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Abstract 

Green Logistics has attracted increased attention from researchers during the last few years, due 

to the growing environmental awareness. Road Transport is a major factor in climate change and 

accounts for a large proportion of the total UK emissions, including Carbon Dioxide (CO₂). 

With traffic and congestion levels growing, efficient routing combined with greener (more 

environmentally friendly) vehicles will be of great importance. The purpose of this thesis is two-

fold: i) to provide an insight into Green Logistics and ways in which green technologies can be 

combined within the vehicle routing problem and ii) identifying new variants of the Vehicle 

Routing Problem (VRP) that can be applied to real-life instances; The Platooning Routing 

Problem with Changing Split Points, and the proposition of a Hyper-Realistic Electric Vehicle 

Energy Consumption model that can be applied to the E-VRP. A thorough CO₂ experiment	was 

also conducted on a rolling road, providing useful data that future research can use to further 

increase the accuracy of routing models. The platooning of vehicles proves to be an important 

technique that can lead to large decreases in fuel consumption and can be easily implemented in 

most transport systems; the process requires advanced and accurate computer systems that are 

only now becoming available to manufacturers. The Platooning model is designed and tested 

within this thesis and it is hoped to spark further interest in this crucial area of research. 

Extensions to the Platooning Problem include the addition of heterogeneous fleets and how they 

change the dynamics of the proposed problems, as well as further work on the placement of the 

critical splitting point. Allowing the consideration of using limited range Electric Vehicles (EVs) 

as well as Conventional Vehicles (CVs) and Alternative Fuel powered Vehicles (AFVs) can 

further increase the emission savings and are becoming progressively popular in today’s society. 

We therefore have carried out extensive research around the area of AFV’s including detailed 

battery specifics for EV’s. The objective is to minimise the amount of emissions while satisfying 
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the time window requirements of customers maintaining low overall financial costs. The resulting 

emissions are largely affected by the electricity fuel mix of the country, we found that the indirect 

EV emissions for a 30kwh EV can vary by as much as 33% throughout the day and as much as 

68% throughout the year with different seasons. Various heuristic and metaheuristic solution 

techniques as well as several classical heuristics are implemented including the Clarke and Wright 

Savings heuristic algorithm (CWSA), the Sweep Algorithm and the Variable Neighbourhood 

Search (VNS) method. These heuristic and metaheuristic models are tested on the Christofides 

et al. datasets and we achieve solutions that are on average 1.67% and 8.5% deviated from the 

best-known solution for unrestricted route lengths and restricted max route length problems 

respectively. Following this a platooning model is generated and tested on various datasets, 

including a real-life example along the roads of the South East of the UK. Platooning proves to 

bring benefits to the VRP, with the extensions discussed in this thesis providing increased savings 

to emissions. On three of the dataset problems of the small and medium size problems a 

significant fuel saving of more than 1% was achieved. With future research and additional 

avenues explored Platooning can make a significant reduction to emissions and make an impact 

on improving air quality. The EV model proposed is designed to trigger further research on ultra-

realistic energy models with the aim of being applied to a real-life organisation with various 

constraints including factors such as battery health, travel speed, vehicle load and transportation 

distance. This thesis provides useful insights into how important the aspect of environmental 

route planning is, providing advice on tangible and intangible benefits such as cost savings and a 

reduction in carbon emissions. 
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Chapter 1 

Introduction 

 

This introductory chapter aims at providing the reader with an insight into the green logistics 

area. A brief introduction to the current environmental impacts of transport and the 

current/future regulations employed to combat emissions are provided. Following this an 

introduction to the Vehicle Routing Problem (VRP) is presented, this popular management 

science topic is well studied within research, however it must be understood well in order to fully 

comprehend the advanced techniques applied within this thesis to reduce emissions and increase 

overall efficiency. 

 

1.1 Green Logistics 

Green Logistics is becoming increasingly important in today’s society and gaining a higher level 

of awareness throughout the logistics and supply chain management area. In the UK the road 

transport sector was responsible for around 21 percent of UK greenhouse gas emissions in 2013, 

almost entirely through carbon dioxide emissions (Final Emissions statistics 2013, 2015). This 

topic is aimed at identifying aspects within the supply chain network that results in benefitting the 

environment and looks at improving the environmental sustainability of logistics. Green logistics 

highlights challenges that arise from such alterations and also provides advantages to thinking 

‘green’ for both organisations and logisticians with the intention of encouraging all participants to 
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consider the environmental impact of their processes and actions. The main objective of logistics 

is to provide logistical activities meeting customer requirements while minimising costs. In the 

past, cost has solely been defined in monetary terms. Green Logistics looks at changing this, 

highlighting external as well as internal costs. These external costs include climate change, air 

pollution, noise pollution, traffic pollution as well as accidents. A truly efficient green system 

studies ways in which these external costs can be reduced achieving a balance between economic, 

environmental and social objectives. In recent years there has been an increasing concern about 

the impact of these emissions and whether or not current logistic practises may be sustainable in 

the long term (Sbihi and Eglese, 2007). The importance of environmental issues are being 

translated into an increasing number of regulations which have a direct effect on the supply chain 

network, examples of such regulations can be found from the European Commission Transport 

Sector. As a result there has been an increase in research between logistics and environmental 

factors (Jabali et al. 2012). Transport organisations are having to increase their awareness of 

potential impacts both internally and externally, for all of their activities and services as they grow 

and develop. Individual Governments are bringing in increasing regulations to regulate the 

amount of emissions that are generated by organisations. The 2008 climate change act 

established the world’s first legally binding climate change target. The UK government aims to 

reduce the UK’s greenhouse gas emissions by 80% by the year 2050 from the baseline in the 

year 1990 (Government Policy 2010 to 2015). Scotland have committed to reducing their 

emissions to net-zero by the year 2045, 5 years ahead of the UK’s governments target (BBC 

News, 2019). The UK’s policy requires a drastic reduction in emissions and as the road transport 

industry are the main contributors to these emissions then it should be here where attention is 

focused, as can be seen in figure 1.1.1 where the dominant energy use category is transport. The 

total energy consumption of all transport modes in the EU-28 accounted for 1,065 million tonnes 

of CO2 equivalents (Greenhouse Gas Emission Statistics, 2018). By-products from this amount 
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of energy consumption in the transport sector include huge amounts of CO2 and other pollutants 

that have a direct effect on global warming (Unger, 2009). Heavy duty vehicles (HDVs) are a 

significant contributor to these greenhouse gas emissions with around 16% of the CO2 pollution 

in Europe (Road Freight Transport Vademecum, 2009). 

      Global efforts to reduce their emissions should be a priority as they can provide an immediate 

benefit and help avoid the dangerous tipping points in the climate system over the next few 

decades.  

 

The latest UK government figures on transport provide a good notion of where the UK are 

heading and the current trends. Within the UK the most popular form of transport is road, in 

the year 2016, 78% of the UK population transport distance travelled was car/van based. 

However, its not just the public 76% of goods were transported via road transport, goods vehicles 

travelled a total of 19.2 billion km’s, an increase of 5% from 2015. This not only generates 

Figure 1.1.1 The final use of energy in the EU-28 in 2013, three dominant 

categories with Transport being the main contributor at 31.6% (European 

Environmental Agency 2015). 
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increased emissions but also more traffic congestion and can have large effects on the road 

infrastructure of towns and cities. The trend for newer more efficient vehicles is pleasing to see, 

with 42,000 ultra low emissions vehicles registered in the year 2016, an increase of 40% from 

2015 (Transport Statistics, Great Britain, 2017). Recent greener decisions made by the UK 

government include large investments in greener fuels such as biofuels, government monetary 

grants for Electric Vehicles (EV’s) and accompanying Plug-in schemes as well as deciding to 

maintain with the European Union’s carbon emissions goals, even after the EU removal is 

completed (Road vehicles: Improving air quality and safety, 2018). With tighter emissions 

regulations, and improved technology the UK are moving forward quickly with the adoption of 

greener transport, but is it quick enough. Chapter 6 delves into the UK Emissions and plans in 

more detail along with some analysis. 

      Environmental management systems (EMS) are being implemented to try and control, 

monitor and improve environmental impacts. Much work has been done to see how well these 

systems are used in an organisation and their impacts, examples include: Dillon and Fisher 

(1992), Melnyk et al. (2003), Chan E (2011), Lo et al. (2012). However, with CO2 emissions 

remaining stagnant these EMS’ need to be revisited and improved. For Heavy Goods Vehicles 

(HGVs – vehicles with mass over 3.5 tonnes) fuel equates to around 30% of total operating costs 

in transport companies (Kolbl, 2012). This means using less fuel is not only better for the 

environment due to a reduction in emissions but also good business practise. Companies are 

devoting a lot of resources to the development of their environmental awareness. A common 

practise is Eco driver training; Driver training courses teach special techniques that not only help 

drivers keep safe, but also can reduce their fuel costs and environmental impact. Performance 

monitoring systems can also relay direct driver feedback to the driver and their supervisors 

allowing further improvement to economical driving. Combining eco driver training and 

performance monitoring systems can lead to further carbon reduction (Freight Carbon Review, 
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2010-2015). Recent improvement in technology is allowing electric vehicles to become 

progressively viable for businesses. Battery technology including design, materials, cooling and 

manufacturing processes has increased rapidly over the last 10 years with public electric vehicles 

in production now being able to travel up to 300 miles on a single charge (Jaguar I-Pace, 2018). 

The reduction in direct tailpipe emissions can help reduce the current emissions caused by the 

transport industry and will be a necessary investment looking towards the future. EV’s can be 

considered under the branch of Alternative Fuel Powered Vehicles (AFV’s) these are vehicles 

that are powered by fuel other than Petrol or Diesel. Within this thesis considerable focus is 

placed on EV’s however for completeness for the reader other popular AFV’s can also include  

Liquid Propane Gas (LPG) powered vehicles as well as, although less common, Hydrogen Fuel 

cell powered vehicles. In order for transport systems to be effective for users, efficient algorithms 

are needed. Algorithms reducing the emissions while also minimising the costs are becoming 

increasingly desired; it is hoped that the models developed in this thesis will provide many real-

world benefits to companies within the transport industry and increase the awareness of emission-

based vehicle routing problems.  

 

1.2 Vehicle Routing Problem 

The Vehicle Routing Problem (or VRP) is a very well-known combinatorial problem that is 

popular among researchers due to its many variants and its scope for development. The VRP is 

derived from the Travelling Salesman Problem (TSP). The aim of a TSP is to find the shortest 

possible route starting at one location, passing through every other location and returning to the 

same starting location. The VRP is a further extension of the TSP however it includes multiple 

routes/vehicles each of which can be considered to have its own TSP to solve. Typically 

concerning a delivery company, the VRP creates a set of routes that must start and finish at the 

depot, such that all customers’ requirements are fulfilled within the given operational constraints. 



 6 

The road network is described as a graph where the arcs are the routes traversed between 

customers and the nodes are the customers. Each arc has an associated cost, generally considered 

its length or travel time.  

 

Figure 1.2.a Customers to be served from a central Depot 

 

Figure 1.2.b Initial Solution with 5 vehicles 

 

The aim is to minimise the total distance of all the routes. Figure 1.2a shows the customers that 

need to be served by vehicles leaving from a depot, in this instance the depot is situated in the 

centre of the graph. Figure 1.2b provides a solution to the problem with 5 vehicles serving all the 

customers and returning to the depot. Upon inspection one of the vehicles can be seen to only 

Figure 1.2.c Optimised Solution, with 4 optimal vehicles 
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serve 1 customer on their route. This is in most cases inefficient, and fleet operators may not be 

inclined to add another vehicle to their fleet to fulfil a single order due to expenses. Figure 1.2c 

further optimises the solution with a lower overall distance while using just 4 vehicles. Using 

computer methods to solves such problems as the VRP in a business situation can often lead to 

important cost savings, in many cases mean 20% of the total cost of the product (Toth and Vigo 

2002). 

Researchers in the subject area investigate the problem (and its variants) and often apply 

new or existing optimisation algorithms in order to solve this NP-hard problem. The VRP and 

all its variants share a common aim, that is, the production of a set of vehicle routes starting and 

ending at the depot/depots in a way so that all customers are served. A series of constraints follow 

these aims and vary in complexity and are often included to provide real world applicability to 

the problem. These constraints are often responsible for how variants differentiate. Examples of 

such constraints include a vehicles capacity, the number of vehicles available, the type of vehicles 

available, time constraints, a maximum distance that normal and alternatively fuel powered 

vehicles can travel, and loading constraints, further constraints will be highlighted within the 

literature review chapter. As the customer size of the VRP grows the problem increases in 

difficulty exponentially, combined with ever increasing complicated constraints further 

complexity is added into the models. Common objectives within the VRP include minimising 

total distance travelled, minimising the number of vehicles, reducing waiting times and more 

recently, reducing emissions. Part of this thesis focuses on the objective to reduce the emissions, 

while many models are considered green as they attempt and reduce the distance travelled, which 

is directly related to fuel, other factors need to be considered which are often not measured and 

frequently overlooked.  

      The vehicle routing problem is a complicated problem to solve when more constraints and 

variables are added, they are classed as NP-hard problems. NP-hard problems also known as 
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Non-Deterministic Polynomial-time hard problems, and they are not limited to decision 

problems. They can be defined as: a problem x is NP-hard if there is an NP-complete problem 

y, such that y is reducible to x in polynomial time. When trying to solve combinatorial problems 

such as the vehicle routing problem that is NP-hard typically two methods are used.  

 

1) The first method that was used is an exact method. Exact algorithms as the name suggests 

compute every possible solution until the optimum is found. Every NP-hard problem can be 

solved by exhaustive search. However, when the number of instances increase, and the 

complexity rises the running time soon becomes too large to compute. Solving NP-hard 

problems to optimality is an area of research that has challenged researchers for generations. 

Exact methods have been studied and developed since the beginning of computing history. Due 

to the complexity of problems arising nowadays exact approaches are often limited to fairly small 

instances. Due to the complexity of the VRP only small instances can be solved optimally 

consistently. 

A Survey conducted by Laporte and Norbert (1987) was the first work to show a 

comprehensive overview on the exact algorithms for VRPs. They classified them into three 

categories: direct tree search methods, dynamic programming and integer linear programming. 

Since then other algorithms such as the Branch-and-Cut-and-Price successfully combine 

methods to provide fast efficient results. The best-known exact algorithms for the symmetric 

CVRP can be classified into the following categories: Branch-and-Bound, Branch-and-Cut, 

dynamic programming and Set Partitioning (SP) based methods (Baldacci R, Mingozzi A, 2006). 

Several other key review papers were devoted to the analysis of exact algorithm methods 

including: Laporte (1992), Toth and Vigo (1998), Bramel and Simichi-Levi (1998), Naddef and 

Rinaldi (2002), Cordeau et al. (2002), Baldacci (2004), Toth and Vigo (2002). 
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2) The second method that is used is heuristics. Heuristic methods are growing in importance. 

They are becoming essential for decision analysts, managers and OR (Operational Research) 

practitioners’ everywhere. All over the world an increasing number of companies are developing 

new technologies and products, they are striving to compete within this fast-developing market. 

As a consequence, there is a need to develop fast efficient problem-solving methods. When 

trying to solve a medium to complex problem exact solution methods often become impractical 

and very inefficient. Heuristic’s provides the answer, a practical solution in a sensible amount of 

time. In the business world, time is money, a practical solution in a short time frame will in most 

cases be much more functional. F. Glover et al (2008) shows how ineffective and wasteful the 

exact method is when applied to the controlled tabular adjustment method. Real-life 

combinatorial optimisation problems are typically large in size and since exact approaches are 

insufficient, heuristics are implemented instead. Heuristics are immensely important when trying 

to solve large problems, they are viable in numerous areas. Heuristics provide idealistic near 

optimal solutions to many companies’ problems, increasing profits, reducing risks and 

minimising waste. The increase in technology has meant more complex problems hence 

improved methods are being created which bought about the introduction of meta-heuristics. 

Today we see Optimisation problems everywhere and the list of applications seems endless; in 

order to solve these problems, we turn to heuristics. They are an important part of life and will 

become more so in the future, as problems grow in complexity.  

 

Heuristic and Metaheuristic Algorithms to solve the VRP are constantly developed with many 

different techniques. Some of the most popular are in a group called constructive heuristics, 

these are methods that start with an empty solution and perform iterative steps until a full solution 

is produced. Methods include: Savings Algorithms, Insertion Heuristics and Cluster-Route 

(route first, cluster second and cluster first route second).  Another popular class of heuristics is 
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the local improvement heuristic. The method works by searching the neighbourhood space and 

uses iterative steps applying defined moves improving the solution until an optimum is reached. 

These heuristic methods will be described in further detail in the next section. Metaheuristics 

are also commonly used to solve the VRP seeking to speed up traditional time-consuming 

techniques. Various Metaheuristic algorithms are used within literature and often prove to 

provide good results, further detail can be found in the literature review section of this thesis. 

Another variant of heuristics that should be mentioned are Matheuristics, these combine 

heuristic methods with mathematical methods such as branching. While these are relatively new 

they show good accurate results, for this research these matheuristics methods are not used for 

further information the reader is directed to the book Matheuristics – Hybridizing Metaheuristics 

and Mathematical Programming (Maniezzo, Stützle and Voss  2010). 

     The VRP is essential to the transport industry and has been the backbone of many 

researcher’s work, combining with the green aspects mentioned briefly, it is hoped that the 

combination can provide further real-world benefits. For the purpose of this research heuristic 

and metaheuristic methods will be used. Methods that are quicker to be implemented such as 

the Savings method will be used to get a good result in a reasonable amount of time. Once a 

baseline has been achieved further work on more advanced metaheuristic methods will be 

included such as VNS; this provides the structure for introducing fuel consumption reduction 

techniques such as Platooning as a post optimiser. The Platooning algorithm used within this 

thesis focuses on the initial customers and joins up two vehicles leaving from the depot. The 

vehicles travel towards the same point before splitting and continuing along their separate routes. 

Emission savings occur along the initial route travelled together, with multiple platoons being 

formed noticeable benefits in emission reductions can be achieved.  
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1.3 Motivation 

In the current economy, markets are becoming increasingly competitive, none more so than the 

energy market. Investors are beginning to move from traditional fossil fuels to new forms of 

energy. Figures show the Royal Bank of Scotland has reduced its global lending to oil and gas 

companies by 70% in oil and gas firms in 2015 and doubled UK green energy loans to £1bn, 

according to new figures released to the Guardian. It has also recently been announced that 

institutions controlling $13 trillion of investor’s money, are calling for G20 nations to ratify the 

Paris agreement last year and quicken investment in green technology and clean energy and 

forced disclosure of climate-related financial risk (Guardian, 2016). There is no doubt that green 

technology is the future, implementing such technology in a tangible way is becoming increasingly 

important. Efficient transport systems that are both environmentally friendly and cost saving are 

vital for success. Companies are constantly seeking to gain an advantage over their competitors, 

increases in environmental concerns from governments and the public (McCright et al. 2015) 

have meant that environmentally practises are now preferred. Advancements in technology has 

meant that vehicles have seen a reduction in emissions. Various techniques are used to reduce 

emissions by companies such as frequent renewal/updates of fleet vehicles providing 3 main 

benefits: firstly, more efficient engines producing less emissions. Secondly lower rolling 

resistances; when referring to vehicular transport these rolling resistances are primarily attributed 

to the force acting on a rolling tyre while the vehicle is in motion. Thirdly aerodynamic 

advancements resulting in a decrease in fuel consumption. Improving the aerodynamics of 

vehicles reduces the aerodynamic drag resulting in less force required to maintain a vehicles 

speed consequentially improving fuel consumption. Combined with adopting state of the art 

algorithms programs to efficiently manage their routing, companies can improve their efficiency 

and reduce overall costs while benefiting the environment.  
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One aim of this Thesis is to identify ways in which aerodynamic drag can be included 

and reduced using innovative techniques within the routing problem that can then be scaled into 

current logistics models/programs. With the most recent technology, complex vehicle 

monitoring systems have become powerful enough to provide safe driverless control to vehicles 

while travelling on public roads. Driverless technology removes human error when braking and 

accelerating that is caused from human reaction times. Using this system, a vehicle can safely 

travel behind one another in a close enough proximity so that the aerodynamic drag of the 

vehicles is reduced. This technique when used within transport is called Platooning and 

essentially describes vehicles that actively draft each other on the road. Platooning is being trialled 

within Singapore with the port operator PSA becoming the test bed for Scania’s autonomous 

truck platooning system. Platooning of vehicles is largely affected by the speed and the distance 

between the vehicles that are drafting. However, fuel saving benefits of 7%+ can be seen from 

just two truck platooning, and a 4% benefit when factoring in real world conditions such as traffic 

(Peloton). Other programs such as the PATH (2004) program based in California estimates that 

fuel saving benefits of up to 20% can be achieved (Davila and Nombela 2013). With the 

possibility of large improvements in fuel consumption Platooning is a viable and worthy option 

within logistics. Methods for communicating within the platooning of vehicles have been studied 

within literature, with several applications being tested. For fairly recent implementations see 

CHAUFFEUR (2004), Energy ITS (2013), KONVOI (2009), PATH (2004), Scoop (2012), or 

SARTRE (2010). 

The advancement in engine technology has helped greatly towards the progress the 

transport industry has been making in terms of carbon reduction over the recent years. However, 

arguably the fastest developing technology is that of Alternative Fuel Powered Vehicles. Electric 

delivery vehicles are the new trend with large companies in the USA such as Fed Ex and UPS 

(Anagnostopoulou Afroditi et al. 2014), with many top companies combining with manufactures 
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designing their own (Workhorse Group 2017). Electric driving is a promising alternative to 

conventional fuel powered vehicles. They produce zero tail pipe emissions, with only brake and 

tyre wear. Although they can cause GHG emissions and other pollutants depending on the mix 

of electricity that is used to generate the energy that powers the vehicles batteries. Electric driving 

comes in a range of alternatives for the consumer. The first is the Plug-in Hybrid Electric Vehicle 

(PHEV) which typically has a small battery for trips up to 30 miles and an ICE to provide power 

for longer range driving. These can be charged from regular and dedicated power outlets. The 

second is an Extended-range electric vehicle (E-REV), which are much like the PHEV in terms 

of both having an electric and ICE engine however they differ by the electric motor in the E-

REV always driving the wheels while the ICE is used to supply power to the battery when it is 

depleted. The third is the Battery Electric Vehicle (BEV) and are considered traditional electric 

vehicles where it relies entirely on electricity for fuel produced from the motor powered by the 

on-board battery, they typically currently range from an 80 - 300 mile range. The fourth is a 

series-parallel hybrid car (commonly referred to as just a Hybrid) whereby the ICE and electric 

motor are both connected to the wheels. The batteries charge is maintained by the ICE and it 

cannot be charged by plugging into a power outlet. These hybrids can travel very short distances 

on electrical energy. Other forms of electric driving such as fuel cell technology is discussed 

further in Chapter 5. The electric vehicles are increasing in popularity and are becoming a real 

viable alternative to the traditional ICE vehicle. As such the market has seen a huge uptake in 

Ultra low emission vehicles, they offer many benefits over the traditional vehicle such as: No fuel 

purchase needed resulting in them being cheaper to run, no direct emissions, Cost incentives, 

Low maintenance, reduced noise pollution and added benefits such as zero road tax and now 

the possibility of driving in bus lanes (BBC News 2016). However, they also bring with them 

some drawbacks which include: the number of recharge points and their accessibility, Short 

driving range, length recharge times, high cost of the batteries and battery degradation. While 
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still in its infancy Electric Vehicle technology is on the rise and will prove to be of great 

significance in the coming years if we are to battle climate change. Providing up to date research 

based around the techniques and methods companies and organisations will be using going 

forward is of great significance and is the motivation of this thesis. 

 

1.4 Aims and Objectives 

This thesis aims to provide a new outlook on some existing models that are used within the 

vehicle routing problem in terms of both energy/fuel consumption and electric vehicle modelling, 

to provide inductive ways in which current variants of the vehicle routing problem can be 

considered green/environmentally friendly. Realistic additions will be made on state-of-the-art 

electric power consumption models which will aid in their accuracy with real life variants such as 

temperature, power generation variations, and gradients. A novel model introducing 

aerodynamic benefits known as Platooning is presented in a VRP highlighting the benefits of 

utilising this commodity and how it can be introduced into the research area reducing fuel 

consumption with the necessary literature reviewed. This Platooning model can be extended with 

various VRP methods and has the possibility to reduce the emissions considerably. Looking at 

the social, financial and ecological benefits it is evident that vehicle platooning will play a 

significant role when designing state of the art Intelligent Transport Systems (ITS) in the near 

future (Maiti et al. 2017). Solution methodologies are created and tested on the models to 

determine the accuracy and usability. The green logistics subject area is becoming increasingly 

more important, making this research more relevant and needed. Overall this thesis is hoped to 

trigger further research in the area and prompt researchers to look towards the future of 

technology today.  
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1.5 Outline of Thesis 

The rest of this thesis is organised as follows: 

Chapter 2 provides a general review on the VRP, also looking at the different variations and how 

they are framed with constraints and solutions, several newer problems are presented with useful 

references and insights that the reader will find useful. We review the recent literature around 

the Green vehicle routing area focusing on Platooning and Alternative Fuel Powered Vehicles 

(focussing on Electric Vehicles) as we feel these are very important aspects within the 

sustainability sector. This chapter also reviews solution methods used to solve these problems 

including Exact, Heuristic and Metaheuristic Algorithms.   

 

Chapter 3 contains our basic model consisting of a VRP and introduces the basic Platooning 

model. This chapter provides the reader an insight into the algorithms in use and needed theory 

around platooning providing real-life applications. A heuristic and metaheuristic method model 

are created including VNS and other improvement heuristics to provide solutions to the VRP’s 

tested. A CO2 experiment is also conducted with valuable information for the research 

community. Results from the algorithms are provided as well as an analysis on the different 

techniques used. The Basic Platooning model is introduced and modelled. Results are provided 

alongside analysis.  

 

Chapter 4 introduces advanced techniques to the platooning problem. We first look at reverse 

routing in order to improve our results generated from our VNS. The platoon pairing is 

enhanced using two distinctive techniques. Following this we investigate the platoon splitting 

point and introduce 2 more variants. We conclude with results and analysis for the advanced 

platooning techniques.  
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Chapter 5 provides a thorough overview of Electric powered Vehicles (EV’s). A summary of the 

current transport emissions situation within the UK is provided including future plans and the 

real benefits/restrictions that EV’s will play in our society. As well as a general EV model a Hyper 

Realistic Electric Vehicle Emissions Model is provided along with results. 

 

Chapter 6 is the conclusion to the thesis, providing the reader with a conclusion followed by the 

impact and future research this thesis provides. 
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 Chapter 2  

2 Literature review 

 

This chapter aims to provide the reader with a comprehensive background of the well-known 

and lesser-known variations of the Vehicle Routing Problem (VRP). Particular effort has been 

made to demonstrate how each variant can be considered to be environmentally beneficial.  

Additional emphasis is provided on those variants that we utilise within our models found in 

Chapter 3, ensuring that the reader has suitable knowledge when discussing the more advanced 

techniques within this thesis. The VRP provides the backbone to the research techniques carried 

out in this thesis, it is therefore important for the reader to gain a background in the problem. 

Following from the VRP literature is the Platooning literature, this is a relatively new research 

area as the required technology has only recently become viable. The Literature provides some 

key insights into the perspective research area, and the gaps within the literature are highlighted. 

  

2.1  Vehicle Routing Problem Overview 

The Vehicle Routing Problem has been approached by many researchers and as such now 

incorporates a wide range of variants.  The VRP is an NP-hard and well-known combinatorial 

optimization problem. VRP is generic name that is given to a whole class of problems (Laporte 

et al. 1989, 2002). The general problem aims at optimizing a set of optimal routes used by a fleet 

of vehicles, based at one or more depots, to serve a set of customers. The studies can be separated 

into different variants and then also differ by providing mathematical formulations and exact or 

approximate heuristic solution methods for academic problems or case-orientated research 

papers. All variants stem from the original VRP proposed by Dantzig and Ramser (1959). The 
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original classical case is closely linked to the VRP with time windows and the Capacitated VRP 

(CVRP). Most variants take into consideration capacitated constraints from the CVRP. The 

Green VRP can include Time Windows, Heterogeneous fleets, Electric Vehicles and numerous 

other factors. The Rich VRP’s are the most data intensive problems and takes many different 

aspects into consideration as many variables can be used / need to be used to create real life 

instances. The principal objective of the typical VRP is to find the solution, where vehicle number 

is minimised together with the length of the total travelled path (Dantzig and Ramser (1959), Jih 

et al. (1996), Potvin and Bengio (1996), Tan et al. (2001), Jih and Hsu (2004), Alvarenga et al. 

(2005), Yeun et al. (2008)). Many of the VRP variants follow the same basic mathematical model, 

however contain different constraints that make them applicable to a variety of problems both 

real-life and simulated. The following sections within this chapter will discuss in more detail these 

variants and review the literature. The first section will discuss the very first variant to be 

discovered, the Capacitated Vehicle Routing Problem, which is also known as the classical VRP, 

this will then be followed with literature of its variants. 

 

2.1.1 Classical Vehicle Routing Problem 

The classical VRP was first discovered in 1959 by Dantzig and Ramser (1959) in the “The Truck 

Dispatching Problem”. Like most problems that have risen in management science the problem 

was identified by a real-world problem. The formulation aims at optimizing a set of optimal 

routes used by a fleet of vehicles, based at one or more depots, to serve a set of customers. In 

addition, customers must be visited exactly once, and the total customer demand must not exceed 

the vehicles capacity (Clarke and Wright (1964), Laporte et al. (2002), Novoa et al. (2006)). 

Dantzig and Ramser (1959) refer to the problem as a generalisation on the Travelling–Salesman 

Problem (TSP) with the objective of designing an optimum route for a fleet of gasoline delivery 

trucks between a delivery terminal and service stations. Due to the nature of the problem this 
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case is considered to be also classified as the Capacitated Vehicle Routing Problem as the vehicles 

are limited to a certain capacity. The VRP is represented in a graph theory. The general model 

case can be defined as the following: 

 

Let 𝐺 = (𝑣, 𝐴) be an symmetric graph where 𝑣 = {0,1, … . . , 𝑛) is a set of vertices that 

represent locations/cities with a depot located at vertex 0, and other nodes 𝑖	 > 0  

represent a customer and the arc set 𝐴	 = 	 {(𝑖	, 𝑗):	𝑖	, 𝑗} 	 ∈ 		𝑣, 𝑖	 ≠ 	𝑗}. A fleet of 𝑚 

identical vehicles of capacity 𝑞 is based at the depot. The fleet size is given a priori or is 

a decision variable. Each customer 𝑖 has a nonnegative demand 𝑑!. A cost matrix 𝑐𝑖𝑗 is 

defined on 𝐴. For simplicity, we consider travel costs, distances and travel times to be 

equivalent. The VRP consists of designing 𝑚 vehicle routes such that each route starts 

and ends at the depot, each customer is visited exactly once by a single vehicle, the total 

demand of a route does not exceed 𝑞, and the total length of a route does not exceed a 

pre-set limit 𝐿. In the symmetric case, i.e., when	𝑐𝑖𝑗	 = 	𝑐𝑗𝑖	 for all (𝑖	, 𝑗) 	 ∈ 	𝐴, it is 

customary to work with an edge set 𝐸	 = {(𝑖	, 𝑗):	𝑖	, 𝑗	 ∈ 	𝑉, 𝑖	 < 	𝑗}. 𝑐!" can often be 

interpreted as the travel cost or time (Laporte (1992), (2009), Cordeau et al. (2010), 

Golden et al. (2008), Wouter (2008), Li et al. (2010)).  

 

The classical VRP consists of designing a set of at most 𝑘 delivery routes such that each route 

starts and ends at the depot, each customer is visited exactly once by exactly one vehicle, the total 

demand of each route cannot exceed the vehicle capacity and the total running cost is minimised. 

Stewart and Golden (1983) produce a compact formulation that includes the assumptions made 

prior and can be written as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 = 	∑ 𝑐!"𝑥!"#$
#%&     (1) 

Subject to 
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∑ 𝑞!𝑥!"# ≤$
!," 	𝑄, 𝑘 = 1,2, …𝑛,    (2) 

 

Where 

𝑐!" = The cost/ distance of travelling from node 𝑖 to 𝑗 

𝑥!"#  = 1 if vehicle k travels from node 𝑖 to 𝑗; 0 otherwise 

𝑛 = The number of vehicles available 

𝑞! = The amount demanded to location 𝑖 

𝑄 = The vehicle capacity 

 

Usually the VRP is treated as symmetric meaning, 𝑐!" = 𝑐"! (In the real world this is often not 

the case) and so the cost matrix is symmetric and needs to be calculated from geographical data 

by shortest path algorithms. Various methods can be incorporated to speed up the shortest path 

problems, these can be found later in this chapter. 

     The first paper containing the phrase “vehicle routing” in its title was Golden, Magnanti and 

Nguyan (1972). This name has come to be the generic term used for these combinatorial type 

problems. In the literature, many surveys have been presented analysing published works on the 

classical version of the VRP (Bodin, (1975), Bodin and Golden, (1981), Desrochers et al., 

(1990), Eksioglu et al., (2009), Laporte, (1992), Liong et al., (2008) and Maffioli, (2002)). The 

classical CVRP has been extensively researched over the last few decades, and as such the model 

formulation has been simplified and further developed. The basic capacitated vehicle routing 

problem (CVRP) is now described as the following: A single depot that serves a set number of 

customers with a fleet of homogenous vehicles with a finite capacity Q. The customers have 

known demands and locations that must be satisfied by the depot. Each vehicle must begin and 

end at the depot, with the total customer demand not exceeding capacity Q. The main objective 

for this model is to minimise the total cost of the tours, (the total distance travelled by the 

vehicles). There have been several studies in the literature that identify/survey the literature of 
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CVRP’s (Baldacci et al., (2010), Cordeau et al., (2007), Gendreau et al., (2002), Laporte and 

Nobert, (1987), Laporte and Semet, (2002) and Toth and Vigo, (2002)). 

 

2.1.2 VRP Variants 

The following section will review the literature of several variants of the VRP. Within the VRP 

research area there are many different variants, a brief overview of the core variants is provided 

with more detail provided on the variants that will be included within the models found in 

Chapters 3 and 4.   

 

2.1.2.1 VRP with Loading Constraint 

This variation of the capacitated vehicle routing problem is often seen in literature due to its close 

ties with reality, is the 3D/2D loading constraint VRP. The 2D constraint problem is required to 

allocate a set of rectangular/square items to larger standardised rectangular stock units, with the 

aim of minimising waste. Most of the contributions from literature are focused on a case where 

the items packed have a fixed orientation in respect to the stock units (Lodi et al., (2002)).  

Dyckhoff et al. (1997) provide a comprehensive bibliography for the 2D Strip Packing Problem, 

where each item returns a profit and the objective is to maximise the return in profit. Both 

problems can be combined with the VRP to provide a viable model for logistics companies for 

real-life situations. The first attempt at a 2D packing problem model was made by Gilmore and 

Gomory (1961). The model designed uses column generation based on enumeration for all 

items that can be packed into a single bin. The basic model is as follows: 

 

A set of 𝑛 rectangular items 𝑗 ∈ 𝐽 = {1,2, … , 𝑛}, each defined by a width 𝑤" and height 

ℎ". We are given an unlimited number of identical rectangular bins of width 𝑊 and height 

𝐻. W-edges must be parallel to the W-edge of the bins.  
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Let 𝐴" be a binary column vector of 𝑛 elements 𝑎!" 	(𝑖 = 1,… , 𝑛) equalling the value of 

1 if the item belongs to the 𝑗th pattern, and 0 otherwise. The feasible solutions are then 

represented by matrix	𝐴, containing all possible 𝐴" columns (𝑗 = 1,… ,𝑀). 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 = 	N𝑥"

(

"%&

 

Subject to 

N𝑎!"𝑥" =
(

"%&

	1, 𝑖 = 1,2, …𝑛, 

𝑥" ∈ {0,1},				𝑗 = 1,2, …𝑛, 

Where 

𝑥" = 1 if pattern 𝑗 belongs to solution; 0 otherwise 

𝐴" Columns satisfy ∑ 𝑎!"ℎ!$
!%& ≤ 𝐻 

 

When combined with the VRP, conditions such as no items overlapping, items must be 

completely contained within the loading surface and sequential loading where when unloading 

an item, no item of any later delivery may lay in the way. The overall solution is generated when 

a Routing Plan and a Packing Plan are feasible. Many more models with exact and approximate 

solution methods are within literature the reader is directed to Pollaris et al. (2014) for a more 

detailed literature review.  

     The 3D loading constraint problem was first integrated into the capacitated routing problem 

in 2006 by Gendreau et al (2006) and was abbreviated to the 3L-CVRP.  The 3L-CVRP has the 

advantage of being very relevant to organisations, as it can incorporate some key constraints e.g 

the loading of fragile goods. The placement of a box is given by a set of 3-dimensional coordinates 

of the corner of the box that is closest to the origin of the coordinate system. In addition, an 

orientation index indicates which of the possible spatial coordinates is selected. The following 

packaging constraints are involved, taken from Bortfeldt (2012): 

(3) 

(4) 
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Unloading sequence constraint. When customer 𝑖 is visited it must be possible to unload all their 

boxes using movements parallel to the longitudinal axis of the loading space. No box demanded 

by a customer served after customer 𝑖 must be placed between that of customer 𝑖 and the rear of 

the vehicle. 

 

• Weight constraint. Each box has a positive weight and the total weight cannot exceed the 

maximum load of the vehicle. 

 

• Orientation constraint. The orientation is fixed with respect to height, 90° rotations are 

allowed. 

 

• Support constraint. If a box is not placed on the floor, a certain percentage of its base 

area must be placed on top by other boxes. 

