leg weight separately during 

milking as a way to automatically detect lameness. The authors’ expert model of Probabilistic 

Neural Network (PNN) is used for a classification task with two layers, one is a radial basis 

layer and the second is a competitive layer. Most of the cow’s legs that have a problem are 

detected with 1.1% alarm error rate. The results show that there is a change in weight 

distribution between limbs belonging to a lame cow. The aforementioned system can be used 

with an Automatic Milking System (AMS) on the farm to help the farmer in decision making 

for better treatment (Pastell and Kujala, 2007).  

 

Unlike 4- balance platform, a platform outside the automatic milking system was investigated 

by (Neveux et al., 2006) for weight distribution over four legs of the cow. This platform 

contained four recording units with two load cells to measure how the cows distribute their 

body weight over the four legs while standing on different surfaces (rubber and concrete). Their 

study concludes that the measurements of weight distribution might present useful on-farm 

techniques for the detection of lameness. A later study by Chapinal et al., (2010), used the 4-

balanced sensor for the weight distribution of  Neveux et al., (2006) with the combination an 

IceTag accelerometer attached to the right hind leg. The study shows more associative factors 

that tend to connect to the occurrence of lameness such as standard deviation SD for rear and 

front legs weight, walking speed, and daily activity; step counts, laying/standing time and its 

duration.  

 

In addition to the previous predictors, a promising tool has been indicated for lameness 

assessments by Chapinal and Tucker, (2012), who utilise the weighing platforms to 

automatically calculate the frequency of steps for front and rear leg pairs. The Logistic 
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Regression model used suggests that the steps per minute with the rear legs for the lame cows 

are more than the non-lame ones. Similarly, a simulation study that used Artificial Neural 

Networks (ANNs) model to classify lame and healthy cows was done by Gupta et al., (2014) 

where the four-balanced system was used to measure how the weight was distributed for each 

leg. Their simulation results show the model could predict the cow’s health status with more 

than 80% accuracy rate depending on the body weight distribution. 

 

By comparing the use of weight distribution platforms for detecting lameness in sheep, it may 

be considered inappropriate tools to collect movements due to sheep has to be led to the sensing 

area where the platforms installed while sheep are normally left in farm out of control with less 

monitoring period than cows. 

2.3.1.1.4 Pressure Sensitive Mat Sensor  

The first pressure-sensitive walkway called Gaitwise system was developed by (Maertens et 

al., 2011). Away from human interference, Gaitwise system automatically measured kinematic 

variables of the cow’s gait twice a day after milking. The pressure mat provides spatio-temporal 

data besides the force information of two complete gait cycles while the cow walks through 

the sensing area. The data were collected on the farm in real-time and evaluated using Linear 

Discriminant Analysis (LDA). The results showed that asymmetry of variables in step, length, 

stance time, step time, and step width which leads to further research on lameness detection in 

cattle. Nevertheless, the measurement success rate was over 80%; it is mostly associated with 

cow movements and behaviour such as irregular cow traffic due to external factors.  

 

A follow-up study was undertaken by (Van Nuffel et al., 2013), who tested the asymmetricity 

of gait variables which were repeatedly produced by the Gaitwise system (Maertens et al., 

2011) as a high potential indicator for early lameness detection within cows. In addition to the 

prementioned variables that are produced by Gaitwise system, their tested results show the 

fluctuation of stride to stride is also a very sensitive indication prior to lameness. Generally, 

their promising results could differentiate between the lame and severely cow and defines 

which leg starts to be lame (Van Nuffel et al., 2013). However, the pressure mat like the 

Gaitwise system provides detailed sensing information; such a system may be impracticable to 

adopt due to its high cost and its demand for free space to be installed on-farm.  

 

Therefore, a developed simulation approach has been made by Van De Gucht et al., (2017). 
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Their proposed simulation study downscales the length of the measurement zone to be no more 

than 3.28 meters to monitor one complete gait cycle without a huge loss of collected data, 

whereas the size of the individual sensing must be at least 2.58 *10-3 m2 to overcome the 

difficulty of imprints recognition. The idea of reducing the cost and the space needed for the 

Gaitwise system that was previously developed by Maertens et al., (2011), avoids too much 

loss in gait variables which relate to lameness detection. The accuracy of lameness detection is 

not decreased when the LDA is applied to classify the cow into; sound, lame, and severely 

lame; however, the enhanced Gaitwise system can misclassify some lameness classes (Van De 

Gucht et al., 2017). 

2.3.1.1.5 Infrared Thermography Camera Sensors 

Infrared thermography is used as a non-invasive tool to detect foot lesions in cattle which may 

lead to an indication of lameness when the case of inflammation occurs in a lame limb 

(Schaefer and Cook, 2013). Here, no gait changes are monitored, the foot temperature alteration 

is captured instead. Due to the changes in blood flow in vessels, the increased temperature that 

is emitted from the skin surface might be a sign of a foot problem (Alsaaod et al., 2015).  The 

emitted infrared radiation is measured and displayed in a pictorial form which is called a 

thermogram where each pixel refers to the measured surface temperature of an object (Turner, 

1991).  

 

Applications of thermography to detect foot lesions are clinically reviewed by Alsaaod et al., 

(2015), who evaluate the performance of those techniques to the benefits of lameness 

management in cattle. For example, the temperature of the coronary band of an affected foot 

and healthy one is compared in (Alsaaod and Büscher, 2012) whereas the increased 

temperature in association with a foot lesion is investigated by Wood et al., (2015); Stokes et 

al., (2012). Similarly, other foot lesions such as white line disease (WLD), sole ulcer (SU) and 

digital dermatitis (DD) are also studied with infrared thermography imaging, and the results 

show a linkage between the changing in temperature and presence of foot lesions (Orman and 

Endres, 2016). 

 

In the same way, such a high level of lameness is recorded by using thermal imaging techniques 

in contrast to a subjective lameness scoring method. However, the infrared thermal methods 

are costly; it is worth being applied when it is compared to consequences as severe lameness 

stages progress (Renn et al., 2014). Although infrared thermography techniques could be a 
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reliable method used to detect the skin temperature of an affected foot which is linked to 

lameness, it is strongly affected by environmental changes such as air temperature, humidity, 

debris and dirt (Alsaaod et al., 2019). Thus, for the same pre-mentioned reasons, infrared 

thermography might be not suitable to be applied in a flock of sheep due to their mobility away 

from the farmers’ attention.  

2.3.1.1.6 Radar Sensing 

A recent study by Shrestha et al., (2018) utilises radar micro-Doppler signature data that has 

been previously used for human detection (Kim et al., 2015) to detect lameness in the horse, 

cattle, and sheep. Five cows were tested while individually walking through a narrow corridor 

from both anterior and posterior views. The features of mean and SD for centroid and 

bandwidth of micro-Doppler signature were measured to be classified via SVM and KNN 

supervised learning classifiers. The results for cow achieved an accuracy of 85% (Shrestha et 

al., 2018). However, further comprehensive analysis may be need by expanding feature space 

from micro-Doppler signature to enhance the classifier performance. 

2.3.1.2 Motion-based Attached Sensor Approaches  

The emergence in smart sensing technology in the section of animal welfare has started to be 

a promising, sustainable, and affordable choice for a considerable well-being system for 

animals. The smart sensing system can be clarified to such physical devices that all connect to 

a computer system for the purpose of data collection, data pre-processing, information 

exchange, and data analysis (Jukan et al., 2017). Basically, the motion-based sensor 

technologies assist the application of automatically monitoring animals to determine either 

their physiological and/or behavioural changes which may have a significant relationship to a 

specified illness or even tracking animals to identify their locations on a farm via wearable 

sensors mounted on their body (Jukan et al., 2017). Although the sensor device itself comes 

with a low price, concerns would be raised when the whole flock or herd would each need to 

be equipped with an individual sensor. Therefore, the overall cost of the project may increase 

toward building a completed monitoring system (Van De Gucht et al., 2017). Whereas the 

automated methods to control the farm bring many advantages to the farmer in terms of time 

spent, flock size increasing and sensitivity to detect the lameness (Blackie et al., 2011); it is 

worth embedding such a monitoring system on a farm.  

 

Mainly, mobile sensors attached to the animal’s body either leg or collar may be more reliable 
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than fixed location sensors. Sensor devices such as data logger, pedometer, or accelerometer 

are attached to different parts of an animal’s body; especially leg and neck, for the sake of 

identifying changes in either behaviour or gait posture which might have a relationship with 

lameness detection. The data logger is an electric device which records voltage at a set interval. 

A voltage of 0 is inactive when the animal stands. Conversely, the voltage is set to be 2.5 when 

the animal lies down (O’Driscoll et al., 2008). Alternatively, the pedometer is an electronic 

device (equipped with accelerometer) mostly attached to the leg; it calculates the number of 

steps and the daily activities (lying, standing, walking) taken by the animal (Arcidiacono et al., 

2017). Lately, accelerometer devices used for monitoring various behaviours; especially 

walking, have been adopted as a wearable device that can be integrated into a computer node 

of wireless networks. It can be defined as an electronic device that calculates the alternation in 

acceleration and force of an object and transmits raw data in either one, two or three dimensions 

(Alsaaod et al., 2019). 

 

The majority of research studies that have collected movement data via motion-based sensors 

to detect lameness are undertaken in cattle rather than a flock of sheep. However, the following 

sections will explore the approaches that detect lameness in cattle, referring to the sensor 

placement which is attached to either the leg, back or neck.              

2.3.1.2.1 Leg attached sensors methods 

➢ Pedometers:  

The exploration of the usefulness of posture scoring for the locomotion process of cows daily 

activity via a pedometer attached to a hind limb was investigated first by (O’Callaghan et al., 

2003), who revealed that the lame cows have a lower level of daily activity compared to the 

sound ones. Another study using pedometers for activity measurements was carried out by 

Mazrier et al., (2006). The average number of steps per hour was calculated as an indicator of 

lameness. It is noticed that 92% of lame cows decrease their activity several days before the 

clinical signs appear. However, not all cases of developing lameness could be detected in their 

study.  

 

In addition to counting the number of steps as an indicator for lameness, the focus on 

monitoring lying behaviour has also been an interest of many studies for the sake of lameness 

detection. So, lying-down time, the number of bouts, duration, frequency, and SD of lying 

bouts have been measured via electronic data logger (Ito et al., 2010; Solano et al., 2016). 



CHAPTER TWO: Multidisciplinary Literature Review and Background 
 

23 
 

Further to the previous measurements, lying-down time around feeding time was explored by 

Yunta et al., (2012).  Most of the previous studies reveal that lame cows have more lying time 

and longer bouts than non-lame cows. However, examining lying behaviour alone is not 

optimal, unless combined with other features in order to detect lameness efficiently (Ito et al., 

2010) including risk factors associated with the lying behaviour of individual cows like 

lactation stage or environment (Solano et al., 2016). Similarly, standing time is compared to 

the previously mentioned lying behaviour features to identify the characteristics of the lame 

limb of the cows, where the IceTag 3D logger device was attached to both rear legs in a pilot 

performed by (Kokin et al., 2014). The statistical analysis resulting from the IceTag Analyser 

shows that the lame cow spent less time standing and had a lower activity rate than a sound 

cow which agrees with previous research studies.  

  

A different analysis method for lying down behaviour of cows has been implemented by 

Alsaaod et al., (2012), where ALT-Pedometer (Activity-Lying-Temperature) was attached to 

the foreleg of the cows. Six features of lying behaviour were extracted to feed SVM classifier 

where binary classification has been implemented to classify into a lame and non-lame cow 

with an accuracy of 76%. The results present that deviation from normal behaviour is a better 

indicator for lameness than justifying a threshold value to differentiate between the behaviour 

of a lame and non-lame cow (Alsaaod et al., 2012).  

 

A recent study employs the use of a pedometer to detect a lame cow by observing lying time, 

step count and swapping between standing and lying where the data is sent to a fog node to be 

analysed. Although the work of Byabazaire et al., (2019) has been focused on reducing the 

amount of data exchange between the fog node and cloud, the indication for a lame cow is 

identified in 1-day prior to lameness occurring when Random Forest (RF) algorithm is used, 

while it is 3-days prior to lameness when the KNN algorithm is implemented. Table 2-2 

presents pedometers and data loggers used for the indication of lameness in cows.  

 

 

 

 

 

 

 



CHAPTER TWO: Multidisciplinary Literature Review and Background 
 

24 
 

Table 2-2 Research studies used pedometer sensors for lameness detection in cows. 

References Sensor 
type/position No. cows/ Observed features Analysis methods 

(O’Callaghan 
et al., 2003) 

Pedometer/ hind 
leg 345 No. of steps/hr., milking time  statistical analysis 

via SAS software 

(Mazrier et 
al., 2006) 

Pedometer/ hind 
leg 46 No. of steps/ hr.  Computer graph is 

presented 

(Ito et al., 
2010) Data Logger 1319 cows (28 

farms)  
Lying time, no. bouts, bouts 
duration, SD of bouts 

SAS statistical 
software 

(Yunta et al., 
2012) 

Data logger/right 
hind leg 

10-15 cows 
from each 10 
farms/ 1-min 
interval  

Lying time around feeding, 
lying time, no. bouts, bouts 
duration 

SAS statistical 
software 

(Alsaaod et 
al., 2012) 

ALT-pedometer/ 
foreleg 30 cows 

Lying time, no. bouts, bouts 
duration, max & min bout 
duration, ambient temperature 

SVM, with an RBF 
kernel 
 

(Kokin et al., 
2014) 

IceTag3D™ logger 
/both rear legs 

33 dairy cows / 
16 Hz 

Lying and standing time, no. 
of lying bouts, step count, 
motion index 

SAS software 

(Solano et 
al., 2016) 

HOBO data logger/ 
hind leg 40 cows Lying time, no. bouts and 

frequency, bouts time and SD.   Logistic regression 

(Byabazaire 
et al., 2019) 

Long-Range 
Pedometer (LRP)/ 
front leg 

146 cows Step count, lying time, swap 
between lying and standing 

Random forest, 
KNN 

 

 

➢ Accelerometers:  

On the other hand, the accelerometer has been employed in research studies to investigate gait 

characteristics that refer to the occurrence of lameness such as variance in acceleration. Table 

2-3 explores the research studies in this section with brief details. An implementation of 

wavelet analysis to acceleration measurements that were acquired via 3D accelerometers 

attached to each cow’s leg was carried out by Pastell et al., (2009). A higher asymmetry in the 

variance of forward acceleration over time is noticed in the hind leg of a cow since it was 

already lame. Similarly, Chapinal et al., (2011) used four legs' which were attached to 

accelerometer sensors and one extra 3D accelerometer device was fastened around the torso to 

detect locomotion changes related to lameness. Their findings report that asymmetry of the 

variance of overall acceleration in both front and hind legs is increased together with overall 

gait and asymmetry of steps which are assessed visually.  

 

Other acceleration measurements were investigated like root mean square, maximum, and 

minimum acceleration via a 3D accelerometer sensor attached to the back of the cow as a tool 

for lameness detection (Mangweth et al., 2012). The prediction model has a success rate to 
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differentiate between lame and non-lame of 91.7% percentage. However, the accelerometer 

attached sensor research studies may still be limited due to the equipment used that might affect 

the normal gait pattern if it is used daily (Mangweth et al., 2012).  

 

Again, lying behaviour is explored; however, an accelerometer is used instead of a pedometer. 

Thorup et al., (2015) investigate the accelerometers data from an attached sensor to the cow’s 

hind leg to record its activity for the indication of early signs of lameness. Principal Component 

Analysis (PCA) is used to measure the correlation among 13 leg acceleration’s variables such 

as the number of steps and its frequency, the duration time of lying down, standing, and 

walking. The analysed results show that early lameness detection seems to be sensitive to 

walking acceleration and walking duration (Thorup et al., 2015). 

 

Furthermore, it has been found that the walking speed and standing bouts might be the best 

signs along with other laying behaviour activities even for slightly lameness detection in cattle 

with a sensitivity of 90.2% according to Beer et al., (2016). In their study, a special 3D 

accelerometer device called RumiWatch was attached to the hind limbs and nose of cows to 

investigate the lying behaviour associated with lameness.  

 

Although the aforementioned studies that have utilised motion sensors to investigate 

behavioural features (lying, standing) in relation to lameness deem these as a good indicator, 

the changes in gait activities (walking) are more precise (Kokin et al., 2014); moreover, 

abnormal walking is an advanced symptom of lameness (Haladjian et al., 2018) which priorly 

could be spotted more than behavioural changes. Therefore, Haladjian et al., (2018) present a 

different technique for lameness detection via building a model for normal walking stride from 

sensor data attached to the cows’ hind leg. Consequently, the abnormality in the walking 

pattern is detected as a deviation from the build model of one-class SVM classifier (SVM 

details in Section 0). However, the abnormality detection based on each cow walking pattern 

produces an individual measurement for sensitivity and specificity. This approach looks to have 

a higher energy consumption than a baseline model for a huge herd.   
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Table 2-3 Studies used leg attached accelerometer sensors for lameness detection in cows. 

References Sensor 
type/position 

No. cows/ 
Sampling rate Observed features Analysis methods 

(Pastell et 
al., 2009) 

3D accelerometer/ 
4 limbs 

11 cows / 25 
Hz 

The symmetry of variance 
for forward acceleration Wavelet Analysis 

(Chapinal et 
al., 2011) 

3D accelerometer/ 
4 limbs + back 

12 + 24 in 2 
experiments/ 
33.3 Hz 

Acceleration symmetry in 
variance + Step symmetry 
and walking speed from 
video rercording 

SAS statistical 
software 

(Mangweth 
et al., 2012) 

3D accelerometer/ 
back - Acceleration RMS, Min, 

Max  
Forcast prediction 
model 

(Thorup et 
al., 2015) 

IceTag3D, 
IceRobotics, 3D 
accelerometer/ 
hind leg 

348 Holstein 
cows/ 16 Hz 

Duration of: laying, standing, 
walking, and total 
acceleration of each 

PCA, to measure the 
association among 
variables 

(Beer et al., 
2016) 

RumiWatch 3D 
Accelerometers/ 
hind limbs + head 
(noise) 

41 lame+12 
sound/ 10 Hz 

Duration of: lying, standing, 
eating, ruminating, bouts, 
stride, walking speed  

NCSS8 statistical 
software, univariable 
logistic regression 

(Haladjian et 
al., 2018) 

3 axes Linear 
acceleration, 3 
axes orientation/   
hind left leg 

10 cows/ 100 
Hz. 

Deviation in cows’ usual gait 
(detect abnormal walking 
patterns)  

One-class SVM 
Classifier 

 

2.3.1.2.2 Neck attached sensors methods 

According to the literature in Section 2.3.1.2.1, the gait or locomotion characteristics (lying, 

standing, and walking behaviour) in relation to lameness have been investigated via a leg 

attached accelerometer sensor. On the other hand, the accelerometer device could be fitted with 

a collar around the neck to explore neck activities that relate to lameness as well as locomotion 

ones. However, neck activity may not give full details on lying, standing, or walking activity 

(Weigele et al., 2018). Instead, a collar neck accelerometer might be a feasible alternative for 

lameness detection in commercial farms due to the ease in attaching it and is less likely to cause 

pressure sores or injuries (Nielsen et al., 2010; Kokin et al., 2014). 

  

Furthermore, Mottram, (2012) refers to the reasons behind preferring a neck mounted sensor 

rather than a leg-mounted one to the possible feature of being used as a sensor node within 

wireless sensor networks for monitoring animals; consequently, the information could be 

transmitted to a base station easier than leg-mounted sensors (Mottram, 2012). Also, Mottram, 

(2012) clarifies in his patent that the leg-mounted devices are more likely to be dirty because 

of their close location to mud and the faecal area. In addition, the sensor’ readings would be 

affected by the rotational leg’s attached sensor beside its deploying difficulty due to the kicking 

behaviour of the animal. Also, neck attached sensors would probably cause less disturbance to 
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animals and could be limited to moving or rotation while the animal’s scratching or smashing 

(Andriamandroso et al., 2017).     

 

According to the literature, the majority pay attention to extracting behavioural pattern 

recognition that may be associated with lameness from accelerometer sensors attached to the 

leg or back. In contrast, neck activities are explored to investigate feeding behaviour or the 

estrus cycle in a cow (Vázquez Diosdado et al., 2015; Barker et al., 2018; Khanh et al., 2016), 

grazing, eating, or ruminating behaviours of cows (Nielsen, 2013; Smith et al., 2016; Rahman 

et al., 2018; Tamura et al., 2019). However, the neck activities relate to lameness via a neck 

collar fitted with an accelerometer sensor have been introduced in a few research studies (Table 

2-4).  

 

➢ Accelerometer 

Earlier, Martiskainen et al., (2009) utilised the accelerometer sensor within the neck collar of 

cows to develop a learning SVM classification model to differentiate between eight 

behavioural categories of the cows: standing and standing up; lying and lying down; normal 

and lame walking; ruminating and feeding. Lame walking behaviour could be predicted with a 

sensitivity of 65% and specificity of 66% (Section 0). However, further improvements need to 

be considered regarding sensor data quality and the high computational time of their selected 

approach to gain better classification accuracy. 

 

A pilot study was introduced by Mottram and Bell, (2010) show that it is possible to relate neck 

movement to mobility score in an objective manner. A 3D accelerometer sensor around the 

neck was used for gathering automatic mobility measurements for a cow while walking a 20-

meter path for a couple of minutes. The maximum values for 3 axes measurements were 

calculated in addition to the number of peaks in forward acceleration which exceeded SD above 

the Mean by one. Kurtosis is also measured for forward and vertical acceleration as it is a 

metric used for measuring the weight of collected data in tails of its histogram distribution (the 

high-frequency data points) (Cox, 2017; McNeese, 2016). Surprisingly, the pilot study showed 

that the most lame cows move their head less than the least lame ones. However, this may not 

be the case with sheep due to the different body mass of both animals.  

 

A recent study to differentiate between the moderately lame and the sound cow which used 

accelerometers attached to different body parts of the cow was undertaken by Weigele et al., 
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(2018). Lying behaviour and locomotor activity are measured by attaching the accelerometer 

device to the hind leg of the cow, while the neck activities are investigated by attaching the 

accelerometer to the cow’s neck collar. A statistical linear mixed-effect model is used to 

analyse the gathered data which reveal findings in line with previous studies. The moderately 

lame cows show a reduction in activity, longer lying time, fewer head activities, while no 

significant in the upright position of locomotion activity was noticed between moderate and 

sound cows (Weigele et al., 2018). Thus, more investigation may need to be done to overcome 

the challenges of distinguishing between the early stages of lameness due to the benefit of early 

treatment action. 

 

➢ Ear tags 

As a different approach for lameness detection in cattle, an ear tag 3D acceleration sensor is 

used for data collection, this has been presented by Link et al., (2015). The accelerometer in 

ear tags could be combined within an official ear tag on a cow to detect lameness, in addition 

to other behaviours such as heat detection and feeding. The result of such research has been 

shown in unpublished work (Link et al., 2016), where nineteen features were extracted in the 

processing stage from the magnitude value of the accelerometer on three axes. The acceleration 

data were gathered into two datasets referring to each sensor sampling rate 1Hz and 10 Hz 

denoting lame and non-lame dataset, respectively. The target of the study of Link et al., (2016) 

was to detect lameness within a ‘4 day period’ or before the ‘4 day period’ (day of detecting 

lameness +3 days prior). The AUC is performed to evaluate the classifier used; this showed 

that the AUC value for the 1Hz dataset (AUC=0.88) was higher than 10Hz dataset (AUC= 

0.71). Moreover, the best result for both datasets was obtained when the SD, 25% quantile, and 

kurtosis features were pre-processed.  

 
Table 2-4 Studies used neck attached accelerometer sensors for lameness detection in cows. 

References Sensor type/ 
position 

No. 
cows 

Sampling 
rate 

Observed behaviour Analysis 
methods 

Model 
Accuracy 

(Martiskai
nen et al., 
2009) 

3D 
Accelerometer 
/ neck collar 

30 10 Hz standing, lying, 
ruminating, feeding, 
the normal & lame 
walking, lying down, 
standing up 

Multi-class 
SVM 

Lame walking 
Sensitivity = 
65%, 
specificity = 
66% 

(Mottram 
and Bell, 
2010) 

3D 
Accelerometer
/ neck collar 

20 50Hz Max for 3 axes, max 
peak for forward 
acceleration, kurtosis 
for forward and 
vertical acceleration  

Correlation  Mobility score 
correlates with 
acceleration 
measurements 
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(Link et 
al., 2016) 

3D head 
Acceleration/ 
ear tags 

70 10Hz, or  
1Hz 

19 features: max, 
min, range, inter-
quantile range, ...  

AUC AUC =0.88 
(1Hz), AUC= 
0.71 (10 Hz) 

(Weigele 
et al., 
2018) 

3D 
Accelerometer
/ leg and neck 
+ noiseband 
sensor 
RumiWatch  

17 1 Hz. Lying behaviour, 
locomotor activity, 
and neck activity + 
feeding and 
rumination 
behaviours 

linear 
mixed-
effects 
statistical 
models in R 

Correlation 
exists 

 

2.3.1.3 Fixed Milking Sensors in Combination with Other Sensors 

Since the cow has a daily routine of milking and feeding, the existing milking sensor that is 

already installed in commercial farms can be utilised to detect lameness where the cow passes 

through regularly. So, a combination of fixed location sensors (milk sensor) and motion sensors 

(pedometer, accelerometer) for data collection has been introduced in several research studies.  

 

A validated research study was implemented by (Van Hertem et al., 2013) which draws the 

attention to utilise the existing sensor data to detect lameness. In their research, the night to 

daytime behavioural data were measured; such as daily milk production, neck activity ratio, 

and ruminating time. The measured data were used to build a Logistic Regression model to 

classify cows into lame and non-lame classes with a performance accuracy of 86%.  

 

In addition to the milk meter sensor, weight scale and pedometer sensors were used by 

Kamphuis et al., (2013) to measure the animals live weight, activity, and milk yield 

respectively. The authors enhanced a boosting technique based on the Additive Logistic 

Regression method in combination with regression tree. Although the prediction performance 

of the developed algorithm was not high enough, it has been shown that the multivariable 

sensors (three prementioned sensors) outperform a single sensor (univariable) in lameness 

detection.  

 

Another study combines data from a concentrate feeder robot in addition to the activity sensor 

and automatic milking sensor to build a dynamic linear model for lameness detection (de Mol 

et al., 2013). This model detects the changing activity on a daily basis which could be a useful 

tool for day to day management. Since the data being collected from an automatic milking 

robot is too large, Garcia et al., )2014) investigated the Partial least squares discriminant 

analysis method to distinguish the two classes, lame and non-lame. As it is suitable to be 

applied to multivariate data points where many variables relate to each other; however, none 
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of them could be a single effective indicator for lameness detection. Naturally, the changes in 

milk production or feeding behaviour of a lame cow might appear after the lameness has 

developed; therefore monitoring the changes in gait would be more effective than monitoring 

the changes in milk production for lameness detection (Haladjian et al., 2018). Table 2-5 briefly 

summarises milking sensor-based approaches including other sensors for collecting data.  

 

Table 2-5 Cow milking sensor in combination with other sensors for lameness detection. 

References Sensor type Measured data   Analysis method Model 
accuracy 

Van 
Hertem et 
al., (2013) 

Milk meter, neck 
collar tag, 
ruminating logger 

daily milk production, neck activity 
ratio, ruminating time 

Logistic Regression 86% 

Kamphuis 
et al., 
(2013) 

Weigh scales, 
pedometers, milk 
meter 

animal live weight, activity (via 
pedometers), and milk yield 

Additive logistic 
regression + 
regression tree 

80% 
specificity 

de Mol et 
al., (2013) 

Automatic milk 
sensor AMS, 
activity sensor 

Milk feeding amount activity, and 
milk production 

dynamic linear model 85.5% 

Garcia et 
al., )2014) 

automatic milking 
system (AMS) 

More than 30 data point 
measurements from a milking robot 

Partial least squares 
discriminant analysis 

80% 

 

 

2.4 Lameness Detection in Sheep 

In contrast to the previous sections where lameness detection in cattle is intensively reviewed, 

this section presents the few available research studies where the lameness in sheep was the 

objective. Figure 2-3 shows the related existing works for lameness detection in sheep which 

are quite recent. Thus, the indication of lameness in sheep is challenging, and a quite on-

demand research topic, the field of knowledge is low for such research studies. The next sub-

sections introduce an overview of the currently available research studies that focus on 

identifying lameness in sheep (see Table 2-6). 
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Figure 2-3 Sheep lameness detection approaches applied yet. 

 

2.4.1 Infrared Thermography (IRT) 

The feasibility of using thermal imaging for identifying lameness in sheep was investigated 

Byrne et al., (2019a), who applied three experiments to quantify each hoof’s temperature, 

determine the relationship between the hoof and ambient temperature, and to validate the 

utilising of IRT to detect infected hooves in sheep. From the experiments, it is noticed that the 

ambient temperature has no impact on the maximum temperature of the infected hoof (Byrne 

et al., 2019a). Furthermore, the sensitivity reached 92% when a pre-defined threshold of greater 

than 9 0C was defined for the infected hoof (above the mean hoof temperature of five coldest 

other hooves in the flock). However, the sensitivity declined to 77% when the same threshold 

was applied with a validation dataset.  The IRT may need equipment installation and contract 

with the aim of the research as early detection of lameness is the objective.  

 

2.4.2 Load Cells Weight Platform 

The relationship between the health status of sheep’s hooves and the load that each hoof 

distributes was examined by Byrne et al., (2019b). The ability of a custom hoof weight crate 

(HWC) is used to measure contralateral load percentage for each pair of hooves (front and 

back). It is revealed from the applied statistical liner mixed model that the infected hooves 

(back or front) carry the same load in contrast to the healthy hooves at the same extent where 

(Byrne et al., 2019a) 

(Shrestha et al., 2018) 

- (Barwick et al., 2018b) 
- (Vazquez Diosdado et al., 2018) 
- (Al-Rubaye et al., 2018) 
 

(Byrne et al., 2019b) 

Thermal 
image

load weigh 
distribution

Radar 
sensing

Locomotion 
sensing  

(Accelerometer, 
Gyroscope)
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the front hoof carries 60% of weight compared to the back hoof which carries 40% of total 

weight (Byrne et al., 2019b). The HWC could be useful to detect lame sheep; however, this 

process may not serve the objective of this research where the unattended way of monitoring 

is required.  

 

2.4.3 Radar Sensing  

As mentioned in Section 2.3.1.1.6, the study of Shrestha et al., (2018) where the radar micro-

Doppler signatures are utilised to detect lameness for 5 cows, the sheep are also tested in their 

study to detect lameness. However, the test was more challenging as sheep are social animals 

and like to accompany their mates from nose to tail when walking.  The hind limb is focused 

on by the radar signature to extract features for supervised learning classifiers (SVM, KNN). 

Centre of mass and the intensity of the signature are obtained by calculating mean and SD, 

respectively (Shrestha et al., 2018). In spite of the results which reveal accuracy around 99% 

for sheep, the number of sheep included in the experiment were only six, that was divided into 

three healthy sheep and three lame ones. Moreover, the calculations of sensitivity and 

specificity were not clearly mentioned in the study.  

 

2.4.4 Locomotion Sensing 

Unlike previous approaches, locomotion sensing or rotational movement approaches via 

accelerometers or gyroscopes respectively has been investigated by only a few researchers. The 

sensors devices are attached to the sheep's body to acquire data about their movements or neck 

activities which might relate to lameness detection. Barwick et al., (2018b) attach a 3 axes 

accelerometer to three different locations on the sheep’s body: collar, leg, and ear. The 

movement’s data has been analysed using Quadratic Discriminant Analysis (QDA) where an 

epoch of 10 seconds is subject to extract the selected movement metric features (3 out 14 using 

Random Forest) and then analysed. The prediction accuracy yield from the experiment for each 

deployment is 82%, 35%, and 87% for ear, collar, and leg, respectively. The authors applied 

the lameness simulation by restricting the sheep’s front right leg with an adhesive bandage 

which might not be identical to a lame sheep’s real movements. The accuracy of the model 

could be affected when the model is tested with a real dataset of sheep movement.   

  

Similarly, Vazquez Diosdado et al., (2018) use 3 axes accelerometers in addition to a 3 axes 

gyroscope to obtain data from two different locations of sheep ear and collar. An initial result 
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of a classification algorithm for lameness detection is presented. However, the evaluation of 

sampling frequency (8 Hz, 16 Hz, 32 Hz), window size (3s, 5s, 7s), and sensor position (ear, 

collar) was conducted by the same research team (Walton et al., 2018) for classifying sheep 

behaviour into lying, standing, and walking. Many ML techniques are applied to classify sheep 

into lame or non-lame, the best performance is achieved with Random Forest algorithm with a 

total accuracy of 68.6% and sensitivity of 78.3% (Vazquez Diosdado et al., 2018).  

 

The current research output (Al-Rubaye et al., 2018) utilises 3D acceleration, 3D orientation, 

and 3D linear acceleration sensors attached to the sheep's neck. The data are retrieved from 

sensors at 10 Hz sampling rate. The study aims to determine the best accuracy among various 

supervised machine learning techniques which can predict the early signs of lameness while 

the sheep are walking on a flat field. The experimental results show that the DT outperforms 

other classifiers with an accuracy of 75.46% and a sensitivity of 82.87%, 48.78%, and 87.31% 

for severely lame, mildly lame, and sound respectively. The experiment also reveals that the 

orientation sensor data (angles) around the neck are the strongest predictors used to 

differentiate the three classes of sound, mild, and severe lame.  

 
Table 2-6 Sheep lameness detection research studies. 

References Data 
collection tool 

no. of 
sheep 

Examined  
location    

Observed 
behaviours/features 

Analysis 
tool  

Sensitivity  

(Byrne et 
al., 2019a) 

Thermal 
images, 
locomotion 
scoring 

9 ewes 
(30 
images) 

Front, back 
hooves 

Max, average hoof 
temperature  

SAS 
statistical 
analysis 

77% (detect 
infected hoof) 

(Byrne et 
al., 2019b) 

Load cells for 
four 
individual 
hoof 
platforms 

20 ewes 
(lame 
and 
sound) 

4 hooves Individual hoof 
weigh 

ASReml 
statistical 
package 

- 

(Shrestha 
et al., 
2018) 

radar micro-
Doppler 
signatures 

6 sheep 
(3 sound 
3 lame) 

Look at 
hind limbs 

Mean of the 
centroid (centre of 
mass of micro-
Doppler signature), 
sheep velocity 

KNN, 
SVM 

99 %  

(Barwick et 
al., 2018b) 

3-axis 
accelerometer 
(12 Hz) 

10 sheep Neck, leg, 
ear 

walking, standing, 
grazing, and lying 
for (sound and 
lame)  

MatLab, R 
(QDA) 

Lame walking 
accuracy  (ear 
98%, collar 
83%, leg 96%)  

(Vazquez 
Diosdado 
et al., 
2018) 

3-axis 
accelerometer 
3-axis 
gyroscope 

19 sheep Neck, ear Lame and non-lame 
while walking 

Microsoft 
Azure 
Learning 
Studio 
(RF) 

78.3% 

(Al-Rubaye 
et al., 

3D 
accelerometer 

7 sheep neck Sound, lame, and 
severely lame sheep 

MatLab 
(Decision 

Sound 
87.31%, 
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2018) 3D orientation 
3D linear 
accelerometer 

tree) mildly lame 
48.78%,  
Severely lame 
(82.87%),  

 

 

2.5 Inertial Measurement Unit (IMU) Sensors for Behavioural 

Classification 

Utilising sensors in livestock farming is widely applicable to dairy cattle and sheep. Recently, 

monitoring livestock animals on an individual basis might be the main interest of researchers 

rather than herd/flock management due to its important contribution in developing Precision 

Livestock Farming (PLF) and farm management applications. Several research studies 

investigate the use of Inertial Measurement Unit (IMU) sensors for their data collection to 

retrieve information about standard monitoring system behaviours in both cattle (Smith et al., 

2015; Smith et al., 2016; González et al., 2015) and sheep (Haddadi et al., 2011; Walton et al., 

2018; Guo et al., 2018). More details are listed in Table 2-7.  

 

IMU can refer to a combination of motion sensors (accelerometers, gyroscope, magnetometer) 

and location sensors using the GPS that offers an advantage of reading variables from all 

sensors’ type at the same time (Andriamandroso et al., 2016). For example, a magnetometer 

has been used to detect feeding behaviour in cattle, sheep, and goats by monitoring jaw 

movements (Mulvenna et al., 2018), while GPS has been utilised to track animals to estimate 

their distance travelled (Knight et al., 2018), to monitor cow grazing behaviour (James et al., 

2016), or to classify different cows’ activities (Godsk and Kjærgaard, 2011; de Weerd et al., 

2015). Furthermore, GPS or magnetometers might also be combined with accelerometers to 

derive animal behaviour patterns which help to detect livestock illness and welfare concerns 

(Bailey et al., 2018). Refer to Table 2-7 to review the research studies using motion 

sensors/GPS for classification of livestock behaviour.  
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Table 2-7 IMU sensors for livestock behaviour classification. 

References IMU Sensor type Animals Sensor 
location    

Classified/ observed 
behaviour 

Classifier used  

(Umstätter et 
al., 2008) 

GPS, tilt sensor 
(pitch, roll) 

10 sheep 
(2 sites) 

neck Active and inactive LDA, 
classification tree, 
developed DT 

(Guo et al., 
2009) 

GPS, 3-axis 
accelerometer, 3-axis 
magnetometer 

6 cows Neck 
collar 

Describe animal 
movements and 
transition behaviours 

HMM, long-term 
prediction 
algorithm 

(Moreau et 
al., 2009) 

GPS, tri-axial 
accelerometer 

26 goats chest 
belt, dog 
harness, 
neck 
collar 

Resting, eating, walking ‘Animstat’ 
custom-designed 
c++ software tool 

(Haddadi et 
al., 2011) 

GPS, 3-axis MEMS 
accelerometer, 3-axis 
MEMS gyroscope, 3-
axis magnetometer 

46 sheep harnesses 
on sheep 

Spatial-temporal(time & 
distance) patterns 
associated with social 
network 

K-means 
clustering 

(Mason and 
Sneddon, 
2013) 

3-axis accelerometer 
(in sensor node) 

4 ewes head/ 
neck 

Foraging behaviour 
(grazing, standing, 
browsing, … etc.) 

PCA to assess the 
accuracy of 
assigned 
behaviour to a 
given group  

(Smith et al., 
2015) 

GPS, 3-axis MEMS 
accelerometer (10 
Hz), 3-axis 
magnetometer 

10 cows  Neck 
collar 

Grazing, walking, 
ruminating, chewing, 
resting, head down, and 
others 

LDA, NB, binary 
DT, one-vs-one  
SVM 

(Dutta et al., 
2015) 

3-axis accelerometer  
3-axis magnetometer 

24 cows neck Grazing, Ruminating, 
Resting, Walking, others 

Ensemble 

(González et 
al., 2015) 

GPS, 3-axis MEMS 
accelerometer (4 
Hz,10 Hz), 3-axis 
magnetometer 

4 group 
of 11 
steers 

below 
the neck 

Foraging, ruminating, 
travelling, resting, 
scratching, head shaking, 
grooming 

Decision tree 

(Vázquez 
Diosdado et 
al., 2015) 

GPS, 3-axis 
accelerometer 

6 cows Neck  Lying, standing, feeding, 
transitions between 
standing and lying  

DT, k-means, 
HMM, SVM 

(Smith et al., 
2016) 

GPS, 3-axis MEMS 
accelerometer (10 
Hz), 3-axis 
magnetometer, pitch 
& roll  

24 cows Neck 
collar 

Grazing, walking, 
ruminating, resting, 
others 

SVM, LR, KNN, 
RF 

(Kamminga 
et al., 2017) 

3D accelerometer 
(200 Hz), 3D 
gyroscope 

4 goats, 2 
sheep 

Various 
positions 
of neck 
collar 

Stationary, foraging, 
walking, trotting, 
running 

DT, NN, SVM, 
NB, LDA, KNN, 
KNN 

(Guo et al., 
2018) 

3-axis accelerometer 
(20 Hz), 3-axis 
gyroscope, 3-axis 
magnetometer, 
camera  

3 lambs Neck  grazing or non-grazing Linear 
Discriminant 
Analysis (LDA) 

(Walton et 
al., 2018) 

3-axis accelerometer 
(8,16, 32 Hz), 3-axis 
gyroscope  

6 sheep Ear, neck 
collar 

walking, standing, lying Random Forest 

(Wang et al., 
2018) 

3-axis accelerometer 
(1 Hz), GPS 

5 cows Leg tag feeding, standing, lying, 
lying down, standing up, 
normal walking, and 
active walking 

AdaBoost (MBP) 
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Subsequently, the use of smartphones is suggested to serve the PLF developing process, since 

smartphones are equipped with relevant high-performance IMU sensors and GPS which 

simultaneously provides useful information about movements like acceleration, rotational 

gravity, angular velocity, orientation angles, and location of an object (Debauche et al., 2018; 

Debauche et al., 2017). For example, IMU has been used to record measurements of cattle 

ruminating (Andriamandroso et al., 2014), biting (Andriamandroso et al., 2015), and grazing 

(Andriamandroso et al., 2017). 

 

Furthermore, the built-in sensors in smartphones facilitate the idea of no extra hardware 

needing to be developed for monitoring purposes, besides the advantages of the ubiquitous 

features of smartphones (Debauche et al., 2018; Debauche et al., 2017). However, the 

applications of IMU are not only limited to PLF; instead, various other movable applications 

are reviewed in (Ahmad et al., 2013), who highlight the most important consideration when 

IMU sensors are chosen; for instance, package size, data accuracy, response rate, and degree 

of freedom.  

 

2.6 Data Mining for Analysing Motion-Sensor Data  

As described earlier, GPS has been independently used or in combination with other motion 

sensors to identify different behaviour patterns on the farm which might not directly relate to 

lameness detection. Instead, it could be used for classifying various physical activities such as 

standing, lying, grazing, and walking which contributes to developing PLF and animal welfare 

management.  

 

The sensor-based data either from IMU or GPS is usually called spatial-temporal data which 

involves spatial properties such as geometry and location, and temporal properties like time 

interval or timestamp (Rao et al., 2012). The huge amount of collected spatial-temporal data 

calls for more professional and precise approaches to analyse such relative large datasets since 

both spatial and temporal dimensions increase the complexity of analysis to discover hidden 

patterns and trends for these collected data (Rao et al., 2012). Consequently, Data Mining (DM) 

is emerged to be employed in research studies that aim to build robust computational 

techniques for analysis of enormous databases of such spatial-temporal datasets.   

 

Due to motion sensors being mounted on animals to collect such spatial-temporal data, the 
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needs for DM analysis techniques is increased. Additionally, the concept of ‘reality mining’ 

has explored the idea of cross-collaboration between disciplines to produce more integrated 

approaches (Krause et al., 2013). Data Mining techniques, which are a convergence of 

principals refer to many disciplines as mentioned in Figure 2-4 (Jiawei et al., 2012). For 

example, DM combines statistical principles like sampling, hypothesis, testing, and estimation 

with Machine Learning (ML) aspects such as searching algorithms, modelling techniques, and 

learning theories. Although both statistics and ML aim to build a model to describe the input 

data best, ML are hypothesis-free approaches which could attractively deal with complex data 

and focus on prediction rather than an inference that is assumed by the traditional statistical 

approaches to accept or reject (Valletta et al., 2017). 

 

 
Figure 2-4 Data Mining as a convergence of many domains’ principles. 

 

Consequently, the implementation of DM to analyse such spatial-temporal sensor-based data 

for behavioural classification in both cattle and sheep could play an important role detect some 

illness concerns such as lameness. However, the number of research studies that have applied 

DM techniques for behavioural classification may exceed the ones for lameness detection 

research studies in cattle and would be very limited to lameness detection in sheep.  

 

2.6.1 Data Mining Definition   

Data Mining (DM) could be defined as the process of automatically retrieving useful 

information from a huge data repository, cleaning it; like removing noise, pre-processing it 

such as extracting related features, analysing it to gain useful insights from data, and finally 

intelligent decisions could be made for future observations (Aggarwal, 2015; Tan et al., 2006). 

DM is an integral part of Knowledge Discovery in Databases (KDD) which involve data pre-
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processing, data mining, and data post-processing (Tan et al., 2005). Therefore, wide variations 

of real-world problems solving approaches could accumulate under the broad umbrella term of 

‘Data Mining’ (Aggarwal, 2015). As a result, this variation leads to fruitful collaborations 

between the DM field of computer science disciplines and many other scientific branches to 

perform interdisciplinary research studies that could solve many real-world problems.  

 

2.6.2 Data Mining Approaches and Tasks 

Two tasks for mining data could be applied; one could be predictive tasks which aim to predict 

the values of an attribute for unseen examples relying on the characteristics of seen examples. 

Predicting approaches refer to either classification if the predicted class has discrete/categorical 

values or regression if the predicted class has continuous/numerical values. On the other hand, 

descriptive tasks are applied to another purpose for mining data that aims to derive patterns 

that describe the relationship of data. Descriptive tasks involve either clustering which searches 

for a closely related group of observations that have similar features or anomaly detection that 

detects significant deviations from normal behaviour (Tan et al., 2006; Aggarwal, 2015).  

 

2.7 Machine Learning Background 

As an embedded part of mining data, Machine Learning (ML); which is a fast-growing branch 

of knowledge, could be defined as the process of investigating how the computer machines 

learn from data and improving the learning performance of ML algorithms based on data in 

order to recognise important patterns or create a model which consequently makes an 

intelligent decision depending on the significant extracted pattern or built model (Jiawei et al., 

2012).  

 

Basically, two types of learning are followed by ML algorithms divided into supervised and 

unsupervised to solve the aforementioned predictive and descriptive tasks, respectively. For 

the predictive task (classification/regression), a model is created depending on the labelled 

input data; then the created model would be used to predict the class for new unlabelled data. 

While in descriptive tasks (clustering/anomaly detection) a pattern is derived from unlabelled 

input data to identify the relationship or the outliers of the input data. In contrast to labelled or 

unlabelled input data, the output class would be either categorical when the classification 

algorithm is applied or numerical class when the regression algorithms are applied for model 

creation (Rokach and Maimon, 2009). Figure 2-5 depicts the main learning algorithms of ML; 
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however, classification algorithms would be the major focus of this study where the output 

class is not numeric; instead, the categorical class value would be the target.  

 

 
Figure 2-5 Main Machine Learning algorithms refer to predictive and descriptive tasks. 

 

There are several supervised classification algorithms; each follows a different approach of 

learning; however, the process of choosing the best algorithm to fit all dataset’s type is an 

overwhelming process (MathWorks, 2018a). Although selecting the right algorithm usually 

depends on trial and error, the final choice of an algorithm to build a specific model would 

outweigh one benefit against another such as model speed, accuracy, complexity, memory 

usage, and interpretability (MathWorks, 2018b). The most considerable features for the basic 

ML algorithms are listed in Table 2-8 (Razavi and Kurfess, 2003; MathWorks, 2018b; Rokach 

and Maimon, 2009; Mathworks, 2016; Osisanwo et al., 2017). It could be referred to, to meet 

different requirements. 
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Table 2-8 Considerable features in selecting the best ML algorithm to specific datasets. (speed of        
prediction: fast: 0.01 sec, medium: 1 sec., slow: 100 sec.), (memory occupied: small: 1MB, medium: 

4MB, large: 100MB), (Accuracy:1-5 from worst to best). 

ML Algorithm LDA Decision 
trees 

SVM Naïve Bayes KNN Ensemble 

Numerical/ 
categorial 
Predictors 

Numerical (Not 
categorial)  

Both  Both  Both, discrete 
numerical 
values, not 
continuous 

Either 
numeric 
(Euclidean 
distance) 
or 
categorical 
(hamming 
distance) 

Both (except 
subspace 
ensembles of 
discriminant 
analysis 
classifiers 

Binary/multi-class Binary & multi- 
class  

Binary & 
multi- 
class 

Combine 
multiple 
binary 
classifiers 

Binary & 
multi- class 

Binary & 
multi- 
class 

Binary & multi- 
class 

Memory occupied  Small (LDA), 
large (QDA) 

Small  Medium to  
large  
 

Small (simple 
distributions) 
medium 
(kernel 
distributions 
or high-
dimensional 
data) 

Medium to 
large 

Medium to high 
depending on 
the choice of 
classifier 

Speed of 
prediction 

Fast  Fast  Medium  
(linear),   
Slow (non-
linear). 
Depend on 
the number 
of support 
vectors 

Medium 
(simple 
distributions), 
slow (kernel 
distributions 
or high-
dimensional 
data) 

Slow 
(cubic) 
medium 
(others) 

Medium to slow 
depending on 
the choice of 
classifiers 

Fitting speed 
(training time) 

- Fast  Medium  Depend on 
data 
distribution 

Depend on 
data 
dimention 

Medium 
(boosted tree), 
slow (bagged 
tree) 

Interpretability Easy  Easy  Hard (for 
kernel 
function) 

Easy Hard  Hard  

General Accuracy - 2 4 1 (depend on 
dimentions 

2 4 

Better 
performance  

All classes have a 
normal 
distribution, 
classes are 
separatable, and 
large dimensional 
datasets 

Embedde
d with 
the 
hardware 
system as 
low 
memory 
required 

Perform 
better 
when the 
training 
dataset is 
balanced 
(the 
number of 
classes is 
equivalent)  

Small datasets 
with many 
parameters,  
when new 
scenarios need 
to be predicted 
where not 
existed in 
training phase 

Good 
predictions 
in low 
dimensions
, multi-
classes 
prediction 
problem 

When 
predictors 
behave 
nonlinearly 
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2.8 Applications of Machine Learning in Cattle and Sheep behaviour 

Apart from lameness detection studies that were discussed earlier (Section 2.2), the 

classification research studies of cattle and sheep behaviours that might intersect with the 

current research topic as some monitored behaviours relate to lameness detection; for example, 

lame walking or neck activity. However, the classification of other behaviours based on 

analysing data derived from a motion-sensor attached to a farm animal using ML is briefly 

reviewed in the following sections (it might intersect with aforementioned studies in Table 

2-7).  

 

2.8.1 Discriminant Analysis (DA)  

DA is a statistical technique dependent on finding a linear combination among predictors to 

separate the space of continuous measurements of input data into classes according to linear 

hyperplane decision boundaries (Osisanwo et al., 2017; Kotsiantis, 2007). Linear DA can be 

extended to quadratic QDA when the decision boundaries are changed to be non-linear. 

Furthermore, DA could be used either for dimensional reduction of the input features space 

(Marais et al., 2014) or for behavioural classification in targeted species. Table 2-9 lists the 

main studies which implement LDA or QDA to identify various animal behaviours.  

 
Table 2-9 Research studies use LDA classifier to investigate livestock behaviour. 

References Sensor type No/Animal Sensor 
location    

Classifier used Classified behaviour 

(Umstätter et 
al., 2008) 

GPS, tilt sensor 10 sheep 
(2 sites) 

Neck LDA, 
Classification tree, 
developed DT 

Active and inactive 

(Watanabe 
et al., 2008) 

3-axis MEMS 
accelerometer  

1 cow Under 
the jaw 

QDA eating, ruminating and 
resting 

(Marais et 
al., 2014) 

3-axis accelerometer  5 Sheep  Neck LDA, QDA Lying, standing, walking, 
running and grazing 

Van De 
Gucht et al., 
(2017) 

Pressure mat 
 

45 cows On the 
floor 

LDA discriminate among non-
lame, mildly lame or 
severely lame 

(Giovanetti 
et al., 2017) 

tri-axial 
accelerometer 

3 sheep Under 
the jaw 

DA grazing, ruminating and 
resting 

(le Roux et 
al., 2017) 

GPS, 3-axis 
accelerometer 

5 Sheep,  
3 
rhinoceros 

Neck LDA Lying down, standing, 
walking, running and 
grazing. 

(Radeski and 
Ilieski, 
2017) 

3-axis accelerometer 13 sheep 
(10 ewes, 3 
rams) 

Left 
hind leg 

DA Gait (walking, trotting, 
galloping), posture 
(standing, lying) 

(Guo et al., 
2018) 

3-axis accelerometer, 
3-axis gyroscope, 3-

3 sheep Neck LDA Grazing and non-grazing  
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axis magnetometer 

(Barwick et 
al., 2018a) 

3-axis accelerometer 5 sheep 
(ewe) 

Neck, 
ear, leg 

QDA Grazing, standing, lying, 
and walking 

 

2.8.2 Decision Trees (DT) 

Decision Tree (DT) or Classification and Regression Tree (CART) is a well-known ML 

classification technique used to predict qualitative or quantitative responses, respectively. DT 

or CART classifies the training observation according to a multi-stage process, where the input 

data are recursively divided into sub-groups according to a splitting criterion (Hartley, 2014; 

James et al., 2013). The qualitative response represents the most commonly occurring class 

within the sub-group of the training dataset, while the quantitative response refers to the mean 

response of the training observation of that sub-group (James et al., 2013).  

 

The splitting process follows splitting criteria like entropy or Gini index (to be discussed in 

Section 3.7.1) to sort each sub-group of (attributes or predictors) according to its class from the 

set of output classes (Sharma et al., 2013; Wu et al., 2008). Each node in the tree flowchart 

represents an attribute or feature in an instance (data point/record), every branch is a testing 

output of splitting criteria, and every leave node is a class label (Razavi and Kurfess, 2003; 

Sharma et al., 2013).  

 

DT outperform other ML classification techniques (Table 2-8) due to its affordable features 

such as (Valletta et al., 2017; Tan et al., 2005; James et al., 2013)  

A. DT deal with the missing data point.  

B. DT does not require a pre-knowledge of data distribution, whether parametric or not.                                                      

C. DT could be used to generate classification rules directly.  

D. DT is a computationally inexpensive technique to train, evaluate and store.  

E. DT is robust to outliers and the presence of noise.  

F. It could handle both input data type (numerical and categorical).  

G. It can be represented graphically, and no effort needed to be interpreted. 

 

However, the final accuracy of the tree could be affected by irrelevant attributes as might have 

been chosen accidentally for tree growth of the classification task. Thus, the feature selection 

process is crucial to select only the most relevant attributes to improve accuracy. Alternatively, 
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a post-pruning process could be performed to reduce tree size and improve accuracy (Tan et 

al., 2006). 

 

DT has been widely used in the field of livestock behaviour classification into such behaviours 

that might relate to welfare issues (see Table 2-11). Due to the comprehensive approach of DT, 

it could simulate a simple human decision-making procedure of ‘if-else rules’ that test a pre-

defined threshold value to make a decision. For example, the ‘if-else decision tree’ is developed 

in some literature Table 2-10 to classify the locomotion of a cow. The ‘if-else rules’ of the 

decision tree is applied, when the need for data to be processed in the sensor node itself is 

necessary, as it is a computationally inexpensive rule-based approach.  

 
Table 2-10 Research studies develop rule-based approaches from DT for livestock behaviour. 

References Sensor type Animal Sensor 
location    

Analysis approach Classified 
behaviour 

(de Mol et 
al., 2009) 

2D 
Accelerometer 

6 cows right hind 
leg + neck   

linear interpolation 
all measurements of Acc 
transformed to angles 

Lying, standing  

(Nielsen et 
al., 2010) 

IceTag3DTM   
accelerometers 

10 
cows 

hind limbs 
(2 Acc) 

IceTagAnalyzer software Walking, 
standing 

(de Mol et 
al., 2011) 

3D 
Accelerometer 

3 cows Right and 
left hind 
leg (2 Acc) 

Two-step method: tilt sensing 
(standing), threshold testing 
(standing-walking)  

Lying, standing 
or walking 

(Apinan et 
al., 2015) 

3-axis analog 
accelerometer 
(1 Hz) 

- Around leg Two-step algorithm: the 
magnitude of each axis (lying), 
variance of Y-axis  (standing, 
walking-grazing) 

Walking-grazing, 
standing, lying 

(Khanh et 
al., 2016) 

3D- 
accelerometer 
(Arduino kit) 

cow Neck  Develop 2 thresholds DT depend 
on mean of a static component of 
y-axis and Vedba  

Lying, standing, 
feeding 

(Khanh et 
al., 2018) 

3-axis 
accelerometer 

cow Neck A multi-stage classification tree 
is embedded into MCU, 
evaluation  

Lying, standing, 
feeding, drinking 

 
Table 2-11 Research studies use DT technique to investigate livestock behaviour. 

References Sensor type No/Animal Sensor 
location    

Classifier 
used 

Classified behaviour 

(Nadimi et 
al., 2008) 

2-axis 
accelerometer 

4 cows  Neck  DT Active and inactive 

(Robert et 
al., 2009) 

3-axis 
accelerometer 

15 beef 
calves 

Right 
rear leg 

Classification 
tree 

Lying, standing, walking, the 
transition between activities 

(Vázquez 
Diosdado et 
al., 2015) 

GPS, 3-axis 
accelerometer 

6 cows Neck  DT, k-means, 
HMM, SVM 

Lying, standing, feeding, 
transitions between standing 
and lying 

(González et 
al., 2015) 

GPS, 3-axis MEMS 
accelerometer, 3-
axis magnetometer 

4 group 
each of it 
11 steers 

below 
the neck 

DT Foraging, ruminating, 
travelling, resting, scratching, 
head shaking, grooming 
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(Alvarenga 
et al., 2016) 

Tri-axial 
accelerometer  

10 sheep Under 
the jaw 

DT Grazing, lying, running, 
standing and walking 

(Tamura et 
al., 2019) 

3-axis 
accelerometer 

38 cows Neck  Decision tree Eating, rumination, and lying  

 

2.8.3 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a non-probabilistic classifier which maps input data features 

into high-dimensional feature space; where each dimension belongs to a classification feature, 

of two classes. The two-class datasets are separated by one hyperplane that produces the best 

accuracy among many other existing hyperplanes in the high dimensional input space. SVM 

learning can guarantee the best fit function that maximises the margins between two classes 

(Wu et al., 2008). Fundamentally, SVM is a binary classifier; however, it can be extended to 

deal with a multi-class problem when one class is considered against all other classes (one-

versus-all) or against one other class (one-versus-one) (James et al., 2013).   

 

Good accuracy of the SVM classifier could be obtained when the data points can be separated 

linearly. However, a transformation into high dimensions data (kernel transform) could be an 

alternative to quantify the linear decision boundary (Mathworks, 2016). One advantage that 

SVM classifiers could find is the best classification function, the high accuracy results might 

be obtained from the SVM learning process. Moreover, overfitting might be prevented when 

the SVM classifier is applied. Conversely, the SVM is computationally expensive as it requires 

a large amount of training time, storage space, and extra effort for the result’s interpretation is 

needed among other classifiers (Sharma et al., 2013; Nathan et al., 2012). In addition, SVM 

might have a limited success rate when it is applied to imbalanced datasets when one class 

exceeds other classes in the training dataset (Ganganwar, 2012).  

 

The SVM classifiers are implemented in the field of livestock behaviour to classify various 

behaviours or detect welfare issues. In addition to research studies priorly mentioned in Table 

2-7, Table 2-12 briefly explores the other research studies in the field of livestock behaviour 

that implements SVM for their experiment.  
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Table 2-12 Research studies use SVM classifier to investigate livestock behaviour. 

References Sensor type No/Animal Sensor 
location    

Classifier used Classified behaviour 

(Martiskainen 
et al., 2009) 

Three-dimensional 
accelerometer 

30 cows Neck  Multi-class 
SVM 

standing, lying, ruminating, 
feeding, the normal and lame 
walking, lying down, and 
standing up 

(Alsaaod et 
al., 2012) 

ALT-pedometer 30 cows Ankles  SVM, RBF-
Kernal 

Non-lame and lame 

(Benaissa et 
al., 2017) 

3-axis 
accelerometers 

16 cows Leg, 
neck  

SVM, KNN, 
NB 

Lying, standing, feeding 

(Haladjian et 
al., 2018) 

3-axis linear 
acceleration, 3 axis 
orientation  

10 cows hind left 
leg 

One class-
SVM 

Normal and abnormal (lame) 
cow stride 

(Mansbridge 
et al., 2018) 

3-axis 
accelerometer, 3-
axis gyroscope 

6 sheep Ear, 
collar 

RF, SVM, 
KNN, 
Adaboost  

Grazing, ruminating, non-
eating  

 

2.8.4 K-Nearest Neighbour (KNN) 

KNN is a statistical ML technique where the tested object is classified based on the closest 

training data point in the space of input features (Sharma et al., 2013). In the KNN method, no 

explicit training for the input features is required. Instead, the class of the target object is 

assigned according to the majority class of the much closest data points. The majority votes for 

noisy examples outweigh when a pre-defined value of k is small which may yield a high 

misclassification error. On the other hand, too many points from other neighbourhood classes 

may be included when the k value is set to be too large (Wu et al., 2008; Sharma et al., 2013). 

Distance metrics; for example, Euclidean, could be used to calculates the best nearest 

neighbour (Mathworks, 2016). KNN has been used in animal behaviour classification as it is 

illustrated briefly in Table 2-13.   

  

Table 2-13 Research studies use KNN classifier to investigate livestock behaviour. 

References Sensor type No/Animal Sensor 
location    

Classifiers used  Classified behaviour 

(Smith et al., 
2016) 

GPS, 3-axis 
accelerometer, 3-axis 
magnetometer, pitch 
& roll  

24 cows Neck 
collar 

SVM, LR, KNN, 
RF 

Grazing, walking, 
ruminating, resting, 
others  

(Benaissa et 
al., 2017) 

3-axis accelerometers 16 cows Leg, 
neck  

SVM, KNN, NB Lying, standing, feeding 

(Mansbridge 
et al., 2018) 

3-axis accelerometer, 
3-axis gyroscope 

6 sheep Ear, 
collar 

RF, SVM, KNN, 
Adaboost  

Grazing, ruminating, 
non-eating  

(Kleanthous 
et al., 2018), 
Dataset from  

3D accelerometer, 3D 
gyroscope  

4 goats, 2 
sheep  

Various 
positions 
of neck 

MLP, RF, KNN, 
Extreme Gradient 
Boosting 

Grazing, lying, 
scratching or biting, 
standing, walking 
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(Kamminga 
et al., 2017)  

collar (XGBoost)  

 

2.8.5 Ensemble Classifier (EC) 

Ensemble classifier (EC) is a predictive model where multiple classification models; called 

weak learners, are combined to produce one optimal model that would increase the predictive 

quality of a classification task. Although EC has been used to aggregate several DT classifiers 

to enhance the overall accuracy and reduce the variance of the training dataset (James et al., 

2013), EC does not pertain to DT only. When the same classifiers are used in EC, it is called 

homogenous Ensembles; otherwise, it is named heterogenous Ensemble when a different type 

of classifiers are used (Smolyakov, 2017).   

 

Three common techniques of ensemble classifier where DT is employed as a weak learner are 

discussed in the following sub-sections.  

2.8.5.1 Bagging or Bootstrap Aggregation  

In bagging or bootstrap aggregation, smaller repeated samples; called replicas or bootstrap 

samples, are generated from the training dataset where DTs are grown on replicas to be all 

aggregated at the end of the training process. The final prediction of the ensemble classifier is 

measured by either averaging all the predictions produced from independent trees in regression, 

or by voting the most commonly occurring class of the predictions in classification (James et 

al., 2013; Smolyakov, 2017). 

2.8.5.2 Random Forest (FR) 

Random Forest is identical to Bagging technique where the dataset is divided into replicas; 

however, some level of differentiation could be achieved in RF. Basically, in Bagging 

technique, each replica has the same input features (predictors) to be trained by a single DT. 

Conversely, each replica in RF has a different group of input features with a replacement that 

is chosen by RF according to a random selection following the same distribution for all trees 

in the forest (Lutins, 2017b; Breiman, 2001). 

 

As an advantage of the RF, it overcomes the problem of highly correlated trees in EC that might 

occur when using Bagging, as each tree has the same input parameters rather than in RF where 

a different group of predictors are used for each tree. Hence, the average variance of different 
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trained models; due to the variations in the input feature, is better than the average variance of 

similar trained models because of the similarity in the input parameters (James et al., 2013).  

2.8.5.3 Boosting 

Boosting involves the same idea of Bagging except that, the trees are constructed sequentially 

depending on the information (e.g. feature importance) from previously grown trees where 

each tree is trained according to a modified version of the original dataset instead of using 

bootstrap samples (James et al., 2013). A higher weight is assigned to misclassified examples 

(to be focused by the next learner), while a lower weight is given to correctly classified 

examples from the previously trained tree. As a result, the stronger classification in the current 

stage is re-allocated with a higher weight and so on (Grover, 2017). Therefore, the strong 

learner is obtained by iteratively adding trees and adjusting the weight of each tree to enhance 

the accuracy of EC (Mathworks, 2016). Thus, the final prediction of the Boosting ensemble is 

obtained either through a weighted majority vote in the classification task, or a weighted sum 

in the regression task (Smolyakov, 2017).  

 

Because the growing of trees in Boosting ensemble takes into account the information from 

previously built trees, it results in a better performance when compared with RF as a smaller 

number of trees would be sufficient to achieve the optimal accuracy with a good level of 

interpretability (James et al., 2013). 

 

Boosting can be applied to various techniques such as:  

1. Adaptive Boosting (AdaBoost) where a Decision Stump is used as a weak learner in 

Boosting ensemble that performs one level of splitting (depth of the tree is one). 

AdaBoost tries to improve the areas where the base learner fails by working on perfectly 

fitting every point. However, one drawback could be noticed that AdaBoost is affected 

by outliers and noisy data as it works to fit every point in training data (Gandhi, 2018). 

2. Gradient Boosting (GBoost) is based on Gradient Descent optimisation problem to find 

the local optima of a function. It is similar to AdaBoost where each Decision Stump 

tries to fit every point, but it differs in that for each iteration a decision stump is trained, 

a loss function is computed to be optimised sequentially until reaching a minimised loss 

function. The loss represents the difference between the actual and predicted value 

which are called residuals (Lutins, 2017a; Gandhi, 2018). 

3. Extreme Gradient Boosting (XGBoost) follows a similar principle of GBoost; however, 
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Newton’s method is applied to provide a direct route to the minima instead. Generally, 

XGBoost is faster and higher in performance when compared to GBoost, while GBoost 

has a wide range of applications (Nielsen, 2016).  

 

Some studies on livestock’s behaviour exploit the use of Ensemble Classifier for various 

behaviours, a brief summary is given in Table 2-14. 

 
Table 2-14 Research studies use Ensemble techniques to investigate livestock behaviour. 

References Sensor type No/Animal Sensor 
location    

Classifiers used  Classified behaviour 

(Dutta et al., 
2015) 

3-axis accelerometer, 
3-axis magnetometer 

24 cows Neck  Bagging, random 
subspace, 
AdaBoost 

Grazing, searching, 
ruminating, resting, 
scratching 

(Wang et al., 
2018) 

3-axis accelerometer,  
GPS 

5 cows Leg tag AdaBoost  feeding, standing, lying, 
lying down, standing 
up, normal walking, and 
active walking 

(Mansbridge 
et al., 2018) 

3-axis accelerometer, 
3-axis gyroscope 

6 sheep Ear, 
collar 

RF, SVM, KNN, 
Adaboost  

Grazing, ruminating, 
non-eating  

(Kleanthous 
et al., 2018) 
The dataset 
from 
(Kamminga 
et al., 2017) 

3D accelerometer, 3D 
gyroscope 

4 goats, 2 
sheep  

Various 
positions 
of neck 
collar 

MLP, RF, XGBoot, 
KNN 

Grazing, lying, 
scratching or biting, 
standing, walking 
 

 

2.9 Gap in literature  

While the overall goal of current research is to develop a predictive model to indicate the lame 

status of sheep as early as possible to prevent the disease from being spread all over the flock, 

monitoring sheep behaviour and gathering useful movement measurements are the first step 

towards achieving this goal.  

 

Although the number of published studies that validate the application of sensor technology to 

categorise and quantify sheep behaviour has increased recently (Fogarty et al., 2018), only a 

few studies (Section 2.4) utilise sensor technology to detect lameness in sheep (Barwick et al., 

2018b) in Australia, (Vazquez Diosdado et al., 2018) in Nottingham/UK, and the earlier 

research output (Al-Rubaye et al., 2018) in Northampton/UK.   

 

Moreover, exploiting ML techniques for the advantage of lameness detection is another 

desperate shortage in the field of knowledge. Therefore, the idea of fruitful collaborative work 
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to employ the ML principals from computer science for the advantage of animal welfare 

science (sheep welfare) of the current research study would fill the gap and enrich the field 

with promising outcomes.    

 

2.10 Chapter Summary  

Initially, lameness is detected by trained observers using a scoring system. Alternatively, 

automatic lameness detection is introduced due to its reliability, speediness, and objectiveness 

compared to the traditional scoring system. Automatic sensing includes sensors located in a 

fixed place on the farm (Section 2.3.1.1) or a motion sensor attached to the animal's body 

(Section 2.3.1.2).  

 

The motion-based sensors are attached to the animal's body to measure the locomotion activity 

for body, leg, or neck. IMU sensors where readings from different sensors can be obtained at 

the same time. IMU sensors attached to the animal body are widely used to extract the 

behavioural status of livestock animals that might relate to lameness; for example, lying, 

standing, walking behaviours that have shown a relationship with lameness indication in 

literature.  

 

Due to the myriad of acquired sensor-based data (IMU), ML techniques are investigated for 

cattle and sheep to develop predictive models to classify various behaviours or lameness 

detection. However, the ML techniques are widely implemented to classify different livestock 

behaviours (Section 0) which will contribute to developing PLF and Smart farming in the near 

future. On the other hand, exploiting ML to detect lameness in sheep (Section 2.9) would lack 

research studies involving validated experiments, developed models and even data collection 

tools.  
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3 Chapter Three: Building a Data Mining Methodology for Sheep 

Lameness Detection (SLDM) 
 

3.1   Introduction 

Sheep lameness detection is not a straightforward task; however, many challenges are 

addressed, and several requirements need to be met in order to build such an efficient model to 

detect lameness in sheep; especially in its early stage

 

A data mining methodology is constructed to convert the raw data (sheep acceleration 

movements) into useful information (lameness alarm or indicator) that would contribute to 

smart farming and PLF to be beneficial in the near future. Basically, each data mining task 

includes three stages; pre-processing (e.g. cleaning, filtering, feature extraction), developing a 

learning model (e.g. DT, Ensemble), and post-processing stage (e.g. visualisation, pattern’s 

interpretation) (Tan et al., 2005). However, each step consists of internal sub-steps, which are 

discussed later in this Chapter. The main stages for developing a Sheep Lameness Detection 

Model (SLDM) are depicted in Figure 3-1.  

 

 
Figure 3-1 Development Stages for Sheep Lameness Detection Data Mining Approach. 

 

The built model could control the spread of disease among the flock and assist the shepherd in 

spotting the lame sheep without further monitoring’s hours. This Chapter includes the practical 

steps taken towards constructing a data mining methodology that suits sheep data as there is no 

data mining method which fits all types of data in the world. However, an introductory section 
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about Android-powered sensors; which are used in this research, is presented first in Section 

3.2. Then, it is followed by Sections 3.3 and 3.4, which examine how the data are being 

collected and aggregated from the real-world farm. Afterwards, Section 3.5 explores the data 

pre-processing stages to prepare the sheep data for the classifier. Section 3.6 explores the 

feature selection methods that are applied to sheep datasets. Then, the selected features feed 

the CART decision tree, which is the core classifier in building SLDM, where its characteristics 

are illustrated in empirical steps in Section 3.7. The validation methods applied to test the 

developed system are explained in Section 3.8. Finally, the Chapter is closed with a brief 

summary in Section 3.9.  

 

3.2 Android-powered Sensors 

In this research, an Android-powered mobile device is used to serve the purpose of data 

collection as it has built-in sensors to measure various motion activities and device orientation 

in high precision and accuracy with three-dimensional measurements (Android Developers, 

2019c). Android platforms support three broad categories of sensors, including motion, 

position, and environmental sensors, refer to Table 3-1. Several sensors are hardware-based 

sensors which are physical components built into a device such as an accelerometer, gyroscope, 

and magnetometer, that are capable of deriving their measurements directly from a specific 

property. On the other hand, software-based sensors or virtual sensors are not physical parts; 

however, they mimic hardware-based sensors and derive their data from one or more mixed 

hardware-based sensors such as orientation, linear acceleration, and gravity sensors (Android 

Developers, 2019c). 

 

Table 3-1 Sensor categories that are supported by Android platforms (* refer to hardware-sensors). 

Sensor 
Category   

Sensor include   To measure   Sensor used in 
research  

Unites  

Motion  Accelerometer* 
Gyroscope*   
Gravity  
Linear acceleration  

acceleration forces and 
rotational forces 

Accelerometer* 
Gyroscope*   
 

m/s2 
Rad/s 

Position  Orientation 
Magnetometers* 

physical position of a device Orientation 
(Pitch, Roll, 
Azimuth) 

degree 

Environmental Barometers, 
Photometers 
Thermometers 

Ambient air temperature, 
pressure, illumination, and 
humidity 

Not used in 
research 
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3.2.1 Android Coordinate System 

The android coordination system is defined relative to the screen when the device is set in its 

default orientation where the x-axis is horizontal and points to the right, the y-axis is vertical 

and points upwards, the z-axis is perpendicular and points to the outside of the screen’s face 

(to the sky) Figure 3-2. It is worth mentioning that the orientation system in aviation differs 

from the Android system (Android Developers, 2019b) as shown in Figure 3-2. Furthermore,  

the coordination system of an Android device does not swap when the device's screen 

orientation is changed (Android Developers, 2019b).   

(a) (b) 

Figure 3-2 Natural coordinate system of Android device(a) vs default aviation orientation system (b). 

 

3.2.2 Basic Android Sensors Definition 

In this research study, the focus has been on three basic types of sensors: accelerometer, 

gyroscope, and orientation sensors. The first two sensors are hardware-based sensors while the 

orientation sensor is a software-based one. The following sub-sections explore the definitions 

of those sensors which would lead to a better understanding of their functioning on three-axis 

and its application to identify sheep lameness status.  

3.2.2.1 Accelerometer (𝑨𝒄𝒄):  

𝐴𝑐𝑐 measures the object’s acceleration beside the force along each axis. Positive acceleration 

is obtained when the device (in its natural position) moves towards the right, forward, and up 

for x, y, and z, respectively (Figure 3-2 a). Negative acceleration is obtained doing the opposite.  

Acceleration includes the gravity (static acceleration component) and linear acceleration (a 

dynamic component of acceleration without gravity). Equ 3-1 measures acceleration involving 

both linear acceleration 𝐴𝑐𝑐𝐿𝑖𝑛 and gravity. 

Pitch 
Roll 

Azimuth 

y   z 

      x 
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Where 𝐴𝑐𝑐 is the acceleration along any axis, 𝐴𝑐𝑐𝐿𝑖𝑛 is the linear acceleration excluding 

gravity, and 𝑔 is the force of gravity (in case of stability, g= -9.81 m/s2). For example, the z- 

acceleration reading of non-moving object (where 𝐴𝑐𝑐_𝑧 supposed to equal 0) does not equal 

to zero; however, it is approximately equivalent to 𝐴𝑐𝑐_𝑧 + 9.81 m/s2 as [𝐴𝑐𝑐_𝑧 =  0 −

 (−9.81) = 𝐴𝑐𝑐_𝑧 + 9.81]. So, the acceleration readings need to be filtered to exclude gravity 

(Android Developers, 2019d) as a pre-processing step before the classification task is 

performed refer to Section 3.5.2.3.  

3.2.2.2 Gyroscope (𝑮𝒚𝒓): 

𝐺𝑦𝑟 measures the speed of rotation (angular velocity) around each device’s axes in 

radius/second. 𝐺𝑦𝑟 follows the same coordinate system of 𝐴𝑐𝑐 (Figure 3-2 a). The positive 

rotation is obtained in a counter-clockwise direction. This definition is not the same as the Roll 

angle used by the orientation sensor (Android Developers, 2019e). 𝐺𝑦𝑟 could be used in 

combination  with 𝐴𝑐𝑐 to produce more accurate motion and direction sensing via integration 

of 𝐺𝑦𝑟 within a 3D space (Ustev, 2015).   

3.2.2.3 Orientation (𝑶𝒓𝒊𝒆𝒏𝒕):  

𝑂𝑟𝑖𝑒𝑛𝑡 measures the device’s orientation in degrees relative to the earth’s magnetic north pole. 

The orientation angles are calculated by combining accelerometer and magnetometer sensors 

(Android Developers, 2019a). The orientation includes three angles Azimuth, Pitch, and Roll 

that measure the degree of rotation about z, x, and y axes, respectively (Figure 3-2 a).  

 

1- Azimuth (degree of rotation about the z-axis): measures the angle between the direction 

of the device’s current compass and the magnetic north. Azimuth is equal to 0˚ when 

the top edge of the device faces the North, while it equals 180˚ when the top edge faces 

South. Conversely, Azimuth equals to 90˚ and 270˚ when the top edge of the device 

faces East and West respectively.  

2- Pitch (degree of rotation about the x-axis): measures the angle between the top edge of 

device in its natural orientation and the ground. In this case, a positive pitch angle is 

obtained, while the tilt in the opposite direction measures a negative pitch angle. The 

range of pitch angle is between -180˚ to 180˚. 

𝐴𝑐𝑐 = 𝐴𝑐𝑐𝐿𝑖𝑛 + 𝑔 Equ 3-1 



CHAPTER THREE: Building a Data Mining Methodology for Sheep Lameness Detection 
(SLDM) 
 

54 
 

3- Roll (degree of rotation about the y-axis): measures the positive roll angle when the left 

edge of the device is in its natural position tilting towards the ground; oppositely, the 

negative angle is measured when the direction of the right edge tilts towards the ground. 

The range of roll angle is between -90˚ to 90˚. 

 

3.3 Data Collection Process 

A Galaxy S4 Android 5.0 mobile device was chosen to be a prototype sensor tool for collecting 

movement measurements from sheep due to its own ubiquitous variety of built-in sensors. 

Thus, no hardware needs to be developed to serve the purpose of data collection. However, the 

focus of the current research is on the analysis of sensor-based data not on developing a 

hardware sensor.  

 

Furthermore, utilising IMU sensors in smartphones was previously suggested for monitoring 

cattle behaviour in the literature (Andriamandroso et al., 2014; Andriamandroso et al., 2015; 

Andriamandroso et al., 2017; Debauche et al., 2017). This idea supports the area of developing 

PLF as massive collected data being sent to the cloud (Debauche et al., 2018) either to be 

gathered with other data sources or to be processed for the sake of decision making to inform 

the farmer via a phone application. However, the limitation could occur in battery drainage, 

energy consumption, memory storage, and communication method.  

 

3.3.1 Data Collection Location and Challenges 

The data collection experiments were conducted at the University of Northampton/ Moulton 

College Lodge Farm, Northamptonshire, United Kingdom (52°18'02.7"N 0°51'56.8"W) 

52.300755, -0.865783. Therefore, the ethical approval and risk assessment request to visit the 

Lodge Farm was authorised by the Moulton College research committee in April 2016. See  

Appendix A for the signed document.  

 

To overcome some challenges when data were being collected (Figure 3-3), special farm 

clothes and waterproof boots were required to be worn during the data collection stage to meet 

the security and safety conditions on the Farm. Moreover, it was not a trifling procedure to 

catch, chase, and deal with sheep while deploying the sensor. So, a special Induction day was 

given on 14 April 2016 to get familiar with the environment. Importantly, an additional hand 
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was required to help with the data collection. Thus, authorised access to the Farm was obtained 

for the researcher’s husband to enter the farm and help in the data collection process. The last 

challenge was to keep the sensor in a fixed location around the sheep’s neck; therefore, a plastic 

clip was used to keep the sensor stable on the sheep’s neck. Figure 3-3 reflects the data 

collection process at Lodge Farm in Moulton College. 

 

 
(a)  

 
(b) 

(c) 
 

(d) 

Figure 3-3 Data Collection at Lodge Farm (a) custom wear, (b) data collection assistant, (c) sensor 
fixer, (d) video recording process.  

 

3.3.2 Sensor Deployment at Lodge Farm  

In the real-world experiment of data collection, the sensor device was kept in a sport mobile 

phone case that had a visible plastic cover to resist severe environmental conditions such as 

rain, muddy soil, or scratches by other sheep in the flock.  The wearable collar was attached to 

the neck where the surface of the device faced the sky, and the upper edge pointed to the sheep’s 

head. This position approximately simulates the natural coordinate system (Figure 3-2) of the 
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Android device where the orientation reading would be more reliable if the Roll angle is about 

0˚ (Android Developers, 2019b). Figure 3-4 illustrates the sensor coordination on the sheep 

according to the Android system (which differs from the aerospace system). The Orientations 

of the x, y, and z coordination in this research study were lateral, anterior-posterior, and dorso-

ventral, respectively (Figure 3-4).  

 

The sensor was mounted for each sheep for a period of ten to fifteen minutes, which was 

recommended by other sheep behaviour studies (will explain later) to be adequate to log 

movement data for a sheep while walking to detect mild lame status. This period would 

probably be equivalent to the required period for the observer to identify the lame sheep 

manually. 

 

Video footage was also taken (Figure 3-3 (d)) via Canon or Sony cameras or even by phone 

camera while the movement of an individual sheep was measured to compare with each sheep’s 

status (sound, mild lame, or severe lame) for the purpose of data labelling in the pre-processing 

stage. Unlike behaviour classification research, in this research study, the synchronised 

labelling of sheep behaviour is less important when compared to each sheep’s common status 

of lameness or sound.   

 

 
Figure 3-4 Sensor deployment at Lodge Farm with its orientation. 
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3.3.3 Sensor Reading Applications  

Three types of sensor applications were used to retrieve the movement and orientation 

measurements from sheep in various data collection occasions. In each application, a different 

setting was applied; such as sampling rate, the type of sensors activated during the experiments, 

the number of sheep deployed with the sensor, and the dedicated sheep class (sound, mild or 

severe lame) that were already spotted by the skilful shepherd ‘Tim Perks’ who has lived and 

worked in Lodge Farm for more than 30 years. The following sub-sections explore the type of 

retrieval application used in this research study.  

3.3.3.1 Sheep Tracker 

Sheep Tacker is a specially designed application (Ghendir, 2016) which serves the purpose of 

collecting data in three dimensions from Accelerometer, Gyroscope, and Orientation. In 

addition to Latitude, Longitude, Date and Time. The sampling rate was 5 Hz, which means 5 

readings per second were obtained for 3-axes of each sensor. Consequently, nine predictors 

were utilised for the classification task of 3 axes readings for each 𝐴𝑐𝑐, 𝐺𝑦𝑟, and 𝑂𝑟𝑖𝑒𝑛𝑡 

sensors; whereas, the position predictors (latitude and longitude) were neglected in this study 

as the aim is to detect sheep lameness with as few predictors as possible for the process. The 

collected data file was automatically stored in the device storage in both Excel and Text file 

format (Figure 3-5).  

 

 
(a) 

 
(b) 

Figure 3-5 Sheep Tracker sensor (a), an example of collected data in Excel file format (b). 
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The data collected through this type of sensor were gathered from two attempts on two 

different days. The first trial was done on June 2016 where 10 sheep were equipped with the 

sensor (once at a time) for 10-15 minutes to test the device and look at the collected data in its 

first trial. From the collection of 10 sheep, two sheep were prepared for the next step (one 

mildly lame, the other sheep was sound) Table 3-2. The remaining 8 sheep’s data files were 

only explored for getting the first impression of how the data would look like and has been 

excluded from the next steps.  

 

A second visit to Lodge Farm was on September 2016 where 23 sheep were attached with the 

sensor for the approximately same period of the first attempt. Only data from 22 sheep were 

prepared for the next step due to the 4th sheep getting an empty data file at the end of the 

experiment. 14 sheep were mild to severely lame, while the other 8 sheep in the tested group 

were sound. Table 3-2 explains the metadata of both attempts with the Sheep Tracker sensor. 

At the end of the experiments, the stored files in the mobile storage were transferred to a 

computer device for pre-processing and analysis.  

 

Table 3-2 Metadata for data collected from Sheep Tracker sensor at 5 Hz sampling rate.  

Attempt 
No.  

Date # Sheep in each 
experiment  

Datalo
g time  

Sensor readings 
of interest 

No. of reading 
records (rows) 

# Sheep considered 
for the next step 

1st  
attempt 

13 
June 
2016 

10 sheep (sound 
& lame) 

≈ 10 
mins  

Acc, Gyr, and 
Orient 

5 Hz ×10 mins 
×60 sec.=3000 
readings 

2 sheep (sound and 
mildly lame), other 
files for a prior test 
only 

2nd  
attempt 

23 Sep. 
2016 

23 sheep (8 
sound, 15 mild 
to severely 
lame) 

5 to 10 
mins. 

Acc, Gyr, and 
Orient 

5 Hz ×5 or 10 
mins ×60 
sec.=1500 to 
3000 readings 

22 sheep (8 sound, 
7 mildly lame, 7 
severely lame), one 
empty file 

Total 
obtained 
sheep 
and their 
class 

  5 Hz   24 sheep (9 sound, 
8 mildly lame, 7 
severely lame) 

 

3.3.3.2 SensoDuino 

SensoDuino is a free Android application which can log and transmit Android built-in sensor 

readings to the Arduino controller or any other Android device via Bluetooth HC-05 module 

(Bitar, 2013). Many different motion and environmental Android sensors can be recognised by 

SensoDuino which includes hardware-based sensors (Accelerometer, Gyroscope, and 

Magnetometer) as well as a software-based sensor (Orientation, Linear acceleration, Gravity, 
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Rotational vector) besides other sensors such as GPS, Pressure, Humidity, Temperature, 

Proximity, Light and Audio level sensors. Although several sensors of SensoDuino were 

activated in the sheep’ data collection experiments, the only considered sensor readings for the 

next pre-processing stage were Accelerometer (𝐴𝑐𝑐), Gyroscope (𝐺𝑦𝑟), Linear accelerometer 

(𝐴𝑐𝑐𝐿𝑖𝑛), and Orientation (𝑂𝑟𝑖𝑒𝑛𝑡) for each 3-axes.  

 

SensoDuino can be configured to capture data at every 100 milliseconds to 10 minutes 

according to manufactures limits (Bitar, 2013). However, the sampling rate of SensoDuino in 

the sheep data collection experiments was set to be at 10 Hz. Furthermore, the 4 Hz sampling 

rate was also tried for the same group of sheep (Table 3-3). Thus, 10 readings or 4 readings per 

second were obtained from 3-axes for each activated sensor which resulted in 12 predictors 

(columns) being considered for the next step. At the end of each sheep’s deployment with 

SensoDuino, the log data were saved automatically in the phone’s Stick Card into a text file 

that can be read in Excel as a delimited comma format as appears in (Figure 3-6). 

 

 
(a) 

 
(b) 

Figure 3-6 SensoDuino sensor (a), an example of collected data in Text format (b). 

 

The sheep movement data via SensoDuino were collected through three attempts performed 

on more than one visit to Lodge Farm at Moulton College.  

 

The first visit was on 17 January 2017, where 7 sheep participated in the data collection 
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experiment. The sensor was attached around the sheep’s neck for 3-7 minutes (one at a time) 

to retrieve measurements from 𝐴𝑐𝑐, 𝐺𝑦𝑟, 𝐴𝑐𝑐𝐿𝑖𝑛, and 𝑂𝑟𝑖𝑒𝑛𝑡 sensors while the sheep were 

walking on a flat field at 10 Hz sampling rate. The same group of sheep were mounted again 

with SensoDuino set to be at 4 Hz sampling, more details in Table 3-3. Choosing two different 

sampling rates for the same group of sheep would justify the optimal sampling rate for lameness 

detection and how that could affect the classification rate.  

 

The sheep at the time of the first experiment were manually labelled by the expert shepherd at 

Lodge Farm into either purple or green colour to refer to severely lame and mildly lame sheep 

respectively, while the non-labelled sheep represented sound sheep status within the flock, see 

Figure 3-7. Seven sheep participated in the experiment of the first visit with SensoDuino were 

2 severely lame sheep, 2 mildly lame sheep, and 3 sound sheep.  

 

 
Figure 3-7 Manually labelled sheep by the shepherd at Lodge Farm (purple, green, non-labelled 

sheep’s colour refer to severe, mild, and non-lame sheep respectively) 

 

The second attempt for data collection with SensoDuino occurred on 26 September 2017. Like 

the first attempt, the four basic sensors' readings were considered (𝐴𝑐𝑐, 𝐺𝑦𝑟, 𝐴𝑐𝑐𝐿𝑖𝑛, and 

𝑂𝑟𝑖𝑒𝑛𝑡) at a sampling rate of 10 readings per second from each axis. Although the data 

measurements from Gravity and Rotational vector sensors were also obtained during the 

experiment, these data were neglected in developing SLDM process. Eighteen sheep were 
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equipped with SensoDuino (one at a time) for a period of approximately 5-10 minutes. Ten out 

of 18 tested sheep were sound, while the remaining 8 sheep had a different level of lameness 

range from mildly to severely lame (Table 3-3).  

 

During the experiment, the 3rd sheep was tested twice as the first deployment failed because 

the sensor’s collar was unfastened which led to the discarding of the current readings and 

redeploying the sensor to record a new reading to be taken into account. In addition, sheep 

number 12 had two different deployments; one test was executed on a flat field, while the other 

test was done on a grass field rather than a stable yard. The reason for choosing two different 

walking environments for the same sheep (12th sheep) was to justify the rate of classification 

error for the SLDM for the sheep while walking on varied terrain.  

 

The last attempt with SensoDuino conducted on 26 October 2017. It was a day to remember 

as it was not only a visit to collect data; but the BBC ‘The One Show’ team were filming to 

record a report talking about the research of early lameness detection that had been conducted 

at the University of Northampton. The attractive report was prepared by Kevin Duala and 

broadcast on 16 November 2017.  

 

At the same time of recording the report, the data was being collected at Lodge Farm from two 

sheep, one was mildly lame, and the other was sound. So, an extra mobile device was needed 

for this purpose besides the one already being used (Galaxy S4) for the data collection. A 

Galaxy S2 Android 4.1 was mounted on the sound sheep to collect movement data at the same 

setting of SensoDuino; 10 readings were retrieved every second. Unlike the Galaxy S4 Android 

5.0, the Galaxy S2 device does not support the orientation sensors; therefore, no Orient readings 

were collected. Moreover, when the file was read afterwards, only Acc readings were obtained 

along 3 axes (3 predictors) due to a setting error, so there were no 𝐺𝑦𝑟 readings either.  

 

At Lodge Farm, two sheep; one severely lame and one sound, were mounted with one sensor 

each (two devices Galaxy S4 and S2 were used) Table 3-3. While the BBC ‘The One Show’ 

team were recording their report, the data from deployed sensors were logged through the 

whole time which approximately lasted for an hour and a half. Consequently, 2 large data files 

were obtained for each sheep separately due to the long period of recording time at this attempt 

of the data collection. Unfortunately, the sound sheep file was damaged, and only the lame 
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sheep file was prepared for the next step. Afterwards, when the lame file was read, it was 

discovered that there was no orientation data in it; thus only 𝐴𝑐𝑐, 𝐺𝑦𝑟, and 𝐴𝑐𝑐𝐿𝑖𝑛 (9 predictors 

instead of 12) were recorded in this experiment.  

 

On the same day, another Farm was being visited belonging to Richard Harris near to Lodge 

Farm at Moulton College, where the BBC team continued to record footage there. Data were 

collected from two sheep there as well; one mildly lame the other was sound (Table 3-3). After 

roughly equivalent to 1 hour, the large gathered data file from the lame sheep that was mounted 

with S2 device only got 𝐴𝑐𝑐 readings for 3 axes (3 predictors). On the other hand, the sound 

sheep file, which was mounted with S4 got 𝐴𝑐𝑐, 𝐺𝑦𝑟, 𝐴𝑐𝑐𝐿𝑖𝑛, and again no 𝑂𝑟𝑖𝑒𝑛𝑡 readings 

in it; thus, only 9 predictors were obtained.  

 
Table 3-3 Metadata for data collected from SensoDuino sensor at both 10 Hz and 4 Hz sampling rate. 

Attempt 
No.  

Date # Sheep in 
each 
experiment  

Samplin
g rate  

Sensor readings of 
interest 

No. of reading 
records (rows) 

# Sheep considered 
for the next step 

1st 
attempt 

17 Jan.  
2017 

7 sheep (3 
sound, 2 mildly 
lame, 2 
severely lame) 

10 Hz  Acc, Gyr, AccLin, 
Orient (some 
missing readings 
in Gyr) 

2000 - 3000 
readings 

All 7 sheep 

4 Hz Acc, Gyr, AccLin, 
Orient (extra 
readings for Gyr) 

500 – 1400 
readings 

All 7 sheep 

2nd  
attempt 

26 Sep. 
2017 

18 sheep (10 
sound, 5 mildly 
lame, 3 
severely lame) 

10 Hz Acc, Gyr, AccLin, 
Orient  

2500- 4200 
readings 

All 18 sheep 

3rd 
attempt 

26 Oct. 
2017 

4 sheep (1 
lame, 1 sound 
from both 
Farms) 

10 Hz (Acc, Gyr, AccLin, 
no Orient) for 
severely and sound 
sheep.  
(Acc only) for 
mildly lame sheep 

Observed for 1-2 
hr,  
(36000- 72000 
readings) 

3 sheep (1 mildly 
lame, 1 sound from 
Richards Farm), (1 
severely lame sheep 
from Lodge Farm) 

Total 
obtained 
sheep 
and their 
class 

  10 Hz   28 sheep (14 sound, 
8 mildly lame, 6 
severely lame) 

  4 Hz   7 sheep (3 sound, 2 
mildly lame, 2 
severely lame) 

 

3.3.3.3 Sensor Log 

Sensor Log is a free Android application which records sensor data for twelve different sensors 

at the same time in 3 axes. Although the existing application has been updated (GitHub, 2014) 

with some new features, the data was collected via the previous release. So, there were 12 
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output data files that contained each sensor data separately in a CSV format (Figure 3-8). 

Approximately, the readings were obtained every 5.58 seconds. The available sensors were 

Accelerometer (𝐴𝑐𝑐), Ambient_temperature, Gravity, Gyroscope (𝐺𝑦𝑟), Illuminance, 

Linear_acceleration (𝐴𝑐𝑐𝐿𝑖𝑛), Magnetic_field, Orientation (𝑂𝑟𝑖𝑒𝑛𝑡), Pressure, Proximity, 

Relative_humidity, and Rotation_vector. However, only 𝐴𝑐𝑐, 𝐺𝑦𝑟, 𝐴𝑐𝑐𝐿𝑖𝑛, and 𝑂𝑟𝑖𝑒𝑛𝑡 

sensors were involved in the lameness detection process.   

 

 
(a) 

 
(b) 

Figure 3-8 Sensor Log sensor (a), an example of an Accelerometer CSV file (b). 

 

Concurrently with the data collection trial with SensoDuino on 17 January 2017, the Sensor 

Log was also operational for the same number of sheep; 2 severely lame, 2 mildly lame, and 3 

sound sheep to collect data of 𝐴𝑐𝑐, 𝐴𝑐𝑐𝐿𝑖𝑛, 𝐺𝑦𝑟, and 𝑂𝑟𝑖𝑒𝑛𝑡 in 3 axes (see Table 3-4). 

Nevertheless, the collected data were obtained in separate files (3 columns each in addition to 

time), the whole data from 4 sensors were manually combined into one file to form 13 columns 

including a time column.   

 

The variety of sensor applications used with different sampling rates for data collection would 

be necessary for the sake of comparison of sensors’ performance in terms of the most related 

sensor for the early indication of lameness, its accuracy, and the most suitable sampling rate.   
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Table 3-4 Metadata for data collected from the Sensor Log sensor at 5.58 Hz sampling rate. 

Attempt 
No.  

Date # Sheep in 
each 
experiment  

Samplin
g rate  

Sensor readings 
of interest 

No. of reading 
records (rows) 

# Sheep 
considered for the 
next step 

Only one 
attempt 

17 Jan.  
2017 

7 sheep (3 
sound, 2 
mildly lame, 2 
severely lame) 

5.58 Hz Acc, Gyr, 
AccLin, Orient 
(some missing 
readings in Gyr) 

200 - 800 
readings 

All 7 sheep 

Total 
obtained 
sheep 
and their 
class 

     7 sheep (3 sound, 
2 mildly lame, 2 
severely lame) 

 

 

3.4 DataSets Aggregation for Pre-processing Stage 

Data were aggregated according to the similarity of their sampling rate, which yielded three 

final sheep Datasets named as; DataSet1, DataSet2, and DataSet3 and refer to 5 Hz, 10 Hz, and 

4 Hz sampling rates respectively. The combination of the final three DataSets with their sub 

DataSets are listed in  Table 3-5. 

 

The sensors involved in the process of lameness detection were Accelerometer (𝐴𝑐𝑐), 

Gyroscope (𝐺𝑦𝑟), Linear acceleration (𝐴𝑐𝑐𝐿𝑖𝑛), and Orientation (𝑂𝑟𝑖𝑒𝑛𝑡). However, in some 

data collection trails, some sensors readings were missed. Therefore, the missing sensor 

readings like 𝐴𝑐𝑐𝐿𝑖𝑛 and 𝑂𝑟𝑖𝑒𝑛𝑡 readings could be calculated from already obtained 

Acceleration readings (Section 3.5.2.1). 

 

As the aim of the research is to detect the early lameness signs in sheep with less sensor power 

consumption and a smaller set of attributes, the methodology to reach this aim needs to be tried 

with a different combination of DataSet’ characteristics for optimal calculation and accurate 

level of the disease indication. Thus, the only Accelerometer hardware sensor readings aimed 

to be retrieved for the final lameness detection process as the software Orientation sensor (Pitch 

and Roll) sensors readings could be retrieved from Equ 3-2 and Equ 3-3. Furthermore, the 

software Linear accelerometer sensor (𝐴𝑐𝑐𝐿𝑖𝑛) could be calculated from Equ 3-5. 
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Table 3-5 Final Sheep Datasets for the next pre-processing stage (* indicates readings with missing 
values). 

Sheep 
DataSets  

Original 
Source 

Data 
collection 
tools     

Sample 
rate  

Sensor 
manipulated  

Total No. of Sheep 
for the next step 

DataSet1 

a Table 3-2 
(1st + 2nd 
attempts) 

Sheep 
Tracker 

5 Hz 𝐴𝑐𝑐, 𝐺𝑦𝑟, 

𝑂𝑟𝑖𝑒𝑛𝑡 

24 sheep (9 sound, 8 
mildly lame, 7 
severely lame) 

b Table 3-4 Sensor Log 5.58 Hz 𝐴𝑐𝑐, 𝑂𝑟𝑖𝑒𝑛𝑡, 

𝐴𝑐𝑐𝐿𝑖𝑛, 𝐺𝑦𝑟* 

7 sheep (3 sound, 2 
mildly lame, 2 
severely lame) 

DataSet1_all Table 3-2 + 
Table 3-4 

Sheep 
Tracker + 
Sensor Log 

≈ 5 Hz 𝐴𝑐𝑐 + 𝑂𝑟𝑖𝑒𝑛𝑡 
31 sheep (12 sound, 
10 mildly lame, 9 
severely lame) 

DataSet2 

a Table 3-3 
(1st  attempt) 

SensoDunio 10 Hz 

𝐴𝑐𝑐, 𝑂𝑟𝑖𝑒𝑛𝑡, 
𝐴𝑐𝑐𝐿𝑖𝑛, 𝐺𝑦𝑟* 

7 sheep (3 sound, 2 
mildly lame, 2 
severely lame) 

b Table 3-3 
(2nd attempt) 

𝐴𝑐𝑐, 𝐺𝑦𝑟, 
𝑂𝑟𝑖𝑒𝑛𝑡  

18 sheep (10 sound, 
5 mildly lame, 3 
severely lame) 

c Table 3-3 
(3rd attempt) 
BBC 

𝐴𝑐𝑐 only 3 sheep (sound, 
mildly lame, and 
severely lame) 

DataSet2_all 
Table 3-3 
(1st +2nd +3rd 
attempts) 

SensoDunio 10 Hz 𝐴𝑐𝑐 + 𝑂𝑟𝑖𝑒𝑛𝑡 
28 sheep (14 sound, 
8 mildly lame, 6 
severely lame) 

DataSet3 Table 3-3 
(1st attempt 4 
Hz ) 

SensoDunio 4 Hz 𝐴𝑐𝑐, 𝐺𝑦𝑟, 
𝑂𝑟𝑖𝑒𝑛𝑡  

7 sheep (3 sound, 2 
mildly lame, 2 
severely lame) 

DataSet3_all    𝐴𝑐𝑐, 𝑂𝑟𝑖𝑒𝑛𝑡 
7 sheep (3 sound, 2 
mildly lame, 2 
severely lame) 

 

3.5 Sensor Data Pre-processing 

Normally, the real-world data is likely to be imperfect, incomplete, noisy, inconsistent, and 

redundant. At this stage, the importance of data preparation is essential for the next step of data 

mining (García et al., 2016). In KDD, the data-pre-processing is considered as a powerful tool 

to generate more qualitative datasets than the original ones which could significantly enhance 

the data mining process (Zhang et al., 2003). Although the pre-processed dataset is the final 

training set, which is manipulated by the classifier, a time-consuming procedure is undertaken 

to produce this final dataset (Kotsiantis et al., 2006).    

 

There are several methods that have been applied in predictive DM tasks which are reviewed 

by Alexandropoulos et al., (2019). However, the focus of the following sections will be on the 
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methods that are implemented on Sheep DataSets for the purpose of lameness detection. Figure 

3-9 illustrates the steps that are followed to pre-process the Sheep DataSets in order to be 

classified into its class (sound, mildly lame, or severely lame) according to the classifier 

employed.  

 
Figure 3-9 Data Pre-Processing Stages of the Sheep DataSet for Lameness Detection. 

 

3.5.1 Noisy Data Manipulation (Exclude Deployment Time Readings) 

In the Data collection stage, when the individual sheep was caught for deploying the sensor 

within the collar around its neck, the recorded sensor readings at deployment time (the time 

when the sensor was put on and off an individual sheep) were unreliable as the targeted sheep 

could make abnormal movements. Furthermore, the sheep needed time to settle with the new 

attached equipment in order to get into its normal walking pattern. The data gathered at 

deployment time would be noisy and may affect the classification process accuracy. Therefore, 

a chunk of reading records or instances needed to be removed from the final training data set. 

The time that was required to be discarded can be specified by the user (shown in the next 

chapter). The preferred chosen time to discard its sensor readings records was a 3 second period 

as no more data would be neglected for the next stage.  

 

3.5.2 Missing Data Manipulation  

Some sensor data are missed in the data collection process as it is clearly illustrated in Table 

3-5. Orientation sensor readings are totally missed in DataSet2_c while Gyroscope readings 

are partially missed in DataSet1_b, DataSet2_a, and completely missed in DataSet2_c. Thus, 
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the following subsections provide solutions to these raised issues due to the data collection 

process.  

3.5.2.1 Calculating Pitch and Roll from Accelerometer 

As mentioned earlier, Accelerometer is a hardware-based sensor whose data is already 

collected through the data collection step. However, the readings measurements for the 

software-based sensors like Pitch, Roll could be directly derived from the Accelerometer. In 

order to save the battery drainage of the sensor attached to the sheep for lameness detection, 

the retrieving sensor readings could be reduced by calculating the software sensor values from 

already existing hardware sensors. So, the less use of predictors to indicate the early signs of 

lameness, the more efficient the process would be.  

 

So, the Pitch and Roll of the mounted sensor on the sheep neck could be calculated by using 

Equ 3-2 and  Equ 3-3 respectively.  

 

Where 𝐴𝑐𝑐𝑥, 𝐴𝑐𝑐𝑦 , and 𝐴𝑐𝑐𝑧  refer to the Acceleration sensor readings in a given time slice in 

the x, y, and z axes. Due to the range of Pitch angle being between [-180,180], the Four-

quadrant inverse tangent function (atan2) was used to obtain values in the closed interval [-pi, 

pi] based on 𝐴𝑐𝑐𝑦 and 𝐴𝑐𝑐𝑧 values (MatLab documentation). The values of Pitch and Roll are 

measured in degrees, so they multiplied by 180/π.  

 

Pitch and Roll are extracted as features in the feature engineering process to be used by the 

classifier to differentiate between various sheep behaviours in (Alvarenga et al., 2016). 

Moreover, the same features are included to classify the behaviours of birds and humans 

(Collins et al., 2015; van Kuppevelt et al., 2019; Zhang et al., 2014; Davila et al., 2017). 

 

Both equations were applied to DataSet2_c (Table 3-5) as Orientation readings were missed 

after the data were being collected.  

 𝑃𝑖𝑡𝑐ℎ = 𝑎𝑡𝑎𝑛2 (𝐴𝑐𝑐𝑦, 𝐴𝑐𝑐𝑧 ) ∗ 180
𝜋⁄  Equ 3-2 

𝑅𝑜𝑙𝑙 = 𝑡𝑎𝑛−1  (
− 𝐴𝑐𝑐𝑥 

√ 𝐴𝑐𝑐_𝑦2 + 𝐴𝑐𝑐_𝑧2
) ∗ 180

𝜋⁄  
 

Equ 3-3 
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3.5.2.2 Manipulate Gyroscope Missing readings 

Missing values in the collected datasets could be managed in various ways (Kotsiantis et al., 

2006). Some of the ways are either by replacing it within the most frequent value within the 

vector of data or substituting it by the average value of the data vector. In both sheep datasets 

DataSet1_b and DataSet2_a (Table 3-5), the missing values of 𝐺𝑦𝑟 were replaced by the 

average value of the other already retrieved data for each axis (𝐺𝑦𝑟_𝑥, 𝐺𝑦𝑟_𝑦, and 𝐺𝑦𝑟_𝑧). In 

contrast to DataSet2_c where the whole Gyroscope readings were missed, so in this case, it 

may not be applicable to calculate the 𝐺𝑦𝑟 readings as Gyroscope is a hardware-based sensor 

which could not be estimated in case of their readings are lost.  

3.5.2.3 Calculating Linear accelerometer from Accelerometer  

As mentioned in (Section 3.2.2.1), the built-in Accelerometer sensor readings represent raw 

acceleration values that include both static and dynamic components of raw acceleration data 

as follows:  

 

Where the 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐴𝑐𝑐 represents the animals' movements only, while 𝑆𝑡𝑎𝑡𝑖𝑐𝐴𝑐𝑐 belongs to 

the force of gravity field to the earth (Nathan et al., 2012). So, the already obtained sensor 

readings of 𝐴𝑐𝑐𝐿𝑖𝑛 estimate the dynamic acceleration of the body to which the sensor attached. 

However, the 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐴𝑐𝑐 (which is equvilant to 𝐴𝑐𝑐𝐿𝑖𝑛 software-based sensor) could be 

calculated by applying the running mean over a selected window size of a given 𝐴𝑐𝑐 vector.  

 

Therefore, 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐴𝑐𝑐 is calculated for each element in  𝑅𝑎𝑤𝐴𝑐𝑐  by subtracting that element 

from its running mean value of pre-selected window size 𝑤 (Gleiss et al., 2011; Qasem et al., 

2012; Ladds et al., 2017). 

 

Where 𝑖 represents the acceleration readings vector of a specific axis, while 𝑗 refers to each 

acceleration reading within the selected window of size 𝑤 to calculate the running mean. This 

process filters 𝑅𝑎𝑤𝐴𝑐𝑐 from its gravitational component and returns the dynamic components 

𝑅𝑎𝑤𝐴𝑐𝑐 = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐴𝑐𝑐 + 𝑆𝑡𝑎𝑡𝑖𝑐𝐴𝑐𝑐 Equ 3-4 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐴𝑐𝑐(𝑖) = 𝑅𝑎𝑤𝐴𝑐𝑐(𝑖) −  
∑ 𝑅𝑎𝑤𝐴𝑐𝑐(𝑖) 

𝑤
𝑗=1

𝑤
 Equ 3-5 
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of Acceleration readings that only relate to the sheep movement.  

 

Example 3.1: Assume that the acceleration readings for the forward-backwards movements 

𝑅𝑎𝑤 𝐴𝑐𝑐𝑦= (2, 1, -1, -2, 3, 4), and 𝑤= 3 (window size). To calculate the 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐴𝑐𝑐_𝑦 

component only, the running mean is performed by centring the element in the current position 

in the 𝑤 and find the average over that window. When the element in the window does not fill 

𝑤, then the average is taken for the only included elements in 𝑤 (MatLab documentation). 

Then the running mean is subtracted from each element of the 𝑅𝑎𝑤 𝐴𝑐𝑐𝑦 

 

𝑅𝑎𝑤 𝐴𝑐𝑐𝑦 = 2, 1, -1, -2, 3, 4 

𝑅𝑢𝑛𝑖𝑛𝑔 𝑚𝑒𝑎𝑛 = 1.5, 0.66, -0.66, 0, 1.66, 3.5 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐴𝑐𝑐𝑦 = 0.5, 0.33, -0.33, -2, 1.33, 0.5 

 

Static acceleration could be used to estimate the animal's posture, while the dynamic 

acceleration is used to estimate the changes in the behavioural pattern of animals (Bailey et al., 

2018). Thus, the Dynamic components of raw acceleration readings are utilised to calculate the 

speed of sheep, which is an important criterion to classify sheep behaviour into standing, 

walking, and trotting. The walking behaviour would also act as an important indicator of the 

lameness detection process. 

 

3.5.3 Sensor Data Segmentations 

The purpose of data segmentation in this research is for the sake of choosing the right segments 

(walking segments) among standing or trotting segments to be included in the classification 

process to detect the sheep lameness class. In addition, the sensor battery consumption of data 

transferring from the sensor node to the base station or where the data needs to be collected is 

the target of interest. Therefore, if only the walking segments are extracted and included in the 

classification process, that would be more efficient, and an energy-saving process rather than 

the case where the data are collected for any sheep posture. Thus, the first step after the data 

were collected is to identify the segments whose behaviour relates to sheep walking only rather 

than standing or trotting segments (Section 3.5.4); then the lameness classification process is 

applied based on the extracted walking segments only.   
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In general, the segmentation process is crucial in the pre-processing stage of a classification 

task as it could impact the next stage of feature extraction and even affect the accuracy of the 

classification (Bersch et al., 2014). Furthermore, the complexity of the chosen segmentation 

method must be considered beforehand; especially in real-world classification tasks as the 

higher computational method could cause greater battery drainage when it comes to sensor 

saving energy issues.  

 

The segmentation of data in the pre-procession stage has two different techniques, either online 

or offline. In online segmentation techniques, the collected data could start to be segmented 

before the whole datasets are entirely collected. In contrast, offline segmentation techniques 

require the whole dataset before starting the segmentation process (Bersch et al., 2014).  

 

Due to the purpose of this research being to detect the early signs of lameness in sheep as soon 

as possible by analysing real-world data from sheep, so the need for using online segmentation 

methods would be more applicable, rather than the offline ones as the lameness detection task 

is a real-world problem which needs its collected data to be segmented, once the data acquired.  

 

Besides the online capability of the online segmentation methods,  they could perform well on 

noisy data, are easy to understand due to its simple computation, and commonly used in health 

monitoring research studies (Keogh et al., 2001; Bersch et al., 2014).  

 

3.5.3.1 Fixed-size Non-overlapping or Overlapping Sliding Window (FNSW, FOSW) 

A sliding window is a common online segmentation method that is used to divide the raw input 

data into small chunks to be dealt with as input segments to the classifier. When a fixed-size 

sliding window divides the whole data point equally without interference among the adjacent 

data points, the technique is then called Fixed-size Non-Overlapping Sliding Window (FNSW). 

Alternatively, the online segmentation technique is called Fixed-size Overlapping Sliding 

Window (FOSW) when the sliding window has data overlap with a pre-defined ratio (Bersch 

et al., 2014).  

 

The size of each segment 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 is calculated by applying Equ 3-6, while the number of 

segments for each individual data file (sheep) 𝑠𝑒𝑔_𝑛𝑜 are obtained from Equ 3-7 in the case of 
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applying FNSW; otherwise Equ 3-8 is applied to calculate the 𝑠𝑒𝑔_𝑛𝑜 for FOSW segmentation 

techniques. 

 

In Equ 3-6, 𝑠𝑧 represents the length of the pre-selected window in seconds (three options were 

implemented in the research which are 3, 7, and 10 sec.). Each segment is expected to hold 

information about the sheep’s movement which is tested in the next steps. The shorter window 

size 𝑠𝑧 may not be enough to hold the characteristics of an individual movement, and longest 

𝑠𝑧 may conflict two different movements in one segment. Since sheep tend to have less variable 

movements or transition in behaviour, no need for a long window size (more information), 

which is normally applied to differentiate complex behaviour rather than simple walking 

movements (Walton et al., 2018). However, sheep behaviour classification research studies 

recommend different window sizes 𝑠𝑧 such as 10 sec. (Alvarenga et al., 2016; Barwick, 2018a), 

7 sec. (Walton et al., 2018; Mansbridge et al., 2018; Vazquez Diosdado et al., 2018), and 5 

sec. (Marais et al., 2014; le Roux et al., 2017). Thus, three options of window size 𝑠𝑧 were 

tested to identify a suitable period for one cycle of sheep movement in the current research. 

 

The other factor in Equ 3-6,  𝑠𝑟 refers to the sampling rate in Hz of each sensor type used in 

data acquisition. Due to data aggregation where gathered data produced three groups of 

DataSets, three sampling rates were obtained 10 Hz, 5 Hz, and 4 Hz for each DataSet, 

respectively (see Section 3.4).  

 

When the FNSW technique is applied, Equ 3-7 calculates 𝑠𝑒𝑔_𝑛𝑜 the number of segments to 

be obtained from the whole data reading points that belong to each individual sheep within its 

DataSet. 𝑁 represents the whole data-points of an individual sheep. The last segment of each 

individual sheep was discarded each time the number of data points within that segment were 

less than the 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 Usually the last data points of each separate sheep file referred to the 

time when the sensor was taken off from that individual sheep, so no valuable data-points were 

lost. 

𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 = 𝑠𝑧 ∗ 𝑠𝑟                                    (FNSW, FOSW) Equ 3-6 

𝑠𝑒𝑔_𝑛𝑜 = 𝑁
𝑠𝑒𝑔_𝑠𝑖𝑧𝑒⁄                                             (FNSW) Equ 3-7 

𝑠𝑒𝑔_𝑛𝑜 = 𝑁
𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 −  𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 ∗  𝑜𝑟/100⁄      (FOSW) Equ 3-8 
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Conversely, Equ 3-8 calculates 𝑠𝑒𝑔_𝑛𝑜 when FOSW segmentation technique is applied. The 

𝑁, and 𝑠𝑒𝑔_𝑛𝑜 parameters are the same as FNSW; however, 𝑜𝑟 represents the overlapping 

ratio among the data-points reading of the attached sensor to the sheep neck. The value of 𝑜𝑟 

could be identified previously by the user. 

 

Example 3.2: Suppose we have  raw 𝐴𝑐𝑐 sensor data D (X, P),  X= { 𝑥1, 𝑥2 , … ., 𝑥𝑖} represents 

the set of the collected data-points (here N=28), while P= { 𝑝1, 𝑝2 , … ., 𝑝𝑗} represents the set 

of predictors ( 3 predictors here 𝐴𝑐𝑐_𝑥, 𝐴𝑐𝑐_𝑦, 𝐴𝑐𝑐_𝑧). Let us assume the sampling rate of 𝑠𝑟= 

4 Hz, window size 𝑠𝑧 = 2 sec., and segment overlap ratio 𝑜𝑟=20%.  So, the number of overlap 

segments (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 ∗  𝑜𝑟 /100) ≅ 2 segments (the fraction segment is rounded to full segment 

length). Figure 3-10 illustrates the difference between two types of the online segmentation 

methods used in the research.  

 

    
(a) FNSW segmentation (b) FOSW segmentation 

Figure 3-10 Two types of segmentation techniques for sheep data. 
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3.5.4 Classify Sensor Data Segments into Three Moving Behaviours  

In this research study, gait behaviour of sheep was classified into three classes Standing, 

Walking, and Trotting by applying threshold limits for the normal walking of sheep. Although 

all of the sheep during the data collection process were triggered to walk normally on a flat or 

field area, on many occasions sheep either stood or walked at a faster speed than the normal 

one, which is then named trotting in this research. Therefore, the research aimed to extract only 

the walking period to be processed and analysed for the task of lameness classification. 

Usually, lame sheep are noticed while they walk rather than standing or trotting, as the lame 

animal is willing to use their affected limbs when walking, in contrast to trotting where they 

tend to carry their infected limbs (Kim and Breur, 2008).  

 

In sheep gait studies the normal walking speed is identified to be within 1.1-1.3 m/s ranges 

(Agostinho et al., 2012) or less (Squires et al., 1972); however, this range could be changeable 

according to the breeds and the environment when the data were collected. In the case of the 

current research, the sheep in the experiments were encouraged to walk at a slightly faster speed 

than the normal walking speed of sheep in an open field without monitoring. In the designed 

software for the purpose of this research study (Section 4.2), the range of normal walking could 

be pre-defined, which was selected to be between 0.8- 3.5 m/s.  

 

The classification process for the sheep movements was performed by testing the speed of each 

segment of the sheep file in the targeted DataSet according to the following steps:  

 

Step1: applying Equ 3-5 to the forward-backwards acceleration readings (𝐴𝑐𝑐_𝑦) within the 

segment to find the 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐴𝑐𝑐_𝑦 movements of the sheep without gravity interference.  

 

Step2: in order to calculate the velocities corresponding to each dynamic acceleration reading 

of 𝐴𝑐𝑐_𝑦 in that segment, the numerical integration with respect to the time between each 

successive readings (𝑠𝑒𝑔_𝑡𝑖𝑚𝑒) is applied using a trapezoidal method. In Equ 3-9, the 

𝑠𝑒𝑔_𝑡𝑖𝑚𝑒 is a vector containing time slices starting from 0 to 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 increasing by 1/ 𝑠𝑟 

(sampling rate). The result of integration 𝐶𝑢𝑚_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 is a vector equal to 𝐴𝑐𝑐_𝑦 in size 

containing commulative velocities corresponding to each sensor reading in that segment. 

However, Equ 3-10 was applied to obtain the 𝑃𝑢𝑟𝑒_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 vector without its cumulative 

value.  
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Step3: the overall speed of the targeted segment of the sheep data file within the DataSet was 

calculated according to Equ 3-11 as the speed is the magnitude value of the velocities. The 

𝑆𝑒𝑔_𝑠𝑝𝑒𝑒𝑑 vector is equal in size to the 𝑠𝑒𝑔_𝑛𝑜, where each speed value corresponds to the 

one segment of the sheep data file. 

 

Step4: test the speed of each segment within the specified range (upper-speed limit= 3.5 m/s, 

lower-speed limit = 0.8 m/s). The class of that segment is Standing if the 𝑆𝑒𝑔_𝑠𝑝𝑒𝑒𝑑 is less 

than the lower limit. Conversely, the class movement behaviour of the targeted segment is 

classified Trotting if the 𝑆𝑒𝑔_𝑠𝑝𝑒𝑒𝑑 exceeds the upper limits. Otherwise, the movement class 

is considered Walking when the 𝑆𝑒𝑔_𝑠𝑝𝑒𝑒𝑑 is within the pre-defined limits. The output result 

is in a table which contains each speed segment with its corresponding class.   

 

The pseudo-code for applying the four steps of the classification process for each sheep 

movement in a given DataSet is illustrated in Figure 3-11. 

 

 

 

𝐶𝑢𝑚_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  ∫ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐴𝑐𝑐_𝑦(𝑖)
𝑠𝑒𝑔_𝑡𝑖𝑚𝑒

0

 Equ 3-9 

𝑃𝑢𝑟𝑒_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = ∑ 𝐶𝑢𝑚_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖 + 1)
𝑠𝑒𝑔_𝑠𝑖𝑧𝑒

𝑖=1
−  𝐶𝑢𝑚_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖) Equ 3-10 

𝑆𝑒𝑔_𝑠𝑝𝑒𝑒𝑑 =  √∑ 𝑃𝑢𝑟𝑒_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑖)2

𝑛

𝑖

2

 Equ 3-11 
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3.5.5 Extract Walking Segments for a Sheep File 

As the sheep data file was segmented and classified into three behaviours Standing, Walking 

and Trotting, the targeted segments for the next step (feature extraction) ought to be performed 

on the walking segments only. Therefore, the walking segments from each individual sheep 

file were extracted and the other Standing and Trotting segments were discarded from the next 

step of feature extraction. 

 

Figure 3-12 illustrates an example for extracting 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 for a single sheep within a DataSet. 

While the pseudo-code for extracting the walking segments only for the individual sheep is 

presented in Figure 3-13. 

 

The obtained 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 was added to the sheep file information in addition to the existing 

ones. An example of a single sheep file within a given DataSet is given with details in Figure 

3-14, where each sheep file is in a Struct format containing many entries.  

 

For each seg in sheep file Do    

       For 𝑖= 1 to 𝑠𝑒𝑔_𝑛𝑜  

              Compute 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐴𝑐𝑐_𝑦           // Apply Equ 3-5 

              Compute 𝐶𝑢𝑚_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦              // Apply Equ 3-9 

              Compute 𝑃𝑢𝑟𝑒_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦             // Apply Equ 3-10 

              Compute 𝑆𝑒𝑔_𝑠𝑝𝑒𝑒𝑑                   // Apply Equ 3-11 

                                                                    // Apply segment classification 

             IF 𝑆𝑒𝑔_𝑠𝑝𝑒𝑒𝑑 <= lower-speed limit Then  

                  𝑆𝑒𝑔_𝑐𝑙𝑎𝑠𝑠= ‘Standing’ 

             Elseif  𝑆𝑒𝑔_𝑠𝑝𝑒𝑒𝑑  <= upper-speed limit Then  

                       𝑆𝑒𝑔_𝑐𝑙𝑎𝑠𝑠= ‘walking’ 

             Else 𝑆𝑒𝑔_𝑐𝑙𝑎𝑠𝑠= ‘Trotting’  

             End if     

       End   

  End        

         

 

Figure 3-11 The pseudo-code for the classification process of the data sheep file’ segments for a given 
DataSet. 
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Figure 3-12 Walking segments extraction for the individual sheep data file. 

 

 

 

 

(a) Original sheep (FNSW segmentation) (b) Extracted sheep data with 
walking segments only  
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For each individual sheep file Do 

        𝑗 =  1                        // counter for the 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔  array   

       For 𝑖= 1 to 𝑠𝑒𝑔_𝑛𝑜 

                IF seg (𝑖). 𝐶𝑙𝑎𝑠𝑠 == ‘Walking’ Then  

                    𝑤𝑎𝑙𝑘_𝑠𝑒𝑔(𝑗)= seg (𝑖)  

                    𝑗 = 𝑗 + 1                              

               End if 

      End             

End 
Figure 3-13 The pseudo-code for extraction walking segments for individual sheep. 
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Figure 3-14 An example of an individual sheep file in a given DataSet. 

 

3.5.6 Combine Walking Segments for a DataSet 

As mentioned earlier in data aggregation Section 3.4, three final DataSets were obtained, with 

31, 28, 7 sheep, respectively (Table 3-5). So, the walking segments 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 for each sheep 

in that DataSet were combined together to produce a final 𝑟𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 𝐷(𝑋, 𝑃) which 

will be ready to use as an input to the chosen classifier to perform the lameness classification 

task.  

 

In the raw data table 𝐷 (𝑋, 𝑃), each row 𝑋 =  { 𝑥1, 𝑥2 , … ., 𝑥𝑖} represents an instance or 

example for the classifier to build the prediction model, and each column 𝑃 =

 { 𝑝1, 𝑝2 , … ., 𝑝𝑗} represents a predictor or attribute that the classifier depends on to predict the 

class of new instance 𝑌 = { 𝑦1, 𝑦2 , … ., 𝑦𝑘}, where 𝑌 is the class type, and 𝑘 is the number of 

classes in a classification problem. As each classification problem could be presented as 

𝐷(𝑋, 𝑃)  =  𝑌.  

 

The final 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 𝐷(𝑋, 𝑃) was obtained by performing two steps: 

 

Step1: in this step, all 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 data of all sheep in the DataSet were combined into one file 

called 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 (see Figure 3-16) for pseudo-code. The resulting 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 is in 

a Struct format that has entries equal to the number of sheep in that DataSet. Each entry has 2 

fields (columns), where the first field refers to the sheep’s class and the second field refers to 

 

1- Acc (X,3), accelerometer sensor readings for 3 axes. 
2- Gyr(X,3), Gyroscope sensor readings for 3 axes. 
3- Ang(X,3), orientation sensor readings for 3 axes. 
4- AccLin(X,3), linear acceleration sensor readings for 

3 axes.  
5- Time is the sensor time while data were read.  
6- Main_class is the observed sheep class. 
7- Seg_data is 3D array refers to row, column, page 

(each page is a segment). 
8- Speed is the speed of each segment  
9- Vedba is vertical dynamic body acceleration of each 

segment (will discuss in feature extraction section) 
10- Seg_class is the class of each segment after 

movement classification. 
11- Walk_seg is the extracted walking segments only  

(a) An example of a single sheep file in a 
DataSet 

(b) The details of each field in the sheep struct 
file 
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a two-dimensional array of 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 data. The rows of 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 represent walking 

instances, while the columns represent the set of predictors 𝑃 =  { 𝑝1, 𝑝2 , … ., 𝑝𝑗} of that 

sheep. Figure 3-15 shows 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 in an example of sheep DataSet including 8 sheep.   

 

 

 
 
 
       

Figure 3-15 An example of a 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 DataSet Sheep file includes 8 sheep, 3 classes, and 147 
walking segments (14+22+34+35+12+29+18+10= 147). 

 

Step2: in this step, the data of each individual sheep in a DataSet was combined vertically 

together to get the 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 𝐷(𝑋, 𝑃)  =  𝑌. As an example of Figure 3-15, X= 

∑ 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔(𝑖), where 𝑖 refers to a sheep number in a DataSet. So, Figure 3-14 An example of 

an individual sheep file in a given DataSet 𝑋 =  { 𝑥1, 𝑥2 , … ., 𝑥174} walking segments.  𝑃 =

 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 ∗  𝑛𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 +  𝐶𝑙𝑎𝑠𝑠, where 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 =  100 in the presented example, 

and the number of predictors (sensor readings parameters) = 9 (𝐴𝑐𝑐_𝑥, 𝐴𝑐𝑐_𝑦, 𝐴𝑐𝑐_𝑧, 𝑃𝑖𝑡𝑐ℎ, 

𝑅𝑜𝑙𝑙, 𝐴𝑧𝑖𝑚𝑢𝑡ℎ, 𝐺𝑦𝑟_𝑥, 𝐺𝑦𝑟_𝑦, and 𝐺𝑦𝑟_𝑧). Thus, the number of predictors = 100 × 9= 900. 

In addition, one extra column 𝐶𝑙𝑎𝑠𝑠 was added for the class type of the current instance, so   

𝑃 =  { 𝑝1, 𝑝2 , … ., 𝑝901}. 𝑌 =  { 𝑦1, 𝑦2 , 𝑦3} as the class number in the example were three 

‘severe walking’, ‘mild walking’, and ‘sound walking’. 

 

The pseudo-code for both steps including getting 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 and 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 for a 

given DataSet is depicted in Figure 3-16. Step1 involves combining walking segments of an 

individual sheep in a DataSet into one file with its class either ‘severe walking’, ‘mild walking’, 

or ‘sound walking’. Step2 includes getting the 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 ready for next feature 

extraction, where each row represents a separate instance. 

 

 

 

Sheep no.1 has 14 instances 
(walking_segs) and 900 attributes 

𝑃 =  { 𝑝1, 𝑝2 , … ., 𝑝900} as the 
𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 was 100, So 100  readings 

for each 𝐴𝑐𝑐_𝑥, 𝐴𝑐𝑐_𝑦, 𝐴𝑐𝑐_𝑧, 𝑃𝑖𝑡𝑐ℎ, 
𝑅𝑜𝑙𝑙, 𝐴𝑧𝑖𝑚𝑢𝑡ℎ, 𝐺𝑦𝑟_𝑥, 𝐺𝑦𝑟_𝑦, and 

𝐺𝑦𝑟_𝑧 
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Step1 
For each individual sheep file in a given 𝐷𝑎𝑡𝑎𝑆𝑒𝑡 Do 

𝑗 =  1                       // counter for new 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 _𝑑𝑎𝑡𝑎 
For 𝑖= 1 to 𝑠ℎ𝑒𝑒𝑝_𝑛𝑜 
        IF sheep (𝑖).𝐶𝑙𝑎𝑠𝑠 == ‘severe’ Then  

                          𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 (𝑗).𝐶𝑙𝑎𝑠𝑠 = ‘severe walking’ 
                          𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 (𝑗).𝑑𝑎𝑡𝑎 = sheep (𝑖). 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 
                          𝑗 = 𝑗 + 1        
                    Else 

              IF sheep (𝑖).𝐶𝑙𝑎𝑠𝑠 == ‘mild’ Then  
                                𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 (𝑗).𝐶𝑙𝑎𝑠𝑠 = ‘mild walking’ 
                                𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 (𝑗).𝑑𝑎𝑡𝑎 = sheep (𝑖). 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 
                                𝑗 = 𝑗 + 1        
                          Elseif 

                      IF sheep (𝑖).𝐶𝑙𝑎𝑠𝑠 == ‘sound’ Then  
                                       𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 (𝑗).𝐶𝑙𝑎𝑠𝑠 = ‘sound walking’ 
                                       𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎 (𝑗).𝑑𝑎𝑡𝑎 = sheep (𝑖). 𝑤𝑎𝑙𝑘_𝑠𝑒𝑔 
                                        𝑗 = 𝑗 + 1        
                            End 
                     End          
           End          
End             
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
Step2 
For each individual sheep file in a given 𝐷𝑎𝑡𝑎𝑆𝑒𝑡 Do 

𝑗 =  1                       // counter for new 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 _𝑑𝑎𝑡𝑎 
For 𝑖= 1 to 𝑠ℎ𝑒𝑒𝑝_𝑛𝑜 

                      𝑅𝑎𝑤_𝑑𝑎𝑡𝑎. 𝐷𝑎𝑡𝑎(𝑗)= Add 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎(𝑖). 𝑑𝑎𝑡𝑎         // vertically 
                      𝑅𝑎𝑤_𝑑𝑎𝑡𝑎. 𝐶𝑙𝑎𝑠𝑠(𝑗)= Add 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎(𝑖). 𝐶𝑙𝑎𝑠𝑠    
                                                                   // expand to 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎(𝑖). 𝑑𝑎𝑡𝑎   
                      𝑗 = 𝑗 + 1 
             End 
 //// Get all variables into table////  
            //// Assume first 3 columns for 𝐴𝑐𝑐_𝑥, 𝐴𝑐𝑐_𝑦, 𝐴𝑐𝑐_𝑧  
            ////                second 3 columns for Pitch, Roll, Azimuth 
           ////                 third 3 columns for 𝐺𝑦𝑟_𝑥, 𝐺𝑦𝑟_𝑦, 𝐺𝑦𝑟_𝑧 
            
           𝐴𝑐𝑐= 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎 (𝑋, 𝑃), 𝑿= all instances, 𝑷=1 to 3 ×𝑠𝑒𝑔_𝑠𝑖𝑧𝑒  
           𝐴𝑛𝑔= 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎 (𝑋, 𝑃), 𝑿= all instances, 𝑷=3 ×𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 +1 To 6×𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 
           𝐺𝑦𝑟= 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎 (𝑋, 𝑃), 𝑿= all instances, 𝑷=6 ×𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 +1 To 9×𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 
 
           Create 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒= [ 𝐴𝑐𝑐, 𝐴𝑛𝑔, 𝐺𝑦𝑟, 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎. 𝐶𝑙𝑎𝑠𝑠] 
End  
 Figure 3-16 The pseudo code for combining walking segments for a sheep member of a given DataSet 

table 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 ready for the next feature extraction step.  
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3.5.7 Feature Extraction for Walking Segments 

Feature extraction or sometimes called either data transformation, feature engineering, or 

attribute construction is a very important step in a data mining task as it influences the 

performance of the final classification task (Su et al., 2014). The feature extraction was 

implemented over a pre-selected window size (5, 7, 10 sec) in the specially designed software 

for lameness detection (to be discussed in Section 4.2). 

 

The raw sensor data from the accelerometer, gyroscope, and orientation forms a multi-

dimensional DataSet which may need to be optimised to reduce noise and error by extracting 

a new set of features which are called predictors or attributes to be involved in the classification 

task. The new set of features tend to be more useful and understandable in terms of structure 

and accuracy for high dimensional data (Jiawei et al., 2012). For example, the raw data of 10 

values could be meaningless to identify the general trend of the current stream of data compared 

to the average of the tenth values.  

 

According to the studies that have been done in the field of human activity recognition using 

raw data from an accelerometer (Figo et al., 2010; Bersch et al., 2014), there are many feature 

extraction techniques to be applied either in the time or frequency domain of the acceleration 

data stream. Although Figo et al., (2010) survey explores these techniques for human activities, 

many features have been employed in the field of animal behaviour detection from either an 

accelerometer or gyroscope sensor. For example, feature extraction in cattle behaviour has been 

employed in (Rahman et al., 2018; Smith et al., 2015), and in sheep behaviour studies in 

(Marais et al., 2014; Alvarenga et al., 2016; Kamminga et al., 2017; Barwick et al., 2018a; 

Walton et al., 2018; Guo et al., 2018; Kleanthous et al., 2018). A combination of features in 

the aforementioned references was implemented in the current research in addition to extra 

features which all are listed in Table 3-6. 

 

Twenty-four features were extracted in this research over a pre-selected window (𝑠𝑧)  from 

raw data for each axis of Accelerometer (3 axes), Gyroscope (3 axes), and Orientation (3 

angels) sensors of sheep DataSet. As it is illustrated in Figure 3-17, the features were divided 

into seventeen features from the time domain where basic statistics of each data window were 

calculated, and seven features from the frequency domain where the signal periodic is 

described in Fast Fourier Transform 𝐹𝐹𝑇.  
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Figure 3-17 Extracted features from raw data of walking sheep. 

 

The names, equations, meanings, and the number of resulting features for each instance (row) 

in the 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 excluding the 𝐶𝑙𝑎𝑠𝑠 column (‘severe walking’, ‘mild walking’, or 

‘sound walking’) over a selected window size or segment (𝑠𝑧) for a sheep file in a DataSet are 

explained in Table 3-6. 

 

The pseudo-code to perform the features extraction for sheep data to be included in the 

lameness detection classifier is presented in Figure 3-18, the  𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 𝐷 (𝑋, 𝑃) in 

each obtained DataSet that already contains only the walking data of sheep with its related 

other sensor readings has 𝑋 instances and 𝑃 predictors by noticing that the last column in 𝑃 

represents the 𝐶𝑙𝑎𝑠𝑠 of that instance either ‘severe walking’, ‘mild walking’, or ‘sound 

walking’. Therefore, the number of 𝑃 was reduced by applying feature extraction and the best 

set of 𝑃 (features) were only considered by the classifier in the next step. 

 

For each 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 𝐷 (𝑋, 𝑃) in the feature extraction stage, the output data table was 

named 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 (𝑋, 𝑃`). Where 𝑋 represents the same number of instances in 

both the 𝑅𝑎𝑤 and 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑 data table.  𝑃 is the number of predictors in the 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 

𝑃 = 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 ∗ 𝑛𝑝, where 𝑛𝑝 is the number of predictors that were obtained from sensor 

readings. For example, if 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒=100, then 𝑃 =  { 𝑝1, 𝑝2 , … ., 𝑝900}, if seg_size=50, then 

𝑃 =  { 𝑝1, 𝑝2 , … ., 𝑝450}. While 𝑃` of 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 represents the new calculated 

features, which equal to 183 features from all axes as explained in Figure 3-18. 

 

 

 

Time domain (17 
features)

• mean, var, std, kur, skew, min, max, rms, interquantile 
range, crest factor, SMA, SMV, DSMV, max_diff, 
Avr_MV, Mag, Vedba, Ent3 time domain entropy

Frequency domain 
(7 features)

• entropy, energy, DFreq, peaks_no, widest_peak, 
highest_peak,  Avr_peak_time
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Table 3-6 Computed features from time and frequency domain for the sheep walking segments within a sheep DataSet, where the 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 referes to 
sensor raw data excluding the last 𝐶𝑙𝑎𝑠𝑠 column.  

Feature name 
(symbol) Feature meaning Feature equations for each Accelerometer, Gyroscope, and 

Orientation sensor readings 

Computed 
features for 

each instance in 
a sheep file 𝑷` 

Mean (𝜇) 
measures the average activity of a selected 
window. it removes noise, random peaks, 
smooths data, and kind of axial calibration  

𝜇 =
1

𝑠𝑧
∑ 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖)

𝑠𝑧

𝑖=1

 9 (as we have 9 
predictors) 

Variance (𝜕) measures the variability of the data sequence, 
i.e. the deviation of movement from the mean 𝜕 =

1

𝑠𝑧
√∑(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖) − 𝜇)2

𝑠𝑧

𝑖=1

 9 

Standard deviation 
(𝜕2) 

Measure the spread of data within a selected 
window.  It is equal to the square of 𝜕  𝜕2 = (

1

𝑠𝑧
√∑ (𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖) − 𝜇)2𝑠𝑧

𝑖=1 )2 9 

Kurtosis (Kur) 
Kur is the third standardized moment of each 
axis per window, measure how the outliers 
prone to distribute in a selected window  

𝐾𝑢𝑟 =
1

𝑠𝑧
∑

(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖) − 𝜇)3

𝜕3

𝑠𝑧

𝑖=1

 9 

Skewness (Skew) 
Skew is the fourth standardized moment of each 
axis per window, measure the degree of data 
symmetry in a selected window 

𝑠𝑘𝑒𝑤 =
1

𝑠𝑧
∑

(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖) − 𝜇)4

𝜕4

𝑠𝑧

𝑖=1

 9 

Maximum value 
(Max)  Maximum value within the selected window Max (selected window of 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒) 9 

Minimum value 
(Min)   The minimum value within the selected window Min (selected window of 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒) 9 

Root mean square 
(Rms) 

Measure the energy distribution and randomness 
of the values within a selected window. It is 
used in human research to distinguish walking 
patterns and input to the classifier  

𝑅𝑚𝑠 =  √
1

𝑠𝑧
∑ 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖)2

𝑠𝑧

𝑖=1

 9 

Interquartile range 
(Interq)  

Measure the variability of a selected window 
data  

𝐼𝑛𝑡𝑒𝑟𝑞 =  𝑄3 − 𝑄1, where 𝑄1 is the middle of the first half of 
data, 𝑄3 is the middle of the third half of data  9 

Crest factor (CF) 

Measure the impulsiveness of the selected 
window, i.e. the sudden movement or behaviour. 
CF is the ratio of Max value to 𝑅𝑚𝑠 value of a 
selected window 

𝐶𝑓 =  
𝑀𝑎𝑥(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒)

√ 1
𝑠𝑧

∑ 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖)2𝑠𝑧
𝑖=1

 9 
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Signal magnitude 
area (SMA) 

Measure the energy expenditure of walking 
sheep. Compute absolute integral which 
represents the area encompassed by the 
magnitude of acceleration, angular velocity, and 
angles within the selected window  

𝑆𝑀𝐴𝐴𝑐𝑐 =  
1

𝑡
∗ ∫ [|𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑥(𝑡)|

𝑡

0

+ |𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑦(𝑡)|
+ |𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑧(𝑡)|] 𝑑𝑡 

  
An example for 𝑆𝑀𝐴 for acceleration signal, where 𝑡 =
 𝑠𝑒𝑔_𝑡𝑖𝑚𝑒 

3 

Signal vector 
magnitude (SMV) 

Measure the degree of movement intensity of 
the selected window, also eliminates the 
inconsistency of sensor orientation  

𝑆𝑀𝑉 =
1

𝑠𝑧
∑ 𝑠𝑞𝑟𝑡[𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑥(𝑖)2

𝑠𝑧

𝑖=1

+ 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑦(𝑖)2  
+ 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑧(𝑖)2] 

 
An example for 𝑆𝑀𝑉 for acceleration signal, where 𝑠𝑧 =
 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 

3 

Differential Signal 
Vector Magnitude 
(DSMV) 

Contribute to dynamic daily activity 
classification of sheep  

𝐷𝑆𝑀𝑉 =
1

𝑠𝑒𝑔_𝑡𝑖𝑚𝑒
∗ ∫(| ∑ 𝑆𝑀𝑉′|𝑑𝑡)

𝑠𝑒𝑔_𝑠𝑖𝑧𝑒

1

 

 
𝑆𝑀𝑉′ is the difference between two successive SMV values 

3 

Maximum 
difference 
(Max_diff)  

Measure the largest changes between two 
successive sensor readings for each axis of a 
selected window 

For 𝑖= 2 to 𝑠𝑧 − 1 
       𝑀𝑎𝑥_𝑑𝑖𝑓𝑓 =  𝑀𝑎𝑥(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖 + 1)

−  𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖) 
End  

9 

Average movement 
variation 
(Avr_MV) 

Measure the average movement variation along 
each axis of the selected window 

𝐴𝑣𝑟_𝑀𝑉 =  
1

𝑠𝑧
∑ | 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑥(𝑖 + 1)

𝑠𝑧−1

𝑖=1

− 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑥(𝑖)|

+ ∑ | 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑦(𝑖 + 1)

𝑠𝑧−1

𝑖=1

− 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑦(𝑖)|

+ ∑ | 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑧(𝑖 + 1)

𝑠𝑧−1

𝑖=1

− 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑧(𝑖)|  

An example of 𝐴𝑣𝑟_𝑀𝑉 for acceleration signal, where 𝑠𝑧 =
 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 

3 
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Magnitude (Mag) 
Measure the intensity of each sensor reading for 
3 axes each within a selected window. Reduce 
the complexity of sensor orientation 

𝑀𝑎𝑔 = [𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑥(𝑖)2

+ 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑦(𝑖)2  

+ 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑧(𝑖)2]
1

2⁄  
 
An example of 𝑀𝑎𝑔 of Accelerometer sensor readings  

3 

Vectorial of the 
dynamic body 
acceleration 
(Vedba) 

Measure the energy expenditure of a walking 
speed within a selected window 

𝑉𝑒𝑑𝑏𝑎 =  [𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝐴𝑐𝑐_𝑥2 + 𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝐴𝑐𝑐_𝑦2

+ 𝐷𝑦𝑛𝑎𝑚𝑖𝑐_𝐴𝑐𝑐_𝑧2]
1

2⁄  

Apply Equ 3-5 first, then calculate 𝑉𝑒𝑑𝑏𝑎 for Accelerometer 
readings  

3 

Entropy Time-
domain (Ent3) 

Measure the impurity of movement data within 
the selected window. 

𝐸𝑛𝑡3 =  
1

𝑠𝑧
∑(1 + 𝑇_𝐴𝑐𝑐(𝑖)) × 𝑙𝑛(1 + 𝑇_𝐴𝑐𝑐(𝑖))

𝑠𝑧

𝑖=1

 

𝑇_𝐴𝑐𝑐 = 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑥 + 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑦

+ 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐴𝑐𝑐_𝑧 

3 

Entropy 
Frequency- domain 
(Ent) 

Measure the energy disorder of a selected 
window. It is used to discriminate the sheep’s 
activities of the same energy. 