 

• Stacking constraint. A fragility value is assigned to each box, if a box is fragile only other 

fragile boxes may be placed on top, whereas both fragile and non-fragile boxes may be 

placed on top of non-fragile ones. 

The routing with 3D loading constraint problem was first developed by Gendreau et al. (2006) 

and has progressed from the classical VRP and traditional cutting and packing problems. The 

reader is directed to Wascher et al (2007) for a review on cutting and packing problems, 

identifying recent advancements in the area. Due to the nature of the problem being NP-hard, 

heuristics are often used for medium to large sized problems. Iori and Martello (2010) survey 

the state-of-the-art problems within the field of routing with loading constraints. Within the 

literature the majority of methods include hybrid metaheuristics, where the problem is divided 

into routing and packing. Tarantilis et al (2009) developed a hybrid heuristic model combining 
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Tabu search with guided local search. Bortfeldt (2012) also developed a hybrid algorithm 

combining the Tabu search for routing the vehicles with a tree search algorithm for loading the 

various boxes into the vehicle. Gendreau et al. (2006) propose a two stage Tabu search algorithm, 

where each stage is used to develop the routing and packing problem individually. Zachariadis 

et al. (2009) and Fuellerer et al. (2010) further study the packing problem. The loading problem 

has not been extensively covered within the green routing problem.  

     Proper packing techniques have important effects on total emissions produced. Practitioners 

often try and optimise their loads so that they are as full as possible, poor planning can lead to 

extra vehicles being used that if correctly planned wouldn’t necessarily be needed leading to 

increased emissions. Load has a large effect on the fuel consumption/energy of a vehicle, the 

calculated amount is explained later in a detailed model. For a vehicle’s journey while the vehicle 

is nearer full capacity i.e a heavier load, it is advisable that closer stops take place. This limits the 

distance the vehicle is travelling with a heavy load. Vice versa while the vehicle has a lighter load 

the longer stops between customer drop offs are preferred; this can have a significant implication 

on routing decisions. Figure 2.1.1. provides an example of how load can come into play within 

routing, in this example each customer demands the same amount of product i.e the vehicle 

leaves with 3 units and returns with 0 in each case. 

 

  

   

 

 

 

 

When looking at just route distance each route provides the same result, however when including 

load as a factor for fuel economy the first route (a) in figure 2.1.1 is preferred. The shorter arc 

distances are travelled when the vehicle is at its heaviest (i.e consuming the highest amount of 

(a) (b) 

Figure 2.1.1 Simple routing diagram demonstrating importance of load on fuel consumption. 
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fuel) leaving the longer arcs with a lighter load (i.e consuming less fuel for a longer distance). The 

result will be a significant reduction in route emissions.  

 

2.1.2.2 VRP with Time Constraints 

The vehicle routing problem with time windows (VRPTW) is a significant problem in the supply 

chain for logistics-based companies and as such, has been widely studied in the literature, mainly 

due to its relation to real life logistic problems (Zhang and Peng, (2012)). The routes must be 

designed in such a way that each point is visited only once by exactly one vehicle within a given 

time interval (time windows). All the routes start and end at the depot, and the total demand for 

all the points on one particular route must not exceed the capacity of the vehicle (Solomon, 

1987). The VRPTW belongs to a class of the NP-Hard combinatorial optimization problems 

(Lensta and Rinnooy Kan (1981)). Due to this, large instances of the problem are most suited to 

be solved by heuristics. The VRPTW is formulated the same as the basic model proposed in 

section 2.11 with extra constraints. It can be defined as the same way as the classical however 

includes an associated travel time 𝑡!". The travel time 𝑡!" includes a service time at node 𝑖,  

vehicles are permitted to arrive before the time window and wait at no extra cost until service 

becomes possible, however cannot arrive after the latest time window. The objective in most 

papers is to find the minimum number of tours 𝐾∗, for a set of identical vehicles such that each 

node is reached within its time window and the accumulated service up to any node does not 

exceed the vehicle capacity 𝑄.  Secondary objectives often include minimising total distance 

travelled. 

     The VRPTW has many useful applications to the real world, examples include bank 

deliveries, industrial refuse collection, school bus routing and JIT (just in time) manufacturing 

(Braysy and Gendreau (2005)). The VRPTW has been subject to extensive research using both 

exact and heuristic methods. An early survey of solutions to the VRP with time windows 
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(VRPTW), pickup and deliveries and periodic VRP was conducted by Solomon and Desrosiers 

(1988). Exact methods can be found in Larsen (1999) and Cook and Rich (1999). Braysy and 

Gendreau (2005) review heuristic and metaheuristic techniques employed to tackle the VRPTW. 

More heuristic and meta-heuristic techniques have been proposed by Potvin and Rousseau 

(1995), Rochat and Taillard (1995) and Taillard et al. (1997). Gehring and Homberger (2002) 

designed a parallel tabu-search heuristic that is capable of solving large-scale instances. Moon et 

al. (2012) extend the VRPTW to VRPTW with overtime and outsourcing vehicles using a mixed 

integer programming model, along with genetic and a hybrid simulated annealing algorithms. 

The most common way to compare computational times within the VRPTW context is to use 

Soloman’s (1987) benchmark dataset. These datasets consist of a central depot, vehicle capacity 

constraints and time windows for the delivery as well as a total time constraint. Other 

measurement criteria within the problem is solution quality.  

     Other Time dependant variants of the VRP include the Time dependant Vehicle Routing 

problem (TDVRP). It has a similar objective to that of the VRP, minimising costs (Hill and 

Benton 1992). However, in the TDVRP the travel costs depend on the time of day a route is 

carried out. Varying speed zones linked to time zones can create such a model. This however 

can also lead to the undesired passing effect where vehicles that departing later may surpass 

vehicles that started travelling earlier (Fleischmann et al. 2004; Nannicini et al. 2010). By applying 

a first in first out assumption (FIFO) surpassing is not allowed.  

     Soft Time windows can also be incorporated into the problem. Soft time windows have a 

degree of flexibility within them allowing deliveries/pickups to be visited before and after the 

earliest and latest time window bounds. Allowing Soft time windows can often lead to a significant 

reduction in distance travelled however often these relaxations come at the expense of 

appropriate penalties that reflect the effect of customer satisfaction (Calvete et al 2004). This 

often arises due to a limited number of vehicles that can be used, unlike many proposed 
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algorithms, and is used as a measured variable within models. Many transport operators in the 

real-world face similar constraints such as a fixed fleet. Additional routes/stops using ‘Over Time’ 

is generally associated with cost saving and is rarely considered green. In real life instances the 

amount of time drivers can operate for is an important factor in route planning, these time 

deadlines can mean deliveries can be missed. This could lead to extra journeys needed to satisfy 

customer demand. However, with the use of ‘Over Time’ these extra journeys could be reduced 

leading to a reduction in GHG emissions. This aspect has yet to be researched in depth to the 

best of knowledge and could be included within green models.  

 

2.1.2.3 VRP with Backhauling 

The Vehicle routing problem with backhauls differs from the classical VRP with one key aspect, 

which is the fleet used can consider pick-ups after deliveries are made. Some versions of the 

VRPB allow all the deliveries to be made before any pickups on a route; no route is allowed with 

only backhaul customers and there may be restrictions on the number of vehicles available that 

must be utilised (Toth and Vigo (1997), Osman and Wassan (2002), Wassan (2007)). The VRPB 

has been extensively researched separately however many variations are being developed. It was 

first developed in 1985 by Golden et al., (1985). Toth and Vigo (1996) provided further 

developed the problem and subsequently created several datasets that can be used to test this 

variant of the VRP for benchmarking purposes. Toth and Vigo (1997) put forward exact method 

approaches based on ILP formulations for up to 100 customers.  

     Extended variants of the VRPB include: The VRP with mixed deliveries and pick-ups 

(VRPMD) (Deif and Bodin, (1984), Salhi and Nagy (1999), Nagy and Salhi (2005)) where 

deliveries and pickups can be made in any order of the customers on a route. The VRP with 

simultaneous deliveries and pick-ups (VRPSPD) (Min (1989), Nagy and Salhi, (2005)) where the 

deliveries and pick up demands can come from the same customer. Tutuncu (2010) provide a 
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practical paper looking at a heterogeneous fleet VRP with backhauls extending Tailard’s (1999) 

model (VRPHE) by reducing the number of vehicles per type and incorporating backhauls. 

Many classical heuristics and metaheuristics have been proposed as solution methods for the 

VRPB. Brandao (2006) develop a tabu search algorithm, and Wassan (2007) who developed a 

reactive tabu search enhanced by adaptive memory programming producing good quality results. 

Wang and Hong zhen (2015) base their routing problem with green logistics in mind. They look 

at simultaneous delivery and pick-up problem with managers in mind, where they should 

consider the positive distribution and the reverse recovery for the target of environmental 

protection carrying out the practise of green logistics. Waste Management is often dealt with 

using backhauling and is an ever-increasing issue. Many councils over the U.K have developed 

policies and have devoted resources to planning waste collection/removal. Governments in 

recent years, have been focusing on waste recycling and waste avoidance (A. Sbihi & W.Eglese 

(2009)). Green logistics includes various aspects of waste management concerned with the 

transport of waste such as handling hazardous waste and household waste collection. Hazardous 

waste must be handled in specific ways in order to reduce the risk to human health and the 

environment particularly in urban areas (K.G. Zografos, G, M. Vasilakis and G.M Giannouli 

(2000)). Retailers are gaining responsibilities relating to storage, collecting, treatment, disposal 

and transportation of materials and products that have reached their end-of-life and are now 

considered hazardous. In order to do this efficiently retailers and organisations must develop 

cost effective strategies in order to optimise the collection processes of hazardous waste.  

     The Fleet size and mix vehicle routing problem with backhauls (FSMVRPB) was developed 

by Salhi et al. (2013). FSMVRP’s in literature differ in two main ways, whether or not the variable 

running cost per vehicle is constant and whether the number of available vehicles is known or 

not. This variant is a more realistic routing and distribution problem with a wide applicability for 

logistic based companies that want to determine their composition of vehicle fleet as well as 
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managing their vehicle routes efficiently so to achieve a competition advantage. The hybrid tabu 

search and scatter search algorithm proposed performs very fast providing stability and 

effectiveness only limited by the initial solution quality. 

     Although rarely mentioned, Backhauling can play a pivotal role within the emission reduction 

routing systems. Backhauling can be an influencing factor due to practitioners utilising 1 vehicle 

to carry out multiple jobs of delivery and collecting. With fewer vehicles on the road emissions 

can be reduced, however the actual carbon emissions of choosing less vehicles with fuller 

capacities over more vehicles with less capacities. The term Reverse Logistics is often used within 

the industry to describe the process of moving goods from their typical final destination for the 

purpose of capturing value, or proper disposal. Remanufacturing and refurbishing activities also 

may be included in the definition of reverse logistics. Literature around reverse logistics routing 

started becoming a hot topic and draw attention among researchers in recent years from its 

introduction in 2001 by Cordeau et al (2001) and when it gained traction in 2006 (Lin et al, 

2014). The majority of reverse logistics problems within the VRP deal with recycling waste or 

end-of-life goods to one or more depots for further reprocessing. Within reverse logistics 

literature for the VRP 4 distinctive classifications can be created. The selective pickups with 

pricing, Waste collection, End-of-life Goods Collection and Simultaneous Distribution and 

Collection or pickup and delivery. While not included within the model in this thesis, these 4 

classifications of reverse logistics offer an important and interesting aspect of sustainability models 

and shouldn’t be overlooked. For more information on how reverse logistics is implemented 

within the VRP the reader is directed to Wassan & Nagy (2014), Malladi & Sowlati (2018), with 

more general Reverse Logistics review provided by Govindan, Soleimani & Kannan (2015). 

Reverse logistics also leads onto several variations to the VRP, cross docking is a useful logistic 

practise used by many companies to reduce logistical costs.  
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2.1.2.4 Mixed Fleet VRP 

Unlike the classical case for the vehicle routing problem the mix fleet incorporates a mix of 

vehicles with different characteristics that are considered when route planning. The VRP with 

heterogeneous fleet of vehicles HFVRP or mixed fleet MFVRP was first considered in a 

structured way in Golden et al. (1984). Case studies appear in Wu et al. (2005), Tavakkoli-

Moghaddam et al. (2007) and Baldacci et al., (2007, 2008, 2010). In the problem the vehicle 

fleet is composed by 𝑚 different vehicle types with 𝑀 = {1,2, … ,𝑚}. For each type 𝑘 ∈ 𝑀,𝑚# 

vehicles are available at the depot, each having a capacity 𝑄#. Each vehicle is also associated to a 

fixed cost 𝐹#, routing costs on arcs may be vehicle dependant, allowing it to be possible for 

different vehicles to have varying arc costs. For full model detail the reader is directed to Baldacci 

et al. (2008), here the researchers identified five major subclasses: if the number of vehicles 

available are limited or not, whether there is a fixed cost or not associated with the vehicles and 

if the routing cost is dependent on vehicle. Baldacci, Battara and Vigo (2007) provide an 

extensive survey on the Heterogeneous Fleet VRP covering the main results up till 2007. 

     Solution techniques vary with this problem most researchers prefer heuristic techniques with 

few exact approaches. Baldacci et al (2010) applied a general branch-and-cut-and-price technique 

to the fleet size and mix vehicle routing problem with time windows (FSMFTW) model. Exact 

methods for the FSMF (fleet size and mix CVRP with independent routing costs and fixed vehicle 

costs) and other variants such as FSMD (fleet size and mix CVRP with vehicle dependant routing 

costs) and FSMFD (The fleet size and mix CVRP with fixed vehicle costs) were proposed by 

Pessoa et al. (2007), However the exact algorithm proposed by Baldacci and Mingozzi (2009) 

outperforms that of Pessoa et al. (2007). Computational testing for the HFVRP is generally 

conducted using benchmark datasets from Golden et al. (1984) using 20 test instances, customer 

size ranges from 12-100. 
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In terms of emissions the mixed fleet allows for further optimisation of the routing problem. 

Vehicles differ in terms of emissions when constructed, while being operational, during servicing 

and at their end of life. For the most part only the operational and servicing emissions are relevant 

to logistic based companies although the other factors should not be neglected in research. 

Hiermann et al. (2016) investigate the Electric fleet size and mix vehicle routing problem 

including time windows and recharging stations. This model provides decisions to be made with 

regards to the fleet composition and the vehicle routes compromising of recharging times and 

locations as well. In the model the vehicles vary in their capacity, battery size and the acquisition 

cost. This model has real-world application as companies have a variety of available electric 

vehicles with differing characteristics (Austriatech, (2014)). Goeke and Schneider (2015) 

included load-dependant energy consumption within their rich fleet model using both 

conventional and electric vehicles. The authors include average speed, vehicle mass and 

gradients in terrain. The objective function was split into three different functions, first the total 

distance is minimised, second the overall energy cost and driver wages are minimised and finally 

the third extends the second objective by including battery lifetime cost. The model created does 

not include partial recharges or degradation of the batteries. 

 

2.1.2.5 Real-life VRP 

In recent years the development of technology has led to increasing attention to new variants 

involving more complex constraints and objectives. These are created through the complex 

constraints of real-life problems called Rich Vehicle Routing Problems (RVRP), and hence they 

are much more challenging than the CVRP (Hasle et al. (2006)). RVRP’s can incorporate a 

number of other variants however have more real-life complex constraints. RVRP’s can therefore 

be applicable for complex energy constraints found within electric vehicle routing. There are 

many tailored approaches, however in the last ten years the general-purpose methods are 
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emerging retaining previous quality features but for generic Rich scenarios (Caceres-Cruz et al. 

2014). These real-life constraints can be related to the following aspects: 

 

• Customer: In the traditional VRP each customer has a demand however in more 

complicated problems customers’ requirements may include, service time, service type 

(pick up/delivery) or a vehicle type. In certain situations, customers are allowed to be 

visited more than once by multiple vehicles. Customers can also store their goods and so 

in some cases the distributor needs a routing plan taking this into account. This route 

planning can be tailored to also reduce emissions. 

 

• Depot: There can be multiple depots, and these depots may have different purposes to 

try and reduce the cost in the overall supply chain. This cost can be monetary or emission 

based. 

 

• Vehicle: The fleet may be heterogeneous, with different capacities, driving ranges, 

emissions and fuel types. Real-life situations often have a limited number of vehicles that 

can be incorporated. In Multi Depot situations vehicles may have different bases.  

 

• Drivers: The drivers have very strict regulations that they need to adhere to, working shifts 

and maximum driving stints. They may also be qualified to drive certain vehicles. 

 

• Objective: Minimisation of the number of vehicles, balanced workloads for drivers, 

maximisation of the number of customers served in order to increase service level, 

Minimise energy consumption or emission production. These objectives can sometimes 

conflict with each other. 
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• Uncertainty: Uncertainties can occur when route planning for example, locations and 

demands for customers may be unknown at the beginning when the vehicles first left. 

 

• Goods packing: 2D and 3D weighted items need to be packed in the correct layout for a 

feasible route.  

From the aspects outlined above one can see the complexity of the problem, with large scale 

problems metaheuristics play a crucial role in solving these problems. Doerner and Schmid 

(2010) present a survey devoted to hybrid metaheuristics for RVRP’s identifying potential areas 

of future research.  Recent attempts have proposed unified models tackling different classes or 

routing problems (Ropke and Pisinger (2006), Subramanian et al. (2012), Derigs et al. (2013), 

and Vidal et al. (2013a),(2013b)). Hartl, Hasle and Janssens (2006), Hasle, Lokketangen and 

Martello, (2006) Published special issues on rich combinatorial optimisation problems with cover 

formulation and resolution for problems. For more information on the RVRP the reader is 

directed to Lahyani et al (2015), who create a taxonomy that builds a framework to classify 

RVRP’s. Papers were used from 2006, considering real-life and academic works that have been 

used as benchmarks. RVRP’s can help increase accuracy when developing routing algorithms for 

electric vehicles and emission calculations developed within the models. However, with electric 

vehicles being constrained by range and charging locations small fluctuations in energy 

consumption may hinder performance and vehicles may not be able to reach their predestined 

customer/location. The ability to be able to evolve these routes over time, dependant on the 

inputs, would be able to provide more options for the user and the drivers of the vehicles. 

     The Dynamic VRP (DVRP) is a variant where customers are revealed incrementally over 

time rather than being known beforehand (Psaraftis, (1995)). The DVRP allow companies and 

organizations the possibility of on-route planning in real-life. Dynamic problems can arise from 



 34 

applications where the information provided/received changes over time. An example of this 

would-be traffic updates. DVRP’s also provide important energy information for range limited 

vehicles such as EV’s. With limited range and charging times to take into account, delivering live 

feedback to routing systems could reduce unnecessary costs. DVRP’s are popular in real world 

problems due to their ability to handle this extra data allowing businesses to manage fleet sizes 

and handle more jobs (Regnier-Coudert et al. (2016)). The Periodic VRP (PVRP) extends the 

classical VRP by extending planning period to 𝑚 days rather than just the single day (Mourgaya 

and Vanderbeck, (2006)). The objective is to minimise the travel time needed to supply all 

customers.  

     Within the electric vehicle there is scope to include various real life/rich parameters. Charging 

at different times of the day can result in varying emissions. Currently this hasn’t been investigated 

within the vehicle routing problem however has been look at in other areas of research. Jochem 

et al (2015) assess the CO2 emissions of EV’s in Germany for the year 2030 optimising controlled 

charging strategies. One of the assessment methods used in their research was Time-dependant 

average electricity mix. This time-dependant average mix takes into consideration how much 

energy is charged in a certain hour. This allows for much more resolution into the emissions 

generated via EV charging. EV loads peak during the evening’s when people return from home, 

the corresponding power needed to meet the required electricity demand means that alternative 

power sources are needed. Often these are higher emission energy sources, typically within the 

UK this is coal power generation that is used only at peak hours; this is discussed in more detail 

in Chapter 2 Section 2. With direct access from the power grid information real-time, a far more 

detailed emission model can be created, although this will bring with it added complexity, it 

should be investigated within the routing problem. Amongst the literature around the Rich/Real-

life VRP there are always assumptions made. While a true real-life model is desired to further 

enhance the model’s accuracy, ultimately some assumptions are needed. The balance between 
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these assumptions and model accuracy (which introduces increasing complexity and therefore 

computational power) is a fine line. With sustainability becoming more prominent, different 

emission factors are becoming more important. In an ideal model all these emissions factors 

should be included to produce a true emissions model which can then be disentangled. 

 

2.1.2.6 Summary of VRP Variants 

The VRP consist of a broad range of problem variants, the ones discussed within this literature 

review were chosen as they provide the reader with knowledge needed for the models created in 

this thesis and can also be used to improve sustainability. Load makes a large difference on fuel 

consumption and is therefore something that needs to be taken into consideration when creating 

a VRP model. The ability to calculate the fuel consumption at various points along a vehicles 

path can allow the model to optimise the paths to ensure the vehicles are travelling their longest 

trips with their least cargo. Time constraints are needed in VRP’s in order to make them 

applicable to real-world problems. However, time constraints can also be employed to reduce 

emissions by having restrictions on heavy traffic zones, easing congestion and reducing stop/start 

scenarios and therefore reducing emissions. Backhauling models allow the same vehicle to carry 

out multiple jobs. With a cost and pollution savings achieved through less vehicles and better 

vehicle efficiency, Backhauling models should be utilised by their compatible companies more 

so. Mixed fleet models take into consideration different types vehicles with various loading 

capacities and efficiencies, with the motor industry developing at a fast pace the latest vehicles 

can provide a good fuel saving over previous generations. The cost for the latest technology is, 

however, more expensive, companies therefore are more likely to slowly change their fleets 

introducing hybrids and electric vehicles when possible. The utilisation of a mixed fleet model 

makes optimising routing these various types of vehicles possible. While many researchers still 

propose highly tailored solution methods, we believe the future direction should be towards 
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multiple real-life characteristic problems that can provide real-world benefits. With EV’s gaining 

traction and a big concern the limited range, live updates on energy levels and ranges could 

alleviate concerns providing options for recharging and alternative routes. Although a larger 

number of constraints will need to be used, the increase in accuracy is deemed valuable as it can 

help reduce emissions. Through reviewing the literature, we have been able to identify several 

gaps within the literature that allows the aspect of emission reduction to included. Data Analysis 

can be introduced within the models to provide more accurate constraints and variables, with the 

advancement of electric vehicles and the ability to generate data, providing live information into 

the models can provide further benefits and increase the power of these computational models. 

 

2.1.3 Solution Methods for the VRP 

The vehicle routing problem attracts much attention from researchers due to its usefulness in 

real-life for the logistics and transport industry and continues to draw attention. Many methods 

have been studied to solve the VRP, these methods can be separated into exact and heuristic 

methods. 

 

2.1.3.1 Exact Algorithms 

Exact Methods attempt to solve the problem to optimality using a range of algorithms. The best-

known exact algorithms for the symmetric CVRP can be classified into the following categories: 

Branch-and-Bound, Branch-and-Cut, Dynamic Programming (DP) and Set Partitioning (SP) 

based methods (Baldacci R, Mingozzi A 2006). Although exact solutions provide optimal 

solutions their computational time is its downfall, often with large complex problems they struggle 

to solve in a reasonable time. Successful exact methods for the CVRP were proposed by 

Fukasawa et al. (2006), Baldacci et al. (2008) and Baldacci and Mingozzi (2009). While this is by 

no means an exhaustive list, it gives the reader an insight into some of the exact techniques used. 
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The effectiveness of branch–and–bound algorithms almost entirely depends on the quality of the 

lower bounds used to limit the search tree. More sophisticated bounds allowed a larger size of 

problem to be solved to optimality (Toth and Vigo 2002). Christofides, Mingozzi and Toth 

(1981) describe a Lagrangian bound based on the SP formulation where the columns correspond 

to the set of q-routes. A q-route is a simple cycle covering the depot and a subset of customers 

whose demand is equal to q. The formulation was used to solve problems up to 25 customers. 

Christofides, Mingozzi and Toth (1981) also present three dynamic programming formulations 

of the CVRP. The state space relaxation method is used for relaxing the dynamic programming 

recursions so that valid lower bounds on the value of the optimal solutions can be found.  Fisher 

(1994), Miller (1995) and Martinhon et al. (2000) use the Lagrangian Relaxation which duplicates 

some of the relaxed constraints and adds them to the objective function. Strengthening the 

relaxation also improves lower bounds and is done by adding some valid inequalities which are 

satisfied by all feasible solutions, Baldacci et al. (2007) propose some inequalities. The Branch-

and-Bound can be extended to Branch–and–cut methods. In the Branch-and-cut, the lower 

bound of each branch node is iteratively improved by adding valid inequalities violated by the 

current solution to the relaxed formulation. Successful methods capable of solving up to 135 

customers have been generated by Baldacci et al. (2004) and Lysgaard et al. (2004). Baldacci et 

al. (2004) also describe a branch–and–cut algorithm based on a two–commodity network flow 

formulation of the CVRP. For a survey of branch–and–cut methods for the CVRP see Naddef 

and Rinaldi (2002). Balinski and Quandt (1964) introduced the SP formulation of the CVRP, 

where each column corresponds to a route in 1964. However, this formulation is not practical 

as it involves an exponential number of variables. Agarwal et al. (1989) proposed a column 

generation (CG) algorithm where column costs are given by a linear function over the customers 

yielding a lower bound on the actual route cost. Some of the best exact method currently available 

for the CVRP has been proposed by Fukasawa et al (2006). Their method combines the branch-
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and-cut of Lysgaard et al. (2004) with the SP approach with is interpreted as column generation. 

The columns correspond to the set of routes that strictly contains the set of valid CVRP routes. 

The lower bounds are improved compared to Lysgaard et al. (2004) and Fukasawa et al (2006) 

was able to solve previously unsolvable instances. For further surveys on exact methods the 

reader is directed to Toth and Vigo (2014). 

 

2.1.3.2 Heuristic and Metaheuristic Algorithms 

Heuristic evaluation is subject to a comparison of different criteria that relate to that algorithm’s 

performance. The criteria include running time, solution quality, robustness, flexibility and ease 

of implementation (Cordeau et al. (2002)). Heuristic solution methods used to solve the VRP 

can be split into three categories, Constructive, Insertion and Local Search Heuristics. 

Constructive heuristics are typically used to solve the VRP and seek to create a full solution from 

empty iteratively. These heuristic methods aim to solve combinatorial problems to 

optimality/near optimality in a reasonable amount of time. The Savings Algorithm was originally 

proposed by Clark and Wright (1964) starts with an initial solution where every node or customer 

is visited by a separate route from a depot. The Algorithm then proceeds to search and merge 

two routes together maximising the saving cost, this cost is often taken to be distance. Merges 

continue until they are no longer feasibly possible. The method often yields a relatively good 

solution deviating from the optimal solution slightly. 

     Insertion heuristics are very popular among researchers from solving VRP’s as well as TSP’s 

and scheduling problems. These techniques were originally introduced for the TSP and belong 

to a route construction problem (Rosenkrantz et al., (1977)). The method begins by starting at a 

single node or customer that is usually referred to as the seed node, which forms the initial route 

from the depot. Nodes are then added one by one performing functions to select the next node 

and insert it into the route. There are various well-known insertion techniques used in TSP that 
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categorise how the node section is inserted: Nearest Insertion, Random Insertion, Farthest 

Insertion and the Cheapest Insertion. With the Farthest and Nearest insertion each node is 

selected for insertion according to the distance from the already constructed route, minimisation 

and maximisation functions are then implemented respectively on a cost function 𝑐R𝑛! , 𝑛# , 𝑛"S. 

A cost function is used to evaluate the node inserted and is structured as: 𝑐R𝑛! , 𝑛# , 𝑛"S =

𝑙(𝑛! , 𝑛#) 	+ 	𝑙R𝑛# , 𝑛"S − 	𝑙R𝑛! , 𝑛"S, where 𝑛! and 𝑛" are the current inserted nodes and 𝑛# is the 

node to be inserted, 𝑙R𝑛! , 𝑛"S is the distance function. The Random Insertion heuristic selects its 

next node by random from the remaining set of nodes not already in a route. The point where a 

randomly node is to be inserted in the route is determined by minimizing a certain cost function 

as above. Cheapest Insertion selects the node for insertion by minimizing the defined function 

for all nodes and all places on the route (Soloman, 1987). Soloman (1987) divides these 

algorithms into either sequential or parallel methods. Sequential methods aim to construct one 

route at a time until all the customers are used. Parallel procedures are characterised by the 

simultaneous construction of routes, either limited or able to be formed freely (Joubert, 2004). 

Often these insertion techniques are used as initial solutions for local search (LS) algorithms, the 

way these initial solutions are formed, and their effectiveness have a large effect on the overall 

performance of the LS heuristic. 

     The main principle of the local search (LS) improvement heuristics can be defined as follows. 

A move-generation mechanism generates neighbouring solutions by changing attributes of a given 

solution. Once a neighbouring solution is generated, it is compared against the current solution. 

If found to be better than the neighbouring solution replaces the current solution and the search 

continues. When the solution is accepted it can be split into different strategies (In VRPTW 

context), first-accept and best-accept (Braysy and Gendreau 2005). This search approach finds a 

local optimum and is called Hill Climbing (HC). It is a popular method used in other algorithms 

for improvement of solutions. Local searches work on improving initial solutions. Improvement 
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heuristics can often get trapped within local optima and fail to find the global optimum. This is 

where heuristic searches are used to temporarily decrease the objective value allowing it to escape 

the local optimum and find a better solution, these can also be referred to as metaheuristics 

which are described in detail later. One example of a LS heuristic is the shift/swap/move method.  

 

• Shift/Swap/Move. This method involves swapping a particular customer with 

another within different routes (inter-route). The swap can include various 

numbers of customers; the (1-1) swap allows for 1 customer to be swapped 

with another, the (2-1) move is where 2 customers are exchanged with 1 other 

customer. This process can also be used to insert customers from 1 route to 

another i.e. (1-0) shift, This technique will be covered in greater depth in 

Chapter 3. 

 

The intra-route exchange is another local search improvement technique used to improve paths.  

 

• Intra-route. This exchanges neighbourhoods within a single route in order to 

improve. It is defined to be a set of solutions obtainable by removing the path 

whose length is not at the start or end of the route and inserting it in a position 

not at the start or end of a route.   

 

Another Example is the 2-opt local improvement approach (Croes 1958; Hertz et al., 1999; Vidal 

et al., 2013): 

 

• 2-opt. A neighbourhood contains a set of solutions that can be obtained by 

removing two edges in a solution and adding new ones to reconnect the route. 
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It tries to improve the tour by replacing two of its edges by two other edges 

and iterates until no further improvement is possible with 𝑛* possible 

exchanges. It was first proposed by Croes (1958) in order to solve the 

Travelling Salesman Problem. 3-opt increases the number of arcs that can be 

exchanged with 𝑛+ possible exchanges.  

 

The results from the 2-opt tend to be very good examples can be found in Savelsbergh (1992). 

In addition to the 2-opt method other local search methods exist examples are Shift, Or-opt, 

Cross exchange (Laporte et al., (1999); Cordeau et al., (2005); Vidal et al., (2013)). Local searches 

and heuristic approaches often produce a near optimal solution within a reasonable computation 

time. These methods may be sensitive to data sets given, this is also known as robustness, or 

require additional preparation on the data during the learning process.  

Metaheuristics provide another approach for solving a complex problem that may be too difficult 

or time-consuming by traditional techniques. Metaheuristics use high level algorithmic 

approaches to search for feasible solutions and are popular among researchers. Some of the 

metaheuristics that are applied to the VRP’s are the following: 

 

• Tabu search (TS). The tabu search is proven to generate decent results from 

the VRP. It uses an aggressive guiding strategy that directs any local search to 

carry out further exploration of the solution space, avoiding being trapped in 

a local minima. If a local minima is found TS moves to the best location in the 

neighbourhood. To prevent a move in the search that was already performed 

during specified number of last iterations the TS uses memory structures. 

Restrictions are stored in memory called a tabu list (Wassan and Osman 

2002). Tabu search can be seen as an extension of the classical local search 
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heuristic, where a solution space is explored by repeatedly implementing 

moves to generate solutions within the neighbourhood of a previous solution. 

Within the VRP, two main Tabu neighbourhood structures can be defined. 

The first is referred to as 𝜆-interchanges which allows exchanges up to 𝜆 

customers two routes. The second is referred to as ejection chains, performs 

exchanges between more than two routes simultaneously.  For more TS 

reading see (Cordeau et al., 2001; Brandao, 2004; Archetti et al., 2006; Yeun 

et al., 2008; Vidal et al., 2013). 

 

• Large neighbourhood search (LNS). The large neighbourhood search 

heuristic belongs to the class of heuristics known as a very large scale 

neighbourhood search (VLSN) they have shown outstanding results in solving 

transport and scheduling problems (Pisinger and Ropke, 2009; Vidal et al., 

2013). An initial solution is gradually improved by alternatively destroying and 

repairing the solution. The large neighbourhood search maintains two 

solutions: the best solution found and the current solution. If a current solution 

is found such that meets the acceptance criteria function, the best solution is 

replaced with the new solution. In adaptive large neighbourhood search 

(ALNS) several insertion and removal heuristics are applied the 

neighbourhoods are applied depending on their performance in previous 

iterations (Pisinger and Ropke, 2009). In Variable neighbourhood search 

(VNS) when a local minima is found, it proceeds to the next neighbourhood 

in the nested structure; whenever a best solution is found the search restarts 

from the first neighbourhood (Laporte 2007). 
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• Variable neighbourhood search (VNS). VNS is another neighbourhood 

search technique that is often applied to VRP’s and their derivatives. The VNS 

algorithm shifts among different neighbourhood structures which define 

different search spaces. Different variants of the VNS are used within 

literature. The first is the basic VNS, here a local search procedure finds local 

optimal solutions using a variety of neighbourhood structures, once found a 

shaking procedure is used to perturb the search which in turn enhances 

diversification within the solution space. Variable Neighbourhood Decent 

(VND) is a variation of the VNS whereby the shaking/neighbourhood change 

is deterministic (Hansen and Mladenovic, 1998). Other variations include the 

reduced VNS, which moves randomly in between neighbourhood sets. 

 

• Ant colony optimization (ACO). Is inspired by the behaviour and movement 

of the ants. Each ant moves randomly around the nest and when the food is 

found, the ant returns to the colony by laying down pheromone trails. When 

other ants find this path they go by that path with higher probability than going 

on a random path. Evaporation techniques lead to optimization of the path 

length. As on longer paths the pheromones will evaporate more than shorter 

ones because of time needed to travel down the path and back again (Rizzoli 

et al., 2007; Yeun et al., 2008; Jančauskas 2014; Vidal et al., 2013). 

 

• Genetic algorithm (GA). Is a population based algorithm that follows evolution 

and natural selection, where the fittest survive. There are several approaches 

that are designed to solve specific VRPs. The basic concepts originated from 

Holland (1975). GA evolves a population of chromosomes (individuals) by 
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creating offspring through an iterative process until a set criteria is met. These 

criteria can include maximum number of generations or getting to an optimal 

solution. Once the offspring are then created, they are compared to their 

parents if a better solution is found then the offspring is considered a new 

parent for the next iteration. 

 

2.1.3.3 Summary of Solution Methods  

The heuristic and metaheuristic methods described within this section all have their own 

advantages when it comes to solving the VRP. In general, the most powerful metaheuristic 

method employed within the VRP is the Tabu search due to its memory capability and more so 

its variants introducing mutation tactics in the improved Tabu search metaheuristic (Jia et al. 

2013). Within this thesis we have chosen to employ fast and effective algorithms such as the VNS 

to provide a good quality solution that our platooning model can then work and improve from.  

For further reading on the effectiveness of meta-heuristic methods for the VRP the reader is 

directed to Prins (2004), Cordeau et al. (2005) Mester and Bräysy (2007), Pisinger and 

Ropke (2007), Kytöjoki et al. (2007), and Laporte (2007). 

 

2.2 Alternative Fuel Vehicles 

This section reviews the literature related to the Alternative Fuel Vehicle Routing Problem 

focusing on the Electric Vehicle Routing problem. An alternative fuel powered vehicle (AFV) 

encompasses vehicles which are not powered by traditional fuels such as petrol or diesel. AFV’s 

can also include electric vehicles (EV’s) as well as other variations of fuel including LPG. Green 

logistics contain a number of factors including not only speed, distance and load but also 

alternative fuels. When considering AFV’s or specifically EV’s issues such as recharging and 

refuelling need to be considered. Some organisations have converted part of their fleets to AFVs 



 45 

in order to help reduce emissions and satisfy governmental environmental regulations 

(ErdoÄŸan and Miller-Hooks, (2012)). Alternative fuel vehicles are becoming increasingly 

desirable while medium and heavy-duty Lorries comprise only 4% of the vehicles on the 

roadways (US FHWA, (2008)), they contribute nearly 19.2% of US transportation based GHG 

emissions (US DOT, 2010). Alternative fuels include: biodiesel, electricity, ethanol, hydrogen, 

methanol, natural gas (liquid-LNG or compressed-CNG) and propane (US DOE (2010)).  

     Most companies do not operate pure EV fleets and so mixed fleet algorithms are used 

(Schneider and Goeke, (2015)). While energy costs for operating EV’s are generally lower, 

labour costs may increase due to increased fuelling/charging times. The large growth in the 

transport sector recently has made it a large influencer on GHG emissions. Governments are 

becoming increasingly aware of the urgency to tackle transport problems, preserving the 

environment. Investing in environmentally friendly modes of transport such as Electric Vehicles 

is becoming a popular viable, however, a good infrastructure needs to be in place in order to 

make it feasible. Planning of these electric infrastructures are becoming of increasing interest, 

making research of the Electric VRP more significant (He et al. (2013), Mak et al. (2013), Nie 

and Ghamami, (2013) and Wang and Lin, (2013)). The Electric Vehicle Routing Problem is a 

variation on the traditional VRP, using electric vehicles instead of conventional fuel powered, 

with limited driving ranges. Charging station location planning is key in the optimisation of 

Electric vehicle routing. Recently public interest in EV’s has risen and the tipping point for mass 

EV uptake is upon us (James Murray (2016)). Nissan (leaders in mass market EV) believes that 

by end of the year 2020 the charging stations will outnumber petrol stations reaching 7900. 