For each element (𝑖) in the selected window size (𝑠𝑧) Do 
1- Find the power spectral (𝑃𝑆) of the selected window via 

discrete Fourier transformation (𝑓𝑓𝑡)  
 

       𝑃𝑆(𝑖) =  |𝑓𝑓𝑡(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑖))|2 
 
2- Find probability density function of the power spectrum 

𝑃𝐷𝐹_𝑃𝑆 normalised by summation of 𝑃𝑆 (i.e. normalised by 
its norm) to be treated as a probability function 
 

𝑃𝐷𝐹_𝑃𝑆 =
𝑃𝑆(𝑖)

∑ 𝑃𝑆(𝑖)𝑠𝑧
𝑖=1

 

3- Find the entropy (Ent) 
 

𝐸𝑛𝑡 =  
− ∑ 𝑃𝐷𝐹_𝑃𝑆(𝑖) ∗ 𝐿𝑜𝑔2 (𝑃𝐷𝐹_𝑃𝑆(𝑖))𝑠𝑧

𝑖=1

𝐿𝑜𝑔2(𝑠𝑧)
 

End 
 

9 

Energy (Eng) Measure the movement complexity of a selected 
window of walking sheep 𝐸𝑛𝑔 =  

1

𝑠𝑧
∑|𝑓𝑓𝑡(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒)|2

𝑠𝑧

𝑖=1

 9 
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Dominant 
frequency (Dfreq)  

The 1st coefficient value of the spectral signal 
which has the largest value within the selected 
window 

𝐷𝑓𝑟𝑒𝑞 =  𝑀𝑎𝑥(|𝑓𝑓𝑡(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒)|  9 

Number of peaks  
(nPeak) 

Calculates the number of peaks within a selected 
window 

1- Find the absolute values of frequency domain 𝐹𝐷 for the 
selected window 
 

𝐹𝐷 =  |𝑓𝑓𝑡(𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒)| 
2- Find 

 
[𝑃𝑘𝑠, 𝐿𝑜𝑐𝑠, 𝑃𝑊] = 𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠 (𝐹𝐷)  
 

Where, 𝑃𝑘𝑠 =  { 𝑝𝑘1, 𝑝𝑘2 , … ., 𝑝𝑘𝑖}, vector of peaks values 
(local maxima), 𝑖 represents no. of peaks (𝑛𝑃𝑒𝑎𝑘𝑠). 𝐿𝑜𝑐𝑠 is the 
vector of indices at which the 𝑃𝑘𝑠 happen, and 𝑃𝑊 is the vector 
of widths of each found peak in 𝑃𝑘𝑠 in a selected window.  

9 

Widest peak 
(Widest_Peak) 

Return the widest peak value in a selected 
window   

𝑊𝑖𝑑𝑒𝑠𝑡_𝑃𝑒𝑎𝑘 = 𝑀𝑎𝑥(𝑃𝑊) 
 
Where 𝑃𝑊 is the vector of peaks’ width values obtained from the 
function 𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠 (𝐹𝐷) 
 

9 

Highest peak 
(Highest_Peak) 

Find the highest peak value in a selected 
window 

𝐻𝑖𝑔ℎ𝑒𝑠𝑡_𝑃𝑒𝑎𝑘 = 𝑀𝑎𝑥 (𝑃𝑘𝑠) 
 
Where 𝑃𝑘𝑠 is the vector of local maxima values obtained from the 
function 𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠 (𝐹𝐷)   
 

9 

Average peak time 
(Avr_peak_time) 

Measure the average time between successive 
peaks in second. 

𝜇_Diff_𝑝𝑒𝑎𝑘𝑠_𝐿𝑜𝑐𝑠 =
1

𝑃𝑘𝑠
∗  ∑(𝐿𝑜𝑐𝑠(𝑖 + 1) − 𝐿𝑜𝑐𝑠(𝑖))

𝑃𝑘𝑠

𝑖=1

 

 
Where, 𝜇_Diff_𝑝𝑒𝑎𝑘𝑠_𝐿𝑜𝑐𝑠 is the mean of differences of peaks’ 
distance, and 𝑃𝑘𝑠 is the found peaks vector. 

𝐴𝑣𝑟_𝑝𝑒𝑎𝑘_𝑡𝑖𝑚𝑒 = 𝜇_Diff_𝑝𝑒𝑎𝑘𝑠_𝐿𝑜𝑐𝑠 ∗
1

𝑠𝑟
 

 Where 𝑠𝑟,  is the sample rate of a selected window  

9 

Total obtained 
features   183 
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3.6 Feature Selection (FS) for the Classifier  

One of the significant key issues in performing a machine learning task is the feature selection 

(FS) which could be defined as the process where irrelevant features (features which have no 

effect on the class) and redundant features (features taking the role of another one) are being 

removed from the original dataset for the sake of obtaining a smaller optimal set of features 

(predictors) that would be sufficient to effectively describe the dataset and predict the class 

(label) of new instances (Alexandropoulos et al., 2019).  

 

The new selected features may be adequate to construct a more accurate and concise classifier 

that performs well in the classification task (Alexandropoulos et al., 2019; Mwadulo, 2016). 

Since the FS process improves the interpretation of the generated model as the visualisation of 

the model formed from the fewer features is more understandable and comprehensible than the 

original set of features (Mwadulo, 2016).  

 

Moreover, FS avoids the model over-fitting when it highly fits the trained dataset and not 

performing well on new unseen examples (García et al., 2016; Mwadulo, 2016). Another 

advantage could be expected when the FS is applied is that the learning process tends to be 

For each sheep in 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 of a given DataSet Do 

       Get  𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 = 𝑠𝑧 ∗ 𝑠𝑟                               // 𝑠𝑧 = window size, and 𝑠𝑟= sampling rate 

             For 𝑖= 1 to   𝑋                                         //𝑋= no. of instances 

        𝑘 = 1                                               // counter for the new 𝑃` 

        For 𝑗= 1 to 𝑃  Step 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒         // 𝑃=𝑠𝑒𝑔_𝑠𝑖𝑧𝑒*𝑛𝑝  

               𝐴𝑙𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑖, 𝑘)  = Compute features (𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒)                                                                         

                                                                // Apply Table 3-6 for each segment 

              𝑘 = 𝑘 + 1 

       End   

       End        

End 

Create 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒= [ 𝐴𝑙𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑒𝑥𝑡𝑟𝑎𝑐𝑡,  𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒. 𝐶𝑙𝑎𝑠𝑠]   

                                                     // add horizantally 

 
Figure 3-18 The pseudo-code for the feature extraction for each sheep file in a given DataSet. 
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faster and occupies less memory storage as the search space specified by the features is reduced. 

However, extra computations may be added to the overall data mining task when the FS is 

applied as 2𝑃`possible combination subset would search for the optimal selection and that 

would be complicated even if the size of feature search space is not too big  (Kotsiantis et al., 

2006; Tang et al., 2014). 

 

Generally, FS approaches could be divided into two common ways filter and wrapper; 

however, a hybrid FS method represents a mixture of two previous ones, while another 

embedded FS method exists to bridge between the filter and wrapper. The description of 

fundamental work’ principles of FS methods is depicted in Figure 3-19. The new subset of 

features is named 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑡𝑎𝑏𝑙𝑒(𝑋, 𝐴), where 𝑋 represents the number of 

observations (rows) and 𝐴 represents the optimal subset of features (columns) from the original 

feature set 𝑃`. 

 

 
Figure 3-19 Feature selection approaches for a classification task. 

 

The FS algorithm searches the whole space of features to only include the optimal features in 

the training set that will be used by the classifier in the next stage. Therefore, two basic 

components may need to be considered in the FS process; an algorithm to be proposed to select 
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the best set of features, and an evaluation function to measure the integrity of the prior selected 

features (Kotsiantis et al., 2006; Alexandropoulos et al., 2019). In addition, the search for the 

best set of features by the selected algorithm would be stopped via a proper stopping criterion. 

The searching process could be implemented by either adding or deleting non-effective features 

or by meeting a chosen evaluation function (Kotsiantis et al., 2006).  

 

A review including feature selection methods with their application has been presented by Jović 

et al., (2015), while a specific review on feature selection for classification task only has been 

explored in (Mwadulo, 2016; Tang et al., 2014).  

 

In the current research, three approaches of FS were applied and compared for the sheep dataset 

to select the optimal set of features suitable for the lameness classification task. The benefits 

and drawbacks of each approach are presented in Table 3-7. 

 

Table 3-7 Feature Selection (FS) approaches applied to 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 (𝑋, 𝑃`) sheep DataSet 
for SLDM with a brief description of their searching concepts, general benefits and drawbacks. 

 Advantages Disadvantages Searching technique 
Applied 

FS in 
SLDM 

Fi
lte

r 

• Faster for searching an optimal 
subset of features  

• Independent of the learning 
algorithm 

 

• General feature subsets 
obtained. 

• Lack of interaction with a 
learning algorithm 

• Lower classification 
performance 

• Does not evaluate feature’s 
redundancy  

Filter best features 
based on either their 
distance, information, 
correlation or 
consistency 
(regardless of the 
model used later 

RelifF 

W
ra

pp
er

 

• Higher classification 
performance  

• optimal feature subset obtained 
• Take into account features 

dependencies  
• Take into account the 

interaction between feature 
subsets and the classification 
model 

• Slower to find the optimal 
features 

• Biased towards the learning 
algorithm used as an 
objective function 

• Computentially intensive 
• Chances of model 

overfitting 

search the feature 
space either 
sequentially (forward, 
backwards) or apply 
heuristic search by 
evaluating a different 
subset of features to 
meet an objective 
function.  
 

GA 

E
m

be
dd

ed
 

• lower computational cost than 
a wrapper 

• take into account the features 
dependences and interaction 
with the classification model 

• Search locally for the features 
that offer better classification 

• combine the comparable 

Required algorithms have 
their own  built-in feature 
selection methods to be 
applied  

Features to be  
weighted to 
regularise learning 
model based on 
objective function to 
minimise the fitting 
error 

RF 
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3.6.1 ReliefF  

The basic idea of ReliefF is to estimate the features (𝑃`) by weighting them according to their 

relevance to each other to distinguish among classes in a dataset. The pseudo-code of ReliefF 

algorithm is illustrated in Figure 3-20 (ROBNIK-ˇSIKONJA and KONONENKO, 2003). 

Firstly, in step1, prior weights 𝑊(𝑃`) = 0.0 are given to the vector of features (attributes) in 

the dataset.  

 

In step2, the algorithm iteratively selects a random instance 𝑅, and searches for its 𝑘-nearest 

neighbour instances (observations) in a given Dataset. The 𝑘-nearest neighbour instances are 

called 𝐻𝑖𝑡𝑠 if they belong to the same class of 𝑅, while the 𝑘-nearest neighbour instances of 

different classes to 𝑅 are called 𝑀𝑖𝑠𝑠𝑒𝑠. The 𝑘-nearest neighbour instances to 𝑅 are calculated 

according to Manhattan distance (sum of the absolute differences).  

 

Finally in step3, the quality estimation of all predictors (features) 𝑊(𝑃`) are updated by 

decreasing the quality estimation of predictors that have different values to 𝐻𝑖𝑡𝑠, and increasing 

the estimation of predictors that have different values to 𝑀𝑖𝑠𝑠𝑒𝑠 (Kotsiantis et al., 2006). The 

contribution to updated weights is kept between [0,1] intervals.  

 

As a result, the first top predictors (features) which have the highest weight in a descending 

sorted vector 𝑊(𝑃`) are selected by retrieving their indices to be the best optimal set of features 

for sheep dataset.  

 

 

 

efficiency of the filter and the 
accuracy of wrapper methods  

• perform FS during the learning 
time 
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3.6.2 Genetic Algorithm GA 

GA is a heuristic optimisation search, based on the principle of ‘survival of the fittest’ of 

Darwin (Mwadulo, 2016). GA algorithm deals with a set of solutions called (chromosome or 

individuals), which represents a set of features to be optimised for the best features set. By 

mimicking natural evolution, the fitter chromosomes that have a higher probability are to be 

chosen for the next generation. An evaluation function is used to compute the fitness of each 

chromosome to be selected, while the selected chromosome (features) follows an application 

of genetic operators, such as crossover and mutation (Figure 3-21) to improve the selection for 

the fittest features (Il-Seok Oh et al., 2004).  

 

In recent time, GA has great attention in the field of feature selection because any formula for 

fitness estimation could be implemented (Too et al., 2019). GA has been exploited for feature 

selection for various databases and has proven that it could uncover the hidden relationship 

between the features and Class, assist in the dimensionality reduction process, and improve the 

performance of the classifier (Smith and Bull, 2005; Babatunde et al., 2014).  

 

A developed GA that employs CHAID decision tree (Chi-square Automatic Interaction 

Figure 3-20 The pseudo-code for ReliefF feature selection method. 

Step1: Set the weight vector 𝑊 to prior value of 0 for each  
        𝑊[1,2, … 𝑃`] = 0.0                                     // vector equal to the no. of predictors 
       
      Step2: For each instance in 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑋, 𝑃`) of a given DataSet Do 
       
                   Select a random instance 𝑅 = (𝑋𝑟, 𝑃`) 

                    Find 𝑘-nearest Hits instances 𝐻𝑗 to 𝑅         𝐻𝑖𝑡𝑠 =
∑ |𝑅− 𝐻𝑗|/𝑘𝑘

𝑗=1

𝑋
 

                    For each Class 𝐶 ≠ 𝑅. 𝐶𝑙𝑎𝑠𝑠  Do  
                            from Class 𝐶     Find 𝑘-nearest Misses 𝑀𝑗(𝐶)  

                                                                                       𝑀𝑖𝑠𝑠𝑒𝑠 =
∑ |𝑅− 𝑀𝑗(𝐶)|/𝑘𝑘

𝑗=1

𝑋
 

Step3: Update 𝑊  
 For j= 1 to 𝑃`  
        𝑊(𝑖, 𝑗) = 𝑊(𝑖, 𝑗) −   𝐻𝑖𝑡𝑠 + ∑ [

𝑃(𝐶)

1−𝑃(𝑅.𝐶𝑙𝑎𝑠𝑠)
∗ 𝑀𝑖𝑠𝑠𝑒𝑠]𝐶≠𝑅.𝐶𝑙𝑎𝑠𝑠    

End 
      End  
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Detectors) as a fitness function for the feature selection of sheep dataset is applied in the current 

research, as the CHAID decision tree followed a non-parametric procedure where no prior 

assumption to the underlying data is needed (Miller et al., 2014). The pseudo-code is presented 

in Figure 3-23 and an explanation for its implementation is explained in the following steps.  

 
e.g. 𝑁= 10 (number of chromosomes) 
𝑃` = no. of features 
 
 

X`1,1 …………… X`1, P` 

X`2,1  . 
.  . 
.  . 
X`N,1 …………… X`N, P` 

The crossover between 𝑃1, 𝑃2  
              

 

 

 

Mutation    
 

     

            𝑃1            1 0 1 1 0 1 
            𝑃2     1 1 0 1 0 0 

  Child1  1 0 1 1 0 0 

     Child2 1 1 0 1 0 1 

      Before            1 0 1 1 0 1 

        After            1 0 1 0 0 1 

Figure 3-21 GA initialisation (left), GA operation (right). 

 

Step1: Initial population 

The feature selection process of a given sheep dataset 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑑_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒(𝑋, 𝑃`) that 

follows the GA algorithm includes: identify the number of selected chromosomes 𝑁, each of 

which of size 𝑃` denotes the number of features. The GA algorithms operate on binary search 

space as each randomly selected chromosome is a combination of bit strings called genes 

(features) where ‘1’ denotes the selected features, and ‘0’ refers to the features that are not 

selected for the evaluation process (fitness calculation). For example, each element in 𝑁 looks 

like 𝑋` = {1,0,1,0,0,0,1,1,1}. 𝑍 is a one-dimensional vector of size 𝑃` which initialises with 0; 

however, at the end of the process the best-selected features were set by ‘1’.  

Step2: Fitness function 

For each X`==1, a fitness estimation function is invoked to calculate the fitness of the features 

whose indices are only equal to ‘1’. So, not all features (183 features) are involved in the fitness 

calculation. The output of the fitness function calculation is a probability vector that 

corresponds to each feature its value is set to ‘1’.  

  

Any fitness function could be used; however, the CHIAD decision tree is implemented in the 

current research due to its considerable estimation of the importance of the predictors. CHAID 

decision tree performs a curvature test analysis that applies a chi-square test 𝐶ℎ𝑖2 between each 
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predictor and its 𝐶𝑙𝑎𝑠𝑠 vector (response vector) to measure the significance and assess the 

hypothesis that two variables are unassociated.  

 

𝐶ℎ𝑖2 is used as a split criterion to construct a CHAID tree by summing the squares of 

differences between observed 𝑂 and expected 𝐸 frequencies of observations in respect to 𝐶𝑙𝑎𝑠𝑠 

vector (Sayad, 2011). Then, the best split predictor variable (best feature) is chosen as it 

minimizes the significant 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 (< 0.05) of 𝐶ℎ𝑖2 tests between each predictor (feature) 

and its corresponding 𝐶𝑙𝑎𝑠𝑠 vector. The following step explains the procedure (MatLab 

documentation, 2019; Susanti et al., 2017):  

 

1. Since the 𝐶ℎ𝑖2 test measures the difference between two categorical variables, the 

continuous features type are converted into categorical ones by partitioning it into its 

quartiles (levels) and a new nominal variable combines each original observation to its 

partition that occupies  Figure 3-22.  

 
(An examined feature) sound mild severe  Sum  
Level1 (1st quartile range) ... … …  
Level2 (2nd quartile range) … … …  
Level3 (3rd quartile range) … … …  
Level4 (4th quartile range) … … …  
Sum     Total sum 

Figure 3-22 Frequency table for one predictor and corresponding 3 categorical classes in 𝐶𝑙𝑎𝑠𝑠 of 
sheep dataset. 

2. For each level in the partitioned feature and each 𝑗𝑡ℎ class in 𝐶𝑙𝑎𝑠𝑠 (i.e. for each cell 

in Figure 3-22)  apply the following: 

- Compute the expected frequency (Equ 3-13). 

- Compute 𝐶ℎ𝑖2 test (Equ 3-12) to examine the significance of the association 

between each level in the partition feature and 𝐶𝑙𝑎𝑠𝑠.   

 

 

𝐶ℎ𝑖2 =  ∑ ∑ √
(𝑂𝑖𝑗 − 𝐸𝑖𝑗)2

𝐸𝑖𝑗

𝑐

𝑗=1

𝑟

𝑖=1

             Equ 3-12 

𝐸𝑖𝑗 =
𝑂𝑖 ∗ 𝑂𝑗

𝑂𝑡 
 

   Equ 3-13 

 

𝑖 

𝑗 
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𝑂𝑖 is the total sum of observation in the 𝑖𝑡ℎ level for all classes, and 𝑂𝑗  is the total sum of the 

observation of 𝑗𝑡ℎ Class in an examined predictor, and 𝑂𝑖 is the total sum. 𝑟 represents the 

number of observations, while 𝑐 denotes the number of classes. 𝐷𝑓 is the degree of freedom 

which is computed by multiplying (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 1) by 

(𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 1). 

3. Find  𝑝 − 𝑣𝑎𝑙𝑢𝑒 (Equ 3-14) for each 𝑗𝑡ℎ level in the partitioned feature. If it is less than 

0.05, it means that there is a dependency between the tested variables; otherwise, there 

is no significant relationship.  

 

4. Select the 𝑗𝑡ℎ level in the partitioned feature that produced the smallest  𝑝 − 𝑣𝑎𝑙𝑢𝑒 (the 

lowest 𝑝 − 𝑣𝑎𝑙𝑢𝑒,  the most significant it is).  

5. The best split predictor in each node is used to construct CHAID tree and is chosen 

according to the predictor that minimises the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 𝐶ℎ𝑖2 between each predictor 

and the 𝐶𝑙𝑎𝑠𝑠 (response variable). 

 

Step3: Start generation 

➢ Crossover and Mutation 

From 𝑁, two parents 𝑃1 and 𝑃2 chromosomes according to the Roulette wheel probability 

selection have been chosen to apply a single-point crossover (Figure 3-21), the position of the 

crossover point is selected randomly. The two resulting children are merged into one 

chromosome called 𝑁𝑒𝑤𝑝. Then, a mutation process is performed on the 𝑁𝑒𝑤𝑝 (of double size 

of parent) where one gene is flipped from ‘1’ to ‘0’ or vice versa (Figure 3-21) for a random 

selection of genes with the total 𝑁𝑒𝑤𝑝 size in respect to the specified mutation rate.  

 

➢ Merge population and Select the best chromosome 𝑍 

The 𝑁𝑒𝑤𝑃 is merged with 𝑋`, then the merged population is sorted and the best 

𝑁 chromosomes are selected for the next generation, while the rest of the chromosomes in 

merged population are discarded. The top first chromosome in the sorted merged population is 

selected (𝑍), and to be updated each iteration until the maximum number of generations 𝑇 is 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  √
𝐶ℎ𝑖2

𝑂𝑡 ∗ √𝐷𝑓
    ,   𝐷𝑓 =  (𝑟 − 1)(𝑐 − 1)  Equ 3-14 
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met.   

  

 

Step1: Initialise the parameter of GA randomly 
      𝑁 =  10                 //No. of chromosome in population  

                  𝑇 =  50                 // Maximum number of generations 
                  𝐶𝑅 =  0.7              // Crossover rate 
                  𝑀𝑅 = 0.2              // Mutation rate 
                 Initialise the population 𝑋`(𝑁, 𝑃`) with a random number either ‘0’ or ‘1’ of size P` 
                 𝑍(1, 𝑃`) = 0           // initialise 𝑍 with zeros  
       Step2: Compute Fitness function  

           For 𝑖= 1 to 𝑁 Do  
             For 𝑗= 1 to 𝑃` Do   

                       Compute 𝐹𝑖𝑡 (𝑋`(𝑖, 𝑗) == 1)           // CHAID decission tree 
                  End 
           End 
Step3: Start generation 
Do until iteration  < = 𝑇 
            For 𝑘= 1 to round (CR*N)                        // no. of crossover 
                𝐼𝑛𝑣𝐹𝑖𝑡 =  1 − 𝐹𝑖𝑡                                 // compute the inverse of fitness  
               𝐹𝑖𝑡_𝑝𝑟𝑜𝑝 =  𝐼𝑛𝑣𝐹𝑖𝑡(𝑖)/ ∑ 𝐼𝑛𝑣𝐹𝑖𝑡𝑖

1      // compute the inversed fitness probability 
                     Select two parents 𝑃1,𝑃2              // Roulette wheel selection depending on 𝐹𝑖𝑡_𝑝𝑟𝑜𝑝                                                           
                     𝑁𝑒𝑤𝑃 = [𝑃1, 𝑃2]                            // Apply single point crossover between 𝑃1,𝑃2               
                 End 
                 For 𝑘=1 to size (𝑁𝑒𝑤𝑝) 
                       Apply mutation to 𝑁𝑒𝑤𝑃            // Randomly selected genes respect to 𝑀𝑅 
                       𝐹𝑖𝑡 =  𝑓𝑖𝑡(𝑁𝑒𝑤𝑃)                       //Compute fitness for 𝑁𝑒𝑤𝑃  
                 End  
                 𝑀𝑒𝑟𝑔𝑟𝑒𝑑_𝑝𝑜𝑝 =  [𝑋`, 𝑁𝑒𝑤𝑃]          //Add 𝑁𝑒𝑤𝑝 to current population  
                 Sort (𝑀𝑒𝑟𝑔𝑒𝑑_𝑝𝑜𝑝) according to their highest fitness 
                 𝑋` = 𝑀𝑒𝑟𝑔𝑒𝑑_𝑝𝑜𝑝                           // Update 𝑋` with the best 𝑁 chromosomes  
                 𝐹𝑖𝑡 =  𝑓𝑖𝑡 (𝑀𝑒𝑟𝑔𝑒𝑑_𝑝𝑜𝑝)               // Update 𝐹𝑖𝑡 with the best N values  
                 𝑍 = 𝑀𝑒𝑟𝑔𝑒𝑑_𝑝𝑜𝑝(1, 𝑃`)                // Update 𝑍 with the 1st best chromosome, where   

                                                     its gene equal to ‘1’ means the feature is selected  
       Repeat   
     Step4: Return the best selected features set correspond to the genes equal to ‘1’ in 𝑍  
      

Figure 3-23 The pseudo-code for CHAID Genetic Algorithm for feature selection of sheep dataset. 
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3.6.3 Random Forest RF for Feature Selection 

Although to RF was introduced in Section 2.8.5.2, a brief summary is given here. RF is about 

bagging numerous decision trees which are called weak learners to obtain a global optimal 

classifier (learner) that overcomes the overfitting problem when the training accuracy of a 

model is higher than the accuracy of the same model when testing with unseen data.  The vote 

for the final class is assigned by the majority of votes of all trees in the ensemble (Maxwell et 

al., 2018). Each tree in the ensemble is trained with a random subset of features while one set 

is kept for testing the error rate of that tree called out-of-bag (𝑜𝑜𝑏) dataset. The overall accuracy 

of RF is estimated by averaging the 𝑜𝑜𝑏 error over the number of trees in the ensemble to 

provide an independent estimate for accuracy (Breiman, 2001).  

 

The splitting criterion that is used in RF for feature selection is the curvature test (CHAID) 

which is introduced in the previous section. Since it is recommended to use the 𝐶ℎ𝑖 test when 

there are many levels of unique values of the input feature set like continuous sheep datasets. 

Whereas CART tries all possible cut points (explained in Section 3.7.1), CHAID tries fewer 

cut points than CART as the continuous input feature is converted to categorical ones and 

CHAID test between categories for the best splitting point that minimises the 𝑃 − 𝑣𝑎𝑢𝑙𝑒 of 

𝐶ℎ𝑖 test.  

 

The importance of features is the 𝑜𝑜𝑏 error. The observations in the 𝑜𝑜𝑏 dataset are not used 

for constructing the tree; instead, they are employed as an internal validation set to estimate 

𝑜𝑜𝑏 error. A flowchart for a RF working concept is presented by (Boulesteix et al., 2012) 

Figure 3-24 shows the steps of how the RF is exploited for feature selection.  
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Figure 3-24 RF algorithm framework (Boulesteix et al., 2012). 

 

 

3.7 Construct A Decision Tree Classifier for Sheep Lameness Detection 

Model (SLDM) 

After the optimal set of features has been reduced and the most important features have been 

chosen in the FS process, the 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑡𝑎𝑏𝑙𝑒(𝑋, 𝐴) becomes ready to train a 

classifier to fit a model that has the ability to predict new unseen observations (examples) with 

a reasonable accuracy ratio.  

Although there is no one model fits all types of data, the sheep DataSet2_a (Table 3-5) has 

been examined (as a raw data only) for more than one classifier in the early research output 

(Al-Rubaye et al., 2018). The results reveal that the Decision Tree DT classifier outperforms 

their counterpart classifiers when they have been tested with the unseen dataset. Thus, the main 

classifier to develop a sheep lameness detection model to classify sheep walking into sound, 

mildly, and severely is the DT and its ensemble. However, other classifiers which were 

introduced in Chapter two would be used for comparing their performance with DT, while the 

basic concepts of how DT works is illustrated in the next section.  
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3.7.1 CART Decision Tree Characteristics  

DT is a hierarchical structural form of a classification model that constructs a tree in a top-

down greedy search approach (Reddy and Babu, 2018).  DT recursively partitions the input 

dataset (training set) into a small subset according to their feature space in order to find the 

decision rules set for a robust predictive classification model (Myles et al., 2004).  

  

The tree structure mainly consists of two components: nodes and branches. The top node is 

named a root node (decision node), and the internal nodes are either parent or child. All these 

nodes have branches, while the bottom nodes are called leaf nodes and have no branches as 

they contain the classification result (the class of a classification problem). Each node, 

including the root node is selected according to the best attribute (predictor) in the training 

dataset that meets splitting criteria, while the branches connect the tree nodes and each path 

represents a decision rule that could be traversed from the root node through the internal node 

to a leave node as ‘if-then’ rules (Yan-yan Song and Ying Lu, 2015). 

 

CART (Classification and Regression Trees) is a binary decision tree first introduced by 

Breiman et al., (1984) that built a predictive model to detect either discrete or continuous 

targets, CART can deal with both categorical and/ continuous data types for predictors and 

target class. The obtained predictive model is constructed by partitioning the data set 

recursively into subsets and evaluating the information gain, before and after splitting to choose 

the best split that produces a tree with a minimum error rate. Figure 3-25 illustrates how CART 

is constructed, and the details of the procedures are explained in the following steps (Adnan, 

2017; Tan et al., 2006). 

 

Step1: Determining splitting points (cut points) 

The 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑡𝑎𝑏𝑙𝑒(𝑋, 𝐴) contains the best features data set which is employed by 

CART to construct the predictive model for sheep lameness detection (SLDM). So, the 

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑡𝑎𝑏𝑙𝑒(𝑋, 𝐴) is upgraded to be named as training dataset 𝐷(𝑋, 𝐴), where 

𝑋 =  { 𝑥1, 𝑥2 , … ., 𝑥𝑖} represents the number of observations (instances/ examples), and 𝐴 =

 { 𝑎1, 𝑎2 , … ., 𝑎𝑗} represents the number of best-selected features (attributes/ predictors) while 

the last column refers to the 𝐶𝑙𝑎𝑠𝑠 of each observation (see Figure 3-26). To determine the 

possible cut points for each attribute (predictor) vector 𝐴 in 𝐷,  𝐴 is sorted according to its 
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domain value (unique values) in ascending order. Each element of the sorted 𝐴 between the 

lower 𝐿 and upper 𝑈 boundaries is tested to be chosen as a cut point candidate. 

 
Figure 3-25 CART induction flowchart. 

 

 
 

Figure 3-26 An example of sheep training set dataset, where X= 55 # observation, A= 9 # predictors, 
K= 3 # Classes. 
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Step2: Choosing the best split cut point 

Each candidate cut point splits the dataset into two nodes 𝐷1 and 𝐷2 as CART performs binary 

splitting. For each node, a measurement of impurity is performed (the node is said to be pure 

if it has observations from the same class). The Gini index (𝐺𝑖𝑛𝑖) in (Equ 3-15) is a metric to 

compute the node impurity in CART by summing the squared probabilities of each class in the 

examined node; where 𝐶 is the number of classes (𝐾 = 3 sound, mildly, and severely walking), 

𝑃𝑘 is the observed fraction of class 𝐾 over the number of observation for all classes in an 

examined node. 𝐺𝑖𝑛𝑖 value is between 0 and 1, when 𝐺𝑖𝑛𝑖 = 0 that means a pure node contains 

observations from only one class, in this case it represents a leaf node and no further splitting 

is required; otherwise, the node is impure and the value of 𝐺𝑖𝑛𝑖 measures the degree of node 

impurity. 

 

After splitting 𝐷 into 𝐷1 and 𝐷2 and 𝐺𝑖𝑛𝑖 is computed for each new partitioned dataset, the 

gain in 𝐺𝑖𝑛𝑖 (impurity) is computed between the parent node (node before splitting) and child 

nodes (nodes after splitting) to find out the best split (cut point). The best split is the one that 

maximises the impurity gain (ΔI) overall splitting candidates The difference in 𝐺𝑖𝑛𝑖 gain is 

calculated in Equ 3-16 and the largest difference indicates the better test condition as the best 

split is the one that maximises the 𝐺𝑖𝑛𝑖_𝐺𝑎𝑖𝑛. In Equ 3-16, 𝐺𝑖𝑛𝑖 (𝐷) represents the parent 

node’s 𝐺𝑖𝑛𝑖 before splitting, while 𝐺𝑖𝑛𝑖 (𝐴, 𝐷𝑖) represents the child node’s 𝐺𝑖𝑛𝑖 after splitting. 

𝑁(𝐴) is the number of observations in a child node, 𝑁 is the total number of observations in 

the parent node. 𝐷 is the number of partitions which are equal to two as CART is a binary 

approach that divides each node into two partitions 𝐷1 and 𝐷2 as left and right child 

respectively.  

 

Step3: Stopping rules 

The prementioned process is recursively performed until a stopping criterion is met:   

➢ When a node is pure (the observation of one class is the only observations that exist in 

that node). 

𝐺𝑖𝑛𝑖 (𝐷) = 1 − ∑(𝑃𝑘)2

𝐶

𝐾=1

 Equ 3-15 

𝐺𝑖𝑛𝑖_𝐺𝑎𝑖𝑛 (𝐴, 𝐷) = 𝐺𝑖𝑛𝑖 (𝐷) − (∑
𝑁(𝐴)

𝑁

𝐷

𝑖=1

∗  𝐺𝑖𝑛𝑖 (𝐴, 𝐷𝑖))  Equ 3-16 
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➢ When the number of observations in a node is less than the minimum parent size that 

is predefined by the user (default is 10).  

➢ When the number of observations in a node is less than the minimum leaf size that is 

predefined by the user (default is 1).  

➢ The number of splits reaches the maximum number of splits (default is # observation - 

1).  

 

Example 3.3:  Consider the dataset in Figure 3-26, where the total no. of observations 𝑋 =

55, no. of classes 𝐾 = 3, and no. of attributes 𝐴 = 9. Then, CART tree is constucted in Figure 

3-27, and the calculation for 𝐺𝑖𝑛𝑖 of each node is provided in Table 3-8. 

 

 

Table 3-8 Gini index of each node of CART presented in Figure 3-27. 
 

 

 

 

 

 

 

𝐺𝑖𝑛𝑖 #1 = (1 − ((18/55). ^2 + (8/55). ^2 + (29/55). ^2)) ∗ (55/55) 

𝐺𝑖𝑛𝑖 #2 = (1 − ((2/31). ^2 + (0/31). ^2 + (29/31). ^2)) ∗ (31/55) 

𝐺𝑖𝑛𝑖 #3 = (1 − ((16/24). ^2 + (8/24). ^2 + (0/24). ^2)) ∗ (24/55) 

… … … … 

𝐺𝑖𝑛𝑖 #7 = (1 − ((0/8). ^2 + (8/8). ^2 + (0/8). ^2)) ∗ (8/55) 

 

# Node  sound  mild severe # Observation  𝐺𝑖𝑛𝑖 # = Gini index * Node Probability 
1 18 8 29 55 0.5937 
2 2 0 29 31 0.0680 
3 16 8 0 24 0.1939 
4 1 0 29 30 0.035 
5 1 0 0 1 0 
6 16 0 0 16 0 
7 0 8 0 8 0 



CHAPTER THREE: Building a Data Mining Methodology for Sheep Lameness Detection 
(SLDM) 
 

101 
 

 
Figure 3-27 CART construction example for a dataset given in Figure 3-26. 

 

3.7.2 The Ensemble of Trees (Bagging, Boosting, and RusBoosting)  

The aggregation of many trees within ensemble techniques increases the level of predictive 

accuracy of the model; however, the interpretation of the model could be negatively affected 

(Myles et al., 2004). The number of trees in an ensemble would not cause an overfitting case; 

in contrast, a sufficient number of trees in an ensemble are developed to reach a settled level 

of error. So, 100 decision trees are recommended to train an ensemble classifier to reach a 

satisfying level of performance (James et al., 2013).  

 

Basically, two main techniques are utilised to build an ensemble classifier: Bagging and 

Boosting. The difference between the two growing techniques would be in the way of growing 

the trees in the ensemble. In bagging, all trees are constructed once, while in boosting, the 

growth of the trees happens gradually to increase the model efficiency as the model with 

smaller trees number would expect to have less execution time. Random Under Sampling 

Boosting method (RusBoosting) is also used when the dataset has an imbalanced number of 

classes as it resamples the distribution of classes within the dataset. It constructs the ensemble 

the same way AdaBoost performs. However, an introduction part for each type was given in 

2.8.5. Basically, the ensemble is tested with the sheep dataset file for comparing the 

performance of a single CART with multiple CARTs in the ensemble.  
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3.8 SLDM Validation 

The performance of the classifier could be evaluated by estimating the number of 

misclassification records (examples) committed by the classifier on training data; this type of 

error is called training error or resubstituting error. However, the estimation of the 

resubstituting error could be optimistic and cause what is called overfitting, when the model 

fits well with the training example but not with new unseen examples. Thus, the estimation of 

generalisation error would be rational as it measures the misclassification error on unseen data 

and has not been employed in building the model (Tan et al., 2005).   

 

To provide an unbiased estimation of the generalisation error, the unseen data that is called test 

data is tested for the purpose of model validation. In SLDM, the three common methods for 

evaluating model performance are used (Raschka, 2018); however, one more method is 

proposed to be applied in the current research that is named Single Sheep Splitting. All 

validation methods are illustrated in Figure 3-28.  

 
 Train data  Test data     

(a) 5-Fold cross-validation 

 
 

(b) Hold-out (30%) cross validation 

 
(c) Single Sheep splitting 

Figure 3-28 Three methods to evaluate the performance of SLDM. 
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3.8.1 Evaluation Metrics  

3.8.1.1 Confusion Matrix  

A confusion matrix is a metric that measures the performance of a classifier learner on a set of 

known class data (Kevin Markham, 2014). It formulates a square matrix with a number of rows 

and columns equal to the number of classes in a classification problem. For the lameness 

detection problem, three classes are spotted; sound walking, mildly walking, and severe 

walking Figure 3-29. The rows represent the actual instances belonging to each 𝐶𝑙𝑎𝑠𝑠, while 

the columns refer to predicted instances of these 𝐶𝑙𝑎𝑠𝑠. The diagonal line represents the overall 

of True Positive predictions (𝑇𝑃) and True Negative predictions (𝑇𝑁) which mean that the 

actual classes match the predicted classes. Otherwise, the area above and under the diagonal is 

called False Negative (𝐹𝑁) and False Positive (𝐹𝑃) (Tan et al., 2006). 

 
Figure 3-29 Confusion Matrix example for SLDM. 

 

To estimate the accuracy of the classifier’s performance and the misclassification error Equ 

3-17 and Equ 3-18 could be applied.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) Equ 3-17 

𝑀𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = (𝐹𝑃 + 𝐹𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) Equ 3-18 
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Where:  

𝑇𝑃: the number of examples where the 𝐶𝑙𝑎𝑠𝑠 of interest is correctly classified by SLDM as it 

is observed.  

𝐹𝑁: refers to the number of examples where the 𝐶𝑙𝑎𝑠𝑠 of interest is incorrectly classified by 

SLDM as another 𝐶𝑙𝑎𝑠𝑠 (ex: mildly walking is misclassified as severely walking by SLDM) 

𝐹𝑃: the number of instances (examples) where the 𝐶𝑙𝑎𝑠𝑠 of interest was incorrectly classified 

while it is not observed. 

𝑇𝑁: the number of instances where the 𝐶𝑙𝑎𝑠𝑠 of interest was correctly classified as not being 

observed. 

3.8.1.2 Imbalance Dataset Metrics  

Although the confusion matrix estimates the accuracy of the model, the imbalance dataset; 

where the number of classes is unequally distributed, it needs other metrics to evaluate the 

performance of the classifier. These metrics are calculated from the counts in the confusion 

matrix such as.   

 

➢ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (Recall) or TPR true positive rate for a positive 𝐶𝑙𝑎𝑠𝑠 is: the number of 

correctly classified positive instances divided by the number of positive examples in 

the data Equ 3-19. 

➢ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 for a positive 𝐶𝑙𝑎𝑠𝑠 is: the number of correctly classified positive instances 

divided by the number of examples predicted by SLDM as positive Equ 3-20. 

➢ 𝐹 − 𝑠𝑐𝑜𝑟𝑒: is the harmonic mean of 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 Equ 3-21, the higher F-

score the model has, the better the performance is (Tan et al., 2005). 

 

 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) Equ 3-19 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) Equ 3-20 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛/(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) Equ 3-21 
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3.9 Chapter Summary  

Android-powered system sensors were used to collect sheep data from Lodge Farm at 

Northampton, UK. Three datasets were obtained at 5 Hz, 10Hz, and 4Hz sampling rates as raw 

data ready to be pre-processed, and then were fed to the developed classifier SLDM. The pre-

processing stage includes manipulating noise and missing values, segmentation (FNSW, 

FOSW) for three various window times 5s, 7s, and 10s as these periods of time are 

recommended by the researches who conducted sheep behaviour classification and these time 

slices are adequate to examine the walking sheep for lameness symptoms. Furthermore, data 

pre-processing involves extracting walking segments and computing features for the walking 

segment only. 183 features were extracted from the accelerometer, gyroscope, and orientation 

data; however, for the purpose of eliminating the effect of irrelevant features, three types of the 

feature selection process are applied: ReliefF, a proposed GA with CHAID fitness function, 

and RF. Then, the best-selected features would feed the CART decision tree to build a model 

that classifies sheep lameness status into sound walking, mildly walking, and severe walking. 

An ensemble of CARTs was applied to overcome overfitting and increase the SLDM accuracy 

in two ways of the ensemble: bagging and boosting; in addition to the RusBoosting for 

imbalanced dataset. Finally, the built model was validated with unseen data by using 3 methods 

of validation: 5-folds cross-validation, hold-out 0.3 of data for testing, and Single Sheep 

Splitting proposed method. A multi-class confusion matrix was used as a metric to explore the 

model performance in terms of accuracy, sensitivity, precision, and F-score.  
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4 Chapter Four: SLDM Implementation, Classification Results 

and Interpretations 
 

4.1   Introduction 

The data mining methodology for sheep lameness detection approach (SLDM) that has been 

developed for the current research is empirically applied using MatLab programming language 

as it is a robust tool for data analysis, algorithm development, visualisation and graphics, and 

numeric computations. MatLab offers a powerful machine learning toolbox, which provides 

interactive visual environments for investigating data analysis algorithms, evaluating them, and 

choosing the best algorithm that suits the demand application.  

 

A user-interface for SLDM is designed especially for the current research that allows the user 

to acquire sensor data, pre-process, and implement the classification algorithm with the option 

of a user-defined parameter that could be changed during implementation.  

 

The first section of this chapter,  4.2, explores the implementation of SLDM via App Designer 

in MatLab. Then, it is followed by the results of each task in App Designer with its evaluation. 

Lastly, a final table for aggregated data is presented in Section 4.3, while the plots for raw data 

are provided in Section 4.4. Data pre-processing results are presented in 4.5, and a comparison 

for the best features selection is provided in 4.6. Interesting SLDM train and test results are 

explored and discussed in Section 4.7. Finally, a comparison of the model’s validation methods 

is given in Section 4.7.3, and the Chapter is closed with a general discussion and comparison 

with other related sheep lameness prediction studies in Section 4.8.  

 

4.2 User-interface Design for SLDM  

The user-interface for SLDM is designed using the rich environments of App Designer in 

MatLab which provides a Graphical User interface (GUI) that contains visual components to 

create a design layout view in addition to a code view that is integrated with MatLab editor. 

App Designer is the programmers’ target to build a standalone application that could be 

executed in any desktop or even web applications where is no need for MatLab’s compiler to 

be installed in a machine; instead, only the executed file is adequate to run the application.  
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For the purpose of implementing SLDM, a GUI is designed in MatLab to organise the process 

of building the SLDM in terms of controlling the user-defined parameters, exploring the visual 

plotting results, and re-executing the implementation with different option parameters. The 

SLDM interface consists of four main tabs, where each tab performs a different functionality.  

 

4.2.1 Tab1: Get Sensor Data 

Three tasks could be conducted in the first tab of SLDM (Figure 4-1). The first task is the 

sensor data acquisition from the three sensor application’s types that were used in the current 

research named Sheep Tracker, SensoDuino, and Sensor Log via clicking on the ‘Get sensor 

data’ button. The user can identify the ‘discard reading time in sec.’ before the acquisition, 

which was defined here in 3 seconds. The discard time is the time that is wasted during the 

deployment of the sensor onto the sheep’s neck and taking it off.  

 

The second task is data aggregation. From the whole sheep datasets that were collected (Table 

3-5), the aggregation step is required to satisfy that the dataset involves various sheep status 

(𝐶𝑙𝑎𝑠𝑠), and keeps as much as sensor data-points collected. Because the data collected from 

each sheep has only one class from the group of the classes that are dealt with in this research 

(severe, mild, sound), the data aggregation is recommended to satisfy the variety of classes to 

be included in the dataset that is being used to build SLDM. The aggregation process produced 

four DataSets, which are expressed in Table 4-1. 

 

After the four aggregated DataSets are obtained, the summary for each DataSet is computed, 

where the proportion of each 𝐶𝑙𝑎𝑠𝑠 in a given dataset was calculated from the whole data-

points aggregated (Table 4-1). The imbalanced dataset was obtained as the ratio of each 𝐶𝑙𝑎𝑠𝑠 

in the four aggregated datasets are unequal.  

 

The final task to be performed in Tab1 is DataSet plotting.  This is required to show how each 

DataSet is presented. The relationship between the predictors is shown in two forms of plotting: 

boxplots and matrix of scatter plots. In boxplots, each predictor is grouped in a separate box 

according to the 𝐶𝑙𝑎𝑠𝑠 that it belongs to, while the matrix scatters plots a matrix of scatter plots 

grouped every two predictors by their 𝐶𝑙𝑎𝑠𝑠.  
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Figure 4-1 The first tab of SLDM. 

 

4.2.2 Tab2: Pre-Processing 

Tab2 of the SLDM implements the data pre-processing steps, as shown in Figure 4-2, the pre-

processing steps include:  

1- Segment the raw sheep datasets according to the two methods of online and offline 

segmentation as presented in the methodology Chapter named FNSW and FOSW 

Section 3.5.3.1. The percentage of ‘overlapping’ was set to be 20% overlapping 

between two consecutive windows in FOSW method. The two segmentation 

approaches are applied over a chosen window size of 10 sec, 7 sec, and 5 sec. The 

number of segments (#seg) resulting from each chosen window size for the four 

aggregated sheep Datasets are presented in a column within the classification tables 

Table 4-2, Table 4-3, and Table 4-4. 

 

2- Classify the obtained segments of moving sheep into Standing, Walking and Trotting 

segments according to pre-defined speed threshold limits that were set to be between 

0.8 m/s – 3.5 m/s. The ‘running mean window’ that was used to calculate the 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐴𝑐𝑐_𝑦 to be integrated later on in the speed calculation was set to a number 

that is equal to 5, 7, or 10 associated with the selected ‘window size’ either 5, 7, or 10 
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𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  The classification results are presented in4.5.1.1 for each 10, 7, and 5 

𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, respectively. For the visualisation, scatter plots for the segmentation 

process are depicted in Figure 4-7 for DataSet2_ac, while the plots for DataSet1_all, 

DataSet2_b, and DataSet3_all are shown in Appendix C. 1, Appendix C. 2, and 

Appendix C. 3, respectively.   

 

3- Combine the classified walking segments from each individual sheep in a given dataset 

into one file called 𝐶𝑜𝑚𝑏𝑖𝑛𝑒_𝑑𝑎𝑡𝑎, then Get the raw walking sheep dataset table in one 

file named 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒 to be prepared for the feature extraction step (refer to 

Section 3.63.5.7). The summary of each 𝑅𝑎𝑤_𝑑𝑎𝑡𝑎_𝑡𝑎𝑏𝑙𝑒; which includes the number 

of segments (instances) belonging to each 𝐶𝑙𝑎𝑠𝑠 (severely walking, mildly walking, 

and sound walking) as well as the proportion of each in the four obtained sheep Datasets 

in (Table 4-1), is presented in Table 4-5, Table 4-6, Table 4-7 for 10, 7, and 5 

𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, respectively.  

 

4- Extract features that were listed in (Table 3-6) from the four obtained DataSets. The 

total number of features for the DataSet1_all, DataSet2_b, and DataSet3_all is 183 

features, while only 122 features were extracted from DataSet2_ac as it has 6 predictors 

(no gyroscope readings were included). The type of extracted features is also listed in 

Table 4-8, which is either time domain or frequency domain as it was mentioned in 

Figure 3. 17.  

 

5- The feature extraction step is accompanied with Computing the execution time required 

for each feature in seconds, and the results are listed in Figure 4-8 for DataSet2_ac, 

while the results for DataSet1_all, DataSet2_b, and DataSet3_all are presented in 

Appendix D. 1, Appendix D. 2, and Appendix D. 3, respectively. 
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Figure 4-2 The second tab of SLDM. 

  

4.2.3 Tab3: Feature selection & Retrain for Best Features  

Two main tasks are conducted in Tab3 of the SLDM Figure 4-3. The first task performs the 

steps for ‘Feature Selection’, and the second task applies the steps for ‘Train for the best no. 

of features’ to find out the best number of features that reveal the highest accuracy of lameness 

prediction.  

  

In Feature Selection FS task, three approaches RelifF, GA, and RF are implemented (refer to 

Section 3.6) to figure out the most FS method that reveals the highest prediction percentage of 

sheep lameness status for the four obtained sheep DataSets. The first tried FS method is 

ReliefF, which accepts user input for 𝑘 nearest neighbour instances in ‘No. nearest neighbour’ 

field in SLDM. 𝑘 is identified by 10 in the current execution of SLDM. Alternatively, when 

GA is applied for FS, the number of best-ranked features is displayed in ‘Selected features NO. 

by GA’ field. Whereas in the third FS method; which is RF, the number of trees to be trained 

are determined by 100 trees in the current implementation while the accuracy of RF classifier 

could be retrieved in ‘RF Accuracy’ field of SLDM. For the three applied aforementioned FS 

methods, the execution time is calculated and shown in the ‘Execution time in sec.’ field; 

however, the comparison results over 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for both FNSW and FOSW 
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segmentation methods are provided in Table 4-9, Table 4-10, and Table 4-11. 

 

After each implementation of the three methods, the rank of feature’s importance is displayed 

in the ‘Features’ Rank’ Listbox in Tab3 of SLDM. Due to the number of features being 183 

for DataSet1_all, DataSet2_b, and DataSet3_all, whereas 122 features for DataSet2_ac., the 

results of ranked features from each group of DataSets (4) for FNSW and FOSW (2) and over 

10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (3) produced long tables of ranked features which are given in Appendix 

E. So, In Appendix E, each of the 4 sheep Datasets has 3 related tables each of which reveals 

the ranked feature results over 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. Each table has 6 columns of 183 or 122 

features (rows) that are all conveyed in Appendix E; however, a photo for the first 25 ranked 

features are presented in Section 4.6.2.  

 

Next, the ‘Train for the best no. of features’ task is performed which is the process to decide 

how many features could be selected from the ranked list of features that mostly minimise the 

classification error. Therefore, the performance of a single CART for the ranked features is 

tested and validated with 5-fold validation method. The validated results are plotted in 

Appendix F and discussed in Section 4.6.3 for each 4 sheep DataSet for both (FNSW and 

FOSW) over 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. The plottings also show the highest accuracy obtained with 

its associated number of features.  

 

Figure 4-3 The third tab of SLDM. 
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4.2.4 Tab4: Train, Validate & Test Model 

The final Tab in the SLDM interface design is Tab4 Figure 4-4, where two main tasks are 

implemented. The first task is training the lameness prediction model and ‘Apply Ensemble’ 

of CART either using the Bagging method when ‘Bag’ is chosen or using Boosting method 

when ‘AdaBoostM2’ is selected by the user. Another option is available for imbalanced 

Datasets, which is ‘RusBoost’ which stands for Random Under-Sampling Boosting. The 

‘RusBoost’ effectively classifies the imbalanced dataset as it is under-sampling the majority of 

the class uniformly and randomly; this method might produce a better classification rate 

compared to ‘AdaBoostM2’ method.  

 

For each tree in the ensemble, the ‘MaxNumSplits’ represents the number of maximum splits 

each CART could perform, which equals to the (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 − 1) by default; 

however, the user can choose any number of splits to control the depth of each trained tree. In 

the current research, the number of maximum splits is set to its default. In addition, the number 

of predictors (features) at each split ‘No. of predictors at each splits’ is set to “all” in order to 

include all predictors for each CART’s execution. Finally, the number of features that would 

be considered in execution is set to the first 20 features from the ranked features tables obtained 

from the previous Tab3.  

 

The second task of Tab4 is validating the trained model ‘Model Validation’ using two common 

methods either ‘K-fold’ or ‘Holdout’; in addition to, a proposed method that is called ‘Single 

Sheep Splitting’ (refer to 3.8). In the current execution, the number of folds needed to validate 

the trained model is set to be ‘5’, while the percentage of hold-out data is 30%; so, the trained 

data is 70%, and the built model is tested for the rest of 30% of data that not seen by the model. 

The ‘Single Sheep Splitting’ validation proposed method is applied when all features are 

chosen instead of the first 20 ranked features.  
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Figure 4-4 The fourth tab of SLDM. 

 

4.3 Data Acquisition and Aggregation Results  

The final aggregated sheep DataSets were set to be four sheep DataSets that are expressed in  

Table 4-1. The DataSet1_all, DataSet2_b, DataSet3_all have 3 acceleration readings, 3 

gyroscope readings, and 3 orientation readings in 3 dimensions horizontal, vertical, and 

orthogonal except that DataSet2_ac has only 3 acceleration readings and 3 orientation readings.   

 

The aggregated datasets show imbalanced datasets as each class’s proportion of severe, mild, 

and sound are not equally distributed. Usually, the imbalanced datasets are obtained from a 

real-world application like the one tackled in the current research when many obstacles could 

be faced in collecting an equal number of samples of each class from the sheep flock.  

 

The imbalanced datasets that are collected from a real-world application could affect the 

classifier performance negatively, where the prediction accuracy of the minority class would 

underestimate the prediction accuracy of the majority class. This could happen because most 

of the data mining algorithms assume an equal distribution of all classes in the trained dataset, 

and the error from each class has the same cost (Ganganwar, 2012).   
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The process towards building SLDM was implemented for each 4 obtained sheep DataSet as 

each of them has different characteristics that prevent combining all the collected sheep data 

into one data file.   

 

Table 4-1 Final aggregated sheep Datasets. 

Dataset 
Name 

# 
predictors 

Sensor 
App used 

Sample 
rate  

# 
Datapoints 
(# sheep) 

Severe 
ratio% 

Mild 
ratio% 

Sound 
ratio% 

Notes 

DataSet1_all 
3 Acc, 3 
Gyr, 3 
Orient 

Sheep 
Tracker+ 
Sensor Log 

5 Hz 64384  
(31 sheep) 22.34 55.69 21.97 

Missing Gyr 
from Sensor 
Log are 
manipulated, 
then all 
aggregated  

DataSet2_ac 3 Acc, 3 
Orient SensoDuino 10 Hz 124806 

(10 sheep) 46.56 

 
 
 
30.12 
 
 
 

 
 
 
23.32 
 
 
 

Gyr discard 
for 
DataSet2_a 
and 
DataSet2_c, 
Orient are 
calculated for 
DataSet2_c, 
then all 
aggregated 

DataSet2_b 
3 Acc, 3 
Gyr, 3 
Orient 

SensoDuino 10 Hz 

 
59458 
(18 sheep) 
 

 
20.77 
 

 
21.07 
 

 
58.15 
 

Same DataSet 

DataSet3_all 
3 Acc, 3 
Gyr, 3 
Orient 

SensoDuino 4 Hz 5342 
(7 sheep) 22.97 

 
23.19 
 

53.84 

Redundant 
Gyr values 
are 
manipulated 
first 

 

 

4.4 Plotting Raw Data  

The plot of the four aggregated raw sheep datasets was depicted in forms of Matrix of scatter 

plots and Boxplots in the following Sections (4.4.1 and 4.4.2), respectively. It is shown from 

the plotting that each group of predictors is strongly correlated, and it would be challenging to 

have a clear linear separation of predictors in order to indicate the lameness status of sheep. 

This might be due to the lame sheep having the ability to pretend to walk normally in order to 

hide their pain in case of uncommon situations that might face the flock; for example, when 

the observation is in progress, and the flock is being monitored by an observer like the case in 

the current research, or when the shepherd’s dog is used on the farm to gather the flock.  Also, 

the sheep could challenge themselves to walk normally when the flock is being attacked in 
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open fields by wild animals like a wolf or fox.  

 

Due to the decision of identifying the sheep’s status directly from the raw data not being a 

straightforward task, the raw data is usually pre-processed to be trained by the classifier. 

However, the orientation group (Azimuth, Pitch, and Roll) of the raw sheep data could 

positively contribute as a good indicator for lameness detection. The hypothesis of the 

orientation group mostly contributing to lameness detection prediction is confirmed in the 

earlier current research output (Al-Rubaye et al., 2018). In the previous publication Appendix 

H, the orientation sensor data (angles) reveal a substantial effect on differentiating among 

severely lame, mildly lame and sound classes of sheep in spite of using the raw data of 

DataSet2_a without any pre-processing steps.  

 

4.4.1 Matrix of Scatter Plots for Sheep Raw Data  

The matrix of scatter plot in Figure 4-5 refer to DataSet2_ac, which has 6 predictors (𝐴𝑐𝑐_𝑥, 

𝐴𝑐𝑐_𝑦, 𝐴𝑐𝑐_𝑧, Azimuth, Pitch, and Roll). Each cell in the matrix of scatter plot showing a 

relationship between two predictors; conversely, the diagonal line shows the relationship 

between each predictor and itself. Due to DataSet2_ac has 6 predictors (𝑃 = 6), a plot matrix 

of 𝑃 ∗ 𝑃 plots were depicted in Figure 4-5 for DataSet2_ac as an example. However, the matrix 

of scatter plot for the other three sheep DataSet1_all, DataSet2_b, and DataSet3_all that have 

9 predictors (𝑃 = 9) are presented in Appendix B. 1, Appendix B. 2, and Appendix B. 

3Appendix B, respectively.  

 

The plots in Figure 4-5 shows a widespread of each class, which causes class overlapping. The 

reason for this refers to the raw data having no cleaning step where the walking segments are 

extracted to be trained by the classifier to only classify the walking sheep status into sound, 

mildly lame, and severely lame walking. Thus, the pre-processing step is crucial in this case 

where the walking segments are extracted, and 183 features are computed and fed into the 

classifier (CART) in order to build the Sheep Lameness Detection Model (SLDM).  
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Figure 4-5  Scatter Plot matrix for raw Sheep DataSet2_ac, where *, o, and x represent severe, mild, and sound 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 in the DataSet.
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4.4.2 Boxplots for Sheep Raw Data 

Another form of plotting is a boxplot where each predictor is grouped in a separate box 

according to its belonging 𝐶𝑙𝑎𝑠𝑠; either sound, mild, or severe. The boxplots of Figure 4-6 

refer to DatSet2_ac that has six predictors (𝐴𝑐𝑐_𝑥, 𝐴𝑐𝑐_𝑦, 𝐴𝑐𝑐_𝑧, Azimuth, 𝑃𝑖𝑡𝑐ℎ, and 𝑅𝑜𝑙𝑙). 

The depictions for sheep DataSet1_all, DataSet2_b, and DataSet3_all are illustrated in 

Appendix B. 4, Appendix B. 5, and Appendix B. 6, respectively.  

 

Again, it would be not a straightforward process to distinguish among the three classes from 

raw data directly as the centres of each predictor box are convergence among the sound, mild 

and severe class. So, the importance of applying data pre-processing would be required for 

better prediction.  

 

   

   
Figure 4-6 Box Plots for each predictor in raw sheep DataSet2_ac. 

  

4.5 Data Pre-Processing Results and Discussion 

The four sheep DataSets were pre-processed each for the two segmentation approaches (FNSW 

and FOSW) that were discussed in Section 3.5.3.1. For each segmentation’s approach, three 

window sizes 𝑠𝑧 were chosen (10, 7, and 5 sec.) to segment each Dataset according to the 

selected 𝑠𝑧. The classification results for the sheep walking segments are presented in Section 

4.5.1, while the walking sheep datasets results are listed in Section 4.5.2. The results of the 
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final step of the pre-processing stage; which is feature extraction and time execution for each 

feature, is presented in Section 4.5.3. 

 

4.5.1 Sheep Movements Classification Results  

The classification of sheep movements firstly checks the sheep’s walking speed limits to be 

between 0.8 to 3.5 m/s. These limits; which were identified in the SLDM interface (pre-

processing tab), could be re-defined for many executions; however, the selected walking speed 

limits in the current research could keep many data-points of a moving sheep even if these 

speed limits exceed the normal sheep walking that was identified in the literature.  

 

The ‘running mean window’ was set to be associated with the selected window size 𝑠𝑧; for 

example, if  𝑠𝑧 = 10 for a Dataset with 10 Hz sampling rate, 100 data-points in the segment 

were tested for a running mean of each 10 neighbour points in the segment. Alternatively, the 

running mean was applied separately to neighbour points in the case of 𝑠𝑧 = 7, for the same 

DataSet as the segment size contains 70 data-points. This choice may guarantee the calculation 

of speed in relevance to the window size 𝑠𝑧.   

 

4.5.1.1 Sheep movements proportion for Standing, Walking, and Trotting Segments 

Actually, the proportion of each class depends on the sheep’s behaviour during the data 

collection experiments. In spite of this, each sheep was triggered to walk during the experiment; 

many times, the sheep tended to stand or start to trot if they felt the presence of the observer. 

 

The percentages of Standing segments, Walking segments, and Trotting segments for each 

selected window size 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. for the four aggregated sheep datasets DataSet1_all, 

DataSet2_ac, DataSet2_b, and DataSet3_all are provided in  

Table 4-2, Table 4-3, and Table 4-4, respectively.   
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Table 4-2 Sheep movement classification for two segmentation approaches over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for 
the four aggregated sheep datasets. 

Window size 10 Sec. 

Segmentation type FNSW FOSW (20%) 

Segments ratio for Standing (S), 
Walking (W), and Trotting (T) # segs S % W % T % # segs S % W % T % 

DataSet1_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 50), 
(10 s * 5 Hz) 1273 24.51 52.32 23.17 1563 24.82 52.53 22.65 

DataSet2_ac (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 100), 
(10 s * 10 Hz) 

1244 45.34 52.25 2.41 1542 44.94 52.66 2.4 

DataSet2_b 585 12.99 76.07 10.94 716 12.01 77.93 10.06 

DataSet3_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 40), 
(10 s * 4 Hz) 130 6.92 43.08 50 156 7.05 41.03 51.92 

 

Table 4-3 Sheep movement classification for two segmentation approaches over 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for 
the four aggregated sheep datasets. 

Window size 7 Sec. 

Segmentation type FNSW FOSW (20%) 

Segments ratio for Standing (S), 
Walking (W), and Trotting (T) # seg S % W % T % # seg S % W % T % 

DataSet1_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 35), 
(7 s * 5 Hz) 1826 35.43 50.22 14.35 2253 35.15 51.26 13.58 

DataSet2_ac (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 70), 
(7 s * 10 Hz) 

1777 64.38 34.89 0.73 2213 64.53 34.57 0.9 

DataSet2_b 841 19.02 76.93 4.04 1035 19.23 77.58 3.19 

DataSet3_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 28), 
(7 s * 4 Hz) 188 11.17 60.64 28.19 228 13.16 58.77 28.07 

  

Table 4-4 Sheep movement classification for two segmentation approaches over 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for 
the four aggregated sheep datasets. 

Window size 5 Sec. 

Segmentation type FNSW FOSW (20%) 

Segments ratio for Standing (S), 
Walking (W), and Trotting (T) # seg S % W % T % # seg S % W % T % 

DataSet1_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 25), 
(5 s * 5 Hz) 2559 47.13 46.82 6.06 3172 47.07 47.07 5.86 

DataSet2_ac (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 50), 
(5 s * 10 Hz) 

2492 73.72 26.04 0.24 3103 73.93 25.72 0.35 

DataSet2_b 1180 29.41 69.75 0.85 1459 28.99 69.98 1.03 

DataSet3_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 20), 
(5 s * 4 Hz) 263 21.29 64.64 14.07 323 21.67 65.63 12.69 
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For the DataSet1_all, the proportion of walking segments in the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for both 

FNSW and FOSW is 52.32% and 52.53%, which is approximately equal to more than half of 

the total collected data-points. This ratio of the obtained Walking segments could be considered 

as a representative ratio from the whole data-points. The aforementioned ratios of the obtained 

walking segments are a little bit better than the ones obtained from the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, where 

50.22% and 51.26% are obtained for both segmentation approaches. In contrast to the results 

of the acceptable walking segments ratio of 10 and 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 size 

produces lower walking segments ratios of 46.82% and 47.7% for both FNSW and FOSW 

segmentation approaches.  

 

The data-points of each segment in the 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 are 50, 35, and 25 respectively, 

which reveals that the smaller number of data-points in a segment could not be considered as 

a representative segment size for a sensor data in the 5 Hz sampling rate. That means 50 data-

points could describe the behaviour of the sheep better than 35 or 25 data-points. The results 

also reveal that whatever the window size is, the performance of FOSW is better than FNSW 

segmentation approach because 20% of the data-points are shared between every two 

successive windows. Although overlapping causes some data-points to be repeated in 

segments, it produces much better segmentation results than FNSW.   

 

For the DataSet2_ac with 6 predictors and 10 Hz sampling rate, the proportion of walking 

segments over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 exceeds half of the data-points which equal 52.25% and 

52.66% for FNSW and FOSW, while the proportion of walking segments in two segmentation 

approaches is dropped to 34.89% and 37.57% over the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 and 26.04% and 25.72% 

over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 size. The reason could be due to the sheep from attemp3 of 

SensoDunio (refer to Table 3.3) where the sheep were observed for an extended period of time, 

approximately more than one hour in an unattended procedure on the farm. So, there was a 

greater standing period of time than walking because the sheep were not triggered to walk as 

normal at that time. This is why the standing proportion is much higher the walking proportion, 

while the limited proportion of trotting segments appears since they tend to trot when the 

observer gets closer to encourage the sheep to walk.  

 

The data-points of each segment in the 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 are 100, 70, and 50, respectively. 

The fair walking segments proportion (more than half of the data-points) for the 10 Hz 
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sampling rate is obtained over a 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (segment size = 100) which indicates an 

agreement with the DataSet1_all.  

 

DataSet2_b (9 predictors) generates approximate proportions of walking segments over   

10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 for both FNSW and FOSW as follows (76.07%, 77.93), (76.93, 77.58), 

and (69.75%, 69.98%). All the obtained segment proportions were over half of the data-points 

as the sheep in the experiment of data collection were walking for most of the experiment time. 

The best proportion was obtained over a 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 with FOSW. Again, an agreement of 

obtaining the acceptable walking segment or more than that is consistent with DataSet2_ac 

where the segment size=100.  

 

In contrast with the 3 sheep DataSets, the DataSet3_all (4 Hz sampling rate) produces the best 

proportion of walking segments over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (64.64%, 65.63%) for two 

segmentation approaches, and it is followed by the results obtained over the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

(60.64%, 58.77). The lowest ratio for walking segments is obtained over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

which are (43.08%, 41.03%). While the data-points of each segment in the 

10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 are 40, 28, and 20 respectively; the best walking proportion is obtained 

from the smallest segment size that contains 20 data-points. The reason could refer to the 

sampling rate of the Sensor Log used to collect the sheep data.  

 

In general, the FOSW outperforms the FNSW as some data-points are shared between every 

two successive windows. In addition, DataSets with 10 Hz and 5 Hz have a walking proportion 

of over 50% for the window size of 10 𝑠𝑒𝑐. and 7 𝑠𝑒𝑐. Conversely, the DataSet with 4 Hz 

sampling rate produces walking segments of more than half of the data-points when 5 𝑠𝑒𝑐. and 

7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 sizes are applied. As a conclusion, the 7𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 could suit 10, 5, 4 Hz 

sensor sheep data.  

4.5.1.2 Sheep movements plots for Standing, Walking, and Trotting Segments 

The scatter plots in Figure 4-7 depicts Standing, Walking, and Trotting segments each in 

colours green, blue, and red, respectively for sheep DataSet2_ac over  10,7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

sizes for both FNSW and FOSW segmentation method. In each plot, the x-axis represents the 

𝑆𝑝𝑒𝑒𝑑 of each segment, while the y-axis refers to the 𝑉𝑒𝑑𝑏𝑎. The 𝑉𝑒𝑑𝑏𝑎 is the vectorial 

dynamic body acceleration that measures the energy expenditure of a sheep walking within a 

selected window (refer Table 3-6 in Chapter three for feature extraction). The other plots for 
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sheep DataSet1_all, DataSet2_b, and DataSet3_all are presented in Appendix C. 1, Appendix 

C. 2, and Appendix C. 3, respectively.  

 

  

  

  
Figure 4-7 Scatter plots of the DataSet2_ac, where movement’s classification is done over (10 𝑠𝑒𝑐, 7 𝑠𝑒𝑐, 

and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤) for two segmentation approaches (FNSW and FOSW). 
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It is shown from the presented plots that the 𝑆𝑝𝑒𝑒𝑑 and 𝑉𝑒𝑑𝑏𝑎 could increase together and 

decrease together as the energy spent for a standing sheep is less than the walking or trotting 

sheep and vice versa. It also appears from the presented figures that the segments (which 

represent every single point in the graph) are more scattered when the 𝑆𝑝𝑒𝑒𝑑 of the segment is 

increased, whereas they close together for Standing segments. The reason commonly referred 

to that minimal energy is spent while standing vs walking or trotting. 

 

4.5.2 Walking Sheep DataSets Results  

After the walking segments that were obtained from the previous stage, the walking segments 

of each sheep in a DataSet is aggregated together into one file. The 𝐶𝑙𝑎𝑠𝑠 name was updated 

from ‘sound’, ‘mild’, and ‘severe’ to ‘sound walking’, ‘mild walking’, ‘severe walking’ 

respectively. Each sheep DataSets with its total walking segments (# total instances), and the 

percentage of ‘sound walking’, ‘mild walking’, and ‘severe walking’ are each listed in the 

following tables over 10 𝑠𝑒𝑐., 7 𝑠𝑒𝑐., and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.  

 

For example, the total instances of DataSet1_all after combining the walking segments of all 

sheep in the given DataSet are 666 instances. In FNSW, 127, 391, and 148 segments out of 666 

refer to sound walking, mild walking, and severe walking in green, blue, and red colour in the 

respective presented tables. While 156, 490, and 175 segments for sound walking, mild walking 

and severe walking are obtained from the FOSW approach. The aforementioned numbers are 

obtained over a 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. Alternatively, in the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, in FNSW, 212, 467, and 

238 segments for sound, mild, and severe walking are gathered, while in FOSW 263, 592, and 

300 segments for sound, mild, and severe walking are gathered. Lastly for 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, in 

FNSW, 333, 507 and 358 for sound, mild, and severe walking segments are obtained, while in 

FOSW there are 418, 636, 439 segments for sound, mild, and severe walking gathered.  

 

Generally, DataSet1_all has the ‘mild walking’ class, this is the dominant class over the 3 

selected window sizes and approximately more than half of instances refer to the ‘mild 

walking’ class, while in DataSet2_ac, over the 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ‘severe walking’ class 

represents the majority class; however, it occupies two-thirds of total instances. Otherwise, 

‘sound walking’ class is the majority class of DataSet2_b, where it exceeds half of the 

instances over the 3 selected window sizes. Similarly, DataSet3_all has the ‘sound walking’ 

class as the majority class over ‘sound walking’ or ‘severe walking’ classes over 
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10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.  

 

Table 4-5 Results of walking sheep Datasets over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 used in the feature extraction stage. 

Window size 10 Sec. 

Segmentation type FNSW FOSW (20%) 

# Segments (instances) for Sound 
walking (Sw), Mild walking (Mw), 

and Severe walking (Srw) 

# total 
instances  

#Sw  #Mw  #Srw   # total 
instances  

#Sw  #Mw  #Srw   

(%) (%) (%) (%) (%) (%) 

DataSet1_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 50), 
(10 s * 5 Hz) 666×451 127 391 148 821×451 156 490 175 

19.07 58.71 22.22 19.00 59.68 21.32 

DataSet2_ac (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 100), 
(10 s * 10 Hz) 

650×601 204 194 252 812×601 252 241 319 
31.38 29.85 38.77 31.03 29.68 39.28 

DataSet2_b 445×901 255 97 93 558×901 325 121 112 
57.30 21.80 20.90 58.42 21.68 20.07 

DataSet3_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 40), 
(10 s * 4 Hz) 56×361 29 12 15 64×361 34 12 18 

51.76 21.43 26.79 53.13 18.75 28.13 
 

Table 4-6 Results of walking sheep Datasets over 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 used in the feature extraction stage. 

Window size 7 Sec. 