Combined with the increase in battery technology mass EV uptake will be upon us soon (Edward 

Jones EV manager at Nissan Motor (GB Ltd)). This increase in infrastructure will reduce 

constraints on electric fuel stations within the routing problem and allow further benefits to be 

identified. However, with an increase in electric chargers can mean that if a company can gain a 
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stronghold on charging points it can monopolise the market. Currently the main supplier for 

electric charging stations is Ecotricity with the most comprehensive charging network in Europe 

(Ecotricity, 2016). The price for a 30-minute rapid charge (43kw AC up to 50kw DC) is £6 

providing up to 80% charge depending on battery capacity. This price increase needs to be 

considered when routing vehicles as it could have decisive effect on the outcome. In recent years 

the Electric Vehicle Routing problem and the Electric Vehicle Charging problem has attracted 

much attention from researchers, businesses and organisations. The number of papers as a result 

have increased exponentially.  

     There are a number of key factors that need to be addressed when addressing electric 

vehicles. The main factor that sets the electric vehicle apart from its conventional combustion 

counterpart is of course its electrical engine which is power by a set of batteries. The lithium-ion 

polymer batteries that are currently used to power the majority of electric vehicles are continuing 

being reengineered to provide a higher energy density in order to maximise the potential range 

of the vehicle. The Battery’s efficiency can be become reduced over time known as degradation. 

Factors including temperature and over-charging have dramatic effect on a battery’s degradation. 

Pischler and Riener (2015) studied historic electric vehicle data and were the first to use real 

world data. Their results show the large effect that temperature has on battery consumption. In 

cold instances around -5oC energy consumption was a factor of 2 greater than at 20oC. This 

temperature variable has not been included in any electric vehicle routing problems in current 

literature to the best of knowledge, but with such a large influence it proves to be of great 

importance. Charging times are also a topic of interest currently. Ramezani et al. (2011) design a 

simulation environment in which a set of charging schedules are developed, a multi-objective 

evolutionary optimisation algorithm. 

     S. Pelletier et al., (2014) provide a good review of current studies that use electric good 

vehicles for distribution. Bruglieri et al. (2015) develop a Matheuristic for the Electric VRP with 



 47 

time windows, here partial recharges are allowed. The Matheuristic develop combines Variable 

Neighbourhood Search with Branching the research outlines possible areas for development in 

this area. Sassi et al (2014) consider a new real-life heterogeneous electric vehicle routing problem 

with time dependant charging costs and a mixed fleet (HEVRP-TDMF). Customers here are 

served by a mixed fleet of Normal vehicles and Electric vehicles with varying battery capacities 

and operating costs. The objective is to minimise the number of employed vehicles and then 

minimise the total travel and charging costs. A mixed Integer programming Model was used to 

develop a charging routing heuristic and a local search heuristic based on the inject-eject routine 

with three different insertion strategies.  While identifying the limited range of the vehicle they 

do not take into consideration the load of the vehicles and the added energy demand that will be 

generated due to the additional weight. Fiori et al. (2016) devise a power-based energy model for 

electric vehicles. The authors consider a model that computes the regenerative braking efficiency 

using instantaneous vehicle operation variables. The study found that driving in urban areas result 

in a much higher amount regenerative energy regenerated compared to high speed motorway 

driving. It was also found that the use of air conditioning and heating systems severely changes 

the EV efficiency and driving range. Felip et al  (2014) were the first to bring real life constraints 

into the Erdogan and Miller-Hooks (2012) model, factors including partial recharges and  cost 

due to battery amortization. The authors also incorporate various charger types available 

slow/medium/fast/ultra-fast with different associated costs per KWh consumed. The model 

combines constructive heuristic methods with local search, 2-opt, reinsertion and simulated 

annealing. The instances used are adapted from classical Soloman, Erdogan and Miller-Hooks 

(2012) and also the ones proposed in Schneider et al. (2014). Two dataset configurations are 

considered, a centrally located depot and a corner depot location configuration. Partial recharges 

increase the savings associated with the electric vehicle routing problem and on average increase 

with the size of the problem and help with feasibility of the problems. The authors found that 
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more available technologies gave the vehicles more options when it came to options for the 

recharge. In order for electric vehicles to be viable for consumers a strong infrastructure needs 

to be in place. This infrastructure will have a number of available charging stations with a range 

of charger types. Planning of these electric infrastructures are becoming of increasing interest, 

making research of the Electric VRP more significant (He et al. 2013, Mak et al. 2013, Nie and 

Ghamami, 2013 and Wang and Lin, 2013). The future Infrastructure of new fuelling stations is 

an interesting development and manufacturers such as Nissan believe they will play a key part in 

general life. They believe that charged by renewable energy sources cars can be used to create 

store and distribute renewable energy. Through intelligent battery and drive technology moving 

towards a greener energy infrastructure could be possible. Using inductive wireless charging and 

autonomous vehicles, future vehicles could autonomously charge themselves in inductive 

charging spaces, and then re-park to let other vehicles charge in the same bay all at night. Come 

the morning houses and streets could draw energy direct from the vehicles powering your home 

as you start your day. Nissan call these smart streets, a street that’s connected and integrated that 

can sync roads and grid. Recycled electric vehicle batteries can be converted into smart home 

energy storage systems so no clean energy goes to waste. With zero emission technology you can 

drive straight into work or office and your vehicle can then be charged or even power your office. 

Car parks could be replaced by green areas of grass and trees providing a kinder greener 

environment. Zero emission and autonomous vehicles can be the future. With these prospects 

it opens up exciting and new areas of research that will be key areas for development to ensure 

that these infrastructures are as efficient as possible. 

 

2.3 Emissions 

In the traditional VRP, the focus is concentrated on the economic impact of vehicle routes taken 

by an organizations fleet of vehicles. Sustainable logistics adds to this model and pose new models 
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with varying applications. Green logistics involves measuring the environmental impacts formed 

from different routing strategies, reducing fuel/energy consumption and managing waste disposal 

(Sbihi and Eglese 2007). The topic was first discussed in literature in 1990 (Srivastava, 2007) with 

Palmer (2007) being the first to introduce environmental issues into the VRP, differing from 

previous work that estimated environmental savings based on distance or duration of journey 

time. Other issues were considered including road gradients, congestion and speeds generating 

an emissions matrix. These VRP variants are often known as Green Vehicle Routing Problems 

(GVRP) or the Pollution Routing Problem (PRP). The literature in this section will focus on the 

routing strategies and reducing fuel/energy consumption along with formulation. These GVRP 

variants have risen in literature in recent years although are vastly outnumbered by traditional 

VRP’s. Via the online research library website Scopus green based VRP’s account for less than 

3% of the VRP’s within research (that is available on scopus). However, given the latest concerns 

about environmental issues and increasing regulations, recently more VRP’s are incorporating 

green aspects. Researchers are now looking at ways to improve the emissions crisis, efficiently 

managing vehicles will have a large part to play. Lin et al. (2014) provide a recent review on VRP’s 

with environmental issues. 

     The GVRP was predominantly researched since 2006. Sbihi and Eglese (2007) presented 

some gaps in research of the GVRP by means of using Time-Dependant VRP approach for a 

minimizing emissions model. Limited scientific papers were produced on the green road freight 

industry previous to 2009; further work on emission based VRP’s has been conducted by way of 

the Pollution Routing Problem (PRP). The PRP was introduced by Bektaş and Laporte (2011). 

The PRP seeks to optimize both the distance and speed with respect to time constraints. The 

problem is difficult to solve, and so heuristic and metaheuristic methods are often used to solve 

it.  Demir et al. (2012) proposed an adaptive large neighbourhood search metaheuristic in a 

sequential method. Primarily the solution method is computed using a fixed speed after which a 
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post optimisation occurs where variable speeds are allowed. Kramer et al. (2015) however show 

that this method can in some cases lead to lower quality solutions, the authors formulate a new 

hybrid iterated Local Search matheuristic approach to solving a problem with objectives to 

minimize operational and environmental costs while respecting capacity constraints and service 

time windows. This method outperforms previous methods from literature and is capable of 

high-quality solutions.  

     As air-pollution has become a larger, growing threat in recent years organizations such as 

governments and private companies have begun to become environmental conscious. The UK 

Government has decided that the environmental impact is to be a primary concern for current 

and future party leaders (www.gov.uk/government).  Logistic activities such as transportation, 

product production and development and waste management can have a great impact on the 

environment requiring investigation into techniques and strategies to reduce this threat (see figure 

1.1.1). Transportation, while being the most fundamental infrastructures for economic growth 

also provides a large proportion of pollutants (Salimifard et al., 2012). Transport schedulers 

should put emphasis on efficiently packing loads, avoiding empty runs, optimising vehicle routes, 

educating drivers with fuel efficient tips and employing technical solutions. Drivers have a 

massive influence on the emissions they create themselves. Using the telematics data acquired 

from a Logistics based company in the South East of England. It was observed that the difference 

in vehicle emissions between the best and worst drivers can be as much as 15% over a 250-mile 

trip. Within road haulage solutions such as fixed side walls and wheel wraps can be incorporated 

to improve aerodynamics leading to a reduction of 7-12% (Bode et al. 2011), for more 

information regarding aerodynamic trailer devices for drag reduction the reader is directed to 

Hakansson and Lenngren (2010) for further information and results about the benefits of drag 

reduction techniques. Low resistance rolling tires can be used to further reduce fuel consumption 

and can see benefits by as much as 6%. Researching into the relationship between environmental 
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impact and transportation through route planning will be able to provide further understanding 

and practical suggestions to benefit the environment. Improving transportation efficiency at an 

operational level is the most straight forward action when researching green logistics. A decrease 

in fuel consumption can similarly provide a reduction in harmful polluting greenhouse gas 

emissions (ErdoÄŸan and Miller-Hooks, 2012; Xiao et al., 2012).  The existing literature on 

VRP concerning fuel consumption seems limited in comparison to traditional VRP’s. However, 

several papers do try and incorporate accurate fuel consumption models. These fuel 

consumption models use a combination of variables including load, speed, distance, gradient 

and vehicle characteristics. Speed and load can have a dramatic effect on a vehicle’s emissions 

and are often the factors most associated with emissions. Figure 2.3.1 represents the resulting 

emissions from a variety of heavy-goods vehicles (HGV’s), notice that the least emissions occur 

at different speeds for different vehicles which adds added complexity to models, that needs to 

be added to improve accuracy and real-life usability. In real life situations speed limits will need 

to be factored in and these could also have bearers on the route decisions. 

 

Figure 2.3.1 Relationships between CO2 emission rates and travel speeds of HGV’s (Xiao and Konak 2015) 



 52 

However, other factors including driving styles, road geometry and weather conditions also have 

an influence on fuel consumption. Xiao et al. (2012) provide a fuel consumption model that is 

popular among researchers. They proposed a Fuel Consumption Rate (FCR) which was 

incorporated into an extended CVRP model (FCVRP) with the aim of minimizing fuel 

consumption. Both the distance travelled, and the load are used as the factors which determine 

the fuel costs. FCR is taken as a load dependent function, where FCR is linearly associated with 

the vehicle’s load. Papson et al. (2012) developed the transportation speed to fuel consumption 

model and applied it to Time Dependant VRP’s. For more Fuel consumption model papers, 

the reader is directed to Fagerholt (1999), Apaydin and Gonullu (2008), Maraš (2008), 

Nanthavanij et al. (2008), Sambracos et al. (2004) and Tavares et al. (2008). Li (2012) propose a 

mathematical model to formulate a model to solve a VRPTW with the objective of minimising 

fuel consumption. Factors such as distance, speed and load are taken into account as well as wait 

time. The fact that a vehicle may consume fuel while stationary can occur for a number of reasons 

including heating/cooling the driver’s cab. The method for measuring fuel consumption is similar 

to that of Suzuki (2011). Fuel consumed expressed as miles per gallon (𝑀𝑃𝐺)	along arc (𝑖, 𝑗) 

can be expressed as: 

 

𝑀𝑃𝐺!" = (𝛼, + 𝛼&𝑣!")𝛾!"𝜋!"    (5) 

 

Where 𝑣!" is the average speed in arc (𝑖, 𝑗), 𝛼, and 𝛼& are parameters to be estimated (≥ 0), 𝛾!" 

is the road gradient factor 𝛾!" = 1 is for flat terrain, (> 1 is for a negative gradient and < 1 is for 

a positive one). 𝜋!" > 0 is the load factor parameter. This load parameter is expressed as a linear 

function: 𝑚𝑝𝑔 = 𝛽, + 𝛽&𝐿 where 𝐿 is load, 𝛽, ≥ 0 is the mpg of the vehicle when empty, 𝛽& <

0 is the coefficient measuring the loss of mpg caused by additional load. And so 𝜋!" can be 

described as: 
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𝜋!" =
-!.-" ∑ 0##∈%#&

-!.-"1
           (6) 

 

𝑑! is the weight of the load to be delivered to customer 𝑖, 𝑌!"is the unvisited customer list when 

travelling on arc (𝑖, 𝑗), 𝜇 is the average vehicle load. In order to calculate the fuel while remaining 

stationary (or wait time consumption if delivering goods with engine running) a parameter 𝜌 ≥ 0 

is used to denote the average amount of fuel consumed per hour while the vehicle is stationary 

waiting at customer sites. Therefore, at customer 𝑖 the fuel consumption during wait time 𝑤! can 

be described as 

       𝑊𝐺𝑃𝐻! = 𝑤!𝜌.      (7) 

 

Vehicle emissions are affected by many factors as have been described in this section of the 

literature review. Factors including load, speed and road geometry will be introduced into the 

platooning model in Chapter 3.0. 

 

Fuel consumption is related to a number of factors, these can be broken down into core 

variables or resistances: rolling, grade and aerodynamic resistances. In order to reduce fuel 

consumption these resistances need to be reduced effectively reducing the required power of the 

engine to power the vehicle. Rolling resistance is related to the frictional losses as well as the mass 

of the vehicle, they can be reduced by incorporating factors mentioned previously including low 

resistance tyres. Low resistance tyres reduce the rolling resistance constant. Grade resistances are 

directly related to the weight of the vehicle as well as the angle of the incline or decline, and so 

can only be realistically reduced by reducing vehicle load or by routing along different terrain 

with fewer steep inclines. The final resistance that directly effects fuel consumption is the 

aerodynamic resistance. This value is determined by the drag coefficient of the vehicle as well as 

the velocity. This aerodynamic drag resistance can be reduced by tweaking the aerodynamic 
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design of the vehicles thereby reducing the drag coefficient. Figure 2.3.2 below is created using 

real life data acquired from (Engineering Toolbox, 2016) and implementing the resistance 

equation that is formed in the next chapter where it will be explained in more detail. The figure 

represents the forces acting on a HGV travelling at various speeds on a constant gradient. It can 

be seen that the aerodynamic force does not become the more dominant force until speeds of 

70km/h +. In chapter 3 a comprehensive fuel consumption experiment taking into account these 

resistive forces is conducted and the results reflect the data shown in Figure 2.3.2. 

When investing in aerodynamic improvements assessments into what the vehicle will be 

used for and the general operating speeds can be highly influential upon the decision. This factor 

will need to be addressed in the proposed problems. It must be noted however, that the data 

represented in figure 2.3.2 is only applicable for HGV’s, other forms of light goods vehicles 

(LGV’s) will have significantly lower rolling resistances due to their reduced friction forces from 

a combination of less weight and less wheels as well as different frontal areas. Many LGV’s have 

very poor frontal area designs, as such the aerodynamic force will be more prominent at lower 

speeds when compared to HGV’s. Aerodynamic aids can be used to streamline the flow of air 

over a vehicles body, reducing fuel consumption significantly. Heavy duty truck improvements 

include systems such as shape changes and installations. These include: reducing the trailer gap 

by moving the fifth wheel and by using cab flairing’s, trailer side skirts and undercarriage skirts, 
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boat tail, integrated tractor roof fairings, aerodynamic mirrors, fuel tank flairings, aerodynamic 

bumpers, wheel flairings and hidden exhaust stacks (Green Transportation Logistics, 2015). 

Some studies in the UK conducted in 1999 found that trucks travelling at speeds 50mph and 

56mph could see 9.3% and 6.7% fuel savings respectively (ETSU and MIRA 2001). While all 

these benefits require modifications on the vehicles, one technique doesn’t, known as 

drafting/platooning it can be used to improve fuel consumption dramatically. In order to 

investigate the full benefits that platooning can bring into transport systems, an accurate and 

reliable way of measuring vehicle emissions is needed; these techniques can then be introduced 

into the platooning model to provide real tangible results. 

 

2.4 Platooning 

Drafting/Platooning provides aerodynamic benefits by reducing the drag of vehicles, this can be 

utilised within the logistics industry to significantly reduce emissions. A Platoon is described as a 

group of vehicles of minimum group size one. It has exactly one platoon leader and zero or more 

platoon followers. A platoon can perform different platoon operations (Maiti et al. 2017). 

Although a proper platoon consists of more than one vehicle. The platoon can be split into 4 

properties:  

  

• ID – The platoon ID identifies the platoon from other platoons allowing the user to easily 

differentiate, this includes the platoon size and the capacity of the platoon. 

• Location – This refers to the platoons longitudinal and latitudinal coordinates within the 

system. The platoon has a definitive start and end point, although can create multiple 

platoons in a single route. This is a dynamic property. 

• Gap – there must be a min-max allowance gap between the platoon of vehicles. This 

value depends upon the speed of the vehicles, the size and shape of the vehicles as well 
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as the technology on board. While this thesis will not delve into the factor it has been 

extensively investigated within literature (Swaroop and Hedrick, 1999)(Broggi et al. 

2000)(Alam et al. 2010). 

• Speed Limit – The speed limit of a platoon defines the amount of benefit gained and the 

quantity of fuel consumed. Below a certain speed the effect is nullified, increasing the 

speed excessively can also lead to potential traffic incidents. 

  

Platooning is the term used to describe a series of HDV’s or Trucks following one another along 

a stretch of road, an example can be seen in the figure below.  

 

Figure 2.4.1 HDV's platooning close to one another reducing air drag for trailing vehicles, controlled via radar and wireless 

communication. Figure is adapted from Scania Newsroom (2016). 

 

Figure 2.4.1 shows the vehicles using sensors to maintain a short gap between them in order to 

reduce fuel consumption. A radar allows vehicles to perceive their environment allowing them 

to accelerate and brake according to the vehicle/object in front of them. Vehicle to Vehicle 

communication allows the vehicles to better coordinate themselves for cooperative driving. As a 

vehicle’s speed increases so does the drag force acting on it. At a speed of 60mph HDV engines 

use over 60% of available engine power to combat aerodynamic drag, and so by reducing this 

force it can have a dramatic effect on fuel consumption (Freight Best Practise, 2016), especially 

at higher speeds (Scania Newsroom 2016), this can be clearly seen in figure 2.3.2. A 25% overall 

drag saving would result in around a 15%-20% fuel saving depending on truck loading based on 
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a flat road (Hammache, Michaelian and Browand, 2002)(Scania Newsroom, 2016). Fleet 

Management Systems (FMS) are commonly used among fleet operators. FMS enable the fleet 

operator to analyse and monitor many different conditions of each vehicle such as speed, 

position and fuel consumption. Knowing the speed and fuel consumption of a vehicle in 

operation can allow a decrease in fuel use a GPS systems that allow the FMS operator to improve 

driver performance; a key to reducing emissions. The position data provided using GPS tracking 

allows information to be used for Intelligent Transport Systems (ITS). Examples of ITS 

dedicated to advance research and improve the deployment of such systems include worldwide 

agencies include ERTICO in Europe, ITS America, ITS China, ITS Japan. Research for 

platooning as known today began in 1991, when technology was more viable for support such 

practise. PATH a Californian research program was one of the first to test platooning with two 

vehicles at highway speeds. (Chang et al. 1991). Most studies on fuel reductions in platooning 

have been on HDV’s (Browand et al., 2004; Zhang and Ioannou, 2004; Alamet al., 2010; 

Tsugawa, 2013) where the potentials are greater due to the shape of the vehicle. A fuel 

experimental study with mixed cars and HDVs in platoons has been done in Davila (2013). All 

studies indicate a fuel saving for the follower vehicles from the air drag reduction and this is 

achievable through vehicle control. However, the controller also has an influence the fuel 

consumption. With controllers constantly adjusting the vehicles speed, there is a danger of 

increased consumption through constant acceleration/deceleration, this control is largely down 

to the topography of the land and the ability to plan for inclines etc. Platooning/Drafting is rarely 

mentioned within routing literature however can have a profound effect on fuel efficiency, 

increasing dramatically the closer you get to the lorry in front. In road tests researchers achieved 

almost a 20% improvement in fuel economy (Haab, 2007). While the safe recommended 

distance is 2 seconds driving at 60mph in the dry this equates to a 53.6m gap, however the effects 

of drafting are still noticed at distances surpassing 50+m the benefits are reduced. Further testing 
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is needed at longer distances to monitor the effect. Driving within the safe recommended distance 

can cause accidents and isn’t advised. However, one way in which it can be monitored and 

plausible is with the introduction of autonomous vehicles. Autonomous driving eliminates the 

reaction time meaning that vehicles could travel much closer together at higher speeds safely. It 

has been confirmed that testing would take place in the near future (Sky News, 2016). In terms 

of routing this means that vehicles may be preferred to travel together on the same road often 

not taking the shortest route as the benefit of fuel saving by drafting along the same road may 

outweigh the shortest route. This added factor can be included into routing models however the 

arcs within the model will not be able to be measured using Cartesian coordinate system to create 

the distances, rather a real network will need to be created that will allow vehicles to traverse 

along the same arcs. Alternative methods are discussed later within models created for this 

research. Autonomous vehicles will bring various changes to the current driving environment. 

The vehicles will be more connected providing a vast amount of real-time information improving 

efficiencies and safety and completely operated with on-board sensors (Talebpour and 

Mahmassani, 2016). In order for vehicles to have the largest drag reduction smaller gaps are 

favoured, however, with a reduction in driving distance separation increases traffic collision risks. 

Aggressive controllers are needed in order to avoid collisions, Alam et al. (2014) look in more 

depth about the collision avoidance for HGV’s. Platooning has been researched in real life 

instances by a number of groups, although very few address a mixed fleet into the problem. 

SARTRE was the first project with mixed typed of vehicles in a platoon (Robinson et al., 2010). 

When introducing the concept of platooning into the VRP, certain challenges arise. The VRP 

by nature attempts to reach a set number of customers and return to its origin, and as such does 

not aim to traverse multiple vehicles along the same routes but rather disperse them amongst the 

network of arcs. The possibility of joint route planning for platooning has only been covered 

within the VRP lightly. Most research focuses on the formation of platoons and safety aspect 
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involved within vehicle platooning Kavathekar and Chen (2011). Baskar et al . (2013) and Larson 

et al. (2013) are among the few papers that address methods for increasing vehicle platooning 

possibilities, and briefly acknowledge the difficulty in finding exact routing methods. Larsson et 

al. (2015) is as far as we are aware the only paper to formally define the platooning problem while 

attempting to maximise the amount of fuel saved by vehicles capable of platooning on a road 

network. The authors formally define the problem as follows, a vehicle routing problem 

concerned with minimising the fuel consumption by platooning trucks given a collection of 

starting points, destinations and deadlines. The paper targets the German Autobahn network in 

particular and is used to create the road network, same node starting is also considered. Three 

different heuristic methods are used including the Best-Pair heuristic, Hub heuristic and a Local 

Search based heuristic. Of the three heuristic methods used the local search was the best in the 

majority of the testing. Further investigation into other heuristic and metaheuristic methods could 

provide more insight into the speed and accuracy of such methods, providing advice on the 

benefits of such methods. The run times of such methods are not known as they were not 

provided. Platooning is a new area to be considered in VRP, the implementation can be very 

beneficial when aiming to reducing emissions and is also applicable to real world road networks. 

               

2.5 Literature Review Summary 

The literature discussed within this chapter has identified possible ways in which the VRP variants 

can be considered to be Green. We hope that within the subject area of the VRP researchers 

will include more information regarding the emissions created when routing a set of vehicles and 

ways in which their chosen method has reduced them. Within this Thesis we have chosen to use 

a combination of the variants discussed to provide a comprehensive model that allows us to 

reduce emissions while remaining applicable to real-life instances. Electric vehicles are becoming 

increasingly mainstream, with the advancement in technology batteries are becoming more 
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efficient and they can now be used in a large number of applications within routing problems. 

Electric vehicles provide a reliable autonomous vehicle which opens up a range of possibilities 

including driverless deliveries and platooning. Platooning is a new concept where the literature 

is mainly concentrated on functionality of the software the vehicles employ in order to maintain 

safe close distances. While a few studies have investigated platooning on road networks, to the 

best of our knowledge a platooning model has yet to be applied to a VRP investigating the 

optimum point at which vehicles should start and end their platoon.  
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 Chapter 3  

3 Basic Platooning 

 

This chapter introduces the real-life benefits of Platooning along with theory of the process. 

Following the introduction and theory this section then looks at modelling the problem. In this 

Chapter the problem is split into 2 phases, the initial phase is based much around a CVRP 

whereby heuristic and metaheuristic methods are applied to improve the vehicle solution before 

the second phase introducing a Basic Platooning model; following on from the metaheuristic 

methods the CO2 is calculated for the current model. This CO2 calculation is used for the future 

objective functions as the distances may increase due to platooning. The Basic Platooning 

method used here maintains current customer locations, i.e the split point is fixed at a customer 

location only. 

 

3.1 Introduction 

Platooning is a new technique that is being introduced in the heavy goods industry. Similar to 

drafting in sports such as cycling and motor racing, the aim of platooning is to reduce the drag 

resistance of a vehicle by following another vehicle in tandem, together these vehicles form a 

platoon. Platooning can be further extended, and multiple vehicles can be included in the 

platoon each receiving drag reduction benefits. Aerodynamics play a critical role in the efficiency 

of vehicles; an effective design allows the vehicle’s body to move easier through the air. As the 

vehicles speed increases so does the opposing force of drag proportionally. Therefore, at greater 

speeds drafting/ platooning becomes more effective. When a heavy goods vehicle is driving at 
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motorway speeds it is offsetting a huge volume of air. Figure 3.1 shows this air displacement in 

action. The blue zones show low-pressure areas, the red zones show the high-pressure zones. 

 

 

Figure 3.1.1 CFD simulation of a HGV and trailer travelling at 28m/s 

The air hitting the front of the HGV is travelling at 28m/s when it hits the front of the vehicle, 

most of the air is then forced around the extremities of the cab, down the sides of the trailer and 

the around the rear of the trailer. The low-pressure zone is greatest at the rear of the trailer, at 

this point the air velocity is less than 10m/s creating a void where the air can actually create a 

vortex effect (vehicle wake) pulling the trailer backwards. For more information regarding vehicle 

wakes and its effects the reader is directed to Carpentieri, Kumar and Robins (2012). It is within 

this wake/area of low-pressure that a trailing vehicle can gain aerodynamic benefits and effectively 

reduce the drag force. Platooning not only benefits the trailing vehicles however. The lead vehicle 

also gains an aerodynamic benefit, as the vehicles wake is reduced as the area of low pressure is 

partially filled by the trailing cab. The distance of which the trailing vehicle is following is very 

important, too far away the drag benefits are reduced, too close and becomes dangerous due to 

driver reaction times and braking distances. The required technology has only recently been 
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achieved that allows vehicles to follow each other safely at very close distances. A series of 

electronic monitoring devices as well as radar are used to generate semi/fully autonomous 

vehicles capable of platooning effectively. With the transport industry trying to identify new ways 

to save money, aerodynamics is a top concern. Reducing the drag force can lead to increased 

efficiencies and therefore reduced costs and emissions. Platooning can reduce CO2 emissions 

by up to 16% for trailing vehicles and as much as 8% for lead vehicles (ITS4CV study, Ertico). 

Secondary real-life benefits include delivering goods faster, extending the driving range and 

reducing traffic jams. Autonomous driving also allows the operators to safely carry out other tasks 

such as administrative work or taking phone calls. This chapter looks at the current literature 

around this driving technique as well as identifying its real-world benefits. A model is generated 

with concepts of how it can be introduced to the VRP and other transport systems.  

 

3.2 Theory and Real-Life applications 

A main factor to consider when trying to reduce the fuel consumption of a vehicle is its 

aerodynamic drag properties. As can be seen in figure 2.3.2. In order to reduce this value, the 

drag coefficient of the vehicle must be reduced, one effective way is by reducing the frontal area 

of a vehicle. When one or more vehicles follows another in close proximity (often referred to as 

drafting) the trailing vehicles can effectively reduce their frontal area due to the vehicle in front 

punching a hole through the air. This technique is common in motorsport and cycling whereby 

vehicles/competitors can gain speed over their opponents. The term platooning is used when 

referring to vehicles actively drafting each other on the road. Platooning of vehicles is largely 

affected by the speed and the distance between the vehicles that are drafting.  

    In order for vehicle platooning to be most effective the distance between the lead and trailing 

vehicle needs to be very close. The optimum gap between the vehicles in the platoon cannot be 

met safely when driving on normal conventional public roads with human drivers in full control 
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due to reaction times and human error. Although, with recent technological advances in 

driverless technologies, electronic systems providing accurate and safe control over platooning 

vehicles allow close driving distances to be achieved, opening a new door in transport logistics. 

The lead truck will be under full human control all of the time, drivers of the trailing vehicles 

can then switch their vehicle into platoon mode which allows the on-board systems to monitor 

and control the distance between lead and trail vehicles continuously. These systems will take 

full control of the vehicle, removing human reaction time error meaning the vehicles will have 

the ability to simultaneously brake and accelerate, effectively connecting the vehicles into a 

platoon. Many logistic companies try to maximise their vehicle packing loads in order to make 

their vehicle as efficient as possible however often they cannot get the required delivery into 1 

vehicle and so others are required. Other circumstances where multiple vehicles are involved 

can be when the customers are fixed otherwise known as a fixed route planning. Real life routes 

often involve vehicles following the same routes for the majority of their trip, send multiple 

vehicles to the same locations/ customers. This is the case within the South East of England 

whereby transport companies will use the main motorways such as the A2 and the M20 for the 

majority of their routes.  

     Vehicle Platooning is becoming a hot topic in the road freight industry, it compromises of 

several vehicles equipped with state-of-the-art driving support systems closely following one 

another. These form the platoon of vehicles, driven by smart technologies communicating 

between them. The primary benefit from platooning includes a reduction of fuel usage and 

therefore CO2 emissions, other benefits include the ability to perform alternate tasks (such as 

rest breaks) while driving in the platoon, although this is largely down to the autonomous vehicle 

functionality and a reduction of congestion. Fuel cost is the primary concern for transportation 

companies, and fuel equates for a third of the total operational costs of an HDV (Schittler, 2003). 

The European white paper (2011) has also produced targets of reducing carbon emissions by 
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60% by 2050, such a task can only be achieved by a multifaceted approach. By driving in a 

platoon formation, vehicles can reduce fuel consumption by as much as 20% (Robinson et al., 

2010). These benefits depend on the speed of the vehicles and the distance between them. For 

the following instances, we assume that the vehicles all have a fixed speed, this fixed speed equates 

to a fuel reduction of 20% for the tow vehicle and 5% for the lead vehicle (Tsugawa et al. 2000). 

The lead vehicle is the vehicle which leads the platoon, this vehicle will receive the least benefit 

from platooning. The aerodynamic benefit for the lead vehicle is seen due to the reduction of 

turbulent air created from the rear of the trailer from the close trailing vehicles.  The aerodynamic 

benefit for the tow vehicle is seen from a reduction in frontal drag area from following the lead 

vehicle closely. As mentioned previously speed has a large effect on the aerodynamic benefit 

excessive traffic can greatly reduce platooning benefits, since low-speed platooning would provide 

almost no reduction in aerodynamic drag. Since vehicles will likely not be platooning through 

large urban areas, we assume throughout that the time required to travel a road is fixed 

independent of time.  

     To allow the reader a more in depth understanding we will introduce a few examples to help 

demonstrate the basics of platooning. The first is using the Christofides 21 dataset, the second 

uses real-life road topography to highlight the benefits in real world instances. The first example 

we utilise our basic model, Steps 1-4 of the Platooning Algorithm found in Figure 3.3.1. The 

Platooning algorithm applied in step 4 acts as a post optimiser and is implemented after a good 

solution to the VRP has been found. This allows the comparison between a good VRP solution 

and the platooning solution in terms of distance and also emissions. For the following examples 

in this chapter platoon fuel savings of 6 % and 21% have been used and taken from the literature, 

these represent the fuel savings for the lead and tow vehicles, respectively. These values used for 

the platoon fuel saving can be found within the literature review in Chapter 2 section 4. Although 

the values do vary according to a variety of factors (e.g speed) for this example they will remain 
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fixed, other factors are investigated in Chapter 4 where advanced platooning methods are 

modelled. Figure 3.2.1 shows how to merge 4 vehicles from 4 routes in 2 separate platoons. 

Starting with the optimal result in terms of distance for the dataset. 2 pairs of routes are chosen, 

in this example the chosen pairings are routes 1 and 2, routes 3 and 4. These were chosen based 

on their proximity to one another. In this insatnce the splitting point x was generated at a random 

point within the boundaires of a triangle formulated by the depot, route 1 customer 1 and route 

2 customer 2 (please see Figure 3.2.1). The green lines demonstrate the new routes the vehicles 

travel. In this insatnce the total solution distance was increased by 0.99%, however the overall 

CO2 was reduced by 3.95%. This large saving is a result of creating just two platoons. With the 

creation of more this could be further improved. We can now break this down further and 

inspect each of the processes and stages. In this instance the point at which the platoon separates 

are in this case taken to be the midpoint between the depot and the midpoint between the two 

first customers. This point at which they separate can have a large factor on the fuel savings, 

therefore optimising this point is essential. Further information regarding how this can affect the 

results is explored in Chapter 4. From this basic example a large reduction in CO2 produced was 

 

Old 

Route 

Gallons of 

Fuel 

New 

Route 

Gallons of 

Fuel 

0-1 1.193 0-x-1 1.135 

0-2 0.664 0-x-2 0.644 

0-3 0.272 0-y-3 0.245 

0-4 0.960 0-y-4 0.943 

 

Route 1 

Route 2 

Route 3 

Route 4 

Figure 3.2.1 Christofides 21 dataset after performing the Platooning post optimiser. Benefits shown in table. 
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seen, however, the benefits may vary according to problem type and customer location. The 

layout and dispersion of customers will have an effect on platooning’s usefulness. Further 

investigation into the Platoon routing problem is needed in order to determine its effectiveness 

on various problem types and real road networks. By considering only the first arcs of each of 

the routes a triangle of possible platooning scenarios is created. Customers A and B are the first 

customers for 2 respective vehicles.  

 

Figure 3.2.2 UK Road Network - Major A roads and Motorways 

Within the UK road network 66% of traffic is traversed using motorways and major A roads 

(Road Use statistics, 2018 Gov.uk). These major roads are ideally suited to platooning, 2 or more 
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lanes allow other vehicles to pass the platoons safely and allow the platoons to operate more 

efficiently as the larger roads allow drivers to see further ahead, allowing smoother braking and 

accelerating. For this real-life example we will highlight the southeast. 

     We consider 2 potential routes with Rochester being the depot and 2 customers for 2 vehicles 

one in Dover the other in Ramsgate. From figure 3.2.3 we can see both routes, with the fastest 

route calculated by Google Maps shown. In order to calculate the CO2 production from the fuel 

consumption data taken from the US energy administration (2016) has been used, it can be 

assumed that 10.172kg of CO2 is produced per Gallon of Diesel burned. In this particular 

Figure 3.2.3 Two routes across the South East 
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example to make things simplified we have assumed that the vehicles all have a fuel consumption 

of 10mpg.  Route 1 traverses from Rochester to Ramsgate, the route consists of 2 main roads the 

M2 and the A299 with a total distance of 46.3 miles and producing 47.09kg of CO2 based on 

Route 2 traverses from Rochester to Dover, Google maps provides two potential routes when 

travelling to/from these locations. In this particular example the travel times are skewed by traffic 

around the junction before Canterbury the M2/A2 interchange. The route chosen was calculated 

as the quickest, with a total distance of 47.9 miles and producing 48.71kg of CO2.  Figure 3.2.4 

shows a common route and a potential platooning option down the M2 and beginning of the A2 

Figure 3.2.4 Two real-life routes with platooning. 
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between Rochester and a junction after Canterbury highlighted by the red circle, the platooning 

route is 30.5 miles in length. The vehicles would then split at the junction circled in red and 

continue along their separate roads, the A2 and a smaller B-road towards Dover and Ramsgate 

respectively. Assuming a 10% average saving from the 2 vehicles in tandem with an average 

consumption of 10mpg under normal conditions, route 1 from Rochester to Ramsgate now has 

a total distance of 49.1 miles with a production of 47.34kg of CO2, route 2 from Rochester to 

Dover now has a total distance of 47.2 miles with a production of 45.41kg of CO2. The combined 

overall length of the routes is increased by 2.2% to 96.3 miles however the CO2 production has 

reduced by 3.05kg, resulting in a saving of 3.2%. This simple yet insightful example of platooning 

proves its potential when applied to the vehicle routing. Within larger transport systems the 

prospective benefits are even greater. Following on from these examples we will now investigate 

the problem further, modelling the problem and providing results as well as future directions for 

platooning. The following sections are divided into a 2-phase model. The initial phase is based 

around a core CVRP model this is expanded with the inclusion of emissions calculations as well 

as heuristic and metaheuristic techniques. Following this the second phase is introduced where 

the main platooning algorithm is applied.  

3.3 Methodology 

Our basic Platooning Algorithm used within this thesis can be seen in figure 3.3.1 and can be 

split into the following steps: 

 

- Step 1 – produce initial solution using the Clarke and Wright Savings algorithm. See 

section 3.4.1 

- Step 2 – Introduce the Variable Neighbourhood Search 

- Step 3 – Emissions Calculation and Optimisation  

- Step 4 - Platooning – formation of splitting points for joint routes 

Figure 3.3.1 Basic Platooning Algorithm Steps 
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Steps 1-3 of our platooning model create good solutions whereby Step 4 and 5 employs the main 

and extended platooning algorithm. The models used within this chapter are based around a 

core CVRP model, further constraints and variables are then added to adapt the model to suit 

certain factors in later chapters. Different objective functions can also be chosen to optimise 

distinctive aspects. The core model that was created to be used within this project is used 

throughout the following variants and adapted to fit their required aims and meet their 

constraints.  

 

3.4 Explanation of main Platooning steps  

This section goes into depth about the algorithms that were modelled and tested within the 

Platooning Algorithm found in Fig 3.3.1. The majority of the examples shown to demonstrate 

the techniques used were tested using a small instance namely the Christofides 21 instance 

(1979), this was chosen as we can achieve a very good solution in a very reasonable amount of 

time allowing multiple runs to be carried out in quick succession. This section also identifies the 

effectiveness of classical heuristic methods, notably the savings method and the sweep 

algorithm. Using techniques taken from our Literature review in Chapter 2 initial routes are 

created using several algorithms including the Sweep and the Clarke and wright Savings. Slight 

modifications are introduced to further improve the initial results such as capacity limiting and 

altering the starting point of the sweep algorithm. Classical heuristics were mostly developed 

between 1960 and 1990 with metaheuristic methods following (Laporte et al. 1999). These 

classical methods perform a search of solution space and generally produce modest quality 

solutions in good computational time. They are able to be modified and adapted to account 

for a diverse set of constraints, and as such they are still used today in a wide range of 

commercial program solvers. The following section (Step 2) introduces several local search 

techniques and then applies the VNS method in order to improve the solution further.  The tests 
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are carried out on well-known instances from Christofides et al. (1979) and Golden et al. (1998), 

Table 3.3.1 provides the instances chosen in this research and the best available solutions 

known.   The results and code were implemented using C++ in MacOS with the following 

specs: Processor - 4 GHz Intel Core i7, Memory - 16 GB 1867 MHz DDR3, MacOS Sierra. 

Once a good quality solution has been found the emissions are calculated in Step 3. This 

provides the user a base level on which to improve upon. Here load factors are introduced, and 

we perform analysis on the impact load can have on certain routes. Step 4 is when we employ 

our platooning algorithm. Here vehicles are paired together when leaving the depot and a 

splitting point is chosen for the vehicles to split the platoon. At this point the vehicles then 

continue along their respective routes visiting customers. Our basic platoon model is tested on 

the current solution obtained from Steps 1-3 and the emissions of the new platoon route are 

calculated. 

Table 3.4-1 Best known results of the Chrsitofides et al. (1979) and Golden et al. (1998) instances (continued on the next page) 

Instance Name 
Customer 

Size 
Capacity 

Max 

Route 

Length 

Delivery 

Time 

Best 

Known 

Solution 

Published Results 

C
hr

is
to

fid
es

,  
M

in
go

zz
i a

nd
 T

ot
h 

1_50 50 160 ∞ 0 524.61 Rochat, Y., Tailard, E. (1995) 

2_75 75 140 ∞ 0 835.26 Rochat, Y., Tailard, E. (1995) 

3_100 100 200 ∞ 0 826.14 Rochat, Y., Tailard, E. (1995) 

4_150 150 200 ∞ 0 1028.42 Rochat, Y., Tailard, E. (1995) 

5_199 199 200 ∞ 0 1291.29 Mester, D., Braysy, O. (2007) 

6_50 50 160 200 10 555.43 Rochat, Y., Tailard, E. (1995) 

7_75 75 140 160 10 909.68 Rochat, Y., Tailard, E. (1995) 

8_100 100 200 230 10 865.94 Rochat, Y., Tailard, E. (1995) 

9_150 150 200 200 10 1162.55 Rochat, Y., Tailard, E. (1995) 

10_199 

 
 

199 

 
 

200 

 
 

200 

 
 

10 

 
 

1395.85 

 
 

Rochat, Y., Tailard, E. (1995) 
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G
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n 
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 a
l.  

1_240 240 550 650 10 5623.47 Groer, C. (2008) 

2_320 320 700 900 10 8431.66 Nagata, Y., Braysy, O. (2009) 

3_400 400 900 1200 10 11036.23 Nagata, Y., Braysy, O. (2009) 

4_480 480 1000 1600 10 13592.88 Nagata, Y., Braysy, O. (2009) 

5_200 200 900 1800 10 6460.98 Nagata, Y., Braysy, O. (2009) 

 6_280 280 900 1500 10 8412.88 Nagata, Y., Braysy, O. (2009) 

 7_360 360 900 1300 10 10195.56 Nagata, Y., Braysy, O. (2009) 

 8_440 440 900 1200 10 11663.55 Groer, C. (2008) 

 

3.4.1 Initial Solution Method Step 1 

The first step required is to build initial solutions. We compare two classical heuristic methods 

while including some modifications; analysing how they react to these modifications and how 

to further improve upon the initial solutions generated. We look at how these initial solutions 

are generated and how they are affected with different instances with different characteristics. 

To begin with a set of initial solutions is created using two heuristic methods. The first is the 

Clarke and Wright method (1964). In 1964 the Clarke and Wright algorithm was created as a 

solution to the VRP, the method is based on a savings concept. The savings algorithm does not 

provide a certain optimal solution however it does produce a relatively good solution. The basic 

concept expresses the cost savings obtained by combining two routes together and merging them 

into one route. i.e. initially customers are all visited individually. As transportation costs are given 

(route length) the savings result from combining two routes together can be calculated. The best 

routes are then chosen to be combined resulting in the best savings. Two methods can be used 

when merging these routes. The first is the sequential savings algorithm, this method works 

sequentially down the list of savings from best to worst merging routes till a constraint such as the 

max capacity is met. The routes are then merged, and the next route is calculated. The second 

version is the parallel savings algorithm here more than one route may be built at any time. In 
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the general circumstances the parallel savings algorithm will produce better results however, 

dependant on the way the algorithm is implemented the parallel algorithm may be more 

computationally more expensive (Lysgaard, 1997).   

     The second way initial solutions are generated is the sweep method. The sweep algorithm is 

a method used for clustering customers into groups so that customers in the same group are 

geographically close together and can be served by the same vehicle. The depot is located first 

and set as the origin; the customers are then converted into polar coordinates with respect to the 

depot. The sweep then starts by visiting the customer with the lowest/or highest (depending on 

clockwise or anticlockwise sweep) angle and then increases/decreases the angle assigning each 

customer it approaches. The sweep is stopped when adding a new customer would violate the 

maximum vehicle capacity or maximum tour length. 

     The Christofides et al. (1979) instances are based around a cluster formation while the 

Golden et al. (1998) instances are radial around the depot. The effect this has on the solution 

quality of the proposed algorithms is clear within the results and should be considered in further 

research. 

     As mentioned before two well-known classical heuristic solution methods have been used, 

including a constructive method and a 2-phase algorithm. These solution methods were used to 

create an initial solution in an efficient time, the initial solutions are then incrementally improved 

by neighbourhood exchanges known as improvement procedures. The initial solution methods 

chosen include the Sweep algorithm proposed by Gillet and Miller (1974), (anticlockwise and 

clockwise) and a sequential Clarke and Wright Savings algorithm (1964).  

     The Clarke and Wright Savings algorithm (1964) is a widely known heuristic method for the 

VRP. It can be applied in both a parallel and a sequential technique. The algorithm that was 

chosen in this instance is the sequential technique and it can be found in Appendix 1. 
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The Sweep algorithm is used to form feasible customers initially formed by rotating a ray centred 

at the depot. A vehicle route is then obtained for each cluster by solving a TSP. The algorithm 

is as follows: 

     Assume each vertex 𝑖 is represented by its polar coordinates (𝜃! , 𝜌!) where 𝜃! is its respective 

angle and 𝜌! it the ray length. Assign a value of 𝜃!∗ = 0 to an initial arbitrary vertex 𝑖∗ and compute 

the remaining angles of the other vertices in either a clockwise or anti-clockwise fashion. Rank 

these vertices in increasing order of their 𝜃!. 

 

1. Choose a vehicle 𝑘. 

2. Starting from two available vertices with the smallest angle between them and the depot, 

assign vertices to the vehicle 𝑘, providing the capacity and route length are not violated. 

If unrouted vertices still remain go back to Step 1. 

 

Further from the basic Sweep algorithm we apply a modification, whereby all customers are 

considered as starting points with both clockwise and anticlockwise ordering considered. The 

modified sweep algorithm is applied as follows, steps 1-7 are considered to be the traditional 

method with steps 8 onwards being the improvement.  

 

1. A radial line with a starting point at the depot starts from 0o in polar coordinates and 

sweeps through customer nodes surrounding the depot in a clockwise or anti-

clockwise direction.  

 

2. When the line reaches the first customer the customer is saved within a list. 
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3. The line is then swept again till it reaches another customer where it is then added to 

the list, this continues until all the customers have been saved in the list. 

 

4. Using this list, the first customer is considered and the demand is checked to see if it 

violates the capacity constraint of the vehicle, if fit, it is assigned to route 1.  

 

5. The second customer in the list is then considered; the total demand of customer 1 

and 2 is considered and the capacity constraint applied and if acceptable customer 2 

is assigned to route 1. 

 

6. The assigning continues until the assignment of a customer violates the capacity 

constraint, at this point the current route is terminated by returning to the depot and 

a new route is created for the violating customer. 

 

7. The method then continues until all customers within the list are assigned to a route. 

 

8. The total route length is calculated and the route configuration is saved as the current 

best.  

 

9. The list used in step 2 is then re arranged by moving the first member/customer to 

the end of the list. 

 

10. The steps 3-7 are then repeated, if the new solution is better than the current best the 

route configuration is updated and saved as the current best. 
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11. The shuffling of the list continues until all customers have been considered as starting 

points. 

 

This proposed method is similar to that of Wassan et al. (2008) except all customers are included 

in the initial sweep procedure. The authors’ method excluded a set number of customers close 

to the depot from the initial sweep algorithm in order to reduce route rigidity (the exact number 

of customers excluded was decided after test results), our proposed modified sweep algorithm is 

also subjected to similar change in route rigidity; specifically in the capacity constraint for a similar 

required effect. The capacity constraint allowed in each vehicle in the initial modified sweep 

algorithm is reduced by 1% in each initial solution. By doing this, it removes some rigidity within 

the routes allowing flexibility to the improvement phase of the algorithm, whereby customers are 

inserted into a route where best fit. Once a solution has been produced the capacity is further 

reduced and the program is run again. For each run once the initial solution was found using the 

modified sweep algorithm stated above the improvement phase followed. New runs were created 

until the capacity was reduced to its maximum setting.  

 

 

 

 

Figure 3.4.1 is an example of how these routes are constructed, the 0 position denotes the depot 

(each route starts and finishes at the depot), with each subsequent number representing the 

customer number which is predefined within the dataset. In this example when the sweep 

algorithm was attempting to visit another customer after customer 6 in route 1 the capacity 

constraint was violated and so the routes closes, and the vehicle is returned to depot. A new route 

is then created (route 2) by resuming where the previous sweep ended and then visits customer 

Route 1: 0-1-4-3-6-0 

Route 2: 0-2-5-0 

Figure 3.4.1 An example of a set of routes denoting which customer they are visiting 
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2. Once all the customers have been included in a cluster the algorithm stops. On certain 

occasions such as a heterogeneous fleet multiple sweeps may need to be used for different 

vehicles. 

Figure 3.4.2 shows the initial sweep result. The starting point is marked with a red circle, as this 

is the anticlockwise sweep method the next point visited is circled in green. This method creates 

good open routes however when a fixed starting position is used sometimes routes may be 

created with bad tightness, i.e some routes may have a low demand/capacity. 

 

Tightness is defined as the capacity of load in the vehicles divided by the total capacity of vehicle. 

The route highlighted in green shows that if a poor starting position is chosen that single routes 

may be generated causing an extra trip, that could be avoided if routes were better optimised. 

The standard sweep method for the VRP has produced a VRP solution, however to further 

improve this sweep method we can modify this heuristic by varying its starting point. The sweep 

Figure 3.4.2 Initial Anti-Clockwise Sweep Result on Christofides 21 dataset. 
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method is implemented again by altering the list of customer’s angles. The original angle lists are 

sorted either ascending or descending depending on whether clockwise sweep or anticlockwise 

sweep is chosen. The original sweep method creates routes using the first customer within the 

list and then continues onto the second etc. By shuffling the top member of the angles list to the 

bottom, a new starting point for the sweep algorithm is created. Tables 3.4-2a and b demonstrate 

an example of what these lists look like during the order change with them showing the order of 

customers before and after the change respectively. The sweep algorithm always begins with the 

first customer in the list, and so each New Angle List generated provides a new starting point. 

 

Table 3.4-2a and 3.4-2b. Changing start position of the sweep algorithm to find best initial solution 

  

 

 

 

 

 

 

 

After each new sweep is implemented an Intra-Route Improvement heuristic is implemented 

before the solution values are generated. The Intra-route improvement heuristic used is the Or-

opt (Or ,1976) it works on a single route looking at all customers within that one route. The one 

used on these initial sweep solutions moves only a single customer. It works first by identifying 

the first route size 𝑛 and looks at the first visited customer 𝑖 = 1 as a candidate to be inserted. 𝑖 

is then switched with customer in position 𝑗, where 𝑗 = 𝑖 + 1, 𝑗 is then increased by 1 while 𝑗 <

𝑛 − 1, this avoids using the depot as a potential candidate for the intra-route. If a better solution 

Original Angle List 

Customer Number 
Sweep 

Angle o 

1 2 

2 15 

. 

. 

. 

. 

. . 

10 320 

New Updated Angle List 

Customer Number 
Sweep 

Angle o 

2 15 

3 

. 

. 

45 

. 

. 

10 320 

1 2 

Table 3.4a Table 3.4b 
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is found this is saved as the new best solution. Using this new best solution, the next iteration 

begins starting with customer 𝑖 + 1 as the customer to be inserted. Once all customers in the 

route have been inserted the best overall solution is saved and updates the current solution, the 

heuristic moves onto the next route. The diagrams in figure 3.4.3 shows the benefits of the Intra-

route heuristic saving on average 11.6%.  

Clockwise Sweep Solution using the best starting position 

with no Intra-Route. Solution = 454.2 Number of Routes 4 

Clockwise Sweep Solution using the best starting position 

with Intra-Route. Solution = 400.4 Number of Routes 4 

Anticlockwise Sweep Solution using the best starting position 

with no Intra-Route. Solution = 488.64 Number of Routes 5 

Anticlockwise Sweep Solution using the best starting position 

with Intra-Route. Solution = 432.62 Number of Routes 5 

Figure 3.4.3 The effects of the Intra-Route Heuristic on the Christofides 21 dataset after initial sweep solutions. 

Tables 3.4-3, 3.4-4 and 3.4-5 display the results from the initial solutions using the chosen 

classical heuristic methods.  



 81 

  
Table 3.4-3 Initial solutions generated using the Sweep algorithm in an anticlockwise procedure. 

Name 

Customer 

Capacity 

Max 

Route 

Length 

BKS Objective 
% Deviation 

from BKS 

CPU time 

(s) Size 

1_50 50 160 ∞ 524.61 668.826 5% 0.0014 

2_75 75 140 ∞ 835.26 969.678 16% 0.0029 

3_100 100 200 ∞ 826.14 959.235 19% 0.0051 

4_150 150 200 ∞ 1028.42 1232.71 28% 0.0111 

5_199 199 200 ∞ 1291.29 1564.36 27% 0.0196 

6_50 50 160 200 555.43  911.921 64% 0.0014 

7_75 75 140 160 909.68 2044.30 125% 0.0027 

8_100 100 200 230 865.94  1438.11 66% 0.0052 

9_150 150 200 200 1162.55  2428.42 109% 0.0112 

10_199 199 200 200 1395.85 2803.7  101% 0.0206 

  

Table 3.4-4 Initial solutions generated using the Sweep algorithm in a clockwise procedure 

Name 

Customer 

Capacity 

Max 

Route 

Length 

BKS Objective 

% 

Deviation 

from BKS 

CPU time 

(s) Size 

1_50 50 160 ∞ 524.61 667.244 32% 0.0014 

2_75 75 140 ∞ 835.26 932.712 12% 0.0027 

3_100 100 200 ∞ 826.14 952.194 17% 0.0071 

4_150 150 200 ∞ 1028.42 1161.7 19% 0.0145 

5_199 199 200 ∞ 1291.29 1556.63 30% 0.0245 

6_50 50 160 200 524.61 844.91  52% 0.0013 

7_75 75 140 160 835.26  2030.69 123% 0.0027 

8_100 100 200 230 826.14 1366.35  58% 0.0052 

9_150 150 200 200 1028.42 2362.53  103% 0.0115 

10_199 199 200 200 1291.29 2835.6  103% 0.0207 
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Table 3.4-5 Initial solutions generated using the Clarke and Wright Savings algorithm in a sequential procedure. 

Name 

Customer 

Capacity 

Max 

Route 

Length 

BKS Objective 
% Deviation 

from BKS 

CPU time 

(s) Size 

1_50 50 160 ∞ 524.61 584.637 11% 0.0025 

2_75 75 140 ∞ 835.26 905.306 8% 0.0058 

3_100 100 200 ∞ 826.14 893.912 8% 0.0115 

4_150 150 200 ∞ 1028.42 1134.83 10% 0.0287 

5_199 199 200 ∞ 1291.29 1424.29 10% 0.0589 

6_50 50 160 200 524.61 607.947 16% 0.0024 

7_75 75 140 160 835.26 1525.2 83% 0.0064 

8_100 100 200 230 826.14 971.42 18% 0.0111 

9_150 150 200 200 1028.42 1327.67 29% 0.0310 

10_199 199 200 200 1291.29 1546.23 20% 0.0604 

 

 

Our results show that on small size instances <199 customers the preferred initial solution 

method is the Clarke and Wright Savings algorithm. Although, in terms of computation time 

the Sweep algorithm out performs the Clarke and Wright by a factor of 2, although both of 

these times are very small and so the difference is negligible. The Clarke and Wright solutions 

produce reasonable solution results considering the simplicity of the model. The large 

deviations from the BKS occurred when a service time constraint was added. Notably the 

sweep algorithms performed very poorly in these cases with occasionally providing initial 

solutions 100% away from the BKS. 
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3.4.2 Local Search Improvement Methods & Capacity Change 

 

After the initial search phases various improvement methods can be used for each initial solution 

(anticlockwise sweep and clockwise sweep) in order to further improve the solution quality, this 

is our step 2. These include Inter-Route shifts, swaps and moves, 2-opt & 3-opt exchange as well 

as the Intra-Route heuristic. At each improvement method the overall best solution is chosen to 

move onto the next improvement technique. The process was implemented in an iterative 

process, taking the improved solution from each improvement into the next method. Once one 

cycle has been completed the best result is then taken back through the improvements 

techniques; this continues until the solution can pass through all the improvement techniques 

without an improvement. Figure 3.4.4. Provides a flowchart diagram enabling the reader to easily 

see how each step are linked and the process involved at each stage. After each of the local search 

operators are used Intra-route is used to further optimise the solution.  As you can see the swap 

and move operators feed into each other iteratively, while this does provide good quality 

solutions it must be noted that occasionally the solution get stuck in a local optimum. There is 

another variation of this operation whereby at each step the solution is fed back into the 1-0 / 0-

1 local search operator, the process will be further discussed later and can be seen in figure 3.4.9. 

After these initial solutions improvement procedures were used to further improve on the 

achieved solutions. The improvement procedure utilises a neighbourhood structure based on 

shift and swap moves. These moves include the swap intra-route, (1-0) - (0-1) shift, the (1-1) swap, 

the (2-0) - (0-2) shift, (2-1) move, the (2-2) swap, the 2-opt and 3-opt. 
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Figure 3.4.4 Flowchart process of the shift/move/swap operators 
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Here after each operator the solution is fed back into the first operator and then passed through 

the other operators. The second improvement procedure that was tested is to be referred to as 

the cyclic improvement method. Here the solution passes through all the operators (same order 

as in the iterative method) and if there is an improvement then the best current solution is fed 

back into the first move – the (1-0)-(0-1) shift operator. The best solution from the (1-0)-(0-1) 

shift is then used in the initial (1-1) swap. This then continues through the other operators (2-

0)-(0-2) shift, (2-1) move and (2-2) swap. Once the solution has passed through them all the best 

result is then fed back into the (1-0)-(0-1) shift and the cycle is repeated. This is continued until 

no further improvements were made in any local search operator. Figure 3.4.5 shows the cyclic 

improvement method visually. 

 

 

 

 

 

 

 

 

The 1-0 and 0-1 move is a technique involves removing the first member of the first route and 

inserting in at the first member of the second route, if no capacity constraints or max route 

constraints are broken the new solution is calculated and saved if the solution is better than the 

previous best then this is saved as the new best. The original solution from the sweep solution is 

then used again and the first member of the first route is removed and inserted into the second 

member in the second route, again the route is saved if a new best is found. This method is 

(1-0)/(0-1) Shift 

(1-1) Swap 

(2-0)/(0-2) Shift 

(2-1) Move 

(2-2) Swap 

 Output 

Figure 3.4.5 The Cyclic Improvement Method 
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continued inserting the first member of the first route into each position within the second route. 

Figure 3.4.6 demonstrates the 1-0 shift moving a customer from a route into another route. 

 

 

After this the process then moves onto inserting the first customer into the third route at each 

position. One the first member of the first route has been inserted into each position of each 

route the method then chooses a new customer to be inserted this is the second member of the 

first route, the whole process is again repeated inserting the customer into the first member of 

the second route etc. Once each of the customers within the first route has been inserted into 

each position within each other routes the algorithm then moves onto the next route and begins 

by removing the first member of route 2 into the first position of route 1. The algorithm cycles 

through all the members of each route, removing the customer and inserting them into other 

routes. Once the best has been found the method then runs again with the new solution, this 

method continues until the shift 1-0 / 0-1 can be completed with no further improvements. The 

overall best solution is then taken, and the next operator technique is used. In this case this is the 

1-1 swap.  

     The swap 1-1 looks at swapping positions within two routes, firstly the first member of the 

first route is switched with the first member of route 2, if no capacity constraints or max route 

constraints are broken the new solution is calculated, if the solution is better than before the 

solution is saved as the overall best. The best solution from the previous technique is used and 

Figure 3.4.6 Demonstrating the 1-0 move using diagrams from Laporte and Semet (2002). 
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the swap 1-1 now moves to switch the first member of route 1 with the second member of route 

2 and again solution saved if it is better than the previous overall best. Figure 3.4.7 shows how 

this swap is implemented swapping the first member of a route with the second member of 

another route. Once the first member of the first route has switched positions with every other 

member in each route the algorithm moves onto the next member in route 1, this continues with 

each customer of every route.  

Once the swap 1-1 has completed the overall best is saved as current best and then the next 

operator technique is used, this is the 2-0 / 0-2 shift.  

     The shift 2-0 / 0-2 shift is the similar to the 1-0 / 0-1 shift except instead of removing and 

inserting 1 customer at a time 2 customers are removed and inserted together. This algorithm 

takes two customers adjacent to each other and tries inserting them into the next route still next 

to each other. Once each pair customers have been inserted into every position in every route 

the best solution is chosen and saved as the overall best and then taken into the next operator 

technique Move 2-1. 

     The move 2-1 / 1-2 is again another variation of the shift 1-0 operator however here at each 

point 2 adjacent customers are switched with 1 from another route. The single customer that is  

switched with the 2 is cycled through all the positions of every route the 2 adjacent customers 

that are to be inserted/swapped are then moved to the next customers in the first route.  

Figure 3.4.7 Demonstrating the 1-1 swap using diagrams from Laporte and Semet (2002). 
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     The Swap 2-2 is same as swap 1-1 except 2 adjacent customers are moved together 

simultaneously. This operator can cause large changes within the route structure and helps 

advance the solution into other neighbourhoods. 

 After each swap iterator the Intra-Route algorithm is used to optimise each route individually 

functioning as described previously. When testing the improvement techniques optimal solutions 

were found for the Christofides 21 dataset that was used for testing.  

     The final outputs for each initial solution (anticlockwise and clockwise) can be seen in Figure 

3.4.8. The result generated using the anticlockwise sweep initial solution allowed the 

improvement techniques to generate the optimal solution for this dataset. Although after the 

initial solution the clockwise method generated the better result, however, the shift/move/swap 

operators couldn’t improve the solution beyond 383.5 as it was probable it got stuck in a local 

optimum.  

Anticlockwise Sweep Solution using the best starting position 

with Intra-Route and all improvement heuristics described. 

Solution = 375.28 (Optimal within Literature) 4 Routes, 93.75% 

Tightness 

Clockwise Sweep Solution using the best starting position with 

Intra-Route and all improvement heuristics described. Solution 

= 383.5, 4 Routes, 93.75% Tightness.  

Figure 3.4.8 Results generated from Anticlockwise and Clockwise Initial solutions, using improvement techniques. 
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     Further investigation into the way these operators function was required and so the order in 

which they are called was chosen to be altered to investigate how it effects solution quality.  Figure 

3.4.9, shows how these shift/swap/move operators were manipulated to operate at different times, 

where the previous method works on an iterative basis whereby each shift/swap/move operator 

is fed into the next, the process shown in Figure 3.4.10 is a modified iterative process.  

     Tables 10-14 demonstrate the effectiveness of the chosen improvement heuristics and the 

way the different improvement method effect the result, and also show the role the two initial 

solution methods have on the objective value. Two datasets were chosen problem size instances 

ranging from 50 -199 are instances from Christofides et al. (1979) and problem size instances 

ranging from 240 -480 are instances from Golden (1998).  
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Figure 3.4.9 An alteration to the iterative shift/swap/move operators 



 91 

This process is performed in an iterative way; at each stage the best solution is then fed back into 

the first of the improvement moves, the (1-0)-(0-1) shift. After each local search improvement 

was made the 2-opt and 3-opt heuristic was used to further improve on the best solution. Once 

each local search improvement has been implemented the result is then outputted. The iterative 

improvement method is shown in Figure 3.4.10.  

 

 

 

 

 

 

 

 

 

The iterative improvement method feeds the best solution found at each stage back into the first 

of the operators. i.e once the (1-1) swap solution has found the best current solution this best 

current solution is then the global best and then the (1-0)-(0-1) shift operator uses this as a starting 

point. Both methods provide new ways at manipulating local search methods to further improve 

their solution space search.  

     To further diversify the neighbourhoods and have the ability of further improving the 

solution a capacity constraint change was implemented at the end of each output. The best 

solution along with the best matrix was saved globally allowing the program to be run again 

(this time with a reduced initial capacity allowance) and the new solution compared to the 

previous. In our tests for the Christofides et al. (1979) the maximum reduction in vehicle capacity 

was found to be effective up to 80% of the capacity limit and a reduction of up to 60% of the 

capcity limit in the Golden et al. (1998) instances, it was found to be effective for one particular 

Output 

(1-0)-(0-1) Shift 

(1-2) Swap 

(2-0)-(0-2) Shift 

(2-1) Move 

(2-2) Swap 

 

-1) 

Figure 3.4.10 The Iterative Improvement Method 
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instance, namely the 2_320. This is due to the quality of the initial solutions produced. It was 

found that the quality of the initial solutions when using the Golden et al. (1998) instances was 

very poor and averaged 150% deviation from the best-known solution.  

     In order to analyse the change in capacity constraint and test whether a reduction in initial 

capacity constraint can benefit solutions, computational runs were carried out reducing the 

capacity by 1% each iteration. The final results for 4 datasets of the varying capacity constraint 

can be seen in Figure 3.4.11. 

  

  

Figure 3.4.11 Graphical comparison of how a reduction in capacity of the initial solution effects the final solution value. 

The results displayed in Figure 3.4.11 highlight the influence this reduction in capacity can be in 

terms of solution value. While no specific starting capacity constraint provided better results than 
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the rest, the best solution value can be found at different capacity allowances for the various 

instances. There is no notable pattern as to when these best results occur, within the 1_50 and 

2_75 instances this value occurs at around a 30% capacity allowance, instance 3_100 provides 

the best result when capacity allowance is 95% and instance 4_150 delivers best values at 67% 

and 85% capacity allowance. Due to the range of values at which the best value is obtained it can 

therefore be said that there should be no fixed capacity reduction percentage used. By altering 

the initial starting capacity our test results allow us to achieve a greater spread of neighbourhoods 

and ultimately a better chance of discovering a better solution.  In order to achieve optimal results 

a wide range of capacity constraints need to be tested. While this can yield better solutions, the 

run time is heavily extended proportionally to the number of runs tested. For the remainder of 

this thesis the maximum capacity allowance used for the Christofides et al. instances will be set 

to the lowest capacity allowance percentage, this value is found by identifying the maximum 

demand of a single customer 𝑖 within the dataset and dividing by the maximum vehicle capacity 

for that instance.  The results and cpu time shown are those of the best capacity constraint. The 

following results presented in Tables 3.4-6, 3.4-7, 3.4-8, 3.4-9 and 3.4-10 are the results from 

allowing multiple runs with the capacity changing at each initial solution. 

 

Table 3.4-6 Christofides et al. results from the cyclic procedure method using the anticlockwise sweep initial solution 

Name 

Customer 

Capacity 

Max 

Route 

Length 

BKS Objective 

% 

Deviation 

from BKS 

CPU time 

(s) Size 

1_50 50 160 ∞ 524.61 551.53 5.1% 0.14 

2_75 75 140 ∞ 835.26 867.15 3.8% 0.25 

3_100 100 200 ∞ 826.14 846.44 2.5% 0.71 

4_150 150 200 ∞ 1028.42 1085.53 5.6% 2.34 

5_199 199 200 ∞ 1291.29 1370.99 6.2% 6.23 
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Table 3.4-7 Christofides et al. results from the cyclic procedure method using the clockwise sweep initial solution 

Name 

Customer 

Capacity 

Max 

Route 

Length 

BKS Objective 

% 

Deviation 

from BKS 

CPU time 

(s) Size 

1_50 50 160 ∞ 524.61 537.37 2.4% 0.12 

2_75 75 140 ∞ 835.26 863.99 3.4% 0.26 

3_100 100 200 ∞ 826.14 844.96 2.3% 0.77 

4_150 150 200 ∞ 1028.42 1064.97 3.6% 2.62 

5_199 199 200 ∞ 1291.29 1367.26 5.9% 6.01 

 

Table 3.4-8 Christofides et al. results from the iterative procedure method using the anticlockwise sweep initial solution 

Name 

Customer 

Capacity 

Max 

Route 

Length 

BKS Objective 

% 

Deviation 

from BKS 

CPU time 

(s) Size 

1_50 50 160 ∞ 524.61 551.53 5.1% 0.10 

2_75 75 140 ∞ 835.26 857.53 2.7% 0.20 

3_100 100 200 ∞ 826.14 847.72 2.6% 0.65 

4_150 150 200 ∞ 1028.42 1072.35 4.3% 1.74 

5_199 199 200 ∞ 1291.29 1372.10 6.3% 6.03 

 

Table 3.4-9 Christofides et al. results from the iterative procedure method using the clockwise sweep initial solution 

Name 

Customer 

Capacity 

Max 

Route 

Length 

BKS Objective 

% 

Deviation 

from BKS 

CPU time 

(s) Size 

1_50 50 160 ∞ 524.61 547.86 4.4% 0.14 

2_75 75 140 ∞ 835.26 865.13 3.6% 0.20 

3_100 100 200 ∞ 826.14 845.72 2.4% 0.70 

4_150 150 200 ∞ 1028.42 1074.01 4.4% 2.04 

5_199 199 200 ∞ 1291.29 1383.12  7.1% 6.21 
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Table 3.4-10 Christofides et al. results from the cyclic procedure method using the Clarke and Wright initial solution 

Name 
Customer 

Capacity 

Max 

Route 

Length 

BKS Objective 

% 

Deviation 

from BKS 

CPU time 

(s) 

Size 

1_50 50 160 ∞ 524.61 529.976 1.0% 0.41 

2_75 75 140 ∞ 835.26 851.215 1.9% 0.66 

3_100 100 200 ∞ 826.14 838.532 1.5% 0.98 

4_150 150 200 ∞ 1028.42 1075.54 4.6% 3.10 

5_199 199 200 ∞ 1291.29 1369.57 6.1% 9.41 

 

The results shown in Tables 3.4-6, 3.4-7 and 3.4-10 are when the local search improvement 

moves are performed using the cyclic improvement method. On average this cyclic improvement 

method performed 0.5% better than the iterative method shown in Tables 3.4-8 and 3.4-9 with 

lower computational times.  Overall the best results occurred when the Clarke and Wright initial 

solution was combined with the cyclic method, these results showed an average of 1% and 1.2% 

improvement over the Sweep initial solutions with Cyclic method and with Iterative method 

respectively. We believe this is due to the better initial solutions generated using the Savings 

algorithm over sweep. The solutions values provide better results for specific instances rather 

than an overall change with the majority of improvement over the sweep results occurring in 

smaller instances. With the larger problems from the Christofides et al. datasets (150+ customers) 

better quality solutions were found with the Sweep clockwise initial solution combined with the 

cyclic method. Computational running times for both the iterative and the cyclic methods using 

Sweep as an initial starting solution were significantly lower when compared to the Clarke and 

Wright with the cyclic method.  

     Table 3.4-10 shows the results of the Clarke and wright savings heuristic when the cyclic 

improvement method is used. The results achieved here are the best in terms of solution quality 
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of the 5 methods, with the exception to instances 4_150 and 5_199. A slight increase in time was 

seen although this is minor. Our results again demonstrate the ability of the Clarke and Wright 

method with good quality solutions in a reasonable amount of time. 

     Research on the development of heuristics of the VRP has been heavily covered within 

literature although it is not known to the best of our knowledge of a study which analyses the 

effect that varying the capacity constraint has on the solution value. The most powerful method 

proposed here performed well in small and medium instances (<200 customers) solving the 

problem close to the best-known solutions. The change in capacity helped improve the solution 

quality although the increase in computational time running up to 80 iterations (80% reduction 

in capacity constraint in 1% steps) is costly. The CPU times on the whole are very fast with small 

and medium instances, however in larger sized problems (>250 customers) the algorithms lose 

solution quality. Metaheuristics are suggested in order to provide better quality solutions in a 

more reasonable time. By varying the initial neighbourhoods this method is comparable to that 

of the VNS. Utilising the same local search functions as the VNS, however instead of the shaking 

method we instead reduce the capacity constraint of the problem forcing the algorithm to 

produce a new neighbourhood. This additional capacity constraint is then relaxed for the local 

searches allowing additional local search moves escaping local minima’s in terms of solutions. 

The VNS was chosen due to its power and ability to generate numerous neighbourhoods quickly 

and efficiently. These traits suit the platooning problem that is discussed in the next chapter as it 

allows more potential platoons to be formed. The VNS algorithm that was used in this thesis is 

presented below and also is presented in Psuedocode for ease of reading in Appendix 2.   
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1. Set up starting parameters and matrices setting the current best to the initial solution 
– VNS and local matrix = initial matrix. 
 

2. Set a counter to 0 e.g k=0 and create a loop where k=k+1 
 
3. Setting the global improvement factor to false, if a local search routine improves the 

current solution then set this global improvement to positive and update the best 
global matrix to the best solution. Continue until no global improvement is achieved 
once all local searches have been completed. 

 
4. Run local searches including shift (2-0), two-opt and three-opt, insert (1-0) and (2-1) 

and swap (1-1) and (2-2), each improvement that is found and made update the 
VNS matrix with this new best result. 

 
5. Perform VNS shaking where a random customer from a random route will be 

inserted into a new route.  
 
6. Start the local searches again with the new starting solution and repeat local 

searches while k is less than k limit e.g k<50. 
 
7. Once k limit is reached, output the best current route matrix, perform a two opt 

and three opt and output file for graphical representation. Then calculate total CO2 
produced from result. 
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Table 3.4-11 VNS Results on the Christofides et al. benchmark datasets 

Name 
Customer 

Size 
Capacity Max Route 

Length 

BKS VNS 

Objective 

% 

Deviation 

from BKS 

CPU time 

(s) 

1_50 50 160 ∞ 524.61 527.029     0.5 

 

1.79 

2_75 75 140 ∞ 835.26 845.294 1.2 5.97 

3_100 100 200 ∞ 826.14 839.488 1.6 13.49 

4_150 150 200 ∞ 1028.42 1061.91 3.3 135 

5_199 199 200 ∞ 1291.29 1344.16 4.1 242 

6_50 50 160 200 555.43 569.243 2.5 2.97 

7_75 75 140 160 909.68 1044.66 14.8 7.0 

8_100 100 200 230 865.94 923.84 6.7 20.3 

9_150 150 200 200 1162.55 1290.43 11.0 127 

10_199 199 200 200 1395.85 1501.5 7.6 91.0 

11_120 120 200 ∞ 1042.11 1050.4 0.8 45.6 

12_100 100 200 ∞ 819.56 821.52 0.2 18.4 

 

Table 3.4-11 shows the computational results for the Christofides et al. benchmark datasets 

when implementing the VNS. The model uses a basic variable neighbourhood search 

algorithm with a stopping procedure. The results shown in Table 3.4-11 provide accurate 

solutions close to the best-known solutions within literature however they have a fairly long 

computational time. This computational time was on average 50 times that of the results shown 

in Tables 3.4-6 - 3.4-10 where a no shaking occurred, or, in this instance no capacity change at 

the end of each iteration The VNS based heuristic was used to find a reasonable feasible solution 

to the CVRP and has shown that it is working correctly although not as efficiently as expected. 