Segmentation type FNSW FOSW (20%) 

# Segments (instances) for Sound 
walking (Sw), Mild walking 

(Mw), and Severe walking (Srw) 

# total 
instances  

#Sw  #Mw  #Srw   # total 
instances  

#Sw  #Mw  #Srw   

(%) (%) (%) (%) (%) (%) 

DataSet1_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 35), 
(7 s * 5 Hz) 917× 316 212 467 238 1155×316 263 592 300 

23.12 50.93 25.95 22.77 51.26 25.97 

DataSet2_ac (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 70), 
(7 s * 10 Hz) 

620× 421 168 157 295 765× 421 217 189 359 
27.10 25.32 47.58 28.37 24.70 46.92 

DataSet2_b 647×631 377 140 130 803×631 471 173 159 
58.27 21.64 20.10 58.66 21.54 19.80 

DataSet3_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 28), 
(7 s * 4 Hz) 114×253 60 27 27 134×253 70 31 33 

52.63 23.68 23.68 52.24 23.13 24.63 
 

Table 4-7 Results of walking sheep Datasets over 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 used in the feature extraction stage. 

Window size 5 Sec. 

Segmentation type FNSW FOSW (20%) 

# Segments (instances) for Sound 
walking (Sw), Mild walking 

(Mw), and Severe walking (Srw) 

# total 
instances  

#Sw  #Mw  #Srw   # total 
instances  

#Sw  #Mw  #Srw   

(%) (%) (%) (%) (%) (%) 

DataSet1_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 25), 
(5 s * 5 Hz) 1198×226 333 507 358 1493×226 418 636 439 

27.80 42.32 29.88 28.00 42.60 29.40 

DataSet2_ac (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 50), 
(5 s * 10 Hz) 

649×301 185 172 292 798×301 232 206 360 
28.51 26.50 44.99 29.07 25.81 45.11 

DataSet2_b 823×451 483 182 158 1021×451 597 228 196 
58.69 22.11 19.20 58.47 22.33 19.20 

DataSet3_all (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒= 20), 
(5 s * 4 Hz) 170×181 91 40 39 212×181 112 48 52 

53.53 23.53 22.94 52.83 22.64 24.53 
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4.5.3 Feature Extraction Results and Time Calculation  

For each of the walking sheep dataset results in the previous Section 4.5.2, the extracted 

features are expressed in Table 4-8. The type and the number of features for 9 and 6 predictor 

Datasets are provided as well.  

 
Table 4-8 The number and the type of each feature extracted from the four sheep DataSets. 

Feature name 
(Table 3-6) 

# Features (DataSet1_all, 
DataSet2_b, DataSet3_all) 

# Features 
(Dataset2_ac) Feature_type 

Mean (𝜇) 9 6 Time-domain 
Variance (𝜕) 9 6 Time-domain 
Standard deviation (𝜕2) 9 6 Time domain 
Kurtosis (Kur) 9 6 Time-domain 
Skewness (Skew) 9 6 Time domain 
Maximum value (Max) 9 6 Time-domain 
Minimum value (Min) 9 6 Time-domain 
Root mean square (Rms) 9 6 Time-domain 
Interquartile range (Interq) 9 6 Time-domain 
Crest factor (CF) 9 6 Time-domain 
Signal magnitude area (SMA) 3 2 Time-domain 
Signal vector magnitude (SMV) 3 2 Time-domain 
Differential Signal Vector 
Magnitude (DSMV) 3 2 Time-domain 

Maximum difference 
(Max_diff) 9 6 Time-domain 

Average movement variation 
(Avr_MV) 3 2 Time-domain 

Magnitude (Mag) 3 2 Time-domain 
Vector of the dynamic body 
acceleration (Vedba) 3 2 Time-domain 

Entropy Time-domain (Ent3) 3 2 Frequency-domain 
Entropy Frequency- domain 
(Ent) 9 6 Frequency-domain 

Energy (Eng) 9 6 Frequency-domain 
Dominant Freq 9 6 Frequency-domain 
peak analysis 
(nPeaks, Widest_Peak, 
Highest_Peak, Avr_peak_time) 

36 24 Frequency-domain 

    

Total features 183 122  

 

The execution time of each feature was calculated over 10 𝑠𝑒𝑐., 7 𝑠𝑒𝑐., and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 and 

for both segmentation methods FOSW and FNSW in order to compromise the lowest execution 

time of features with its importance in relation to the sensor energy consumption. The execution 

time for each extracted feature for DataSet2_ac, which has 6 predictors collected at 10 Hz., is 
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presented in Figure 4-8 as an example among the other sheep DataSet1_all, DataSet2_b, and 

DataSet3_all that are explored in Appendix D. 1, Appendix D. 2, and Appendix D. 3, 

respectively. 

 

The overall results reveal that the required execution time in FNSW is less than the execution 

time of the feature extraction in FOSW. This is due to the number of segments in FOSW being 

higher than the total number of segments in FNSW. In addition, FNSW is an online 

segmentation method that could be directly implemented inside the sensor processor before the 

data is transported to the base station for analysis. The FNSW approach helps in producing a 

faster alarm system for the shepherd showing the sheep lameness status than the FOSW.  

 

However, the average execution time is less than one second for most of the extracted features 

for the four Datasets overall window sizes of 10 𝑠𝑒𝑐., 7 𝑠𝑒𝑐., and 5 𝑠𝑒𝑐. and for both 

segmentation approaches. Exceptionally, the Interquartile range (Interq) feature and Peak 

analysis features that include four related peak calculation features consume an execution time 

of over 1 second, as shown in the presented figures (Figure 4-8 and Appendix D). It is worth 

mentioning that the time for the Peak analysis feature is, in fact, an accumulation of four 

internal features: (𝑛𝑃𝑒𝑎𝑘𝑠, 𝑊𝑖𝑑𝑒𝑠𝑡_𝑃𝑒𝑎𝑘, 𝐻𝑖𝑔ℎ𝑒𝑠𝑡_𝑃𝑒𝑎𝑘, and 𝐴𝑣𝑟_𝑝𝑒𝑎𝑘), so its execution 

time looks surprisingly high because Peak analysis requires the data within the selected window 

to be transferred in its frequency domain, where FFT calculations required extra execution 

time.  

 

For the DataSet1_all (5 Hz, 9 predictors), the lowest execution time for features is obtained 

over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. While the best execution time achieved for the DataSet2_ac (10 Hz, 

6 predictors) is over both 7 𝑠𝑒𝑐. 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 with maximum peak analysis of 3.015 

and 3.024 seconds, respectively. The best execution time is slightly increased by 0.5 seconds 

for the DataSet2_b (10 Hz, 9 predictors) over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. Conversely, the best 

execution time for the DataSet3_all (4 Hz, 9 predictors) drops and reaches its shortest time of 

around 1 second over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 

Generally, the smallest segment size consumes less time to extract the features than the much 

bigger window size. However, the window size would have to be compatible with the sampling 

rate of the sensor used to collect sheep data. Due to the small sampling rate of sensor readings 
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(like 4 Hz), valuable information relating to sheep behaviour may be lost in comparison to the 

10 Hz sampling rate.   

  

  

  
Figure 4-8 Execution time of features for DataSet2_ac (10 Hz). 

 

4.6 Best Feature Selection Comparison Results and Discussion 

The process of Feature Selection (FS) was applied to the four aggregated sheep DataSets. For 

each DataSet, three FS methods were applied where two segmentation methods (FNSW and 

FOSW) were tested over three selected window sizes 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. The obtained 

results are divided into three sections; in Section 4.6.1, the comparison of execution time for 

each scenario is provided, while in Section 4.6.2, the ranked features obtained from applying 

three FS methods (ReliefF, GA, RF) for each scenario were presented; however, only the first 
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25 features are shown as the whole list of ranked features for each FS method is provided in 

Appendix E. The last Section 4.6.3, explores the performance of a single CART algorithm to 

test for the best number of features to be considered for the lameness detection in sheep.  

 

4.6.1 Execution Time Calculation for FS   

The execution time spent for each aforementioned scenario is presented in this sub-section, 

where Table 4-9, Table 4-10, and Table 4-11 refer to the execution of each scenario over the 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, respectively. 

 

Table 4-9 Time execution comparison for feature selection methods over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒. 

Window size 10 Sec. 
Segmentation type FNSW FOSW (20%) 
Execution time for FS 
methods in sec. # instances ReliefF GA  RF   # instances ReliefF  GA  RF   

DataSet1_all   (𝑠𝑧 = 50) 666 × 183 +1 3.921 294.7 168.3 821 × 183 +1 3.791 347.2 179.9 

DataSet2_ac (𝑠𝑧 = 100) 650 × 122 +1 2.1 218.4 77.4 812× 122 +1 2.57  250.2 112.6 

DataSet2_b  (𝑠𝑧 = 100) 445 × 183 +1 2.453 257.9 165.7 558 × 183 +1 2.513 277.4 176.4 

DataSet3_all  (𝑠𝑧 = 40) 56 × 183 +1 0.628 99.56 67.18 64 × 183 +1 0.679 102.8 70.78 

 

Table 4-10 Time execution comparison for feature selection methods over 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒. 

Window size 7 Sec. 
Segmentation type FNSW FOSW (20%) 
Execution time for FS 
methods in sec. # instances ReliefF GA  RF   # instances ReliefF  GA  RF   

DataSet1_all  (𝑠𝑧 = 35) 917 × 183 +1 7.234 401.1 181.5 1155 × 183 +1 5.071 409.2 194.4 

DataSet2_ac  (𝑠𝑧 = 70) 620× 122 +1 2.41 214.1 77.04 765× 122 +1 2.6 214 79.58 

DataSet2_b    (𝑠𝑧 = 70) 445 × 183 +1 3.755 307.8 162.5 558 × 183 +1 3.569 355.6 166.8 

DataSet3_all  (𝑠𝑧 = 28) 114 × 183 +1 0.835 131.8 97 134 × 183 +1 2.116 119.2 102.6 

 

Table 4-11 Time execution comparison for feature selection methods over 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒. 

Window size 5 Sec. 
Segmentation type FNSW FOSW (20%) 
Execution time for FS 
methods in sec. # instances ReliefF GA  RF   # instances ReliefF  GA  RF   

DataSet1_all  (𝑠𝑧 = 25) 1198 × 183 +1 6.471 568.4 181.7 1493 × 183 +1 6.711 613.9 195.5 

DataSet2_ac  (𝑠𝑧 = 50) 649 × 122 +1 2.26 193 75.69 798 × 122 +1 2.268 227.3 77.26 

DataSet2_b    (𝑠𝑧 = 50) 445 × 183 +1 4.634 406.9 180.7 558 × 183 +1 4.513 560 173.8 

DataSet3_all  (𝑠𝑧 = 20) 170 × 183 +1 1.14 153.5 121 212 × 183 +1 1.949 186.1 127.6 
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The results in the presented three tables show that GA takes the longest time to be performed, 

then it is followed by RF, while the ReliefF method takes only a few seconds to be performed. 

However, the test for better lameness detection accuracy from each FS is tested in Section 

4.6.3.  

 

Balancing between the time spent and the accuracy of the classifier for lameness detection in 

sheep could be justified to meet the requirement. In the current research, the focus is on 

detection of lameness in its early stage, so the execution time spent has less concern than the 

accuracy of the alarm given for the classification of lameness.  

 

In other cases, when the FS process is needed to be run online and deployed in the sensor kit 

itself, in this case, the execution time takes more attention than classification accuracy.  

 

4.6.2 Ranked Features Results and Discussion of Feature Selection 

The ranked features obtained from applying three FS methods (ReliefF, GA, RF) for each of 

the four aggregated sheep DataSets are shown in the following sections. For each DataSet, 

results are depicted in three tables for the first 25 ranked features, while the rest of 183 ranked 

features (9 predictors for DataSet1_all, DataSet2_b, and DataSet3_all) or 122 ranked features 

(6 predictors for DataSet2_ac) are all presented in long tables in Appendix E. 

 

4.6.2.1 DataSet1_all (5 Hz) Best Ranked Features  

DataSet1_all has 9 predictors with 183 calculated features. The following discussion reflects  

how the features are ranked according to the 3 FS methods used for the first 25th features. A 

snapshot for the 25th ranked features for DataSet1_all are presented in Figure 4-9, Figure 4-10, 

and Figure 4-11 over 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 sizes, while the whole lists are explored in 

Appendix E. 1, Appendix E. 2, and Appendix E. 3, respectively.  

 

1. ReliefF results: The first 25th ranked feature of ReliefF FS method for the 

10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (Figure 4-9), shows a majority contribution of the 𝑂𝑟𝑖𝑒𝑛𝑡 related 

features; especially the 𝑃𝑖𝑡𝑐ℎ and 𝑅𝑜𝑙𝑙 angles, the angles around 𝑥 − 𝑎𝑥𝑖𝑠 and 𝑦 −

𝑎𝑥𝑖𝑠,  respectively. In FNSW (19 features out of the first 25th features are 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙 

related features, 4 features are 𝐺𝑦𝑟_𝑦, 𝐺𝑦𝑟_𝑧 related features, and  2 only features are 
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𝐴𝑐𝑐 and 𝐴𝑐𝑐_𝑦 related features), while in FOSW (18 features out of the first 25th 

features are 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙 related features, 5 𝐺𝑦𝑟 related features, and only 2 𝐴𝑐𝑐 

related feature). However, the first 11th features are exactly the same for both FNSW 

and FOSW segmentation approaches. For the rest of the features (from 12th – 25th), 

approximately the same group of features appeared with a slightly different order at the 

end of the list. 

 

On the other hand, the first 25th ranked feature of ReliefF FS method for the 

7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (Figure 4-10), shows the same group of features for the first 17th ranked 

features with slightly flipped order between (3rd and 4th) and (14th, 15th) for both FNS 

and FOSW. Similar to the result of 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, the major contribution of features 

related to the Pitch and Roll are significant. Basically, for FNSW (21 features out of 

the first 25th features are 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙 related features, 3 features are 𝐺𝑦𝑟 related 

features, and only one feature (𝑀𝑣_𝐴𝑐𝑐) is related to 𝐴𝑐𝑐) , while in FOSW (20 features 

out of the first 25th features are 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙 related features, 3 𝐺𝑦𝑟 related features, 

and 2 𝐴𝑐𝑐 related feature). 

 

Finally, the result of the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (Figure 4-11) reveals the same group of 

features for both FNSW and FOSW segmentation methods with a slight difference in 

features' order for the first 18th ranked features. Similarly, to the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 and 

7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, the contribution of 𝑂𝑟𝑖𝑒𝑛𝑡 related features outperforms 𝐺𝑦𝑟, and 𝐴𝑐𝑐 

related features. In FNSW (18 𝑂𝑟𝑖𝑒𝑛𝑡, 5 𝐺𝑦𝑟, and 2 𝐴𝑐𝑐 related features), while in 

FOSW (21 𝑂𝑟𝑖𝑒𝑛𝑡, 3 𝐺𝑦𝑟, 1 𝐴𝑐𝑐 related features). So, the contribution of the 𝑂𝑟𝑖𝑒𝑛𝑡 

group in FNSW gets more prominence than the FNSW as 20% of data-points are 

overlapped between every two successive windows in the FOSW segmentation method. 

 

2. GA results: The first 25th ranked feature of GA for the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (Figure 4-9) 

has 17 common features between FNSW and FOSW; however, the order of features is 

not quite as similar as in ReliefF. Most of the features retrieved by GA belong to (Mean, 

Var, Std, Kur, and Skew) for 𝐴𝑐𝑐, 𝐺𝑦𝑟, or 𝑂𝑟𝑖𝑒𝑛𝑡 groups. The results of FNSW 

produce (10 𝐴𝑐𝑐, 8 𝑂𝑟𝑖𝑒𝑛𝑡, and 7 𝐺𝑦𝑟 related features), while in FOSW (9 𝐴𝑐𝑐, 9 

𝑂𝑟𝑖𝑒𝑛𝑡, and 7 𝐺𝑦𝑟 related features) are obtained. Due to the arbitrary initialisation of 

GA generation, the ranked features might not necessarily refer to their importance like 
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(nearest neighbours in ReliefF, or out-of-bag estimates by permutation in RF).  

Likewise, the most prominent features over the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (Figure 4-10) are 

(𝑀𝑒𝑎𝑛, 𝑉𝑎𝑟, 𝑆𝑡𝑑, 𝐾𝑢𝑟, 𝑆𝑘𝑒𝑤, and 𝑀𝑖𝑛) in both FNSW(9 𝐺𝑦𝑟, 𝑂𝑟𝑖𝑒𝑛𝑡, and 7 𝐴𝑐𝑐 

related features) and FOSW (12 𝑂𝑟𝑖𝑒𝑛𝑡, 8 𝐴𝑐𝑐, and 5 𝐺𝑦𝑟 related features). Whereas 

only 12 shared features between FNSW and FOSW differ from each other in their order.  

 

Finally, the results of GA FS over the  5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (Figure 4-11) for DataSet1_all 

(5 Hz) shows not much difference from the 10 and 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. Although the 

obtained features vary among (𝑀𝑒𝑎𝑛, 𝑉𝑎𝑟, 𝑆𝑡𝑑, 𝐾𝑢𝑟, 𝑆𝑘𝑒𝑤, and 𝑀𝑖𝑛), the most 

related features in FNSW are (12 𝐴𝑐𝑐_𝑥 & 𝐴𝑐𝑐_𝑦, 8 𝐺𝑦𝑟, and 5 𝑃𝑖𝑡𝑐ℎ and 𝑅𝑜𝑙𝑙). On 

the other hand, the most relevant features for FOSW are (11 𝑂𝑟𝑖𝑒𝑛𝑡, 9 𝐴𝑐𝑐, and 5 𝐺𝑦𝑟). 

In addition, only 8 features are present in both FNSW and FOSW in a different order 

with half of them being 𝑃𝑖𝑡𝑐ℎ and 𝑅𝑜𝑙𝑙 related features.  

 

Surprisingly, the only order which could be noticed is the presence of features (𝑀𝑒𝑎𝑛, 

𝑉𝑎𝑟, 𝑆𝑡𝑑, 𝑘𝑢𝑟, 𝑆𝑘𝑒𝑤, then 𝑀𝑖𝑛 or 𝑀𝑎𝑥) whether in FNSW or FOSW for GA 

implementation. As mentioned before, the arbitrary features’ presence refers to the 

random initialisation of the first generation in GA.  

 

3. RF results: the three or four most important features for both FNSW and FOSW over 

10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 sizes are 𝑃𝑖𝑡𝑐ℎ and 𝑅𝑜𝑙𝑙 related features. Simple time-domain 

features (𝑀𝑒𝑎𝑛, 𝑀𝑎𝑥, 𝑀𝑖𝑛, and 𝐶𝐹) are the top four features obtained from all 

scenarios. The importance of features is computed in RF by estimating the model error 

when a specified feature value is permutated to observe its influence on the model 

performance. If the permutation process increases the model error, that means the 

feature whose value is permutated has an influence on the model performance. On the 

other hands, when no effect has occurred when a feature value is permutated, then there 

is no significant importance of this feature and its rank decreases in the final list.   
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Figure 4-9 Ranked feature result for DataSet1_all (5 Hz) over 10 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 
Figure 4-10 Ranked feature result for DataSet1_all (5 Hz) over 7 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 
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Figure 4-11 Ranked feature result for DataSet1_all (5 Hz) over 5 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 

 

4.6.2.2 DataSet2_ac (10 Hz) Best Ranked Features  

DataSet2_ac has 122 features where no 𝐺𝑦𝑟 readings are included in this DataSet. The achieved 

results of 25th ranked features for the three FS methods over 10,7, 5 𝑤𝑖𝑛𝑑𝑜𝑤 are shown in 

Figure 4-12, Figure 4-13, and Figure 4-14 and discussed below, while the whole lists are 

explored in Appendix E. 4, Appendix E. 5, and Appendix E. 6, respectively.  

1- ReliefF results: the 1st feature for both FNSW and FOSW over 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 is the 𝐸𝑛𝑡𝑟𝑜𝑝𝑦_𝑅𝑜𝑙𝑙 feature which measures the energy 

disorder of Roll angle of a walking sheep (angle around forward-backwards axis y-axis) 

in a selected window. Due to no 𝐺𝑦𝑟 predictors in DataSet2_ac, the contribution of 

𝑂𝑟𝑖𝑒𝑛𝑡 and 𝐴𝑐𝑐 features are approximately equal; where 12 features are 𝑂𝑟𝑖𝑒𝑛𝑡 related 

and 13 features are 𝐴𝑐𝑐 related, for all six lists (2 segmentation methods × 3 window 

sizes). The order of features could be similar for the 25th ranked feature with some 

alteration between near locations (indices) in the list for all 6 scenarios. The reason for 

the correlated order of features between FNSW and FOSW for 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 could refer to the same number of common features 

between FNSW and FOSW which are 24, 23, and 21 for 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 

respectively.  
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2- GA results: the randomness of the resulted features by applying GA FS is the same as 

DataSet1_all results; however, some new features were added to the first 25th ranked 

feature for all 6 lists. In addition to the (𝑀𝑒𝑎𝑛, 𝑉𝑎𝑟, 𝑆𝑡𝑑, 𝑘𝑢𝑟, 𝑆𝑘𝑒𝑤, 𝑀𝑖𝑛 or 𝑀𝑎𝑥), 

the feature of (𝑅𝑚𝑠, 𝐼𝑛𝑡𝑒𝑟𝑞, or 𝐶𝐹) are ranked within the first 25 features. The common 

features between FNSW and FOSW are 11, 12, and 10 for 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 

respectively.  

 

3- RF results: for the first 25 ranked features over 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for both 

FNSW and FOSW,  𝑀𝑖𝑛_𝑅𝑜𝑙𝑙 feature is the first ranked feature for all scenarios. The 

number of shared features within the 25th ranked features for both FNSW and FOSW 

over 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 are 18, 18, and 19 features. The 𝑂𝑟𝑖𝑒𝑛𝑡 related features 

dominate the 𝐴𝑐𝑐 related features for all 3 window sizes, for both segmentation 

methods. Where in 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, 16 and 15 𝑂𝑟𝑖𝑒𝑛𝑡 related features with FNSW 

and FOSW segmentation methods, respectively. Similarly, the dominant features 

within the first 25 ranked features over 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 are the Orientation 

features with 14 features out of 25.  

 

 
Figure 4-12 Ranked feature result for DataSet2_ac (10 Hz) over 10 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 
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Figure 4-13 Ranked feature result for DataSet2_ac (10 Hz) over 7 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 

Figure 4-14 Ranked feature result for DataSet2_ac (10 Hz) over 5 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 
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4.6.2.3 DataSet2_b (10 Hz) Best Ranked Features  

The obtained results of the best 25 ranked features of DataSet2_b over 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 are shown in Figure 4-15, Figure 4-16, and Figure 4-17, while the 

whole lists are presented in Appendix E. 7, Appendix E. 8, and Appendix E. 9, respectively. 

The ranked features according to the 3 FS methods used for DataSet2_b; which has 9 predictors 

and 183 features, are discussed in the following:  

1- ReliefF results: the two features ranked first in both FNSW and FOSW over 

10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 are 𝑀𝑒𝑎𝑛_𝐴𝑐𝑐_𝑥 and 𝑀𝑒𝑎𝑛_𝑅𝑜𝑙𝑙. Additionally, the high 

intersection of features (23, 24, and 24) between FNSW and FOSW could be noticed 

over the 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, respectively. The reason might relate to the technique 

of ReliefF algorithm to search for the 10th neighbour's instances, which shared the same 

class.  

The majority contribution of features for both FNSW and FOSW over the 

10, 7, 5  𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 are 𝐴𝑐𝑐 related features. In more detail, the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for  

FNSW has 13 𝐴𝑐𝑐, 11 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙, and only one 𝐺𝑦𝑟 related feature, which is 

𝐼𝑛𝑡𝑒𝑟𝑞𝐺𝑦𝑟𝑥
, while for FOSW (13 𝐴𝑐𝑐 related features, 12 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙 related 

features) and no presence of any 𝐺𝑦𝑟 related features within the 25 ranked features. 

Otherwise, for the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, (FNSW: 14 𝐴𝑐𝑐, 11 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙 related features, 

FOSW: 13 𝐴𝑐𝑐, 12 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙). Lastly, the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 has 14 𝐴𝑐𝑐, and 11 

𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙 related features for both FNSW and FOSW.  

 

Generally, the correlation of features within the 25 highest ranked list is quite high for 

ReliefF implementation for the two segmentation methods. Furthermore, there is a rare 

existence of 𝐺𝑦𝑟 related features in the 25 highest ranked list, which eliminates the 

importance of 𝐺𝑦𝑟 readings to predict the lameness status of the sheep.  

 

2- GA results: no new feature sets are present in the 25 highest ranked list, the same as 

previous (𝑀𝑒𝑎𝑛, 𝑉𝑎𝑟, 𝑆𝑡𝑑, 𝑘𝑢𝑟, 𝑆𝑘𝑒𝑤, 𝑀𝑖𝑛, 𝑀𝑎𝑥, or 𝑅𝑚𝑠) features appeared in the 

list. In contrast to the high correlation of features present in ReliefF, the shared features 

between FNSW and FOSW are 11, 7, and 11 for 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, 

respectively.  

 

3- RF results: the first three dominant features for all scenarios are (𝑀𝑖𝑛_𝑅𝑜𝑙𝑙, 
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𝑀𝑒𝑎𝑛_𝐴𝑐𝑐_𝑥, 𝑀𝑒𝑎𝑛_𝑅𝑜𝑙𝑙). The common features for both FNSW and FOSW within 

the 25 ranked features over 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 are 14, 16, and 13 features. The 

most contributing features over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 are 𝐴𝑐𝑐 related features (FNSW: 

13 𝐴𝑐𝑐, 10 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙, and 3 𝐺𝑦𝑟 related features; FOSW: 12 𝐴𝑐𝑐, 9 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙, 

and 4 𝐺𝑦𝑟 related features). Similarly, over the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, 𝐴𝑐𝑐 related features 

(FNSW: 12 𝐴𝑐𝑐, 12 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙, and one 𝐺𝑦𝑟 related features; FOSW: 12 𝐴𝑐𝑐, 10 

𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙, and 3 𝐺𝑦𝑟 related feature) contribute the most. Conversely, over the 

5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, Pitch & Roll related features contribute most within 25 highest ranked 

list of features (FNSW: 10 𝐴𝑐𝑐, 12 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙, and 3 𝐺𝑦𝑟 related features; FOSW: 

10 𝐴𝑐𝑐, 11 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙, and 4 𝐺𝑦𝑟 related features).   

 

Generally, within the 25 highest ranked list of features for all scenarios, the features 

relating to 𝐴𝑐𝑐 and 𝑃𝑖𝑡𝑐ℎ & 𝑅𝑜𝑙𝑙 ranked higher when compared to 𝐺𝑦𝑟 related features, 

which reveals that 𝐺𝑦𝑟 readings could not have much effect on the model prediction 

due to less 𝐺𝑦𝑟 features being present in the 25 highest ranked features against 𝐴𝑐𝑐 and 

𝑃𝑖𝑡ℎ & 𝑅𝑜𝑙𝑙 features.  

 

 
Figure 4-15 Ranked feature result for DataSet2_b (10 Hz) over 10 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 
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Figure 4-16 Ranked feature result for DataSet2_b (10 Hz) over 7 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 
Figure 4-17 Ranked feature result for DataSet2_b (10 Hz) over 5 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 
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4.6.2.4 DataSet3_all (4 Hz) Best Ranked Features  

The results for the best 25 ranked features retrieved from 3 FS methods for DataSet3_all over 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 are presented in Figure 4-18, Figure 4-19, and Figure 4-20, while 

the whole lists are explored in Appendix E. 10, Appendix E. 11, and Appendix E. 12, 

respectively. The discussion for the obtained ranked features is provided as follows:   

1- ReliefF results: The number of shared features between FNSW and FOSW over the 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤s are 15, 18, and 19, respectively. The reason behind the 

5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 having more shared features between FNSW and FOSW refers to the 

small sampling rate of DataSet3_all, which is 4 Hz. The 𝑀𝑒𝑎𝑛_𝑅𝑜𝑙𝑙 feature is the first 

feature in the ranked list for both FNSW and FOSW over the 7 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 

and for FNSW over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤; surprisingly, 𝑛𝑃𝑒𝑎𝑘𝑠_𝐺𝑦𝑟_𝑧 is the top feature 

in FNSW over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. The 𝑂𝑟𝑖𝑒𝑛𝑡 related features are the dominant 

features over all three 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 for both segmentation methods. The implementation 

of ReliefF over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 produces (FNSW: 7 𝐴𝑐𝑐, 15 𝑂𝑟𝑖𝑒𝑛𝑡, and 3 𝐺𝑦𝑟 

related features, while in FOSW: 6 𝐴𝑐𝑐, 14 𝑂𝑟𝑖𝑒𝑛𝑡, and 5 𝐺𝑦𝑟 related features). 

Whereas, the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 implementation yields (FNSW: 5 𝐴𝑐𝑐, 10 𝑂𝑟𝑖𝑒𝑛𝑡, and 9 

𝐺𝑦𝑟 related features, while in FOSW: 3 𝐴𝑐𝑐, 13 𝑂𝑟𝑖𝑒𝑛𝑡, and 9 𝐺𝑦𝑟 related features). 

Lastly for the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, the results reveal (FNSW: 8 𝐴𝑐𝑐, 11 𝑂𝑟𝑖𝑒𝑛𝑡, and 6 𝐺𝑦𝑟 

related features, while in FOSW: 6 𝐴𝑐𝑐, 11 𝑂𝑟𝑖𝑒𝑛𝑡, and 8 𝐺𝑦𝑟 related features). 

 

2- GA results: the implementation of feature selection by GA over 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 between FNSW and FOSW produces several common 

features which equal to 13, 13, and 14, respectively. Approximately, features from 𝐴𝑐𝑐, 

𝑂𝑟𝑖𝑒𝑛𝑡 and 𝐺𝑦𝑟 are all involved in the list of 25 highest ranked features for all 6 

scenarios. So, no group could be considered dominant between the three groups of 

features. The appearance of features over the  10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 could be 

summarised as follows: (FNSW: 5 𝐴𝑐𝑐, 12 𝑂𝑟𝑖𝑒𝑛𝑡, 8 𝐺𝑦𝑟 related features; FOSW: 9 

𝐴𝑐𝑐, 7 𝑂𝑟𝑖𝑒𝑛𝑡, and 9 𝐺𝑦𝑟 related features) over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. while the 

distribution of features for the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 like (FNSW: 9 𝐴𝑐𝑐, 8 𝑂𝑟𝑖𝑒𝑛𝑡, 8 𝐺𝑦𝑟 

related features; FOSW: 8 𝐴𝑐𝑐, 10 𝑂𝑟𝑖𝑒𝑛𝑡, and 7 𝐺𝑦𝑟 related features). Finally, the 

contribution of features over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 like (FNSW: 9 𝐴𝑐𝑐, 8 𝑂𝑟𝑖𝑒𝑛𝑡, 8 𝐺𝑦𝑟 

related features; FOSW: 11 𝐴𝑐𝑐, 8 𝑂𝑟𝑖𝑒𝑛𝑡, and 6 𝐺𝑦𝑟 related features). As mentioned, 

the randomness of ranked features from GA refers to the randomness in initialising the 
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first generation of GA. So, the fitness function would not be computed for features set 

to be ‘0’ instead of ‘1’.  

 

3- FR results: the implementation of RF reveals that the maximum number of shared 

features between FNSW and FOSW is 11 over the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, and it is followed 

by 8 common features over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. What is surprising is that only one 

shared feature over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 is common between FNSW and FOSW, which 

is 𝑀𝑎𝑥_𝑃𝑖𝑡𝑐ℎ. The contribution from all features could be relatively changeable; for 

example, in the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 the distribution of features would be as (FNSW: 7 

𝐴𝑐𝑐, 12 𝑂𝑟𝑖𝑒𝑛𝑡, 6 𝐺𝑦𝑟 related features; FOSW: 11 𝐴𝑐𝑐, 8 𝑂𝑟𝑖𝑒𝑛𝑡, and 6 𝐺𝑦𝑟 related 

features). On the other hand, the contribution of features in the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 would 

be (FNSW: 6 𝐴𝑐𝑐, 11 𝑂𝑟𝑖𝑒𝑛𝑡, 8 𝐺𝑦𝑟 related features; FOSW: 4 𝐴𝑐𝑐, 8 𝑂𝑟𝑖𝑒𝑛𝑡, and 13 

𝐺𝑦𝑟 related features). Lastly, for the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, the features appear as (FNSW: 8 

𝐴𝑐𝑐, 8 𝑂𝑟𝑖𝑒𝑛𝑡, 9 𝐺𝑦𝑟 related features; FOSW: 5 𝐴𝑐𝑐, 12 𝑂𝑟𝑖𝑒𝑛𝑡, and 8 𝐺𝑦𝑟 related 

features).  

 

 
Figure 4-18 Ranked feature result for DataSet3_all (4 Hz) over 10 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 
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Figure 4-19 Ranked feature result for DataSet3_all (4 Hz) over 7 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 
Figure 4-20 Ranked feature result for DataSet3_all (4 Hz) over 5 𝑠𝑒𝑐.  𝑤𝑖𝑛𝑑𝑜𝑤. 
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4.6.3 CART Performance Results’ Discussion for the Best Number of Features   

In this section, the performance of a single CART classifier is tested to identify the best 

accuracy associated with the number of features that are fed to the classifier. For the sake of 

saving sensor energy, the lowest number of features with a fair percentage of lameness 

prediction accuracy would be preferred. Therefore, the four aggregated sheep DataSets are 

tested for 3 FS methods (ReliefF, GA, and RF), and 2 segmentation approaches (FNSW & 

FOSW) over 3 window sizes. Thus, the results for each DataSet are provided in 3 tables over 

10, 7, and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 sizes. Each table explores 6 CART performance (3 FS methods × 2 

segmentation methods). The whole set of results for the four sheep DataSets are provided in 

Appendix F, whereas the following sections discuss the obtained results for each sheep 

DataSets.  

 

The prediction accuracy of CART for DataSet1_all (Appendix F. 1, Appendix F. 2, and 

Appendix F. 3) for all scenarios 10, 7, and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 when FOSW was applied 

outperforms the prediction accuracy of CART when FNSW was used; this is because of 20% 

overlapped data-points were shared between every two successive windows in the FOSW 

segmentation method.  

 

Furthermore, the highest prediction accuracy between the  𝑤𝑖𝑛𝑑𝑜𝑤𝑠 is achieved with the 

10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (50 data-points), and it is followed by the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (35 data-points), 

and the lowest being the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (25 data-points). That means 50 data-points has higher 

accuracy in predicting the lame walking sheep than the smaller segment sizes.  

 

In addition, the performance of CART for all 3 FS methods is relatively good; however, on 

many occasions, the RF could produce better accuracy results. It is worth mentioning that the 

accuracy of CART could be considerable when approximately 20 features are used to feed the 

classifier. 

 

Similarly, DataSet2_ac (Appendix F. 4, Appendix F. 5, and Appendix F. 6) produces a better 

accuracy of CART in the FOSW segmentation method for the same aforementioned reason. 

The accuracy of CART is increased for DataSet2_ac. There are no gyroscope readings in the 

current sheep DataSet, as the presence of a Gyroscope sensor could increase the sensor energy 

consumption while not having much effect on the accuracy of the prediction.  
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Also, the prediction accuracies between the 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 are significant for all 

window sizes, being (100 data-points, 70 data-points, and 50 data-points) for each  

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, respectively.  

 

For FS, the performance of CART for ReliefF FS method is higher than RF and GA; however, 

satisfactory accuracies could be obtained when approximately 20 features feed the classifier.  

 

Although the DataSet2_b (Appendix F. 7, Appendix F. 8, and Appendix F. 9) has the same 

sampling rate of 10 Hz as DataSet2_ac, the performance of CART drops, the reason could refer 

to the shorter monitoring time for sheep movement during the data collection process compared 

to the monitoring time in the previous DataSet2_ac.   

 

The prediction accuracies converge for each 𝑤𝑖𝑛𝑑𝑜𝑤 when each segment has 100, 70, and 50 

data-points. However, the highest accuracy is obtained from applying CART using FOSW over 

a 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  

 

Satisfactory accuracies could be achieved with around 20 features or less for three FS 

approaches; except that when applying GA with FOSW in the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 which might 

exceed 20 features to reach an acceptable accuracy prediction.  

 

The last tested DataSet is DataSet3_all (Appendix F. 10, Appendix F. 11, and Appendix F. 

12), which collected sheep data at a 4 Hz sampling rate. Like other sheep DataSets, the 

performance of CART is higher for FOSW compared to FNSW over 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

sizes due to the segment’s overlapping by 20%.  

 

The three FS methods perform well; however, RF outperforms the other two FS methods for a 

single CART classifier over the different window sizes used. Also, 20 features are probably 

enough to reveal satisfactory accuracies for lameness prediction for all scenarios.  

 

The total of 40, 28, and 20 data-points are allocated for the 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, 

respectively, which produce higher prediction accuracies of CART over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

That is followed by less accuracy over the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 and the least accuracy over the 

5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  
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In conclusion, the performance of CART is represented in Table 4-12, where the darker colour 

refers to the higher accuracy obtained. The table displays the performance for FOSW 

segmentation method as it achieves better accuracy than FNSW in all scenarios. The number 

inside the table’s cell represents the total number of data-points in each segment. The segment 

is used to extract one feature to be chosen or not for the classifier.  

 
Table 4-12 the performance of CART relates to colour density (darker is higher), no. inside cells 

represent the segment size for each sheep Datasets. 

For FOSW 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

DataSet1_all 50 35 25 

DataSet2_ac 100 70 50 

DataSet2_b 100 70 50 

DataSet3_all   40 28 20 

 

4.7 SLDM Ensemble Train, Test, and Validate Results and Discussion 

The ensemble of CART decision trees is applied to the sheep datasets using ‘Bagging’, 

‘Boosting’, or ‘RusBoosting’ methods. The four aggregated Datasets are trained separately to 

make a comparison for the best sensor sampling rate to detect the early signs of lameness as 

each DataSet was collected according to different sensor readings either 5, 10, or 4 Hz for 

DataSet1, DataSet2, and DataSet3 respectively. Firstly, the training parameters for ensemble 

classifiers are explained in Section 4.7.1. Then the achieved results for lameness detection are 

presented and discussed in Section 4.7.2. Finally, the comparison results between the validation 

methods used in the research are presented and discussed in Section 4.7.3. 

 

4.7.1 CART Training Parameter  

1- The maximum number of splits at each run ‘𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠’ is equal to its default 

which is equal to the 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 − 1; for example, 

𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 = 811 for DataSet1, which has 812 records in the FOSW 

segmentation method over 10 sec. window. 𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 is set to its default for 

‘Bagging’, while it is set to be 20 for both ‘Boosting’, and ‘RusBoosting’.  

 𝑀𝑎𝑥𝑁𝑢𝑚𝑆𝑝𝑙𝑖𝑡𝑠 controls the depth of the tree, and it is one of the stopping criteria for 

the splitting procedure in CART unless other stopping criteria are met like the number 

of observations (records) in one of the branch nodes being equal or less than the 
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‘𝑀𝑖𝑛𝑃𝑎𝑟𝑒𝑛𝑡𝑆𝑖𝑧𝑒 = 2’, or the number of observations of one of the leaf nodes is equal 

or less than the ‘𝑀𝑖𝑛𝐿𝑒𝑎𝑓𝑆𝑖𝑧𝑒 = 1’.  

2- The number of predictors to be selected at random for each split 

‘𝑁𝑢𝑚𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑇𝑜𝑆𝑎𝑚𝑝𝑙𝑒’ is set to ‘all’ in order to utilise all provided predictors to 

the classifier CART.  

3- The number of ensemble learning cycles ‘𝑁𝑢𝑚𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐶𝑦𝑐𝑙𝑒𝑠’ is set to 100 trees, 

where a good classification accuracy might be obtained between [50-500] trees.  

4- Split criterion ‘𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛' is set to ‘𝑔𝑑𝑖’ that refer to Gini's diversity index (Equ 

3-15), while the algorithm used to select the best split variable (predictor) 

‘PredictorSelection’ is set to ‘𝑎𝑙𝑙𝑠𝑝𝑙𝑖𝑡𝑠’ to invoke the standard CART that maximises 

the 𝑆𝑝𝑙𝑖𝑡𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 gain of all possible splits of all predictors in the training dataset.  

5- Learning rate for shrinking ‘𝐿𝑒𝑎𝑟𝑛𝑅𝑎𝑡𝑒’ is set to equal ‘0.1’ as a low rate tends to 

employ a large number of trees for each learning cycle (James et al., 2013).  𝐿𝑒𝑎𝑟𝑛𝑅𝑎𝑡𝑒 

is used only with ‘Boosting’ and ‘Rusboost’ classification methods.  

 

4.7.2 Sheep DataSets Implementation Scenarios  

Sheep DataSets classification results are tested when ensemble methods Bagging, Boosting, 

and RusBoosting over the FOSW segmentation method are applied over 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

sizes. Each pre-mentioned scenario was carried out for all four sheep DataSets with ‘All 

features’, ’20 features ReliefF’, ‘Best features GA’, and ’20 features RF’. Firstly, all 183 

extracted features are fed to the classifier. Then the same implementation is performed with 

only the first 20 ranked features of Relief FS method over 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 are chosen. 

The third trail of implementation is made when the best number of features are achieved by 

GA for FOSW overall selected window sizes in Section 4.6.3. The final scenario is applied for 

the first 20 ranked features obtained from RF implementation over 𝑡ℎ𝑒 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.  

 

The confusion matrices for all pre-mentioned scenarios are presented in Appendix G in details, 

which contains the confusion matrices for DataSet1_all, DataSet2_ac, DataSet2_b, and 

DataSet3_all. Each DataSet has 9 tables, first 3 tables depict the confusion matrix from 5-fold 

cross-validation over 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, respectively. The second 3 tables show confusion 

matrix resulted from 0.3 hold-out validation over 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, respectively. On the 

other hand, the tables with other metrics extracted from the confusion matrices (refer to Section 

3.8.1) that involve accuracy (Accu), True Positive Rate; which is named sensitivity or recall 

https://ch.mathworks.com/help/stats/fitctree.html#bt6cr7t-MinParentSize
https://ch.mathworks.com/help/stats/fitctree.html#bt6cr7t-MinLeafSize


CHAPTER FOUR: SLDM Implementation, Classification Results and Interpretations  
 

146 
 

(TPR), precision (Prec), and F-score values (F-score) are provided in the following sub-

sections with its informative discussion for DataSet1_all, DataSet2_ac, DataSet2_b, and 

DataSet3_all, respectively.  

4.7.2.1 DataSet1_all Ensemble Test Results and Discussion 

The classification results for DataSet1_all are presented in Figure 4-21. The sheep data of 

DataSet1_all is collected at a 5 Hz sampling rate, while 9 predictors are obtained (3 for each 

𝐴𝑐𝑐, 𝐺𝑦𝑟, and 𝑂𝑟𝑖𝑒𝑛𝑡). The total number of features are 183 extracted features.  

 

5-Fold Validation Results: The best performance of ensemble classifiers over the 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑ow is achieved over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, when the number of records 

(data-points) in a segment (segment size) (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 =  50); however, the performance of both 

ensemble methods drops over the 7 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 since the segment’s data-points are 

decreased to be equal to 35 and 25, respectively.  

 

So, over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, the best performance of Bagging is obtained when 81 features 

by GA are utilised, the overall accuracy reached 80.39%, while the F-score value percentage 

of predicting sound walking, mild walking, and severely walking sheep are 61.8%, 88.1%, and 

74.3% respectively. Similarly, the best performance by applying the Boosting classifier is 

achieved when only 81 features of GA implementation are used as overall accuracy 81.49% is 

obtained with F-score proportion (63.3% sound walking, 89.2% mild walking, and 75.3% 

severely walking). Although the performance of Bagging outperforms the Boosting method, 

the best F-score for mild walking sheep class is obtained with Boosting. Thus, Boosting might 

be the recommended ensemble method for detecting the early sign of lameness as the mildly 

lame class is the class of target compared to sound or severely walking classes.  

 

0.3 Hold-out Validation Results: In the hold-out validation method, 30% of DataSet1_all is 

kept aside for testing the classifier after training it with the complement of 70% of DataSet1. 

The results also reveal that the best performance for both ensemble methods is achieved over 

the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. Bagging’s best performance is registered at an overall accuracy of 

77.64% when ‘all features’, ’20 features ReliefF’, and ’20 features RF’ are trained. However, 

the best F-score for the mild walking class; which is the class of interest, when ‘20 features 

RF’ are selected to feed the classifier is (57.8% sound walking, 87.3% mild walking, 66.7% 

severely walking).  



CHAPTER FOUR: SLDM Implementation, Classification Results and Interpretations  
 

147 
 

Single Sheep Splitting Validation Results:  For both ensemble methods, the best performance 

is obtained from the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. The Bagging ensemble accuracy when all features are 

trained is 79.62%, and the F-scores for each sound walking, mild walking, and severely 

walking classes are 62.7%, 88.1%, 71%, respectively. On the other hand, the Boosting 

ensemble outperforms Bagging, where the best accuracy achieved is 81.54%, with F-score 

values of (70% sound walking, 88.6% mild walking, 71.2% severely walking classes).  

 

Generally, for the 5Hz sampling rate of sheep DataSet1_all, the best window size is 10 𝑠𝑒𝑐. 

where the 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 = 50.  The best ensemble method is Boosting when 81 features by GA are 

used in 5-fold validation, while Bagging method with 20 features RF performs better when 0.3 

hold-out validation is used. In addition, Boosting produces higher accuracy of 81.54% than 

Bagging with Single Sheep Splitting validation. 
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Figure 4-21 SLDM classification results of DataSet1_all for 5-fold, 0.3 hold-out, and Single Sheep Splitting validation methods for both ensemble (Bagging & Boosting). 
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4.7.2.2 DataSet2_ac Ensemble Test Results and Discussion 

The classification results for DataSet2_ac is provided in Figure 4-22. The sheep data of 

DataSet2_ac is collected at a 10 Hz sampling rate, while 6 predictors are obtained (3 for each 

𝐴𝑐𝑐 and 𝑂𝑟𝑖𝑒𝑛𝑡). The total number of features are 126 extracted features.  

 

5-Fold Validation Results: The best performance for both ensemble classifiers is achieved 

over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, where the 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 =  100; however, when 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 is equal to 70 

and 50 over the 7 and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠, respectively the results also reveal satisfactory 

prediction accuracies. The best performance for Bagging reaches overall accuracy of 88.92% 

with F-score value (87.7% sound walking, 91.1% mild walking, 88.2% severely walking 

classes) when 46 features retrieved by GA are fed into the classifier over a 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

Whereas the best performance for Boosting is obtained with an overall accuracy of 88.79% and 

F-score (87.5% sound walking, 91.3% mild walking, 87.9% severely walking classes) when 

20 features RF are used. Although the accuracy of Boosting performance (89.04%) when all 

features are trained is slightly higher than the prediction accuracy of 88.79% when only 20 

features FR is used, The Boosting with 20 features RF is more considerable as it uses much 

fewer features than the full 126 features.  

 

0.3 Hold-out Validation Results: The performance of both classifiers is similar to each other 

and are relatively high. In Bagging, the best accuracy 88.89% is obtained when 20 features RF 

are fed the classifier with F-score (86.5% sound walking, 93.2% mild walking, 87.5% severely 

walking classes). Similarly, the best accuracy in Boosting is achieved when 20 features RF are 

fed into the classifier with F-score (86.7% sound walking, 91.8% mild walking, 86.3% severely 

walking classes). 

 

Single Sheep Splitting Validation Results:  Both classifiers perform well and have an accuracy 

of 87.9% over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 while the F-scores for the mild walking class for Bagging 

and Boosting are 91.6% and 92.2%, respectively. The performance of the ensemble classifiers 

over the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 produce a significant accuracy of 83.76% and 87.18% for both 

Bagging and Boosting. However, higher accuracy results of Bagging 84.02% and Boosting 

84.43% over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 are revealed.  
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Generally, for the 10 Hz sampling rate of sheep DataSet2_ac, where no 𝐺𝑦𝑟 readings are 

retrieved from the deployed sensor, the best window size is 10 𝑠𝑒𝑐. where the 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 =

100; however, the 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 = 70 also achieves satisfactory prediction results. The best 

ensemble method is Bagging when 46 features by GA are used in 5-fold validation and Bagging 

method with 20 features RF when 0.3 hold-out validation is used.
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Figure 4-22 SLDM classification results of DataSet2_ac for 5-fold, 0.3 hold-out, and Single Sheep Splitting validation methods for both ensemble (Bagging & Boosting). 
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4.7.2.3 DataSet2_b Ensemble Test Results and Discussion 

The classification results of DataSet2_b is presented in Figure 4-23. Similar to DataSet2_ac, 

DataSet2_b has data collected at a 10 Hz sampling rate. However, 9 predictors are obtained (3 

for each 𝐴𝑐𝑐, 𝐺𝑦𝑟, and 𝑂𝑟𝑖𝑒𝑛𝑡). The total number of features are 183 extracted features.  

 

5-Fold Validation Results: The satisfactory accuracies are varied between the 

10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 sizes. However, the best performance is spotted for Bagging over 

the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 with an accuracy of 71.99 % and F-scores (81.3% sound walking, 59.8% 

mild walking, 46.2% severely walking classes) when 20 features RF are used to train the 

classifier. Similarly, Boosting achieves a higher accuracy of 70.13% over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

with F-scores (79.9% sound walking, 56.2% mild walking, 43% severely walking classes) 

when 20 features RF are utilised. Due to the performance of the classifier being affected by the 

size of the training dataset, the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 dataset performs better than the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

because of the number of records for DataSet2_b in 5 𝑠𝑒𝑐. and 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤  are 1021 and 

558 records, respectively.  

 

0.3 Hold-out Validation Results: The best accuracy results are obtained over the  

5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤; however, some better accuracies could be achieved over the 

10 𝑜𝑟 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 sizes. The Bagging ensemble achieves the highest accuracy of 74.51% 

over the 5  𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 with F-scores (83.4% sound walking, 63.2% mild walking, 50.6% 

severely walking classes) when 20 features RF are used for training. On the other hand, 

Boosting classifier over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 reveals the best accuracy of 73.65% and F-scores 

(82.2% sound walking, 61.3% mild walking, 55.2% severely walking classes) when 64 features 

of GA. 

 

Single Sheep Splitting Validation Results: Both ensemble classifiers have a better 

performance over the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. The Bagging ensemble provides an accuracy of 

70.52%, while Boosting reveals a higher accuracy of 74.57% and F-scores (83.4% sound 

walking, 64.6% mild walking, 47.1% severely walking classes).  

 

Generally, Bagging performs better than Boosting for both 5-fold and 0.3 hold-out validation 

methods when only 20 features RF are used for training over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 size, where 

𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 = 50 and the number of data-points are 1021. 
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Figure 4-23 SLDM classification results of DataSet2_b for 5-fold, 0.3 hold-out, and Single Sheep Splitting validation methods for both ensemble (Bagging & Boosting). 
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4.7.2.4 DataSet3_all Ensemble Test Results and Discussion  

The classification results of DataSet3_all are displayed in Figure 4-24. The sheep data of 

gathered data at 4 Hz sampling rate, while 9 predictors are obtained (3 for each 𝐴𝑐𝑐, 𝐺𝑦𝑟, and 

𝑂𝑟𝑖𝑒𝑛𝑡). The total number of features are 183 extracted features. Due to the smaller number of 

records 64, 134 and 212 for 10, 7, 𝑎𝑛𝑑 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 sizes, respectively, the implementation 

of RusBoosting algorithm is considered instead of Boosting. Thus, the majority class is 

randomly under-sampled while the proportion of the class is kept the same within the dataset.  

 

5-Fold Validation Results: most of the high accuracy results are obtained over the 

5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. However, many significant results could be obtained over the 

10 𝑎𝑛𝑑 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠. The best performance for Bagging ensemble is achieved when 20 

features ReliefF are used for training the classifier over a 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤, where the accuracy 

is 73.44% and F-scores (80.5% sound walking, 72% mild walking, 58.1% severely walking 

classes). On the other hand, the best performance for the RusBoosting classifier is obtained 

over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 with an accuracy of 71.23% and F-scores (76.5% sound walking, 

70.5% mild walking, 60.8% severely walking classes) when 20 features ReliefF are fed to the 

ensemble.  

 

0.3 Hold-out Validation Results: The best performance for Bagging ensemble is achieved with 

an accuracy of 74.6% and F-scores (82.5% sound walking, 60% mild walking, 61.5% severely 

walking classes) over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 when 38 features by GA are used for training. The 

best RusBoosting accuracy is 68.25% with F-scores (77.6% sound walking, 57.1% mild 

walking, 58.1% severely walking classes) also over the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 when 20 features RF 

are used by the classifier.  

 

Single Sheep Splitting Validation Results: Both ensembles perform well over the 

5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 when all features are used. In Bagging, the accuracy reached 74.24% and F-

scores (82% sound walking, 62.1% mild walking, 64% severely walking classes), while 

RusBoosting achieved an accuracy of 71.21% and F-scores (78.8% sound walking, 61.1% mild 

walking, 66.7% severely walking classes) 

 

Generally, the best accuracy results could be obtained for both ensemble classifiers over the  

5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 as more data-points could be dealt with (212) compared to the 7 and 
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10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 where 134 and 64 data-points are allocated. In 5-fold validation, Bagging 

outperforms RusBoosting when 20 features RF are employed. Alternatively, in 0.3 hold-out 

methods, the best performance is achieved when 38 features by GA are used for training the 

classifiers.  
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Figure 4-24 SLDM classification results of DataSet3_all for 5-fold, 0.3 hold-out, and Single Sheep Splitting validation methods for both ensemble (Bagging & Boosting). 
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4.7.3 Comparison of SLDM Validation Methods 

Three validation approaches are applied, 5-fold, 0.3 hold-out, and a proposed method ‘Single 

Sheep Splitting’. Regarding the ‘Single Sheep Splitting’, it is only applied when the whole set 

of features are fed to the classifier. However, when the number of features that were fed to the 

classifiers was varied, only 5-fold and 0.3 hold-out validation methods were tried; so, the 

comparison results of the two validation methods, in this case, are explored in Appendix H. 

While the performance of the ensemble classifiers for all three validation methods when all 

features fed to the ensemble classifiers are plotted together in Figure 4-25, Figure 4-26, Figure 

4-27, and Figure 4-28 over 10, 7, 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 for DataSet1_all, DataSet2_ac, DataSet2_b, 

and DataSet3_all, respectively.  

 

The presented figures show a variance in ensemble performance among validation methods. 

The highest classification performance is registered when Single Sheep Splitting was applied 

over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for DataSet1_all (Figure 4-25), DataSet2_b (Figure 4-27), and 

DataSet3_all (Figure 4-28) with convergence with other validation methods. Conversely, 

DataSet2_ac (Figure 4-26) has the highest performance when 5-fold validation was applied; 

however, the other validation methods have satisfactory performance as well. 

 

In General, the performance of 5-fold validation is higher than 0.3 hold-out or Single Sheep 

Splitting as in the 5-fold method, the data are split into 5 folds, where the model keeps one fold 

for testing and utilises the other 4 folds for training, and the final accuracy is the average of the 

repeated process for 5 times. Although 5- fold validation is suitable for small datasets, it may 

overfit the trained model as the model might be tested for the same data-points that are 

previously used to build the model.  

 

Instead, the 0.3 hold-out validation method is tested to ensure that 30% of the observations are 

not seen by the trained classifier with 70% of data to avoid model overfitting. Alternatively, 

‘Single Sheep Splitting’ is proposed for validation, where 30% of each sheep walking 

movements are kept for testing, while 70% of the sheep movements feed the trained model. 

This method guarantees that the test data includes movement from each individual sheep rather 

than a proportion of the whole population’s movements. Therefore, the presented performance 

results show a satisfactory performance for ‘Single Sheep Splitting’ compared to 5-fold and 

0.3 hold-out validation approaches.   
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Figure 4-25 Validation techniques comparison for Ensemble (Bag & Boost) classifiers for DataSet1_all (all 

features), FOSW segmentation method over 𝟏𝟎, 𝟕, 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Figure 4-26 Validation techniques comparison for Ensemble (Bag & Boost) classifiers for DataSet2_ac (all 

features), FOSW segmentation method over 𝟏𝟎, 𝟕, 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Figure 4-27 Validation techniques comparison for Ensemble (Bag & Boost) classifiers for DataSet2_b (all 

features), FOSW segmentation method over 𝟏𝟎, 𝟕, 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Figure 4-28 Validation techniques comparison for Ensemble (Bag & RusBoosting) classifiers for DataSet3_all 

(all features), FOSW segmentation method over 𝟏𝟎, 𝟕, 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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4.8 General Discussion and Comparisons 

The proposed approach for SLDM in the current thesis investigates sheep data collection at 

different sampling rates, pre-processing techniques (2 segmentation method, 3 different 

window sizes segments), feature extraction, feature selection methods, and 3 classification 

algorithms for the sake of identifying the most cost effective factors that contribute to detect 

the early signs of lameness in sheep. To the best of author’s knowledge, there is no thorough 

data mining approach has been proposed yet to assist the classification of sheep lameness 

problem, and this is also suggested by Vazquez Diosdado et al., (2018). Therefore, this thesis 

evaluates the effect of several pre-processing methods on the performance of ensemble 

classifiers (Bagging, Boosting or RusBoosting) for the indication of lameness in sheep when 

compared with three sampling rates (10, 5, 4 Hz), two segmentation approaches (FNSW and 

FOSW), three feature selection methods (ReliefF, GA, and RF) and three window sizes (10, 7, 

5 sec.). Finally, the ensemble classifiers are evaluated using three different methods (5-fold, 

0.3 hold-out, and the proposed one ‘Single Sheep Splitting’). Approximately 432 combinations 

from prementioned options were conducted to identify the best combination. 

 

The validated prediction accuracies from applying the proposed SLDM reveal promising 

results for most of the combination. The thesis’ findings would be beneficial to be 

recommended in developing a unique sensor with its complete tool kit to detect sheep lameness 

on-farm basis in the near future; especially in the time of developing of PLF to accelerate the 

sheep industry in the UK. The best accuracy of 88.92% with F-score of 87.7%, 91.1%, 88.2% 

for sound walking, mildly walking, and severely walking classes, respectively, is obtained 

when applying the Bagging ensemble with the 5-fold validation method over the 

10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for a dataset collected at a 10 Hz. sampling rate (𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 = 100), with only 

accelerometer hardware sensor being activated, while the orientation sensing data were 

calculated from accelerometer readings. The number of features that feed the classifier was 

reduced to 46 features selected by GA feature selection method.  

 

The significant findings achieved in this thesis are compared to what have been examined in a 

few existing research studies in term of 12 criteria as shown in Table 4-13 to highlight the 

novelty of the current thesis.  
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Table 4-13 Comparison of current research with other sheep lameness studies (the blue colour font 
refers to the setting that the highest accuracy is achieved. 

Reference\ 
Criteria 

(Barwick et al., 
2018b) 

(Vazquez 
Diosdado et al., 
2018) 

(Al-Rubaye et 
al., 2018) Current work 

1 Sensor Type Accelerometer  Accelerometer 
& Gyroscope 

Accelerometer, 
linear 
accelerometer, 
Orientation 

Accelerometer, 
Gyroscope, and 
Orientation  

2 Sampling rate Hz. 12 Hz 8, 16, 32 Hz 10 Hz 10, 5, 4 Hz. 

3 #Sheep 
10 sheep (5 tested, 
5 companion 
sheep) 

19 sheep 7 sheep  66 sheep 

4 Sensor location Neck, leg, ear Neck, ear Neck  Neck  

5 Window sizes 10 sec. 7 sec.  NA 10, 7, 5 sec. 

6 #Extractd 
features 14 

44 
(Mansbridge et 
al., 2018) 

NA 183, or 122 

7 FS algorithm  RF (Gini index) 
RelieF 
(Mansbridge et 
al., 2018) 

NA GA, RF and 
RelieF 

8 #Selected features  3 10  NA 46, (20 RF, 20 
RelieF) 

9 Classifier used QDA RF Decision tree / 
single CART 

Bagging of 
CART, 
Boosting, or 
RusBoosting 

10 Validation 
method leave-one-out 10-fold 3 unseen sheep 

data 

5-fold, 0.3 
hold-out, Single 
Sheep Splitting 

11 
Accuracy, 
sensitivity(recall), 
precision 

Collar attached  
83% Accu,  
35% recall,  
35% precision 
for lame walking 

68.6% Accu, 
78.3% recall, 
67.8% 
precision  

75.45% Accu, 
82.87% recall, 
60.5% precision 
for severly lame  

88.92% Accu, 
93.4% recall, 
88.9% 
precision for 
mild walking 

12 # Classes 

sound grazing, 
sound standing, 
sound walking, 
sound lying, and 
the lame walking 

Lame vs non-
lame 

Sound, mildly 
lame, and 
severely lame 

Sound walking, 
mildly walking, 
severely 
walking 

Notes  Population 
classification 

Individual 
classification 

Population 
classification  

Population 
classification  

 

Regarding the first criteria ‘Sensor Type’, it is recommended in this thesis that only the 

accelerometer hardware sensor is adequate to detect lameness in sheep. In contrast to Vazquez 

Diosdado et al., (2018) who utilise two hardware sensors for the sake of lameness detection. In 

order to meet the thesis’ aims to determine the most cost effective factor for lameness detection, 
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only one hardware sensor is preferable to develop less energy consumption sensor. Moreover, 

Barwick et al., (2018b) also utilise the only accelerometer for lameness detection in their 

research.  

 

Secondly, the ‘Sampling frequencies’ affect the classifier performance and sensor energy 

consumption. In the current research, DataSet2 that collected at 10 Hz sampling rate produces 

better accuracies compared to DataSets that have been collected at 5 or 4 Hz. Although the 

sensor energy could be saved when the sampling frequencies are decreased, the continuity of 

information about behavioural movement might be lost at small sampling rates. In the 10 Hz 

sensor setting, 10 sensor readings are transmitted every second, while in 4 Hz only 4 readings 

are retrieved every second. It is recommended that the 10 Hz sampling rate is preferred for the 

sheep lameness sensor development studies as the prediction accuracies are increased by 8% 

when 10 Hz is used instead of 5 Hz sampling frequencies. Additionally, Walton et al., (2018) 

and then used by Vazquez Diosdado et al., (2018) recommend 16 Hz sampling rate among 8 

Hz, 16 Hz., and 32 Hz that were tried in their study to identify the most saving energy sampling 

rate in comparison to the accuracy of lameness detection. Generally, a compromisation has to 

be made between the cost of a sensor to be developed and the satisfying accuracy of detection 

within the flock. The more sampling rate reveals more movement information which could 

waste the sensor energy, while the smaller sampling rates produce satisfactory accuracies as 

recommended in this thesis. Therefore, investigating the more suitable frequency for sheep 

movement collection was one of the aims of this thesis to be met. 

 

The third criterion is the ‘Number of sheep’ used, which influences the research findings in 

term of validity and robustness. The selective sample for conducting research is considered 

representative whenever the number of participants is satisfactory. So, an adequate sample of 

66 sheep are participated in the current thesis within a different group of characteristics 

compared to few numbers of participants sheep of 10, 19, and 7 in (Barwick et al., 2018b; 

Vazquez Diosdado et al., 2018; Al-Rubaye et al., 2018), respectively.  

 

Although the choice of ‘Sensor location’ around the neck is clarified in Section 2.3.1.2.2, it 

could be summarised as neck mounted sensor is preferable than leg sensor because it is easy to 

attach, less likely to cause injuries, and less disruption to animals. Furthermore, the neck 

attached sensor would be a potential for a WSN node for future research studies to enhance 

PLF in future. However, Barwick et al., (2018b) utilise different sensor location like ear, neck, 
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and leg with prediction accuracy of 82%, 35%, 87%, respectively. In their research, there were 

no actual lame sheep, instead, the simulation for lameness movement is depended by bending 

the sheep leg with an adhesive bandage to obtain lame sheep movements like an actual one. In 

contrast, the current thesis tests an actual lame sheep with different level of lameness (mild and 

severe) at Lodge farm in Moulton College, which increases the validity of the research 

compared to other studies.  

 

The fifth criterion to be discussed in relation to other research studies is ‘Window size’. 

Usually, the more extended window size contains more relevant information that might 

positively affect the performance of classifiers. The best performance of ensemble classifies is 

archived over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 at 10 Hz. So, 100 data-points is recommended to detect early 

lameness signs. Moreover, the performance of Bagging and Boosting is relatively significant 

for most of the selected window sizes 7 𝑠𝑒𝑐. and 5 𝑠𝑒𝑐. So, the obtained results come in line 

with (Walton et al., 2018; Vazquez Diosdado et al., 2018), who suggested 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 for 

the best sensor energy consumption. As 112 data-points is maintained to detect lameness 

movement of sheep (7 window size × 16 Hz. = 112 data-points). While Barwick et al., (2018b) 

used 10 𝑠𝑒𝑐 𝑤𝑖𝑛𝑑𝑜𝑤 size with 12 Hz. sampling rate, which means 120 data-points are dealt to 

detect lameness at a time. Generally, the recommended data-points (the number of 

observations) is around 100 which converge with the existing research studies.  

 

The sixth criterion to be investigated in the current thesis was ‘Extracted features’, the number 

of features to be extracted from the sheep raw movement data. The number of extract feature 

for the current thesis were either 183 for the DataSets with 9 predictors (raw sensors readings) 

or 122 extracted features with DataSet2_ac as it has 6 predictors. Although a less number of 

features were extracted in Mansbridge et al., (2018) and Barwick et al., (2018b), 14 and 44 

respectively, the 183 features were extracted here covered a wide range of time domain and 

frequency domain features that were employed in cattle behaviour studies (Rahman et al., 

2018; Smith et al., 2015), sheep behaviour studies in (Marais et al., 2014; Alvarenga et al., 

2016; Kamminga et al., 2017; Barwick et al., 2018a; Walton et al., 2018; Guo et al., 2018; 

Kleanthous et al., 2018), and also human (Figo et al., 2010; Bersch et al., 2014) research 

studies. It is important to explain that this stage would not be reconsidered to be developed a 

cost-effective sensor because the best selected features are examined in the current thesis with 

various 432 scenarios and the recommendation are given for future enhancement studies.  
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Regarding the seventh criterion in Table 4-13, the performance of three ‘Feature Selection’ 

methods achieves satisfactory results; however, RF could be considered for sheep lameness 

detection approaches as it has less computational time compared to GA and better accuracy 

compared to ReliefF. In addition to the low computational cost of RF, it could be feasible to be 

deployed in a sensor device to detect lameness (Vazquez Diosdado et al., 2018). The RF is also 

utilised for feature selection in Barwick et al., (2018b); however, the metric used in current 

research for ranking features depends on minimising p-values of Chi test, in contrast to Barwick 

et al., (2018b) who identifies the importance of the features according to its minimum Gini 

values. So, to meet the aims of investigating of the most saving energy factors for the intended 

sensor to be developed, RF is the best recommended methods for the further research study in 

the field of lameness detection in sheep. 

 

As a result of the FS step, the final set of ‘Selected features’; the eighth criterion in Table 

4-13, are recommended. The set of extracted features were reduced to 20 features that only 

used by the classifier to detect the lame sheep. Most of the selected features relate to 

acceleration and orientation group, which were discussed in Section 4.6.2. That means after 

the sheep was spotted as a walking sheep by testing its speed, the orientation features like 𝑃𝑖𝑡𝑐ℎ 

and 𝑅𝑜𝑙𝑙 angels of the rotated neck are most likely to contribute in early lameness detect 

process. As the head nodding of the sheep could produce a significant indicator for lameness 

detection, and this was achieved by the thesis findings to fulfil its aims. Furthermore, 46 

features that were selected by GA also revealed a competitive accuracy result by the classifier 

compared to the two other FS methods; however, it has a high computational cost that would 

be utilised with large datasets collected from different sources on a cloud. On the other hand, 

the other two competing studies used a smaller number of features 3 by Barwick et al., (2018b), 

and 10 by Vazquez Diosdado et al., (2018). So, further insights would be needed for future 

studies to reduce the number of features used by the classifiers,  

 

For the ninth criterion, the ‘Ensemble Classifier’ was used as a classification method in this 

thesis, which revealed significant results that outperform Vazquez Diosdado et al., (2018), who 

used RF of 8 trees; which is also considered as a form of an ensemble of trees, where each tree 

was tested separately and the average accuracies from all tress (classifiers) are considered. 

Whereas the ensemble of 100 trees was applied in SLDM to avoid overfitting and taking into 

account all possible combination of the collected observation. The ensemble of trees has less 

computational cost compared to other classification methods (see Table 2-8); so, it would be 
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possible to be implemented into a developed sensor kit for lameness detection in future. 

Furthermore, various ML classification methods were applied in (Al-Rubaye et al., 2018) to 

conclude that DT and an ensemble of it could provide the best accuracy results compared to 

other ML classification methods. For further enhancement in future, more complex ML method 

would be applied for sake of sheep lameness detection; for example, Deep learning approach; 

however, it may cost extra sensor energy, memory, and prediction time.  

 

The tenth criterion in Table 4-13 to be compared to other research studies is the ‘Validation 

method’, which was applied to validate the proposed SLDM. The main idea of validation is to 

keep part of the observed data named ‘test data’ to validate the performance of classifier which 

is trained with the other part of the data named ‘train data’. It is worthless to validate the quality 

of the classifier with the same train data, so an amount of test data are kept for this purpose. 

The 5-fold cross-validation outperforms the other two methods used in this thesis as the cross-

validation method is suitable when the amount of prepared data for pre-processing step were 

not too huge. For example, DataSet2_ac has 124806 data points, the largest data points among 

the other sheep datasets (see Table 4-1).  These findings come in line with Vázquez-Diosdado 

et al., (2019) who recommend 10-fold cross-validation with further advice to explore larger 

datasets. While Barwick et al., (2018b) validate their model using leave-one-out which is one 

form of 1-fold validation as the processed data point were also not too huge approximately 

432,000 data points (5 sheep were observed for 2 hours at 12 Hz. i.e. (5 sheep × 2hr. observation 

time × 1200 sec. × 12 Hz= 432,000). 

 

The eleventh criterion in Table 4-13 is the ‘Evaluation metrics’ including accuracy of the 

SLDM to detect the lame sheep in addition to sensitivity and precision. Because that SLDM 

could detect three classes of sheep status (sound, mildly, and severely walking), the overall 

accuracy of SLDM; which cover the three classes, may not reflect the desired percentage of 

early signs of lameness detection in sheep as the target was to detect the lame sheep in its early 

stage (mildly lame walking class). Therefore, the sensitivity calculates the percentage of certain 

classes (mildly lame for example) in the examined dataset that is correctly classified by the 

expert shepherd. While the precision refers to the percentage of certain classes that are correctly 

classified by SLDM. The current thesis’ results achieved a detection accuracy of  88.92% ( 

93.4% recall, 88.9% precision for mild walking), while an accuracy of 68.6% (78.3% recall, 

67.8% precision) obtained by Vázquez-Diosdado et al., (2019), and 83% Accuracy (35% recall, 

35% precision for lame walking) was reached by Barwick et al., (2018b) in collar attached trail 
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in their research. Although the observations for each research study may differ in various 

setting, the results of this thesis outperform the other research studies which might lack for a 

full data mining approach like the one proposed in the current thesis (SLDM). 

 

The twelfth criterion in Table 4-13 is the ‘Number of Classes’. Three levels of Classes could 

be recognised by SLDM in the current thesis (sound, mildly walking, severely walking), while 

only lame vs non-lame Classes were spotted by Vázquez-Diosdado et al., (2019). If the mildly 

walking sheep could be observed earlier, that would be beneficial for the farmers to reduce the 

cost of treatment in laboratories and prevent the other sheep in the flock from being infected. 

On the other hand, Barwick et al., (2018b) identified the lame walking sheep (with no 

indication of lameness level) among other Classes of standing, grazing, lying, and sound 

walking.  

 

Ultimately, it is worth mentioning that sheep research studies in the literature focus on 

investigating sheep behaviour on pasture for grazing or ruminating research purposes (Marais 

et al., 2014; Alvarenga et al., 2016; Giovanetti et al., 2017; Guo et al., 2018; Kleanthous et al., 

2018; Vázquez-Diosdado et al., 2019; Kleanthous et al., 2019). Furthermore, the field of 

knowledge in sheep lameness studies that employ a data mining approach in combination with 

a mounted motion sensor lack for evaluated studies to fill the gap in the literature. Therefore, 

the importance of applying the recommendation of this thesis would increase the productivity 

of the sheep industry in farms and positively contribute to PLF. As sheep welfare would be 

under control when a sensor is mounted on their neck to produce alarms about their health. 

Furthermore, the practice of this study would help the shepherd to remotely identify the mildly 

lame sheep in a farm as sheep are more difficult to monitor and more likely to left in fields for 

grazing with no need for continuous monitoring than cattle which are already have a daily 

milking routine compared to sheep.  

 

To the best of the author’s knowledge, only two recent studies (Barwick et al., 2018b) and 

(Vazquez Diosdado et al., 2018) utilise motion sensor technology for predicting lameness in 

sheep in addition to the earlier published work of the current study (Al-Rubaye et al., 2018), 

which is presented in Appendix I. 11. Therefore, a comparison of the current work with other 

related studies is listed in Table 4-13 and discussed earlier showing that the best accuracy 

obtained by the ensemble model (Bagging) 88.92% outperforms prediction accuracies of other 

current studies according to the pre-listed recommendation.
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5 Chapter Five: Conclusion and Future Work 
 

5.1 Introduction 

Sensor technologies play a vital role in developing Precision Livestock Farming (PLF) and 

application of smart farms, as large amounts of information could be collected and analysed to 

be later used to enhance the overall farm productivity (Shalloo et al., 2018; Bahlo et al., 2019). 

So, this research utilises motion sensors like Accelerometer, Gyroscope, and Orientation 

sensors to collect accelerations, angular velocities, and angles readings, respectively, from a 

mounted sensor around a sheep neck in three-dimensions (vertical, horizontal, and orthogonal) 

at three different sampling rates (10, 5, 4 Hz). The collected data has been pre-processed, 

targeted walking data have been extracted, and a classification prediction model has been built 

to recognise three sheep walking statuses; these are sound walking, the mildly lame walking, 

and severely lame walking. The built model has been validated to prove its ability to predict 

new unseen sheep data in the future to predict their class.  

 

Lameness is one of the major concerns in the sheep industry in the UK and is mostly caused 

by infectious bacteria growing in muddy soil. These bacteria easily transmit to the sheep’s foot, 

causing footrot and results in abnormal walking, and leads in its worst cases to sheep culling if 

it is not treated early enough. Due to the scale of the estimated annual losses of £10 (Brian, 

2016) that reduce farm productivity, the early detection of lame sheep contributes to reducing 

labour and treatment costs and preventing disease prevalence.  

 

The multidisciplinary nature of the conducted research opens diverse paths for knowledge 

discovery, since further research studies would be continuously applied to develop various data 

mining approaches to solve a real-world problem; such as the problem of sheep lameness 

tackled in this thesis. The application of machine learning has been increasing as the amount 

of data collected from real-world problems increasing, becoming more sophisticated, and 

become presented in multi-dimensional space (Maxwell et al., 2018; L’Heureux et al., 2017). 
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5.2 Summarised Research Findings and Recommendations 

The practical implementation toward achieving the aims of this thesis are demonstrated in the 

significant findings contributing to the field of knowledge. As illustrated in Section 2.8, the 

fundamental gap identified in literature could be noticed in the limitation in the number of 

studies that investigate sheep lameness detection utilising the retrieved sensor reading from a 

sheep neck collar. In contrast to their counterparts in cattle, the literature studies in detecting 

cattle lameness are satisfactory enough. As a result, commercial sensors to monitor a cow’s 

health are produced by IceRobotics based in Scotland which launched a CowAlert sensor which 

is commercially available to the stakeholders. In comparison to the cattle industry, the market 

lacks such an alert system to be developed to monitor sheep health. Although the reason could 

refer to the paucity in sheep lameness research studies, there are other real-world reasons; cows 

are more valuable, and most of lameness detection sensors/pedometers are leg mounted 

sensors, while sheep have skinny legs that make it difficult to attach. Moreover, the most cow 

developments focus on dairy cattle which are either indoors all the time or come in and at least 

twice a day, so it is much easier to identify the signs of a lame cow compared to a lame sheep.  

Therefore, this thesis investigates the whole process of the indication of lameness in sheep 

starting with collecting sheep data, pre-processing it, features calculation and selection, toward 

the model building, and validation for future lameness predictions.  

 

In order to demonstrate the requirement for developing a feasible, inexpensive, and handy 

sensor kit by the shepherd that able to collect sheep movements, analyse collected data, and 

produce an alarm for abnormal walking segments within sheep movements which might lead 

to lameness implications in the future, the investigations for the significant factors contributing 

to decision making are necessarily required in this research. The first factor to be investigated 

is the sample frequency rate which affects the energy consumption of the sensor. High sampling 

rates cause sensor battery drainage, while fewer frequencies could save more sensor energy 

(Hounslow et al., 2019). However, a small sampling rate might not be enough to inform of a 

sheep’s status because of the small amount of information retrieved in each sensor reading. 

Therefore, a compromising solution between sensor energy consumption and the amount of 

the informative information retrieved was a crucial step to be investigated in this thesis. 

Empirically, the best classification performance is obtained when the 10 Hz. sampling rate was 

applied, then followed by 5 Hz and 4 Hz. The findings converge with Walton et al., (2018), 

who recommend 16 Hz. from tested frequencies of 32, 16, and 8 Hz. Although they recommend 
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16 Hz., the selected window size used was 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (7 window size × 16 Hz. = 112 data-

points). While the current thesis recommended 10 Hz. with 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 (10 window size 

× 10 Hz. = 100 data-points). So, the number of the data-points that would be dealt by the pre-

processing and decision-making steps is the foundation for lameness detection process. Since 

a compromising could be achieved by either employing higher frequency rate (more sensor 

energy would be spent) or by increasing the selected window size (more processing time would 

be required) as the number of data-points to be manipulated equal to the sampling rate 

multiplied by the selected window size.  

 

The second factor is the type of sensor used. As illustrated in Section 3.2.2, two types of 

Android sensor system are available; a hardware-based sensor and a software-based sensor. 

The first type required more energy to operate compared to the second type, which is calculated 

usually from hardware-based sensors. Accelerometer and Gyroscope sensors are hardware-

based sensors, while Orientation sensor is a software-based sensor and could be calculated as 

explained in 3.5.2.1. According to the aim of the research of providing affordable suggestions 

for a sheep sensor in the market, the less hardware-based sensor is preferable. So, the 

recommendation is that acceleration sensor readings are adequate to produce satisfactory 

lameness prediction results, because the highest prediction accuracy of 88.92% is achieved 

when only an accelerometer sensor was used in addition to the orientation readings that were 

calculated from the acceleration readings. The suggested recommendations fall in line with 

other research studies (Kamminga et al., 2018; Kleanthous et al., 2019).  

 

The third factor is a combination of segmentation methods (FNSW and FOSW) and segment 

window size (10, 7, and 5 sec. are applied). The FNSW segmentation method could be 

implemented in real-time with minimum memory requirements compared to FNSW; however, 

FOSW produces better prediction results compared to FNSW because of the proportion of 

overlapped information between every two successive segments. Although the experimental 

results reveal that the 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 offers the best prediction accuracies, the 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 

is also competitive, while the 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 provides fewer accurate predictions for sheep 

lameness. The 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤 is also recommended by Walton et al., (2018) as a preferable 

window size from the 3, 5, and 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 tried in their study for classifying sheep 

behaviour into standing, walking, and lying.  
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The fourth examined factor is the feature selection algorithm in terms of accuracy and time 

required to be executed. Three FS methods were tried; which are ReliefF, GA, and RF. The 

lowest execution time is achieved by applying ReliefF followed by RF, while GA consumes 

the highest execution time. However, the prediction accuracies obtained when the ensemble 

classifier was trained by the feature selected by the ReliefF algorithm is quite low compared to 

ones selected by RF or GA. GA takes a longer time to execute; however, competitive accuracy 

results are achieved when GA is applied compared to RF. Thus, RF could be preferable to be 

deployed in a sheep sensor kit for lameness detection for future manufacturing studies for 

developing a commercial sheep sensor. This opinion agrees with Vazquez Diosdado et al., 

(2018).  

 

The final factor to be examined is the identification of the best machine learning algorithm to 

classify sheep status into sound walking, mildly lame walking, and severely lame walking. 

From the fact that no classification algorithm fits all types of data, the test for best performance 

is applied to raw sheep data gathered at the early stage of the current research. The practical 

experiment reveals that the decision tree algorithm could suit the raw sheep data with an 

accuracy of 74.46% compared to other 9 classifiers approached that were applied in (Al-

Rubaye et al., 2018) See Appendix I. 11. Further development was implemented as pre-

processing steps to the extended sheep datasets in the current thesis were investigated.  Bagging 

and Boosting ensemble classifiers are implemented (100 decision trees were trained) to 

overcome the problem of overfitting as the final prediction accuracy was the average of the 

100th trained classifiers within the ensemble. In addition, the RusBoosting algorithm was tried 

on the 4 Hz. dataset to overcome the problem of the imbalanced dataset when the number of 

classes in a dataset is unequal. Regarding the memory requirement for the future sensor kit to 

be developed for lameness detection, the best recommended setting would be when the applied 

ML approach occupies less memory within the sensor. As listed in Table 2-8, DT/CART 

required less memory space than the other approaches; moreover, the memory storage in the 

future suggested sensor might be increased whenever the complexity of the ML approach is at 

a higher level. The complexity of classifier and the required sensor memory storage need to be 

compromised in future studies. Therefore, only 100 trees within the ensemble classifier in the 

current thesis were recommended as the detection percentage of mildly lame sheep was at a 

satisfactory level.  

 

The overall findings of the thesis are original as no adequate studies investigate the sheep 



CHAPTER FIVE: Conclusion and Future Work  
 

173 
 

lameness classification in relation to machine learning implementation. Not only is the 

predicted model built for lameness detection, a validation study for the whole data mining 

approach is also conducted to guide researchers for further enhancements in future related 

studies. Additionally, the current study provides the necessary information required to be 

considered when manufacturing a sheep sensor kit for monitoring sheep health on-farm and 

producing health issue alarm.    

 

5.3 Research’s Practice and Limitation 

The recommendations of this thesis would be applied by future studies to develop a sensor kit 

for lameness detection in sheep comparable to their counterpart in cattle named CowAlert by 

IceRobotics. The PLF market lacks a special sensor to monitor sheep health remotely as sheep 

left grazing in fields for a longer time than cows with no routine milking twice a day. When it 

comes to the actual practice, the implication of the research findings could be assessed in term 

of sensor energy consumption, memory space, and the accuracy of lameness detection 

concerning the sensor price which was targeted in this thesis to be cheap and easily accessible 

by farmers.  

 

Regarding the energy spent by the sensor to be developed, the target was to prolong the sensor 

life as much as possible by reducing the sensor power drainage. For example, higher frequency 

sensors provide more information on sheep movements than lower sampling rates sensors. In 

this thesis, the collected data from the walking sheep was retrieved at limited low sampling 

rates (10, 5, 4 Hz.) to keep the battery life longer. Despite the observed time was not too long 

approximately either for 15 minutes or for 1 hour. Further studies would investigate the effect 

of the higher frequencies for data collection which is expected to decrease the sensor life and 

increase the price of the sensor to be manufactured. Although the amount of the collected data 

at higher frequencies would contain additional information about sheep movement, the most 

important data would be the one that contributes to decision making. So, in the pre-processing 

stage, the limitation of low sampling rate could be manipulated by increasing the selected 

window as the manipulated data-points are equal to the (sampling rates × window size) as 

discussed in Section 4.8.  

 

Another practice for research findings concern keeping the sensor energy is that setting the 

sensor to the sleep mood when sheep are not walking as the walking segments are already 
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extracted to be manipulated (Section 3.5.5). This process would save the sensor battery for a 

longer period. Alternatively, the sensor energy might be spent only for data collection, while 

the pre-processing stage including; walking segment extraction, feature calculation and 

selection, training and validating the selected model are all implemented in a common Cloud 

(Cloud: is a data storage resource on the Internet available to users without direct management), 

that might require communications cost for data transmission and receiving. However, the 

work in this thesis was limited to online process which means the data collection and decision 

making was supposed to conduct in the same sensor kit, while the suggested ideas for future 

studies would append data communication equipments and offline processing in the Cloud that 

might be a luxurious solution to the farmers to spot lame sheep in an unattended way.  

 

Additionally, one of the thesis valuable findings that positively affect sensor power 

consumption recommends that only acceleration hardware sensor is capable to detect the early 

signs of lameness and it is also used to derive the orientation sensor reading as well. So, no 

extra hardware gyroscope sensor is required for lameness detection from the mounted sensor 

on the sheep neck collar. However, more hardware sensors would be examined for the problem 

of lameness detection in sheep by future research studies.  

 

Regarding the size of memory in the proposed sensor, the smaller size is targeted. So, the 

amount of the collected data, the number of data-points to be manipulated (sampling rates × 

window size), and the complexity of the selected ML approach all affect the memory space 

required. For the current thesis, a recommend data-points were 100 observation (10 Hz, and 

10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤) which require a small amount of memory in the sensor to be manufactured. 

Extra data-point would be tried by other future research studies when the price of the sensor is 

not a matter for the stakeholder. As mentioned, there is no study yet explore the factors affect 

the sensor design for lameness detection; therefore, more studies in addition to the current 

thesis research are still needed in the near future. Another factor affects the memory size is the 

complexity of ML classifier used; so, CART; which is a type of binary DT, was implemented 

in this thesis as it requires less memory space than other ML methods (Table 2-8), and it is 

suitable to be embedded into one sensor kit as aimed in this thesis. Alternatively, if an offline 

practice for the current work would be applied in future, more sophisticated and accurate ML 

techniques could be practice in Cloud such as Deep learning techniques which keeps learning 

from the new data that are fed to its learner classifier.  
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Regarding the accuracy of the proposed validated SLDM, promising lameness detection results 

are achieved according to the recommended setting in SLDM. So, it would be possible to 

manufacture an accelerometer sensor kit that collects data at the current recommendation such 

as 10 Hz for sampling rate, extract walking segments only to be manipulated using FOSW with 

20% overlapping with 10 𝑠𝑒𝑐 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒, 20 selected features by RF, and ensemble 

classifier. However, further suggestions would be implemented to increase the accuracy of the 

validated model regardless of the price of the sensor to be manufactured as mention earlier.  

 

Finally, it is important to notice that the accuracy of the proposed SLDM with its current 

settings could be varied according to alternation in different factors such as sampling 

frequencies, window sizes, FS methods, and even the labelled class for the collected data. Since 

the SLDM applied supervised ML techniques (ensemble of CART), which required the class 

of data to be labelled, unlike unsupervised learning where the class of data no more required. 

For example, the sheep lameness status (sound, mild, and severe) were primarily labelled for 

their lameness level by (Tim Perks), the expert shepherd in Lodge Farm. However, the achieved 

results might be changed if a different shepherd labelled the same sheep for the data collection 

process. Sheep labelling for sound, mild, or severe is a subjective process; therefore, more 

objective methods utilising sensor technology are opted to develop PLF. The limitation of 

employing one expert for data labelling in the current thesis could be overcome in future 

research studies by employing more than one expert to label the same group of sheep that are 

allocated for data collection process and reach an agreement among the experts labelling o9f 

the same group of sheep. 

 

5.4 Future work 

The work conducted in this thesis could be improved in terms of hardware and software 

implementation. So suggested ideas which could improve the conducted research study or be 

applied to future studies are as follows:  

  

5.4.1 Potential Hardware Improvements 

1- Since each sensor mounted into a sheep’s neck collar could be a potential sensor 

node in a Wireless Sensor Network (WSN) that would be utilised for the flock 

monitoring system, saving the battery life of each node is essentially required. To 

do so, each sensor node that is mounted on a sheep neck would only work when the 
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sheep is walking and put in sleep mode when no walking behaviour is detected. 

This process would prolong the sensor life within a WSN.   

2- Sheep head movement could be harnessed to produce mechanical energy for self-

node battery charging for the sake of gaining longer battery life.  

3- As a further approach to saving a sensor battery’s life is to deploy solar panels into 

a sensor kit as an alternative source of energy when the sensor battery is lacking 

energy. 

4- Future sheep studies would combine extra hardware sensors like GPS sensors to 

track the sheep in the field and monitor their movements in an unattended way.  

5- Deploying SLDM as a mobile application requires communication consideration; 

however, it could be implemented in future for the benefit of shepherds on a farm 

when an alarm is issued directly to their mobile phones. 

  

5.4.2 Potential Software Improvements 

1- Further investigation could be performed to estimate the fitness function for GA 

optimisation; for example, using KNN instead of CHIAD. That would decrease the time 

required for execution. Furthermore, the best individual is selected according to the 

highest fitness value; however, the average fitness value could produce better results.  

2- In segmentation, when the total number of segments in each dataset are calculated 

𝑠𝑒𝑔_𝑛𝑜 some information is lost due to the data-points less than the 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 being 

discarded. For example, if a dataset has 149 data-points and  𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 =  50, the total 

number of segments would be two, each with 50 data-points, while the remaining 49 

data-points will be discarded as 49 data-points is less than 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 =  50. Therefore, 

to guarantee that no more data will be lost, duplication within 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒 has to be 

performed if the lost data estimation is more than half of 𝑠𝑒𝑔_𝑠𝑖𝑧𝑒.  

3- Further supervised machine learning algorithms could be implemented to achieve a 

better prediction performance such as Naïve-Bayesian, ANNs, or Deep learning; 

however, the interpretation could be a challenge to comprehend compared to CART.    
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 Results of Sheep Raw Data Plotting 

 
Appendix B. 1 Scatter Plot matrix for raw Sheep DataSet1_all, where *, o, and x represent severe, mild, and sound 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 in the DataSet. 
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Appendix B. 2 Scatter Plot matrix for raw Sheep DataSet2_b, where *, o, and x represent severe, mild, and sound 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 in the DataSet. 
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Appendix B. 3 Scatter Plot matrix for raw Sheep DataSet3_all, where *, o, and x represent severe, mild, and sound 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 in the DataSet. 
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Appendix B. 4 Box Plots for each predictor in raw sheep DataSet1_all.  
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Appendix B. 5 Box Plots for each predictor in raw sheep DataSet2_b. 
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Appendix B. 6 Box Plots for each predictor in raw sheep DataSet3_all.  
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 Sheep movements plots for Standing, Walking, and 

Trotting Segments 
 

  

  

  
Appendix C. 1 Scatter plots of the DataSet1_all, where movement’s classification is done over (10 𝑠𝑒𝑐., 

7 𝑠𝑒𝑐., and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤) for two segmentation approaches (FNSW and FOSW). 
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Appendix C. 2 Scatter plots of the DataSet2_b, where movement’s classification is done over (10 𝑠𝑒𝑐, 

7 𝑠𝑒𝑐, and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤) for two segmentation approaches (FNSW and FOSW). 
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Appendix C. 3 Scatter plots of the DataSet3_all, where movement’s classification is done over (10 𝑠𝑒𝑐, 

7 𝑠𝑒𝑐, and 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤) for two segmentation approaches (FNSW and FOSW). 
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 Time Calculation for the Extracted Features 
 

 

  

  

  
Appendix D. 1 Execution time of features for DataSet1_all (5 Hz). 
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Appendix D. 2 Execution time of features for DataSet2_b (10 Hz). 
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Appendix D. 3 Execution time of features for DataSet3_all (4 Hz). 
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 Ranked Features Tables for Sheep DataSets 
 

Appendix E. 1 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet1_all over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Energy_Roll Energy_Roll Mean_Acc_x Mean_Acc_y Max_Roll Max_diff_Pitch 
2 Rms_Roll Rms_Roll Mean_Acc_y Mean_Azimuth Mean_Roll Max_Roll 
3 Dfreq_Roll Dfreq_Roll Mean_Acc_z Mean_Pitch Max_diff_Pitch Mean_Roll 
4 Max_Roll Max_Roll Mean_Azimuth Mean_Gyr_x Min_Pitch Max_Gyr_x 
5 Mean_Roll Mean_Roll Mean_Pitch Var_Acc_x Max_Gyr_x Max_Acc_y 
6 Min_Roll Min_Roll Mean_Roll Var_Acc_y Rms_Roll Min_Pitch 
7 Cf_Roll Cf_Roll Mean_Gyr_x Var_Acc_z Entropy_Gyr_y Entropy_Gyr_x 
8 Max_Pitch Max_Pitch Mean_Gyr_y Var_Azimuth Cf_Roll Skew_Acc_y 
9 Entropy_Pitch Entropy_Pitch Var_Acc_x Var_Pitch Max_diff_Gyr_z Rms_Pitch 
10 Rms_Pitch Rms_Pitch Var_Acc_y Var_Gyr_x Mean_Acc_z Max_diff_Gyr_z 
11 Max_diff_Pitch Max_diff_Pitch Var_Azimuth Var_Gyr_y Entropy_Gyr_z Max_Pitch 
12 Energy_Pitch Min_Pitch Var_Pitch Var_Gyr_z Max_diff_Acc_z Rms_Roll 
13 Dfreq_Pitch Energy_Pitch Var_Gyr_x Std_Acc_x Cf_Gyr_x Interq_Gyr_y 
14 MV_Gyr MV_Gyr Var_Gyr_y Std_Acc_z Entropy_Gyr_x Min_Acc_z 
15 Entropy_Roll Dfreq_Pitch Var_Gyr_z Std_Azimuth Min_Acc_y Max_diff_Gyr_x 
16 Cf_Pitch Entropy_Roll Std_Acc_x Std_Pitch Max_diff_Acc_y Min_Gyr_z 
17 Max_diff_Gyr_z Max_diff_Gyr_z Std_Acc_z Std_Roll Var_Gyr_z Mean_Acc_x 
18 Std_Pitch Cf_Pitch Std_Pitch Std_Gyr_x Min_Gyr_x Max_diff_Acc_z 
19 MV_Acc Std_Pitch Std_Roll Kur_Acc_x Var_Acc_y Min_Gyr_x 
20 Min_Pitch DSVM_Gyr Std_Gyr_y Kur_Acc_z Var_Gyr_x Cf_Roll 
21 mag_Ang MV_Acc Std_Gyr_z Kur_Azimuth Mean_Pitch Mean_Acc_z 
22 Entropy_Gyr_y Entropy_Gyr_y Kur_Acc_x Kur_Pitch Rms_Gyr_x Kur_Gyr_z 
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23 Max_diff_Acc_y Max_diff_Acc_y Kur_Acc_y Kur_Gyr_x Max_diff_Acc_x Dfreq_Roll 
24 DSVM_Gyr Mean_Pitch Kur_Pitch Kur_Gyr_y Dfreq_Gyr_x Mean_Pitch 
25 Mean_Pitch Entropy_Gyr_x Skew_Acc_y Skew_Acc_x Entropy_Acc_y Var_Acc_y 
26 Entropy_Gyr_x Entropy_Gyr_z Skew_Pitch Skew_Azimuth Skew_Acc_y Dfreq_Pitch 
27 SVM_Angle SVM_Angle Min_Acc_z Skew_Pitch Interq_Gyr_y Cf_Gyr_x 
28 SMA_Angle SMA_Angle Min_Azimuth Skew_Gyr_x Dfreq_Acc_z Min_Roll 
29 Entropy_TimeD_Ang Entropy_TimeD_Ang Min_Pitch Min_Acc_y Max_diff_Gyr_x Var_Gyr_z 
30 Max_Azimuth Min_Gyr_z Min_Gyr_z Min_Acc_z Rms_Pitch Max_diff_Acc_x 
31 Entropy_Acc_y Entropy_Acc_y Max_Acc_x Min_Pitch Dfreq_Roll Var_Pitch 
32 Min_Gyr_z Std_Gyr_z Max_Acc_y Min_Gyr_x Min_Roll Mean_Acc_y 
33 Dfreq_Azimuth Max_Acc_y Max_Pitch Min_Gyr_z Min_Gyr_y Kur_Acc_z 
34 Mean_Azimuth Rms_Gyr_z Rms_Acc_y Max_Acc_x Cf_Pitch Var_Gyr_x 
35 Vedb_Angle Entropy_Acc_x Rms_Roll Max_Acc_y Max_Gyr_z Dfreq_Gyr_z 
36 Std_Gyr_z Vedb_Angle Interq_Acc_y Max_Acc_z Dfreq_Acc_y Var_Acc_x 
37 Entropy_Gyr_z Entropy_Acc_z Interq_Acc_z Max_Azimuth Highest_peak_Acc_y Min_Gyr_y 
38 Std_Acc_y Std_Acc_y Interq_Pitch Max_Roll Kur_Gyr_y Skew_Acc_z 
39 Rms_Gyr_z Var_Pitch Interq_Gyr_x Max_Gyr_x Dfreq_Gyr_z Max_diff_Acc_y 
40 Entropy_Acc_x Max_diff_Gyr_x Interq_Gyr_y Max_Gyr_y Widest_Peak_Acc_x Highest_peak_Pitch 
41 Var_Acc_y Max_Azimuth Interq_Gyr_z Max_Gyr_z Var_Pitch Entropy_Gyr_y 
42 Rms_Azimuth Max_diff_Acc_z Cf_Acc_x Rms_Roll Dfreq_Pitch Kur_Acc_y 
43 Entropy_Acc_z AV_Ang Cf_Roll Rms_Gyr_x Max_diff_Gyr_y Interq_Acc_x 
44 Dfreq_Gyr_y Var_Acc_y SMA_Acc Interq_Acc_x Mean_Acc_y Skew_Gyr_z 
45 Entropy_Azimuth Interq_Gyr_y SMA_Angle Interq_Acc_z Max_Acc_y Kur_Gyr_y 
46 Max_Acc_y Max_diff_Gyr_y SMA_Gyr Interq_Azimuth Skew_Roll Max_Acc_z 
47 Energy_Azimuth Max_Acc_z Entropy_Acc_y Interq_Roll Rms_Acc_y Interq_Acc_z 
48 Min_Azimuth DSAM_Angle Entropy_Gyr_x Interq_Gyr_x Var_Acc_x Entropy_Acc_y 
49 Highest_peak_Gyr_y Highest_peak_Pitch Entropy_Gyr_y Interq_Gyr_y DSVM_Gyr DSVM_Gyr 
50 Max_diff_Gyr_y mag_Ang Entropy_Gyr_z Interq_Gyr_z Kur_Gyr_z MV_Gyr 
51 Max_Gyr_z Mean_Azimuth Entropy_TimeD_Acc Cf_Acc_y Max_Pitch Interq_Gyr_x 
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52 Highest_peak_Pitch Dfreq_Azimuth Energy_Acc_x Cf_Pitch Rms_Acc_x Entropy_Roll 
53 Var_Pitch Max_Gyr_z Energy_Acc_y Cf_Roll Interq_Azimuth Min_Acc_y 
54 Highest_peak_Acc_x Min_Acc_x Energy_Pitch Cf_Gyr_x Skew_Acc_x Entropy_Azimuth 
55 Max_diff_Gyr_x SMA_Acc Energy_Roll Cf_Gyr_y Interq_Roll Skew_Gyr_y 
56 Max_diff_Acc_z Rms_Azimuth Energy_Gyr_z SMA_Acc Entropy_Pitch MV_Acc 
57 Interq_Gyr_y SVM_Acc SVM_Gyr Entropy_Acc_x Rms_Gyr_z Dfreq_Acc_x 
58 Std_Azimuth Highest_peak_Acc_x Max_diff_Acc_x Entropy_Acc_y Cf_Acc_z Kur_Roll 
59 Interq_Azimuth Dfreq_Gyr_y Max_diff_Pitch Entropy_Roll Min_Acc_x Entropy_Acc_x 
60 Interq_Gyr_z Entropy_Azimuth Max_diff_Gyr_z Entropy_Gyr_z Var_Roll Widest_Peak_Acc_z 
61 Std_Acc_x Highest_peak_Gyr_y AV_Ang Entropy_TimeD_Gyr Widest_Peak_Pitch Entropy_Acc_z 
62 Rms_Acc_z Min_Acc_y mag_Gyr Energy_Acc_z Cf_Azimuth Dfreq_Gyr_y 
63 AV_Ang Var_Gyr_z Dfreq_Acc_z Energy_Azimuth nPeaks_Gyr_z Rms_Acc_x 
64 SMA_Acc Cf_Acc_z Dfreq_Azimuth Energy_Roll Var_Acc_z DSAM_Angle 
65 SVM_Acc Energy_Azimuth Dfreq_Pitch Energy_Gyr_y MV_Acc Kur_Gyr_x 
66 DSAM_Angle Std_Gyr_y Dfreq_Roll Energy_Gyr_z nPeaks_Azimuth Var_Roll 
67 Max_Acc_x Energy_Gyr_z Dfreq_Gyr_y SVM_Acc Skew_Acc_z Dfreq_Gyr_x 
68 Var_Gyr_z Entropy_TimeD_Acc Dfreq_Gyr_z SVM_Angle DSVM_Acc Rms_Gyr_y 
69 Min_Acc_x Rms_Gyr_y Highest_peak_Acc_x SVM_Gyr AV_Ang Rms_Acc_y 
70 Highest_peak_Acc_y Rms_Acc_y Widest_Peak_Acc_y DSVM_Acc Entropy_Roll Cf_Acc_y 
71 Min_Acc_y Rms_Acc_z Highest_peak_Acc_y Max_diff_Acc_y Min_Acc_z Avr_peak_time_Acc_z 
72 Rms_Acc_y Max_Acc_x Avr_peak_time_Acc_y Max_diff_Acc_z Skew_Gyr_z Max_diff_Gyr_y 
73 Entropy_TimeD_Acc Cf_Acc_y nPeaks_Acc_z Max_diff_Pitch Kur_Roll Rms_Gyr_z 
74 Rms_Gyr_y Std_Acc_z Widest_Peak_Acc_z Max_diff_Roll Interq_Acc_x AV_Ang 
75 Energy_Gyr_z Interq_Gyr_z Highest_peak_Acc_z Max_diff_Gyr_y Max_diff_Roll Vedb_Acc 
76 Highest_peak_Azimuth Interq_Pitch Avr_peak_time_Acc_z MV_Gyr Interq_Gyr_z Dfreq_Acc_z 
77 Std_Gyr_y Min_Gyr_y Avr_peak_time_Azimuth mag_Acc Highest_peak_Acc_z Entropy_Gyr_z 
78 Min_Gyr_y Min_Azimuth Widest_Peak_Pitch mag_Gyr Mean_Acc_x Max_diff_Roll 
79 Std_Acc_z Highest_peak_Acc_y Highest_peak_Pitch Vedb_Gyr MV_Gyr Var_Acc_z 
80 Max_Acc_z Interq_Azimuth Avr_peak_time_Pitch Dfreq_Acc_x Highest_peak_Pitch Interq_Roll 
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81 Interq_Acc_x Interq_Acc_x nPeaks_Roll Dfreq_Acc_y SVM_Acc Rms_Gyr_x 
82 Cf_Gyr_y Max_Gyr_x Widest_Peak_Roll Dfreq_Acc_z Max_Acc_x Skew_Pitch 
83 DSVM_Acc Max_diff_Acc_x Avr_peak_time_Gyr_x Dfreq_Pitch Widest_Peak_Roll Cf_Acc_z 
84 Skew_Roll Skew_Roll nPeaks_Gyr_y Dfreq_Roll Entropy_TimeD_Gyr SMA_Gyr 
85 Cf_Acc_x Min_Gyr_x Widest_Peak_Gyr_y Dfreq_Gyr_y Mean_Gyr_y Var_Gyr_y 
86 Max_Gyr_x DSVM_Acc Widest_Peak_Gyr_z Dfreq_Gyr_z Vedb_Acc Avr_peak_time_Azimuth 
87 Interq_Pitch Std_Acc_x Avr_peak_time_Gyr_z nPeaks_Acc_x Avr_peak_time_Acc_y Skew_Azimuth 
88 Var_Azimuth Cf_Gyr_y  Widest_Peak_Acc_x Highest_peak_Azimuth Cf_Gyr_z 
89 Max_diff_Acc_x Max_diff_Azimuth  Highest_peak_Acc_x Var_Gyr_y Rms_Azimuth 
90 Skew_Acc_x Rms_Acc_x  Avr_peak_time_Acc_x Cf_Gyr_z Skew_Acc_x 
91 Rms_Acc_x Interq_Acc_z  nPeaks_Acc_y Max_Acc_z Interq_Acc_y 
92 Min_Acc_z Std_Azimuth  Widest_Peak_Acc_y Avr_peak_time_Gyr_z Interq_Gyr_z 
93 Max_diff_Azimuth Skew_Acc_x  Highest_peak_Acc_y Min_Gyr_z Mean_Gyr_z 
94 Highest_peak_Gyr_z Skew_Acc_y  nPeaks_Acc_z Interq_Acc_z SMA_Acc 
95 Var_Acc_x Highest_peak_Acc_z  Highest_peak_Acc_z Skew_Azimuth Avr_peak_time_Acc_x 
96 Vedb_Acc Widest_Peak_Acc_z  Avr_peak_time_Acc_z Kur_Azimuth Kur_Pitch 
97 Dfreq_Gyr_z Dfreq_Acc_x  Widest_Peak_Azimuth Rms_Acc_z Cf_Gyr_y 
98 Max_Gyr_y Max_Gyr_y  Avr_peak_time_Azimuth Mean_Azimuth nPeaks_Acc_y 
99 Cf_Acc_z Cf_Gyr_x  nPeaks_Pitch Interq_Pitch Dfreq_Acc_y 
100 Vedb_Gyr Vedb_Gyr  Widest_Peak_Pitch Avr_peak_time_Roll Skew_Gyr_x 
101 Skew_Acc_y Highest_peak_Gyr_z  Avr_peak_time_Pitch Kur_Acc_z nPeaks_Pitch 
102 Energy_Acc_y Dfreq_Gyr_z  Widest_Peak_Roll Entropy_Acc_x Kur_Azimuth 
103 Highest_peak_Acc_z Vedb_Acc  Avr_peak_time_Roll SMA_Angle Max_Gyr_z 
104 Widest_Peak_Acc_z Skew_Acc_z  nPeaks_Gyr_x Kur_Acc_x Interq_Azimuth 
105 Cf_Gyr_z Kur_Gyr_x  Avr_peak_time_Gyr_x nPeaks_Acc_z Entropy_TimeD_Ang 
106 Std_Gyr_x Std_Gyr_x  nPeaks_Gyr_y Cf_Acc_x Cf_Pitch 
107 Dfreq_Acc_x Highest_peak_Azimuth  Highest_peak_Gyr_y Kur_Acc_y Highest_peak_Acc_y 
108 Cf_Acc_y Interq_Acc_y   SVM_Angle Entropy_Pitch 
109 Energy_Acc_z Rms_Gyr_x   Vedb_Angle nPeaks_Roll 
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110 Rms_Gyr_x SVM_Gyr   Highest_peak_Gyr_x Highest_peak_Azimuth 
111 Std_Roll SMA_Gyr   Max_Gyr_y Highest_peak_Gyr_x 
112 Min_Gyr_x Cf_Acc_x   Kur_Gyr_x Entropy_TimeD_Acc 
113 Var_Acc_z Energy_Gyr_y   nPeaks_Acc_x Max_diff_Azimuth 
114 Dfreq_Acc_z Var_Gyr_y   Highest_peak_Gyr_z DSVM_Acc 
115 Interq_Acc_z Energy_Acc_y   Skew_Gyr_x Widest_Peak_Acc_x 
116 Widest_Peak_Acc_y Min_Acc_z   nPeaks_Acc_y Interq_Pitch 
117 SVM_Gyr Dfreq_Acc_z   Entropy_TimeD_Acc Widest_Peak_Pitch 
118 SMA_Gyr Var_Acc_z   mag_Ang Highest_peak_Gyr_z 
119 Dfreq_Acc_y Dfreq_Gyr_x   Max_Azimuth Vedb_Gyr 
120 Skew_Acc_z Var_Azimuth   Rms_Azimuth Max_Gyr_y 
121 Energy_Gyr_y Entropy_TimeD_Gyr   Max_diff_Azimuth Avr_peak_time_Pitch 
122 Interq_Roll Dfreq_Acc_y   Dfreq_Acc_x SVM_Acc 
123 mag_Acc Kur_Acc_y   Avr_peak_time_Pitch Widest_Peak_Gyr_z 
124 Cf_Gyr_x Var_Acc_x   Std_Acc_x SMA_Angle 
125 Var_Gyr_y Highest_peak_Gyr_x   Std_Acc_y Highest_peak_Gyr_y 
126 Kur_Gyr_y Cf_Gyr_z   Std_Acc_z Energy_Gyr_y 
127 Entropy_TimeD_Gyr Energy_Acc_z   Std_Azimuth Avr_peak_time_Gyr_x 
128 Kur_Acc_x Interq_Gyr_x   Std_Pitch Max_Acc_x 
129 Interq_Acc_y Std_Roll   Std_Roll Var_Azimuth 
130 Skew_Gyr_y Skew_Pitch   Std_Gyr_x Avr_peak_time_Roll 
131 Dfreq_Gyr_x Kur_Acc_z   Std_Gyr_y Widest_Peak_Gyr_x 
132 Skew_Pitch Widest_Peak_Acc_y   Std_Gyr_z Mean_Azimuth 
133 Max_diff_Roll mag_Acc   Energy_Acc_x Vedb_Angle 
134 Cf_Azimuth Max_diff_Roll   Energy_Acc_y Highest_peak_Acc_z 
135 Interq_Gyr_x Skew_Gyr_z   Energy_Acc_z Std_Gyr_z 
136 Mean_Acc_z Mean_Acc_z   Energy_Azimuth Widest_Peak_Acc_y 
137 Highest_peak_Gyr_x Energy_Acc_x   Energy_Pitch Mean_Gyr_x 
138 Kur_Acc_y Kur_Acc_x   Energy_Roll Avr_peak_time_Acc_y 
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139 Skew_Gyr_z Kur_Gyr_z   Energy_Gyr_x mag_Acc 
140 Widest_Peak_Azimuth Skew_Gyr_y   Energy_Gyr_y Highest_peak_Roll 
141 Energy_Acc_x Cf_Azimuth   Energy_Gyr_z Rms_Acc_z 
142 nPeaks_Acc_y Kur_Gyr_y   Dfreq_Azimuth SVM_Gyr 
143 Kur_Gyr_x Mean_Acc_x   Widest_Peak_Azimuth mag_Gyr 
144 Mean_Acc_x Energy_Gyr_x   Interq_Acc_y Entropy_TimeD_Gyr 
145 nPeaks_Azimuth Var_Gyr_x   Cf_Gyr_y Cf_Acc_x 
146 Var_Roll nPeaks_Gyr_y   Mean_Gyr_x Min_Acc_x 
147 nPeaks_Acc_z nPeaks_Acc_y   Highest_peak_Acc_x Min_Azimuth 
148 Var_Gyr_x Skew_Gyr_x   Widest_Peak_Gyr_z Widest_Peak_Gyr_y 
149 Highest_peak_Roll Mean_Acc_y   mag_Acc Std_Acc_z 
150 Kur_Acc_z Widest_Peak_Acc_x   Widest_Peak_Acc_z Energy_Acc_y 
151 Energy_Gyr_x Mean_Gyr_z   DSAM_Angle Mean_Gyr_y 
152 Mean_Gyr_z Interq_Roll   Entropy_Acc_z nPeaks_Acc_x 
153 Avr_peak_time_Acc_y Var_Roll   Avr_peak_time_Azimuth Kur_Acc_x 
154 Mean_Acc_y Avr_peak_time_Acc_y   Dfreq_Gyr_y Highest_peak_Acc_x 
155 mag_Gyr Highest_peak_Roll   Mean_Gyr_z nPeaks_Gyr_x 
156 Widest_Peak_Gyr_z Kur_Roll   SMA_Acc Std_Gyr_y 
157 nPeaks_Gyr_y nPeaks_Acc_x   Widest_Peak_Acc_y Std_Pitch 
158 Widest_Peak_Acc_x nPeaks_Roll   mag_Gyr mag_Ang 
159 Avr_peak_time_Acc_z mag_Gyr   Kur_Pitch Max_Azimuth 
160 Kur_Gyr_z Avr_peak_time_Acc_x   Min_Azimuth Widest_Peak_Roll 
161 Mean_Gyr_y Widest_Peak_Gyr_y   Avr_peak_time_Acc_z Cf_Azimuth 
162 Avr_peak_time_Acc_x Skew_Azimuth   Widest_Peak_Gyr_y Widest_Peak_Azimuth 
163 Kur_Roll Avr_peak_time_Gyr_y   Interq_Gyr_x Energy_Pitch 
164 nPeaks_Gyr_x Kur_Pitch   SVM_Gyr nPeaks_Gyr_z 
165 Skew_Azimuth Avr_peak_time_Acc_z   Skew_Pitch Energy_Gyr_x 
166 nPeaks_Acc_x nPeaks_Azimuth   Entropy_Azimuth Energy_Acc_x 
167 Kur_Azimuth Avr_peak_time_Azimuth   nPeaks_Pitch Avr_peak_time_Gyr_y 
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168 Kur_Pitch Widest_Peak_Gyr_z   Highest_peak_Roll Energy_Roll 
169 Avr_peak_time_Gyr_x Avr_peak_time_Pitch   nPeaks_Gyr_y Skew_Roll 
170 Skew_Gyr_x Mean_Gyr_y   Avr_peak_time_Gyr_x nPeaks_Azimuth 
171 Widest_Peak_Gyr_x Avr_peak_time_Roll   Avr_peak_time_Gyr_y Energy_Azimuth 
172 Avr_peak_time_Gyr_y nPeaks_Acc_z   nPeaks_Gyr_x nPeaks_Acc_z 
173 Avr_peak_time_Gyr_z Widest_Peak_Azimuth   SMA_Gyr Energy_Acc_z 
174 nPeaks_Roll Avr_peak_time_Gyr_x   Entropy_TimeD_Ang Dfreq_Azimuth 
175 nPeaks_Gyr_z Avr_peak_time_Gyr_z   Vedb_Gyr Std_Azimuth 
176 Widest_Peak_Gyr_y Kur_Azimuth   Widest_Peak_Gyr_x Std_Roll 
177 Avr_peak_time_Azimuth nPeaks_Gyr_z   Highest_peak_Gyr_y Std_Gyr_x 
178 Widest_Peak_Roll Widest_Peak_Gyr_x   nPeaks_Roll nPeaks_Gyr_y 
179 Avr_peak_time_Pitch Widest_Peak_Roll   Rms_Gyr_y Avr_peak_time_Gyr_z 
180 Avr_peak_time_Roll nPeaks_Gyr_x   Var_Azimuth Std_Acc_y 
181 nPeaks_Pitch nPeaks_Pitch   Avr_peak_time_Acc_x SVM_Angle 
182 Widest_Peak_Pitch Widest_Peak_Pitch   Skew_Gyr_y Std_Acc_x 
183 Mean_Gyr_x Mean_Gyr_x   Cf_Acc_y Energy_Gyr_z 
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Appendix E. 2 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet1_all over 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Energy_Roll Energy_Roll Mean_Acc_y Mean_Acc_y Max_diff_Pitch Max_diff_Pitch 
2 Rms_Roll Rms_Roll Mean_Acc_z Mean_Acc_z Max_Roll Mean_Roll 
3 Dfreq_Roll Max_Roll Mean_Pitch Mean_Azimuth Mean_Roll Max_Roll 
4 Max_Roll Dfreq_Roll Mean_Roll Mean_Pitch Cf_Pitch Max_diff_Gyr_z 
5 Mean_Roll Mean_Roll Mean_Gyr_x Mean_Roll Cf_Roll Cf_Roll 
6 Min_Roll Min_Roll Mean_Gyr_y Mean_Gyr_x Rms_Roll Rms_Pitch 
7 Cf_Roll Cf_Roll Mean_Gyr_z Mean_Gyr_y Mean_Pitch Min_Gyr_x 
8 Entropy_Pitch Entropy_Pitch Var_Acc_x Var_Pitch Dfreq_Gyr_z Min_Gyr_z 
9 Max_Pitch Max_Pitch Var_Acc_z Var_Roll Kur_Gyr_x Rms_Roll 
10 Rms_Pitch Rms_Pitch Var_Azimuth Std_Acc_x Skew_Acc_y Mean_Pitch 
11 Max_diff_Pitch Max_diff_Pitch Var_Roll Std_Acc_y Var_Gyr_z Var_Pitch 
12 Energy_Pitch Energy_Pitch Var_Gyr_z Std_Azimuth Kur_Gyr_z Min_Acc_y 
13 Cf_Pitch Cf_Pitch Std_Azimuth Std_Roll Max_diff_Acc_y Max_Gyr_x 
14 Dfreq_Pitch Entropy_Roll Std_Pitch Std_Gyr_z Var_Pitch Max_diff_Acc_z 
15 Entropy_Roll Dfreq_Pitch Std_Gyr_x Kur_Acc_y Max_Acc_y Cf_Pitch 
16 MV_Gyr MV_Gyr Std_Gyr_y Kur_Azimuth Rms_Pitch Entropy_Roll 
17 Std_Pitch Std_Pitch Kur_Acc_y Kur_Pitch Max_Gyr_x Min_Roll 
18 Mean_Pitch Min_Pitch Kur_Roll Kur_Roll Var_Gyr_x Dfreq_Roll 
19 Entropy_Gyr_y Mean_Pitch Kur_Gyr_x Kur_Gyr_z Max_diff_Acc_z Dfreq_Acc_y 
20 Min_Pitch Entropy_Gyr_y Skew_Acc_z Skew_Acc_y Kur_Pitch Min_Acc_z 
21 MV_Acc MV_Acc Skew_Pitch Skew_Acc_z Min_Acc_y Min_Pitch 
22 Entropy_TimeD_Ang Max_diff_Acc_y Skew_Roll Skew_Pitch Mean_Acc_z Highest_peak_Pitch 
23 SVM_Angle Entropy_Gyr_x Skew_Gyr_x Skew_Gyr_x Dfreq_Pitch Var_Gyr_x 
24 SMA_Angle SVM_Angle Skew_Gyr_z Min_Acc_y Max_diff_Gyr_x Interq_Acc_x 
25 Entropy_Gyr_x Entropy_TimeD_Ang Min_Acc_z Min_Pitch Min_Acc_z Skew_Pitch 
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26 Max_diff_Acc_y SMA_Angle Min_Pitch Min_Gyr_x Max_diff_Gyr_z Mean_Gyr_x 
27 mag_Ang DSVM_Gyr Min_Roll Max_Acc_z Min_Roll Interq_Roll 
28 DSVM_Gyr Max_diff_Gyr_z Min_Gyr_z Max_Azimuth Var_Acc_z Var_Gyr_z 
29 Max_diff_Gyr_z Entropy_Gyr_z Max_Acc_z Max_Pitch Dfreq_Roll Kur_Gyr_x 
30 Entropy_Acc_y mag_Ang Max_Pitch Max_Roll mag_Ang Skew_Acc_y 
31 Vedb_Angle Entropy_Acc_z Max_Gyr_z Max_Gyr_x Interq_Acc_x Skew_Gyr_x 
32 Entropy_Gyr_z Min_Gyr_z Rms_Acc_y Max_Gyr_y Max_Gyr_z Entropy_Gyr_x 
33 Max_Acc_y Entropy_Acc_y Rms_Roll Max_Gyr_z Entropy_Roll Dfreq_Gyr_z 
34 Entropy_Acc_z Max_diff_Gyr_x Rms_Gyr_x Rms_Acc_x Min_Gyr_x Interq_Gyr_y 
35 Min_Gyr_z Vedb_Angle Rms_Gyr_z Rms_Acc_z Vedb_Acc Max_Gyr_z 
36 Std_Gyr_z Interq_Azimuth Interq_Acc_y Rms_Pitch Skew_Acc_x Min_Azimuth 
37 Rms_Gyr_z Std_Acc_y Interq_Acc_z Rms_Roll Max_Pitch Dfreq_Acc_x 
38 Max_diff_Gyr_x Max_diff_Acc_z Interq_Azimuth Rms_Gyr_x Var_Roll Entropy_Pitch 
39 Dfreq_Gyr_y Max_Acc_y Interq_Roll Interq_Acc_y Min_Azimuth Var_Acc_y 
40 Mean_Azimuth Highest_peak_Pitch Interq_Gyr_y Interq_Acc_z Min_Pitch Mean_Acc_z 
41 Dfreq_Azimuth Dfreq_Gyr_y Interq_Gyr_z Interq_Azimuth Max_diff_Azimuth Interq_Gyr_z 
42 Highest_peak_Gyr_y Max_Acc_x Cf_Acc_y Interq_Pitch Entropy_Gyr_x Dfreq_Gyr_x 
43 Var_Pitch Var_Pitch Cf_Acc_z Interq_Roll Kur_Acc_x Highest_peak_Azimuth 
44 Std_Acc_y Std_Gyr_z Cf_Gyr_x Interq_Gyr_x Entropy_Gyr_y Var_Azimuth 
45 Interq_Azimuth Highest_peak_Gyr_y Cf_Gyr_y Interq_Gyr_z Entropy_Acc_z Highest_peak_Roll 
46 Entropy_Acc_x Rms_Gyr_z SMA_Angle Cf_Acc_x Mean_Acc_x MV_Gyr 
47 Max_diff_Acc_z Highest_peak_Acc_x Entropy_Acc_z Cf_Acc_y Entropy_Pitch Energy_Acc_z 
48 Highest_peak_Pitch Interq_Gyr_y Entropy_Gyr_x Cf_Roll DSVM_Gyr Max_Acc_z 
49 Interq_Gyr_y Entropy_Acc_x Entropy_Gyr_y Cf_Gyr_x MV_Gyr Dfreq_Pitch 
50 Rms_Acc_z Std_Acc_x Entropy_TimeD_Acc Cf_Gyr_y Highest_peak_Acc_z Rms_Acc_y 
51 AV_Ang Dfreq_Azimuth Entropy_TimeD_Gyr Entropy_Acc_x Var_Acc_y Max_Acc_x 
52 Max_Acc_x Mean_Azimuth Energy_Azimuth Entropy_Azimuth Rms_Gyr_z Kur_Acc_z 
53 Std_Acc_z Var_Acc_y Energy_Pitch Entropy_Pitch Cf_Acc_z Var_Acc_z 
54 SVM_Acc Min_Gyr_x Energy_Roll Entropy_Gyr_x Highest_peak_Gyr_y Std_Roll 
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55 Min_Azimuth Cf_Acc_x Energy_Gyr_x Entropy_Gyr_y Rms_Acc_x Cf_Acc_x 
56 SMA_Acc Skew_Acc_x Energy_Gyr_y Energy_Acc_x Skew_Gyr_z Entropy_Gyr_z 
57 Rms_Acc_y Max_Gyr_z Energy_Gyr_z Energy_Acc_z Min_Acc_x Std_Acc_z 
58 Rms_Azimuth Std_Acc_z SVM_Angle Energy_Azimuth Kur_Acc_z Energy_Roll 
59 Highest_peak_Acc_x Rms_Acc_z DSVM_Acc Energy_Pitch Mean_Acc_y Highest_peak_Gyr_y 
60 Energy_Azimuth Rms_Acc_y Max_diff_Acc_x Energy_Gyr_y Max_diff_Gyr_y Entropy_Acc_y 
61 Interq_Acc_x Max_Gyr_x Max_diff_Acc_y SVM_Acc Highest_peak_Gyr_x Rms_Gyr_x 
62 Var_Acc_y Max_Azimuth Max_diff_Pitch DSVM_Acc Cf_Gyr_x Var_Acc_x 
63 Interq_Gyr_z Min_Acc_y Max_diff_Roll Max_diff_Acc_y Interq_Acc_z Energy_Acc_y 
64 Min_Acc_x Min_Acc_x Max_diff_Gyr_y Max_diff_Gyr_x Kur_Roll Energy_Gyr_x 
65 Min_Acc_y Interq_Gyr_z Max_diff_Gyr_z Max_diff_Gyr_z nPeaks_Azimuth Dfreq_Azimuth 
66 Rms_Gyr_y Skew_Acc_y AV_Ang AV_Ang Widest_Peak_Roll Cf_Gyr_x 
67 DSAM_Angle Highest_peak_Acc_y Vedb_Acc MV_Gyr nPeaks_Acc_z Max_Acc_y 
68 Entropy_TimeD_Acc AV_Ang Vedb_Angle mag_Acc MV_Acc Highest_peak_Acc_y 
69 Max_Gyr_z Skew_Pitch Vedb_Gyr mag_Ang Dfreq_Acc_x Std_Acc_y 
70 Kur_Gyr_x Interq_Acc_x Dfreq_Acc_y mag_Gyr Avr_peak_time_Acc_x Mean_Acc_x 
71 Min_Gyr_y Rms_Azimuth Dfreq_Azimuth Vedb_Angle Vedb_Angle DSVM_Gyr 
72 Std_Gyr_y Max_diff_Gyr_y Dfreq_Pitch Vedb_Gyr Mean_Gyr_x Rms_Acc_z 
73 Rms_Acc_x Highest_peak_Gyr_z Dfreq_Gyr_z Dfreq_Acc_z Max_Acc_x Std_Azimuth 
74 Max_Azimuth Std_Gyr_y nPeaks_Acc_x Dfreq_Gyr_x Cf_Acc_y Max_Pitch 
75 Highest_peak_Gyr_z Max_Acc_z nPeaks_Acc_y Widest_Peak_Acc_x Max_Gyr_y Max_diff_Acc_x 
76 Std_Acc_x Rms_Gyr_y Highest_peak_Acc_y Highest_peak_Acc_x Entropy_Gyr_z Mean_Acc_y 
77 Highest_peak_Acc_y Min_Gyr_y nPeaks_Acc_z Avr_peak_time_Acc_x Rms_Acc_y Avr_peak_time_Pitch 
78 Skew_Acc_z Cf_Acc_z Highest_peak_Acc_z Highest_peak_Acc_y Rms_Acc_z Rms_Gyr_z 
79 Cf_Acc_x Rms_Acc_x Avr_peak_time_Acc_z Avr_peak_time_Acc_y Rms_Gyr_x Dfreq_Gyr_y 
80 Max_diff_Gyr_y Energy_Azimuth nPeaks_Azimuth Widest_Peak_Acc_z Interq_Gyr_y Std_Gyr_z 
81 Entropy_Azimuth Std_Gyr_x Widest_Peak_Azimuth Highest_peak_Acc_z Interq_Gyr_z Max_diff_Acc_y 
82 Max_Gyr_x DSAM_Angle Highest_peak_Azimuth Widest_Peak_Azimuth Skew_Pitch Interq_Gyr_x 
83 Skew_Acc_x Entropy_Azimuth Avr_peak_time_Azimuth Widest_Peak_Pitch Highest_peak_Pitch Std_Gyr_x 



 Ranked Features Tables for Sheep DataSets 

 

228 
 

84 Cf_Gyr_y Rms_Gyr_x nPeaks_Pitch Highest_peak_Pitch nPeaks_Gyr_x Energy_Azimuth 
85 Cf_Acc_z Std_Azimuth Widest_Peak_Pitch Avr_peak_time_Pitch Dfreq_Acc_z Dfreq_Acc_z 
86 Min_Gyr_x SMA_Acc Avr_peak_time_Pitch Widest_Peak_Roll Min_Gyr_z Avr_peak_time_Acc_y 
87 Skew_Acc_y Cf_Gyr_y nPeaks_Roll Highest_peak_Roll DSAM_Angle Min_Gyr_y 
88 Max_Acc_z Max_diff_Acc_x Avr_peak_time_Roll Avr_peak_time_Roll SMA_Acc Std_Pitch 
89 Min_Acc_z SVM_Acc Widest_Peak_Gyr_x nPeaks_Gyr_x Cf_Gyr_y DSAM_Angle 
90 Dfreq_Acc_y Min_Azimuth Avr_peak_time_Gyr_x Widest_Peak_Gyr_x Dfreq_Acc_y Widest_Peak_Gyr_x 
91 Cf_Gyr_x Interq_Acc_z Avr_peak_time_Gyr_y nPeaks_Gyr_y Entropy_TimeD_Gyr Mean_Gyr_y 
92 Vedb_Gyr Skew_Roll nPeaks_Gyr_z Widest_Peak_Gyr_z Max_Acc_z DSVM_Acc 
93 Std_Gyr_x Vedb_Gyr Widest_Peak_Gyr_z Highest_peak_Gyr_z Highest_peak_Acc_y Energy_Acc_x 
94 Rms_Gyr_x Skew_Acc_z Avr_peak_time_Gyr_z Avr_peak_time_Gyr_z Widest_Peak_Acc_x Std_Acc_x 
95 Skew_Pitch Highest_peak_Acc_z   Kur_Acc_y Energy_Gyr_y 
96 nPeaks_Azimuth Cf_Gyr_x   Skew_Roll Rms_Acc_x 
97 Skew_Roll Dfreq_Gyr_z   Dfreq_Gyr_y MV_Acc 
98 Std_Azimuth Entropy_TimeD_Acc   Interq_Acc_y SVM_Acc 
99 Energy_Gyr_z Dfreq_Gyr_x   DSVM_Acc Kur_Gyr_y 
100 Dfreq_Gyr_z Interq_Pitch   Skew_Gyr_x Skew_Acc_x 
101 Energy_Acc_y Interq_Gyr_x   Interq_Pitch Max_diff_Roll 
102 Var_Gyr_z Cf_Gyr_z   Var_Acc_x Max_diff_Gyr_x 
103 Max_diff_Acc_x Min_Acc_z   Vedb_Gyr Interq_Acc_z 
104 Highest_peak_Acc_z Dfreq_Acc_z   SVM_Acc Highest_peak_Gyr_z 
105 Cf_Acc_y Var_Acc_x   SVM_Angle Min_Acc_x 
106 Interq_Acc_y SVM_Gyr   Kur_Azimuth Cf_Acc_y 
107 Vedb_Acc SMA_Gyr   Entropy_TimeD_Ang Max_diff_Gyr_y 
108 Interq_Acc_z Energy_Acc_y   Rms_Azimuth Skew_Gyr_y 
109 Dfreq_Gyr_x Max_Gyr_y   Highest_peak_Acc_x Rms_Gyr_y 
110 Dfreq_Acc_x Cf_Acc_y   Avr_peak_time_Pitch Avr_peak_time_Acc_z 
111 Kur_Acc_x Highest_peak_Gyr_x   Avr_peak_time_Acc_z Energy_Pitch 
112 Dfreq_Acc_z Kur_Pitch   SMA_Gyr SVM_Angle 
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113 Highest_peak_Gyr_x Dfreq_Acc_y   Skew_Acc_z Avr_peak_time_Gyr_x 
114 Interq_Pitch Highest_peak_Azimuth   Mean_Azimuth Skew_Acc_z 
115 Skew_Gyr_y Entropy_TimeD_Gyr   Widest_Peak_Gyr_x Rms_Azimuth 
116 Highest_peak_Azimuth Vedb_Acc   nPeaks_Acc_x Widest_Peak_Azimuth 
117 Max_Gyr_y Kur_Gyr_x   Entropy_TimeD_Acc SMA_Angle 
118 Mean_Gyr_z Kur_Gyr_y   Mean_Gyr_z mag_Gyr 
119 DSVM_Acc Var_Azimuth   Highest_peak_Gyr_z Std_Gyr_y 
120 SMA_Gyr Energy_Gyr_z   Var_Gyr_y Highest_peak_Acc_z 
121 Interq_Gyr_x Kur_Acc_x   Entropy_Azimuth Entropy_TimeD_Ang 
122 SVM_Gyr Var_Gyr_z   Max_Azimuth Energy_Gyr_z 
123 Var_Azimuth DSVM_Acc   Cf_Gyr_z SMA_Gyr 
124 Max_diff_Azimuth Std_Roll   Highest_peak_Azimuth AV_Ang 
125 Var_Acc_z Dfreq_Acc_x   Kur_Gyr_y Kur_Roll 
126 Cf_Gyr_z Skew_Gyr_z   Avr_peak_time_Gyr_y SVM_Gyr 
127 Kur_Acc_z Max_diff_Azimuth   Entropy_Acc_y Interq_Azimuth 
128 Entropy_TimeD_Gyr Var_Acc_z   Cf_Acc_x Cf_Acc_z 
129 Energy_Acc_z Mean_Acc_z   Avr_peak_time_Gyr_x Entropy_Gyr_y 
130 Var_Acc_x Interq_Acc_y   Highest_peak_Roll nPeaks_Pitch 
131 mag_Acc Mean_Gyr_z   Skew_Azimuth Cf_Gyr_z 
132 nPeaks_Gyr_x Energy_Acc_z   Avr_peak_time_Acc_y nPeaks_Acc_y 
133 Kur_Gyr_y Var_Gyr_y   SMA_Angle nPeaks_Gyr_x 
134 Energy_Gyr_y Energy_Gyr_y   Interq_Gyr_x Highest_peak_Acc_x 
135 Std_Roll Skew_Gyr_y   nPeaks_Gyr_z Max_diff_Azimuth 
136 Mean_Acc_z Max_diff_Roll   SVM_Gyr Entropy_TimeD_Gyr 
137 Var_Gyr_y Mean_Acc_y   Widest_Peak_Azimuth Var_Roll 
138 Energy_Acc_x Energy_Gyr_x   Var_Azimuth Mean_Azimuth 
139 Mean_Acc_y Cf_Azimuth   nPeaks_Gyr_y Vedb_Acc 
140 Kur_Gyr_z Kur_Acc_z   Widest_Peak_Pitch nPeaks_Roll 
141 nPeaks_Acc_z Interq_Roll   Max_diff_Acc_x Avr_peak_time_Gyr_z 



 Ranked Features Tables for Sheep DataSets 

 