It is suspected that the VNS shaking method is not shaking the neighbourhood enough and 

allowing the result to drop back into its local optimum. In future research this is advised to be 

investigated further with stricter capacity changes to further shake the neighbourhoods. 
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3.4.3 CO2 Calculation and Experiment 

Once a good quality solution has been found the emissions are calculated. This provides the user 

a base level on which to improve upon. This step is added to provide the reader with insights 

into how the VRP is used to improve the efficiency of routing with real world effects. The aim is 

to identify the environmental impact of each solution using emission values. In order to see the 

impact that each of these solutions have on the environment, the results need to be converted to 

be able to produce a CO2 value. The CO2 calculation takes into consideration the load of each 

arc of the solution. This step is also crucial when identifying the benefits platooning can bring to 

a road transport system. As fuel consumption is directly related to CO2 produced this is calculated 

accurately and then converted into a final CO2 value. Platooning due to its nature may increase 

the distance of the solution model, however the CO2 may decrease to increased fuel economy. 

It is therefore important that an accurate emissions model is created to help identify the benefits 

platooning can produce. The following experiment was conducted over the period of Covid-19 

as such, the limited access and the time constraints meant that the data was not able to be used 

within the models of this thesis. The results from this experiment now provide valuable data for 

the reader and future researchers, improving the accuracy of consumption models within routing.  

In order to accurately calculate the CO2 of a vehicle while travelling along each route 

then real-life data on how vehicles react to speed, gradient and load needs to be taken into 

account. Based on common knowledge of vehicle mechanics, various forces can be calculated 

for vehicles with changing speeds, road gradients and load. These forces can then be simulated 

on a chassis dynometer, the vehicles fuel consumption is then outputted providing accurate data 

for researchers to then feed into their models to improve consumption modelling. The 

experiment begins with a few assumptions and calculations. Three vehicles were tested the first 

a 2016 Vauxhall Combo van, for the sake of this experiment this is considered a small van. The 
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engine in this particular model is a 1.6l inline 4-cylinder diesel engine producing 104bhp. The 

van has a mass of 1410kg a frontal area (𝐴2) of 2.58m2 and a drag coefficient (𝑐0) of 0.35 (The 

Engineering Toolbox 2021). The second van was a 2016 Citroen Dispatch, this is considered a 

medium van for our experiment. The engine is a 1.6l inline 4-cylinder diesel engine producing 

94bhp. The van has a mass of 1900kg, 𝐴2 of 4.3m2 and a 𝑐0 of 0.35. The last vehicle tested was 

a 2018 LWB Peugeot Boxer Van considered a large van with a 2.0l inline 4 cylinder diesel engine 

producing 128bhp. The Boxer van has a mass of 2060kg, 𝐴2 of 4.6m2 and a 𝑐0 of 0.4. The rolling 

resistance constant 𝑓34 is constant for all the vans due to the similar tyres and road surface and is 

considered to be 0.015. Data can be found at The Engineering Toolbox (2021). A set of speeds 

was chosen to best simulate real speeds achieved when driving on UK roads, with speeds over 

the national speed limit included to provide the reader with a deeper understanding of the effect 

speed has on fuel consumption. The speeds begin at 16km/h and continue in 16km/h increments 

up to a maximum of 128km/h. The chosen gradients were 0o, 1o, 2o and 5o, these gradients were 

chosen to provide a good range of gradients that are found in real-life, for the sake of this 

experiment we only considered either flat ground or inclined, in future research it would also be 

possible to conduct this experiment with negative gradients. Four loads were simulated, no load, 

100kg, 200kg and 500kg. These loads were chosen for the experiment as it is a reasonable 

amount of weight to be transported in all of the vehicle types tested. Using the data and the 

assumptions we have made we can calculate the required resistive force for the vehicle to achieve 

its target speed. We start by identifying what these resistive forces are for each vehicle. The 

instantaneous power of a vehicle is determined by vehicle speed, acceleration and the gradient. 

From basic physics the required tractive effort for all vehicles can be described using three major 

resistances: 

𝐹 = 𝑚𝑎 +	𝑅5 	+ 	𝑅34 	+ 	𝑅6      (1) 
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Where 𝐹 is the tractive effort (in N), 𝑚 is the vehicle mass (in kg), 𝑎 is the acceleration (in m/s2) 

and 𝑅5 , 𝑅34 and 𝑅6 are the aerodynamic, rolling and grade resistances respectively (in N). 𝑅5 , 𝑅34 

and 𝑅6 can be calculated in the following equations: 

f
𝑅5 = 𝑘𝑣* =	 7

*
𝐶8𝐴2𝑣*

𝑅34 =	𝑓34𝑚𝑔
𝑅6 = 𝑚𝑔𝑠𝑖𝑛𝜃

     (2) 

Where 𝑘 is the aerodynamic resistance constant, determined by air density 𝜌 (in kg/m3), 

coefficient of drag is 𝐶8 and the frontal area of the vehicle is given by 𝐴2 (in m2). 𝑓34 is the rolling 

resistance constant and 𝑔 is the acceleration of gravity (𝑔 = 9.81 m/s2). Combining Equations (1) 

and (2) above provides: 

𝐹 = 𝑚𝑎 + 	𝑘𝑣* +	𝑓34𝑚𝑔 + 	𝑚𝑔𝑠𝑖𝑛𝜃   (3) 

For our experiment the vehicles were held at steady velocities and force while the fuel 

consumption was measured. Therefore, the acceleration is zero. The constants 𝜌 and 𝑔 have 

values 1.23kg/m3 and 9.81 m/s2 respectively. Using the chassis dynometer we can output the force 

the vehicle exerts on the dyno and match it with our calculated values while measuring the 

equivalent MPG. Figure shows the chassis dynometer in use, a Maha MSR500. The vehicle is 

strapped down in place and is driven as normal on the rollers. The chassis dynometer provides 

a safe and consistent testing bed ideal for simulating roads.  

Figure .3.4.12 The Maha MSR500 Chassis Dynometer in use. 
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Using this method, we can simulate various loads with the associated change in fuel consumption. 

The full results can be found in Appendix 4, here all the simulated forces can be seen along with 

the measured MPG’s. Please note that within these results some of the MPG values have a ## 

symbol, this is to denote when the vehicle failed to achieve the require target force. For ease of 

viewing, figures 3.4.13 and 3.4.14 provide a graphical representation of the results in the two 

most extreme cases of a small van with no load and with 500kg of load respectively. 

 

 

0

10

20

30

40

50

60

0 16 32 48 64 80 97 113 129

M
P

G

Speed (km/h)

MPG for various Speeds and Gradients - Small Van with No Load

0˚

1˚

2˚

5˚

0

5

10

15

20

25

30

35

40

45

0 16 32 48 64 80 97 113 129

M
P

G

Speed (km/h)

MPG for various Speeds and Gradients - Small Van with 500kg Load

0˚

1˚

2˚

Figure 3.4.13 Graph displaying the associated MPG for a given gradient and speed of a small van with no load. 

Figure 3.4.14 Graph displaying the associated MPG for a given gradient and speed of a small van with 500kg load. 
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The figures clearly show the drop in MPG and the increase in fuel consumption. A drop of 

15MPG can be seen at 64km/h with no gradient when comparing the no load to 500kg. The 

small van shown in these figures generally improves MPG as speed increases up until 80km/h 

after which time the MPG increases. This is due to the increase in aerodynamic resistance, getting 

exponentially larger as speed increases. The change of load in the vehicles also alters these ideal 

speeds, it can be seen that at heavy loads a slower speed is preferable as gradient increases. 

Due to time constraints the algorithms used in this thesis did not include the CO2 

experiment data found. Instead, several assumptions were made when calculating the initial CO2 

value in the instances shown in this thesis. Although, the CO2 experiment conducted above was 

not conducted in vain. It is hoped to add additional knowledge to research aiding and providing 

future research the critical data to improve accuracy when calculating fuel economy and 

ultimately emissions when developing routing algorithms. The first assumption was a constant 

average speed along each of the routes 50mph, a constant flat gradient, an empty vehicle weight 

of 2200kg. While the vehicle was empty and meeting the first two assumptions the miles per 

gallon of the empty vehicle was 25mpg during testing. The vehicle tested was a Mercedes Vito as 

seen in figure 3.4.12 Similar to the CO2 experiment conducted the real-life tests were performed 

in a closed environment on a rolling road. Using the force equation above, calculating the 

required force for our assumptions i.e to maintain a constant 50mph at zero gradient with our 

relevant vehicles frontal area, drag and rolling resistances we can calculate the required force for 

varying weights of the vehicle. Again, using the chassis dynometer a constant force is held on the 

rollers allowing us to read the vehicles outputted mpg through the vehicles instrument cluster 

and then alter this force for the next simulated weight.  This provides a mpg value to be calculated 

for different theoretical vehicle loads. The values that were created at a speed of 50mph and the 

values achieved are shown in Table 3.4-12. 
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Table 3.4-12. Results produced after testing a Mercedes Vito Van in a closed testing facility using a rolling road. 

Simulated Vehicle Load (kg) MPG 

2400 24.5 

2600 23.5 

2800 22.5 

3000 21.5 

 

These values for MPG and load follow a linear pattern, for the following calculations we assume 

this to be the case at higher and lower vehicle loads. We can then use linear regression to create 

a regression equation to be applied within the model to generate estimated values of MPG using 

varying loads of vehicles. The linear regression equation to calculate MPG used in the algorithm 

is as follows: 

𝑀𝑃𝐺 = (−0.005 ∗ (𝑉𝑒ℎ𝑖𝑐𝑙𝑒	𝑊𝑒𝑖𝑔ℎ𝑡 + (𝑇𝑜𝑡𝑎𝑙	𝐿𝑜𝑎𝑑)) + 36.5  (4) 

 

The value of -0.005 represents the gradient of the linear regression equation and 36.5 is error 

term and not directly observed. Once the best solutions were found, the CO2 calculation was 

then implemented. Starting with the first route the first customer is selected and the MPG is 

calculated using equation 4 and also equation 5 below to calculate the load of goods on the 

vehicle. 

𝑤"9 	= 	 (𝑞$	–	∑ 𝑞!9
!%& )    (5) 

Where 𝑤"9 is the weight of the vehicle’s 𝑗 load after having visited the first 𝑚 customers,	𝑛 is the 

total number of nodes/customers along route 𝑗,𝑞$is the total load for all nodes/customers and 𝑞! 

is the load for node/customer 𝑖. Effectively the vehicles load equates to the total tour demand 

minus the total demand that has been served to customers on that route. The calculated MPG’s 

were assigned to their respective routes enabling the amount of fuel used in Gallons per arc of 

each route to be calculated.  
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Figure 3.4.15. A Vehicle Route with customer's goods being unloaded at the respective location. 

Figure 3.4-15. demonstrates a section of a vehicle’s route traversing several arcs between 

customers. Travelling from customer 1 to customer 2 the vehicle is heavily loaded (shown in red) 

during this section of the route the vehicle will have its worst fuel efficiency, and the lowest MPG. 

The next section of the route from customer 2 to customer 3 will have slightly better fuel 

efficiency as the vehicle has unloaded some of its goods to customer 2, and evidently an increase 

in MPG will be achieved. Once the MPG of each arc of the route is known then it is a simple 

case of multiplying the length of each arc with its relevant MPG, in order to find the arcs fuel 

usage in gallons. Summing all the arcs together provides the total fuel consumption of the vehicles 

route. Using data from the US energy administration (2016) it can be assumed that 10.172kg of 

CO2 is produced per Gallon of Diesel burned. Using this information, the total fuel used is 

converted into total CO2 produced. When calculated, the amount of CO2 produced for the 

optimal Anticlockwise Sweep solution generated when testing (figure 3.4-8) amounted 153.059kg 

and the Clockwise solution produced 156.416kg of CO2. This emissions calculation is now taken 
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further and applied within the platooning model directly and can be adapted to include speed as 

a function as an extension.  

 

3.4.4 Basic Platooning model 

Step 4 is when we employ our platooning algorithm. Our basic platoon model is tested on the 

current solution and if the emissions of the new platoon route is less than that of step 3 it is 

accepted. This basic method strictly allows splitting points at current customer locations only. In 

the following instances we consider only the first arcs of each route in these instances for 

simplicity. Although, there is no reason why this model cannot be extended further to include 

more platooning options at other points along a vehicles route.  

 
Step 4 of our Platooning Algorithm can be further broken down as follows: 

 

• Look for common routes to merge using the initial arcs of each of the routes from the 

VRP solution. 

• Find two routes to merge based on their customer distances. 

• Find a good splitting point 𝑥. 

• Calculate new distance from depot to 𝑥 and from 𝑥 to each respective next customer for 

both vehicles. 

• Starting with the common arc (depot to 𝑥), choose lead and tow vehicle, lead receives 6% 

reduction in fuel consumption, tow receives a 21% in fuel consumption reduction. 

Choice is based from largest savings on MPG calculation for that arc prior. 

• Calculate new CO2 levels for new routes and accept if better. 
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In order for platooning to initiate we must first decide which two routes to merge. This is the 

second step in our platooning algorithm and can be formulated in several ways. The first 

technique we will cover is the nearest customer method. Based around the nearest neighbour 

initial method, pairs of initial customers are created based on their nearest neighbour. Once the 

list has been completed, they are then ranked according to their distance apart from one another. 

The smallest distance between the pair of initial customers is ranked highest with the largest 

distance ranked lowest. Once this list has been created and stored the platooning algorithm starts 

with the highest ranked pairing and begins identifying the splitting point. In our basic platooning 

method this is at one of the customer pair locations.  

 

The example shown in the following section is taken from the Christofides_21 dataset where the 

Basic Platooning algorithm is applied to the VNS algorithm. Figure 3,4,17 shows the optimised 

Figure 3.4.16 Initial Platooning with triangle creation 
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routes from the VNS solution including the reversed routes, this solution is also the optimal 

solution in terms of distance found within literature. 

 

In this instance only the first customers of each route are being altered and considered for 

platooning. The initial customers of each of the routes can be seen in Figure 3.4-14 and are 

denoted by “1” of the relevant routes. The distances, average MPG per arc, fuel consumption 

and the CO2 are provided in table 3.4-13: 

Table 3.4-13. Emissions data for the optimal distance solution 

Route Number 

Initial Arcs 

(customer number) 

Distance 

(miles) 

Average Miles per 

Gallon Fuel (Gallons) Co2 (kg) 

Route 1 0-9 27.7 23 1.204 12.247088 

Route 2 0-13 16 24 0.667 6.78126552 

Route 3 0-12 11.2 24 0.467 4.74686552 

Route 4 0-16 9.8 24 0.408 4.15353276 

Total/Average MPG 64.7 23.75 2.746 27.9287518 

Figure 3.4.17. Optimal solution of the Christofides dataset with 21 customers. 
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The first case that is assumed, is that the platoons must visit a customer location, i.e. The vehicle 

on route 1 must visit customer location 1 from route 3. In this instance the vehicles are allowed 

to visit other customer locations however they are still fixed to the customer location coordinates, 

and so this method will be referred to as the Fixed Customer Platooning approach. In table 3.4-

13 only the initial arcs are shown for each route, with the customer number of the depot and first 

customer showing. This fixed positioning of the split points has real world applicability as delivery 

vehicles can platoon up to the point of delivery. The customer at which the vehicles split was 

chosen as the nearest customer to the depot of the two routes that can be feasibly connected. 

Figure 3.4.18. Shows the new routes being created. Vehicle 1 from Route 1 is in platoon with 

Vehicle 3 from Route 3, these vehicles 

split at the first customer from Route 3 and continue with their customer deliveries. Vehicle 2 

from Route 2 platoons with Vehicle 4 from Route 4 until they reach the first customer for vehicle 

4. The new distance of each route is calculated, as is the new MPG. The MPG now must take 

into consideration the fuel saving benefits vehicles gain via platooning. In this study, as mentioned 

previously the benefit for a lead vehicle (front of the platoon) is 5% and the tow vehicle (the 

vehicle following the lead vehicle) is 20%. These values do vary according to speed, however at 

Figure 3.4.18. Fixed customer Platooning result 
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the average speed of 50mph these values provide accurate representation of the real world. The 

result from the platooning can be seen in Table 3.4-14. 

 

Table 3.4-14. Emissions data for the fixed customer platooning 

Platooning 

Route 

Number 

Initial Arcs 

(customer 

number) 

Distance 

(miles) 

Average Miles 

per Gallon Fuel (Gallons) Co2 (kg) 

(towed) Route 1 0-12-9 31.2 24.65 1.266 12.87490467 

(towed) Route 2 0-16-13 24.2 25.94 0.933 9.489683886 

(lead) Route 3 0-12 11.2 25.2 0.444 4.520888889 

(lead) Route 4 0-16 9.8 25.2 0.389 3.955777778 

 
Total/Average MPG 76.4 25.2475 3.026 30.78090108 

 

When comparing the information from Table 3.4-13 and Table 3.4-14, the overall distance for 

all of the routes to reach their respective first customers increases by 18%. However, the average 

MPG only slightly increase each route. This is a result of the platooning that occurs on the first 

leg of each vehicles routes. Vehicles 3 and 4 do not vary their routes but gain an average of 1.2 

MPG resulting in a 5% fuel saving, this is because of the platooning where they received a 5% 

benefit from decreased drag by towing a vehicle. Vehicles 1 and 2 increase their arc distance by 

12.6% and 51% respectively but increase their average MPG by 7% and 8% respectively. The 

massive increase in distance for vehicle 2 in route 2 out ways the gains from the platooning tow 

unfortunately and as a result emits 40% more CO2 than Route 2 in the shortest path solution. 

With first customers that are closer together or lie on the same tangent, vehicles deviate less from 

their original arc. With customers, closer together the effect of platooning is increased. In this 

example vehicle 1 increases its arc distance by 12.6% however the overall CO2 output is just 5%. 

In this example, the number of customers is not sufficient to make Fixed Customer Platooning 
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viable, it is hoped that with problems featuring customers in denser locations the benefits will be 

increased.  

 

3.5 Results and Analysis 

Using the basic platooning method, the results achieved are displayed in Table 3.5-1. 

Table 3.5-1 Basic Platooning results 

Name BKS 

VNS Platooning VNS Platooning 
Percentage 

Route Route Emissions Emissions Difference of 

Length Length     Emissions 

1_50 524.61 527.029 595.555 217.274 226.823 4% 

2_75 835.26 845.294 936.263 340.916 353.035 4% 

3_100 826.14 839.488 971.118 343.567 367.94 7% 

4_150 1028.42 1061.91 1178.1 427.178 445.794 4% 

5_199 1291.29 1344.16 1402.73 526.467 532.208 1% 

11_120 1042.11 1050.4 1167.91 404.484 438.262 8% 

12_100 819.56 821.52 861.293 316.109 323.778 2% 

 

Table 3.5-1 shows the basic platoon model results when forcing the Platooning option for 

multiple pairs of routes. The forced platooning method proved to be detrimental and several 

routes were merged which caused large increases in route length resulting in increasing emissions. 

It is suggested that the Platooning options should be only used if they provide a benefit to the 

specific pair of routes. Potential extensions to such a problem include relaxing the strict 

platooning option and also relaxing the fixed splitting point on the customers. For the instances 

tested basic platooning is not recommended, further testing with different datasets is advised. 
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3.6 Summary 

Through this chapter we have developed a model from the CVRP with basic heuristic methods 

and finished with our basic Platooning model. Of the initial methods tested we have shown that 

the Clarke and Wright method is superior for instances less than 199 in size due to the better 

solutions with acceptable computational times. A mention should be given to the improved 

sweep method and the introduction of capacity changes. When introducing different capacity 

constraints at the start of the algorithm and then relaxing them later, improvements can be 

achieved in the final solution. The MPG calculation that is implemented allows our algorithm to 

check each arc and improve the fuel consumption upon its next iteration. MPG calculations 

provide a real insight into the emissions created and should be used in the majority of VRP’s. 

Our Basic Platooning model has shown success on some routes although the majority of routes 

within the instances tested showed an increase in fuel consumption due to the overall increase in 

distance travelled. While this may be considered a failure, the instances are all calculated with 

Euclidean distances. In real world scenarios, vehicles traverse across the same major routes as 

shown in the example at the start of this Chapter. Platooning can provide real benefits when used 

in real life circumstances. In order to improve on the platooning solution, the vehicles must only 

travel the extra distance if this is to be negated by the reduction in drag force they experience 

when leading or in tow of the Platoon. The next chapter looks at improving this splitting point in 

the hope of providing improved results and further reductions in emissions.  
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 Chapter 4  

4 Advanced Platooning Modelling 

 

Although in certain instances the basic platoon model can generate benefits in terms of CO2 

emissions there is scope for improvement. This Chapter extends the model presented at the end 

of Chapter 3 with several additional variants. Classical vehicle routing is limited by the customer 

location, in terms of datasets you are fixed to those coordinates of the customers. In the real 

world the road network multiple route options are available and often the majority of the same 

road is traversed to reach different customers. We begin by introducing more complex 

algorithms based around the splitting point. By creating a new dummy location to act as a splitting 

point for the platoon more efficiency can be obtained within the optimisation. The addition of 

this splitting point bares much resemblance to the real world whereby road features such as 

junctions, roundabouts and service areas can be used as splitting points. Using the techniques 

discussed within this chapter future researchers can use real locations, and splitting points can be 

optimised for real perspective logistic companies.  

 

4.1 Improvement from Basic Platooning Model 

In the following sections we highlight potential areas where the basic Platooning Algorithm 

discussed in Chapter 3 can be improved upon. We begin with Reversing of Routes optimising 

the result before the Platooning Model is applied. This improvement implicates our platooning 

model by having to provide better solutions. We then introduce new methods for identifying the 

critical splitting point. 
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4.1.1 Implications of Reversing Routes 

To see the full potential of the advanced method we first implement a reversing routes post 

optimiser. This further reduces emissions from our VNS solution further. To properly analyse 

the effect of platooning the we aim to have efficient routes to begin with. The majority of research 

on the VRP aims at reducing the overall distance. Reversing routes although may not have any 

impact on the overall distance, still can have an influence on emissions, it is for this reason it is 

often overlooked. The reader is now referred to Figure 2.1.1, the simple demonstration shows 

how short arcs with full loads are preferred over short arcs with light loads; due to the reduction 

in MPG when carrying a lighter load on the longer arcs. By implementing the CO2 calculation 

discussed in Chapter 3 Section 4.3 we can evaluate how the MPG changes for each arc of each 

respective route. Once the emissions solution from the CO2 calculation is the reversing of each 

route is attempted and a new CO2 value for the route is calculated if a better emissions result is 

found the reversed route is saved. This method similar to Lin’s 2-Opt takes the whole route and 

reverses it, i.e Route 0-1-2-3-4-0 will become Route 0-4-3-2-1-0 where 0 denotes a depot and the 

numbers refer to individual customers. The results are generated using our VNS solution for 

the Christofides et al dataset with 21 customers are presented in Table 4.1-1. The table 

highlights the solution before and after reversing the routes. It can be seen that routes 1 and 4 

have been reversed and as such have saved 1.878 kg of CO2. With routes 2 and 3 no savings 

were achieved and so the routes we not reversed. The savings achieved on this dataset equates 

to a 1.2% fuel saving. When implemented on larger scale problems the resulting emission 

savings are significant. This post optimiser although incredibly simple can provide sizeable 

benefits when it comes to emissions. With growing CO2 concerns it is vital that current models’ 

factor in an MPG calculation to provide accurate CO2 model. 
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Table 4.1-1 Effectiveness of the reverse routes post-optimiser 

ORIGINAL BEST ROUTE BEST WITH REVERSE ROUTE 

Route 1 -> 0-6-1-2-5-7-9-0- 

Total Distance : 112.17 

Gallons Used in Route 1 - 4.5795 

CO2 - 46.5827 

Route 1 -> 0-9-7-5-2-1-6-0- 

Total Distance : 112.17 

Gallons Used in Route 1 - 4.50395 

CO2 - 45.8142 

Route 2 -> 0-13-11-4-3-8-10-0- 

Total Distance : 102.581 

Gallons Used in Route 2 - 4.0553 

CO2 - 41.2505 

Route 2 -> 0-13-11-4-3-8-10-0- 

Total Distance : 102.581 

Gallons Used in route 1 - 4.0553 

CO2 - 41.2505 

Route 3 -> 0-12-15-18-20-17-0- 

Total Distance : 83.668 

Gallons Used in Route 3 - 3.3155 

CO2 - 33.7253 

Route 3 -> 0-12-15-18-20-17-0- 

Total Distance : 83.668 

Gallons Used in Route 2 - 3.3155 

CO2 - 33.7253 

Route 4 -> 0-14-21-19-16-0- 

Total Distance : 76.861 

Gallons Used in Route 4 - 3.09674 

CO2 - 31.5001 

Route 4 -> 0-16-19-21-14-0- 

Total Distance : 76.861 

Gallons Used in Route 3 - 2.98776 

CO2 - 30.3915 

TOTAL DISTANCE : 375.28 

TOTAL DEMAND   : 22500 

SPACE AVAILABLE : 1500 

TIGHTNESS : 93.33% 

TOTAL CO2 PRODUCED : 153.059kg 

TOTAL DISTANCE : 375.28 

TOTAL DEMAND   : 22500 

SPACE AVAILABLE : 1500 

TIGHTNESS : 93.33% 

TOTAL CO2 PRODUCED : 151.181kg 

 

Throughout this thesis we have used mainly conventional VRP techniques to improve the 

efficiency of the routes, we now employ our advanced platooning model to try and further 

improve upon these routes. 
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4.1.2 Improved Platoon Route Pairing 

Following on from the initial route paring discussed in Chapter 3 section 3.4, we now introduce 

an improved pairing technique. This method calculates the angle between two initial customers 

of two different routes and the depot. Figure 4.1.1 demonstrates the importance of pairing these 

initial customers so that the smallest angle is preferred. 

 

 

 

 

 

 

 

 

With a smaller angle between customers a smaller deviation is needed from the original routes 

resulting in larger savings. In Figure 4.1.1 first customers for routes a and b denoted as 1a and 

1b respectively, have a large angle between them when starting from the depot shown in blue. 

This therefore is not an efficient pairing for a platoon, due to the extra distance that is needed to 

travel arising from the deviation to the splitting point. First customers for routes c and d denoted 

as 1c and 1 d respectively, have a very tight angle from the depot. This is favoured when pairing 

as a small deviation is needed and the platooning benefit is maximised. The pairing algorithm is 

similar to the sweep technique covered in Chapter 3 for creating the initial routes, however in 

our case we only consider the first customers of a route (or last customers if the route is reversed). 

Platoon parings are created as a sweep occurs from a set starting point with the depot as origin, 

Figure 4.1.1 Zoomed in Solution to a VRP 

1a 

1b 

1c 

1d 
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this starting point is initially taken to be the first customer of the first route. Once the sweep has 

been completed the list of angles between the first customers of the routes and the depot are 

ordered so that the smallest angles are ranked highest. When creating splitting points, the initial 

customers from the two routes that are ranked highest are calculated first as these have the highest 

chance of producing beneficial platoons. Using this improved platoon route pairing we can 

achieve the most preferable platoons quickly and efficiently that creates a good starting point for 

our platooning algorithm. 

 

4.1.3 Lateral Shift Split Point 

The point at which vehicles split is critical, by allowing the algorithm to alter the splitting point 

we can reduce the overall extra distance travelled due to the platooning. We begin by allowing 

the splitting point to be able to move freely along an imaginary arc between the first two customers 

of the two routes we are platooning.  
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Figure 4.1.2 shows how the platoon travels up to a split point C 𝜆 situated between the intersect 

of the first customer AB. The point at which they split can be presented using the following 

formula: 

 

𝐶𝜆 = 	𝜆𝐴 + (1 − 𝜆)𝐵   𝜆	 ∈ (0,1) 

 

When 𝜆 = 1 then the platoon will split at customer A and similarly when 𝜆 = 0 the platoon will 

split at customer B. By iteratively increasing the value of 𝜆 by small values (<0.1) we can test many 

split points along the line AB. Once multiple values of 𝜆 have been tested the best value in terms 

of emissions is chosen. The following example shown in Figure 4.1.3 was simplified to allow the 

split point to be created at the midpoint of the first two customers on the platooning routes. The 

new routes are created and the paths which the vehicles now take when the platooning can be 

seen with the dotted line.  

𝜆 

Figure 4.1.2 Moving the splitting point example 
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Letters X and Y identify where the split points occur. These were calculated by taking the 

midpoint of the first two customers of the platoon route candidates in this instance i.e When 

𝜆 = 0.5. Table 4.1.2 shows the results platooning to the split point set at the midpoint and the 

routes without platooning.  

Table 4.1-2 Emissions and Fuel Usage using the Lateral Shift Split Point 

Platooning Route 
Number 

Arc 
(customer 
number) 

Distance 
(miles) 

Average Miles 
per Gallon 

Fuel (Gallons) Co2 (kg) 

(towed) Route 1 0-x-9 28.630 25.970 1.102 11.214 

(towed) Route 2 0-y-13 18.390 26.190 0.702 7.143 

(lead) Route 3 0-x-12 28.630 24.776 1.156 11.754 

(lead) Route 4 0-y-16 18.390 24.729 0.744 7.565 

 Totals/Average MPG 94.040 25.416 3.704 37.675 

Non-
Platooning 

Route 
Number 

Arc 
(customer 
number) 

Distance 
(miles) 

Average Miles 
per Gallon 

Fuel (Gallons) Co2 (kg) 

 Route 1 0-9 27.700 23.000 1.204 12.247 

 Route 2 0-13 16.000 24.000 0.667 6.781 

 Route 3 0-12 11.200 24.000 0.467 4.747 

 Route 4 0-16 9.800 24.000 0.408 4.154 

 Totals/Average MPG 64.700 23.750 2.746 27.929 

Figure 4.1.3 Split points at the midpoint of first customers for routes 1,2,3 and 4. 
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The overall distance of the first arcs in this case increase by 45% from the original, this badly 

effects the CO2 where the platooning benefit cancel out the effect. Vehicle 1 benefits from a 

reduction of CO2 of 8.5%, this is due to the increased platooning time. Unfortunately, vehicle 3 

which formed the lead part of the same platoon experiences a large increase in emissions, largely 

down to the 250% increase in arc length. From Figure 4.1.3 the midpoint split point means that 

vehicle 3 must travel far beyond its initial customer location resulting in excess distance travelled. 

As this is the start of the journey extra distance has the greatest effect on CO2 as the MPG is 

lowest when the vehicle is loaded to its maximum. The average MPG of each route does increase, 

although as mentioned prior, the increase in route length outweighs the benefits of this MPG 

increase. This approach does not work well for scattered datasets and with more clustered dataset 

the results would improve as the angle between the first customers would be smaller resulting in 

less extra distance travelled due to the platoon. Further investigation into the creation of the 

routes and how they can be improved can be found in section 4.1.2. By allowing the splitting 

point to move along the intersect of the first customers of two routes we have reduced the excess 

distance travelled when platooning. In order to achieve better results, we now investigate this 

splitting point further by allowing the split point to move freely. 

 

4.1.4 Enhanced Split Point 

We can also take the split point one step further and try and identify the optimum splitting point. 

This would provide key insight into where platoons can split in real life instances. With services 

and junctions providing the available candidate points for splitting. The decision as to where the 

platoon splits is essential, splitting at the incorrect point can incur an increase in overall fuel use. 

Extending the previous method further we begin to move the splitting point towards the depot. 

The reader is directed to Figure 4.1.4. Once we have the optimum 𝜆 point along AB the 
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optimum splitting point will be along the line of C	𝜆-Depot. Using the same technique as before 

we iteratively test the points in small distances (In our example case of the Christofides 21  the 

iterations were 0.1 of unit length). The formulation of Figure 4.1.4 can be written in the following 

equation: 

 

𝐷𝛼 = 	𝛼𝐶 + (1 − 𝛼)𝐷𝑒𝑝𝑜𝑡   𝛼	 ∈ (0,1) 

 

When 𝛼 = 1  the platoon will split at end on the line AB at point C	𝜆, when 𝛼 = 0 the platoon 

will not form, and the split will be from the Depot. This allows the algorithm the opportunity not 

to force the platoon and only accept an improvement. Once multiple values of 𝛼 have been 

tested the best value in terms of emissions is chosen and the optimum splitting point  𝐷𝛼 is 

chosen. During testing we found 3000 values 𝛼 provided good resolution with no significant 

increase in computational time with small circumstances, with larger datasets the resolution may 

need to be reduced to maintain computational time. It should be noted that the optimum point 

will lie within a minima, i.e either side of the optimum splitting point if 𝛼 is altered by 2𝛿:
.  the 

splitting point will have worst emissions values than the values at 𝛿:. . Using this solution space 

can be reduced and the iterations using 𝜆 and 𝛼 can stop when the solution value increases, 

saving unnecessary calculations and computational time. For the sake of these examples this is 

not explored however it is a recommended avenue for future research.  
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The example that will be discussed here is the Depot-Midpoint Split where 𝜆 = 0.5	and 𝛼 =

0.5, this method creates another split point at the midpoint from the depot and the midpoint 

created in the Lateral Shift Point in section 4.1.3, (between the initial customers). Figure 4.1.5 

shows where these split points occur and are identified by X and Y. By creating the split points 

closer to the depot, the vehicles have less deviation from their original arcs resulting in a shorter 

distance than the Lateral Shift Point approach. 

𝜆 

𝛼 

Figure 4.1.4 Enhanced split point example 
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Table 4.1-3 provides the results from this example with the enhanced split point. In this example 

for simplicity it should be noted that the mid-point where 𝜆 = 0.5	and 𝛼 = 0.5 is used, potential 

further benefits can be achieved when allowing further values of 𝜆 and 𝛼. 

Table 4.1-3 Emissions and Fuel Usage using the Lateral Shift Split Point 

Platooning Route Number Arc (customer 
number) 

Distance 
(miles) 

Average Miles per 
Gallon 

Fuel (Gallons) Co2 (kg) 

(towed) Route 1 0-x-9 27.910 24.530 1.138 11.574 

(towed) Route 2 0-y-13 16.690 25.610 0.652 6.629 

(lead) Route 3 0-x-12 14.550 24.760 0.588 5.977 

(lead) Route 4 0-y-16 12.166 24.550 0.496 5.041 

  Totals/Average MPG 71.316 24.863 2.873 29.221 

Non-
Platooning 

Route Number Arc (customer 
number) 

Distance 
(miles) 

Average Miles per 
Gallon 

Fuel (Gallons) Co2 (kg) 

  Route 1 0-9 27.700 23.000 1.204 12.247 

  Route 2 0-13 16.000 24.000 0.667 6.781 

  Route 3 0-12 11.200 24.000 0.467 4.747 

  Route 4 0-16 9.800 24.000 0.408 4.154 

  Totals/Average MPG 64.700 23.750 2.746 27.929 

 

 

Figure 4.1.5. Depot-Midpoint split point 
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The overall distance for the initial arcs from this approach are approximately 10% longer than 

the optimal shortest route solution, however the resulting CO2 is only increased by 4.6%. 

Vehicles 1 and 2 both see a reduction in fuel consumption and CO2 emissions. This is because 

the routes only increase by a relatively small amount and the vehicles both receive the towing 

benefits from platooning. With further optimisation of the split point with multiple values of  𝜆 

and 𝛼 improvements for all vehicles can be achieved, this can have a large effect on the overall 

CO2 as demonstrated in the last two approaches. Further modelling with more datasets with 

differing characteristics is suggested as future research, with the hope of identifying which 

variation of dataset i.e cluster/scatter/radial responds best to platooning. 

      

Figure 4.1.6. Graphical representation of the start of two initial routes (not to scale) 

 

In order to provide the reader with a visual representation of the effects moving the splitting point 

(providing multiple values of  𝜆 and 𝛼) we investigate bilinear interpolation to locate the minima 

of platooning examples with varying angles between the first customers and the depots. Bilinear 

interpolation is an extension of linear interpolation and is used here to interpolate two functions 

of  𝜆 and 𝛼. 
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Figure 4.1.6 shows another example case that will be used throughout the remainder of this 

section as we believe it best represents the effects of the enhanced split point. The Depot (𝐷) is 

positioned at the coordinates (3,0), customers A and B are the first customers for vehicle 1 and 

vehicle 2 respectively. 

     Using the distance formula derived from the Pythagorean Theorem one is able to find the 

distance between two points (𝑥&, 𝑦&) and (𝑥*, 𝑦*), this formula is shown the equation below. 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑡𝑤𝑜	𝑝𝑜𝑖𝑛𝑡𝑠 = t(𝑥& − 𝑥*)* + (𝑦& − 𝑦*)*	 

 

Vehicle 1 departs the depot and travels to its first customer, A, a total distance of √20, Vehicle 

2 departs the depot and travels to its first customer, B, a total distance of √29. The combined 

distance equates to ≈ 9.857. Take this distance to be 𝐿;<2=3<. 

 

Figure 4.1.7. Example Platoon point inserted. (not to scale) 

The point at which the vehicles split from the platoon is shown in Figure 4.1.7 by X. From 𝐷 to 

the point X both vehicles gain their respective platooning benefit, and after continuing onto their 
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respective customers. The position of this point is very important to the benefit of the Platoon 

procedure. Considering both vehicles traverse the same platooning arc together one can 

therefore use the average benefit of both vehicles for each route/vehicle, i.e each route will equate 

to  

𝐿𝑒𝑎𝑑(0.96) + 𝑇𝑜𝑤	𝐵𝑒𝑛𝑒𝑓𝑖𝑡(0.79)
2 + 𝑋𝐴	𝑜𝑟	𝑋𝐵 

 

𝐷𝑋𝐴 and 𝐷𝑋𝐵 can be thought of two individual triangles. Therefore, the problem can be defined 

as: is the added distance of traversing along 2𝐷𝑋(0.875) + 𝑋𝐴 + 𝑋𝐵	more economical than 

travelling across the hypotenuse 𝐷𝐴 + 𝐷𝐵. In order to maximise the efficiency of the 

optimisation boundaries/constraints need to be in place to reduce the size of the search space. 