230 
 

142 Kur_Pitch Var_Gyr_x   Widest_Peak_Gyr_z Entropy_TimeD_Acc 
143 Mean_Acc_x Energy_Acc_x   Avr_peak_time_Roll SMA_Acc 
144 Skew_Gyr_z Widest_Peak_Acc_y   Std_Acc_x Kur_Acc_x 
145 Widest_Peak_Azimuth Kur_Acc_y   Std_Acc_y Interq_Acc_y 
146 Avr_peak_time_Acc_z Kur_Gyr_z   Std_Acc_z Skew_Roll 
147 Widest_Peak_Acc_z Mean_Acc_x   Std_Azimuth Cf_Azimuth 
148 Cf_Azimuth nPeaks_Acc_z   Std_Pitch Cf_Gyr_y 
149 Energy_Gyr_x nPeaks_Gyr_y   Std_Roll Vedb_Gyr 
150 Widest_Peak_Gyr_x Mean_Gyr_y   Std_Gyr_x Mean_Gyr_z 
151 Var_Gyr_x Widest_Peak_Roll   Std_Gyr_y nPeaks_Acc_z 
152 Max_diff_Roll Skew_Gyr_x   Std_Gyr_z Kur_Pitch 
153 Widest_Peak_Acc_x mag_Gyr   Energy_Acc_x Kur_Acc_y 
154 Skew_Gyr_x Skew_Azimuth   Energy_Acc_y Var_Gyr_y 
155 Interq_Roll nPeaks_Azimuth   Energy_Acc_z Interq_Pitch 
156 Kur_Acc_y Widest_Peak_Acc_z   Energy_Azimuth Widest_Peak_Gyr_z 
157 Skew_Azimuth Var_Roll   Energy_Pitch Highest_peak_Gyr_x 
158 Highest_peak_Roll Widest_Peak_Gyr_x   Energy_Roll mag_Acc 
159 Var_Roll Avr_peak_time_Acc_z   Energy_Gyr_x Widest_Peak_Pitch 
160 Avr_peak_time_Gyr_x Kur_Roll   Energy_Gyr_y Entropy_Acc_z 
161 Kur_Roll Highest_peak_Roll   Energy_Gyr_z nPeaks_Azimuth 
162 Kur_Azimuth Widest_Peak_Gyr_z   Dfreq_Azimuth mag_Ang 
163 Avr_peak_time_Acc_y Kur_Azimuth   Dfreq_Gyr_x Skew_Gyr_z 
164 Widest_Peak_Acc_y Widest_Peak_Azimuth   Rms_Gyr_y Skew_Azimuth 
165 Mean_Gyr_y Avr_peak_time_Acc_x   Cf_Azimuth Entropy_Acc_x 
166 Avr_peak_time_Azimuth nPeaks_Roll   Min_Gyr_y Kur_Gyr_z 
167 Widest_Peak_Gyr_z Avr_peak_time_Gyr_y   Skew_Gyr_y nPeaks_Gyr_y 
168 Widest_Peak_Roll Avr_peak_time_Azimuth   Widest_Peak_Acc_z Widest_Peak_Acc_z 
169 nPeaks_Acc_y nPeaks_Acc_x   Max_diff_Roll Widest_Peak_Gyr_y 
170 nPeaks_Roll Avr_peak_time_Roll   Mean_Gyr_y Entropy_Azimuth 
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171 Widest_Peak_Gyr_y Widest_Peak_Acc_x   AV_Ang Avr_peak_time_Roll 
172 Avr_peak_time_Roll Mean_Gyr_x   Entropy_Acc_x Widest_Peak_Acc_x 
173 nPeaks_Gyr_y mag_Acc   Interq_Azimuth Avr_peak_time_Azimuth 
174 mag_Gyr Avr_peak_time_Acc_y   nPeaks_Acc_y Avr_peak_time_Acc_x 
175 Avr_peak_time_Acc_x nPeaks_Gyr_x   mag_Gyr Widest_Peak_Acc_y 
176 Avr_peak_time_Gyr_y Widest_Peak_Gyr_y   Widest_Peak_Acc_y Kur_Azimuth 
177 Widest_Peak_Pitch Widest_Peak_Pitch   mag_Acc Widest_Peak_Roll 
178 Mean_Gyr_x Avr_peak_time_Gyr_x   Avr_peak_time_Gyr_z Max_Azimuth 
179 nPeaks_Acc_x nPeaks_Acc_y   nPeaks_Pitch nPeaks_Acc_x 
180 nPeaks_Gyr_z nPeaks_Pitch   Interq_Roll Vedb_Angle 
181 Avr_peak_time_Gyr_z Avr_peak_time_Gyr_z   Widest_Peak_Gyr_y Max_Gyr_y 
182 nPeaks_Pitch Avr_peak_time_Pitch   Avr_peak_time_Azimuth nPeaks_Gyr_z 
183 Avr_peak_time_Pitch nPeaks_Gyr_z   nPeaks_Roll Avr_peak_time_Gyr_y 
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Appendix E. 3 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet1_all over 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Energy_Roll Energy_Roll Mean_Acc_x Mean_Acc_z Mean_Roll Mean_Roll 
2 Rms_Roll Rms_Roll Mean_Acc_y Mean_Azimuth Cf_Pitch Max_diff_Pitch 
3 Dfreq_Roll Max_Roll Mean_Gyr_x Mean_Pitch Var_Gyr_z Cf_Roll 
4 Mean_Roll Mean_Roll Mean_Gyr_y Mean_Roll Kur_Gyr_x Cf_Pitch 
5 Max_Roll Dfreq_Roll Var_Acc_x Var_Acc_z Max_Gyr_x Min_Acc_z 
6 Cf_Roll Min_Roll Var_Acc_y Var_Azimuth Max_Roll Highest_peak_Pitch 
7 Min_Roll Cf_Roll Var_Roll Var_Roll Max_diff_Gyr_z Max_diff_Gyr_z 
8 Entropy_Pitch Entropy_Pitch Var_Gyr_y Std_Acc_y Max_diff_Pitch Rms_Roll 
9 Max_Pitch Max_Pitch Var_Gyr_z Std_Azimuth Entropy_Pitch Dfreq_Roll 
10 Cf_Pitch Cf_Pitch Std_Acc_x Std_Roll Mean_Acc_x Var_Acc_z 
11 Max_diff_Pitch Max_diff_Pitch Std_Acc_y Std_Gyr_x Var_Pitch Interq_Acc_x 
12 Rms_Pitch Entropy_Roll Std_Roll Skew_Acc_x Var_Gyr_x Max_Roll 
13 Entropy_Roll Rms_Pitch Std_Gyr_z Skew_Acc_y Rms_Roll Entropy_Pitch 
14 Energy_Pitch Energy_Pitch Kur_Acc_x Skew_Acc_z Min_Gyr_x Max_Gyr_x 
15 Std_Pitch Std_Pitch Kur_Acc_y Skew_Pitch Max_Pitch Mean_Gyr_x 
16 MV_Gyr MV_Gyr Kur_Pitch Skew_Roll Mean_Gyr_x Var_Gyr_x 
17 Dfreq_Pitch Dfreq_Pitch Kur_Gyr_z Skew_Gyr_y Mean_Pitch Min_Gyr_x 
18 Mean_Pitch Mean_Pitch Skew_Acc_x Min_Acc_x Var_Acc_y Rms_Pitch 
19 Entropy_Gyr_y Min_Pitch Skew_Acc_y Min_Acc_z Dfreq_Roll Skew_Acc_y 
20 Min_Pitch Max_diff_Gyr_x Skew_Pitch Min_Pitch Min_Acc_z Var_Gyr_z 
21 Max_diff_Gyr_x Max_diff_Acc_y Skew_Gyr_x Min_Roll Highest_peak_Pitch Max_Pitch 
22 Max_diff_Acc_y Entropy_Gyr_y Skew_Gyr_y Min_Gyr_x Highest_peak_Gyr_z Max_diff_Gyr_y 
23 Max_diff_Gyr_z SVM_Angle Min_Acc_x Min_Gyr_y Cf_Roll Min_Roll 
24 Entropy_Gyr_x Entropy_TimeD_Ang Min_Acc_y Min_Gyr_z Kur_Gyr_y Var_Pitch 
25 Max_Acc_y SMA_Angle Min_Roll Max_Acc_x Kur_Pitch Mean_Pitch 
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26 MV_Acc Max_Acc_y Min_Gyr_x Max_Acc_y Min_Acc_y Entropy_Roll 
27 Highest_peak_Gyr_y MV_Acc Min_Gyr_y Max_Acc_z Var_Roll Min_Gyr_z 
28 Highest_peak_Pitch Max_diff_Gyr_z Max_Acc_y Max_Roll Var_Acc_x Max_diff_Acc_y 
29 Dfreq_Gyr_y Min_Gyr_x Max_Acc_z Max_Gyr_x Interq_Roll Interq_Gyr_y 
30 Min_Gyr_x Skew_Pitch Max_Azimuth Max_Gyr_z Cf_Gyr_x Kur_Acc_z 
31 Min_Gyr_z Highest_peak_Gyr_y Max_Gyr_x Rms_Acc_x Max_Acc_z Dfreq_Acc_y 
32 Rms_Acc_y Highest_peak_Pitch Rms_Acc_y Rms_Acc_z Max_Acc_x Min_Acc_y 
33 Std_Gyr_x Max_Acc_x Rms_Acc_z Rms_Azimuth Var_Acc_z SMA_Acc 
34 SVM_Angle Interq_Gyr_z Rms_Azimuth Rms_Roll Interq_Acc_z Rms_Acc_z 
35 Std_Gyr_z Rms_Acc_x Rms_Gyr_x Rms_Gyr_x Rms_Gyr_z Interq_Gyr_z 
36 Entropy_TimeD_Ang Std_Gyr_z Rms_Gyr_y Rms_Gyr_y Skew_Gyr_y Highest_peak_Gyr_y 
37 Rms_Acc_x Rms_Gyr_z Rms_Gyr_z Interq_Acc_y Max_diff_Gyr_y MV_Gyr 
38 SVM_Acc Vedb_Angle Interq_Acc_y Interq_Azimuth Entropy_Gyr_x Max_diff_Acc_z 
39 DSVM_Gyr Min_Gyr_z Interq_Azimuth Interq_Pitch Interq_Gyr_x Min_Pitch 
40 SMA_Angle Std_Gyr_x Interq_Roll Interq_Gyr_x Interq_Gyr_z Dfreq_Gyr_x 
41 Entropy_Gyr_z Std_Acc_y Interq_Gyr_y Interq_Gyr_z Dfreq_Acc_z Max_diff_Acc_x 
42 SMA_Acc Rms_Acc_z Interq_Gyr_z Cf_Acc_x Interq_Acc_x Kur_Acc_x 
43 Interq_Gyr_z Entropy_Gyr_x Cf_Acc_x Cf_Acc_y MV_Gyr DSAM_Angle 
44 Std_Acc_y mag_Ang Cf_Acc_z Cf_Acc_z Min_Roll Var_Roll 
45 Rms_Gyr_z Max_diff_Azimuth Cf_Pitch Cf_Pitch DSVM_Acc Rms_Gyr_z 
46 Rms_Acc_z Rms_Gyr_x Cf_Roll Cf_Roll Rms_Pitch Var_Azimuth 
47 AV_Ang Var_Pitch Cf_Gyr_y Cf_Gyr_y Dfreq_Acc_x Rms_Gyr_y 
48 Std_Acc_x Interq_Gyr_y Cf_Gyr_z SMA_Acc Skew_Acc_y Max_Gyr_z 
49 Rms_Gyr_x Entropy_Acc_y SMA_Angle SMA_Gyr Dfreq_Gyr_x Dfreq_Gyr_y 
50 Highest_peak_Acc_y SVM_Acc Entropy_Acc_x Entropy_Acc_y Max_diff_Gyr_x Max_diff_Gyr_x 
51 Entropy_TimeD_Acc Rms_Acc_y Entropy_Acc_y Entropy_Acc_z Var_Gyr_y AV_Ang 
52 Skew_Pitch SMA_Acc Entropy_Acc_z Entropy_Pitch Max_diff_Acc_z MV_Acc 
53 Entropy_Azimuth Dfreq_Azimuth Entropy_Gyr_y Entropy_Roll DSAM_Angle Kur_Acc_y 
54 Max_diff_Azimuth Mean_Azimuth Entropy_Gyr_z Entropy_Gyr_z Max_diff_Acc_y Dfreq_Acc_x 
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55 Entropy_Acc_y DSVM_Gyr Energy_Roll Energy_Azimuth Rms_Gyr_y Var_Acc_y 
56 Interq_Azimuth Max_diff_Acc_z Energy_Gyr_x Energy_Roll Rms_Acc_x Max_Acc_x 
57 Max_diff_Acc_z Max_Acc_z Energy_Gyr_z Energy_Gyr_y SMA_Gyr Dfreq_Acc_z 
58 Skew_Acc_y Cf_Acc_x SVM_Acc SVM_Acc Rms_Gyr_x Dfreq_Pitch 
59 Cf_Acc_x Max_Gyr_x SVM_Gyr Max_diff_Acc_z Max_diff_Azimuth Vedb_Acc 
60 Max_Acc_x DSAM_Angle DSVM_Acc Max_diff_Azimuth Min_Pitch Rms_Gyr_x 
61 Max_Gyr_x Highest_peak_Acc_y DSAM_Angle Max_diff_Pitch SMA_Acc Var_Acc_x 
62 Std_Azimuth Entropy_Acc_x DSVM_Gyr Max_diff_Gyr_y Max_diff_Acc_x Max_Acc_z 
63 Cf_Gyr_y Dfreq_Gyr_y Max_diff_Acc_x Max_diff_Gyr_z Dfreq_Pitch DSVM_Gyr 
64 Interq_Gyr_y Entropy_TimeD_Acc Max_diff_Acc_y MV_Acc Dfreq_Gyr_y Mean_Acc_y 
65 Cf_Gyr_x AV_Ang Max_diff_Azimuth MV_Gyr nPeaks_Gyr_z Highest_peak_Azimuth 
66 DSAM_Angle Skew_Acc_x Max_diff_Pitch Vedb_Gyr Min_Gyr_y Kur_Gyr_x 
67 Highest_peak_Gyr_x Std_Acc_x Max_diff_Roll Dfreq_Acc_y Min_Gyr_z Kur_Gyr_z 
68 Interq_Acc_y Entropy_Gyr_z Max_diff_Gyr_y Dfreq_Acc_z mag_Ang Entropy_Acc_z 
69 Var_Pitch Skew_Acc_y MV_Gyr Dfreq_Roll Avr_peak_time_Azimuth Rms_Azimuth 
70 Interq_Gyr_x Interq_Acc_x mag_Ang Dfreq_Gyr_x Avr_peak_time_Acc_x Max_Acc_y 
71 Entropy_Acc_x Dfreq_Acc_z Vedb_Angle Dfreq_Gyr_z Interq_Acc_y Mean_Acc_x 
72 Min_Azimuth Min_Gyr_y Vedb_Gyr Widest_Peak_Acc_x Max_Acc_y Vedb_Gyr 
73 Kur_Pitch Vedb_Gyr Dfreq_Acc_z Highest_peak_Acc_x SVM_Acc Interq_Azimuth 
74 Std_Acc_z Std_Gyr_y Dfreq_Azimuth Avr_peak_time_Acc_x Min_Acc_x Highest_peak_Gyr_z 
75 Std_Gyr_y Max_Azimuth Dfreq_Pitch nPeaks_Acc_y Entropy_Acc_y Min_Acc_x 
76 Min_Acc_x Rms_Azimuth Dfreq_Roll Widest_Peak_Acc_y Dfreq_Acc_y Interq_Roll 
77 Rms_Gyr_y Highest_peak_Gyr_z Dfreq_Gyr_y nPeaks_Acc_z Highest_peak_Acc_y SVM_Acc 
78 Vedb_Angle Max_Gyr_y Dfreq_Gyr_z Highest_peak_Acc_z Rms_Acc_y Entropy_Acc_y 
79 Entropy_Acc_z Entropy_Acc_z nPeaks_Acc_x nPeaks_Azimuth Entropy_TimeD_Gyr Var_Gyr_y 
80 Vedb_Acc Energy_Azimuth Highest_peak_Acc_x Widest_Peak_Azimuth mag_Gyr Interq_Pitch 
81 Interq_Acc_x Skew_Acc_z nPeaks_Acc_y Highest_peak_Azimuth Highest_peak_Gyr_x DSVM_Acc 
82 Dfreq_Acc_z Max_diff_Gyr_y Widest_Peak_Acc_y Avr_peak_time_Azimuth MV_Acc Skew_Gyr_y 
83 mag_Ang Cf_Gyr_y Avr_peak_time_Acc_y nPeaks_Pitch Highest_peak_Gyr_y Cf_Gyr_z 
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84 Highest_peak_Gyr_z Highest_peak_Acc_x Highest_peak_Acc_z Widest_Peak_Pitch Kur_Acc_x SMA_Angle 
85 Vedb_Gyr Kur_Pitch Avr_peak_time_Acc_z Highest_peak_Pitch Kur_Gyr_z Avr_peak_time_Gyr_x 
86 Var_Azimuth Rms_Gyr_y nPeaks_Azimuth Widest_Peak_Roll Mean_Acc_y Interq_Gyr_x 
87 Min_Acc_y Min_Azimuth nPeaks_Pitch Avr_peak_time_Roll Dfreq_Gyr_z Mean_Gyr_y 
88 Var_Acc_y Dfreq_Acc_x Avr_peak_time_Pitch nPeaks_Gyr_x Vedb_Gyr Skew_Pitch 
89 Skew_Acc_z Cf_Acc_y Highest_peak_Roll Highest_peak_Gyr_x Mean_Acc_z Max_diff_Azimuth 
90 Energy_Acc_y Skew_Roll Avr_peak_time_Roll Highest_peak_Gyr_y Interq_Gyr_y Entropy_Gyr_z 
91 Dfreq_Azimuth Std_Acc_z nPeaks_Gyr_x nPeaks_Gyr_z Highest_peak_Acc_z Dfreq_Gyr_z 
92 Mean_Azimuth Var_Acc_y Widest_Peak_Gyr_x Widest_Peak_Gyr_z AV_Ang Rms_Acc_y 
93 Max_Gyr_z Entropy_Azimuth Highest_peak_Gyr_x Highest_peak_Gyr_z DSVM_Gyr Highest_peak_Acc_y 
94 Highest_peak_Acc_x Min_Acc_z Avr_peak_time_Gyr_x  Skew_Gyr_z mag_Acc 
95 Dfreq_Acc_y Interq_Gyr_x nPeaks_Gyr_z  Vedb_Acc Interq_Acc_y 
96 Min_Gyr_y Interq_Azimuth Widest_Peak_Gyr_z  SVM_Gyr Mean_Acc_z 
97 Max_Azimuth Cf_Acc_z Avr_peak_time_Gyr_z  Entropy_Roll Mean_Gyr_z 
98 Cf_Acc_y Dfreq_Gyr_z   Mean_Gyr_z Entropy_Gyr_y 
99 Skew_Acc_x Cf_Gyr_x   Widest_Peak_Roll Highest_peak_Acc_z 
100 Max_Acc_z Min_Acc_x   Kur_Acc_z Rms_Acc_x 
101 DSVM_Acc Max_Gyr_z   Cf_Acc_y Entropy_TimeD_Acc 
102 Max_Gyr_y Energy_Acc_y   Interq_Azimuth Kur_Pitch 
103 Kur_Acc_x Dfreq_Acc_y   Highest_peak_Acc_x Highest_peak_Acc_x 
104 Min_Acc_z SVM_Gyr   Entropy_TimeD_Ang Cf_Gyr_y 
105 Var_Gyr_x SMA_Gyr   nPeaks_Acc_y nPeaks_Acc_z 
106 Highest_peak_Azimuth Interq_Acc_y   Entropy_Azimuth Min_Gyr_y 
107 Dfreq_Acc_x Dfreq_Gyr_x   Skew_Acc_x Interq_Acc_z 
108 Max_diff_Acc_x Mean_Acc_z   Highest_peak_Azimuth mag_Ang 
109 Energy_Gyr_x Entropy_TimeD_Gyr   Avr_peak_time_Roll Skew_Acc_x 
110 SVM_Gyr Vedb_Acc   Interq_Pitch Cf_Azimuth 
111 Rms_Azimuth Highest_peak_Gyr_x   Entropy_TimeD_Acc Skew_Acc_z 
112 SMA_Gyr Var_Gyr_x   Skew_Acc_z Skew_Gyr_x 
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113 Max_diff_Gyr_y Var_Gyr_z   Cf_Gyr_y Avr_peak_time_Pitch 
114 Skew_Roll Energy_Acc_x   Skew_Pitch Kur_Gyr_y 
115 Dfreq_Gyr_z Max_diff_Acc_x   Mean_Azimuth Entropy_Gyr_x 
116 Energy_Gyr_z Energy_Gyr_x   Rms_Acc_z Cf_Gyr_x 
117 Entropy_TimeD_Gyr Energy_Gyr_z   Kur_Acc_y nPeaks_Gyr_z 
118 Cf_Acc_z Skew_Gyr_y   Vedb_Angle Energy_Azimuth 
119 Dfreq_Gyr_x Std_Azimuth   mag_Acc Avr_peak_time_Gyr_z 
120 Mean_Acc_y Min_Acc_y   Mean_Gyr_y Avr_peak_time_Acc_z 
121 Energy_Azimuth Mean_Gyr_z   nPeaks_Acc_z Skew_Gyr_z 
122 Var_Gyr_z DSVM_Acc   Cf_Azimuth Energy_Acc_y 
123 Energy_Acc_z Mean_Acc_y   Widest_Peak_Acc_z Max_Azimuth 
124 Cf_Gyr_z Energy_Acc_z   Avr_peak_time_Gyr_y Cf_Acc_x 
125 Highest_peak_Acc_z Skew_Gyr_z   Highest_peak_Roll SVM_Gyr 
126 Mean_Acc_z Kur_Acc_x   Widest_Peak_Acc_y SMA_Gyr 
127 Var_Acc_x Kur_Gyr_y   Avr_peak_time_Acc_y Widest_Peak_Acc_x 
128 Energy_Acc_x Kur_Gyr_x   Avr_peak_time_Pitch nPeaks_Pitch 
129 Mean_Gyr_z Cf_Gyr_z   Max_Gyr_z Min_Azimuth 
130 Interq_Acc_z Highest_peak_Acc_z   Entropy_Gyr_y Energy_Roll 
131 Cf_Azimuth Std_Roll   Avr_peak_time_Gyr_z Widest_Peak_Azimuth 
132 Skew_Gyr_y Interq_Acc_z   nPeaks_Gyr_x Entropy_TimeD_Gyr 
133 Kur_Gyr_x Highest_peak_Azimuth   nPeaks_Gyr_y mag_Gyr 
134 Widest_Peak_Acc_x Var_Azimuth   Kur_Azimuth Skew_Roll 
135 Skew_Azimuth Var_Acc_x   nPeaks_Pitch Highest_peak_Roll 
136 nPeaks_Pitch Var_Gyr_y   Entropy_Gyr_z Widest_Peak_Gyr_z 
137 Widest_Peak_Acc_z Mean_Acc_x   Avr_peak_time_Acc_z Max_Gyr_y 
138 Var_Acc_z Interq_Pitch   Cf_Acc_z Entropy_Acc_x 
139 Energy_Gyr_y Energy_Gyr_y   Std_Acc_x Std_Gyr_z 
140 Std_Roll Interq_Roll   Std_Acc_y nPeaks_Gyr_y 
141 Var_Gyr_y Kur_Gyr_z   Std_Acc_z Widest_Peak_Gyr_y 
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142 Kur_Azimuth Kur_Acc_z   Std_Azimuth Widest_Peak_Acc_y 
143 Kur_Acc_y Cf_Azimuth   Std_Pitch Std_Gyr_x 
144 Skew_Gyr_z Skew_Gyr_x   Std_Roll Highest_peak_Gyr_x 
145 Mean_Acc_x Var_Acc_z   Std_Gyr_x Kur_Azimuth 
146 Kur_Gyr_y mag_Acc   Std_Gyr_y nPeaks_Acc_y 
147 Widest_Peak_Azimuth Widest_Peak_Acc_y   Std_Gyr_z Entropy_Azimuth 
148 Interq_Pitch Max_diff_Roll   Energy_Acc_x Energy_Acc_z 
149 Kur_Gyr_z Widest_Peak_Gyr_x   Energy_Acc_y Energy_Gyr_y 
150 Skew_Gyr_x Widest_Peak_Azimuth   Energy_Acc_z nPeaks_Gyr_x 
151 mag_Acc Kur_Azimuth   Energy_Azimuth Entropy_TimeD_Ang 
152 Mean_Gyr_y Var_Roll   Energy_Pitch Mean_Azimuth 
153 nPeaks_Roll Mean_Gyr_x   Energy_Roll nPeaks_Azimuth 
154 Highest_peak_Roll Highest_peak_Roll   Energy_Gyr_x Widest_Peak_Acc_z 
155 Kur_Acc_z Kur_Acc_y   Energy_Gyr_y Widest_Peak_Roll 
156 Interq_Roll Skew_Azimuth   Energy_Gyr_z nPeaks_Roll 
157 Var_Roll Mean_Gyr_y   Dfreq_Azimuth Avr_peak_time_Azimuth 
158 Max_diff_Roll Kur_Roll   nPeaks_Azimuth Skew_Azimuth 
159 nPeaks_Azimuth Widest_Peak_Gyr_z   Entropy_Acc_z Std_Gyr_y 
160 Avr_peak_time_Gyr_z nPeaks_Pitch   Var_Azimuth Avr_peak_time_Roll 
161 nPeaks_Gyr_z Avr_peak_time_Azimuth   Max_diff_Roll Energy_Gyr_x 
162 Widest_Peak_Acc_y Widest_Peak_Acc_z   Max_Gyr_y Avr_peak_time_Acc_x 
163 Avr_peak_time_Azimuth Widest_Peak_Acc_x   Rms_Azimuth Cf_Acc_y 
164 Avr_peak_time_Roll Widest_Peak_Gyr_y   Skew_Roll Energy_Pitch 
165 mag_Gyr nPeaks_Gyr_y   SMA_Angle Max_diff_Roll 
166 nPeaks_Acc_x Avr_peak_time_Pitch   Widest_Peak_Acc_x Std_Roll 
167 Avr_peak_time_Acc_x Widest_Peak_Roll   nPeaks_Acc_x Std_Acc_x 
168 Widest_Peak_Gyr_y Avr_peak_time_Gyr_y   Cf_Gyr_z Std_Acc_y 
169 Kur_Roll mag_Gyr   Widest_Peak_Gyr_y Avr_peak_time_Acc_y 
170 nPeaks_Gyr_y Avr_peak_time_Acc_z   Kur_Roll Dfreq_Azimuth 
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171 Avr_peak_time_Acc_y Avr_peak_time_Acc_y   Skew_Azimuth Std_Azimuth 
172 Mean_Gyr_x nPeaks_Gyr_z   Cf_Acc_x Std_Acc_z 
173 Widest_Peak_Gyr_z Avr_peak_time_Gyr_x   Widest_Peak_Gyr_z Cf_Acc_z 
174 Widest_Peak_Roll Avr_peak_time_Acc_x   Max_Azimuth Vedb_Angle 
175 nPeaks_Acc_y nPeaks_Azimuth   nPeaks_Roll Energy_Acc_x 
176 nPeaks_Gyr_x Widest_Peak_Pitch   Skew_Gyr_x Avr_peak_time_Gyr_y 
177 Avr_peak_time_Pitch nPeaks_Acc_y   Avr_peak_time_Gyr_x Energy_Gyr_z 
178 Avr_peak_time_Acc_z Avr_peak_time_Roll   Widest_Peak_Pitch SVM_Angle 
179 Avr_peak_time_Gyr_x nPeaks_Acc_x   Widest_Peak_Gyr_x Kur_Roll 
180 Widest_Peak_Pitch nPeaks_Gyr_x   Min_Azimuth Widest_Peak_Gyr_x 
181 nPeaks_Acc_z nPeaks_Roll   Widest_Peak_Azimuth Std_Pitch 
182 Widest_Peak_Gyr_x nPeaks_Acc_z   SVM_Angle Widest_Peak_Pitch 
183 Avr_peak_time_Gyr_y Avr_peak_time_Gyr_z   Entropy_Acc_x nPeaks_Acc_x 
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Appendix E. 4 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet2_ac over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Entropy_Roll Entropy_Roll Mean_Acc_x Mean_Azimuth Min_Roll Rms_Azimuth 
2 Entropy_Acc_x Dfreq_Acc_x Mean_Azimuth Mean_Pitch Mean_Roll Min_Roll 
3 Dfreq_Acc_x Entropy_Acc_x Mean_Roll Var_Acc_x Rms_Azimuth Mean_Roll 
4 Dfreq_Roll Dfreq_Roll Var_Acc_x Var_Roll Mean_Acc_x Mean_Acc_x 
5 Rms_Roll Rms_Roll Var_Acc_z Std_Acc_x Entropy_Acc_x Interq_Azimuth 
6 Mean_Roll Mean_Roll Var_Pitch Std_Acc_y Vedb_Angle Dfreq_Roll 
7 Rms_Acc_x Mean_Acc_x Std_Acc_y Std_Pitch Mean_Acc_z Max_Pitch 
8 Mean_Acc_x Rms_Acc_x Std_Acc_z Kur_Acc_y Rms_Pitch Mean_Acc_z 
9 Max_Roll Dfreq_Acc_z Std_Azimuth Kur_Pitch Max_diff_Acc_y Entropy_Roll 
10 Energy_Roll Max_Roll Std_Pitch Skew_Acc_x Entropy_Roll Min_Acc_z 
11 Min_Acc_x Mean_Acc_z Std_Roll Skew_Acc_z Rms_Roll Rms_Pitch 
12 Dfreq_Acc_z Energy_Roll Kur_Acc_x Skew_Azimuth DSAM_Angle Rms_Roll 
13 Mean_Acc_z Min_Acc_x Kur_Pitch Skew_Pitch Mean_Acc_y Max_Acc_y 
14 Energy_Acc_z Energy_Acc_z Skew_Acc_y Min_Acc_x Max_Pitch Entropy_Acc_x 
15 Rms_Acc_z Rms_Acc_z Skew_Acc_z Min_Acc_z Min_Acc_z Mean_Acc_y 
16 Energy_Acc_x Mean_Acc_y Skew_Azimuth Max_Acc_x Skew_Roll Max_Roll 
17 Mean_Acc_y Energy_Acc_x Skew_Roll Max_Pitch Rms_Acc_x Min_Pitch 
18 Cf_Acc_x Cf_Acc_x Min_Acc_z Max_Roll Cf_Roll Dfreq_Acc_x 
19 Max_Acc_y Max_Acc_y Min_Azimuth Rms_Acc_x Mean_Azimuth Mean_Azimuth 
20 Max_Pitch Rms_Pitch Min_Roll Rms_Acc_y Dfreq_Roll Vedb_Angle 
21 Cf_Roll Max_Pitch Max_Acc_z Rms_Pitch DSVM_Acc DSAM_Angle 
22 Min_Roll Mean_Pitch Max_Azimuth Rms_Roll Mean_Pitch Rms_Acc_x 
23 Rms_Pitch Min_Roll Max_Pitch Interq_Azimuth Var_Acc_x Skew_Roll 
24 Mean_Pitch Cf_Roll Max_Roll Interq_Pitch Var_Roll Min_Acc_x 
25 SVM_Angle Energy_Pitch Rms_Acc_x Cf_Acc_y Max_diff_Roll Rms_Acc_z 
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26 SMA_Angle SMA_Angle Rms_Acc_z Cf_Azimuth Cf_Azimuth Skew_Azimuth 
27 Vedb_Acc SVM_Angle Rms_Azimuth Cf_Roll MV_Acc Cf_Roll 
28 Energy_Pitch Vedb_Acc Rms_Roll SMA_Acc Max_Roll Skew_Acc_y 
29 SMA_Acc SVM_Acc Interq_Azimuth SMA_Angle Rms_Acc_y Var_Roll 
30 SVM_Acc SMA_Acc Cf_Acc_z Entropy_Acc_x Rms_Acc_z Kur_Azimuth 
31 Entropy_TimeD_Ang Entropy_TimeD_Ang Cf_Azimuth Entropy_Acc_y Min_Pitch Var_Pitch 
32 Cf_Pitch Min_Azimuth Cf_Pitch Entropy_Acc_z Entropy_TimeD_Ang Mean_Pitch 
33 Max_Acc_x Min_Acc_z Cf_Roll Entropy_Azimuth Interq_Roll SMA_Acc 
34 DSAM_Angle Min_Pitch Entropy_Acc_x Entropy_Pitch Dfreq_Acc_x Cf_Azimuth 
35 Entropy_TimeD_Acc Cf_Acc_y Entropy_Acc_y Entropy_Roll Var_Pitch Interq_Pitch 
36 Cf_Acc_y Entropy_TimeD_Acc Entropy_Acc_z Entropy_TimeD_Ang Cf_Pitch MV_Acc 
37 Min_Pitch Max_Acc_x Entropy_TimeD_Acc Energy_Acc_x Max_Acc_y Entropy_TimeD_Acc 
38 Min_Azimuth Skew_Azimuth Entropy_TimeD_Ang Energy_Acc_z Kur_Acc_y Max_diff_Roll 
39 Min_Acc_z Max_diff_Azimuth Energy_Acc_z SVM_Acc Min_Acc_x Vedb_Acc 
40 Skew_Azimuth Cf_Pitch Energy_Azimuth DSAM_Angle Interq_Acc_z Skew_Acc_x 
41 Entropy_Acc_z Entropy_Acc_z Energy_Roll Max_diff_Acc_z Entropy_TimeD_Acc DSVM_Acc 
42 Max_diff_Acc_x Rms_Acc_y SVM_Acc Max_diff_Pitch Highest_peak_Acc_x Var_Azimuth 
43 Rms_Acc_y DSAM_Angle SVM_Angle Max_diff_Roll Skew_Pitch Min_Acc_y 
44 Max_diff_Azimuth Dfreq_Pitch DSAM_Angle AV_Ang Dfreq_Pitch Cf_Acc_x 
45 DSVM_Acc Skew_Acc_y Max_diff_Acc_y mag_Acc Min_Acc_y Var_Acc_z 
46 Max_Acc_z Energy_Acc_y Max_diff_Acc_z Vedb_Angle Skew_Acc_y Max_Azimuth 
47 Max_diff_Roll DSVM_Acc Max_diff_Azimuth Dfreq_Acc_y SVM_Acc Entropy_TimeD_Ang 
48 Energy_Acc_y Max_Acc_z AV_Ang Dfreq_Acc_z SMA_Angle Skew_Pitch 
49 Std_Pitch Vedb_Angle mag_Ang Dfreq_Azimuth Cf_Acc_y Cf_Pitch 
50 Vedb_Angle Entropy_Azimuth Vedb_Acc Dfreq_Roll Min_Azimuth Rms_Acc_y 
51 Entropy_Azimuth Max_diff_Acc_x Dfreq_Acc_x Widest_Peak_Acc_x Interq_Acc_x Kur_Pitch 
52 Dfreq_Pitch Kur_Azimuth Dfreq_Acc_y Avr_peak_time_Acc_x Vedb_Acc Var_Acc_x 
53 Std_Roll Std_Roll Dfreq_Acc_z Avr_peak_time_Acc_y Interq_Pitch Interq_Roll 
54 Std_Acc_x Std_Pitch Dfreq_Roll nPeaks_Acc_z SMA_Acc Var_Acc_y 
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55 Dfreq_Acc_y Min_Acc_y Widest_Peak_Acc_x Widest_Peak_Acc_z Kur_Pitch Highest_peak_Acc_x 
56 Cf_Azimuth Std_Acc_y Highest_peak_Acc_x Highest_peak_Acc_z Skew_Azimuth Max_diff_Pitch 
57 Entropy_Pitch Dfreq_Acc_y Avr_peak_time_Acc_x Widest_Peak_Azimuth Dfreq_Acc_y Max_diff_Azimuth 
58 Std_Acc_y Max_diff_Roll nPeaks_Acc_y Highest_peak_Azimuth Interq_Azimuth Kur_Acc_y 
59 Skew_Pitch Entropy_Pitch Highest_peak_Acc_y nPeaks_Pitch AV_Ang Cf_Acc_y 
60 Entropy_Acc_y Skew_Pitch nPeaks_Acc_z Avr_peak_time_Pitch Cf_Acc_z mag_Ang 
61 Min_Acc_y Entropy_Acc_y Widest_Peak_Acc_z Avr_peak_time_Roll SVM_Angle Kur_Roll 
62 Skew_Acc_y Std_Acc_x nPeaks_Azimuth  Max_diff_Acc_x SMA_Angle 
63 Max_diff_Pitch Rms_Azimuth Avr_peak_time_Azimuth  Entropy_Acc_z Dfreq_Acc_y 
64 Rms_Azimuth Max_Azimuth Avr_peak_time_Pitch  Kur_Acc_z Kur_Acc_x 
65 Kur_Azimuth Max_diff_Pitch nPeaks_Roll  Kur_Azimuth Widest_Peak_Acc_y 
66 Dfreq_Azimuth Dfreq_Azimuth Widest_Peak_Roll  Max_Azimuth Kur_Acc_z 
67 Cf_Acc_z Interq_Acc_y Avr_peak_time_Roll  Entropy_Acc_y Entropy_Pitch 
68 AV_Ang Mean_Azimuth   Cf_Acc_x Cf_Acc_z 
69 Mean_Azimuth AV_Ang   Highest_peak_Azimuth Max_diff_Acc_y 
70 Interq_Acc_y Cf_Azimuth   Avr_peak_time_Acc_z SVM_Acc 
71 Max_Azimuth Cf_Acc_z   nPeaks_Pitch Interq_Acc_x 
72 Std_Acc_z Var_Acc_y   Highest_peak_Roll Max_Acc_x 
73 Var_Acc_y Skew_Roll   Max_diff_Pitch Highest_peak_Acc_y 
74 Max_diff_Acc_y Std_Acc_z   Var_Acc_z Highest_peak_Pitch 
75 Highest_peak_Acc_y Max_diff_Acc_z   Max_Acc_z Highest_peak_Azimuth 
76 Var_Pitch Max_diff_Acc_y   Avr_peak_time_Pitch Dfreq_Pitch 
77 MV_Acc Highest_peak_Acc_x   Max_Acc_x AV_Ang 
78 Highest_peak_Pitch mag_Ang   Entropy_Pitch Avr_peak_time_Pitch 
79 mag_Ang MV_Acc   mag_Ang Entropy_Acc_y 
80 Var_Roll Std_Azimuth   mag_Acc Interq_Acc_z 
81 Interq_Pitch Highest_peak_Acc_y   Widest_Peak_Azimuth Max_diff_Acc_x 
82 Highest_peak_Acc_x Interq_Pitch   Entropy_Azimuth Skew_Acc_z 
83 Var_Acc_x Var_Pitch   Avr_peak_time_Acc_x Highest_peak_Acc_z 
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84 Std_Azimuth Highest_peak_Roll   Max_diff_Azimuth Highest_peak_Roll 
85 Max_diff_Acc_z Var_Roll   Max_diff_Acc_z Widest_Peak_Acc_x 
86 Skew_Roll Interq_Acc_z   nPeaks_Roll SVM_Angle 
87 Highest_peak_Acc_z Kur_Acc_z   Avr_peak_time_Azimuth Max_diff_Acc_z 
88 Skew_Acc_z Skew_Acc_x   Interq_Acc_y Interq_Acc_y 
89 Interq_Roll Skew_Acc_z   Highest_peak_Acc_z Entropy_Acc_z 
90 Kur_Acc_x Var_Acc_x   Var_Acc_y Avr_peak_time_Acc_z 
91 Interq_Acc_z Highest_peak_Acc_z   Var_Azimuth Widest_Peak_Pitch 
92 Highest_peak_Roll Interq_Roll   Skew_Acc_x Min_Azimuth 
93 Skew_Acc_x Highest_peak_Pitch   Highest_peak_Pitch Max_Acc_z 
94 Var_Acc_z Interq_Azimuth   Highest_peak_Acc_y Entropy_Azimuth 
95 Interq_Acc_x Kur_Pitch   Widest_Peak_Acc_y nPeaks_Roll 
96 Kur_Acc_z Var_Acc_z   nPeaks_Acc_z Avr_peak_time_Acc_x 
97 nPeaks_Acc_y Kur_Acc_x   nPeaks_Acc_x nPeaks_Acc_x 
98 Interq_Azimuth Kur_Acc_y   Kur_Roll nPeaks_Pitch 
99 Energy_Azimuth Interq_Acc_x   Avr_peak_time_Acc_y Widest_Peak_Roll 
100 nPeaks_Acc_z Energy_Azimuth   nPeaks_Acc_y mag_Acc 
101 Kur_Pitch nPeaks_Acc_x   Std_Acc_x Avr_peak_time_Acc_y 
102 Kur_Roll nPeaks_Acc_z   Std_Acc_y Avr_peak_time_Roll 
103 Avr_peak_time_Acc_z Kur_Roll   Std_Acc_z Std_Acc_x 
104 nPeaks_Azimuth Var_Azimuth   Std_Azimuth Std_Acc_y 
105 Var_Azimuth Avr_peak_time_Acc_z   Std_Pitch Std_Acc_z 
106 Highest_peak_Azimuth Highest_peak_Azimuth   Std_Roll Std_Azimuth 
107 Kur_Acc_y nPeaks_Acc_y   Energy_Acc_x Std_Pitch 
108 Widest_Peak_Acc_y Avr_peak_time_Acc_x   Energy_Acc_y Std_Roll 
109 nPeaks_Acc_x Widest_Peak_Acc_z   Energy_Acc_z Energy_Acc_x 
110 nPeaks_Pitch Avr_peak_time_Acc_y   Energy_Azimuth Energy_Acc_y 
111 Widest_Peak_Pitch Widest_Peak_Pitch   Energy_Pitch Energy_Acc_z 
112 Widest_Peak_Acc_x Widest_Peak_Acc_y   Energy_Roll Energy_Azimuth 
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113 Avr_peak_time_Acc_y nPeaks_Roll   Dfreq_Acc_z Energy_Pitch 
114 Avr_peak_time_Azimuth Avr_peak_time_Roll   Dfreq_Azimuth Energy_Roll 
115 Avr_peak_time_Pitch nPeaks_Pitch   Widest_Peak_Acc_x Dfreq_Acc_z 
116 Avr_peak_time_Acc_x nPeaks_Azimuth   nPeaks_Azimuth Dfreq_Azimuth 
117 Widest_Peak_Roll mag_Acc   Avr_peak_time_Roll nPeaks_Azimuth 
118 nPeaks_Roll Widest_Peak_Acc_x   Kur_Acc_x nPeaks_Acc_z 
119 Widest_Peak_Azimuth Avr_peak_time_Azimuth   Widest_Peak_Acc_z Widest_Peak_Acc_z 
120 Avr_peak_time_Roll Widest_Peak_Azimuth   Widest_Peak_Pitch nPeaks_Acc_y 
121 Widest_Peak_Acc_z Widest_Peak_Roll   Widest_Peak_Roll Widest_Peak_Azimuth 
122 mag_Acc Avr_peak_time_Pitch   Skew_Acc_z Avr_peak_time_Azimuth 
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Appendix E. 5 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet2_ac over 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Entropy_Roll Entropy_Roll Mean_Acc_x Mean_Acc_y Min_Roll Min_Roll 
2 Dfreq_Acc_x Dfreq_Acc_x Mean_Acc_z Mean_Roll Mean_Roll Mean_Roll 
3 Entropy_Acc_x Dfreq_Roll Mean_Azimuth Var_Azimuth Mean_Acc_x Mean_Acc_z 
4 Dfreq_Roll Entropy_Acc_x Var_Acc_x Std_Acc_z Mean_Acc_z Entropy_Acc_x 
5 Rms_Roll Rms_Roll Var_Acc_z Std_Azimuth Max_Pitch Min_Acc_z 
6 Mean_Roll Mean_Roll Var_Azimuth Std_Pitch Entropy_Roll Max_Azimuth 
7 Dfreq_Acc_z Dfreq_Acc_z Var_Pitch Kur_Acc_y Mean_Azimuth Mean_Acc_x 
8 Mean_Acc_z Max_Roll Var_Roll Kur_Acc_z Min_Acc_z Rms_Roll 
9 Min_Acc_x Mean_Acc_x Std_Pitch Kur_Pitch Kur_Acc_x Max_Pitch 
10 Max_Roll Min_Acc_x Kur_Acc_y Kur_Roll Rms_Roll Entropy_Roll 
11 Mean_Acc_x Mean_Acc_z Kur_Acc_z Skew_Acc_x Entropy_Acc_x Rms_Azimuth 
12 Rms_Acc_x Rms_Acc_x Kur_Azimuth Skew_Azimuth Rms_Azimuth Mean_Azimuth 
13 Energy_Roll Energy_Roll Skew_Acc_y Min_Acc_x Max_Azimuth Dfreq_Acc_x 
14 Rms_Acc_z Min_Roll Skew_Azimuth Min_Acc_z Dfreq_Acc_x Mean_Acc_y 
15 Energy_Acc_z Rms_Acc_z Min_Acc_x Min_Pitch Dfreq_Roll Vedb_Angle 
16 Min_Roll Energy_Acc_z Min_Pitch Min_Roll Mean_Pitch Kur_Azimuth 
17 Cf_Roll Cf_Acc_x Max_Acc_x Max_Acc_x Min_Acc_x Dfreq_Roll 
18 Cf_Acc_x Cf_Roll Max_Acc_z Max_Acc_z Skew_Roll Max_diff_Acc_y 
19 Energy_Acc_x Energy_Acc_x Max_Pitch Max_Pitch Var_Pitch DSVM_Acc 
20 Max_Acc_x Max_Acc_x Max_Roll Max_Roll Cf_Acc_x Var_Pitch 
21 Max_Pitch Entropy_Azimuth Rms_Acc_y Rms_Azimuth Rms_Pitch Var_Roll 
22 Entropy_Azimuth Rms_Pitch Rms_Acc_z Rms_Pitch SMA_Angle Min_Pitch 
23 Rms_Pitch SVM_Angle Rms_Roll Interq_Acc_x Max_Acc_x Max_Acc_x 
24 Mean_Pitch Entropy_Acc_z Interq_Acc_x Interq_Pitch Rms_Acc_x Min_Acc_x 
25 Entropy_Acc_z SMA_Angle Interq_Acc_y Cf_Azimuth DSVM_Acc Min_Acc_y 
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26 Energy_Pitch Max_Pitch Interq_Acc_z Cf_Pitch Entropy_TimeD_Ang Mean_Pitch 
27 Min_Azimuth Max_diff_Azimuth Interq_Pitch SMA_Acc DSAM_Angle Entropy_TimeD_Ang 
28 SVM_Angle Min_Pitch Cf_Acc_y SMA_Angle Var_Acc_x Var_Acc_x 
29 Min_Pitch Energy_Pitch Cf_Acc_z Entropy_Acc_x Max_diff_Roll DSAM_Angle 
30 SMA_Angle Entropy_TimeD_Ang Cf_Azimuth Entropy_Acc_z Var_Azimuth Interq_Roll 
31 Max_diff_Azimuth Max_diff_Acc_x Cf_Pitch Entropy_Azimuth Cf_Azimuth Skew_Roll 
32 DSAM_Angle Vedb_Acc Cf_Roll Entropy_Pitch Max_diff_Acc_x Rms_Pitch 
33 Max_diff_Acc_x Min_Azimuth SMA_Acc Entropy_Roll Rms_Acc_z SMA_Angle 
34 Vedb_Acc Min_Acc_z Entropy_Acc_x Entropy_TimeD_Acc Min_Pitch Skew_Acc_y 
35 Entropy_TimeD_Ang Mean_Pitch Entropy_Acc_y Entropy_TimeD_Ang Max_Acc_y Interq_Acc_x 
36 Max_diff_Roll Max_diff_Roll Entropy_Acc_z Energy_Acc_y Skew_Acc_y Var_Acc_z 
37 Max_Acc_z Mean_Acc_y Entropy_TimeD_Ang Energy_Acc_z Dfreq_Acc_z Rms_Acc_x 
38 Min_Acc_z Std_Roll Energy_Acc_x Energy_Azimuth Mean_Acc_y Cf_Roll 
39 Dfreq_Pitch Std_Acc_x Energy_Acc_y SVM_Angle Var_Acc_y Var_Azimuth 
40 Skew_Azimuth Entropy_Pitch Energy_Pitch DSVM_Acc Cf_Acc_z mag_Ang 
41 Mean_Acc_y DSAM_Angle DSAM_Angle Max_diff_Acc_x Entropy_Pitch Var_Acc_y 
42 Std_Roll Max_Acc_z Max_diff_Acc_x Max_diff_Acc_y Interq_Azimuth Max_diff_Azimuth 
43 Entropy_Pitch Dfreq_Pitch Max_diff_Acc_y MV_Acc Kur_Azimuth Kur_Acc_x 
44 Std_Acc_x Max_Acc_y Max_diff_Azimuth AV_Ang Max_diff_Azimuth Max_Acc_y 
45 Cf_Pitch Cf_Pitch Max_diff_Roll mag_Acc Skew_Azimuth Cf_Azimuth 
46 Std_Pitch Std_Pitch MV_Acc Vedb_Acc SVM_Angle Max_diff_Acc_x 
47 Max_diff_Pitch Skew_Azimuth AV_Ang Vedb_Angle Cf_Roll Max_diff_Roll 
48 Max_Acc_y Max_diff_Pitch mag_Ang Dfreq_Acc_x Highest_peak_Azimuth Skew_Azimuth 
49 Vedb_Angle Skew_Acc_y Vedb_Acc Dfreq_Azimuth Vedb_Angle Min_Azimuth 
50 Skew_Acc_y Dfreq_Acc_y Dfreq_Acc_z Dfreq_Roll Max_Roll Max_diff_Acc_z 
51 Dfreq_Acc_y Vedb_Angle Dfreq_Azimuth Highest_peak_Acc_x MV_Acc Highest_peak_Acc_y 
52 Cf_Acc_z Min_Acc_y Dfreq_Pitch nPeaks_Acc_y Kur_Acc_y Cf_Acc_z 
53 DSVM_Acc Kur_Azimuth nPeaks_Acc_x Widest_Peak_Acc_y Min_Azimuth Rms_Acc_z 
54 Kur_Azimuth Skew_Roll Highest_peak_Acc_x nPeaks_Acc_z Interq_Roll Interq_Acc_z 
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55 Min_Acc_y DSVM_Acc Avr_peak_time_Acc_x Widest_Peak_Acc_z Var_Roll Rms_Acc_y 
56 Cf_Azimuth Entropy_Acc_y nPeaks_Acc_y Highest_peak_Acc_z Kur_Pitch Interq_Pitch 
57 Rms_Acc_y Std_Azimuth Highest_peak_Acc_z Avr_peak_time_Azimuth Max_diff_Acc_z Dfreq_Pitch 
58 AV_Ang Rms_Azimuth Avr_peak_time_Acc_z Widest_Peak_Pitch Interq_Acc_x Entropy_Acc_z 
59 Std_Azimuth mag_Ang nPeaks_Azimuth Avr_peak_time_Pitch Entropy_TimeD_Acc Cf_Pitch 
60 Std_Acc_z Cf_Azimuth Widest_Peak_Azimuth Widest_Peak_Roll Vedb_Acc Skew_Pitch 
61 Rms_Azimuth AV_Ang Highest_peak_Azimuth Highest_peak_Roll Kur_Roll Kur_Roll 
62 Entropy_Acc_y Max_Azimuth Avr_peak_time_Azimuth  SMA_Acc MV_Acc 
63 Dfreq_Azimuth Dfreq_Azimuth Highest_peak_Pitch  Highest_peak_Roll Kur_Pitch 
64 Energy_Acc_y Rms_Acc_y Widest_Peak_Roll  Var_Acc_z Interq_Azimuth 
65 Skew_Roll Kur_Acc_x Highest_peak_Roll  Cf_Pitch Max_diff_Pitch 
66 Var_Pitch Var_Pitch Avr_peak_time_Roll  Entropy_Acc_z Highest_peak_Acc_x 
67 Highest_peak_Roll SVM_Acc   mag_Ang Entropy_Pitch 
68 SMA_Acc SMA_Acc   Rms_Acc_y Interq_Acc_y 
69 SVM_Acc Std_Acc_z   Skew_Pitch SVM_Angle 
70 Mean_Azimuth Max_diff_Acc_y   Widest_Peak_Azimuth Cf_Acc_y 
71 mag_Ang Entropy_TimeD_Acc   Kur_Acc_z Cf_Acc_x 
72 Highest_peak_Acc_y Var_Acc_x   Avr_peak_time_Azimuth Highest_peak_Azimuth 
73 Var_Roll Var_Roll   Interq_Pitch Max_Roll 
74 Max_Azimuth Max_diff_Acc_z   AV_Ang Entropy_Azimuth 
75 Var_Acc_x Mean_Azimuth   Min_Acc_y Kur_Acc_z 
76 Highest_peak_Pitch Cf_Acc_z   Max_diff_Pitch Entropy_TimeD_Acc 
77 Entropy_TimeD_Acc Energy_Acc_y   Highest_peak_Acc_x Vedb_Acc 
78 Kur_Acc_x Interq_Pitch   Widest_Peak_Acc_z Max_Acc_z 
79 Highest_peak_Acc_x Highest_peak_Pitch   Highest_peak_Acc_z Widest_Peak_Azimuth 
80 Interq_Acc_y Highest_peak_Acc_x   Widest_Peak_Pitch Highest_peak_Acc_z 
81 Max_diff_Acc_z Highest_peak_Acc_y   Interq_Acc_y SMA_Acc 
82 Kur_Acc_z Cf_Acc_y   SVM_Acc Kur_Acc_y 
83 Interq_Pitch Interq_Roll   Interq_Acc_z nPeaks_Acc_x 
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84 Cf_Acc_y Skew_Acc_z   Entropy_Acc_y SVM_Acc 
85 Max_diff_Acc_y Highest_peak_Roll   Dfreq_Pitch Widest_Peak_Pitch 
86 Skew_Pitch Skew_Pitch   Max_Acc_z Dfreq_Acc_z 
87 Skew_Acc_z Kur_Roll   nPeaks_Pitch Skew_Acc_x 
88 Std_Acc_y Interq_Acc_y   Skew_Acc_x Highest_peak_Pitch 
89 Skew_Acc_x Skew_Acc_x   Avr_peak_time_Acc_y nPeaks_Acc_y 
90 Highest_peak_Acc_z Highest_peak_Acc_z   Avr_peak_time_Roll nPeaks_Roll 
91 MV_Acc Std_Acc_y   Highest_peak_Acc_y Avr_peak_time_Acc_x 
92 Var_Acc_z MV_Acc   Highest_peak_Pitch Highest_peak_Roll 
93 Interq_Roll Interq_Azimuth   nPeaks_Roll AV_Ang 
94 Kur_Roll Var_Acc_z   Dfreq_Acc_y Widest_Peak_Acc_y 
95 Var_Acc_y Kur_Acc_z   Skew_Acc_z Dfreq_Acc_y 
96 Highest_peak_Azimuth Highest_peak_Azimuth   Entropy_Azimuth Entropy_Acc_y 
97 Interq_Acc_z Var_Acc_y   nPeaks_Azimuth Widest_Peak_Acc_z 
98 Interq_Azimuth Interq_Acc_x   Avr_peak_time_Acc_x Avr_peak_time_Roll 
99 Var_Azimuth Var_Azimuth   Widest_Peak_Roll Widest_Peak_Roll 
100 Interq_Acc_x Interq_Acc_z   Max_diff_Acc_y Avr_peak_time_Pitch 
101 Kur_Pitch Kur_Pitch   Avr_peak_time_Acc_z Std_Acc_x 
102 Energy_Azimuth Energy_Azimuth   Cf_Acc_y Energy_Azimuth 
103 nPeaks_Acc_z Widest_Peak_Acc_x   Widest_Peak_Acc_y Avr_peak_time_Acc_z 
104 Kur_Acc_y Kur_Acc_y   nPeaks_Acc_z nPeaks_Acc_z 
105 Avr_peak_time_Acc_z nPeaks_Acc_x   Std_Roll Energy_Acc_y 
106 nPeaks_Acc_y nPeaks_Pitch   nPeaks_Acc_y Skew_Acc_z 
107 Widest_Peak_Pitch Widest_Peak_Pitch   Energy_Pitch mag_Acc 
108 Widest_Peak_Acc_y nPeaks_Acc_y   Widest_Peak_Acc_x Std_Roll 
109 mag_Acc Avr_peak_time_Acc_y   nPeaks_Acc_x Avr_peak_time_Azimuth 
110 Avr_peak_time_Acc_x Avr_peak_time_Acc_x   mag_Acc Std_Acc_z 
111 nPeaks_Pitch Avr_peak_time_Pitch   Energy_Acc_z Std_Pitch 
112 Avr_peak_time_Acc_y Widest_Peak_Acc_y   Dfreq_Azimuth Dfreq_Azimuth 
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113 nPeaks_Azimuth nPeaks_Acc_z   Energy_Acc_x Energy_Acc_z 
114 Widest_Peak_Acc_x nPeaks_Roll   Avr_peak_time_Pitch Widest_Peak_Acc_x 
115 Avr_peak_time_Pitch Avr_peak_time_Roll   Energy_Acc_y nPeaks_Pitch 
116 nPeaks_Acc_x Avr_peak_time_Acc_z   Std_Azimuth nPeaks_Azimuth 
117 Avr_peak_time_Azimuth Avr_peak_time_Azimuth   Energy_Roll Avr_peak_time_Acc_y 
118 Avr_peak_time_Roll mag_Acc   Std_Acc_x Energy_Pitch 
119 Widest_Peak_Roll Widest_Peak_Roll   Std_Acc_y Std_Azimuth 
120 Widest_Peak_Acc_z Widest_Peak_Azimuth   Std_Acc_z Energy_Acc_x 
121 Widest_Peak_Azimuth nPeaks_Azimuth   Std_Pitch Energy_Roll 
122 nPeaks_Roll Widest_Peak_Acc_z   Energy_Azimuth Std_Acc_y 
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Appendix E. 6 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet2_ac over 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Entropy_Roll Entropy_Roll Mean_Acc_x Mean_Acc_y Min_Roll Min_Roll 
2 Entropy_Acc_x Entropy_Acc_x Mean_Acc_y Mean_Azimuth Mean_Roll Mean_Roll 
3 Rms_Roll Dfreq_Roll Mean_Acc_z Mean_Pitch Mean_Acc_x Mean_Acc_x 
4 Dfreq_Roll Dfreq_Acc_x Mean_Azimuth Mean_Roll Mean_Azimuth Entropy_Acc_x 
5 Dfreq_Acc_x Rms_Roll Mean_Pitch Var_Acc_x Max_Pitch Mean_Acc_z 
6 Dfreq_Acc_z Mean_Roll Mean_Roll Var_Acc_y Rms_Azimuth Mean_Azimuth 
7 Mean_Roll Mean_Acc_x Var_Acc_x Var_Acc_z Mean_Acc_z Dfreq_Roll 
8 Max_Roll Min_Acc_x Var_Azimuth Var_Azimuth Max_Acc_x Rms_Azimuth 
9 Mean_Acc_x Max_Roll Var_Pitch Var_Roll Rms_Roll Var_Acc_x 
10 Mean_Acc_z Dfreq_Acc_z Std_Acc_x Std_Roll Entropy_Roll Entropy_Roll 
11 Min_Acc_x Mean_Acc_z Std_Acc_y Kur_Azimuth Dfreq_Acc_x Rms_Roll 
12 Energy_Roll Energy_Roll Std_Acc_z Kur_Pitch Entropy_Acc_x Max_Azimuth 
13 Min_Roll Min_Roll Std_Pitch Skew_Acc_x Var_Acc_x Min_Acc_z 
14 Rms_Acc_x Rms_Acc_x Kur_Acc_x Skew_Acc_y Var_Roll Max_Acc_x 
15 Cf_Acc_x Cf_Acc_x Kur_Acc_z Skew_Acc_z Dfreq_Acc_z Min_Pitch 
16 Cf_Roll Energy_Acc_z Kur_Roll Skew_Pitch Mean_Pitch Cf_Azimuth 
17 Rms_Acc_z Rms_Acc_z Skew_Acc_x Min_Azimuth Min_Acc_z Skew_Acc_y 
18 Energy_Acc_z Max_Acc_x Skew_Acc_y Max_Acc_x Max_diff_Azimuth Rms_Acc_z 
19 Max_Acc_x Cf_Roll Skew_Acc_z Max_Acc_y Cf_Acc_x Var_Pitch 
20 Energy_Acc_x Entropy_Azimuth Skew_Azimuth Max_Pitch Cf_Azimuth Min_Azimuth 
21 Entropy_Azimuth Energy_Acc_x Min_Acc_x Max_Roll Min_Azimuth Max_Pitch 
22 Std_Acc_x Std_Roll Min_Acc_z Rms_Acc_x Dfreq_Roll Var_Roll 
23 Entropy_Pitch Entropy_Acc_z Min_Roll Rms_Acc_y Rms_Acc_x Mean_Acc_y 
24 Min_Pitch Min_Pitch Max_Acc_x Rms_Azimuth Skew_Acc_y Dfreq_Acc_x 
25 Max_Pitch Rms_Pitch Max_Acc_y Rms_Roll Vedb_Angle Min_Acc_x 
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26 Std_Roll Max_Pitch Max_Acc_z Interq_Pitch Var_Pitch Rms_Acc_x 
27 Entropy_Acc_z Entropy_Pitch Rms_Acc_y Interq_Roll SMA_Angle Max_diff_Acc_x 
28 Mean_Pitch Std_Acc_x Rms_Acc_z Cf_Acc_y Skew_Roll Kur_Roll 
29 SVM_Angle SVM_Angle Rms_Azimuth Cf_Pitch Max_Azimuth Highest_peak_Acc_x 
30 SMA_Angle SMA_Angle Rms_Roll Cf_Roll Min_Acc_x Mean_Pitch 
31 Max_diff_Acc_x DSAM_Angle Interq_Acc_x SMA_Acc Rms_Acc_y Kur_Acc_x 
32 Max_diff_Azimuth Max_diff_Acc_x Interq_Acc_y SMA_Angle mag_Ang SVM_Angle 
33 Rms_Pitch Energy_Pitch Interq_Acc_z Entropy_Acc_y Max_Roll Cf_Acc_x 
34 DSAM_Angle Min_Acc_z Interq_Azimuth Entropy_Acc_z Var_Azimuth SMA_Angle 
35 Entropy_TimeD_Ang Cf_Pitch Interq_Roll Entropy_Azimuth Mean_Acc_y Skew_Roll 
36 Max_diff_Roll Max_diff_Azimuth Cf_Acc_y Entropy_Pitch Skew_Azimuth DSAM_Angle 
37 Cf_Pitch Mean_Pitch Cf_Azimuth Entropy_TimeD_Acc Cf_Pitch Interq_Pitch 
38 Min_Azimuth Max_Acc_z SMA_Angle SVM_Angle Cf_Acc_y Kur_Pitch 
39 Min_Acc_z Entropy_TimeD_Ang Entropy_Acc_x DSVM_Acc Rms_Acc_z Max_Roll 
40 Energy_Pitch Std_Pitch Entropy_Acc_z DSAM_Angle Max_diff_Pitch Max_Acc_y 
41 Dfreq_Pitch Max_diff_Roll Entropy_Roll Max_diff_Acc_x Kur_Acc_y Entropy_TimeD_Ang 
42 Max_diff_Pitch Min_Azimuth Entropy_TimeD_Acc Max_diff_Azimuth Min_Pitch Dfreq_Acc_z 
43 Vedb_Acc Dfreq_Pitch Entropy_TimeD_Ang Max_diff_Roll Max_diff_Roll Var_Acc_y 
44 Std_Pitch Max_Acc_y Energy_Acc_x MV_Acc Interq_Pitch Max_diff_Azimuth 
45 Max_Acc_y Vedb_Acc Energy_Acc_y mag_Acc Cf_Roll Entropy_Pitch 
46 Max_Acc_z Max_diff_Pitch Energy_Azimuth Vedb_Angle Highest_peak_Acc_x Highest_peak_Roll 
47 Entropy_Acc_y Min_Acc_y DSAM_Angle Dfreq_Acc_z Entropy_TimeD_Ang Var_Azimuth 
48 Dfreq_Acc_y Dfreq_Acc_y Max_diff_Acc_x Dfreq_Pitch Interq_Roll Cf_Acc_z 
49 Min_Acc_y Var_Roll Max_diff_Pitch Dfreq_Roll Vedb_Acc Skew_Acc_z 
50 Var_Acc_x Skew_Azimuth MV_Acc nPeaks_Acc_x Interq_Acc_x Rms_Pitch 
51 Vedb_Angle Entropy_Acc_y mag_Ang Widest_Peak_Acc_x Highest_peak_Roll Max_Acc_z 
52 Var_Roll Mean_Acc_y Vedb_Acc Avr_peak_time_Acc_x Max_diff_Acc_y Vedb_Angle 
53 Cf_Azimuth Std_Acc_z Dfreq_Acc_y nPeaks_Acc_y Var_Acc_z Entropy_Acc_z 
54 Mean_Acc_y Kur_Acc_x Dfreq_Acc_z Widest_Peak_Acc_y Min_Acc_y Highest_peak_Azimuth 
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55 Skew_Azimuth Vedb_Angle Widest_Peak_Acc_x Avr_peak_time_Acc_y Interq_Azimuth Cf_Pitch 
56 Std_Acc_z Skew_Acc_y nPeaks_Acc_y nPeaks_Acc_z Kur_Pitch Max_diff_Pitch 
57 Skew_Acc_y AV_Ang Widest_Peak_Acc_y Highest_peak_Acc_z Entropy_Pitch Avr_peak_time_Acc_y 
58 Kur_Acc_x Interq_Roll nPeaks_Acc_z Avr_peak_time_Acc_z DSAM_Angle Interq_Acc_x 
59 Std_Azimuth Max_diff_Acc_z Widest_Peak_Acc_z nPeaks_Azimuth Entropy_Azimuth Min_Acc_y 
60 Rms_Azimuth Var_Acc_x Highest_peak_Acc_z nPeaks_Pitch Highest_peak_Acc_z Rms_Acc_y 
61 Interq_Roll Cf_Acc_z Avr_peak_time_Acc_z Highest_peak_Pitch Skew_Acc_z DSVM_Acc 
62 Dfreq_Azimuth Kur_Azimuth nPeaks_Azimuth Widest_Peak_Roll SVM_Angle Cf_Roll 
63 Max_Azimuth Var_Pitch Highest_peak_Azimuth Highest_peak_Roll Kur_Acc_x Skew_Azimuth 
64 AV_Ang Std_Azimuth nPeaks_Pitch Avr_peak_time_Roll Entropy_Acc_z Entropy_Azimuth 
65 Highest_peak_Pitch Cf_Azimuth Widest_Peak_Roll  Max_diff_Acc_x Cf_Acc_y 
66 Cf_Acc_y Skew_Roll Highest_peak_Roll  Avr_peak_time_Acc_z Dfreq_Pitch 
67 Mean_Azimuth Kur_Roll   DSVM_Acc Max_diff_Roll 
68 Rms_Acc_y Rms_Acc_y   Rms_Pitch mag_Ang 
69 Cf_Acc_z Interq_Pitch   Max_Acc_y Interq_Roll 
70 Max_diff_Acc_z Rms_Azimuth   MV_Acc Interq_Azimuth 
71 Highest_peak_Acc_x Highest_peak_Pitch   Cf_Acc_z SVM_Acc 
72 DSVM_Acc Dfreq_Azimuth   Var_Acc_y AV_Ang 
73 Highest_peak_Roll Highest_peak_Roll   mag_Acc Skew_Pitch 
74 Energy_Acc_y Max_diff_Acc_y   Max_Acc_z Entropy_Acc_y 
75 Var_Pitch DSVM_Acc   Skew_Pitch Interq_Acc_z 
76 Skew_Roll mag_Ang   Kur_Azimuth nPeaks_Pitch 
77 Skew_Pitch Max_Azimuth   Highest_peak_Acc_y Max_diff_Acc_z 
78 mag_Ang Highest_peak_Acc_x   Kur_Roll Vedb_Acc 
79 Kur_Azimuth Energy_Acc_y   Highest_peak_Azimuth MV_Acc 
80 Highest_peak_Azimuth Highest_peak_Azimuth   AV_Ang Var_Acc_z 
81 Interq_Pitch Mean_Azimuth   Entropy_TimeD_Acc Highest_peak_Pitch 
82 Skew_Acc_z Cf_Acc_y   Entropy_Acc_y Kur_Acc_z 
83 Kur_Roll Highest_peak_Acc_y   Interq_Acc_z Widest_Peak_Acc_z 
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84 Max_diff_Acc_y Skew_Acc_z   Interq_Acc_y Max_diff_Acc_y 
85 Var_Acc_z Std_Acc_y   Dfreq_Azimuth nPeaks_Roll 
86 Interq_Acc_x Skew_Pitch   Dfreq_Pitch Highest_peak_Acc_y 
87 SVM_Acc Skew_Acc_x   Highest_peak_Pitch Kur_Azimuth 
88 Std_Acc_y Var_Acc_z   Skew_Acc_x Dfreq_Acc_y 
89 SMA_Acc SVM_Acc   Avr_peak_time_Roll Skew_Acc_x 
90 MV_Acc Interq_Acc_x   Widest_Peak_Acc_y Avr_peak_time_Roll 
91 Entropy_TimeD_Acc Highest_peak_Acc_z   SVM_Acc SMA_Acc 
92 Highest_peak_Acc_y SMA_Acc   Widest_Peak_Azimuth Widest_Peak_Azimuth 
93 Interq_Azimuth Entropy_TimeD_Acc   Dfreq_Acc_y Avr_peak_time_Acc_x 
94 Skew_Acc_x MV_Acc   nPeaks_Acc_y nPeaks_Acc_z 
95 Kur_Pitch Var_Acc_y   SMA_Acc Highest_peak_Acc_z 
96 Highest_peak_Acc_z Interq_Acc_z   nPeaks_Acc_x nPeaks_Azimuth 
97 Var_Acc_y Kur_Acc_z   Kur_Acc_z Widest_Peak_Acc_x 
98 Interq_Acc_z Interq_Acc_y   nPeaks_Pitch Interq_Acc_y 
99 Widest_Peak_Acc_x Interq_Azimuth   Std_Acc_x Entropy_TimeD_Acc 
100 Interq_Acc_y Widest_Peak_Acc_x   Std_Acc_y Std_Acc_x 
101 Kur_Acc_z Var_Azimuth   Std_Acc_z Std_Acc_y 
102 Energy_Azimuth Kur_Pitch   Std_Azimuth Std_Acc_z 
103 Var_Azimuth nPeaks_Roll   Std_Pitch Std_Azimuth 
104 Widest_Peak_Acc_y Energy_Azimuth   Std_Roll Std_Pitch 
105 Kur_Acc_y nPeaks_Azimuth   Energy_Acc_x Std_Roll 
106 nPeaks_Acc_y Avr_peak_time_Roll   Energy_Acc_y Energy_Acc_x 
107 Widest_Peak_Roll Kur_Acc_y   Energy_Acc_z Energy_Acc_y 
108 Avr_peak_time_Acc_y Widest_Peak_Acc_y   Energy_Azimuth Energy_Acc_z 
109 Widest_Peak_Acc_z Widest_Peak_Roll   Energy_Pitch Energy_Azimuth 
110 Widest_Peak_Pitch Avr_peak_time_Pitch   Energy_Roll Energy_Pitch 
111 Avr_peak_time_Acc_z nPeaks_Acc_z   nPeaks_Azimuth Energy_Roll 
112 nPeaks_Azimuth Avr_peak_time_Azimuth   Widest_Peak_Acc_x Dfreq_Azimuth 
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113 Avr_peak_time_Azimuth nPeaks_Pitch   Avr_peak_time_Pitch Widest_Peak_Acc_y 
114 mag_Acc Avr_peak_time_Acc_z   Avr_peak_time_Acc_x Avr_peak_time_Pitch 
115 Widest_Peak_Azimuth Widest_Peak_Acc_z   nPeaks_Roll Kur_Acc_y 
116 Avr_peak_time_Pitch Avr_peak_time_Acc_y   Widest_Peak_Roll Avr_peak_time_Azimuth 
117 nPeaks_Acc_x nPeaks_Acc_x   Widest_Peak_Acc_z nPeaks_Acc_y 
118 Avr_peak_time_Roll nPeaks_Acc_y   Max_diff_Acc_z mag_Acc 
119 Avr_peak_time_Acc_x Widest_Peak_Azimuth   Widest_Peak_Pitch Widest_Peak_Roll 
120 nPeaks_Pitch Widest_Peak_Pitch   Avr_peak_time_Azimuth Widest_Peak_Pitch 
121 nPeaks_Roll mag_Acc   nPeaks_Acc_z nPeaks_Acc_x 
122 nPeaks_Acc_z Avr_peak_time_Acc_x   Avr_peak_time_Acc_y Avr_peak_time_Acc_z 
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Appendix E. 7 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet2_b over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Mean_Acc_x Mean_Roll Mean_Acc_y Mean_Acc_x Mean_Acc_x Min_Roll 
2 Mean_Roll Mean_Acc_x Mean_Azimuth Mean_Gyr_z Mean_Roll Mean_Roll 
3 Min_Roll Entropy_Roll Mean_Pitch Var_Acc_y Min_Roll Mean_Acc_x 
4 Dfreq_Acc_z Dfreq_Roll Mean_Roll Var_Acc_z Mean_Acc_z Mean_Acc_z 
5 Entropy_Roll Entropy_Acc_x Mean_Gyr_x Var_Azimuth Mean_Pitch Rms_Roll 
6 Cf_Roll Dfreq_Acc_x Var_Acc_y Var_Gyr_x Vedb_Acc Rms_Pitch 
7 Mean_Acc_z Cf_Roll Var_Acc_z Std_Acc_z Rms_Pitch Vedb_Acc 
8 Dfreq_Pitch Dfreq_Acc_z Std_Acc_x Std_Gyr_x Rms_Roll Rms_Acc_y 
9 Vedb_Acc Mean_Acc_z Std_Acc_y Std_Gyr_y Min_Pitch Mean_Pitch 
10 Dfreq_Roll Min_Roll Std_Acc_z Kur_Acc_x Kur_Acc_y Dfreq_Roll 
11 Rms_Pitch Energy_Pitch Std_Azimuth Kur_Azimuth Dfreq_Pitch Cf_Gyr_x 
12 Dfreq_Acc_x Vedb_Acc Std_Roll Kur_Pitch Mean_Acc_y Mean_Acc_y 
13 Energy_Acc_y Rms_Pitch Std_Gyr_x Kur_Gyr_x Max_Roll Kur_Gyr_x 
14 Max_Roll Rms_Roll Std_Gyr_y Skew_Acc_x Entropy_Acc_x Min_Gyr_y 
15 Energy_Pitch Max_Roll Kur_Acc_x Skew_Gyr_y Cf_Pitch Entropy_Roll 
16 Dfreq_Acc_y Dfreq_Pitch Kur_Acc_y Skew_Gyr_z Dfreq_Roll Max_diff_Acc_y 
17 Rms_Acc_y Energy_Acc_y Kur_Acc_z Min_Acc_z Rms_Acc_x Kur_Acc_y 
18 Entropy_Acc_x Rms_Acc_y Kur_Pitch Min_Azimuth Max_Gyr_y Interq_Roll 
19 Rms_Roll Dfreq_Acc_y Kur_Roll Min_Pitch Min_Gyr_x Max_Roll 
20 Cf_Acc_x Energy_Roll Kur_Gyr_x Min_Gyr_x Dfreq_Acc_x Cf_Acc_y 
21 Min_Acc_x Min_Acc_x Skew_Roll Min_Gyr_y Rms_Acc_y Max_Acc_y 
22 Mean_Pitch Mean_Pitch Skew_Gyr_y Min_Gyr_z Skew_Gyr_x Var_Acc_y 
23 Interq_Gyr_x Entropy_Acc_z Skew_Gyr_z Max_Acc_y Kur_Acc_z Var_Acc_z 
24 Entropy_Acc_z Cf_Acc_x Min_Acc_y Max_Acc_z Max_Acc_x Max_Gyr_z 
25 Energy_Acc_z Min_Acc_y Min_Gyr_x Max_Azimuth Min_Acc_z Dfreq_Acc_x 
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26 Energy_Roll Rms_Acc_z Min_Gyr_z Max_Gyr_z Entropy_Acc_z Min_Acc_z 
27 Rms_Acc_z Max_Acc_x Max_Acc_y Rms_Acc_y Interq_Gyr_z Skew_Gyr_x 
28 Entropy_Acc_y Energy_Acc_z Max_Acc_z Rms_Azimuth SVM_Acc Var_Acc_x 
29 Rms_Gyr_x Cf_Acc_y Max_Pitch Rms_Pitch MV_Acc Min_Pitch 
30 Std_Gyr_x Rms_Gyr_x Max_Roll Rms_Roll Max_Acc_z Var_Gyr_y 
31 Mean_Acc_y Std_Gyr_x Max_Gyr_x Rms_Gyr_x Skew_Acc_z Skew_Acc_y 
32 Min_Acc_y Mean_Acc_y Max_Gyr_z Rms_Gyr_y Max_Pitch Max_Acc_x 
33 Var_Gyr_x Rms_Acc_x Rms_Acc_y Interq_Acc_z Max_diff_Pitch Max_diff_Gyr_y 
34 Energy_Gyr_x Max_Acc_y Rms_Acc_z Interq_Gyr_x Min_Acc_y SVM_Acc 
35 Max_Acc_x Energy_Gyr_x Rms_Roll Cf_Acc_y nPeaks_Pitch Var_Roll 
36 Interq_Gyr_z Var_Gyr_x Rms_Gyr_x Cf_Pitch Var_Acc_x Max_diff_Gyr_z 
37 Min_Pitch Interq_Gyr_x Rms_Gyr_z Cf_Gyr_y Interq_Gyr_x Max_diff_Roll 
38 Entropy_Pitch Interq_Gyr_z Interq_Acc_x Cf_Gyr_z Kur_Acc_x Interq_Gyr_y 
39 Interq_Acc_y Min_Acc_z Interq_Acc_z Entropy_Acc_x Entropy_TimeD_Acc Mean_Gyr_z 
40 Rms_Acc_x Entropy_Acc_y Interq_Roll Entropy_Pitch Mean_Gyr_z Min_Gyr_x 
41 Dfreq_Gyr_x Min_Pitch Interq_Gyr_z Entropy_Roll Rms_Acc_z SMA_Acc 
42 Highest_peak_Gyr_x Interq_Acc_y Cf_Acc_y Entropy_TimeD_Acc Entropy_Roll Widest_Peak_Acc_z 
43 Max_Acc_y Energy_Acc_x Cf_Azimuth Entropy_TimeD_Gyr Widest_Peak_Acc_z Entropy_Gyr_y 
44 Interq_Gyr_y Dfreq_Gyr_x Cf_Pitch Energy_Acc_y Cf_Acc_y Rms_Acc_z 
45 Min_Acc_z Highest_peak_Gyr_x Cf_Gyr_x Energy_Azimuth Interq_Acc_y Entropy_Azimuth 
46 Cf_Acc_y Cf_Gyr_x Cf_Gyr_z Energy_Pitch Max_Gyr_z Interq_Gyr_z 
47 Max_diff_Acc_y Skew_Acc_y SMA_Acc Energy_Roll Cf_Acc_z Max_Gyr_x 
48 MV_Acc Interq_Gyr_y SMA_Angle Energy_Gyr_z nPeaks_Roll Max_diff_Acc_x 
49 Std_Acc_z DSVM_Acc Entropy_Acc_x SVM_Acc Rms_Gyr_x Kur_Pitch 
50 Std_Roll Interq_Acc_z Entropy_Acc_z DSVM_Acc Var_Roll Max_diff_Azimuth 
51 Interq_Roll Min_Gyr_y Entropy_Azimuth DSAM_Angle SMA_Acc Max_Pitch 
52 Std_Pitch MV_Gyr Entropy_Gyr_x DSVM_Gyr Var_Gyr_z DSVM_Gyr 
53 DSVM_Acc Entropy_Gyr_x Entropy_Gyr_z Max_diff_Acc_x Interq_Roll MV_Gyr 
54 Highest_peak_Roll Max_diff_Gyr_x Entropy_TimeD_Ang Max_diff_Acc_y Max_Acc_y Min_Acc_x 
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55 Energy_Acc_x Max_diff_Acc_y Entropy_TimeD_Gyr Max_diff_Azimuth Max_diff_Gyr_x Cf_Roll 
56 MV_Gyr MV_Acc Energy_Acc_y Max_diff_Roll Kur_Pitch Entropy_Acc_y 
57 Highest_peak_Acc_z SVM_Acc Energy_Acc_z Max_diff_Gyr_x nPeaks_Acc_y Kur_Gyr_z 
58 Min_Gyr_y Entropy_Gyr_y Energy_Azimuth Max_diff_Gyr_z Widest_Peak_Acc_x Min_Gyr_z 
59 Max_Pitch Max_diff_Acc_z Energy_Pitch MV_Acc Min_Gyr_y DSVM_Acc 
60 Std_Acc_y Interq_Acc_x Energy_Gyr_z AV_Ang Var_Acc_y Interq_Acc_y 
61 Interq_Acc_z SMA_Acc SVM_Angle MV_Gyr Cf_Azimuth Widest_Peak_Acc_y 
62 Max_diff_Acc_z Std_Gyr_z SVM_Gyr mag_Acc mag_Gyr Rms_Acc_x 
63 Var_Acc_y Highest_peak_Acc_z DSAM_Angle mag_Ang Max_diff_Acc_y Interq_Gyr_x 
64 Cf_Pitch Cf_Acc_z DSVM_Gyr Vedb_Gyr Max_Azimuth Entropy_Acc_x 
65 Max_diff_Gyr_x Entropy_TimeD_Acc Max_diff_Pitch Dfreq_Acc_z Kur_Gyr_y Max_Gyr_y 
66 SMA_Acc Skew_Roll Max_diff_Roll Dfreq_Azimuth Entropy_Gyr_x Min_Acc_y 
67 Mean_Gyr_z Entropy_Gyr_z Max_diff_Gyr_z Dfreq_Pitch Vedb_Gyr Cf_Pitch 
68 SVM_Acc Highest_peak_Acc_x MV_Acc Dfreq_Roll Entropy_Pitch DSAM_Angle 
69 Skew_Acc_y Std_Roll AV_Ang Dfreq_Gyr_x Dfreq_Gyr_x Skew_Gyr_z 
70 Skew_Roll Highest_peak_Gyr_z mag_Acc Dfreq_Gyr_y Var_Gyr_y Dfreq_Pitch 
71 Var_Acc_z SVM_Gyr Dfreq_Acc_y Widest_Peak_Acc_x Vedb_Angle Dfreq_Gyr_z 
72 Entropy_Gyr_x SMA_Gyr Dfreq_Acc_z Highest_peak_Acc_y Max_diff_Roll Widest_Peak_Gyr_y 
73 SVM_Gyr Entropy_Pitch Dfreq_Azimuth Avr_peak_time_Acc_y Min_Gyr_z Rms_Gyr_y 
74 Min_Gyr_x nPeaks_Gyr_y Dfreq_Gyr_x nPeaks_Acc_z Avr_peak_time_Acc_z Kur_Azimuth 
75 SMA_Gyr Rms_Gyr_z nPeaks_Acc_x Widest_Peak_Acc_z Cf_Gyr_z Skew_Azimuth 
76 Kur_Acc_y Std_Acc_z Widest_Peak_Acc_x Highest_peak_Acc_z Cf_Gyr_x Kur_Acc_z 
77 Highest_peak_Acc_x Std_Gyr_y Widest_Peak_Acc_y Avr_peak_time_Acc_z Max_diff_Gyr_y Skew_Acc_x 
78 Entropy_TimeD_Acc Skew_Gyr_x Avr_peak_time_Acc_y Highest_peak_Azimuth SVM_Gyr Highest_peak_Azimuth 
79 Widest_Peak_Acc_x Rms_Gyr_y Widest_Peak_Acc_z Widest_Peak_Pitch Interq_Acc_z Avr_peak_time_Gyr_z 
80 Rms_Gyr_y Widest_Peak_Gyr_x Highest_peak_Acc_z Highest_peak_Pitch Highest_peak_Acc_x Entropy_Acc_z 
81 Std_Gyr_y Max_diff_Azimuth nPeaks_Azimuth Avr_peak_time_Pitch AV_Ang Skew_Acc_z 
82 Entropy_TimeD_Gyr Kur_Acc_y nPeaks_Pitch nPeaks_Roll Kur_Gyr_x Max_Azimuth 
83 Interq_Pitch Max_Pitch Avr_peak_time_Pitch Widest_Peak_Roll Highest_peak_Gyr_x Rms_Gyr_x 
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84 Entropy_Gyr_z Max_Gyr_x Avr_peak_time_Roll Avr_peak_time_Roll Max_Gyr_x Var_Gyr_x 
85 Std_Gyr_z DSVM_Gyr Widest_Peak_Gyr_y nPeaks_Gyr_x Dfreq_Gyr_z Avr_peak_time_Acc_z 
86 Cf_Gyr_x Highest_peak_Roll nPeaks_Gyr_z nPeaks_Gyr_y Entropy_TimeD_Gyr Var_Gyr_z 
87 Max_diff_Gyr_y Entropy_TimeD_Gyr Highest_peak_Gyr_z Avr_peak_time_Gyr_y Highest_peak_Pitch Vedb_Gyr 
88 Var_Pitch Std_Acc_y Avr_peak_time_Gyr_z Widest_Peak_Gyr_z Cf_Roll Highest_peak_Roll 
89 Entropy_Gyr_y Min_Gyr_x   Skew_Azimuth Min_Azimuth 
90 Var_Roll Vedb_Gyr   DSVM_Acc Entropy_Pitch 
91 Skew_Acc_x Std_Acc_x   Cf_Acc_x Widest_Peak_Gyr_z 
92 DSVM_Gyr Cf_Pitch   Skew_Gyr_z Max_diff_Pitch 
93 Skew_Gyr_x Interq_Roll   Min_Acc_x Cf_Acc_x 
94 Rms_Gyr_z Var_Acc_y   nPeaks_Acc_x Entropy_TimeD_Acc 
95 Min_Gyr_z Max_Acc_z   Max_diff_Gyr_z Entropy_Gyr_z 
96 Kur_Gyr_x Var_Gyr_z   Var_Acc_z Max_diff_Acc_z 
97 Highest_peak_Gyr_z Max_diff_Gyr_y   DSVM_Gyr nPeaks_Acc_x 
98 Max_Gyr_y Mean_Gyr_z   Dfreq_Gyr_y Widest_Peak_Gyr_x 
99 Widest_Peak_Acc_z Min_Gyr_z   Highest_peak_Acc_y Max_Acc_z 
100 Skew_Pitch Highest_peak_Gyr_y   SMA_Gyr Kur_Gyr_y 
101 Mean_Gyr_y Max_Gyr_y   Cf_Gyr_y Cf_Gyr_y 
102 Dfreq_Gyr_y Var_Roll   Widest_Peak_Azimuth Interq_Azimuth 
103 Interq_Acc_x Std_Pitch   Avr_peak_time_Gyr_y Kur_Roll 
104 Energy_Gyr_y Avr_peak_time_Gyr_y   mag_Acc Var_Azimuth 
105 Var_Gyr_y Var_Acc_z   Interq_Azimuth nPeaks_Acc_z 
106 Highest_peak_Gyr_y Var_Acc_x   Dfreq_Azimuth Vedb_Angle 
107 Vedb_Gyr Max_diff_Roll   Highest_peak_Acc_z Highest_peak_Gyr_z 
108 Highest_peak_Azimuth Energy_Gyr_z   Skew_Acc_x Skew_Pitch 
109 Widest_Peak_Gyr_y Dfreq_Gyr_y   Entropy_Gyr_y Rms_Gyr_z 
110 Highest_peak_Pitch Skew_Acc_x   Widest_Peak_Gyr_x SVM_Gyr 
111 Cf_Acc_z Var_Gyr_y   Rms_Gyr_z Widest_Peak_Roll 
112 Dfreq_Gyr_z Skew_Acc_z   Interq_Pitch Kur_Acc_x 
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113 nPeaks_Acc_z Widest_Peak_Roll   Min_Azimuth Avr_peak_time_Azimuth 
114 Var_Gyr_z Energy_Gyr_y   Energy_Acc_y Avr_peak_time_Acc_y 
115 Widest_Peak_Azimuth nPeaks_Acc_y   nPeaks_Azimuth Highest_peak_Acc_y 
116 nPeaks_Acc_y Widest_Peak_Gyr_y   Entropy_TimeD_Ang SMA_Gyr 
117 Highest_peak_Acc_y DSAM_Angle   Highest_peak_Roll Widest_Peak_Pitch 
118 Std_Acc_x Highest_peak_Acc_y   Energy_Gyr_z Highest_peak_Acc_x 
119 Var_Acc_x AV_Ang   Widest_Peak_Gyr_z mag_Gyr 
120 nPeaks_Pitch Std_Azimuth   Var_Gyr_x Entropy_Gyr_x 
121 Widest_Peak_Roll Max_diff_Gyr_z   Interq_Acc_x Entropy_TimeD_Gyr 
122 Kur_Roll Kur_Gyr_z   Highest_peak_Gyr_y Interq_Acc_x 
123 Max_diff_Pitch Max_Gyr_z   Skew_Roll Highest_peak_Acc_z 
124 Kur_Pitch Var_Pitch   Max_diff_Acc_x Highest_peak_Pitch 
125 Skew_Acc_z Max_diff_Pitch   DSAM_Angle Mean_Gyr_y 
126 Energy_Gyr_z Skew_Pitch   Entropy_Gyr_z Skew_Roll 
127 Max_Gyr_x nPeaks_Acc_z   Var_Pitch Widest_Peak_Acc_x 
128 Avr_peak_time_Acc_z Kur_Gyr_x   Var_Azimuth nPeaks_Pitch 
129 DSAM_Angle Max_diff_Acc_x   Widest_Peak_Acc_y Dfreq_Gyr_y 
130 Max_diff_Roll Interq_Pitch   Entropy_Azimuth Skew_Gyr_y 
131 Max_Acc_z Skew_Gyr_y   Avr_peak_time_Azimuth Std_Acc_x 
132 AV_Ang Dfreq_Gyr_z   Std_Gyr_y Std_Acc_y 
133 Kur_Gyr_z Widest_Peak_Gyr_z   Entropy_Acc_y Std_Acc_z 
134 Max_diff_Gyr_z Skew_Gyr_z   Max_diff_Azimuth Std_Azimuth 
135 Avr_peak_time_Pitch Avr_peak_time_Acc_z   SMA_Angle Std_Pitch 
136 nPeaks_Gyr_y Cf_Gyr_z   Avr_peak_time_Acc_y Std_Roll 
137 nPeaks_Roll Avr_peak_time_Gyr_x   Kur_Gyr_z Std_Gyr_x 
138 Avr_peak_time_Roll nPeaks_Gyr_z   Rms_Azimuth Std_Gyr_y 
139 Avr_peak_time_Acc_y mag_Ang   Mean_Azimuth Std_Gyr_z 
140 mag_Ang Interq_Azimuth   Avr_peak_time_Roll Energy_Acc_x 
141 Max_Gyr_z Widest_Peak_Acc_z   Mean_Gyr_y Energy_Acc_y 
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142 Cf_Azimuth Widest_Peak_Azimuth   Highest_peak_Gyr_z Energy_Acc_z 
143 Kur_Acc_x Kur_Acc_x   Energy_Gyr_x Energy_Azimuth 
144 Max_Azimuth Cf_Gyr_y   Avr_peak_time_Pitch Energy_Pitch 
145 Kur_Gyr_y Mean_Gyr_y   Interq_Gyr_y Energy_Roll 
146 Cf_Gyr_z Kur_Acc_z   Skew_Acc_y Energy_Gyr_x 
147 Skew_Azimuth Avr_peak_time_Gyr_z   Skew_Pitch Energy_Gyr_y 
148 Kur_Acc_z Avr_peak_time_Acc_y   Rms_Gyr_y Energy_Gyr_z 
149 Skew_Gyr_z nPeaks_Gyr_x   Energy_Acc_z SVM_Angle 
150 Energy_Azimuth Mean_Gyr_x   Mean_Gyr_x Dfreq_Acc_y 
151 Kur_Azimuth Kur_Roll   nPeaks_Acc_z Dfreq_Acc_z 
152 Widest_Peak_Pitch Kur_Gyr_y   Kur_Azimuth Dfreq_Azimuth 
153 Avr_peak_time_Gyr_y Widest_Peak_Acc_y   MV_Gyr Highest_peak_Gyr_x 
154 nPeaks_Azimuth Var_Azimuth   Std_Acc_z nPeaks_Acc_y 
155 Rms_Azimuth Highest_peak_Pitch   Std_Roll mag_Acc 
156 Avr_peak_time_Gyr_x nPeaks_Pitch   Skew_Gyr_y Avr_peak_time_Gyr_y 
157 Cf_Gyr_y Min_Azimuth   nPeaks_Gyr_z MV_Acc 
158 Vedb_Angle Avr_peak_time_Roll   nPeaks_Gyr_y SMA_Angle 
159 mag_Gyr Highest_peak_Azimuth   Std_Azimuth mag_Ang 
160 mag_Acc Kur_Pitch   Std_Acc_x Mean_Azimuth 
161 Avr_peak_time_Azimuth Avr_peak_time_Acc_x   SVM_Angle Widest_Peak_Azimuth 
162 Widest_Peak_Acc_y nPeaks_Acc_x   Avr_peak_time_Gyr_x Cf_Gyr_z 
163 Std_Azimuth Widest_Peak_Acc_x   Widest_Peak_Roll Rms_Azimuth 
164 Mean_Gyr_x Avr_peak_time_Pitch   Kur_Roll nPeaks_Gyr_y 
165 Skew_Gyr_y Widest_Peak_Pitch   Energy_Acc_x Interq_Acc_z 
166 Max_diff_Acc_x Cf_Azimuth   Avr_peak_time_Acc_x Var_Pitch 
167 nPeaks_Acc_x Avr_peak_time_Azimuth   Energy_Pitch Avr_peak_time_Acc_x 
168 Avr_peak_time_Acc_x mag_Acc   Avr_peak_time_Gyr_z Cf_Azimuth 
169 Mean_Azimuth nPeaks_Azimuth   nPeaks_Gyr_x Max_diff_Gyr_x 
170 Dfreq_Azimuth Kur_Azimuth   Widest_Peak_Gyr_y Avr_peak_time_Roll 
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171 Widest_Peak_Gyr_z nPeaks_Roll   Widest_Peak_Pitch Highest_peak_Gyr_y 
172 nPeaks_Gyr_x Entropy_Azimuth   mag_Ang nPeaks_Gyr_z 
173 Entropy_TimeD_Ang Skew_Azimuth   Highest_peak_Azimuth nPeaks_Gyr_x 
174 Avr_peak_time_Gyr_z Max_Azimuth   Max_diff_Acc_z nPeaks_Azimuth 
175 SVM_Angle mag_Gyr   Std_Gyr_x Entropy_TimeD_Ang 
176 SMA_Angle Entropy_TimeD_Ang   Dfreq_Acc_y Avr_peak_time_Pitch 
177 Min_Azimuth SVM_Angle   Std_Acc_y Dfreq_Gyr_x 
178 Interq_Azimuth SMA_Angle   Std_Pitch Mean_Gyr_x 
179 Var_Azimuth Vedb_Angle   Dfreq_Acc_z Cf_Acc_z 
180 Widest_Peak_Gyr_x Rms_Azimuth   Std_Gyr_z Interq_Pitch 
181 nPeaks_Gyr_z Energy_Azimuth   Energy_Azimuth AV_Ang 
182 Entropy_Azimuth Mean_Azimuth   Energy_Roll Avr_peak_time_Gyr_x 
183 Max_diff_Azimuth Dfreq_Azimuth   Energy_Gyr_y nPeaks_Roll 
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Appendix E. 8 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet2_b over 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Mean_Acc_x Mean_Acc_x Mean_Acc_z Mean_Acc_x Min_Roll Min_Roll 
2 Mean_Roll Mean_Roll Mean_Azimuth Mean_Gyr_x Mean_Acc_x Mean_Roll 
3 Cf_Roll Entropy_Roll Mean_Pitch Var_Roll Mean_Roll Rms_Roll 
4 Entropy_Roll Cf_Roll Mean_Roll Var_Gyr_y Rms_Pitch Mean_Acc_x 
5 Dfreq_Acc_x Energy_Pitch Mean_Gyr_y Std_Acc_z Rms_Roll Mean_Pitch 
6 Dfreq_Roll Rms_Pitch Mean_Gyr_z Std_Azimuth Cf_Acc_x Min_Acc_y 
7 Dfreq_Pitch Dfreq_Pitch Var_Pitch Std_Gyr_y Mean_Acc_y Mean_Acc_z 
8 Min_Roll Dfreq_Acc_z Var_Gyr_z Kur_Acc_y Mean_Acc_z Var_Roll 
9 Mean_Acc_z Mean_Acc_z Std_Acc_x Kur_Roll Kur_Acc_y Rms_Acc_y 
10 Dfreq_Acc_z Dfreq_Roll Std_Acc_y Skew_Acc_z Skew_Gyr_x Dfreq_Pitch 
11 Max_Roll Min_Roll Std_Acc_z Skew_Gyr_x SVM_Acc Rms_Pitch 
12 Rms_Pitch Dfreq_Acc_x Std_Azimuth Skew_Gyr_y Mean_Pitch Mean_Acc_y 
13 Entropy_Acc_x Max_Roll Std_Pitch Skew_Gyr_z Vedb_Acc Max_Pitch 
14 Dfreq_Acc_y Dfreq_Acc_y Std_Gyr_y Min_Acc_x Dfreq_Pitch Max_diff_Acc_y 
15 Energy_Pitch Rms_Roll Kur_Acc_y Min_Azimuth Var_Roll Dfreq_Roll 
16 Cf_Acc_x Entropy_Acc_x Kur_Acc_z Min_Roll Min_Acc_y Rms_Acc_z 
17 Vedb_Acc Vedb_Acc Kur_Pitch Min_Gyr_y Entropy_TimeD_Acc Vedb_Acc 
18 Rms_Roll Cf_Acc_x Kur_Roll Max_Acc_y Dfreq_Acc_x Entropy_Gyr_z 
19 Rms_Acc_y Mean_Pitch Kur_Gyr_x Max_Acc_z Max_Acc_y Skew_Gyr_x 
20 Energy_Acc_y Rms_Acc_y Kur_Gyr_y Max_Azimuth Rms_Acc_y Dfreq_Acc_x 
21 Min_Acc_x Max_Acc_x Skew_Acc_y Max_Pitch Min_Pitch Min_Acc_z 
22 Mean_Pitch Energy_Roll Skew_Acc_z Max_Roll Kur_Pitch Interq_Roll 
23 Entropy_Acc_y Energy_Acc_y Skew_Azimuth Max_Gyr_z Energy_Pitch Min_Gyr_y 
24 Max_Acc_x Min_Acc_x Skew_Pitch Rms_Acc_x Cf_Roll Entropy_Acc_x 
25 Rms_Acc_z Entropy_Acc_y Skew_Gyr_z Rms_Acc_y Dfreq_Roll Var_Acc_z 
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26 Entropy_Acc_z Mean_Acc_y Min_Acc_x Rms_Azimuth Mean_Gyr_z Max_Roll 
27 Energy_Acc_z Rms_Acc_z Min_Acc_y Rms_Pitch Interq_Gyr_y Cf_Acc_x 
28 Energy_Roll Entropy_Acc_z Min_Pitch Rms_Gyr_x Var_Pitch Highest_peak_Gyr_z 
29 Interq_Gyr_x Min_Acc_y Min_Gyr_x Rms_Gyr_z Max_diff_Gyr_y SVM_Acc 
30 Mean_Acc_y Energy_Acc_z Max_Acc_x Interq_Acc_y Max_diff_Pitch Max_diff_Gyr_y 
31 Entropy_Pitch Interq_Gyr_x Max_Acc_z Interq_Pitch Var_Azimuth Entropy_TimeD_Acc 
32 Min_Acc_y Rms_Gyr_x Max_Azimuth Interq_Gyr_x Cf_Pitch Min_Gyr_x 
33 Rms_Acc_x Std_Gyr_x Max_Pitch Interq_Gyr_z Max_Roll Cf_Roll 
34 Rms_Gyr_x Entropy_Pitch Max_Roll Cf_Azimuth Skew_Acc_y Var_Gyr_z 
35 Max_Acc_y Rms_Acc_x Max_Gyr_x Cf_Roll Interq_Roll Max_Acc_y 
36 Std_Gyr_x Max_Acc_y Rms_Acc_x Cf_Gyr_z Var_Acc_x Var_Acc_y 
37 Entropy_Gyr_y Min_Gyr_y Rms_Acc_y SMA_Angle Min_Acc_x Highest_peak_Azimuth 
38 Max_diff_Acc_y Min_Pitch Rms_Roll SMA_Gyr Interq_Acc_x Var_Gyr_y 
39 Interq_Acc_y Energy_Gyr_x Rms_Gyr_x Entropy_Acc_y Max_Gyr_y Highest_peak_Roll 
40 Min_Gyr_y Var_Gyr_x Rms_Gyr_z Entropy_Azimuth Max_diff_Roll Max_Gyr_z 
41 Max_diff_Azimuth Cf_Acc_y Interq_Acc_x Entropy_Pitch Rms_Acc_x Interq_Acc_x 
42 Min_Pitch Max_diff_Acc_y Interq_Acc_z Entropy_Roll Widest_Peak_Acc_z Interq_Gyr_z 
43 Cf_Gyr_x Skew_Acc_y Interq_Gyr_x Entropy_Gyr_x Dfreq_Gyr_y Var_Gyr_x 
44 SVM_Acc Interq_Gyr_z Interq_Gyr_y Entropy_Gyr_y Min_Gyr_x Min_Gyr_z 
45 Interq_Acc_x Energy_Acc_x Cf_Acc_x Entropy_Gyr_z Vedb_Angle Highest_peak_Gyr_y 
46 Interq_Gyr_y Highest_peak_Gyr_x Cf_Acc_z Entropy_TimeD_Ang Kur_Acc_z Min_Acc_x 
47 Cf_Acc_y Std_Roll Cf_Roll Energy_Acc_y SMA_Acc Rms_Azimuth 
48 SMA_Acc Dfreq_Gyr_x Cf_Gyr_y Energy_Azimuth Widest_Peak_Gyr_y Max_diff_Gyr_z 
49 Highest_peak_Gyr_x Highest_peak_Roll SMA_Acc Energy_Pitch Entropy_Gyr_x Skew_Gyr_z 
50 Dfreq_Gyr_x Std_Gyr_z SMA_Angle Energy_Roll Energy_Azimuth Mean_Gyr_y 
51 Var_Gyr_x Highest_peak_Gyr_z Entropy_Acc_x Energy_Gyr_x Entropy_Acc_y Var_Azimuth 
52 Energy_Gyr_x Std_Gyr_y Entropy_Roll Energy_Gyr_z Entropy_Roll Skew_Gyr_y 
53 Entropy_TimeD_Acc Rms_Gyr_y Entropy_Gyr_y SVM_Angle Kur_Acc_x Max_diff_Pitch 
54 Rms_Gyr_y Min_Acc_z Entropy_TimeD_Acc SVM_Gyr Energy_Acc_y Rms_Acc_x 
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55 Entropy_Gyr_x Max_diff_Azimuth Entropy_TimeD_Ang DSVM_Gyr Cf_Gyr_x Dfreq_Gyr_y 
56 Std_Gyr_y Max_Pitch Energy_Acc_x Max_diff_Acc_y Kur_Gyr_z nPeaks_Acc_z 
57 Interq_Gyr_z Cf_Gyr_x Energy_Azimuth Max_diff_Pitch Skew_Pitch Cf_Acc_z 
58 Highest_peak_Gyr_z Min_Gyr_x Energy_Pitch Max_diff_Roll Var_Acc_y Kur_Acc_y 
59 Std_Roll Interq_Acc_y Energy_Roll Max_diff_Gyr_x Rms_Acc_z DSVM_Acc 
60 Std_Gyr_z SVM_Acc Energy_Gyr_x Max_diff_Gyr_y Dfreq_Gyr_x Entropy_Roll 
61 Interq_Roll Max_diff_Gyr_y Energy_Gyr_y MV_Gyr Cf_Gyr_z Widest_Peak_Acc_x 
62 Interq_Acc_z Entropy_Gyr_x DSVM_Gyr mag_Ang Std_Gyr_y Max_diff_Acc_z 
63 Energy_Acc_x Std_Acc_x Max_diff_Acc_y Vedb_Gyr Max_Pitch Kur_Acc_x 
64 DSAM_Angle Entropy_Gyr_y Max_diff_Acc_z Dfreq_Acc_x Rms_Gyr_z Kur_Pitch 
65 MV_Gyr SMA_Acc Max_diff_Azimuth Dfreq_Pitch Highest_peak_Acc_z Highest_peak_Acc_x 
66 Min_Acc_z Interq_Roll Max_diff_Pitch Dfreq_Roll Min_Gyr_y Interq_Pitch 
67 Mean_Gyr_z Max_Gyr_y Max_diff_Roll Dfreq_Gyr_y Max_diff_Gyr_z Min_Pitch 
68 MV_Acc Cf_Pitch Max_diff_Gyr_x Dfreq_Gyr_z Entropy_Pitch Skew_Acc_y 
69 Std_Acc_y Entropy_TimeD_Acc MV_Acc Widest_Peak_Acc_x Avr_peak_time_Acc_x Entropy_TimeD_Gyr 
70 Max_diff_Gyr_x Highest_peak_Acc_z AV_Ang Highest_peak_Acc_x MV_Gyr Dfreq_Gyr_z 
71 AV_Ang Rms_Gyr_z mag_Ang Avr_peak_time_Acc_x Avr_peak_time_Gyr_x Skew_Acc_z 
72 Highest_peak_Acc_x Interq_Acc_x mag_Gyr Widest_Peak_Acc_z Widest_Peak_Azimuth Entropy_Acc_y 
73 Var_Acc_y Skew_Gyr_x Dfreq_Acc_x Highest_peak_Acc_z Highest_peak_Gyr_x nPeaks_Gyr_x 
74 Highest_peak_Gyr_y Std_Pitch Dfreq_Acc_z nPeaks_Azimuth Rms_Gyr_x Max_diff_Gyr_x 
75 Max_Pitch MV_Gyr Dfreq_Pitch Highest_peak_Azimuth Mean_Gyr_y Entropy_Acc_z 
76 Rms_Gyr_z MV_Acc nPeaks_Acc_x Avr_peak_time_Azimuth Energy_Acc_z Avr_peak_time_Gyr_x 
77 Highest_peak_Roll Interq_Gyr_y Widest_Peak_Acc_x nPeaks_Pitch Max_diff_Gyr_x Avr_peak_time_Acc_y 
78 Dfreq_Gyr_y Var_Roll Avr_peak_time_Acc_x Widest_Peak_Gyr_x DSAM_Angle Max_Acc_x 
79 Max_diff_Gyr_y Mean_Gyr_z Widest_Peak_Acc_y Avr_peak_time_Gyr_x DSVM_Gyr Skew_Roll 
80 Skew_Acc_y Std_Acc_y Avr_peak_time_Acc_y Avr_peak_time_Gyr_z Max_diff_Acc_z mag_Ang 
81 DSVM_Acc Var_Acc_x Widest_Peak_Acc_z  Std_Gyr_z Mean_Gyr_z 
82 nPeaks_Azimuth Interq_Acc_z nPeaks_Azimuth  Highest_peak_Acc_x Dfreq_Acc_y 
83 Skew_Gyr_z Cf_Acc_z Widest_Peak_Azimuth  Avr_peak_time_Azimuth Highest_peak_Acc_z 
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84 Std_Pitch SVM_Gyr Avr_peak_time_Azimuth  SVM_Angle Cf_Pitch 
85 Cf_Pitch Var_Acc_y Avr_peak_time_Pitch  Dfreq_Acc_y SMA_Gyr 
86 Skew_Gyr_x SMA_Gyr nPeaks_Roll  Highest_peak_Azimuth Interq_Acc_z 
87 Std_Acc_z Vedb_Gyr Widest_Peak_Roll  Highest_peak_Gyr_z Skew_Pitch 
88 Std_Acc_x Max_Gyr_x Avr_peak_time_Roll  Entropy_Azimuth Avr_peak_time_Acc_x 
89 nPeaks_Gyr_y DSVM_Acc Avr_peak_time_Gyr_x  Std_Acc_y Cf_Gyr_x 
90 Cf_Gyr_z Max_diff_Gyr_x nPeaks_Gyr_z  Entropy_Gyr_y nPeaks_Gyr_z 
91 Min_Gyr_z Var_Gyr_z Widest_Peak_Gyr_z  nPeaks_Pitch Avr_peak_time_Pitch 
92 Max_Gyr_y Highest_peak_Acc_x Avr_peak_time_Gyr_z  Std_Gyr_x Widest_Peak_Gyr_z 
93 Max_Gyr_x Std_Acc_z   Kur_Gyr_x mag_Gyr 
94 Min_Gyr_x DSVM_Gyr   Entropy_Acc_x AV_Ang 
95 Cf_Acc_z Entropy_TimeD_Gyr   Highest_peak_Gyr_y Max_diff_Acc_x 
96 DSVM_Gyr Interq_Pitch   Interq_Gyr_x Var_Acc_x 
97 Highest_peak_Acc_z Kur_Gyr_x   Interq_Acc_y SMA_Acc 
98 SVM_Gyr DSAM_Angle   Std_Acc_x Max_Gyr_x 
99 SMA_Gyr Max_diff_Acc_z   Interq_Acc_z mag_Acc 
100 Energy_Gyr_y Entropy_Gyr_z   Max_diff_Acc_y MV_Acc 
101 Vedb_Gyr Highest_peak_Acc_y   Max_Acc_x Entropy_TimeD_Ang 
102 Var_Gyr_y Dfreq_Gyr_y   Widest_Peak_Roll Widest_Peak_Gyr_y 
103 Widest_Peak_Gyr_x Skew_Acc_x   Interq_Pitch Max_Azimuth 
104 Var_Gyr_z Min_Gyr_z   Entropy_TimeD_Gyr Kur_Gyr_x 
105 Dfreq_Gyr_z Highest_peak_Gyr_y   Skew_Acc_z Cf_Acc_y 
106 Var_Roll AV_Ang   Kur_Gyr_y Cf_Gyr_z 
107 Widest_Peak_Acc_y Dfreq_Gyr_z   Cf_Acc_y Interq_Acc_y 
108 Entropy_TimeD_Gyr Skew_Pitch   Min_Acc_z Vedb_Gyr 
109 Var_Acc_x Energy_Gyr_y   Widest_Peak_Pitch Entropy_Pitch 
110 Widest_Peak_Acc_z Var_Gyr_y   Energy_Roll Var_Pitch 
111 Widest_Peak_Azimuth Skew_Roll   Mean_Gyr_x DSVM_Gyr 
112 Energy_Gyr_z Kur_Acc_y   DSVM_Acc nPeaks_Acc_y 
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113 Max_diff_Roll Max_Acc_z   Std_Azimuth Interq_Gyr_y 
114 Kur_Gyr_x Energy_Gyr_z   Interq_Azimuth Max_diff_Roll 
115 Var_Acc_z nPeaks_Gyr_z   Energy_Acc_x Mean_Azimuth 
116 Max_diff_Acc_z Kur_Acc_x   SMA_Angle Highest_peak_Pitch 
117 Entropy_Gyr_z Std_Azimuth   Max_Gyr_z Skew_Azimuth 
118 Kur_Gyr_z Skew_Acc_z   Entropy_TimeD_Ang Avr_peak_time_Acc_z 
119 Interq_Pitch Var_Pitch   Mean_Azimuth Kur_Acc_z 
120 Kur_Acc_y Max_diff_Roll   Std_Pitch Rms_Gyr_y 
121 Avr_peak_time_Azimuth Max_diff_Pitch   Dfreq_Gyr_z Interq_Azimuth 
122 Skew_Acc_z Var_Acc_z   Cf_Azimuth Max_Gyr_y 
123 nPeaks_Gyr_z nPeaks_Gyr_x   Entropy_Acc_z Mean_Gyr_x 
124 Widest_Peak_Gyr_y Max_Gyr_z   Std_Acc_z Widest_Peak_Acc_z 
125 Max_Gyr_z nPeaks_Pitch   Min_Gyr_z Avr_peak_time_Gyr_y 
126 Avr_peak_time_Gyr_y Avr_peak_time_Gyr_z   Vedb_Gyr Rms_Gyr_z 
127 Var_Pitch Mean_Gyr_y   Var_Gyr_x Kur_Azimuth 
128 mag_Ang Skew_Gyr_z   Cf_Gyr_y SVM_Gyr 
129 Kur_Acc_z nPeaks_Acc_z   Max_Acc_z Vedb_Angle 
130 Skew_Pitch Max_diff_Gyr_z   Skew_Gyr_z Dfreq_Gyr_x 
131 Max_diff_Pitch Widest_Peak_Acc_y   Dfreq_Acc_z Interq_Gyr_x 
132 Highest_peak_Acc_y Widest_Peak_Acc_z   Cf_Acc_z nPeaks_Pitch 
133 mag_Acc Highest_peak_Azimuth   nPeaks_Gyr_z DSAM_Angle 
134 Max_diff_Gyr_z Mean_Gyr_x   Std_Roll Std_Acc_x 
135 Highest_peak_Azimuth Skew_Gyr_y   Var_Gyr_z Std_Acc_y 
136 mag_Gyr Kur_Roll   Var_Gyr_y Std_Acc_z 
137 Max_Acc_z Cf_Gyr_z   Skew_Gyr_y Std_Azimuth 
138 Widest_Peak_Gyr_z Max_diff_Acc_x   nPeaks_Acc_z Std_Pitch 
139 Std_Azimuth Cf_Gyr_y   MV_Acc Std_Roll 
140 nPeaks_Acc_y Kur_Acc_z   SVM_Gyr Std_Gyr_x 
141 Kur_Roll mag_Gyr   Energy_Gyr_x Std_Gyr_y 
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142 Skew_Acc_x Avr_peak_time_Gyr_x   Avr_peak_time_Gyr_z Std_Gyr_z 
143 Interq_Azimuth Avr_peak_time_Pitch   Skew_Azimuth Energy_Acc_x 
144 Mean_Gyr_y Kur_Pitch   Kur_Roll Energy_Acc_y 
145 Skew_Roll Min_Azimuth   Widest_Peak_Acc_x Energy_Acc_z 
146 Cf_Gyr_y Kur_Gyr_z   SMA_Gyr Energy_Azimuth 
147 Kur_Acc_x Widest_Peak_Gyr_z   Avr_peak_time_Gyr_y Energy_Pitch 
148 nPeaks_Gyr_x Avr_peak_time_Acc_z   Var_Acc_z Energy_Roll 
149 Widest_Peak_Acc_x Kur_Gyr_y   Avr_peak_time_Pitch Energy_Gyr_x 
150 Highest_peak_Pitch Avr_peak_time_Azimuth   Interq_Gyr_z Energy_Gyr_y 
151 Avr_peak_time_Acc_z Avr_peak_time_Roll   Highest_peak_Pitch Energy_Gyr_z 
152 Cf_Azimuth Widest_Peak_Azimuth   Avr_peak_time_Acc_y SVM_Angle 
153 Kur_Pitch Highest_peak_Pitch   Entropy_Gyr_z Dfreq_Acc_z 
154 Min_Azimuth Widest_Peak_Pitch   Widest_Peak_Gyr_x Dfreq_Azimuth 
155 Max_diff_Acc_x Widest_Peak_Acc_x   Energy_Gyr_z Entropy_Gyr_x 
156 Avr_peak_time_Gyr_x mag_Acc   AV_Ang Rms_Gyr_x 
157 Kur_Azimuth nPeaks_Azimuth   Dfreq_Azimuth Widest_Peak_Acc_y 
158 Var_Azimuth nPeaks_Roll   nPeaks_Acc_y Entropy_Gyr_y 
159 nPeaks_Acc_z nPeaks_Gyr_y   Skew_Acc_x SMA_Angle 
160 Avr_peak_time_Roll Var_Azimuth   Energy_Gyr_y Kur_Gyr_y 
161 Avr_peak_time_Gyr_z Entropy_Azimuth   Widest_Peak_Gyr_z Kur_Roll 
162 Avr_peak_time_Pitch Widest_Peak_Gyr_y   Rms_Gyr_y Entropy_Azimuth 
163 nPeaks_Roll Kur_Azimuth   nPeaks_Azimuth Cf_Gyr_y 
164 Avr_peak_time_Acc_y Cf_Azimuth   Kur_Azimuth Kur_Gyr_z 
165 Entropy_Azimuth Avr_peak_time_Gyr_y   Max_Azimuth Max_diff_Azimuth 
166 Skew_Azimuth Skew_Azimuth   Highest_peak_Roll Avr_peak_time_Azimuth 
167 Skew_Gyr_y Interq_Azimuth   Min_Azimuth nPeaks_Roll 
168 Kur_Gyr_y Avr_peak_time_Acc_y   Widest_Peak_Acc_y Cf_Azimuth 
169 nPeaks_Pitch Widest_Peak_Gyr_x   nPeaks_Acc_x Highest_peak_Acc_y 
170 Avr_peak_time_Acc_x nPeaks_Acc_y   mag_Acc Min_Azimuth 
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171 nPeaks_Acc_x mag_Ang   nPeaks_Roll Avr_peak_time_Roll 
172 Widest_Peak_Roll Widest_Peak_Roll   Avr_peak_time_Acc_z MV_Gyr 
173 Max_Azimuth Max_Azimuth   Max_diff_Acc_x Widest_Peak_Pitch 
174 Mean_Gyr_x Avr_peak_time_Acc_x   Max_diff_Azimuth Widest_Peak_Azimuth 
175 Widest_Peak_Pitch Energy_Azimuth   Skew_Roll nPeaks_Azimuth 
176 Energy_Azimuth nPeaks_Acc_x   nPeaks_Gyr_y Widest_Peak_Gyr_x 
177 SVM_Angle Rms_Azimuth   Max_Gyr_x nPeaks_Acc_x 
178 SMA_Angle Vedb_Angle   mag_Ang nPeaks_Gyr_y 
179 Entropy_TimeD_Ang Dfreq_Azimuth   Rms_Azimuth Highest_peak_Gyr_x 
180 Rms_Azimuth Mean_Azimuth   Highest_peak_Acc_y Max_Acc_z 
181 Mean_Azimuth SVM_Angle   mag_Gyr Avr_peak_time_Gyr_z 
182 Dfreq_Azimuth SMA_Angle   nPeaks_Gyr_x Widest_Peak_Roll 
183 Vedb_Angle Entropy_TimeD_Ang   Avr_peak_time_Roll Skew_Acc_x 
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Appendix E. 9 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet2_b over 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Mean_Acc_x Mean_Acc_x Mean_Acc_x Mean_Acc_x Min_Roll Min_Roll 
2 Mean_Roll Mean_Roll Mean_Acc_y Mean_Pitch Mean_Acc_x Mean_Roll 
3 Cf_Roll Cf_Roll Mean_Acc_z Mean_Roll Mean_Roll Mean_Acc_x 
4 Min_Roll Dfreq_Acc_z Mean_Azimuth Mean_Gyr_y Rms_Pitch Mean_Acc_z 
5 Dfreq_Roll Dfreq_Roll Mean_Roll Mean_Gyr_z Mean_Pitch Mean_Acc_y 
6 Entropy_Roll Min_Roll Mean_Gyr_y Var_Acc_x Mean_Acc_z Rms_Pitch 
7 Dfreq_Pitch Max_Roll Var_Roll Var_Acc_y Dfreq_Pitch Max_diff_Acc_y 
8 Rms_Pitch Entropy_Roll Var_Gyr_y Var_Azimuth Rms_Roll Min_Acc_y 
9 Max_Roll Dfreq_Acc_y Std_Acc_y Var_Gyr_x Dfreq_Acc_x Mean_Pitch 
10 Dfreq_Acc_z Dfreq_Pitch Std_Acc_z Var_Gyr_y Mean_Acc_y Rms_Roll 
11 Dfreq_Acc_y Rms_Roll Std_Gyr_x Var_Gyr_z Vedb_Acc Var_Roll 
12 Energy_Pitch Mean_Acc_z Kur_Acc_x Std_Azimuth Kur_Acc_y Min_Pitch 
13 Mean_Acc_z Rms_Pitch Kur_Acc_y Std_Pitch Max_diff_Gyr_z Skew_Gyr_x 
14 Dfreq_Acc_x Dfreq_Acc_x Kur_Acc_z Std_Gyr_x Cf_Pitch Dfreq_Pitch 
15 Rms_Roll Rms_Acc_y Kur_Azimuth Std_Gyr_y Cf_Roll Entropy_Roll 
16 Cf_Acc_x Cf_Acc_x Kur_Gyr_y Kur_Acc_x Interq_Roll Kur_Acc_y 
17 Min_Acc_x Energy_Pitch Skew_Acc_x Kur_Acc_z Rms_Acc_z Max_Pitch 
18 Vedb_Acc Energy_Acc_y Skew_Pitch Kur_Azimuth Interq_Gyr_z Rms_Acc_z 
19 Rms_Acc_y Min_Acc_x Skew_Roll Kur_Gyr_z Min_Pitch Min_Gyr_x 
20 Entropy_Acc_y Max_Acc_x Skew_Gyr_z Skew_Acc_x Var_Acc_x Max_Roll 
21 Max_Acc_x Entropy_Acc_y Min_Acc_x Skew_Acc_y Var_Roll Rms_Acc_y 
22 Energy_Acc_y Entropy_Acc_x Min_Azimuth Skew_Azimuth Var_Gyr_x Min_Acc_z 
23 Mean_Pitch Vedb_Acc Min_Pitch Skew_Pitch Max_Acc_x Var_Gyr_z 
24 Entropy_Acc_x Rms_Acc_z Min_Gyr_z Skew_Roll Dfreq_Roll Max_Gyr_z 
25 Rms_Acc_z Energy_Roll Max_Acc_x Skew_Gyr_x Entropy_Acc_y Entropy_Acc_x 
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26 Energy_Roll Mean_Pitch Max_Azimuth Skew_Gyr_y Var_Gyr_y Mean_Azimuth 
27 Entropy_Acc_z Energy_Acc_z Max_Roll Min_Acc_z Highest_peak_Gyr_z Interq_Roll 
28 Mean_Acc_y Max_Acc_y Max_Gyr_x Min_Azimuth Max_diff_Gyr_y Dfreq_Roll 
29 Energy_Acc_z Mean_Acc_y Max_Gyr_y Min_Roll Max_Roll Skew_Azimuth 
30 Interq_Gyr_x Entropy_Acc_z Max_Gyr_z Min_Gyr_x Max_Acc_z Cf_Acc_y 
31 Min_Pitch Min_Acc_y Rms_Acc_x Min_Gyr_z Interq_Acc_x Rms_Acc_x 
32 Min_Acc_y Min_Pitch Rms_Acc_z Max_Acc_x Cf_Acc_x Max_diff_Acc_x 
33 Rms_Acc_x Interq_Gyr_x Rms_Pitch Max_Acc_y Rms_Acc_y Max_diff_Gyr_y 
34 Max_Acc_y Rms_Acc_x Rms_Roll Max_Roll Rms_Acc_x Vedb_Acc 
35 Entropy_Gyr_z Rms_Gyr_x Rms_Gyr_x Max_Gyr_x Interq_Azimuth Interq_Gyr_z 
36 Std_Gyr_x Std_Gyr_x Rms_Gyr_y Rms_Acc_x Rms_Gyr_y Skew_Acc_y 
37 Rms_Gyr_x Min_Acc_z Rms_Gyr_z Rms_Acc_z Cf_Acc_y Mean_Gyr_y 
38 Entropy_Pitch Entropy_Pitch Interq_Acc_x Rms_Azimuth Min_Acc_z Widest_Peak_Pitch 
39 Min_Acc_z Cf_Acc_y Interq_Acc_z Rms_Pitch Widest_Peak_Gyr_x Cf_Roll 
40 Std_Roll Std_Gyr_z Interq_Pitch Rms_Roll Var_Pitch Widest_Peak_Acc_y 
41 Entropy_Gyr_y Interq_Gyr_z Interq_Roll Rms_Gyr_x Interq_Gyr_x Interq_Acc_x 
42 Min_Gyr_y Dfreq_Gyr_z Interq_Gyr_z Rms_Gyr_z Dfreq_Gyr_z Dfreq_Gyr_z 
43 Std_Gyr_z Var_Gyr_x Cf_Acc_x Interq_Acc_x Entropy_Acc_x Cf_Acc_z 
44 Interq_Gyr_z Entropy_Gyr_y Cf_Acc_z Interq_Acc_y Interq_Acc_y Entropy_Acc_y 
45 Highest_peak_Gyr_z Energy_Gyr_x Cf_Gyr_x Interq_Acc_z Entropy_Pitch DSAM_Angle 
46 Dfreq_Gyr_x Max_Acc_z Cf_Gyr_y Interq_Azimuth Max_diff_Acc_z Highest_peak_Pitch 
47 Highest_peak_Gyr_x Mean_Gyr_z SMA_Gyr Interq_Roll Highest_peak_Acc_z Max_Acc_x 
48 Energy_Acc_x Rms_Gyr_z Entropy_Acc_y Interq_Gyr_y Kur_Gyr_x Entropy_Pitch 
49 Interq_Acc_x Min_Gyr_y Entropy_Roll Cf_Acc_x SMA_Acc Var_Gyr_y 
50 Highest_peak_Acc_z Max_diff_Acc_y Entropy_Gyr_y Cf_Acc_y Max_Gyr_z Max_Gyr_x 
51 Skew_Acc_y Dfreq_Gyr_x Entropy_TimeD_Acc Cf_Acc_z Mean_Gyr_x Var_Acc_x 
52 Max_diff_Acc_y Max_Pitch Entropy_TimeD_Ang Cf_Azimuth Mean_Gyr_z AV_Ang 
53 Interq_Gyr_y Highest_peak_Gyr_z Energy_Acc_x Cf_Pitch Entropy_TimeD_Gyr Cf_Acc_x 
54 Cf_Acc_y Cf_Gyr_z Energy_Acc_z Cf_Roll Entropy_Acc_z Skew_Roll 
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55 Highest_peak_Roll Interq_Gyr_y Energy_Azimuth Cf_Gyr_z Entropy_Roll Max_diff_Gyr_x 
56 Interq_Acc_y Highest_peak_Gyr_x Energy_Roll SMA_Gyr Min_Acc_y Max_Acc_y 
57 Std_Acc_x Cf_Gyr_x Energy_Gyr_y Entropy_Acc_z DSAM_Angle Max_diff_Gyr_z 
58 Max_Pitch Std_Roll Energy_Gyr_z Entropy_Azimuth nPeaks_Gyr_x Rms_Gyr_z 
59 Entropy_Gyr_x Skew_Acc_y SVM_Angle Entropy_Pitch Highest_peak_Gyr_y Kur_Acc_x 
60 Var_Gyr_x Min_Gyr_x DSAM_Angle Entropy_Gyr_x Interq_Pitch Dfreq_Acc_x 
61 SVM_Acc Interq_Acc_y DSVM_Gyr Entropy_Gyr_y Cf_Gyr_x Max_Acc_z 
62 Cf_Gyr_x Entropy_Gyr_z Max_diff_Gyr_z Entropy_TimeD_Acc Entropy_Gyr_y mag_Ang 
63 Rms_Gyr_y Skew_Gyr_z AV_Ang Entropy_TimeD_Ang Interq_Gyr_y Rms_Azimuth 
64 SMA_Acc Energy_Acc_x mag_Acc Energy_Acc_x Mean_Gyr_y Min_Gyr_y 
65 Energy_Gyr_x Highest_peak_Acc_x Vedb_Acc Energy_Acc_y Skew_Gyr_x Highest_peak_Roll 
66 nPeaks_Acc_x Highest_peak_Roll Vedb_Gyr Energy_Acc_z Entropy_TimeD_Acc Highest_peak_Acc_z 
67 DSVM_Acc Interq_Acc_x Dfreq_Acc_x Energy_Azimuth Vedb_Angle Kur_Gyr_z 
68 Std_Gyr_y Highest_peak_Acc_z Dfreq_Azimuth Energy_Pitch nPeaks_Gyr_z Max_diff_Azimuth 
69 Rms_Gyr_z Std_Acc_x Dfreq_Pitch Energy_Roll Var_Acc_y Kur_Acc_z 
70 MV_Gyr Rms_Gyr_y Dfreq_Roll Energy_Gyr_y Min_Gyr_z Entropy_TimeD_Ang 
71 Std_Acc_y Std_Gyr_y Dfreq_Gyr_y Energy_Gyr_z Widest_Peak_Pitch Kur_Gyr_y 
72 Skew_Gyr_x Std_Acc_y Dfreq_Gyr_z SVM_Acc Max_Pitch Var_Acc_y 
73 Kur_Acc_y Interq_Roll Widest_Peak_Acc_x SVM_Angle Min_Gyr_x Min_Gyr_z 
74 Cf_Acc_z Cf_Acc_z Highest_peak_Acc_x DSAM_Angle Skew_Gyr_z Avr_peak_time_Acc_x 
75 Entropy_TimeD_Acc Max_Gyr_y Avr_peak_time_Acc_x Max_diff_Acc_x SMA_Gyr Mean_Gyr_x 
76 Highest_peak_Acc_x Max_Gyr_x Widest_Peak_Acc_y Max_diff_Acc_z Min_Gyr_y Cf_Azimuth 
77 Interq_Acc_z Max_diff_Gyr_y Highest_peak_Acc_y Max_diff_Gyr_x Max_diff_Acc_y Interq_Gyr_y 
78 Skew_Gyr_z Skew_Gyr_x Avr_peak_time_Acc_y Max_diff_Gyr_y Max_Azimuth Dfreq_Acc_y 
79 Var_Roll Max_diff_Gyr_x nPeaks_Acc_z Max_diff_Gyr_z Avr_peak_time_Acc_z Var_Gyr_x 
80 MV_Acc Cf_Pitch Widest_Peak_Acc_z MV_Gyr Max_diff_Acc_x Avr_peak_time_Gyr_y 
81 Cf_Gyr_z Skew_Acc_x Avr_peak_time_Acc_z mag_Acc Rms_Gyr_x Cf_Gyr_x 
82 Var_Acc_x SVM_Acc nPeaks_Azimuth mag_Ang Highest_peak_Roll Cf_Pitch 
83 Widest_Peak_Roll Max_Gyr_z Widest_Peak_Azimuth mag_Gyr Cf_Acc_z Highest_peak_Azimuth 
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84 nPeaks_Acc_z Max_diff_Acc_z Highest_peak_Azimuth Vedb_Angle nPeaks_Acc_x SMA_Acc 
85 Interq_Roll Highest_peak_Gyr_y Avr_peak_time_Azimuth Dfreq_Acc_z Entropy_Gyr_z Skew_Pitch 
86 Var_Acc_y SMA_Acc nPeaks_Pitch Dfreq_Azimuth AV_Ang Interq_Acc_y 
87 Max_diff_Gyr_y Var_Gyr_z nPeaks_Roll Dfreq_Roll Max_Acc_y SVM_Angle 
88 Std_Pitch SVM_Gyr nPeaks_Gyr_x Dfreq_Gyr_y Max_diff_Pitch Max_Azimuth 
89 Skew_Acc_x Var_Acc_y Widest_Peak_Gyr_x Widest_Peak_Acc_x SMA_Angle Entropy_TimeD_Gyr 
90 Dfreq_Gyr_z MV_Gyr Highest_peak_Gyr_x Highest_peak_Acc_x Min_Acc_x nPeaks_Acc_x 
91 Widest_Peak_Acc_z Kur_Acc_y Avr_peak_time_Gyr_x Avr_peak_time_Acc_x Skew_Acc_y Skew_Acc_z 
92 Max_diff_Acc_z Min_Gyr_z nPeaks_Gyr_y Avr_peak_time_Acc_y Highest_peak_Gyr_x Cf_Gyr_z 
93 Cf_Gyr_y SMA_Gyr Widest_Peak_Gyr_y Highest_peak_Acc_z Highest_peak_Acc_y Vedb_Angle 
94 Max_Gyr_y Max_diff_Acc_x Widest_Peak_Gyr_z nPeaks_Azimuth Entropy_Gyr_x Dfreq_Gyr_x 
95 SVM_Gyr Dfreq_Gyr_y Avr_peak_time_Gyr_z Highest_peak_Azimuth Cf_Gyr_z Entropy_Gyr_y 
96 Var_Gyr_z Entropy_TimeD_Acc  Widest_Peak_Pitch MV_Acc Highest_peak_Gyr_z 
97 Mean_Gyr_z DSAM_Angle  Avr_peak_time_Pitch mag_Ang Entropy_Gyr_z 
98 SMA_Gyr Skew_Roll  Widest_Peak_Roll DSVM_Gyr Highest_peak_Gyr_y 
99 Cf_Pitch Std_Pitch  Highest_peak_Roll Widest_Peak_Roll Var_Pitch 
100 Std_Acc_z Entropy_Azimuth  nPeaks_Gyr_x Max_diff_Azimuth Cf_Gyr_y 
101 Dfreq_Gyr_y Highest_peak_Acc_y  Widest_Peak_Gyr_x Vedb_Gyr Var_Acc_z 
102 Min_Gyr_x Var_Roll  Widest_Peak_Gyr_y MV_Gyr Mean_Gyr_z 
103 Skew_Acc_z AV_Ang  nPeaks_Gyr_z Widest_Peak_Azimuth Var_Azimuth 
104 Mean_Gyr_y Entropy_TimeD_Gyr  Widest_Peak_Gyr_z Kur_Azimuth Entropy_Acc_z 
105 Highest_peak_Gyr_y Energy_Gyr_z  Avr_peak_time_Gyr_z Highest_peak_Acc_x nPeaks_Azimuth 
106 Max_Gyr_x Mean_Gyr_y   Var_Azimuth Highest_peak_Acc_x 
107 Max_Gyr_z Interq_Acc_z   Var_Gyr_z MV_Acc 
108 Min_Gyr_z Std_Acc_z   Widest_Peak_Gyr_z Max_diff_Pitch 
109 DSAM_Angle Entropy_Gyr_x   nPeaks_Acc_z Entropy_TimeD_Acc 
110 Entropy_TimeD_Gyr DSVM_Acc   Avr_peak_time_Gyr_z Min_Acc_x 
111 Max_diff_Gyr_z Interq_Pitch   Cf_Azimuth Interq_Pitch 
112 Highest_peak_Acc_y Skew_Acc_z   Rms_Azimuth Avr_peak_time_Gyr_x 
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113 DSVM_Gyr Vedb_Gyr   Avr_peak_time_Acc_y Max_Gyr_y 
114 AV_Ang Var_Acc_x   Skew_Gyr_y Widest_Peak_Acc_x 
115 Widest_Peak_Azimuth Std_Azimuth   Var_Acc_z Interq_Acc_z 
116 Avr_peak_time_Acc_x DSVM_Gyr   Interq_Acc_z Max_diff_Roll 
117 Max_diff_Pitch MV_Acc   Dfreq_Gyr_y Rms_Gyr_x 
118 Widest_Peak_Gyr_x Cf_Gyr_y   SVM_Acc Interq_Gyr_x 
119 Interq_Pitch Kur_Acc_z   Mean_Azimuth nPeaks_Gyr_z 
120 Max_diff_Azimuth Widest_Peak_Gyr_z   Widest_Peak_Gyr_y Rms_Gyr_y 
121 Energy_Gyr_y Max_diff_Roll   Kur_Roll Interq_Azimuth 
122 Vedb_Gyr Max_diff_Gyr_z   Dfreq_Gyr_x SVM_Acc 
123 Var_Gyr_y Energy_Gyr_y   Max_diff_Gyr_x Avr_peak_time_Roll 
124 Max_Acc_z Var_Gyr_y   nPeaks_Acc_y MV_Gyr 
125 Kur_Acc_z Skew_Pitch   Widest_Peak_Acc_z nPeaks_Gyr_y 
126 Skew_Gyr_y Max_diff_Pitch   Min_Azimuth Entropy_Azimuth 
127 Max_diff_Acc_x Skew_Gyr_y   Avr_peak_time_Acc_x Widest_Peak_Gyr_x 
128 Energy_Gyr_z Kur_Gyr_x   Avr_peak_time_Pitch Avr_peak_time_Gyr_z 
129 Max_diff_Gyr_x Widest_Peak_Gyr_x   DSVM_Acc Dfreq_Gyr_y 
130 Kur_Gyr_y Widest_Peak_Acc_z   Kur_Gyr_z Kur_Gyr_x 
131 Max_diff_Roll Kur_Acc_x   Max_Gyr_y Highest_peak_Acc_y 
132 Kur_Gyr_x nPeaks_Acc_x   Std_Acc_x Widest_Peak_Gyr_z 
133 Std_Azimuth Highest_peak_Pitch   Std_Acc_y SMA_Angle 
134 Kur_Acc_x Interq_Azimuth   Std_Acc_z DSVM_Gyr 
135 Var_Pitch Var_Acc_z   Std_Azimuth Min_Azimuth 
136 Mean_Gyr_x Kur_Roll   Std_Pitch Avr_peak_time_Pitch 
137 Widest_Peak_Pitch Var_Azimuth   Std_Roll Vedb_Gyr 
138 nPeaks_Azimuth Cf_Azimuth   Std_Gyr_x Avr_peak_time_Acc_y 
139 Kur_Roll Avr_peak_time_Gyr_y   Std_Gyr_y Kur_Pitch 
140 Var_Acc_z Avr_peak_time_Gyr_x   Std_Gyr_z mag_Acc 
141 Widest_Peak_Acc_x Mean_Gyr_x   Energy_Acc_x Skew_Gyr_z 
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142 Skew_Roll Var_Pitch   Energy_Acc_y Widest_Peak_Roll 
143 Skew_Pitch nPeaks_Gyr_x   Energy_Acc_z SMA_Gyr 
144 Avr_peak_time_Acc_z nPeaks_Acc_z   Energy_Azimuth Std_Acc_x 
145 Entropy_TimeD_Ang Kur_Gyr_z   Energy_Pitch Std_Acc_y 
146 SVM_Angle Skew_Azimuth   Energy_Roll Std_Acc_z 
147 Kur_Pitch Highest_peak_Azimuth   Energy_Gyr_x Std_Azimuth 
148 SMA_Angle Widest_Peak_Azimuth   Energy_Gyr_y Std_Pitch 
149 Kur_Gyr_z SMA_Angle   Energy_Gyr_z Std_Roll 
150 Highest_peak_Pitch Entropy_TimeD_Ang   Dfreq_Acc_z Std_Gyr_x 
151 Var_Azimuth SVM_Angle   Dfreq_Azimuth Std_Gyr_y 
152 Energy_Azimuth nPeaks_Gyr_y   Entropy_Azimuth Std_Gyr_z 
153 Interq_Azimuth Max_diff_Azimuth   Kur_Pitch Energy_Acc_x 
154 Min_Azimuth Widest_Peak_Roll   Max_diff_Roll Energy_Acc_y 
155 nPeaks_Acc_y Min_Azimuth   Dfreq_Acc_y Energy_Acc_z 
156 Dfreq_Azimuth Avr_peak_time_Roll   Kur_Acc_x Energy_Azimuth 
157 Mean_Azimuth Kur_Pitch   Kur_Acc_z Energy_Pitch 
158 Vedb_Angle Dfreq_Azimuth   Skew_Roll Energy_Roll 
159 mag_Gyr Mean_Azimuth   Entropy_TimeD_Ang Energy_Gyr_x 
160 nPeaks_Gyr_y Avr_peak_time_Acc_x   mag_Acc Energy_Gyr_y 
161 Avr_peak_time_Azimuth Energy_Azimuth   Max_Gyr_x Energy_Gyr_z 
162 Avr_peak_time_Roll Widest_Peak_Pitch   Widest_Peak_Acc_x Dfreq_Acc_z 
163 Widest_Peak_Gyr_y mag_Gyr   Rms_Gyr_z Dfreq_Azimuth 
164 Rms_Azimuth nPeaks_Gyr_z   Widest_Peak_Acc_y Highest_peak_Gyr_x 
165 nPeaks_Roll nPeaks_Acc_y   nPeaks_Azimuth nPeaks_Acc_y 
166 Skew_Azimuth Avr_peak_time_Acc_y   Highest_peak_Azimuth Skew_Gyr_y 
167 Widest_Peak_Acc_y Vedb_Angle   Skew_Azimuth Avr_peak_time_Acc_z 
168 Highest_peak_Azimuth Avr_peak_time_Acc_z   Kur_Gyr_y Avr_peak_time_Azimuth 
169 Cf_Azimuth Avr_peak_time_Azimuth   Highest_peak_Pitch DSVM_Acc 
170 Avr_peak_time_Acc_y mag_Ang   Avr_peak_time_Roll Max_diff_Acc_z 
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171 Avr_peak_time_Pitch Rms_Azimuth   Avr_peak_time_Azimuth Entropy_Gyr_x 
172 Avr_peak_time_Gyr_y Kur_Gyr_y   nPeaks_Roll nPeaks_Gyr_x 
173 Avr_peak_time_Gyr_z Widest_Peak_Gyr_y   SVM_Angle Kur_Roll 
174 Avr_peak_time_Gyr_x Avr_peak_time_Gyr_z   Skew_Acc_z Widest_Peak_Gyr_y 
175 Kur_Azimuth Kur_Azimuth   Cf_Gyr_y SVM_Gyr 
176 Entropy_Azimuth Widest_Peak_Acc_y   mag_Gyr Widest_Peak_Azimuth 
177 nPeaks_Gyr_z Avr_peak_time_Pitch   nPeaks_Pitch Kur_Azimuth 
178 mag_Acc Max_Azimuth   Avr_peak_time_Gyr_y nPeaks_Acc_z 
179 mag_Ang nPeaks_Roll   Skew_Pitch nPeaks_Pitch 
180 nPeaks_Gyr_x mag_Acc   SVM_Gyr mag_Gyr 
181 Widest_Peak_Gyr_z nPeaks_Pitch   nPeaks_Gyr_y Widest_Peak_Acc_z 
182 Max_Azimuth nPeaks_Azimuth   Skew_Acc_x Skew_Acc_x 
183 nPeaks_Pitch Widest_Peak_Acc_x   Avr_peak_time_Gyr_x nPeaks_Roll 
 