Examples of various scenarios were created in order to determine where these boundaries are 

and when they are influential. 

 

 

Figure 4.1.8.Bilinear Interpolation identifying benefit points (shown in red) to be considered when splitting from the Platoon 
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Figure 4.1.8 displays a bilinear interpolation for the potential splitting points of the platoon. A 

and B represent the first customers of two routes, the depot is denoted by D. In this instance the 

solution space was limited to within the triangle 𝐷𝐴𝐵, as it was hypothesised from our previous 

investigation that outside this region there would significant additional distance traversed, and 

this would be too costly. The region highlighted in red are points at which the platoon split should 

be placed, when the platoon splits within this region the fuel consumption of the problem is 

reduced overall. It must be noted that the benefit is only achieved in a small area of the available 

search space for this example. If the platoon was split within the yellow or green area no emission 

benefit from platooning would be achieved. This area is highly effected by the angle of 𝐴𝐷|𝐵. 

     As mentioned previously the angle at which the first customers of the two routes being formed 

into the platoon of great importance.  Further investigation as to how the angle 𝐴𝐷|𝐵 effects the 

Bilinear interpolation function is now carried out. We carried out testing with bilinear 

interpolation for 4 different angle scenarios: 𝐴𝐷|𝐵 < 15°, 𝐴𝐷|𝐵 < 35°, 𝐴𝐷|𝐵 < 60°and 𝐴𝐷|𝐵 <

70° with the hope of providing good graphical representation of potential splitting points for 

different scenarios. Once the angle 𝐴𝐷|𝐵 reaches a certain value platooning is not beneficial. 

Figure 4.1.9 shows 4 of these results, they provide good results from each of the scenarios and 

were chosen as they provide good representation of the other angles within each scenario, the 

full testing included each angle being calculated for every degree from 5o to 65o. Figure 4.1.9 

highlights the benefit of the platoon effect when small angles are present. It can be seen that with 

a smaller angle between the first customers a larger area for the platoon to split is available, this 

is shown by the large red area in Figure 4.1.9a. Within this red zone the platoon can split with a 

fuel reduction benefit. Figure 4.1.9b has smaller area available for the platoon split, however 

there is still with a clear area where the splitting point can occur with emissions benefits. Figure 

4.1.9c has a much smaller area where improvement can be found and the benefits for platooning 

here are insignificant. Figure 4.1.9d has gone beyond the limit angle and as such there is no 
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improvement that platooning can achieve. This angle is the limit at which platooning can be 

effective above this angle the additional distance required for platooning renders no emission 

benefits. The decision on where to split is very much dependent on the angle 𝐴𝐷|𝐵 as has been 

shown. While bilinear interpolation is not the optimal way of solving the enhanced splitting point, 

we believe it provides the reader with a good visual understanding of the benefits.  

 

 

Figure 4.1.9. Four Bilinear Interpolation diagrams for the four different angle scenarios 
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We now will explore finding the optimal splitting point and will then implement our advanced 

platooning model with the methods discuss in this section for the Christofides et al.  and Golden 

datasets. 

 

4.2 Optimal Splitting Point 

 

It was mentioned previously that the problem can be broken down into triangles. Following on 

from this the problem can be seen as identifying the minima, that is the point such that the total 

distance from each side is a minimum. This problem has been well documented within 

mathematics and geometry and this point is known as the Fermat point or Torricelli point 

(Simpson 1750). P. Fermat formulated the problem for Torricelli to solve, since its conception 

many solutions have been found. Presented in this thesis we demonstrate the Fermat point using 

Tellier’s (1972) graphical method. The process involves 4 steps, firstly constructing equilateral 

triangles along each side of the main triangle. Then, when constructing these new triangles 

introduce 3 new vertices on the far vertex of the newly created triangles. Draw a line from each 

of these new vertices to the vertex of the main triangle opposite. The point of intersection of all 

3 lines is the isogonic centre. Figure 4.1.10 demonstrates this construction technique with the 

main triangle as A, B and C, with new vertices denoted by P, Q and R. 
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The interior angles of the triangle 𝐶𝐵}𝐴 and 𝐶𝐴~𝐵 are important when it comes to calculating the 

Fermat point. If any of these angles reaches 120o or more then the Fermat point is found at this 

vertex. When Platooning we can simulate this very case outlined in figure 4.1.10, the depot can 

be considered point C with initial customers B and A. With the two vehicles platooning from 

the depot until the Fermat point. Mentioned previously there is an aerodynamic benefit with 

platooning, and this provides a benefit to the vehicle’s mpg. Fuel usage is also directly related to 

the distance travelled, therefore theoretically the platooning distance can effectively be 

considered to be reduced if there was no mpg benefit. To see the effect the Fermat point has 

when platooning is considered figure 4.1.11 provides the same basis as figure 4.1.10 but with a  

Figure 4.2.10. Identifying the Fermat / Torricelli Point. 

 

Figure 4.2.11. Platooning and Identifying Fermat Point 
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shorter route from the depot C and the Fermat point, the intersection of the 3 lines through the 

vertices. Interestingly the Fermat point does not alter when changing the length of the platoon. 

Upon further investigation the three circles that intersect Fermat’s point and the three lines 

joining the vertices of ABC with opposite vertices of the equilateral triangles concur at the Fermat 

point. Changing only 1 point, in this case point C, in the same plane as the line CQ doesn’t alter 

the circle falling on points Q, A and B. This therefore proves that the Fermat point will also be 

the optimum splitting point and the effect of platooning doesn’t affect the Fermat’s point 

calculation. By altering the effective costs per distance, the problem now turns into the Weber 

problem. Formulated by Simpson & Thomas (1750) and the first direct numerical solution found 

by Tellier (1972). Whilst a geometrical solution existed Tellier was the first to provide a non-

iterative numerical solution. Tellier’s method is the recommended solution to be used to identify 

the optimum splitting point and to be used within the platoon algorithm for best results. 

It should be noted that the solution for the objective function is quite shallow in the 

neighbourhood of the optimum, it is therefore recommended that for best results relating to real 

life that a combination of Tellier’s method and the bilinear interpolation is used to identify 

multiple possible splitting points all that would benefit the platoon. With potential splitting points 

already fixed in real life, the optimal solution may not be achievable however if a definite benefit 

can be achieved in a certain area where a potential splitting point lies then this can be used. 
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4.3 Results 

The results are displayed in a tabular form from the advanced platooning method and are 

displayed in Table 4.2-1. Figure 4.2.1 shows the graphical result after our advance platooning 

method was applied to the Christofides 5_199 dataset. The red lines highlight the arcs that are 

travelled for the tow vehicles after platooning, these are the additional routes they travel after the 

splitting point. The black lines show rest of the planned routes generated from the VNS solution. 

It can be seen that the platoon only forms on very small angles between the first customers as 

expected. This drops the overall CO2 consumption of this example by 1% when compared to 

our VNS Solution.  

 

 

 

Figure.4.3.1 Advanced Platooning implemented Christofides 5_199 
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Table 4.3-1 Results from Advanced Platooning 

Name BKS 

VNS Platooning VNS Platooning Percentage 

Route Route Emissions Emissions Difference 

Length Length CO2 kg CO2 kg CO2 kg 

1_50 524.61 527.029 575.491 217.274 219.133 0.86% 

2_75 835.26 845.294 916.089 340.916 345.618 1.38% 

3_100 826.14 839.488 928.293 343.567 351.506 2.31% 

4_150 1028.42 1061.91 1132.93 427.178 429.53 0.55% 

5_199 1291.29 1344.16 1370.36 526.467 519.0607 -1.41% 

11_120 1042.11 1050.4 1053.29 404.484 401.391 -0.77% 

12_100 819.56 821.52 853.559 316.109 320.894 1.51% 

Golden 1_240 5627.54 6704.34 6790.48 2581.67 2596.58 0.58% 

Golden 2_320 8447.92 9526.63 9573.62 3668.7 3670.45 0.05% 

Golden 3_400 

Golden 4_480 

Golden 5_200 

11036.23 

13624.52 

6460.98 

12474.4 

15290.9 

6988.88 

12516.7 

15333.2 

7065.35 

4805.91 

5903.97 

2697.93 

4803.21 

5896.59 

2722.05 

-0.06% 

-0.13% 

0.89% 

Golden 6_280 

Golden 7_360 

Golden 8_440 

8412.88 

10195.56 

11663.55 

9173.14 

11374.3 

13467.4 

9206.65 

11416 

13510.2 

3545 

4387.68 

5195.65 

3544.14 

4384.99 

5187.06 

-0.02% 

-0.06% 

-0.17% 

Li 21_560 

Li 22_600 

 

 

18562.8 

17899.2 

18605.8 

18008.5 

7162.87 

6898.91 

7137.13 

6857.79 

-0.36% 

-1.01% 

Li 30_1040  39826.8 39986.5 15389.7 15245.2 -1.01% 

 

Instances for Christofides et al. 5_199, 11_120 and Golden 3_400, 4_480, 6_280, 7_360, 8_440 

and Li 21_560, 22_600, 30_1040 resulted in reduced emissions when fixed point platooning was 

introduced to the first customers. Upon inspection of the route outputs our algorithm forced 

some platoons that were not beneficial, and this is shown in the results of the other instances 

where an increase in emissions were seen. Overall, the results show the capabilities of the 

Platooning method, with significant savings of emissions achieved in the majority of the problems 

that were modelled. 
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4.4 Summary 

Following on from Chapter 3 where we introduced our basic platooning model this chapter 

focuses on improving that model and developing a more advanced platooning model 

incorporating modelling techniques designed to move the splitting point and provide tighter 

constraints on the platooning options. Reversing the routes produced by the VNS solution does 

not make any difference to the distance solution, it can however improve the emission solution. 

By reversing the routes, the vehicles paths are investigated more closely and longer paths with 

lighter loads are preferred. Including this post optimiser shows good results and improved the 

VNS emission solution by 1.5% in the Christofides et al. 1_50 instance. Once an improved 

solution was found our advanced platooning model was implemented. This began by modifying 

the way in which the platoons were selected and paired when comparing to our basic platooning 

model. Similar to the sweep method our Improved platoon Route Pairing method sweeps 

around the initial customers of each route ranking them in order of smallest angle between them. 

By doing this the vehicles deviate less and gain more of a benefit from the platoon. In order to 

improve the platooning solution, the splitting point is key, by moving this splitting point we can 

reduce the unnecessary route distance when platooning of the vehicles. The first improved 

method is the Lateral Shift Split Point, the split point is moved along the arc created by the two 

first customers. Here benefits are seen when there is little difference in distance from the depot 

to the first customer of both platoon routes, within our example the angle is fairly large and as a 

result we don’t achieve the emission reduction expected. The lateral shifting of the split point 

reduces the distance travelled and allows vehicles to deviate less. Several routes saw a further 

reduction in fuel but specific routes where the different distances between depot and initial 

customers, caused one of the vehicles in the platoon to double back on itself, increasing its 

journey distance and negating the platooning benefit. In order to stop this from happening the 

Enhanced Split Point was introduced, here the splitting point can move freely and provides better 
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results for all instances. We provide the reader with a detailed graphic visualisation of the 

importance of this splitting point using bilinear interpolation and the optimum splitting point 

found by using the Tellier Method.  The results show that the smaller the angle the more options 

there are for the platoon splitting. While an optimum splitting point may not be feasible in real-

life situations/routing a combination of Tellier’s method and bilinear interpolation could be used 

to provide suitable splitting points that would still create emission reduction benefits. 

Computational times are increased as multiple points are attempted within the algorithm with 

the best being accepted ultimately optimising the splitting point. In order to reduce this 

computational time investigation into the angles between the initial customers was needed. It was 

found that angles larger than 59o no matter the distances between the depot and the first 

customers are not worth platooning. The results show emission savings in 7 of the 15 tested 

instances, while still being forced to platoon. With this constraint being relaxed it is hoped all 

routes will benefit and is advised for future research. 
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 Chapter 5  

5 Electric Powered Vehicles 

 

5.1 Introduction 

Green logistics has attracted increased attention from researchers recently due to the growing 

public environmental awareness as well as the legislations by numerous governments around the 

world. Road transport is a major factor in climate change and accounts for a large proportion of 

the total greenhouse emissions, including Carbon Dioxide (CO₂). With traffic and congestion 

levels growing, greener vehicles (more environmentally friendly) combined with efficient 

transport routing strategies will be of great importance. Transport organizations have to increase 

their awareness of the potential impacts their activities and services have both, internally and 

externally as they grow and develop. For example, the UK government has set their targets high 

and aim to reach their goal from the Climate Change Act (Climate Change Act 2008) of reducing 

the UK’s GHG emissions by at least 80% by the year 2050 when compared with 1990 levels. 

This policy requires a drastic reduction in emissions as the road transport industry is one of the 

main contributors to these negative impacts. We believe this aspect ought not to be ignored 

where attention should be focused. Climate change is happening as shown by the evidence across 

several key indicators including the major four as noted below (Progress Report to Parliament 

Committee on Climate Change 2018). 

• Atmospheric CO2 (Carbon Dioxide) concentrations continue to rise, now exceeding 400 

parts per million. 



 137 

• Global average surface temperature has increased further with 2017 being in the top three 

warmest years on record. Recent years have exceeded 1oC above pre-industrial levels. 

• Artic Sea Ice is still in decline, September sea-ice extent has declined on average 13% each 

decade since 1979. 

• Global sea level has been on the rise since 1990’s. 

According to the International Energy Agency’s figures (International Energy Agency 2017) 

global emissions are still on the rise though emissions produced by developed countries were in 

fact reduced by 8% in 2015 when compared to the year 2000. However, developing countries 

doubled their emissions over that same period. This can be attributed to several factors including 

a very strong growth in per-capita economic output (+90%) combined with population growth 

(+23%). The CO2 intensity of the energy mix also increased (+12%), mainly due to higher coal 

consumption in larger countries. (International Energy Agency 2017). Among the developed 

countries, the UK reduced emissions in 2017 by 3% compared to the previous year, with the 

power sector being most successful in reducing its emissions in electricity production with a 75% 

reduction in 2018 from 2012. However, while other sectors including buildings and industry also 

saw a reduction in emissions, transport consumed an increase of 1% in 2017 over the previous 

year. Since 2014 transport has been the largest emitting sector of the UK economy accounting 

for a staggering 27% of UK greenhouse gases produced in 2017. Cars, Vans and Heavy Goods 

Vehicles (HGVs) account for the largest percentage of this transport sector. Policies must be 

introduced in order to meet the UK government’s target of 100% of new car sales to be a ULEV 

(Ultra Low Emission Vehicles) by the year 2040 (ULEV 2015). Alternative fuel powered vehicles 

can reduce direct transport emissions drastically, and when combined with greener electricity 

generation could provide an answer to the UK’s growing transport emission crisis. However, it is 

worth noting that their high battery cost and limited range may constrain their effectiveness.  
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The purpose of this chapter is to highlight the role of green technologies, in particular 

alternative fuel powered vehicles and provide an insight into the ways in which they can help 

reduce carbon emissions. We aim to study various options and features related to the green 

technology (alternative fuel powered vehicles) in terms of emissions in transport logistics and 

stimulate interest around this research area. 

In the following sections, we begin by reviewing some of the key research literature and 

introduce Alternative Fuel Powered Vehicles (AFVs) providing information on the current UK 

market, we then go into detail about their various types; including layout, design and features. 

We provide comprehensive battery specification information; how various power auxiliaries 

effect the energy consumption, the charging implications for the batteries and the costs involved. 

We also highlight specific features of the AFV’s such as regenerative braking and CO2 emissions. 

Multiple avenues are explored when it comes to AFV emissions followed by our models. The 

modelling section brings together the aspects highlighted in this chapter and provides a 

theoretical battery model that can be used to assist researchers in future research. Our summary 

then concludes this chapter. 

5.2 Electric Powered vehicles market 

Among alternative powered vehicles, the Ultra-low Emission Vehicles (ULEV’s) such as 

Battery Electric Vehicles (BEV’s), Plug-in Hybrid Electric Vehicles (PHEV’s) and Extended 

Range Electric Vehicles (EREV’s) are becoming increasingly important to cut down greenhouse 

gas (GHG) emissions and air pollution in the transport sector. The ULEV uptake in the UK is 

prominent, recent advancement in battery technology means that these electric vehicles are now 

becoming increasingly viable for general use. Alternative fuel powered vehicles have increased 

rapidly in popularity in recent years within the UK. Let alone Electric vehicle sales, which have 

increased from 3,500 in 2013 to more than 150,000 by May 2018 (Electric car market statistics 
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2018). Figure 5.2.1 shows the recent Electric Vehicle uptake in the UK on a 6-point rolling 

average.  This particular rolling average is important as it removes the peaks created by the new 

vehicle registrations that happen in March and September, and the troughs before these months 

as people wait for the new vehicle registration and dealers purchase a large number of newly 

registered vehicles in bulk. These peaks and troughs due to the new vehicle registrations are 

well-known within the motor trade industry. The increase in popularity is evident in the large 

increase in sales of EV’s, the most popular type of EV currently available is the EREV Hybrid 

Petrol Vehicle, with monthly sales almost doubling in the last 2 years. Plug in hybrids also prove 

to be popular amongst the UK market with BEV’s trailing. The last quarter of 2018 saw zero 
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Figure 5.2.1 EV Uptake in the UK over the last 5 years (Data acquired from the Society of Motor Manufacturers and Traders) 
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Hybrid diesel vehicles registrations, this could be due to a number of factors including the 

increase in diesel tax, more stringent emission tests and the lack of Hybrid diesel electric vehicles 

being manufactured.  The EV market now has 8% share of the UK New Vehicle market, an 

increase of 7% from July 2013. 

5.3 Electric Vehicles – Options & Features 

The following section provides a rounded overview of electric vehicles and is provided here 

in this thesis to all ow the reader to get a better understanding of EV’s and provides important 

information and new factors that future researchers may refer to for energy models and alike. 

Electric vehicles vary according to a number of different parameters. Table 5.3-1 below shows 

the different variations of AFV’s available with their drivetrain configurations, electric range and 

the grams of CO2 per km for an example of that particular type of vehicle. 

Table 5.3-1. Electric Vehicle Types 

Type Drivetrain Configuration Range (km) gCO2/km (WLTP1) 

PHEV (Plug-in Hybrid 

Electric Vehicle) 

ICE (Internal combustion engine) & 

chargeable electric engine powering wheels 
48-64 electric 

46 (Mitsubishi Outlander 

PHEV) 

E-REV (Extended-

Range Electric Vehicle) 

All electric with ICE generator support for 

the battery 
112-350 electric 

0 (Battery only) / 162 

(BMW i3 Empty Battery) 

BEV (Battery Electric 

Vehicle) 
All electric 128-400 electric 0 

HEV (Hybrid Electric 

Vehicle) 

ICE with additional support of electric 

engine, internally charged 
8-32 electric 98 (Suzuki Ignis 1.2 SZ5) 

FCEV (Fuel Cell Electric 

Vehicle) 

Fuel cell providing power to electric engine 

and battery for energy storage 

480-640 electric (with 

hydrogen fuel) 
0 
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Three different plug-in vehicles exist today that consumers can choose between to suit their 

needs.  

 

The Plug-in hybrid electric vehicles (PHEV), the Extended-range Electric Vehicle (E-REV) and 

the Battery Electric Vehicle (BEV). The basic design premise can be seen in Figure 5.3.1. The 

Plug-in hybrid electric vehicles (PHEV’s) contain a conventional combustion engine alongside 

an electric engine. The two can work together or independently often each engine powering a 

separate axle. This type of vehicle can provide a reduction in both transportation costs and 

greenhouse gas emissions when compared to a comparable conventional vehicle as when in 

electric mode they create zero direct emissions. The PHEV’s have the capability of an electric 

vehicle such as charging from a regular power outlet with the added benefit of a gasoline powered 

engine for long distance trips. The electrical engine can operate in two different modes, Charge 

Depleting (CD) mode or Charge Sustaining (CS) mode (Arslan et al. 2015). The CD mode is 

when the vehicle uses the electric motor to generate the necessary power using the batteries as a 

power supply. Once the battery is depleted the PHEV will then switch to the CS mode. In this 

BEV E-REV PHEV 

Figure 5.3.1 Conventional layouts for the typical Electric Vehicles in the market currently. 

(Onewedge 2018) 
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mode the vehicle uses the combustion engine to generate the required power, however while in 

this mode the combustion engine also generates enough energy to recharge the vehicles battery 

supply while driving. Typically, the battery will never reach zero charge in order to prolong 

battery life. PHEV’s can be refuelled at regular fuel stations similar to conventional cars and can 

be charged at designated charging points or at regular power outlets similar to the BEV’s. Some 

examples of a PHEV include the Mitsubishi Outlander PHEV, Chevrolet Volt, BMW-i8, 

Toyota Prius, Volvo V70 PHEV, Honda Accord Plug-in Hybrid, and Porsche Panamera S E-

Hybrid. 

Extended-range electric vehicles or E-REV’s have a plug-in battery pack and electric motor as 

well as a combustion engine much like PHEV’s. However, the difference is that in the E-REV’s 

the electric motor always drives the wheels, with the internal combustion engine acting as a 

generator to supply power to the battery when it is depleted. As such, small combustion engines 

with low fuel consumption can be used as they are solely used to generate electricity for the E-

REV’s motors, as a result these vehicles are capable of long ranges between refuelling. There are 

multiple generations of combustions engines designed to operate the generator for the electric 

motor. The first generations were designed with combustion engines used by normal convention 

vehicles. Generation 2 is where new engines were designed to develop a fairly constant load 

suited to the generator for the electric motor (Sumper et Baggini 2012). The most recent 

development includes micro turbines and fuel cells which provide a constant load and are most 

suited to the electric generators needs where a constant load is favoured. Micro turbines present 

a real opportunity for many domestic and commercial users. Several Buses have recently been 

developed adopting this extended range vehicle with micro turbines and can see large 

improvements. For example, Capstone have developed this turbine technology and are currently 

market leaders in the area (Capstone Turbines Technology 2017). An example of a E-REV is 

the BMW i3 REX.  
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Battery Electric Vehicles or BEV’s are the traditional electric vehicles. They have been around 

since the mid-19th century providing a preferred method of transport over the traditional 

combustion engines at the time. A BEV relies entirely on electricity for fuel and as a 

consequence, direct emissions are zero, typically their range is around 100-200miles. They are 

wholly driven by an electric motor which receives its power from a lithium-ion battery which can 

be charged. Electric motors are very simple when compared to the traditional combustion engine 

and can achieve very high efficiencies of around 95% (AEA 2008; JEC 2011). They can provide 

very high torque from rest and they remove the need for gearboxes and torque converters. The 

UK’s top selling BEV is the Nissan Leaf with 20,000 units sold as of July 2017 (Nissan News 

2017).  

One of the big drawbacks with BEV technology is the range limitation (Graham-Rowe et al 

2012), however recent technological advances could see this problem nullified. Wireless 

inductive charging is being introduced reducing charging times for users. However, if this 

technology can be introduced on the roads then it opens up an opportunity called dynamic 

charging, this is expanded upon in the Charging section. BEV’s are completely emission-free 

(except brake and tire wear) and perceived as more silent in operation and are becoming 

increasingly viable for organisations and businesses. CEP and pharmaceutics services typically 

deliver in regionally limited areas, with their average daily distance range below 140km (Afroditi 

et al., 2014). Other businesses such as FedEx and taxi companies are now also incorporating 

electric vehicles into their fleets. Though, one major drawback is their cost competitiveness when 

compared to conventional vehicles/trucks. Davis et Figliozzi (2013) conducted a study in the U.S. 

using three types of electric delivery trucks in order to examine their competitiveness to 

conventional trucks under varying scenarios. The study showed that electric trucks can be 

competitive in case the cost savings from the reduced operational cost are enough to overcome 

the significantly high purchase costs. However, the authors did not include in their study an 
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important factor namely the charging cost infrastructure that will be needed to be installed in 

order to facilitate the extra demand on the charging network. 

The parallel hybrid car (or conventional hybrid HEV) which has an internal combustion 

engine as well as an electric motor that are both connected to the wheels proved to be a good 

compromise for the range anxieties that arise from BEV’s. In the conventional hybrid case the 

electric battery is charged up using the internal combustion engine and regenerative braking, 

however either engine or both can be powering the wheels at one specific time. This can then be 

used for short range electric driving before the internal combustion engine takes over. Optimising 

time spent using this electric energy is a crucial way to improve efficiency in the conventional 

hybrids. These vehicles benefit from regenerative braking as well as weight savings over the 

BEV’s which can play a large role in energy consumption. Due to the configuration and the fact 

that both engines can power the wheels they can be equipped with smaller engines, increasing 

efficiency. Typically, HEV’s have smaller battery packs ranging from 5-10kwh, due to the fact 

they need to be charged and discharged quickly and frequently. Although HEV’s can be complex 

due to their nature of two systems constantly trying to cooperate and work together to provide a 

desired torque value. Their basic layout is shown in Figure 5.3.2. 
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The Fuel cell electric vehicles or FCEVs is a popular topic among researchers at the moment 

due to its potential benefits. They are predominantly powered by hydrogen with the only by-

product of water vapour and warm air. Their basic layout can be shown in Figure 5.3.3. Similar 

to traditional combustion vehicles they can be refilled in less than 10 minutes with a driving range 

of around 300 miles. They work in a similar way to that of the BEV’s by using electricity to power 

an electric motor produced by a hydrogen fuel cell. A Fuel cell is a device that takes stored 

chemical energy into electrical energy directly. The chemical energy that is stored between the 

fuels such as hydrogen, methane and gasoline is taken through two electro chemical reactions 

where it is converted directly into electricity. The major components of the fuel cell are the 

Electrolyte which also acts as a separator that keeps the reactants from mixing together. The next 

are the Electrodes. These are catalysts made of graphite where the electro chemical reactions 

occur. These are contained within a Bipolar plate (also known as a separator) which allows the 

current to be collected and voltage to be built from the cell. The most efficient fuel is Hydrogen 

due to the ease which the element can form ions. The gas is highly combustible and has a high 

energy content. However, hydrogen in its pure form is not readily available like conventional 

fossil fuels. Typically, their efficiencies are in the 60-64% range (AEA 2008). There are cells 

Figure 5.3.2 Conventional layouts for Hybrids Vehicles (Onewedge 2018) 
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which look at taking gasoline and converting them into hydrogen rich streams to run fuel cells 

however the process is very complex and so designers and technicians are less attracted. Due to 

hydrogens low density the design of the on-board hydrogen storage systems are becoming a 

design challenge. The volume of the fuel cell is relatively large compared to the internal volume 

of a combustion engine and so fitment inside a vehicle is difficult, through technology for smaller 

packing of the fuel cell or more efficient packing. At room temperature and pressure, the 

equivalent energy contained in a petrol tank would require a hydrogen tank around 800 times 

the volume. In order to combat this, the hydrogen is pressurized up to 7000 times that of 

atmospheric pressure. At these pressures cryogenic systems have to be incorporated in order to 

effectively cool and liquefy the Hydrogen, Metal-hydrides are also used. These metal alloys 

absorb the hydrogen when under high pressures. 

5.3.1 Battery Relevance 

The batteries found in BEV’s vary massively according to the role that they need to fulfil and 

the environment in which they are used and play a vital role in of a BEV. Energy density is a key 

factor when considering battery types as a higher energy density allows more energy to be stored 

in a smaller battery ultimately improving efficiencies. Battery energy densities are constantly 

Figure 5.3.3 Layout of the Fuel-Cell Electric Vehicle (FCEV) (Onewedge 2018) 
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improving allowing longer ranges within electrically powered vehicles. The most popular UK 

EV, the Nissan leaf, uses lithium ion manganese batteries providing moderate to high energy 

density with relatively low internal resistance. The longer-range and more expensive Tesla uses 

lithium ion cobalt batteries which take slightly longer to charge but typically have a higher energy 

density. The manganese-based Li-ion batteries chosen for the Nissan Leaf and other EVs have 

excellent lab results. Manufacturers also choose their batteries based on cost, some batteries are 

more suited for keeping the battery at high voltage and elevated temperatures than others. In 

some cases, as the CE tests reveal, these two conditions can cause more damage than cycling 

(Battery University 2016). Table 5.3.2 provides the reader with a comprehensive overview of the 

various types of batteries used by manufacturers today. 

From Table 5.3-2, it can be seen how not only these energy densities vary from different 

battery types but also a vast number of alternative factors that all have a key role in the decision 

on which to select for its purpose. Information such as that in Table 5.3.2 can be imported into 

transport systems allowing the optimum conditions for various vehicles to be met when modelling 

to ensure correct charging/running procedures. Just as engine maintenance is important for a 

combustion engine, battery health is of great importance for Li-ion batteries. Although 

maintenance is not required, they do have a limited life cycle of around 500-1000 charges before 

degradation can appear. The four suspected factors responsible for capacity loss and the eventual 

end-of-life of the Li-ion battery are as follows: 

• Mechanical degradation of electrodes or loss of stack pressure in pouch-type cells. Careful 

cell design and correct electrolyte additives minimize this cause. 

• Growth of solid electrolyte interface (SEI) on the anode. A barrier forms that obstructs the 

interaction with graphite, resulting in an increase of internal resistance. SEI is seen as a 
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cause for capacity loss in most graphite-based Li-ion when keeping the charge voltage 

below 3.92V/cell. Electrolyte additives reduce some of the effect. 

• Formation of electrolyte oxidation at the cathode that may lead to a sudden capacity loss. 

Keeping the cells at a voltage above 4.10V/cell and at an elevated temperature promotes 

this phenomenon. 

• Lithium-plating on the surface of the anode caused by high charging rates. (Elevated capacity 

loss at higher C-rates might be caused by this.) 
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Table 5.3-2 Battery Specifications (Battery University 2018) 

Specifications Lead Acid NiCd NiMH 
Li-ion 

Cobalt Manganese Phosphate 

Specific Energy Density(Wh/kg) 30-50 45-80 60-120 150-190 100-135 90-120 

Internal Resistance (mΩ) 
<100 100-200 200-300 150-300 25-75 25-50 

12V pack 6V pack 6V pack 7.2V per cell per cell 

Life Cycle (80% discharge) 200-300 1000 300-500 
500-

1,000 
500-1,000 1,000-2,000 

Fast-Charge Time 8-16h 1h typical 2-4h 2-4h 1h or less 1h or less 

Overcharge Tolerance High Moderate Low Low. Cannot tolerate trickle charge 

Self-Discharge/month(room 

temp) 
5% 20% 30% <10% 

Cell Voltage (nominal) 2V 1.2V 1.2V 3.6V 3.8V 3.3V 

Charge Cut-off Voltage(V/cell) 
2.4 Full charge detection 

4.2 3.6 
Float 2.25 by voltage signature 

Discharge Cut-off 

Voltage(V/cell, 1C) 
1.75 1 2.50-3.00 2.8 

Peak Load Current 5C 20C 5C >3C >30C >30C 

Best Result 0.2C 1C 0.5C <1C <10C <10C 

Charge Temperature 
-20 to 50°C 0 to 45°C 0 to 45°C 

-4 to 122°F 32 to 113°F 32 to 113°F 

Discharge Temperature 
-20 to 50°C -20 to 65°C -20 to 60°C 

-4 to 122°F -4 to 149°F -4 to 140°F 

Maintenance Requirement 
3-6 Months 30-60 days 60-90 days 

Not required 
(topping charge) (discharge) (discharge) 

Safety Requirements Thermally stable 
Thermally stable, fuse 

protection common 
Protection circuit mandatory 

In Use Since Late 1800s 1950 1990 1991 1996 1999 

Toxicity Very High Very High Low Low 
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Along with these factors of capacity loss, thermal management plays a key role in BEV’s. As 

shown in Table 5.3-2, batteries have a certain operating window when charging and discharging. 

Temperature has a large importance on the performance of EV batteries and shouldn’t be 

overlooked. At cold temperatures Battery performance is lower due to poor ion movement, 

viscosity changes result in slow electro-chemistry, see Figure 5.3.4. Resistance therefore increases 

with temperature effecting the relative capacity. This has a substantial effect on the range and the 

acceleration when compared to conventional vehicles. A low temperature affects the charging, 

allowing for a possible increase in dendrite creation. The low temperature also has a profound 

effect when the heaters are used due to the smaller EV range the increase in energy output results 

in a higher energy loss compared to a conventional vehicle. For example, in cold weather 

conditions the effect of the heater can nearly double the energy consumption and cut the range 

in half when using specific driving cycles. Table 5.3-3 provides the reader with average reductions 

in range for common vehicle functions. With an already limited range additional auxiliary 

functions can limit the range of BEV’s further. As a result, they can have a seriously reduced 

range in cold/hot weathers when additional auxiliary functions such as cabin heaters or A/C are 

used. 
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Table 5.3-3 Impact of equipment on EV Performance (EV Auxiliary Systems Impact 2018) 

Accessory Range Impacts Comments 

Air Conditioning Up to 30% Highly dependent on cabin temperature, ambient 

temperature and air volume 

Heating Up to 35% Highly dependent on cabin temperature and ambient 

temperature. 

Power Steering Up to 5% Necessity 

Power Brakes Up to 5% Necessity 

Defroster Up to 5% Depending on use 

Other – Lights, Radio, Phone, 

Power-assisted seats, windows, 

locks etc. 

Up to 5% Depending on use 

 

It is therefore important that these factors need to be taken into account when planning electric 

vehicle routes as they can affect the range by a large amount. Powertrain efficiencies of BEV’s 

are higher compared to the engine powered counterparts making the accessory loads more 

significant for some driving styles. One crucial aspect that needs highlighting is the hot climate 

environment. At Hot temperatures the battery can become in danger of degradation and at 

extremely high temperatures can cause serious harm with thermal runaway, a process in which 

the battery starts causing reactions within the battery that create further reactions eventually 

ending up with the battery exploding. Although manufacturers introduced strict thermal 

management practices within their production of their vehicles EV’s batteries still rise 

significantly during the charging process. The effect is more profound when fast charging, in 

order to minimize degradation battery operating temperature should be kept between 15 and 

35 degrees Celsius. This can be monitored on all BEV’s vehicles and often BEV’s limit their 
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charging speeds according to the battery temperature. Figure 5.3.4 shows a graph 

demonstrating the effect thermal management plays on battery life in a reader friendly format. 

 

5.3.2 Charging implications 

One main influencing factor on the temperature of the battery is charging. The speed at which 

a vehicle is charged is directly related to its temperature. Manufacturers that use large batteries 

often employ battery cooling techniques to allow the batteries to still charge at a fast rate without 

thermal management issues. Charging can also be negatively affected due to microscopic fibres 

of lithium, called “dendrites,” growing on the cathodes. Dendrite growth is progressively worse 

with increase in the reacting surface area. The reaction process is accelerated by almost a factor 

of 10 in worse case scenarios at -20 degrees. Future developments in the design of batteries show 

that we could be heading towards the use of ultracapacitors as well. Ultracapacitors can store 

significantly more charge than regular capacitors due to the effective material used in their 

production, they can also be charged more than 1 million times meaning they could provide a 
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viable solution to electric vehicle distance anxiety. Combining the two can protect from surges in 

the fuel cells proving excellent power and energy density (NASA 2010).  

Charging Types - There are three main EV charger types that are currently in use: 

• Slow: these slow charging units provide up to 3kW and are best suited for overnight charges 

as a full charge on a typical vehicle can take anywhere between 6-8 hours. 

• Fast: these chargers provide between 7-22kW of power which offers charging times between 

3-4 hours. 

• Rapid: these charging units are the most powerful and provide 45-50kW, capable of 

providing vehicles with an 80% charge in as little as 15-30mins. These charging points 

come in two different variants, AC and DC. 

The number of charging points has been steadily increasing in the UK with just over 9000 points 

as of September 2015 and over 19000 as of January 2019 (Zap- Map 2019), with many more 

planned to be installed by the UK government as the electric vehicle market increases. Slow 

chargers use (in most cases) a standard single phase 13A three-pin plug, the very first charging 

points installed were of this type, however they are now being replaced by Fast and Rapid charge 

points. Almost every vehicle can be slow charged with each vehicle provided with a standard 3-

pin plug at the charging point outlet and a Type-1 (J1772) or 7-pin Type 2 (Mennekes) connector 

for the vehicle inlet. Fast chargers reduce the rate of the slow charger times significantly; this is 

accomplished by doubling the available Amperes to 32A or 7kW for a single phase. This type 

of charger is the most commonly installed with over 5500 installed in the UK as of September 

2015. For larger commercial vehicles such as trucks and buses fast 3-phase charging is available 

capable of delivering 22kW in total. 
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Rapid chargers, while growing in popularity, are relatively new. They come equipped with a 

tethered cable with a non-removable connector coupled with an inlet socket. The AC variants 

are the least popular due to only a few UK EV’s models designed to accept them. Rapid AC 

charger are rated at 63A, 43kW (3-phase) using high power alternating current (AC) supply’s, 

and the Type 2 (Mennekes) connector. The DC Rapid charge variant provides high power direct 

current (DC) supply at 125A, 50kW. These DC rapid chargers are fitted with either a JEVS 

(CHAdeMO) or a 9-pin CCS (Combo) connector. Around 1500 Rapid chargers are currently 

installed in the UK (as of beginning of 2016). As mentioned previously due to the high amperage 

of this form of charging the internal battery temperature increases dramatically, with frequent 

rapid charging/discharging this has more bearing. When charged at a fast rate, dendrites appear 

from the surface of the lithium electrode and spread across the electrolyte until they reach the 

other electrode. An electrical current passing through these dendrites can possibly short-circuit 

the battery, causing it to rapidly overheat and in some instances catch fire. Efforts to solve this 

fairly new problem by inhibiting dendrite growth have been met with limited success (Lithium 

ion roots).  

Nissan are one of the leaders in electric vehicles. They have two globally market Electric 

Vehicles one being the Nissan Leaf designed for public use with the 2016 model providing an 

EPA-estimated 107 mile range (but a large 155 mile range according to the new European driving 

style), with the 2019 model anticipated to have an EPA range of over 225miles. The other the e-

NV200, a short wheel based commercial van, aimed at businesses with a similar range of 106 

miles with 4.2m3 of loading space and a loading bay of 2.04m. Both vehicles use the same 

charging modes and require similar charging times. 8 hours on the slow 3kw charger, 4 hours on 

the fast 7kw chargers and capable of an 80% charge in 30mins using the rapid charge. These 

rapid chargers mean that these electric vans can be viable solutions to logistic firms wanting to 

reduce their overall carbon footprint. The cost of charging cannot be written off however, and as 
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the infrastructure improves and more companies are offering charging so will come price 

variations of charging. The current market leader for electric charging stations is Ecotricity with 

the most comprehensive charging network in Europe (Ecotricity 2016). The price for a 30-

minute rapid charge (43kw AC up to 50kw DC) is around £6 providing up to 80% charge 

depending on battery capacity. However, for home/business use on personal electricity the 

society of motor manufacturers (SMMT) say that the typical cost of electricity to charge an EV is 

approximately 3p per mile, compared with petrol/diesel costs of around 16p per mile. This value 

was calculated when recharging times were considered to be at night, when energy is largely 

subsidised (Schönewolf 2011). As mentioned before the battery’s themselves can suffer from 

degradation from over charging. Bashash et al. (2011) provide an optimal charge pattern plan for 

plug in hybrid vehicles however the premise can be carried across to BEV’s also. The paper 

looks at the total cost of electricity and fuel and the total battery degradation over a 24h period. 

Among researchers the common definition for the battery’s end-of-life is around 70-80% of its 

original energy. However, researchers have found that this value can be significantly less in real 

life situations due to most people not driving more than 40 miles per day Saxena et al. (2015), 

the authors suggest using an alternative metric of defining battery retirement when it no longer 

meets the daily travel needs of a driver. Botsford et Szczepanek (2009) investigate the issues 

facing widespread use of electric vehicles. The study shows an example of how limiting only slow 

charging can be and how rapid chargers could help with adoption of EV’s.  

During charging BEV’s do not necessarily need to be fully charged before leaving the charging 

station. Goeke et Schneider (2014) use a full maximum charging system at a constant rate, in 

their electric vehicle routing problem with time windows and mixed fleet. The mixed fleet 

contains both combustion and electric vehicles. Keskin et Catay (2016) relax the full recharge 

restriction and allow partial recharging, which is more practical in the real world due to the 

shorter recharging duration. The results highlight that the partial recharging may significantly 
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improve routing decisions. Specifically, they modeled charging time as a function of the SOC of 

the battery. Table 5.3-3 shows the results from running common EV functions. The results were 

based upon the popular Nissan leaf BEV. For full leaf information the reader is directed to 

(Nissan Leaf Specs 2016). 

Dynamic charging could allow electric vehicles to charge while they are driving. A localised 

electromagnetic field is created between the charging pad on the electric vehicle and the 

corresponding charging pad in the road and a current induced charging the battery. Although 

still in its infancy, the technology is there and would have worthy benefits in applications such as 

traffic queues and traffic lights etc. The use of lithium ion batteries will significantly minimize the 

emissions however there is a limited amount of lithium and the future of the BEV’s could be 

unknown. On-line electric Vehicles (OLEV’s) draw their power from electric coils that are 

underground wirelessly (Suh 2011). Su et al. (2015) look at how the infrastructure supports 

wireless inductive charging for OLEV’s in Korea analysing the benefits of the dynamic charging 

with an economic model of the battery size and the required charging infrastructure. With 

dynamic charging EV’s can charge more often and so smaller batteries can be used in operation 

(Lukic et Pantic 2013). Using real-life data the authors found that although a larger initial cost for 

installation was needed for dynamic charging more cost saving can be accomplished by extending 

battery life. Future steps within the electric vehicle routing problem could identify these dynamic 

chargers using a stochastic charging model. Another novel idea that is proving increasing popular 

among researchers is the possibility of Battery swapping, where depleted batteries from electric 

vehicles can be exchanged for recharged ones on long trips (Brown et al. 2010; Yang et Sun 

2015; Zheng et al. 2013). The success depends upon the infrastructure of the swapping stations 

and the ease of service.  
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5.3.3 Relevance of Regenerative Braking technology   

EV’s mostly employ regenerative braking technology. This allows the vehicles to convert 

Kinect energy into electrical energy which can then be stored in the battery when slowing or 

travelling down a decline. The electric motor functions as a generator, supplying the battery with 

the electrical energy generated. Regenerative braking also brings with it additional benefits such 

as reduced brake wear and the ability to use one pedal when driving, also known as an e-pedal. 

Single pedal driving is a relatively new concept although allows regenerative braking to be used 

to its full potential. When the user fully releases the pedal the vehicle is in the maximum 

regeneration mode. This acts just as normal combustion engine brakes would and stop the car 

with considerable force. When the user wishes to come to a gradual stop then the pedal is 

released partially and a % of regenerative braking force is used instead. 

5.4 Emissions 

When determining the emissions generated from a vehicle a three-scope approach can be 

used. This is a widely-accepted approach used here to identify and categorize emissions-releasing 

activities into three groups known as scopes. Each activity is listed as either Scope 1, Scope 2 or 

Scope 3, more information on how the Scopes are used, as well as all other aspects of reporting, 

can be found in the Greenhouse Gas Protocol Corporate Standard (Gov.uk). 

• Scope 1 (Direct emissions): Emissions from activities owned or controlled by an 

organization. Examples of Scope 1 emissions include emissions from combustion in 

owned or controlled boilers, furnaces, vehicles; emissions from chemical production in 

owned or controlled process equipment. 

• Scope 2 (Energy indirect): Emissions released into the atmosphere associated with the 

consumption of purchased electricity, heat, steam and cooling. These are indirect 
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emissions that are a consequence of an organization’s energy use but which occur at 

sources they do not own or control. 

• Scope 3 (Other indirect): Emissions that are a consequence of your actions, which occur at 

sources which you do not own or control and which are not classed as Scope 2 emissions. 

Examples of Scope 3 emissions are business travel by means not owned or controlled by 

your organisation, waste disposal which is not owned or controlled, or purchased materials 

or fuels.  Deciding if emissions from a vehicle, office or factory that you use is Scope 1 or 

Scope 3 may depend on how you define your operational boundaries.  Scope 3 emissions 

can be from activities either upstream or downstream from an organisation.   

The generated emissions for scope 1 of various types of conventional vehicle can be found in 

Table 5.4.1. Passenger cars conversion factors are related to the market segments specifically 

defined by SMMT (UK Society of Motor Manufacturers and Traders). The conversion factors 

are based in information generated from the department for transport, who regularly analyses 

the mix of cars on the road using number plate recognition. The CO2 emissions generated from 

these AFV’s are significantly less than their diesel and petrol counterparts, 44% and 46% 

respectively. AFV’s play a key role in the quest to reduce emissions. Traditional petroleum based 

powered vehicles produce many emissions mainly at scope 1. The emissions generated by these 

vehicles and their effects on humans are explained in detail within section 2.4 alongside the UK 

emissions. Scope 1 emissions from these petroleum-based vehicles are not only harmful for the 

environment but also people. Direct tailpipe emissions can lead to Air pollution, NO2 and PM 

exceedances in cities are becoming increasingly common. Congested traffic poses a real threat to 

air quality and It is well known that road transport in the urban area is a major source of air 

pollution across the world. Though in Europe all the vehicles have to comply with the EU 

emission standards. The emissions are tested using the legislated standard driving cycles. 

Unfortunately, these often do not represent real world driving emissions. This is because 
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compared to the legislated driving cycle, real-world driving uses different engine power 

configurations, differing speeds, different acceleration rates, varying traffic congestion, 

continuously changing road gradients, different cold start conditions, various numbers of 

stop/start events all occurring with varying weather conditions; the outcome will inevitably result 

in different emissions. The true emissions generated by these petroleum-based vehicles is actually 

very different than the emissions calculated on these driving cycle tests. It is therefore important 

that we must address the air pollution in these urban areas. BEV’s generate zero emissions and 

therefore make great candidates for heavily urban areas where traffic congestion is a major issue 

and range is also less important due to reduced driving distances in cities, increased congestion 

and reduced speed limits. Although BEV’s generate little to no emissions, indirect emissions 

must also be considered. The Electric vehicles emissions are classified as mainly Scope 2 and 

are directly related to the fuel mix that is used to create the electricity. As mentioned previously 

the UK’s Power sector has reduced their emissions drastically, this is directly proportional to the 

emissions generated by BEV’S. The emissions do however also depend on other factors the type 

of day, where different combinations of power sources are used. With the recent technological 

advancements mentioned previously such as autonomous vehicles, dynamic charging, and 

reduced charging times it opens us a wider range of emission reducing possibilities. With faster 

charging the vehicles are suitable for longer range drivers allowing minimal stopping times 

allowing EV driving to appeal to a wider audience. With the introduction of dynamic charging 

streets in cities that are normally filled with idling vehicles can now be replaced by electric vehicles 

wirelessly charging while on the move, leading to a significant reduction in urban air pollution. 

Autonomous electric vehicles help optimise the charging times and can charge themselves when 

the national grid is at its least demand, meaning just green energy production is needed to meet 

demands. This in turn allows BEV’s to charge at zero scope 2 pollution, this aspect is covered 

in more detail in the following section. 
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Table 5.4-1 Average new car CO2 Emissions and Registrations (New Car CO2 Report 2018) 

CO2 g/km (sales weighted average) 2000 2007 2016 2017 
2017 v 
2016 

2017 v 
2000 

  Total Market 181 164.9 120.2 121 0.8% -33.1% 

  Registrations ('000s) 2222 2404 2693 2541 -5.7% 14.4% 

B
Y

 F
U

E
L

 T
Y

P
E

 Diesel 167.7 164.3 120.1 122 1.6% -27.3% 

Registrations ('000s) 313 967 1285 1066 -17.1% 240.3% 

Petrol 183.2 165.7 123.7 125 1.1% -31.8% 

Registrations ('000s) 1908 1420 1319 1355 2.7% -29.0% 

AFV 127.3 127 66.8 67.5 1.0% -47.0% 

Registrations ('000s) 0 17 89 120 34.8% 33454.0% 

B
Y

 S
A

L
E

S 
T

Y
P

E
 

(S
T

A
R

T
S 

20
01

) Private 176.4 165.8 122.3 122.7 0.3% -30.4% 

Registrations ('000s) 1212 1046 1206 1124 -6.8% -7.2% 

Fleet 175.4 164 118.3 119.8 1.3% -31.7% 

Registrations ('000s) 1031 1195 1381 1319 -4.5% 27.9% 

Business 195 165.9 119 118.8 -0.2% -39.1% 

Registrations ('000s) 214 163 106 98 -7.8% -54.5% 

B
Y

 S
E

G
M

E
N

T
 

Mini 153.8 128.5 105.5 105.9 0.4% -31.2% 

Registrations ('000s) 52 22 77 69 -10.1% 31.9% 

Supermini 152.9 141.8 111.1 110.7 -0.4% -27.6% 

Registrations ('000s) 689 771 873 748 -14.3% 8.7% 

Lower Medium 175.3 158.6 114.8 115.8 0.9% -34.0% 

Registrations ('000s) 662 722 735 728 -0.9% 10.1% 

Upper Medium 192.4 169.1 119 120.5 1.3% -37.4% 

Registrations ('000s) 477 386 257 243 -5.4% -49.1% 

Executive 235.6 192.6 120.8 121.6 0.7% -48.4% 

Registrations ('000s) 105 104 128 123 -3.6% 17.8% 

Luxury 292.3 273.8 182.4 178.9 -1.9% -38.8% 

Registrations ('000s) 11 13 11 9 -12.5% -19.4% 

Sports 220.5 224 161.4 155 -4.0% -29.7% 

Registrations ('000s) 67 66 50 48 -4.5% -29.2% 

Dual Purpose 259.4 228.3 141.4 141.3 -0.1% -45.5% 

Registrations ('000s) 99 176 438 460 5.1% 364.1% 

MPV 211 179.7 128.7 132 2.6% -37.4% 

Registrations ('000s) 60 143 125 112 -10.7% 86.8% 
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5.4.1 UK Transport Emissions and the Impact of BEV’s 

All vehicles generate emissions whether directly or indirectly. With an increasing number of 

vehicles being registered each year within the UK, advancements in engine technology and 

emission reduction hardware are critical. The UK government have their sights firmly on 

reducing transport pollution within the UK focussing on urban areas such as London (Ulez 

2018).  The government have brought in a ban on all new petrol and diesel cars from the year 

2040 which has recently been brought forward to 2030 by UK mayors (Sadiq 2018). Along with 

a £255 million fund to help councils tackle emissions its clear to see the emphasis the leading 

officials are placing on improving the air quality around our streets. The UK vehicles and LGVs 

and HGVS travelled a combined 60.9 Billion miles in 2014, an increase of 5.5% and 2.0% 

respectively (Great 2014). Using the department for statistics average fuel consumption (LGV – 

13.6 mpg, HGV – 7.9mpg) this mileage equates to 5.32 billion gallons of fuel. This amounts to 

64.8 million tonnes of CO2. This is a huge amount of potential pollution that is being created. 

The use of alternative methods of transport could reduce this amount with electric vehicles being 

a viable way forward. For more detailed breakdowns of the CO2 generated by engine type the 

reader is referred to Table 6.2.1 in Appendix. 

With most goods vehicles currently in the market being diesel, in this section we will focus on 

these combustion engine types rather than petroleum fuelled combustion engines. We then go 

on to discuss future engines with electric vehicles and ultra-low emissions vehicles. Diesel vehicles 

are very common in medium to heavy goods vehicles, and also popular amongst the public due 

to their longer driving range, higher engine efficiency, low running costs and durability when 

compared with their petrol counterparts. However, they have recently seen a big drop off in sales. 

March 2018 saw a 37% reduction with the previous year (New Vehicle Registrations 2018). 

Recent emissions scandals whereby companies such as VW were found to be using emissions 

cheating devices built into the engine control unit have cause a lot of doubts around the actual 
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emissions generated by these diesel engines (Autocar 2015; Scandal 2016). The vehicle could 

sense when it was under test conditions and employ all of its available emissions reduction 

systems to reduce the emissions to below the required limit. When under normal driving 

conditions on the road some of these systems were not working as effectively, this provided an 

enhanced driver experience with better performance but increased emissions. Running without 

the device the vehicles were found to be producing around 40 times the allowed amount of 

nitrogen oxide in the U.S. The result of the scandal was dramatic, VW group was issued a fine 

around £4.7 billion with the possibility of a maximum fine of £13.7 billion however this figure 

does not include the cost of repairing the vehicles. As a result, the company’s shares dropped by 

30% in the short period following the scandal. The increased emissions dramatically affect the 

environment with the vehicles in the U.S creating between 10,392 – 41,571 tonnes of toxic gas 

into the air each year, rather than the expected 1,039 tonnes of NOx (Scandal 2016). Recently, 

however it has been found that other manufacturers including Mercedes have also been found 

guilty of having emissions defeat devices fitted and are now recalling over 770,000 vehicles (BBC 

News 2018). There are seven main Greenhouse Gases (GHGs) that contribute to climate change, 

as covered by the Kyoto Protocol: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 

hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6) and nitrogen 

trifluoride (NF3). Different activities emit different gases. GHG emissions from transport have 

been fluctuating over the last two decades, although remained fairly stagnant over the last 4 years. 

The government aims to reduce CO2 levels by 80% by the year 2050 (ULEV 2015). Other than 

increase in technology and advances in transport the government adopts various policies to try 

and reduce the overall impact. Some research carried out by the government includes looking at 

various scenarios and how they will affect the GHG emissions within the transport sector. Figure 

5.4.1 shows how these policies will affect the emissions. 
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It can be seen that if only baseline policies were met the estimated emissions increases. The 

baseline reference is based on central estimates of economic growth and fossil fuel prices and 

indicates further actions must be taken to reduce CO2. As it can be seen from the graph fuel 

price has a vital role in the reduction of emissions. With a low fuel price, consumers are more 

likely to use their tradition combustion engine vehicle resulting in increased pollution. On the 

other hand, a high fuel price can be the main factor in reducing emissions, this will drive people 

to alternative fuel powered vehicles and alternative means of transport. These alternative fuel 

vehicles must still be monitored carefully as they are not emission free.  

When diesel combusts, it emits many different pollutants of which several are very harmful. 

During the combustion process fuel is injected at very high pressures, this is then put under 

immense compression during the combustion stroke of the engine, generating the required heat 

to cause the diesel fuel to ignite. In an ideal environment with exceptionally high combustion 
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efficiencies the bi-product of the combustion would be only CO2 and H2O (Prasad et Bella 2010). 

However, factors such as combustion temperature, air-fuel ratio and turbulence in the 

combustion chamber reduce the efficiency and a number of harmful products are generated 

such as CO, PM, NOx, SOx and HC.  

• Carbon Monoxide (CO) – produced by internal combustion engines and can lead to 

Carbon Monoxide poisoning, causing serious health issues and in severe cases death. 

(NHS 2019) 

• Particulate matter (PM) – consistently associated with respiratory and cardiovascular illness 

and increased mortality. Diesel engine exhaust has been classified as carcinogenic to 

humans by the World Health Organization. Secondary PM contributes to the acidification 

of ecosystems. 

• Nitrogen Oxides (NOx) – are a harmful pollutant generated from diesel engines which not 

only has detrimental effects to the environment but is also the pollutant that causes most 

health problems. They can cause inflammation of the airways and long-term exposure 

may affect lung function and respiratory symptoms. High levels can also have an adverse 

effect on vegetation. NOx contributes to acidification and/or eutrophication of habitats 

and to the formation of secondary particles and ground level ozone, both of which are 

associated with ill-health effects. Actions are needed to reduce this health issue for both 

the workers and the general population. (Sydborn et al. 2001)  

• Sulphur Oxides (SOx) – causes constriction of the airways of the lung. Involved in the 

formation of PM. This contributes to acidification of terrestrial and aquatic ecosystems, 

damaging habitats and leading to biodiversity loss.  

• Hydrocarbons (HC) – these are chemical compounds found on Earth and are the reason 

fossil fuels combust; extremely important in modern day society. Diesel fuel contains 
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larger Hydrocarbons molecules with more carbon atoms than petroleum, and as such has 

a higher fuel density. Issues arise when incomplete combustion takes place releasing 

emissions pollution into the atmosphere. 

Diesel engines produce the highest level of these gases from their exhausts and have been 

shown to be linked to carcinogenetic effects which can lead to cancer of the lungs (Diesel Engine 

Exhaust 2012). The study conducted by the IARC was mainly composed of workers exposed to 

diesel exhaust gas fumes. However, in the past carcinogens that have been shown to have high 

risk to heavily exposed groups were also found to be present to the general public. It has been 

estimated that 20-70% of PM is attributed to the combustion derived particles from traffic (Gong 

et al. 2005; Reis et al. 2018; Rückerl et al. 2007). Diesel emissions are linked to causing 

inflammation and tissue damage and with chronic exposure harmful physiological changes can 

occur within multiple organ systems (Reis et al. 2018). 

With the UK transport industry currently making up 27% of all UK GHG emissions it is of 

the upmost importance that we aim to reduce this negative effect. This could be achieved by 

identify new technology’s and methods to improve the air pollution levels. In 2017 Diesel 

Vehicles provided a 42% market shares of new cars, on average these diesel vehicles produce 

122 CO2 g/km. By contrast AFV’s provide a smaller 5% market share emitting on average just 

67.5 CO2 g/km. These figures are measured at the tailpipe to evaluate in-use emissions 

performance.  BEV’s produce zero tailpipe emissions and an increase in BEV sales will provide 

a crucial reduction in direct CO2 emissions and can have a beneficial impact on the dangerous 

emissions emitted by combustion engines for the public. BEV’s are not completely emission free 

however, and they can still produce emissions indirectly. Accurately understanding the emissions 

generated by charging the batteries can provide a further reduction in these indirect emissions. 
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Limited research has been carried out to calculate the emissions actually generated from 

ULEV’s. Well-to-wheels emissions is generally used where the emissions are calculated from 

how the fuel is produced and the way in which the vehicle is operated. In this study centre of the 

focus is on BEV’s however the information can easily be carried over to PHEV’s as well. For 

more detailed information on the emissions of PHEV’s the reader is directed to (Jung et Li 

2018).  

When compared with internal combustion engines (ICE’s) EV’s have many advantages 

including (Fiori et al. 2016):  

• Greater energy efficiency through the use of on-board electric devices. 

• Regenerative braking, reducing driving emissions. 

• The possibility of obtaining greener fuel sources. 

• Zero tailpipe emissions. 

• Less noise pollution. 

As already described in Section 3.3 regenerative braking allows EV’s to recover energy that is 

normally lost in the braking phase and convert it back into stored electrical energy. This is the 

opposite to the case of the traditional ICE vehicle where the energy generated from braking is 

lost as thermal losses. Several empirical studies have shown that EV’s consume less energy while 

driving in urban areas and are able to recover energy while braking (De Gennaro et al. 2014; 

Rambaldi et al. 2011). Traditionally the electric vehicle is thought of as an emission free vehicle, 

due to zero tailpipe emissions while on the move. However, the electricity that is needed to 

power the engine creates emissions on production/generation.  
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The amount of emissions is generally down to the fuel mix from the country of origin. The 

following research has taken data from the government fuel disclosure mix 2015 and 2017. The 

department for environment food & rural affairs (DEFRA) quotes the figure as being 0.527 

kg/kWh of electricity generated. This figure is used by businesses to provide a carbon emission 

estimation; a requirement for plc’s. The indigenous fuel mix for year 2015 and 2017 is shown in 

Figure 5.4.2.  

     The shift away from coal can be seen as can the increase in Bioenergy and waste. This shift 

towards a greener electricity fuel mix provides a direct reduction in BEV emissions. However 

due to the nature of Electric vehicles the emissions they create is entirely dependent upon the 

fuel mix in the country they are being used. In the combustion process of the different fuels each 

fossil; fuels emit differing amounts of CO2.  

The Fuel Mix for the period (01/04/2014 – 31/03/2015) can be seen in Table 5.4-2, which 

includes the transmission loss factor of 1.12. Please note that this is the overall energy source 

including energy produced from other countries hence the varying values when compared with 

the indigenous mix shown in Figure 5.4.3. 
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Figure 5.4.2 The Indigenous Fuel Mix for the U.K in 2015 & 2017 (Energy Trends 2019) 
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Using this information one can calculate the average kg of CO2 per kWh. This equates to 0.527 

kgCO2/kWh at the time of data recording. This value represents an average emission factor of 

the electricity generated in the UK. 

Table 5.4-2 The Fuel mix of the U.K with the estimated CO2 produced for each energy source (UK Government Fuel Mix 

Disclosure. 2017). 

Energy Source Residual % UK % CO2 (g/kWh) 

Coal 38.7 26.7 910 

Natural Gas 36.2 29.7 380 

Nuclear 14.2 22.2 0 (20.007 g/kWh) 

Renewables 4.6 19.3 0 

Other Fuels 6.3 2.1 600 

 

All conversion factors presented here are in units of CO2. CO2e this is the universal unit of 

measurement to indicate global warming potential (GWP) of Green Houses Gases (GHGs) 

expressed in terms of the GWP of one unit of carbon dioxide. The Residual % is nothing more 

than a grid emission factor. The residual mix incorporates the allocation of renewable energy by 

those who have purchased electricity tracking certificates like guarantees of origins (GOs). As it 

can be seen from Table 5.4-2 the emissions generated via Coal and Other Fuels produce 

significantly more CO2 emissions per kWh than other sources of energy. Though, this is often 

the cheapest form and as such is favourable in terms of cost. However long-term effects can bring 

serious detrimental environmental impacts. Other sources of fuel include pumped storage as 

well as alternative sources of electricity generated abroad and distributed to the U.K. Although 

Nuclear does not produce CO2 emissions as a direct product, there is the production of 

radioactive material. This is a major problem with nuclear energy and there is yet to be a viable 
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solution to this waste problem. The UK has introduced new planning regimes for its power 

generation recently. These include the installation of new nuclear reactors, large wind farms, 

reservoirs and railways (World Nuclear 2018). However, as this study is focused on the current 

fuel mix, the above issues are beyond the scope of this work.  

     The fuel mix varies dramatically over the course of a day. Peak and off-peak grid times involve 

a different combination of power sources resulting in varying emissions and evidently different 

prices.  

Figure 5.4.4 demonstrates how much these peak loads change over the course of the day. The 

values are calculated from (Gridwatch 2019) using the past history for the year 2015. Each data 

series is the average Wednesday electricity demand during the middle of each season. 

Wednesday was chosen as it is half way through the normal working week providing a good 

estimate on the demands when routing commercial vehicles during working hours. The peak 

hours can be seen to be around 16:00 to 19:00 with more being generated in winter. This is due 

to people arriving back from work and using appliances within their homes and the need for 

heating in winter. As the electricity demands change throughout the day so does the energy 
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source used to create electricity. A more detailed breakdown can be found at the renewable 

energy foundation (REF 2019), here the changes to the fuel mix during peak and low grid times 

can be seen. By looking at past data predictive models can be created to forecast the amount of 

emissions generated at certain times of the day generating accurate predictive emissions models 

for EV charging. Using this information on varying power demand shown in Figure 5.4.4 and 

linking to the UK fuel mix in Table 5.4.1 and emissions of those power sources an accurate 

emission evaluation can be achieved, we have implemented a simple breakdown of the results in 

Table 5.4-2 and provide an emissions cost to charge an EV with a 30kWh capacity at different 

times of day. Using Gridwatch (2016) historical data and averages throughout the seasons we 

were able to generate relevant fuel mixes for different times of the day. Charging a 30kWh 

electric vehicle produced the following emissions. 

Table 5.4-3 Emissions generated to charge a 30kWh EV during different times throughout the day 

Season 
Time of Day to 

recharge 
Emissions generated kgCO2 for 30kWh 

Winter 7:00 11.04 

Summer 7:00 7.52 

Winter 12:00 11.44 

Summer 12:00 7.46 

Winter 17:00 11.84 

Summer 17:00 7.44 

Winter 00:00 8.92 

Summer 00:00 7.04 

 

One can clearly see the benefits of scheduled charging when looking at the emissions generated 

at different periods throughout the day for the UK. The two days selected were the 30th of Jan 

2019 for the winter comparison and the 1st of August for the Summer. During winter months 
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energy consumption is much higher as can be seen in Figure 2.9, this has a direct effect on 

emission when charging EV’s. In the case above the difference of charging your 30kWh EV at 

17:00 and 00:00 in winter is a staggering 2.5kg. When looking at summer fluctuations the 

differences are noticeably less, and the benefits drops to 0.5kg when charging at night. Overall 

peak differences between the seasons can vary emissions by as much as 68%, during the day 

emissions can change as much as 33%. This case as mentioned is for the UK where renewable 

energy sources make up around 20% of the fuel mix. As this percentage is increased and 

electricity becomes greener the importance of charging times increases.  

5.5 Cost implications 

The cost of the various AFV’s vary according to their type. Costs are a large influence when 

considering what vehicle to purchase and can often put consumers off EV’s. While important to 

the general consumer, fleet owners are most effected by vehicle prices and is their main cost 

alongside fuel. In the UK, government is providing incentives for EV’s in a bid to make them 

more financially viable.  

 

PHEV – As the PHEV combines both conventional combustions engines with electric motors 

the cost is substantially more compared to its counterpart. The most popular PHEV in the 

UK is the Mitsubishi Outlander PHEV (Mitsubishi 2016) with an average retail price for a 

high spec vehicle of £36,000 after grants. A similar spec Mitsubishi Outlander conventional 

combustion engine is around £30,000 (Mitsubishi 2016). The increase in cost is mainly down 

to the battery and the additional research & design and the electronics needed in the 

production of the vehicle. The battery alone costs in the region of £230 per kwh (Nykvist et 

Nilsson 2015) and while PHEV’s batteries tend to be smaller than BEV the costs still add up 

as the capacity in the Outlander PHEV is 12kwh. Servicing costs are typically higher as well 

as specialist tools are needed. 
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E-REV – E-REV are typically less common than PHEV’s or BEV’s vehicle. Several 

manufacturers add in Range extenders as an additional option on standard BEV’s such as in 

the BMW i3 which costs an additional £2900 to the base models £34,070 price tag (Car Buyer 

2018) Current prices are difficult to find accurately due to the current lack of available models. 

 

BEV – BEV’s are increasing in popularity, this is a result of a rise in eco consciousness and 

also due to the reduction in cost thanks to lower battery production costs. Nykvist and Nilsson 

found that battery prices in 2015 were already below the target for 2017 (Nykvist et Nilsson 

2015). A typical BEV (Nissan Leaf 30kwh 2016) costs in the region of £25,000 where as a 

comparable spec combustion vehicle (Nissan Pulsar) is around £19,000 (Nissan UK 2016). 

These costs are potentially offset in the future due to the running costs compared between the 

two types over a certain number of miles and the government grant provided for the EV 

(Nissan 2016).  

 

HEV – HEV’s have been around for a while now and as such their value is considerably less. 

They were introduced before the mainstream BEV’s and since the increase in range allowance 

and PHEV’s are becoming increasingly uncommon. Batteries are guaranteed for 8 years and 

operate at 30-80% SOC to reduce stress and large voltage changes, however they provide a 

high cost low density solution, nearly all today use nickel metal hydride batteries (Zhou et al. 

2013) (Battery University 2016).   

 

FCEV – FCEV’s are relatively new technology and as a result their cost is typically very high. 

They are not readily available in most markets with the majority used currently in testing. 



 173 

Many countries are offering incentives for Electric Vehicles in a bid to make them more 

appealing to the consumers. Jin et al. (2014) suggest that these incentives are important factors 

when trying to promote electric car sales. Outside the UK, countries such as China, employs tax 

incentives when purchasing an EV. Exemption from acquisition and excise taxes can range from 

£4500 - £7500. In European countries other examples of cost incentives such as in Norway 

include BEV’s being exempt from VAT (Mock et Yang 2014). The UK government provides 

up to £4500 for cars and this increases up to £8000 for commercial vehicles (UK GOV 2016). 

The costs of batteries are a major reason why in general Electric vehicles are more expensive 

than their traditional internal combustion engine counterparts. Battery prices have recently hit 

their lowest cost for the last 9 years, and it is expected that as technology increases these costs 

will continue to drop. In 2013 the International Energy Agency (IEA) estimated that by the year 

2020 battery prices will fall low enough so that Electric vehicle match conventional vehicles with 

a cost of £220 per kilowatt hour of capacity. However current cost has already met this target 

with a current price of just £200 per kwh a fall of 73% since 2007 when the price was £760 per 

kwh (US Department of Energy 2016) (International Energy Agency 2019). This information 

provides encouraging signs on the possibility to manufacturer batteries at low prices enabling 

EV’s to be readily available to consumers at good prices.   

 

5.6 Modelling 

The Electric Vehicle Routing Problem (E-VRP) is a relatively new variant to VRP research. 

Although, recently with the increase in popularity in EV’s in general, there has been a noticeable 

increase in research within the area. This section introduces the EV model and then provides 

the reader with additional factors that can then be included within the model to allow for a 

realistic representation. It is hoped that the information provided within this section will stimulate 

further research within the area. 
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5.6.1 A Hyper Realistic Electric Vehicle Energy Consumption Model 

As mentioned previously the Electric Vehicle routing problem is a relatively recent variant of the 

traditional vehicle routing problem (VRP). Electric vehicles are becoming increasingly popular 

amongst individuals and companies as they provide an energy efficient alternative to traditional 

ICE (Internal combustion Engine) vehicles. An accurate model to predict and model the amount 

of power consumption for electric vehicles is of great importance when routing electric vehicles 

due to their strong dependence on range. The model needs to incorporate multiple factors that 

affect the battery in order to maximise the accuracy of the model. The proposed model here is 

an adapted one taken from that of X. Wu et al (2015), who also adopt much of their model on 

fundamental theories within physics, similar to that of Tanaka et al. (2008). 

 

5.6.1.1 Base EV Model 

The current model that is being created to include EV’s is as follows. The model is set up in a 

similar way to the traditional VRPTW although a number of constraints are added along with 

varying objective functions. The following is a simple electric model with a homogenous fleet. 

Let 𝑁 be a set of customers with demands of 𝑞! for customer i ∈ N, with time windows[𝑒! , 𝑙!]. 

A vehicle may arrive before service time and wait to start service. An unlimited fleet of EV’s is 

considered with capacity 𝑄 and battery capacity 𝐵. Vehicles must start and end at the depot. Let 

𝑅 be a set of recharging stations with an identical cost at each station. Travelling from customer 

𝑖 to customer 𝑗 incurs a cost	𝑐!", travel time 𝑡!" and energy consumption	𝑏!".  

A route is feasible if: 

• Each customer is visited once and only once (charging stations can be visited multiple 

times). 

• The total demand does not exceed the vehicle capacity. 
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• The Battery always has positive charge along a route. 

• Each time window is respected. 

Let ℎ!" = 𝛼𝑏!" be the time required to charge the consumed energy 𝑏!", where 𝛼 > 0 is a 

proportionality factor. Also, let 𝐻 = 𝛼𝐵 be the total time required to charge 𝐵 units of energy. 

(𝑖&, 𝑖*, … 𝑖#) are a set of sub paths with 𝑖& and 𝑖# having to end at a depot, and intermediate values 

(𝑖*, 𝑖+, … 𝑖#:&) are all customers. The battery constraint can be created as follows. 

                  ∑ 𝑏!&,!&'"
#:&
"%& ≤ 𝐵      (1) 

Or 

   ∑ ℎ!&,!&'"
#:&
"%& ≤ 𝐻       (2) 

The Objective function seeks to minimise total routing costs with constraints mentioned before. 

This objective function contains a large number of variables that are different for each feasible 

route. The energy that is being used in this model 𝑏!" between customer 𝑖 to customer 𝑗 must be 

calculated accurate. The model that is proposed in this thesis looks at extending that of X. Wu 

et al (2015) which is based on fundamental theories within physics. Our contribution follows as 

an extension which follows on from equation 15. 

    The instantaneous power of an EV is determined by vehicle speed, acceleration and the 

gradient. From basic physics the required tractive effort for all vehicles can be described using 

three major resistances: 

𝐹 = 𝑚𝑎 +	𝑅5 	+ 	𝑅34 	+ 	𝑅6      (3)

  

Where 𝐹 is the tractive effort (in N), 𝑚 is the vehicle mass (in kg), 𝑎 is the acceleration (in m/s2) 

and 𝑅5 , 𝑅34 and 𝑅6 are the aerodynamic, rolling and grade resistances respectively (in N). 𝑅5 , 𝑅34 

and 𝑅6 can be calculated in the following equations: 
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f
𝑅5 = 𝑘𝑣* =	 7

*
𝐶8𝐴2𝑣*

𝑅34 =	𝑓34𝑚𝑔
𝑅6 = 𝑚𝑔𝑠𝑖𝑛𝜃

     (4) 

Where 𝑘 is the aerodynamic resistance constant, determined by air density 𝜌 (in kg/m3), 

coefficient of drag is 𝐶8 and the frontal area of the vehicle is given by 𝐴2 (in m2). 𝑓34 is the rolling 

resistance constant and 𝑔 is the acceleration of gravity (𝑔 = 9.81 m/s2). 

Combining Equations (3) and (4) above provides: 

𝐹 = 𝑚𝑎 + 	𝑘𝑣* +	𝑓34𝑚𝑔 + 	𝑚𝑔𝑠𝑖𝑛𝜃   (5)

  

This equation shows the forces acting on a vehicle and can be used for both EV’s and ICE 

vehicles. Extending this for the required power for a vehicle travelling at a specific velocity can 

be estimated using the following equation: 

𝑝 = 𝐹𝑣	 = (𝑚𝑎 + 	𝑘𝑣* +	𝑓34𝑚𝑔 + 	𝑚𝑔𝑠𝑖𝑛𝜃)𝑣  (6)

  

𝑝 is the output power (in watts) of the vehicles provided by the input power 𝑃 (in watts). EVs 

tend to have much higher efficiencies than standard ICE vehicles mainly due to their low power 

losses through the electrical motor. In an electric vehicle the efficiency is around 90-95%, This 

is given by an efficiency factor 𝜂. 

𝑝 = 	𝜂	. 𝑃      (7) 

Ignoring power losses from the vehicle’s accessories at this point such as A/C and the heater. 

The majority of the power losses within an EV motor come from copper loss for the high current 

region in a DC motor or iron loss for an AC motor, (the majority of EV’s use AC motors, due 

to benefits with regeneration, their ability to provide continuous power and their sheer simplicity 

amongst others). Ohm’s law indicates that electrical power losses can be described as 𝐼*𝑟. Thus 

by reducing the current will result in greater resistive losses. Therefore, the efficiency factor 𝜂 is 

given by: 
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𝜂 = 	 (@:A
(3)

@
      (8) 

Where 𝐼 is the current (in Amps) and 𝑟 is the resistance of the conductor (in Ω). 

Using Equations 4 through to 6 provides the EV’s instantaneous power: 

𝑃 = 	 𝐼*𝑟 + 𝐹𝑣      (9) 

The Force 𝐹 is generated by the torque, 𝜏 of the motor. This can be further simplified as a 

product of the Armature constant 𝐾5, magnetic flux 𝜙0 and current 𝐼. 