 

 

 

 

 

 

 

 

 



 Ranked Features Tables for Sheep DataSets 

 

275 
 

Appendix E. 10 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet3_all over 10 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 nPeaks_Gyr_z Mean_Roll Mean_Acc_x Mean_Acc_x Mean_Pitch Cf_Pitch 
2 Var_Pitch Cf_Pitch Mean_Pitch Mean_Azimuth Skew_Acc_z Mean_Acc_x 
3 Mean_Roll Mean_Acc_x Mean_Roll Mean_Roll Entropy_TimeD_Gyr Var_Acc_y 
4 Mean_Pitch Max_Pitch Mean_Gyr_x Mean_Gyr_x Highest_peak_Azimuth Min_Acc_y 
5 Std_Pitch Std_Pitch Var_Azimuth Mean_Gyr_y Std_Gyr_x Mean_Roll 
6 Entropy_Roll Var_Pitch Var_Gyr_x Mean_Gyr_z Std_Acc_z Var_Pitch 
7 Mean_Acc_y Cf_Roll Var_Gyr_z Var_Acc_x Energy_Gyr_z Var_Gyr_x 
8 Dfreq_Roll Min_Roll Std_Azimuth Var_Pitch Std_Acc_x Cf_Azimuth 
9 Rms_Roll Min_Acc_y Std_Pitch Var_Gyr_z nPeaks_Acc_z Min_Acc_z 
10 Widest_Peak_Gyr_x Entropy_Pitch Std_Roll Std_Acc_x Energy_Roll Mean_Gyr_y 
11 Cf_Pitch Max_diff_Azimuth Std_Gyr_x Std_Acc_z Std_Gyr_z Mean_Gyr_z 
12 Mean_Acc_x Max_Roll Std_Gyr_y Std_Azimuth Max_Gyr_y Max_Pitch 
13 Max_diff_Azimuth Interq_Pitch Std_Gyr_z Std_Pitch Entropy_Roll Interq_Acc_z 
14 Max_Pitch Mean_Acc_y Kur_Acc_x Std_Roll Max_diff_Azimuth Dfreq_Roll 
15 Avr_peak_time_Gyr_z Mean_Pitch Kur_Acc_y Std_Gyr_x Min_Pitch Min_Acc_x 
16 Cf_Roll Highest_peak_Gyr_x Kur_Azimuth Std_Gyr_y Skew_Azimuth Max_Acc_y 
17 Min_Roll Dfreq_Gyr_x Kur_Pitch Std_Gyr_z Std_Azimuth Min_Gyr_y 
18 Skew_Acc_y Interq_Acc_y Kur_Roll Kur_Acc_x AV_Ang Highest_peak_Acc_z 
19 Energy_Roll Dfreq_Roll Kur_Gyr_y Kur_Acc_z Kur_Gyr_x Min_Roll 
20 Dfreq_Acc_x Var_Acc_y Skew_Acc_y Kur_Roll Vedb_Angle Vedb_Acc 
21 Min_Acc_x Entropy_Gyr_x Skew_Pitch Kur_Gyr_x Max_Pitch Max_Acc_x 
22 Interq_Pitch Rms_Roll Skew_Roll Kur_Gyr_z Rms_Acc_x Dfreq_Pitch 
23 Highest_peak_Pitch Std_Acc_y Skew_Gyr_z Skew_Acc_x Energy_Acc_x Kur_Acc_x 
24 Skew_Acc_z Mean_Gyr_y Min_Acc_x Skew_Acc_y Rms_Roll Mean_Gyr_x 
25 Var_Acc_y Mean_Gyr_x Min_Azimuth Skew_Acc_z Cf_Acc_z Max_diff_Acc_y 
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26 Min_Pitch Rms_Gyr_y Min_Gyr_y Skew_Azimuth SVM_Gyr Dfreq_Acc_x 
27 Highest_peak_Acc_y Max_diff_Roll Min_Gyr_z Skew_Pitch Min_Gyr_x Skew_Acc_z 
28 Kur_Gyr_x Max_diff_Gyr_y Max_Acc_x Skew_Roll Rms_Gyr_z mag_Acc 
29 Min_Acc_z Var_Gyr_x Max_Azimuth Skew_Gyr_x Dfreq_Roll SMA_Acc 
30 Energy_Acc_y Min_Acc_x Max_Gyr_x Skew_Gyr_y DSVM_Gyr Entropy_Pitch 
31 Skew_Acc_x Energy_Gyr_x Max_Gyr_y Skew_Gyr_z Skew_Acc_x Rms_Acc_x 
32 Interq_Acc_x Entropy_Roll Rms_Azimuth Min_Acc_x Kur_Gyr_y MV_Acc 
33 Rms_Acc_x Energy_Roll Rms_Pitch Min_Acc_y Std_Pitch Entropy_Acc_y 
34 Max_diff_Gyr_x Skew_Acc_z Rms_Roll Min_Azimuth SVM_Angle Min_Azimuth 
35 Rms_Acc_y Dfreq_Pitch Rms_Gyr_x Min_Pitch Widest_Peak_Gyr_z Dfreq_Gyr_x 
36 Std_Acc_y Min_Pitch Rms_Gyr_z Min_Roll Kur_Acc_y Widest_Peak_Gyr_z 
37 Max_diff_Gyr_y Std_Gyr_y Interq_Acc_x Min_Gyr_y Cf_Roll Max_Gyr_z 
38 Cf_Acc_x Mean_Gyr_z Interq_Acc_y Max_Acc_x Entropy_Gyr_z Interq_Gyr_y 
39 nPeaks_Gyr_y Std_Gyr_x Interq_Acc_z Max_Acc_z Avr_peak_time_Azimuth Kur_Pitch 
40 Min_Acc_y Rms_Gyr_x Interq_Gyr_y Max_Pitch Std_Roll Avr_peak_time_Gyr_x 
41 nPeaks_Pitch Max_Acc_z Interq_Gyr_z Max_Roll DSAM_Angle Kur_Acc_y 
42 Interq_Gyr_y Energy_Gyr_y Cf_Gyr_x Max_Gyr_z nPeaks_Roll Skew_Pitch 
43 Highest_peak_Roll Max_Acc_x Cf_Gyr_y Rms_Acc_y Interq_Azimuth Max_Acc_z 
44 Widest_Peak_Gyr_z Cf_Acc_x SMA_Acc Rms_Acc_z Mean_Gyr_z SVM_Acc 
45 Entropy_Gyr_z Min_Acc_z SMA_Angle Rms_Azimuth Std_Acc_y Highest_peak_Acc_y 
46 Interq_Acc_y Max_diff_Gyr_x Entropy_Acc_x Rms_Pitch Var_Gyr_z Interq_Azimuth 
47 Var_Gyr_z Highest_peak_Pitch Entropy_Acc_y Rms_Roll Min_Acc_x Entropy_Gyr_x 
48 Kur_Acc_x Entropy_Acc_y Entropy_Acc_z Rms_Gyr_x Energy_Acc_z Max_diff_Acc_x 
49 Std_Gyr_y Skew_Acc_x Entropy_Azimuth Rms_Gyr_y Vedb_Acc Avr_peak_time_Pitch 
50 Cf_Gyr_x Var_Gyr_y Entropy_Roll Interq_Acc_y Dfreq_Acc_z Cf_Acc_y 
51 Kur_Roll Energy_Pitch Entropy_Gyr_y Interq_Acc_z Dfreq_Acc_x Interq_Gyr_z 
52 nPeaks_Roll Rms_Pitch Entropy_Gyr_z Interq_Gyr_y Max_diff_Gyr_x Max_Gyr_y 
53 Max_Roll Interq_Azimuth Entropy_TimeD_Ang Interq_Gyr_z Energy_Azimuth Rms_Acc_z 
54 Std_Gyr_z Energy_Acc_z Entropy_TimeD_Gyr Cf_Acc_z Skew_Gyr_y MV_Gyr 
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55 Rms_Gyr_y Dfreq_Acc_y Energy_Acc_y Cf_Azimuth nPeaks_Acc_y Min_Gyr_x 
56 Dfreq_Acc_z Max_Gyr_y Energy_Acc_z Cf_Pitch Mean_Azimuth Skew_Acc_x 
57 Mean_Acc_z Rms_Acc_z Energy_Pitch Cf_Roll Skew_Acc_y Max_diff_Gyr_z 
58 Std_Roll Rms_Acc_x Energy_Roll Cf_Gyr_y Max_Roll Max_diff_Gyr_x 
59 Var_Gyr_y Max_Gyr_z Energy_Gyr_x SMA_Angle nPeaks_Gyr_y Var_Roll 
60 Entropy_Pitch Max_diff_Pitch SVM_Acc SMA_Gyr SMA_Gyr Interq_Acc_y 
61 Entropy_Gyr_x Var_Acc_z SVM_Angle Entropy_Pitch SMA_Acc Max_Roll 
62 Highest_peak_Acc_x Interq_Gyr_y SVM_Gyr Entropy_Gyr_x Widest_Peak_Pitch Interq_Pitch 
63 Energy_Gyr_z Min_Azimuth Max_diff_Acc_y Entropy_Gyr_y Kur_Gyr_z Cf_Roll 
64 Energy_Gyr_y Entropy_TimeD_Acc Max_diff_Azimuth Entropy_TimeD_Acc Min_Gyr_z Dfreq_Gyr_z 
65 Max_diff_Roll SVM_Acc Max_diff_Gyr_x Entropy_TimeD_Gyr Rms_Azimuth Highest_peak_Gyr_x 
66 Rms_Gyr_z Kur_Acc_x Max_diff_Gyr_y Energy_Acc_x Widest_Peak_Acc_x Highest_peak_Gyr_y 
67 Widest_Peak_Roll Highest_peak_Gyr_y MV_Gyr Energy_Azimuth Vedb_Gyr Rms_Pitch 
68 Max_Gyr_z Dfreq_Acc_x mag_Ang Energy_Pitch SMA_Angle Mean_Acc_y 
69 Highest_peak_Gyr_x Min_Gyr_x mag_Gyr Energy_Gyr_x Avr_peak_time_Acc_y Mean_Pitch 
70 Widest_Peak_Gyr_y Entropy_Acc_z Vedb_Gyr Energy_Gyr_y Widest_Peak_Azimuth Skew_Roll 
71 Var_Roll Dfreq_Gyr_y Dfreq_Acc_y SVM_Acc Entropy_Acc_z Var_Gyr_y 
72 Energy_Pitch Interq_Acc_x Dfreq_Acc_z DSAM_Angle Skew_Roll Entropy_Acc_x 
73 Max_diff_Pitch Highest_peak_Acc_x Dfreq_Gyr_x DSVM_Gyr Dfreq_Gyr_x Widest_Peak_Gyr_y 
74 Rms_Pitch Std_Acc_z Dfreq_Gyr_z Max_diff_Acc_y Dfreq_Gyr_z Std_Acc_x 
75 Skew_Gyr_x Dfreq_Acc_z Widest_Peak_Acc_x Max_diff_Roll Dfreq_Pitch Std_Acc_y 
76 Dfreq_Gyr_x Mean_Acc_z Highest_peak_Acc_x Max_diff_Gyr_y Kur_Acc_z Std_Acc_z 
77 Mean_Gyr_z Energy_Acc_y nPeaks_Acc_y MV_Acc Max_Acc_y Std_Azimuth 
78 Min_Azimuth Dfreq_Gyr_z Widest_Peak_Acc_y AV_Ang Cf_Gyr_x Std_Pitch 
79 Dfreq_Gyr_z Var_Azimuth Highest_peak_Acc_y Vedb_Acc mag_Gyr Std_Roll 
80 Dfreq_Pitch SMA_Acc nPeaks_Acc_z Vedb_Gyr Interq_Gyr_x Std_Gyr_x 
81 Avr_peak_time_Pitch Rms_Acc_y Highest_peak_Acc_z Dfreq_Acc_x Highest_peak_Acc_y Std_Gyr_y 
82 Entropy_Acc_z Highest_peak_Roll Avr_peak_time_Acc_z Dfreq_Acc_y nPeaks_Gyr_x Std_Gyr_z 
83 SMA_Acc Highest_peak_Acc_z Widest_Peak_Azimuth Dfreq_Acc_z Interq_Roll Kur_Azimuth 
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84 Highest_peak_Gyr_z Avr_peak_time_Azimuth Widest_Peak_Pitch Dfreq_Pitch Avr_peak_time_Gyr_x Rms_Gyr_x 
85 Avr_peak_time_Gyr_y Energy_Azimuth Widest_Peak_Roll Dfreq_Roll Max_diff_Roll Interq_Gyr_x 
86 Skew_Azimuth Cf_Acc_z Avr_peak_time_Roll Dfreq_Gyr_x Highest_peak_Roll Cf_Acc_x 
87 Energy_Acc_x MV_Acc nPeaks_Gyr_y Dfreq_Gyr_y Max_diff_Acc_x Cf_Gyr_x 
88 Rms_Acc_z Max_diff_Acc_z Highest_peak_Gyr_y Dfreq_Gyr_z Cf_Pitch Cf_Gyr_y 
89 Kur_Acc_z Min_Gyr_y Widest_Peak_Gyr_z nPeaks_Acc_x Entropy_TimeD_Acc Cf_Gyr_z 
90 AV_Ang Highest_peak_Acc_y  Widest_Peak_Acc_x Mean_Acc_x SMA_Angle 
91 Entropy_Acc_x Max_Azimuth  Highest_peak_Acc_x Energy_Gyr_x SMA_Gyr 
92 Max_Acc_x Max_diff_Gyr_z  Avr_peak_time_Acc_x Widest_Peak_Acc_y Entropy_Azimuth 
93 Highest_peak_Gyr_y Cf_Gyr_z  nPeaks_Acc_y Min_Acc_z Entropy_Roll 
94 Highest_peak_Azimuth Min_Gyr_z  Widest_Peak_Acc_y Rms_Gyr_x Entropy_TimeD_Ang 
95 Mean_Gyr_y Rms_Gyr_z  Widest_Peak_Acc_z Rms_Acc_y Entropy_TimeD_Gyr 
96 DSAM_Angle nPeaks_Pitch  Avr_peak_time_Acc_z Dfreq_Acc_y Energy_Acc_x 
97 Energy_Acc_z Energy_Acc_x  nPeaks_Azimuth Mean_Acc_z Energy_Acc_y 
98 Avr_peak_time_Roll DSVM_Acc  Widest_Peak_Azimuth Interq_Acc_y Energy_Acc_z 
99 Max_Gyr_y Entropy_Gyr_z  Avr_peak_time_Azimuth Dfreq_Gyr_y Energy_Azimuth 
100 Cf_Gyr_y Std_Gyr_z  nPeaks_Pitch Energy_Gyr_y Energy_Pitch 
101 Avr_peak_time_Gyr_x Avr_peak_time_Pitch  Highest_peak_Pitch Rms_Acc_z Energy_Roll 
102 Widest_Peak_Acc_x Avr_peak_time_Acc_y  Highest_peak_Roll Min_Acc_y Energy_Gyr_x 
103 Max_diff_Acc_x Skew_Acc_y  Avr_peak_time_Roll Max_diff_Gyr_y Energy_Gyr_y 
104 Dfreq_Gyr_y Skew_Gyr_y  nPeaks_Gyr_x Interq_Acc_x Energy_Gyr_z 
105 SVM_Acc Std_Azimuth  Widest_Peak_Gyr_x Energy_Pitch SVM_Angle 
106 Entropy_TimeD_Acc Cf_Acc_y  Highest_peak_Gyr_x Var_Azimuth SVM_Gyr 
107 Std_Acc_x Vedb_Angle  Highest_peak_Gyr_y Entropy_Gyr_x DSVM_Acc 
108 Kur_Gyr_y nPeaks_Acc_y  nPeaks_Gyr_z Var_Acc_y DSVM_Gyr 
109 DSVM_Gyr DSVM_Gyr  Avr_peak_time_Gyr_z Kur_Acc_x Max_diff_Acc_z 
110 Mean_Gyr_x Rms_Azimuth   Entropy_Acc_y Max_diff_Gyr_y 
111 Interq_Roll Kur_Gyr_z   Max_Gyr_z AV_Ang 
112 Max_diff_Gyr_z Std_Roll   Highest_peak_Pitch mag_Ang 