𝐹 = 	 C
D
=	E)	.		H*	.		A

D
     (10) 

Where 𝜏 is the torque (in Nm), 𝑅 is the radius of the tire (in m), 𝐾5 is the Armature constant, 

𝜙0 is the magnetic flux (in webe) and 𝐼 is the current (in amps). For AC and DC motors the 

magnetic flux is different, for a DC motor 𝜙0 is determined by the current flowing through the 

armature coil and strength of the field magnets. For an AC motor 𝜙0 is the rms value of the 

direct axis air gap per pole. We can therefore simplify equation 8. 

𝐾 =	𝐾5	. 𝜙0      (11) 

When substituted into equation 10 gives: 

𝐹 = 	E	.		A
D

                (12) 

When combining equations 3, 7 and 10 it provides an EV’s instantaneous power estimation at 

speed 𝑣: 

 

𝑃 = 	 3	.		D
(

E(
	(𝑚𝑎 + 	𝑘𝑣* +	𝑓34𝑚𝑔 + 	𝑚𝑔𝑠𝑖𝑛𝜃)* + 𝑣(𝑘𝑣* +	𝑓34𝑚𝑔 + 	𝑚𝑔𝑠𝑖𝑛𝜃) + 𝑚𝑎𝑣   (13) 

 

This can be further broken down into the different losses as shown in equation (10). 
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𝑃 = 	𝑃9 +	𝑃I3 +	𝑃6          (14) 

𝑃9 =	 3	.		D
(

E(
	(𝑚𝑎 + 	𝑘𝑣* +	𝑓34𝑚𝑔 + 	𝑚𝑔𝑠𝑖𝑛𝜃)* is the power losses by the motor, 𝑃I3 =

	𝑣(𝑘𝑣* +	𝑓34𝑚𝑔 + 	𝑚𝑔𝑠𝑖𝑛𝜃) is the power losses because of travel resistance and 𝑃6 = 𝑚𝑎𝑣 is 

the possible energy that can be gained from acceleration. 

X. Wu et al (2015) carried out model evaluations and tests on instantaneous the power 

consumption model and was concluded that it accurately estimated an EV’s instantaneous power. 

The authors then continued to model the energy consumption over a whole trip. The total energy 

usage, 𝐸, which can be calculated by integrating the power, 𝑃, over the trip time, 𝑇. 

𝐸 = 	∫ 𝑃(𝑡)𝑑𝑡J
,          (15) 

This model provides good results with real life tests from Wu et al. (2015) with a mean absolute 

error (MAE) value of 15.6%. There is however potential to further adapt the model in order to 

create a more realistic model. Electric vehicles have additional factors that can effect power 

consumption and ultimately, range. As discussed in Chapter 5 Section 3.1 the Efficiency of the 

BEV can vary according to the Electric Motor Efficiency, the Drivetrain efficiency and the Battery 

Efficiency. 

• The internal resistance within the battery 𝑟, changes with temperature ultimately 

altering the efficiency of the battery.  

 

• The battery regeneration part of the equation has complex speed and SOC (state 

of charge) dependencies that manufacturers use. The battery cannot often enter 

regen mode when the battery is within 100-90% SOC due to the unnecessary 

increase in temperature. It also enters into different strength of regen at different 

speeds that was introduced by the manufacturer to make the car feel more 

natural when driving.  
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These can be incorporated into the model using results from research. As discussed before the 

internal resistance is largely affected by the temperature of a battery due to the ion movement.  

Battery temperature is related to charging times and can be largely affected by the weather also.  

We can look at adding our battery efficiency and battery regeneration into our instantaneous 

power so that now the instantaneous EV power found equation (14) can now be written as:  

	𝑃 = 	h	; 	(𝑃9 +	𝑃I 	+ 	𝑃6 	+ 	𝑃3)	           (16) 

Where h	; 	is now the battery efficiency and 𝑃3 is the possible energy that can be gained from 

regeneration. Battery efficiency, h	; can be considered to be a function 𝑓 of temperature  𝑇𝑒𝑚𝑝, 

as seen from our research and so we can break this down into the following.  

	h	; = 𝑓(𝑇𝑒𝑚𝑝)               (17) 

𝑓(𝑇𝑒𝑚𝑝) is a function of temperature that will have the limits to its efficiency when it is cold and 

when it is hot. Battery regeneration, 𝑃3 depends on several factors including speed, and the 

current state of charge and can be modelled as the following. 

𝑃3 = 	𝑔(𝑆𝑂𝐶) + 𝑃5K5!45L4<             (18) 

The regen power is a function 𝑔 depending on the stage of charge (𝑆𝑂𝐶) and the power available 

at the time 𝑃5K5!45L4<. We suggest that these two additions are investigated further with detailed 

breakdowns that then can be implemented into EV models allowing more accuracy when 

modelling. This accuracy is very important with EV’s as much influence is based on their range. 

By incorporating the information that has been shown earlier a more realistic model can be 

created and it is hoped that future researchers can expand and apply the suggested model. 

 

5.7 Summary 

The chapter sheds light on various options and features of the green technology-based vehicles 

in terms of emissions related to transport industry. It is perceived that the range of alternative 
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fuel powered vehicles is very diverse; carrying with them both advantages and disadvantages. As 

technology flourished consequently these characteristics may change, incorporating them within 

transport systems can not only provide better accuracy when developing transport routing 

strategies but they can also provide companies and policy makers with alternatives that can have 

a positive impact on the environment.  The incorporation of a structured EV network is key 

when looking towards a greener future, examples demonstrated in this chapter highlight the 

importance of charging times and the recent advancements in technology, with upto a 68% 

change in emissions depending on the season and as much as a 33% change during a day. 

Combining the two can help reduce air pollution and help fight climate change. The study in this 

chapter is also meant to trigger further research on fleet management modelling investigating 

features and options that are not incorporated in previously developed relevant models.  
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 Chapter 6  

6 Conclusions 

6.1 Research Summary 

The VRP and CVRP have been around for over 50 years and as such have had extensive research 

performed on them. Solution methods including exact, heuristic and metaheuristic have been 

performed comprehensively and as such there is now little/no scope for improvement with many 

best-known solutions for the benchmark data sets to be considered solved to optimality. The 

results from the VNS are acceptable although it is predicted that with a stronger shaking 

procedure creating more varied neighbourhoods’ further benefits can be achieved. The datasets 

that have been used in this thesis are from the Christofides et al. benchmark set (1979). Several 

researchers have tried to look at combining datasets and best-known values for a combination of 

different variants, however there is a lack of completeness, to the best knowledge the most up to 

date repository is maintained by Mendoza et al., (2014). The Green Vehicle Routing Problem is 

an area of great significance and the importance of providing clean air by reducing our emissions 

is forever growing. From the Literature gathered one can see the importance of the area, with 

governments and organisations imposing stricter regulations as well as providing their aims. We 

have provided several Platoon models and discuss several variants in detail. These platooning 

methods can allow large improvements in efficiency and although only small improvements have 

been shown so far with larger real life datasets it is hoped that this will increase when tested on 

more instances, particularly when datasets become clustered. With the introduction of driverless 

cars approaching the ability of platooning safely is a real possibility. We conducted a thorough 
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MPG experiment that can be used for future research to improve the accuracy of models, this is 

critical info that was based on real life data and tests. The extensive research on the battery 

technology applied to the VRP provides a great based for a new EV model, factors such as 

minimizing battery time left fully charged, regenerative braking and battery degradation from 

recharging have not been applied in the VRP area of research to the best of our knowledge. 

Papers surrounding the Electric VRP are minimal and as such only a few methods have been 

used to solve them and there is a gap for a range of heuristics and metaheuristic methods to be 

applied to this VRP variant. Accurate models for the energy consumption are key and sort after 

in literature with few taking all relevant factors into account. With most organisations looking to 

gradually invest in electric vehicles, replacing conventional vehicles with electric, a heterogeneous 

fleet is of great significance. Over-time has been overlooked in the electric vehicle routing 

problem, with the added option of over-time routes may be able to be optimised further.  

 

6.2 Future research 

Future suggested work includes the following.  

• Further investigation into the splitting point within platooning, relaxing the forced 

platoons. Identifying these splitting points has been shown to be crucial when 

planning to platoon and further methods of identifying these will provide 

operators more options.  

 

• Real life datasets should be created and applied to the platooning problem, 

where splitting points are confined to specific junctions on the main roads across 

the UK. With the routes confined to the actual roads there is further possibility 

of creating platoons and providing emission benefits.  
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• Further CFD modelling work on the air flow of HGV’s when platooning should 

be explored. This will allow more accurate modelling for vehicles of different 

sizes and effect of platooning at different distances. 

 
• Introduce the MPG experiment data into the models and also provide data for 

negative gradients. 

 
• Apply the EV model with the additional factors mentioned in this thesis to 

datasets and compare to other models within research. 

 
• Battery regeneration plays an important part for EV’s, real-life examples of 

battery regeneration along with a detailed scientific model can be compared and 

applied to an EV model. 

 
• Develop a new system that incorporates both platooning and electric vehicles. 

With the strict emissions policies and targets the UK are aiming for drastic 

measures need to be taken. Platooning and electric vehicles can both play a part 

in reducing these emissions and combining them will provide further benefits. 

 
• Carry out platoon model testing on more datasets with the scope of allowing 

platooning multiple times during a vehicles route. 
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8 Appendix 

Appendix 1 Savings 

1. Compute the savings 𝑠!" = 𝑐!, + 𝑐," − 𝑐!"  for customers 𝑖, 𝑗, where 𝑖, 𝑗 = 1,… , 𝑛 and 

𝑖	 ≠ 𝑗, 𝑐!" is the cost of travelling from customer 𝑖 to customer 𝑗. Create n vehicle routes 

(0, 𝑖, 0) for 𝑖 = 1,… , 𝑛. Order the savings in a non-increasing fashion. 

  

2. (Sequential) Consider each route in turn, (0, 𝑖, … , 𝑗, 0), define the first  saving 𝑠#! or 𝑠"4 

that can feasibly be used to merge the current route with another route ending with (𝑘, 0) 

or starting with (0, 𝑙). If feasible implement the merge and continue onto the next routes. 

If no feasible merge exists, consider the next route and apply the same operations. End 

when no feasible route merge is possible.  

 

Appendix 2 VNS Algorithm 

Initialisation:   

Variables and matrices are defined. C factor is set as 1. 

Data file is read and customers locations and demand are stored along with capacity 

constraint. 

 Starting times are set. 

 Capacity constraint is multiplied by the C factor value. 

 Initialise distance matrix 

 Calculate distance matrix 

 Initialise savings map 

 Calculate savings map 



 216 

Create seed routes within initial routes matrix i.e 0-1-0, 0-2-0,…0-n-0 where n = number 

of customers. 

 Calculate the route demands 

 Calculate the routes length 

Clarke and Wright Savings Method 

  Get the best nodes to connect from savings map 

  Find routes with the relevant nodes 

  Check the routes not to be equal 

  Merge the two routes 

 Repeat while savings map is not empty and initial routes matrix size !=1 

 

 

Perform Intraroute swap 

Selects the first customer of route 1 from a temporary routes matrix = to the initial 

routes matrix and tries to insert that customer into position 2, if shorter than previous 

route accept the route and set the initial routes matrix = temporary routes matrix, else 

temporary routes matrix = initial routes matrix e.g   

 

if (temproutelength < temproutelength2) 

 { 

routesMatrix[route] = temporaryroutesMatrix[route]; 

 improvement = 1; 

 } 

 else 

{ 
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temporaryroutesMatrix[route] = routesMatrix[route]; 

} 

 

then proceed to try and move customer 1 to position  3, once all customers in the route 

have been selected and shuffled within their respective routes the program moves onto 

the next routes and repeats until all customers within all routes have selected and shuffled. 

  

 Calculate the tour lengths 

 End initial clock for initial solution 

 Set starting neighbourhood for heuristic procedures. 

 Output route configuration 

 

Heuristic Start: 

Set up starting parameters and matrices setting the current best to the initial solution – 

VNS and local matrix = initial matrix 

K=0 

 VNS Loop k=k+1 

Local Search Loop (global improvement = false) if improvement is found within 

any local search routine this value becomes true, the local search loop will 

continue until this value has reached the end of the loop and is still false). 

   

Shift (2-0) (select the first route, select the first customer, try inserting the 

first and second customer into another route in position1. If better update 

best routes matrix. Once the first two customers have been inserted into 

all the available positions within all available routes the best configurations 
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is chosen and saved as the starting point for the next shift (a check to 

remove null routes is also conducted at this point to ensure no errors 

occur), i.e first route second and third customer. Once the algorithm has 

passed through all the routes and tried to insert each pair of customers 

into each position the best configuration is saved as the local search 

matrix. Continue to carry out shift (2-0) until there is no further 

improvement after selecting each pair and inserting. 

Finish clock for 2-0 shift 

Intrarouteswap 

   Two opt 

If better value is found when conducting 2-opt set new best = 

global best solution. 

Accept the best of all solutions i.e once finished set the routes 

matrix = global best matrix 

   Three opt 

If better value is found when conducting 3-opt set new best = 

global best solution. 

Accept the best of all solutions i.e once finished set the routes 

matrix = global best matrix 

 

   Remove null routes 

Output results 

If new solution is better than previous then global improvement = true. 

Insert (2-1) – same as previous shift (2-0) although also move one 

customer from route 2 into route 1. 
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Insert (1-0) – same as (2-0) although only moving 1 member from route 

1 into other routes.  

Swap (1-1) – swap a customer with another customer in another feasible 

route. 

Swap (2-2) – same as (1-1) although swapping 2 adjacent customers at 

once. 

  Repeat until global improvement = false. 

If the global best solution is better than the VNS best then update the Overall 

VNS Global best solution and matrix. 

 

VNS Shaking select a random route and a random customer to be inserted a new route, 

using a temp routes matrix = Overall VNS global best matrix.  

 

If k<50 then use new solution as a starting point for the local search loop and repeat. 

Else set the routes matrix = Overall VNS global best routes matrix. 

 

Two opt 

Three opt 

Output Route and store a file with graphical representation and full route information 

for best route matrix found. 

Calculate the route emissions and the gallons of fuel used. 

Store best solution within a set referenced by its capacity constraint. If user required reduce the 

C factor (capacity constraint) by 1% i.e 0.99 and recalculate the initial solution and repeat all from 

data read. 
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Output the best of the reduced capacity solutions and let user know which output file the best 

solution can be found.  

Appendix 3 -Table 6.2-1. Passenger and Van emissions (DEFRA 2015) 
      Diesel 
Activity Type Unit kg CO2e kg CO2 kg CH4 kg N2O 

Cars (by 
size) 

Small car 
km   0.14367    0.14192    0.00008    0.00167  
miles   0.231214   0.228398   0.000129   0.002688 

Medium car 
km   0.17561    0.17386    0.00008    0.00167  
miles   0.282617   0.279801   0.000129   0.002688 

Large car 
km   0.2252     0.22345    0.00008    0.00167  
miles   0.362424   0.359608   0.000129   0.002688 

Average car 
km   0.18232    0.18057    0.00008    0.00167  
miles   0.293416   0.290599   0.000129   0.002688 

Vans 

Class I (up to 1.305 tonnes) 
tonne.km   0.61214    0.607749   0.000215   0.004175 

km   0.144477   0.143441   0.000051   0.000985 

miles   0.232514   0.230846   0.000082   0.001586 

Class II (1.305 to 1.74 
tonnes) 

tonne.km   0.633423   0.628961   0.000141   0.004321 

km   0.228331   0.226723   0.000051   0.001558 

miles   0.367463   0.364875   0.000082   0.002507 

Class III (1.74 to 3.5 tonnes) 
tonne.km   0.502728   0.499203   0.000095   0.00343  

km   0.267749   0.265872   0.000051   0.001827 

miles   0.4309     0.427879   0.000082   0.00294  

Average (up to 3.5 tonnes) 
tonne.km   0.529972   0.526249   0.000108   0.003615 

km   0.24999    0.248233   0.000051   0.001705 
miles   0.402319   0.399493   0.000082   0.002745 

    Petrol 
    kg CO2e kg CO2 kg CH4 kg N2O 

Cars (by 
size) 

Small car 
km   0.15859    0.15807    0.00013    0.00039  

miles   0.255226   0.254389   0.000209   0.000628 

Medium car 
km   0.19931    0.19879    0.00013    0.00039  

miles   0.320758   0.319921   0.000209   0.000628 

Large car 
km   0.29074    0.29022    0.00013    0.00039  

miles   0.467901   0.467064   0.000209   0.000628 

Average car km   0.19126    0.19074    0.00013    0.00039  
miles   0.307803   0.306966   0.000209   0.000628 

Vans 

Class I (up to 1.305 tonnes) 
tonne.km   0.810251   0.806461   0.000831   0.002959 

km   0.190714   0.189822   0.000196   0.000696 
miles   0.306925   0.305489   0.000315   0.001121 

Class II (1.305 to 1.74 
tonnes) 

tonne.km   0.806109   0.802723   0.000743   0.002643 

km   0.2124     0.211508   0.000196   0.000696 
miles   0.341825   0.34039    0.000315   0.001121 

Class III (1.74 to 3.5 tonnes) 
tonne.km   0.483084   0.479559   0.00041    0.003115 

km   0.257481   0.255602   0.000218   0.00166  
miles   0.414375   0.411352   0.000352   0.002672 

Average (up to 3.5 tonnes) 
tonne.km   0.683723   0.6804     0.000647   0.002676 
km   0.20994    0.208919   0.000199   0.000822 
miles   0.337865   0.336223   0.00032    0.001322 
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Appendix 4 – CO2 Experiment Data 

Table 6.2-2 - MPG calculations 

    Small Van No Load     
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 11.1 178.1 0 189.148 42.6 
1 11.1 178.1 207 396.31 33.6 
2 11.1 178.1 414 603.408 27.4 
5 11.1 178.1 1035 1223.7 20.9 

       

8.94 

0 44.4 178.1 0 222.437 51.4 
1 44.4 178.1 207 429.598 42.3 
2 44.4 178.1 414 636.697 36.1 
5 44.4 178.1 1035 1256.98 24 

       

13.41 

0 99.9 178.1 0 277.918 53.4 
1 99.9 178.1 207 485.08 42.7 
2 99.9 178.1 414 692.179 36.1 
5 99.9 178.1 1035 1312.47 25.6 

       

17.8816 

0 178 178.1 0 355.624 54.2 
1 178 178.1 207 562.786 47.8 
2 178 178.1 414 769.884 40.8 
5 178 178.1 1035 1390.17 25.1 

       

22.35 

0 277 178.1 0 455.459 53.8 
1 277 178.1 207 662.621 43.4 
2 277 178.1 414 869.719 37.1 
5 277 178.1 1035 1490.01 24.5 

       

26.82 

0 399 178.1 0 577.518 51.3 
1 399 178.1 207 784.68 40 
2 399 178.1 414 991.779 33.9 
5 399 178.1 1035 1612.07 24.3 

       

31.29 

0 544 178.1 0 721.77 40.3 
1 544 178.1 207 928.932 36.1 
2 544 178.1 414 1136.03 32 
5 544 178.1 1035 1756.32 21 
       

35.76 

0 710 178.1 0 888.214 33.1 
1 710 178.1 207 1095.38 29.7 
2 710 178.1 414 1302.47 26.1 
5 710 178.1 1035 1922.76 ## 
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    Medium Van no load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 18.5 250.2 0 268.649 50.1 
1 18.5 250.2 291 559.703 35.3 
2 18.5 250.2 582 850.668 29.7 
5 18.5 250.2 1453 1722.15 18.2 

        

8.94 

0 74 250.2 0 324.13 67.8 
1 74 250.2 291 615.184 43.4 
2 74 250.2 582 906.149 30.6 
5 74 250.2 1453 1777.63 18.6 

        

13.41 

0 166 250.2 0 416.599 64.1 
1 166 250.2 291 707.653 44.7 
2 166 250.2 582 998.618 33.9 
5 166 250.2 1453 1870.1 19.8 

        

17.8816 

0 296 250.2 0 546.109 51.3 
1 296 250.2 291 837.163 40.3 
2 296 250.2 582 1128.13 33.5 
5 296 250.2 1453 1999.61 18.3 

        

22.35 

0 462 250.2 0 712.501 41.4 
1 462 250.2 291 1003.55 32.4 
2 462 250.2 582 1294.52 26.6 
5 462 250.2 1453 2166 18.4 

        

26.82 

0 666 250.2 0 915.933 38.1 
1 666 250.2 291 1206.99 31.7 
2 666 250.2 582 1497.95 25.6 
5 666 250.2 1453 2369.43 ## 

       

31.29 

0 906 250.2 0 1156.35 33.1 
1 906 250.2 291 1447.41 26.1 
2 906 250.2 582 1738.37 22.2 
5 906 250.2 1453 2609.85 ## 

       

35.76 

0 1184 250.2 0 1433.76 26.1 
1 1184 250.2 291 1724.81 21.7 
2 1184 250.2 582 2015.78 ## 
5 1184 250.2 1453 2887.26 ## 
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    Large Van no load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 22.6 273.7 0 296.309 26.5 
1 22.6 273.7 318 614.756 24 
2 22.6 273.7 637 933.107 22 
5 22.6 273.7 1590 1886.61 15 

        

8.94 

0 90.4 273.7 0 364.141 31.6 
1 90.4 273.7 318 682.588 26 
2 90.4 273.7 637 1000.94 24.2 
5 90.4 273.7 1590 1954.44 16.3 

        

13.41 

0 203 273.7 0 477.192 33.4 
1 203 273.7 318 795.64 28.1 
2 203 273.7 637 1113.99 26.4 
5 203 273.7 1590 2067.49 14 

        

17.8816 

0 362 273.7 0 635.53 35.6 
1 362 273.7 318 953.977 27.6 
2 362 273.7 637 1272.33 25.5 
5 362 273.7 1590 2225.83 14 

        

22.35 

0 565 273.7 0 838.959 35 
1 565 273.7 318 1157.41 28.1 
2 565 273.7 637 1475.76 26.2 
5 565 273.7 1590 2429.25 14 

        

26.82 

0 814 273.7 0 1087.67 35.1 
1 814 273.7 318 1406.12 28.5 
2 814 273.7 637 1724.47 24.2 
5 814 273.7 1590 2677.97 13.5 

        

31.29 

0 1108 273.7 0 1381.61 29.1 
1 1108 273.7 318 1700.06 21.7 
2 1108 273.7 637 2018.41 19.8 
5 1108 273.7 1590 2971.9 ## 

        

35.76 

0 1447 273.7 0 1720.76 23 
1 1447 273.7 318 2039.21 19 
2 1447 273.7 637 2357.56 16 
5 1447 273.7 1590 3311.06 ## 
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    Small Van 100kg load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 11.1 192.8 0 203.863 41.1 
1 11.1 192.8 224 428.145 32.4 
2 11.1 192.8 448 652.36 26.2 
5 11.1 192.8 1120 1323.91 19.2 

        

8.94 

0 44.4 192.8 0 237.152 50.5 
1 44.4 192.8 224 461.434 41.7 
2 44.4 192.8 448 685.649 35.5 
5 44.4 192.8 1120 1357.2 21.3 

        

13.41 

0 99.9 192.8 0 292.633 53.1 
1 99.9 192.8 224 516.916 43.5 
2 99.9 192.8 448 741.13 36.6 
5 99.9 192.8 1120 1412.68 24.5 

        

17.8816 

0 178 192.8 0 370.339 54 
1 178 192.8 224 594.622 46.2 
2 178 192.8 448 818.836 38.5 
5 178 192.8 1120 1490.39 24.2 

        

22.35 

0 277 192.8 0 470.174 53.6 
1 277 192.8 224 694.456 41.2 
2 277 192.8 448 918.671 36 
5 277 192.8 1120 1590.22 24 

        

26.82 

0 399 192.8 0 592.233 51.2 
1 399 192.8 224 816.516 38.5 
2 399 192.8 448 1040.73 33 
5 399 192.8 1120 1712.28 24 

        

31.29 

0 544 192.8 0 736.485 39.9 
1 544 192.8 224 960.767 35.8 
2 544 192.8 448 1184.98 31 
5 544 192.8 1120 1856.53 20 

        

35.76 

0 710 192.8 0 902.929 32.2 
1 710 192.8 224 1127.21 29.1 
2 710 192.8 448 1351.43 24.7 
5 710 192.8 1120 2022.98 ## 
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    Medium Van 100kg load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 18.5 264.9 0 283.364 48.2 
1 18.5 264.9 308 591.538 34 
2 18.5 264.9 616 899.619 28.6 
5 18.5 264.9 1539 1822.36 16.6 

        

8.94 

0 74 264.9 0 338.845 66.4 
1 74 264.9 308 647.02 42 
2 74 264.9 616 955.101 28.7 
5 74 264.9 1539 1877.84 16.8 

        

13.41 

0 166 264.9 0 431.314 63.5 
1 166 264.9 308 739.489 43.2 
2 166 264.9 616 1047.57 32 
5 166 264.9 1539 1970.31 17.3 

        

17.8816 

0 296 264.9 0 560.824 50.8 
1 296 264.9 308 868.999 39.3 
2 296 264.9 616 1177.08 31.8 
5 296 264.9 1539 2099.82 17.5 

        

22.35 

0 462 264.9 0 727.216 41 
1 462 264.9 308 1035.39 31.8 
2 462 264.9 616 1343.47 25.2 
5 462 264.9 1539 2266.21 17 

        

26.82 

0 666 264.9 0 930.648 37.6 
1 666 264.9 308 1238.82 31 
2 666 264.9 616 1546.9 24.8 
5 666 264.9 1539 2469.64 ## 

       

31.29 

0 906 264.9 0 1171.07 32.7 
1 906 264.9 308 1479.24 25.7 
2 906 264.9 616 1787.32 21.4 
5 906 264.9 1539 2710.06 ## 

       

35.76 

0 1184 264.9 0 1448.47 25.8 
1 1184 264.9 308 1756.65 21.5 
2 1184 264.9 616 2064.73 ## 
5 1184 264.9 1539 2987.47 ## 
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    Large Van 100kg load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 22.6 288.4 0 311.024 25.4 
1 22.6 288.4 336 646.592 22.7 
2 22.6 288.4 671 982.058 21 
5 22.6 288.4 1676 1986.82 14.2 

        

8.94 

0 90.4 288.4 0 378.856 30.7 
1 90.4 288.4 336 714.423 25.2 
2 90.4 288.4 671 1049.89 23.2 
5 90.4 288.4 1676 2054.65 15.3 

        

13.41 

0 203 288.4 0 491.907 32.6 
1 203 288.4 336 827.475 27.2 
2 203 288.4 671 1162.94 25.2 
5 203 288.4 1676 2167.7 13.5 

        

17.8816 

0 362 288.4 0 650.245 34.7 
1 362 288.4 336 985.813 27.1 
2 362 288.4 671 1321.28 25 
5 362 288.4 1676 2326.04 13.3 

        

22.35 

0 565 288.4 0 853.674 34.2 
1 565 288.4 336 1189.24 27.2 
2 565 288.4 671 1524.71 24.9 
5 565 288.4 1676 2529.47 13 

        

26.82 

0 814 288.4 0 1102.39 34.5 
1 814 288.4 336 1437.96 27.8 
2 814 288.4 671 1773.42 23.2 
5 814 288.4 1676 2778.18 12.2 

       

31.29 

0 1108 288.4 0 1396.32 28.5 
1 1108 288.4 336 1731.89 21.3 
2 1108 288.4 671 2067.36 19.6 
5 1108 288.4 1676 3072.12 ## 

       

35.76 

0 1447 288.4 0 1735.48 22.4 
1 1447 288.4 336 2071.05 18.6 
2 1447 288.4 671 2406.51 15.2 
5 1447 288.4 1676 3411.27 ## 
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    Small Van 200kg load  
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG  

4.47 

0 11.1 207.5 0 218.578 38.3  
1 11.1 207.5 241 459.981 30.3  
2 11.1 207.5 483 701.311 24.7  
5 11.1 207.5 1206 1424.12 18.6  

         

8.94 

0 44.4 207.5 0 251.867 46.8  
1 44.4 207.5 241 493.27 38.4  
2 44.4 207.5 483 734.6 32.8  
5 44.4 207.5 1206 1457.41 21.8  

         

13.41 

0 99.9 207.5 0 307.348 49.4  
1 99.9 207.5 241 548.752 39.2  
2 99.9 207.5 483 790.081 33.9  
5 99.9 207.5 1206 1512.9 23.4  

         

17.8816 

0 178 207.5 0 385.054 50.8  
1 178 207.5 241 626.457 44.4  
2 178 207.5 483 867.787 37.5  
5 178 207.5 1206 1590.6 23  

         

22.35 

0 277 207.5 0 484.889 50.8  
1 277 207.5 241 726.292 40.8  
2 277 207.5 483 967.622 34.3  
5 277 207.5 1206 1690.44 22.6  

         

26.82 

0 399 207.5 0 606.948 49.2  
1 399 207.5 241 848.351 37.7  
2 399 207.5 483 1089.68 31.5  
5 399 207.5 1206 1812.49 22.5  

         

31.29 

0 544 207.5 0 751.2 39.1  
1 544 207.5 241 992.603 34.4  
2 544 207.5 483 1233.93 29.9  
5 544 207.5 1206 1956.75 19.6  

         

35.76 

0 710 207.5 0 917.644 32.4  
1 710 207.5 241 1159.05 28.5  
2 710 207.5 483 1400.38 24.5  
5 710 207.5 1206 2123.19 ##  
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    Medium Van 200kg load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 18.5 279.6 0 298.079 45.5 
1 18.5 279.6 325 623.374 32.1 
2 18.5 279.6 650 948.571 27.1 
5 18.5 279.6 1624 1922.57 16.4 

        

8.94 

0 74 279.6 0 353.56 62.3 
1 74 279.6 325 678.856 39.8 
2 74 279.6 650 1004.05 28 
5 74 279.6 1624 1978.06 17 

        

13.41 

0 166 279.6 0 446.029 59.9 
1 166 279.6 325 771.325 41.4 
2 166 279.6 650 1096.52 31.3 
5 166 279.6 1624 2070.53 18.3 

        

17.8816 

0 296 279.6 0 575.539 48.6 
1 296 279.6 325 900.835 37.8 
2 296 279.6 650 1226.03 31.1 
5 296 279.6 1624 2200.03 17 

        

22.35 

0 462 279.6 0 741.931 39.5 
1 462 279.6 325 1067.23 30.7 
2 462 279.6 650 1392.42 24.8 
5 462 279.6 1624 2366.43 17.1 

        

26.82 

0 666 279.6 0 945.363 36.9 
1 666 279.6 325 1270.66 30.2 
2 666 279.6 650 1595.85 24 
5 666 279.6 1624 2569.86 ## 

        

31.29 

0 906 279.6 0 1185.78 32.4 
1 906 279.6 325 1511.08 25.1 
2 906 279.6 650 1836.27 20.7 
5 906 279.6 1624 2810.28 ## 

        

35.76 

0 1184 279.6 0 1463.19 25.8 
1 1184 279.6 325 1788.48 21 
2 1184 279.6 650 2113.68 ## 
5 1184 279.6 1624 3087.69 ## 
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    Large Van 200kg load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 22.6 303.1 0 325.739 24.3 
1 22.6 303.1 353 678.428 22.1 
2 22.6 303.1 705 1031.01 20.3 
5 22.6 303.1 1761 2087.03 13.6 

        

8.94 

0 90.4 303.1 0 393.571 29.3 
1 90.4 303.1 353 746.259 24.1 
2 90.4 303.1 705 1098.84 22.2 
5 90.4 303.1 1761 2154.87 14.8 

        

13.41 

0 203 303.1 0 506.622 31.5 
1 203 303.1 353 859.311 26.2 
2 203 303.1 705 1211.89 24.2 
5 203 303.1 1761 2267.92 13 

        

17.8816 

0 362 303.1 0 664.96 34 
1 362 303.1 353 1017.65 26.2 
2 362 303.1 705 1370.23 23.9 
5 362 303.1 1761 2426.26 13.1 

        

22.35 

0 565 303.1 0 868.389 33.7 
1 565 303.1 353 1221.08 26.8 
2 565 303.1 705 1573.66 24.5 
5 565 303.1 1761 2629.68 ## 

        

26.82 

0 814 303.1 0 1117.1 34.2 
1 814 303.1 353 1469.79 27.4 
2 814 303.1 705 1822.37 22.7 
5 814 303.1 1761 2878.4 ## 

        

31.29 

0 1108 303.1 0 1411.04 28.7 
1 1108 303.1 353 1763.73 21.3 
2 1108 303.1 705 2116.31 19 
5 1108 303.1 1761 3172.33 ## 

        

35.76 

0 1447 303.1 0 1750.19 22.9 
1 1447 303.1 353 2102.88 18.6 
2 1447 303.1 705 2455.46 ## 
5 1447 303.1 1761 3511.49 ## 
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    Small Van 500kg load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 11.1 251.6 0 262.723 28.6 
1 11.1 251.6 293 555.489 23 
2 11.1 251.6 585 848.165 18.4 
5 11.1 251.6 1462 1724.77 ## 

        

8.94 

0 44.4 251.6 0 296.012 37.8 
1 44.4 251.6 293 588.778 29.2 
2 44.4 251.6 585 881.454 26.2 
5 44.4 251.6 1462 1758.06 ## 

        

13.41 

0 99.9 251.6 0 351.493 39 
1 99.9 251.6 293 644.259 29.9 
2 99.9 251.6 585 936.936 26.2 
5 99.9 251.6 1462 1813.54 ## 

        

17.8816 

0 178 251.6 0 429.199 39.6 
1 178 251.6 293 721.965 31.1 
2 178 251.6 585 1014.64 25.6 
5 178 251.6 1462 1891.25 ## 

        

22.35 

0 277 251.6 0 529.034 40.5 
1 277 251.6 293 821.8 33.5 
2 277 251.6 585 1114.48 25.7 
5 277 251.6 1462 1991.08 ## 

        

26.82 

0 399 251.6 0 651.093 40.3 
1 399 251.6 293 943.859 32.8 
2 399 251.6 585 1236.54 25.2 
5 399 251.6 1462 2113.14 ## 

        

31.29 

0 544 251.6 0 795.345 32.8 
1 544 251.6 293 1088.11 30.6 
2 544 251.6 585 1380.79 ## 
5 544 251.6 1462 2257.39 ## 

        

35.76 

0 710 251.6 0 961.789 27.6 
1 710 251.6 293 1254.56 24.6 
2 710 251.6 585 1547.23 ## 
5 710 251.6 1462 2423.84 ## 
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    Medium Van 500kg load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 18.5 323.7 0 342.224 39.1 
1 18.5 323.7 377 718.882 27.5 
2 18.5 323.7 753 1095.42 23.2 
5 18.5 323.7 1881 2223.22 14.2 

        

8.94 

0 74 323.7 0 397.705 54.2 
1 74 323.7 377 774.363 34.7 
2 74 323.7 753 1150.91 24.5 
5 74 323.7 1881 2278.7 14.9 

        

13.41 

0 166 323.7 0 490.174 52.6 
1 166 323.7 377 866.832 36.7 
2 166 323.7 753 1243.38 27.8 
5 166 323.7 1881 2371.17 16.2 

        

17.8816 

0 296 323.7 0 619.684 43.1 
1 296 323.7 377 996.342 33.9 
2 296 323.7 753 1372.89 27.8 
5 296 323.7 1881 2500.68 15.4 

        

22.35 

0 462 323.7 0 786.076 35.2 
1 462 323.7 377 1162.73 27.5 
2 462 323.7 753 1539.28 22.1 
5 462 323.7 1881 2667.07 15.6 

        

26.82 

0 666 323.7 0 989.508 32.8 
1 666 323.7 377 1366.17 27.3 
2 666 323.7 753 1742.71 21.5 
5 666 323.7 1881 2870.5 ## 

        

31.29 

0 906 323.7 0 1229.93 29.1 
1 906 323.7 377 1606.59 23 
2 906 323.7 753 1983.13 18.9 
5 906 323.7 1881 3110.92 ## 

        

35.76 

0 1184 323.7 0 1507.33 23 
1 1184 323.7 377 1883.99 19.1 
2 1184 323.7 753 2260.54 ## 
5 1184 323.7 1881 3388.33 ## 
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    Large Van 500kg load 
Velocity 
(m/s) 

Angle / 
Gradient 

Ra 
(N) 

Rrl 
(N) 

Rg 
(N) 

Total 
(N) MPG 

4.47 

0 22.6 347.3 0 369.884 20.9 
1 22.6 347.3 404 773.936 19 
2 22.6 347.3 808 1177.86 17.4 
5 22.6 347.3 2018 2387.68 11.9 

        

8.94 

0 90.4 347.3 0 437.716 25.3 
1 90.4 347.3 404 841.767 20.8 
2 90.4 347.3 808 1245.69 19.2 
5 90.4 347.3 2018 2455.51 12.6 

        

13.41 

0 203 347.3 0 550.767 27.1 
1 203 347.3 404 954.819 22.4 
2 203 347.3 808 1358.75 20.8 
5 203 347.3 2018 2568.56 11.1 

        

17.8816 

0 362 347.3 0 709.105 29.2 
1 362 347.3 404 1113.16 22.6 
2 362 347.3 808 1517.08 20.7 
5 362 347.3 2018 2726.9 11.3 

        

22.35 

0 565 347.3 0 912.534 29.1 
1 565 347.3 404 1316.58 23.8 
2 565 347.3 808 1720.51 20.5 
5 565 347.3 2018 2930.33 ## 

        

26.82 

0 814 347.3 0 1161.25 29.4 
1 814 347.3 404 1565.3 23.7 
2 814 347.3 808 1969.23 19.1 
5 814 347.3 2018 3179.04 ## 

        

31.29 

0 1108 347.3 0 1455.18 25 
1 1108 347.3 404 1859.23 21 
2 1108 347.3 808 2263.16 16.2 
5 1108 347.3 2018 3472.98 ## 

        

35.76 

0 1447 347.3 0 1794.34 20.7 
1 1447 347.3 404 2198.39 16.9 
2 1447 347.3 808 2602.32 ## 
5 1447 347.3 2018 3812.13 ## 

            
 