 Ranked Features Tables for Sheep DataSets 

 

279 
 

113 Avr_peak_time_Acc_y Energy_Gyr_z   Widest_Peak_Gyr_y Vedb_Angle 
114 Skew_Roll mag_Ang   nPeaks_Gyr_z Vedb_Gyr 
115 Entropy_Azimuth Skew_Roll   Std_Gyr_y Dfreq_Acc_z 
116 Var_Acc_z Interq_Gyr_x   Entropy_TimeD_Ang Dfreq_Azimuth 
117 mag_Gyr Cf_Gyr_y   Energy_Acc_y Dfreq_Gyr_y 
118 Cf_Gyr_z Avr_peak_time_Acc_z   Mean_Roll nPeaks_Acc_x 
119 Max_Acc_y nPeaks_Gyr_x   Dfreq_Azimuth Avr_peak_time_Acc_y 
120 Std_Acc_z Var_Gyr_z   Var_Pitch nPeaks_Acc_z 
121 Var_Gyr_x MV_Gyr   nPeaks_Azimuth Widest_Peak_Acc_z 
122 Max_Gyr_x SVM_Gyr   Cf_Azimuth Avr_peak_time_Acc_z 
123 Max_Azimuth mag_Acc   Interq_Gyr_z nPeaks_Azimuth 
124 Cf_Acc_z Max_Acc_y   Max_diff_Gyr_z Widest_Peak_Azimuth 
125 Energy_Gyr_x SMA_Gyr   SVM_Acc Avr_peak_time_Azimuth 
126 Max_diff_Acc_z Vedb_Acc   Interq_Gyr_y Widest_Peak_Pitch 
127 nPeaks_Gyr_x Widest_Peak_Azimuth   Mean_Acc_y nPeaks_Roll 
128 Kur_Gyr_z Skew_Gyr_z   Avr_peak_time_Acc_x Avr_peak_time_Roll 
129 Skew_Gyr_y Var_Roll   Var_Gyr_y nPeaks_Gyr_x 
130 Entropy_Gyr_y Skew_Gyr_x   Kur_Pitch nPeaks_Gyr_y 
131 Energy_Azimuth Kur_Roll   Mean_Gyr_x Avr_peak_time_Gyr_y 
132 Interq_Acc_z Avr_peak_time_Roll   Kur_Roll nPeaks_Gyr_z 
133 Var_Acc_x nPeaks_Azimuth   Max_Acc_x Highest_peak_Gyr_z 
134 Cf_Acc_y Std_Acc_x   Highest_peak_Acc_x Avr_peak_time_Gyr_z 
135 Max_diff_Acc_y Entropy_TimeD_Gyr   Mean_Gyr_y Cf_Acc_z 
136 Avr_peak_time_Acc_x Highest_peak_Azimuth   Min_Azimuth Var_Gyr_z 
137 Std_Gyr_x Cf_Azimuth   Max_Acc_z Min_Pitch 
138 Cf_Azimuth Skew_Pitch   Rms_Gyr_y Highest_peak_Pitch 
139 Interq_Gyr_x nPeaks_Acc_x   Entropy_Azimuth Skew_Azimuth 
140 Rms_Gyr_x Vedb_Gyr   Min_Gyr_y nPeaks_Acc_y 
141 Max_Acc_z Var_Acc_x   Max_Azimuth Max_diff_Azimuth 
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142 Dfreq_Acc_y Entropy_Azimuth   Interq_Acc_z Kur_Gyr_z 
143 Min_Gyr_y Skew_Azimuth   Var_Gyr_x Interq_Roll 
144 nPeaks_Acc_x Interq_Gyr_z   Max_Gyr_x Var_Azimuth 
145 nPeaks_Acc_y AV_Ang   Widest_Peak_Gyr_x Max_Azimuth 
146 Avr_peak_time_Azimuth Highest_peak_Gyr_z   Skew_Gyr_x Interq_Acc_x 
147 Skew_Gyr_z DSAM_Angle   Cf_Acc_x Mean_Acc_z 
148 Interq_Gyr_z Max_diff_Acc_y   Kur_Azimuth Min_Gyr_z 
149 nPeaks_Acc_z Entropy_Acc_x   Max_diff_Acc_z Kur_Acc_z 
150 Kur_Pitch Avr_peak_time_Gyr_y   Highest_peak_Gyr_z Max_diff_Pitch 
151 Var_Azimuth Interq_Acc_z   Highest_peak_Gyr_x Mean_Azimuth 
152 Skew_Pitch Entropy_TimeD_Ang   Cf_Gyr_y Widest_Peak_Acc_y 
153 Min_Gyr_x Cf_Gyr_x   Skew_Pitch Max_diff_Roll 
154 MV_Gyr Max_diff_Acc_x   Avr_peak_time_Gyr_y Skew_Acc_y 
155 Min_Gyr_z SMA_Angle   Highest_peak_Acc_z Avr_peak_time_Acc_x 
156 SVM_Gyr Mean_Azimuth   Avr_peak_time_Gyr_z Widest_Peak_Gyr_x 
157 Avr_peak_time_Acc_z Dfreq_Azimuth   Widest_Peak_Roll Skew_Gyr_x 
158 mag_Acc SVM_Angle   Cf_Acc_y Max_Gyr_x 
159 Kur_Azimuth Interq_Roll   Min_Roll Rms_Acc_y 
160 Entropy_TimeD_Gyr Widest_Peak_Pitch   Highest_peak_Gyr_y nPeaks_Pitch 
161 Widest_Peak_Acc_z Kur_Acc_z   Entropy_Gyr_y Entropy_Gyr_z 
162 Vedb_Gyr Kur_Gyr_y   DSVM_Acc Entropy_Acc_z 
163 SMA_Gyr Max_Gyr_x   Entropy_Acc_x Rms_Gyr_z 
164 Interq_Azimuth Kur_Gyr_x   Cf_Gyr_z Dfreq_Acc_y 
165 Highest_peak_Acc_z Avr_peak_time_Acc_x   Avr_peak_time_Acc_z Widest_Peak_Roll 
166 Std_Azimuth Kur_Pitch   nPeaks_Acc_x Highest_peak_Azimuth 
167 Vedb_Angle Widest_Peak_Acc_y   mag_Acc DSAM_Angle 
168 nPeaks_Azimuth Avr_peak_time_Gyr_z   Avr_peak_time_Roll Kur_Roll 
169 Rms_Azimuth Avr_peak_time_Gyr_x   Widest_Peak_Acc_z Rms_Gyr_y 
170 Dfreq_Azimuth Kur_Azimuth   MV_Acc Highest_peak_Roll 
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171 Mean_Azimuth Widest_Peak_Acc_x   Entropy_Pitch Rms_Roll 
172 Entropy_TimeD_Ang nPeaks_Gyr_y   MV_Gyr Highest_peak_Acc_x 
173 SMA_Angle nPeaks_Acc_z   Var_Acc_z Entropy_Gyr_y 
174 SVM_Angle mag_Gyr   Avr_peak_time_Pitch Entropy_TimeD_Acc 
175 Vedb_Acc nPeaks_Gyr_z   Max_diff_Pitch Var_Acc_z 
176 Entropy_Acc_y Widest_Peak_Gyr_z   mag_Ang Skew_Gyr_z 
177 Kur_Acc_y Kur_Acc_y   Interq_Pitch mag_Gyr 
178 Widest_Peak_Acc_y Widest_Peak_Acc_z   Var_Acc_x Skew_Gyr_y 
179 Widest_Peak_Pitch Widest_Peak_Gyr_x   nPeaks_Pitch Kur_Gyr_y 
180 mag_Ang Entropy_Gyr_y   Rms_Pitch Rms_Azimuth 
181 DSVM_Acc Widest_Peak_Roll   Max_diff_Acc_y Var_Acc_x 
182 Widest_Peak_Azimuth Widest_Peak_Gyr_y   Var_Roll Widest_Peak_Acc_x 
183 MV_Acc nPeaks_Roll   Skew_Gyr_z Kur_Gyr_x 
 

 

 

 

 

 

 

 

 

 



 Ranked Features Tables for Sheep DataSets 

 

282 
 

Appendix E. 11 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet3_all over 7 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Mean_Roll Mean_Roll Mean_Acc_x Mean_Acc_x Dfreq_Roll Rms_Roll 
2 Rms_Roll Mean_Acc_x Mean_Pitch Mean_Acc_y Mean_Pitch Dfreq_Roll 
3 Mean_Acc_x Cf_Roll Var_Acc_x Mean_Acc_z Mean_Acc_x Max_Pitch 
4 Cf_Roll Rms_Roll Var_Acc_y Mean_Pitch Cf_Pitch Mean_Roll 
5 Dfreq_Roll Std_Gyr_y Var_Acc_z Mean_Roll Min_Gyr_y Max_diff_Pitch 
6 Energy_Roll Max_Roll Var_Gyr_x Mean_Gyr_x Min_Acc_x Min_Gyr_y 
7 Mean_Gyr_z Rms_Gyr_y Std_Acc_x Var_Azimuth Min_Azimuth Mean_Gyr_z 
8 Std_Gyr_y Mean_Gyr_z Std_Acc_z Var_Pitch Interq_Gyr_y Highest_peak_Gyr_y 
9 Entropy_Roll Dfreq_Roll Std_Pitch Var_Gyr_y Mean_Roll Min_Acc_x 
10 Rms_Gyr_y Std_Pitch Std_Roll Std_Acc_x Rms_Roll Min_Pitch 
11 Max_Roll Max_diff_Gyr_y Std_Gyr_y Std_Acc_y Mean_Gyr_y Interq_Gyr_y 
12 Max_diff_Gyr_y Min_Roll Kur_Acc_x Std_Acc_z Var_Acc_y Min_Roll 
13 Var_Gyr_y Var_Gyr_y Kur_Azimuth Std_Azimuth Min_Gyr_z Mean_Acc_x 
14 Min_Roll Energy_Roll Kur_Pitch Std_Pitch Entropy_Roll Interq_Gyr_x 
15 Energy_Gyr_y Var_Pitch Kur_Roll Std_Roll Max_diff_Pitch Max_diff_Gyr_x 
16 Min_Acc_x Entropy_Roll Kur_Gyr_y Kur_Acc_x mag_Ang Mean_Gyr_y 
17 Interq_Gyr_y Energy_Gyr_y Skew_Acc_x Kur_Azimuth Var_Acc_z Mean_Acc_z 
18 Interq_Gyr_x Rms_Acc_x Skew_Azimuth Kur_Gyr_y Max_diff_Gyr_y Var_Pitch 
19 Min_Pitch Min_Acc_y Skew_Gyr_x Kur_Gyr_z Interq_Pitch Var_Gyr_y 
20 Highest_peak_Gyr_y Dfreq_Gyr_y Skew_Gyr_y Skew_Acc_x Interq_Gyr_x Max_Acc_y 
21 mag_Ang Interq_Gyr_y Min_Gyr_x Skew_Pitch Max_Acc_z Entropy_Gyr_x 
22 Max_Acc_y Highest_peak_Gyr_y Min_Gyr_y Skew_Gyr_x Min_Pitch Cf_Gyr_x 
23 Skew_Acc_y nPeaks_Azimuth Min_Gyr_z Min_Roll Min_Acc_z Kur_Gyr_x 
24 Entropy_Pitch Max_Pitch Max_Acc_x Min_Gyr_x Cf_Gyr_z Max_Gyr_y 
25 Rms_Acc_x Cf_Pitch Max_Azimuth Min_Gyr_y Rms_Gyr_y Dfreq_Gyr_y 
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26 Cf_Pitch Std_Gyr_z Max_Pitch Min_Gyr_z Skew_Acc_z Rms_Gyr_y 
27 Entropy_Gyr_z Min_Gyr_z Rms_Acc_y Max_Acc_x Mean_Gyr_z DSVM_Acc 
28 Highest_peak_Gyr_x Std_Roll Rms_Acc_z Max_Acc_z Skew_Acc_x Cf_Pitch 
29 Var_Gyr_x Cf_Acc_x Rms_Azimuth Max_Azimuth Dfreq_Gyr_x Dfreq_Acc_x 
30 Energy_Gyr_x Dfreq_Acc_x Rms_Gyr_y Max_Pitch Widest_Peak_Gyr_x Var_Roll 
31 Dfreq_Gyr_x Rms_Gyr_z Rms_Gyr_z Max_Roll Mean_Acc_z Entropy_Acc_y 
32 Std_Gyr_x Min_Pitch Interq_Azimuth Max_Gyr_z Entropy_TimeD_Gyr Var_Gyr_z 
33 Dfreq_Gyr_y Min_Acc_x Interq_Pitch Rms_Azimuth Highest_peak_Roll Avr_peak_time_Pitch 
34 Rms_Gyr_x Entropy_Pitch Interq_Roll Rms_Gyr_x Kur_Acc_y Max_diff_Gyr_y 
35 Min_Acc_z Interq_Pitch Cf_Acc_x Interq_Acc_x Highest_peak_Gyr_y Rms_Acc_x 
36 Max_Pitch Max_Acc_y Cf_Azimuth Interq_Acc_y Mean_Gyr_x Entropy_Pitch 
37 Max_Acc_x Max_diff_Pitch Cf_Pitch Interq_Acc_z Min_Roll Cf_Roll 
38 Min_Acc_y Energy_Acc_x Cf_Roll Interq_Azimuth Var_Gyr_y Var_Gyr_x 
39 Std_Roll Std_Acc_x Cf_Gyr_x Interq_Gyr_y Max_diff_Azimuth nPeaks_Gyr_x 
40 Max_diff_Gyr_z Interq_Gyr_z Cf_Gyr_z Interq_Gyr_z Avr_peak_time_Acc_y Highest_peak_Roll 
41 Max_Gyr_y Highest_peak_Roll SMA_Acc Cf_Acc_z Max_diff_Gyr_z AV_Ang 
42 Max_diff_Gyr_x Var_Gyr_z Entropy_Acc_y Cf_Pitch Interq_Azimuth Max_diff_Roll 
43 Cf_Acc_x Highest_peak_Acc_x Entropy_Acc_z Cf_Gyr_x Entropy_TimeD_Ang Entropy_Roll 
44 Min_Gyr_y Max_diff_Acc_y Entropy_Azimuth Cf_Gyr_z Highest_peak_Pitch Min_Gyr_x 
45 Mean_Acc_y Max_diff_Gyr_z Entropy_Roll Entropy_Acc_z Max_Gyr_y DSAM_Angle 
46 Skew_Acc_z Energy_Gyr_z Entropy_Gyr_z Entropy_Azimuth Vedb_Acc Mean_Acc_y 
47 Std_Acc_z Entropy_Gyr_z Entropy_TimeD_Acc Entropy_Roll Cf_Acc_y Var_Acc_x 
48 Std_Gyr_z Max_Gyr_y Energy_Acc_y Entropy_Gyr_z MV_Acc Kur_Roll 
49 Mean_Pitch Dfreq_Acc_z Energy_Azimuth Entropy_TimeD_Acc nPeaks_Roll Var_Acc_z 
50 Interq_Gyr_z Mean_Acc_z Energy_Pitch Energy_Acc_z Avr_peak_time_Gyr_x Highest_peak_Gyr_z 
51 Energy_Acc_x Interq_Roll Energy_Roll Energy_Roll Widest_Peak_Acc_y Rms_Azimuth 
52 Cf_Gyr_y DSVM_Acc Energy_Gyr_y Energy_Gyr_y Skew_Azimuth Interq_Gyr_z 
53 Std_Acc_x Entropy_Gyr_x Energy_Gyr_z Energy_Gyr_z Kur_Pitch Highest_peak_Gyr_x 
54 Kur_Roll Max_diff_Gyr_x SVM_Angle SVM_Acc Skew_Roll mag_Ang 
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55 Dfreq_Acc_x Min_Gyr_y DSVM_Acc SVM_Angle Cf_Roll Widest_Peak_Gyr_y 
56 nPeaks_Azimuth Max_Acc_x DSAM_Angle SVM_Gyr Highest_peak_Acc_x Widest_Peak_Gyr_z 
57 Cf_Gyr_z Min_Acc_z Max_diff_Acc_z Max_diff_Acc_y Max_Acc_x Avr_peak_time_Gyr_x 
58 Var_Acc_z Max_diff_Roll Max_diff_Azimuth Max_diff_Pitch Interq_Gyr_z mag_Acc 
59 Avr_peak_time_Azimuth Skew_Acc_y Max_diff_Roll Max_diff_Roll Widest_Peak_Gyr_z Widest_Peak_Azimuth 
60 DSVM_Acc Var_Gyr_x Max_diff_Gyr_y Max_diff_Gyr_x Entropy_Pitch Avr_peak_time_Acc_z 
61 Entropy_TimeD_Gyr Var_Acc_x MV_Acc Max_diff_Gyr_y Entropy_Acc_x Rms_Gyr_x 
62 Rms_Gyr_z Energy_Gyr_x mag_Ang MV_Gyr Max_diff_Roll Skew_Gyr_x 
63 Highest_peak_Acc_x mag_Ang mag_Gyr Vedb_Acc Skew_Acc_y nPeaks_Roll 
64 Entropy_Acc_z Cf_Gyr_y Vedb_Angle Vedb_Gyr Min_Acc_y Avr_peak_time_Acc_y 
65 Interq_Roll Widest_Peak_Pitch Vedb_Gyr Dfreq_Azimuth Widest_Peak_Pitch Dfreq_Pitch 
66 Vedb_Gyr Dfreq_Gyr_z Dfreq_Acc_x nPeaks_Acc_x Kur_Acc_z SMA_Gyr 
67 Rms_Acc_y Var_Roll Dfreq_Gyr_x Widest_Peak_Acc_x Entropy_Gyr_z Skew_Acc_y 
68 MV_Gyr Std_Gyr_x Dfreq_Gyr_y nPeaks_Acc_y Max_diff_Gyr_x Interq_Azimuth 
69 Max_diff_Pitch Rms_Gyr_x Dfreq_Gyr_z Widest_Peak_Acc_y Var_Roll Avr_peak_time_Roll 
70 DSVM_Gyr Entropy_Acc_z nPeaks_Acc_x Highest_peak_Acc_y Interq_Acc_x Interq_Roll 
71 Highest_peak_Roll Highest_peak_Pitch Highest_peak_Acc_x Avr_peak_time_Acc_y Cf_Gyr_y mag_Gyr 
72 SMA_Gyr Highest_peak_Gyr_z Avr_peak_time_Acc_x Avr_peak_time_Acc_z Interq_Roll Highest_peak_Acc_y 
73 SVM_Gyr Mean_Gyr_y nPeaks_Acc_y nPeaks_Azimuth Cf_Acc_z Max_diff_Azimuth 
74 Std_Pitch Highest_peak_Gyr_x Highest_peak_Acc_y Highest_peak_Azimuth Max_diff_Acc_x Kur_Gyr_y 
75 Energy_Acc_y Skew_Acc_z Avr_peak_time_Acc_y Widest_Peak_Pitch Mean_Azimuth Widest_Peak_Pitch 
76 Max_diff_Roll Rms_Acc_y nPeaks_Acc_z Avr_peak_time_Pitch Cf_Acc_x Entropy_Acc_x 
77 Entropy_Gyr_x Interq_Gyr_x Widest_Peak_Acc_z nPeaks_Gyr_x AV_Ang Widest_Peak_Gyr_x 
78 Var_Acc_x Energy_Acc_y Avr_peak_time_Acc_z Widest_Peak_Gyr_x Widest_Peak_Gyr_y Min_Gyr_z 
79 Interq_Acc_z Dfreq_Gyr_x Highest_peak_Azimuth Highest_peak_Gyr_x Interq_Acc_y Skew_Acc_z 
80 Var_Gyr_z Skew_Gyr_y Avr_peak_time_Azimuth Avr_peak_time_Gyr_x SVM_Acc nPeaks_Azimuth 
81 Min_Gyr_x MV_Acc nPeaks_Pitch nPeaks_Gyr_y Std_Acc_x Cf_Acc_x 
82 Var_Roll DSVM_Gyr Highest_peak_Pitch Highest_peak_Gyr_y Std_Acc_y Mean_Azimuth 
83 Energy_Gyr_z Dfreq_Pitch Highest_peak_Roll Widest_Peak_Gyr_z Std_Acc_z Kur_Pitch 
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84 Widest_Peak_Pitch Dfreq_Acc_y Avr_peak_time_Roll Avr_peak_time_Gyr_z Std_Azimuth Entropy_Gyr_y 
85 Kur_Gyr_z Vedb_Acc Widest_Peak_Gyr_x  Std_Pitch Highest_peak_Pitch 
86 Interq_Acc_x Entropy_Acc_x Highest_peak_Gyr_x  Std_Roll Skew_Roll 
87 Min_Gyr_z Energy_Acc_z Avr_peak_time_Gyr_x  Std_Gyr_x MV_Acc 
88 Avr_peak_time_Pitch Rms_Acc_z Widest_Peak_Gyr_z  Std_Gyr_y Vedb_Gyr 
89 Kur_Gyr_x Interq_Acc_z Highest_peak_Gyr_z  Std_Gyr_z Avr_peak_time_Azimuth 
90 Widest_Peak_Gyr_z Vedb_Gyr   Max_Gyr_z MV_Gyr 
91 Vedb_Acc Avr_peak_time_Azimuth   Rms_Gyr_x SVM_Gyr 
92 Max_Gyr_z Min_Gyr_x   Cf_Azimuth nPeaks_Pitch 
93 Max_Azimuth Energy_Pitch   SMA_Gyr Highest_peak_Acc_x 
94 MV_Acc Mean_Acc_y   Entropy_Acc_y Kur_Acc_x 
95 Entropy_Gyr_y Mean_Pitch   Entropy_Gyr_y Cf_Gyr_y 
96 Dfreq_Pitch Skew_Gyr_x   Energy_Acc_x Rms_Pitch 
97 Dfreq_Acc_y Max_diff_Acc_x   Energy_Acc_y Entropy_Acc_z 
98 Max_Acc_z Max_Gyr_z   Energy_Acc_z Min_Acc_y 
99 Skew_Gyr_y mag_Acc   Energy_Azimuth Max_Roll 
100 mag_Gyr Interq_Acc_x   Energy_Pitch Widest_Peak_Roll 
101 Highest_peak_Pitch Rms_Pitch   Energy_Roll Avr_peak_time_Gyr_z 
102 Var_Pitch Entropy_Acc_y   Energy_Gyr_x Max_Azimuth 
103 Rms_Pitch nPeaks_Gyr_z   Energy_Gyr_y Mean_Gyr_x 
104 Dfreq_Gyr_z Entropy_TimeD_Gyr   Energy_Gyr_z Min_Azimuth 
105 Energy_Azimuth Max_Acc_z   SVM_Gyr Skew_Azimuth 
106 Vedb_Angle Cf_Gyr_x   DSAM_Angle Dfreq_Gyr_x 
107 Rms_Azimuth Var_Acc_y   DSVM_Gyr nPeaks_Gyr_z 
108 Interq_Azimuth Cf_Gyr_z   Vedb_Angle Rms_Acc_y 
109 Kur_Acc_y Std_Acc_z   Vedb_Gyr Interq_Acc_y 
110 Widest_Peak_Gyr_y Std_Acc_y   Dfreq_Acc_y Cf_Azimuth 
111 Cf_Acc_z SVM_Gyr   Dfreq_Acc_z Max_diff_Acc_y 
112 Max_diff_Acc_y Mean_Gyr_x   Dfreq_Azimuth Max_Gyr_z 
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113 Energy_Pitch Avr_peak_time_Roll   Dfreq_Pitch Var_Acc_y 
114 Entropy_TimeD_Ang mag_Gyr   nPeaks_Acc_y Max_Gyr_x 
115 SVM_Angle Widest_Peak_Acc_y   nPeaks_Acc_z Highest_peak_Azimuth 
116 Max_diff_Acc_x Kur_Gyr_x   nPeaks_Pitch Avr_peak_time_Acc_x 
117 Mean_Azimuth Kur_Roll   nPeaks_Gyr_y Std_Acc_z 
118 Dfreq_Azimuth SMA_Gyr   nPeaks_Gyr_z Skew_Pitch 
119 Max_Gyr_x Highest_peak_Acc_y   Avr_peak_time_Gyr_z Highest_peak_Acc_z 
120 Mean_Gyr_y Var_Acc_z   DSVM_Acc Min_Acc_z 
121 Entropy_Acc_x Avr_peak_time_Gyr_z   Rms_Pitch Mean_Pitch 
122 Skew_Acc_x Kur_Acc_z   Var_Pitch Rms_Gyr_z 
123 SMA_Angle Max_Gyr_x   Dfreq_Acc_x Entropy_TimeD_Acc 
124 nPeaks_Acc_y Min_Azimuth   Dfreq_Gyr_z Dfreq_Acc_y 
125 nPeaks_Gyr_x Cf_Acc_y   Max_Pitch nPeaks_Acc_y 
126 Cf_Gyr_x Kur_Pitch   Var_Acc_x Max_diff_Gyr_z 
127 Widest_Peak_Acc_y Entropy_TimeD_Acc   Min_Gyr_x Max_diff_Acc_x 
128 Interq_Pitch Kur_Gyr_y   Avr_peak_time_Azimuth Skew_Acc_x 
129 Skew_Gyr_z Cf_Acc_z   Max_Acc_y Energy_Pitch 
130 Highest_peak_Gyr_z Vedb_Angle   Cf_Gyr_x Cf_Acc_y 
131 Kur_Acc_z SMA_Acc   Interq_Acc_z Std_Gyr_z 
132 Widest_Peak_Gyr_x Energy_Azimuth   Dfreq_Gyr_y Widest_Peak_Acc_y 
133 Mean_Gyr_x Rms_Azimuth   mag_Gyr Interq_Acc_x 
134 Var_Acc_y SVM_Acc   Entropy_Gyr_x Max_Acc_z 
135 Widest_Peak_Acc_z Entropy_Gyr_y   Kur_Gyr_z Energy_Acc_y 
136 Kur_Gyr_y Avr_peak_time_Pitch   Widest_Peak_Azimuth Energy_Gyr_z 
137 Highest_peak_Acc_z Skew_Roll   SMA_Acc Max_diff_Acc_z 
138 Energy_Acc_z Avr_peak_time_Acc_z   Var_Gyr_x Energy_Azimuth 
139 Mean_Acc_z Kur_Acc_y   Var_Azimuth Var_Azimuth 
140 Dfreq_Acc_z Entropy_TimeD_Ang   Highest_peak_Acc_z Kur_Acc_z 
141 Cf_Acc_y Highest_peak_Acc_z   Entropy_Acc_z Interq_Acc_z 
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142 Avr_peak_time_Gyr_x Cf_Azimuth   Kur_Azimuth Energy_Gyr_x 
143 Avr_peak_time_Acc_y Avr_peak_time_Gyr_y   Skew_Gyr_y Cf_Acc_z 
144 nPeaks_Gyr_y SVM_Angle   Rms_Acc_x Energy_Acc_x 
145 Rms_Acc_z SMA_Angle   Rms_Gyr_z Widest_Peak_Acc_x 
146 Avr_peak_time_Acc_z Kur_Gyr_z   Widest_Peak_Acc_z Vedb_Angle 
147 Std_Acc_y Mean_Azimuth   Widest_Peak_Roll Widest_Peak_Acc_z 
148 Widest_Peak_Roll Dfreq_Azimuth   Rms_Acc_z Cf_Gyr_z 
149 Interq_Acc_y AV_Ang   Avr_peak_time_Pitch Avr_peak_time_Gyr_y 
150 Max_diff_Acc_z DSAM_Angle   MV_Gyr Entropy_Azimuth 
151 Highest_peak_Acc_y Max_diff_Acc_z   Avr_peak_time_Acc_x Vedb_Acc 
152 Min_Azimuth Widest_Peak_Gyr_z   Avr_peak_time_Gyr_y Rms_Acc_z 
153 nPeaks_Pitch Skew_Acc_x   Kur_Gyr_x Skew_Gyr_z 
154 AV_Ang MV_Gyr   Highest_peak_Acc_y Max_Acc_x 
155 Widest_Peak_Acc_x nPeaks_Gyr_y   nPeaks_Gyr_x SMA_Angle 
156 Widest_Peak_Azimuth Interq_Acc_y   SVM_Angle Entropy_TimeD_Ang 
157 mag_Acc Skew_Pitch   nPeaks_Azimuth SVM_Angle 
158 nPeaks_Acc_z Skew_Gyr_z   Avr_peak_time_Acc_z nPeaks_Acc_z 
159 DSAM_Angle nPeaks_Roll   Avr_peak_time_Roll Std_Acc_y 
160 Avr_peak_time_Gyr_y Skew_Azimuth   Widest_Peak_Acc_x Energy_Gyr_y 
161 Entropy_Acc_y Max_Azimuth   Max_diff_Acc_z Interq_Pitch 
162 Skew_Roll Kur_Acc_x   Max_Roll nPeaks_Gyr_y 
163 nPeaks_Roll Kur_Azimuth   Skew_Gyr_z nPeaks_Acc_x 
164 SMA_Acc Widest_Peak_Acc_z   mag_Acc SMA_Acc 
165 Highest_peak_Azimuth Widest_Peak_Roll   Highest_peak_Azimuth Kur_Acc_y 
166 Entropy_TimeD_Acc nPeaks_Acc_y   Rms_Azimuth Energy_Acc_z 
167 Kur_Acc_x Highest_peak_Azimuth   Kur_Gyr_y Dfreq_Acc_z 
168 SVM_Acc Entropy_Azimuth   Entropy_TimeD_Acc Skew_Gyr_y 
169 Var_Azimuth Widest_Peak_Acc_x   nPeaks_Acc_x Dfreq_Gyr_z 
170 Skew_Pitch Interq_Azimuth   Rms_Acc_y Entropy_Gyr_z 
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171 Cf_Azimuth nPeaks_Pitch   Mean_Acc_y Std_Azimuth 
172 Skew_Gyr_x Avr_peak_time_Acc_y   Var_Gyr_z Dfreq_Azimuth 
173 nPeaks_Gyr_z Widest_Peak_Azimuth   SMA_Angle Std_Roll 
174 Avr_peak_time_Acc_x Avr_peak_time_Acc_x   Max_diff_Acc_y Std_Acc_x 
175 nPeaks_Acc_x Widest_Peak_Gyr_y   Max_Gyr_x SVM_Acc 
176 Avr_peak_time_Gyr_z Widest_Peak_Gyr_x   Highest_peak_Gyr_z Entropy_TimeD_Gyr 
177 Std_Azimuth Avr_peak_time_Gyr_x   Kur_Acc_x Std_Gyr_y 
178 Kur_Azimuth nPeaks_Gyr_x   Skew_Gyr_x Std_Gyr_x 
179 Avr_peak_time_Roll nPeaks_Acc_z   Highest_peak_Gyr_x Energy_Roll 
180 Skew_Azimuth Std_Azimuth   Entropy_Azimuth DSVM_Gyr 
181 Entropy_Azimuth nPeaks_Acc_x   Max_Azimuth Kur_Gyr_z 
182 Max_diff_Azimuth Var_Azimuth   Skew_Pitch Kur_Azimuth 
183 Kur_Pitch Max_diff_Azimuth   Kur_Roll Std_Pitch 
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Appendix E. 12 Ranked features from (ReliefF, GA, and RF) FS methods for DataSet3_all over 5 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 ReliefF GA RF 

# FNSW FOSW FNSW FOSW FNSW FOSW 
1 Mean_Roll Mean_Roll Mean_Acc_x Mean_Acc_y Dfreq_Roll Rms_Roll 
2 Mean_Acc_x Cf_Roll Mean_Acc_y Mean_Acc_z Mean_Gyr_z Mean_Roll 
3 Cf_Roll Mean_Acc_x Mean_Pitch Mean_Azimuth Mean_Roll Mean_Gyr_z 
4 Dfreq_Roll Max_Roll Var_Acc_y Mean_Roll Mean_Acc_x Dfreq_Roll 
5 Mean_Gyr_z Entropy_Roll Var_Acc_z Mean_Gyr_x Rms_Roll Skew_Acc_z 
6 Rms_Roll Rms_Roll Var_Azimuth Mean_Gyr_y Min_Roll Max_diff_Gyr_y 
7 Entropy_Roll Dfreq_Roll Var_Pitch Mean_Gyr_z Skew_Acc_z Mean_Acc_x 
8 Cf_Acc_x Min_Roll Var_Roll Var_Acc_x Interq_Gyr_x Max_Roll 
9 Min_Roll Max_diff_Gyr_y Var_Gyr_x Var_Acc_y Min_Pitch Max_diff_Gyr_x 
10 Dfreq_Acc_x Cf_Acc_x Var_Gyr_y Var_Acc_z Var_Gyr_y Var_Acc_y 
11 Max_Roll Mean_Gyr_z Var_Gyr_z Var_Pitch Highest_peak_Gyr_x Var_Gyr_y 
12 Std_Gyr_y Rms_Gyr_y Std_Acc_x Var_Roll mag_Ang Min_Roll 
13 Rms_Acc_x Std_Gyr_y Std_Acc_y Std_Acc_y Kur_Gyr_x Max_diff_Pitch 
14 Std_Pitch Max_Acc_x Std_Acc_z Std_Acc_z Rms_Acc_x Dfreq_Gyr_x 
15 Max_diff_Gyr_y Max_diff_Pitch Std_Azimuth Std_Azimuth Max_Acc_x Min_Acc_x 
16 Energy_Roll Energy_Roll Std_Pitch Std_Gyr_x Skew_Acc_y Max_Azimuth 
17 Rms_Gyr_y Max_Acc_y Std_Gyr_x Std_Gyr_y Entropy_Acc_y Interq_Roll 
18 Min_Acc_z Rms_Acc_x Std_Gyr_y Std_Gyr_z Min_Gyr_y Skew_Roll 
19 Highest_peak_Acc_x Highest_peak_Acc_x Std_Gyr_z Kur_Acc_x Interq_Pitch mag_Acc 
20 Max_Acc_x Energy_Gyr_y Kur_Acc_z Kur_Acc_y Skew_Gyr_x Entropy_Gyr_x 
21 Min_Acc_x Std_Roll Kur_Azimuth Kur_Acc_z Var_Pitch Rms_Gyr_y 
22 Std_Roll Var_Gyr_y Kur_Gyr_x Kur_Azimuth Max_Gyr_z SMA_Angle 
23 Entropy_Pitch Entropy_Pitch Kur_Gyr_z Kur_Gyr_z Widest_Peak_Acc_z Entropy_Pitch 
24 Highest_peak_Gyr_y Interq_Gyr_y Skew_Acc_z Skew_Acc_x Var_Gyr_x Entropy_Roll 
25 Interq_Gyr_z Std_Gyr_z Skew_Azimuth Skew_Gyr_x Max_Acc_z Max_diff_Gyr_z 
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26 Min_Pitch Entropy_Gyr_x Skew_Pitch Min_Acc_x Interq_Gyr_y Min_Acc_z 
27 Interq_Acc_x Dfreq_Gyr_y Min_Acc_x Min_Azimuth Rms_Gyr_z Min_Azimuth 
28 Var_Pitch Min_Acc_x Min_Acc_y Min_Pitch Rms_Acc_y Max_Acc_y 
29 Var_Gyr_y Rms_Gyr_z Min_Azimuth Min_Gyr_y Cf_Gyr_x Highest_peak_Acc_x 
30 Interq_Pitch Max_diff_Gyr_z Min_Pitch Min_Gyr_z Entropy_Roll Max_Gyr_y 
31 Std_Acc_x Interq_Gyr_z Min_Roll Max_Acc_x Interq_Roll Max_Pitch 
32 Skew_Acc_z Skew_Acc_y Min_Gyr_x Max_Acc_z Dfreq_Gyr_y Skew_Acc_y 
33 Energy_Gyr_y Dfreq_Acc_x Max_Acc_x Max_Roll Max_diff_Roll Avr_peak_time_Acc_z 
34 Highest_peak_Gyr_x Min_Pitch Max_Acc_y Max_Gyr_y Min_Acc_x Var_Acc_x 
35 Cf_Pitch DSVM_Gyr Max_Acc_z Rms_Acc_x Max_diff_Pitch Min_Gyr_x 
36 Energy_Acc_x Highest_peak_Gyr_x Max_Roll Rms_Acc_y Max_diff_Gyr_x Kur_Acc_z 
37 mag_Ang Dfreq_Gyr_z Max_Gyr_x Rms_Acc_z Entropy_Azimuth Rms_Acc_z 
38 Dfreq_Gyr_x Dfreq_Gyr_x Max_Gyr_z Rms_Azimuth Interq_Acc_x Dfreq_Gyr_y 
39 Entropy_Acc_z Min_Acc_z Rms_Acc_y Rms_Gyr_y Min_Azimuth DSVM_Gyr 
40 Max_Gyr_y Highest_peak_Gyr_y Rms_Azimuth Rms_Gyr_z Dfreq_Gyr_z Highest_peak_Gyr_y 
41 Rms_Pitch Min_Gyr_y Rms_Pitch Interq_Acc_y Avr_peak_time_Roll Max_diff_Acc_z 
42 Min_Gyr_y Skew_Acc_z Rms_Gyr_x Interq_Azimuth Min_Gyr_z Interq_Gyr_x 
43 Max_diff_Pitch Max_Gyr_y Rms_Gyr_y Interq_Gyr_x Entropy_Acc_x Avr_peak_time_Acc_x 
44 Energy_Pitch Highest_peak_Gyr_z Rms_Gyr_z Interq_Gyr_y Rms_Gyr_y Mean_Azimuth 
45 Interq_Gyr_y Std_Pitch Interq_Acc_x Cf_Acc_z Skew_Azimuth Mean_Pitch 
46 Dfreq_Pitch Cf_Gyr_z Interq_Pitch Cf_Pitch Max_diff_Gyr_y Highest_peak_Acc_z 
47 Max_Pitch Rms_Acc_y Interq_Roll Cf_Gyr_y Cf_Acc_y Interq_Gyr_z 
48 Avr_peak_time_Gyr_z Interq_Pitch Interq_Gyr_x SMA_Acc SMA_Acc Vedb_Angle 
49 Cf_Gyr_z Max_diff_Gyr_x Interq_Gyr_y SMA_Angle Cf_Roll Cf_Roll 
50 Std_Gyr_z Entropy_Acc_z Cf_Acc_x Entropy_Acc_z Interq_Acc_z Kur_Gyr_z 
51 Interq_Acc_z Std_Acc_x Cf_Acc_y Entropy_Azimuth Interq_Gyr_z Interq_Acc_y 
52 DSVM_Gyr nPeaks_Roll Cf_Azimuth Entropy_Pitch Highest_peak_Pitch Entropy_Gyr_z 
53 Min_Acc_y Cf_Pitch Cf_Roll Entropy_Gyr_x Max_Acc_y Highest_peak_Gyr_z 
54 Cf_Gyr_x Energy_Acc_x Cf_Gyr_y Entropy_Gyr_z Interq_Azimuth Max_Gyr_z 
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55 Interq_Gyr_x Energy_Pitch SMA_Acc Entropy_TimeD_Ang Widest_Peak_Acc_x Cf_Azimuth 
56 Dfreq_Gyr_y Rms_Pitch SMA_Angle Entropy_TimeD_Gyr Cf_Pitch AV_Ang 
57 Rms_Gyr_z Energy_Acc_y Entropy_Acc_x Energy_Acc_y Max_diff_Gyr_z Var_Gyr_x 
58 Cf_Gyr_y Max_Pitch Entropy_Acc_y Energy_Acc_z Max_Pitch Rms_Acc_x 
59 Std_Gyr_x Interq_Roll Entropy_Azimuth Energy_Gyr_x Mean_Pitch SVM_Angle 
60 Std_Acc_z Max_Gyr_z Entropy_Pitch SVM_Acc Dfreq_Gyr_x Avr_peak_time_Acc_y 
61 Var_Gyr_x Min_Acc_y Entropy_Roll DSVM_Acc Skew_Roll nPeaks_Gyr_x 
62 nPeaks_Gyr_z Entropy_TimeD_Gyr Entropy_Gyr_x DSVM_Gyr Mean_Gyr_y Rms_Pitch 
63 Var_Acc_x Dfreq_Pitch Entropy_Gyr_y Max_diff_Acc_y Max_Roll Highest_peak_Acc_y 
64 Rms_Gyr_x Vedb_Gyr Entropy_Gyr_z Max_diff_Azimuth nPeaks_Acc_y Min_Pitch 
65 Max_diff_Acc_y Dfreq_Acc_z Entropy_TimeD_Ang Max_diff_Gyr_y SVM_Acc Avr_peak_time_Roll 
66 Highest_peak_Pitch Mean_Pitch Entropy_TimeD_Gyr Max_diff_Gyr_z Avr_peak_time_Gyr_y Rms_Azimuth 
67 Interq_Roll Entropy_Gyr_z Energy_Acc_x AV_Ang Vedb_Acc nPeaks_Roll 
68 Entropy_Azimuth Rms_Gyr_x Energy_Azimuth MV_Gyr Avr_peak_time_Acc_x Min_Acc_y 
69 Kur_Gyr_x Energy_Gyr_z Energy_Gyr_y mag_Ang Dfreq_Pitch Skew_Gyr_x 
70 Energy_Gyr_x SVM_Gyr Energy_Gyr_z mag_Gyr Avr_peak_time_Pitch Widest_Peak_Gyr_z 
71 Skew_Acc_y Std_Gyr_x DSAM_Angle Vedb_Angle Entropy_Gyr_x Max_diff_Azimuth 
72 Vedb_Acc MV_Gyr DSVM_Gyr Vedb_Gyr Entropy_Gyr_z Widest_Peak_Roll 
73 Max_diff_Gyr_z SMA_Gyr Max_diff_Pitch Dfreq_Acc_x Cf_Gyr_y Interq_Acc_z 
74 Mean_Pitch Var_Roll Max_diff_Roll Dfreq_Azimuth Entropy_Acc_z Var_Gyr_z 
75 Min_Gyr_z Mean_Acc_z Max_diff_Gyr_z Dfreq_Pitch Min_Acc_z Min_Gyr_y 
76 Dfreq_Acc_z Var_Gyr_z MV_Acc nPeaks_Acc_x Widest_Peak_Gyr_x Mean_Acc_y 
77 Mean_Acc_z Max_Acc_z MV_Gyr Widest_Peak_Acc_x Cf_Gyr_z Mean_Acc_z 
78 Min_Azimuth Avr_peak_time_Roll mag_Ang Widest_Peak_Acc_y Max_Gyr_y Dfreq_Pitch 
79 Max_Gyr_z Dfreq_Acc_y Vedb_Angle Highest_peak_Acc_y Kur_Pitch MV_Gyr 
80 Dfreq_Gyr_z Energy_Gyr_x Vedb_Gyr Avr_peak_time_Acc_y AV_Ang Skew_Pitch 
81 Highest_peak_Gyr_z Var_Gyr_x Dfreq_Acc_y nPeaks_Acc_z Highest_peak_Acc_z Kur_Gyr_y 
82 Var_Roll mag_Ang Dfreq_Azimuth Widest_Peak_Acc_z Highest_peak_Acc_y Skew_Azimuth 
83 Avr_peak_time_Gyr_x Interq_Acc_x Dfreq_Gyr_y Highest_peak_Acc_z Interq_Acc_y Interq_Gyr_y 
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84 Entropy_Gyr_y Max_diff_Acc_y Dfreq_Gyr_z Avr_peak_time_Acc_z Highest_peak_Acc_x Dfreq_Acc_y 
85 Var_Acc_z Var_Pitch Widest_Peak_Acc_x nPeaks_Azimuth Widest_Peak_Pitch Highest_peak_Azimuth 
86 Max_diff_Gyr_x Mean_Acc_y Avr_peak_time_Acc_x nPeaks_Pitch Var_Acc_x Avr_peak_time_Gyr_z 
87 Rms_Acc_y Kur_Pitch Widest_Peak_Acc_y Widest_Peak_Pitch Highest_peak_Azimuth Cf_Pitch 
88 Var_Gyr_z Highest_peak_Acc_y Highest_peak_Acc_y nPeaks_Roll Mean_Acc_y SMA_Gyr 
89 Max_Gyr_x Mean_Gyr_y nPeaks_Acc_z Widest_Peak_Roll Max_Gyr_x Cf_Acc_y 
90 Max_Acc_z Std_Acc_z Widest_Peak_Acc_z Highest_peak_Roll Kur_Acc_z Interq_Pitch 
91 Energy_Gyr_z Max_diff_Roll Highest_peak_Azimuth Avr_peak_time_Roll Widest_Peak_Gyr_z Entropy_Gyr_y 
92 Entropy_Acc_x Var_Acc_x nPeaks_Pitch nPeaks_Gyr_x DSVM_Gyr Kur_Azimuth 
93 Energy_Acc_y Interq_Gyr_x Widest_Peak_Pitch Highest_peak_Gyr_x Mean_Azimuth Var_Acc_z 
94 Avr_peak_time_Acc_z Energy_Acc_z Avr_peak_time_Pitch Avr_peak_time_Gyr_x SMA_Angle Widest_Peak_Acc_x 
95 Max_diff_Acc_z Avr_peak_time_Gyr_x nPeaks_Roll Widest_Peak_Gyr_y Avr_peak_time_Azimuth Var_Pitch 
96 Highest_peak_Roll Skew_Pitch Highest_peak_Roll nPeaks_Gyr_z Max_diff_Acc_y Max_diff_Roll 
97 Mean_Gyr_y Highest_peak_Roll Avr_peak_time_Roll Avr_peak_time_Gyr_z nPeaks_Azimuth Dfreq_Gyr_z 
98 Highest_peak_Acc_y Rms_Acc_z nPeaks_Gyr_x  Highest_peak_Gyr_y DSAM_Angle 
99 Dfreq_Acc_y Skew_Acc_x Widest_Peak_Gyr_x  Dfreq_Acc_x Entropy_Acc_y 
100 Max_diff_Azimuth Entropy_Acc_y nPeaks_Gyr_y  Highest_peak_Gyr_z Skew_Gyr_z 
101 Max_diff_Roll Var_Acc_z Avr_peak_time_Gyr_y  Rms_Azimuth Entropy_Azimuth 
102 Skew_Gyr_y Highest_peak_Pitch nPeaks_Gyr_z  Min_Acc_y Cf_Gyr_z 
103 Cf_Azimuth DSVM_Acc Widest_Peak_Gyr_z  mag_Acc Max_diff_Acc_x 
104 Interq_Azimuth nPeaks_Gyr_x Highest_peak_Gyr_z  Rms_Gyr_x Rms_Gyr_z 
105 Entropy_Gyr_x Rms_Azimuth   Skew_Acc_x Interq_Acc_x 
106 Mean_Acc_y Kur_Acc_y   Cf_Acc_z Avr_peak_time_Azimuth 
107 Kur_Acc_y Vedb_Angle   Var_Roll Cf_Acc_x 
108 Skew_Pitch Energy_Azimuth   Avr_peak_time_Acc_y Std_Acc_x 
109 Vedb_Gyr Min_Gyr_z   Var_Azimuth Std_Acc_y 
110 Widest_Peak_Roll Dfreq_Azimuth   Avr_peak_time_Gyr_x Std_Acc_z 
111 Max_Acc_y Mean_Azimuth   Std_Acc_x Std_Azimuth 
112 nPeaks_Gyr_x Kur_Roll   Std_Acc_y Std_Roll 
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113 Min_Gyr_x AV_Ang   Std_Acc_z Std_Gyr_x 
114 Cf_Acc_z Widest_Peak_Acc_z   Std_Azimuth Std_Gyr_y 
115 MV_Gyr nPeaks_Azimuth   Std_Pitch Std_Gyr_z 
116 Skew_Roll Interq_Acc_z   Std_Roll Entropy_TimeD_Acc 
117 Interq_Acc_y Min_Azimuth   Std_Gyr_x Energy_Acc_x 
118 SVM_Gyr Max_Gyr_x   Std_Gyr_y Energy_Acc_y 
119 DSVM_Acc Cf_Acc_z   Std_Gyr_z Energy_Acc_z 
120 Entropy_TimeD_Gyr nPeaks_Acc_x   Cf_Azimuth Energy_Azimuth 
121 Energy_Acc_z DSAM_Angle   Entropy_TimeD_Ang Energy_Pitch 
122 Kur_Acc_x Avr_peak_time_Acc_z   Entropy_TimeD_Gyr Energy_Roll 
123 Dfreq_Azimuth Entropy_Acc_x   Energy_Acc_x Energy_Gyr_x 
124 Mean_Azimuth Kur_Acc_z   Energy_Acc_y Energy_Gyr_y 
125 SMA_Gyr Cf_Gyr_y   Energy_Acc_z Energy_Gyr_z 
126 Kur_Acc_z Vedb_Acc   Energy_Azimuth Dfreq_Acc_z 
127 Max_diff_Acc_x Kur_Gyr_x   Energy_Pitch Dfreq_Azimuth 
128 Entropy_Gyr_z Cf_Gyr_x   Energy_Roll nPeaks_Acc_y 
129 Rms_Acc_z Skew_Gyr_x   Energy_Gyr_x nPeaks_Acc_z 
130 Avr_peak_time_Acc_x Max_diff_Acc_z   Energy_Gyr_y nPeaks_Gyr_z 
131 Widest_Peak_Gyr_x Entropy_TimeD_Ang   Energy_Gyr_z Avr_peak_time_Gyr_x 
132 Entropy_TimeD_Acc Skew_Gyr_y   SVM_Angle Var_Roll 
133 SMA_Angle Min_Gyr_x   MV_Acc nPeaks_Acc_x 
134 Var_Azimuth SMA_Angle   MV_Gyr Max_Acc_x 
135 Energy_Azimuth SVM_Angle   Vedb_Gyr Kur_Roll 
136 SVM_Angle Std_Acc_y   Dfreq_Acc_z Var_Azimuth 
137 Kur_Gyr_z Max_Azimuth   Dfreq_Azimuth Max_Acc_z 
138 SVM_Acc Var_Acc_y   nPeaks_Acc_x Kur_Pitch 
139 SMA_Acc Widest_Peak_Azimuth   nPeaks_Pitch nPeaks_Azimuth 
140 MV_Acc Widest_Peak_Gyr_x   nPeaks_Gyr_y Max_Gyr_x 
141 Entropy_TimeD_Ang MV_Acc   Kur_Gyr_z Cf_Acc_z 
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142 Avr_peak_time_Azimuth Kur_Gyr_y   Var_Acc_y Vedb_Acc 
143 Kur_Roll Avr_peak_time_Acc_x   Entropy_TimeD_Acc Highest_peak_Pitch 
144 Kur_Pitch Skew_Roll   Avr_peak_time_Gyr_z Cf_Gyr_x 
145 Rms_Azimuth Highest_peak_Acc_z   Vedb_Angle Mean_Gyr_y 
146 Vedb_Angle Cf_Acc_y   Cf_Acc_x Min_Gyr_z 
147 Std_Azimuth Skew_Gyr_z   Var_Gyr_z Widest_Peak_Acc_y 
148 Skew_Acc_x mag_Acc   Highest_peak_Roll Entropy_TimeD_Ang 
149 Skew_Azimuth Interq_Acc_y   SMA_Gyr Avr_peak_time_Pitch 
150 Widest_Peak_Acc_z Max_diff_Acc_x   Rms_Pitch SMA_Acc 
151 Avr_peak_time_Gyr_y nPeaks_Pitch   Kur_Acc_x Skew_Gyr_y 
152 Skew_Gyr_x Cf_Azimuth   Kur_Roll Rms_Acc_y 
153 Entropy_Acc_y Entropy_Gyr_y   Skew_Gyr_y MV_Acc 
154 AV_Ang Widest_Peak_Gyr_z   Mean_Acc_z Widest_Peak_Pitch 
155 nPeaks_Azimuth nPeaks_Gyr_z   Entropy_Pitch Highest_peak_Roll 
156 Widest_Peak_Acc_x Mean_Gyr_x   mag_Gyr Kur_Acc_y 
157 DSAM_Angle SMA_Acc   Rms_Acc_z Cf_Gyr_y 
158 Highest_peak_Acc_z Kur_Gyr_z   Avr_peak_time_Acc_z Kur_Gyr_x 
159 nPeaks_Acc_x Entropy_TimeD_Acc   nPeaks_Roll Entropy_TimeD_Gyr 
160 Widest_Peak_Pitch SVM_Acc   nPeaks_Gyr_x Std_Pitch 
161 Kur_Gyr_y Widest_Peak_Pitch   nPeaks_Gyr_z Rms_Gyr_x 
162 Std_Acc_y Widest_Peak_Acc_y   Widest_Peak_Roll SVM_Acc 
163 Var_Acc_y Widest_Peak_Acc_x   SVM_Gyr Avr_peak_time_Gyr_y 
164 Highest_peak_Azimuth Highest_peak_Azimuth   Dfreq_Acc_y SVM_Gyr 
165 Widest_Peak_Gyr_y mag_Gyr   nPeaks_Acc_z Widest_Peak_Gyr_x 
166 Avr_peak_time_Pitch Avr_peak_time_Gyr_z   Max_diff_Acc_x Entropy_Acc_x 
167 Avr_peak_time_Roll Max_diff_Azimuth   Entropy_Gyr_y Max_diff_Acc_y 
168 mag_Gyr Avr_peak_time_Azimuth   Var_Acc_z Dfreq_Acc_x 
169 Max_Azimuth Entropy_Azimuth   Widest_Peak_Azimuth Widest_Peak_Azimuth 
170 Widest_Peak_Gyr_z Kur_Azimuth   DSAM_Angle Interq_Azimuth 
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171 Skew_Gyr_z Avr_peak_time_Acc_y   Kur_Gyr_y Kur_Acc_x 
172 nPeaks_Acc_z Avr_peak_time_Pitch   Min_Gyr_x Vedb_Gyr 
173 Mean_Gyr_x nPeaks_Acc_y   Max_diff_Acc_z DSVM_Acc 
174 Widest_Peak_Azimuth Kur_Acc_x   Kur_Azimuth Skew_Acc_x 
175 Avr_peak_time_Acc_y Skew_Azimuth   Skew_Pitch mag_Gyr 
176 nPeaks_Roll Widest_Peak_Gyr_y   Max_Azimuth nPeaks_Pitch 
177 Cf_Acc_y Avr_peak_time_Gyr_y   DSVM_Acc mag_Ang 
178 nPeaks_Gyr_y Var_Azimuth   Max_diff_Azimuth Highest_peak_Gyr_x 
179 mag_Acc Widest_Peak_Roll   Kur_Acc_y nPeaks_Gyr_y 
180 Kur_Azimuth nPeaks_Acc_z   Mean_Gyr_x Entropy_Acc_z 
181 nPeaks_Acc_y Std_Azimuth   Widest_Peak_Gyr_y Mean_Gyr_x 
182 Widest_Peak_Acc_y Interq_Azimuth   Skew_Gyr_z Widest_Peak_Gyr_y 
183 nPeaks_Pitch nPeaks_Gyr_y   Widest_Peak_Acc_y Widest_Peak_Acc_z 
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 CART Performance Results to Test for the Best Number 

of Features  

  

  

  
Appendix F. 1 Best no. of features ranked by 3 feature selection methods for DataSet1_all over  𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix F. 2 Best no. of features ranked by 3 feature selection methods for DataSet1_all over  𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix F. 3 Best no. of features ranked by 3 feature selection methods for DataSet1_all over  𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix F. 4 Best no. of features ranked by 3 feature selection methods for DataSet2_ac over  𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix F. 5 Best no. of features ranked by 3 feature selection methods for DataSet2_ac over  𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix F. 6 Best no. of features ranked by 3 feature selection methods for DataSet2_ac over  𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  
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Appendix F. 7 Best no. of features ranked by 3 feature selection methods for DataSet2_b over  𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 

 



 CART Performance Results to Test for the Best Number of Features  

303 
 

  

  

  
Appendix F. 8 Best no. of features ranked by 3 feature selection methods for DataSet2_b over  𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  
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Appendix F. 9 Best no. of features ranked by 3 feature selection methods for DataSet2_b over  𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix F. 10 Best no. of features ranked by 3 feature selection methods for DataSet3_all over  𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  
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Appendix F. 11 Best no. of features ranked by 3 feature selection methods for DataSet3_all over  𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  
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Appendix F. 12 Best no. of features ranked by 3 feature selection methods for DataSet3_all over  𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  
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 Confusion Matrices of Ensemble Classifiers for Sheep 

DataSets 

  
(a) Bagging ensemble /20- features ReliefF (b) Boosting ensemble /20- features ReliefF 

  
(c) Bagging ensemble /81- features GA (d) Boosting ensemble /81- features GA 

  
(e) Bagging ensemble /20- features RF (f) Boosting ensemble /20- features RF 

Appendix G. 1 Confusion Matrices for 5-fold validation method of DataSet1_all, FOSW segmentation method 
over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20- features ReliefF (b) Boosting ensemble /20- features ReliefF 

  
(c) Bagging ensemble /74- features GA (d) Boosting ensemble /74- features GA 

  
(e) Bagging ensemble /20- features RF (f) Boosting ensemble /20- features RF 

Appendix G. 2 Confusion Matrices for 5-fold validation method of DataSet1_all, FOSW segmentation method 
over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  
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(a) Bagging ensemble /20- features ReliefF (b) Boosting ensemble /20- features ReliefF 

 
 

(c) Bagging ensemble /52- features GA (d) Boosting ensemble /52- features GA 

  
(e) Bagging ensemble /20- features RF (f) Boosting ensemble /20- features RF 

 Appendix G. 3 Confusion Matrices for 5-fold validation method of DataSet1_all, FOSW segmentation method 
over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20- features ReliefF (b) Boosting ensemble /20- features ReliefF 

  

(c) Bagging ensemble /81- features GA (d) Boosting ensemble /81- features GA 

  

(e) Bagging ensemble /20- features RF (f) Boosting ensemble /20- features RF 

Appendix G. 4 Confusion Matrices for 0.3 hold-out validation method of DataSet1_all, FOSW segmentation 
method over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20- features ReliefF (b) Boosting ensemble /20- features ReliefF 

  

(c) Bagging ensemble /74- features GA (d) Boosting ensemble /74- features GA 

  

(e) Bagging ensemble /20- features RF (f) Boosting ensemble /20- features RF 

 Appendix G. 5 Confusion Matrices for 0.3 hold-out validation method of DataSet1_all, FOSW segmentation 
method over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20- features ReliefF (b) Boosting ensemble /20- features ReliefF 

  

(c) Bagging ensemble /52- features GA (d) Boosting ensemble /52- features GA 

  

(e) Bagging ensemble /20- features RF (f) Boosting ensemble /20- features RF 

Appendix G. 6 Confusion Matrices for 0.3 hold-out validation method of DataSet1_all, FOSW segmentation 
method over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

 
 

(c) Bagging ensemble /46 - features GA (d) Boosting ensemble /46 - features GA 

  
(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 7 Confusion Matrices for 5-fold validation method of DataSet2_ac, FOSW segmentation method 
over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤.  
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

  
(c) Bagging ensemble /38 - features GA (d) Boosting ensemble /38 - features GA 

  
(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 8 Confusion Matrices for 5-fold validation method of DataSet2_ac, FOSW segmentation method 
over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

 
 

(c) Bagging ensemble /39 - features GA (d) Boosting ensemble /39 - features GA 

  
(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 9 Confusion Matrices for 5-fold validation method of DataSet2_ac, FOSW segmentation method 
over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

  

(c) Bagging ensemble /46 - features GA (d) Boosting ensemble /46 - features GA 

  

(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 10 Confusion Matrices for 0.3 hold-out validation method of DataSet2_ac, FOSW segmentation 
method over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

  

(c) Bagging ensemble /38 - features GA (d) Boosting ensemble /38 - features GA 

  

(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 11 Confusion Matrices for 0.3 hold-out validation method of DataSet2_ac, FOSW segmentation 
method over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(g) Bagging ensemble /20- features ReliefF (h) Boosting ensemble /20- features ReliefF 

  

(i) Bagging ensemble /39- features GA (j) Boosting ensemble /39- features GA 

  

(k) Bagging ensemble /20- features RF (l) Boosting ensemble /20- features RF 

Appendix G. 12 Confusion Matrices for 0.3 hold-out validation method of DataSet2_ac, FOSW segmentation 
method over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

  
(c) Bagging ensemble /64 - features GA (d) Boosting ensemble /64 - features GA 

  
(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 13 Confusion Matrices for 5-fold validation method of DataSet2_b, FOSW segmentation method 
over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

 
 

(c) Bagging ensemble /27 - features GA (d) Boosting ensemble /27 - features GA 

  
(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 14 Confusion Matrices for 5-fold validation method of DataSet2_b, FOSW segmentation method 
over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

  
(c) Bagging ensemble /6 - features GA (d) Boosting ensemble /6 - features GA 

 
 

(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 15 Confusion Matrices for 5-fold validation method of DataSet2_b, FOSW segmentation method 
over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

  

(c) Bagging ensemble /64 - features GA (d) Boosting ensemble /64 - features GA 

  

(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 16 Confusion Matrices for 0.3 hold-out validation method of DataSet2_b, FOSW segmentation 
method over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 

 

 



 Confusion Matrices of Ensemble Classifiers for Sheep DataSets 

324 
 

 

  

(a) Bagging ensemble /20 - features ReliefF (b) Boosting ensemble /20 - features ReliefF 

  

(c) Bagging ensemble /27 - features GA (d) Boosting ensemble /27 - features GA 

  

(e) Bagging ensemble /20 - features RF (f) Boosting ensemble /20 - features RF 

Appendix G. 17 Confusion Matrices for 0.3 hold-out validation method of DataSet2_b, FOSW segmentation 
method over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20- features ReliefF (b) Boosting ensemble /20- features ReliefF 

  

(c) Bagging ensemble /6 - features GA (d) Boosting ensemble /6 - features GA 

 
 

(e) Bagging ensemble /20- features RF (f) Boosting ensemble /20- features RF 

Appendix G. 18 Confusion Matrices for 0.3 hold-out validation method of DataSet2_b, FOSW segmentation 
method over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 

 



 Confusion Matrices of Ensemble Classifiers for Sheep DataSets 

326 
 

 

  
(a) Bagging ensemble /20 - features ReliefF (b) RusBoosting ensemble /20 - features ReliefF 

  
(c) Bagging ensemble /81 - features GA (d) RusBoosting ensemble /81 - features GA 

  
(e) Bagging ensemble /20 - features RF (f) RusBoosting ensemble /20 - features RF 

Appendix G. 19 Confusion Matrices for 5-fold validation method of DataSet3_all, FOSW segmentation method 
over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) RusBoosting ensemble /20 - features ReliefF 

  
(c) Bagging ensemble /14 - features GA (d) RusBoosting ensemble /14 - features GA 

  
(e) Bagging ensemble /20 - features RF (f) RusBoosting ensemble /20 - features RF 

Appendix G. 20 Confusion Matrices for 5-fold validation method of DataSet3_all, FOSW segmentation method 
over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) RusBoosting ensemble /20 - features ReliefF 

  
(c) Bagging ensemble /38 - features GA (d) RusBoosting ensemble /38 - features GA 

  
(e) Bagging ensemble /20 - features RF (f) RusBoosting ensemble /20 - features RF 

Appendix G. 21 Confusion Matrices for 5-fold validation method of DataSet3_all, FOSW segmentation method 
over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) RusBoosting ensemble /20 - features ReliefF 

  

(c) Bagging ensemble /81 - features GA (d) RusBoosting ensemble /81 - features GA 

  

(e) Bagging ensemble /20 - features RF (f) RusBoosting ensemble /20 - features RF 

Appendix G. 22 Confusion Matrices for 0.3 hold-out validation method of DataSet3_all, FOSW segmentation 
method over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20 - features ReliefF (b) RusBoosting ensemble /20 - features ReliefF 

  

(c) Bagging ensemble /14 - features GA (d) RusBoosting ensemble /14 - features GA 

  

(e) Bagging ensemble /20 - features RF (f) RusBoosting ensemble /20 - features RF 

Appendix G. 23 Confusion Matrices for 0.3 hold-out validation method of DataSet3_all, FOSW segmentation 
method over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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(a) Bagging ensemble /20- features ReliefF (b) RusBoosting ensemble /20- features ReliefF 

  

(c) Bagging ensemble /38 - features GA (d) RusBoosting ensemble /38 - features GA 

  

(e) Bagging ensemble /20- features RF (f) RusBoosting ensemble /20- features RF 

Appendix G. 24 Confusion Matrices for 0.3 hold-out validation method of DataSet3_all, FOSW segmentation 
method over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix H. 1 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet1_all (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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 Appendix H. 2 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet1_all (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix H. 3 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet1_all (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 



 Comparison of Validation Techniques of Ensemble classifiers  

335 
 

 

  

  

  
Appendix H. 4 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet2_ac (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 

 

 



 Comparison of Validation Techniques of Ensemble classifiers  

336 
 

 

  

  

  
Appendix H. 5 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet2_ac (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix H. 6 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet2_ac (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix H. 7 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet2_b (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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 Appendix H. 8 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet2_b (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix H. 9 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & Boost) 

for DataSet2_b (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix H. 10 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & 
RusBoost) for DataSet3_all (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟏𝟎 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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 Appendix H. 11 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & 
RusBoost) for DataSet3_all (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟕 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix H. 12 Validation techniques comparison (5-fold & 0.3 hold-out) of Ensemble classifiers (Bag & 
RusBoost) for DataSet3_all (3 FS: ReliefF, GA, RF), FOSW segmentation method over 𝟓 𝑠𝑒𝑐. 𝑤𝑖𝑛𝑑𝑜𝑤. 
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Appendix I. 1 Poster competition 2nd place winner in 2016, and Image of Research 1st place winner in 
2017 at the University of Northampton. 

 



 Publications and Awards Gallery 

345 
 

 

 
Appendix I. 2 1st winner poster in the Poster competition, and 1st place winner image in the Image of 

Research at the University of Northampton in 2016 and 2017. 
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Appendix I. 3 Acknowledgement letter from Moulton College Principal for winning 1st place in the 

Image of Research at the University of Northampton. 
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Appendix I. 4 Gallery from BBC recording day in October 2017 at Lodge Farm/ Moulton College/ 

Northampton. 
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Appendix I. 5 The annual Research Highlights 2016-17 of the University of Northampton includes 

research story in page 12 and 13.  
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Appendix I. 6 Gallery from STEM for Britain poster exhibition in March 2018 at the House of Commons/ UK 
Parliament / London / Westminister. 
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Appendix I. 7 Certificate of attendance for the STEM for the Britain Exhibition. 
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Appendix I. 8 Acknowledgement letter from Royal Academy of Engineering for being shortlisted to 

participate in STEM for Britain annual poster competition. 
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Appendix I. 9 Poster presented at STEM for Britain exhibition in the House of Commons, the UK 

parliament. 12 March 2018. 
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Appendix I. 10 Poster presented at Recent advances in animal welfare science VI, UFAW Animal 
Welfare Conference, Centre for life, Newcastle, UK. 28 June 2018. 
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Appendix I. 11 Sensor Data Classification for the Indication of Lameness in Sheep. In Collaborate 
Computing: Networking, Applications and Worksharing. Chapter published in Lecture Notes of the 
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: 

Springer International Publishing, pp. 309–320. 


