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Abstract
The population analysis of compact binaries involves the reconstruction of some
of the gravitational wave (GW) signal parameters, such as, the mass and the
spin distribution, that gave rise to the observed data. This article introduces
VAMANA, which reconstructs the binary black hole population using a mix-
ture model and facilitates excellent density measurement as informed by the
data. VAMANA uses a mixture of weighted Gaussians to reconstruct the chirp
mass distribution. We expect Gaussian mixtures to provide flexibility in model-
ing complex distributions and enable us in capturing details in the astrophysical
chirp mass distribution. Each of the Gaussian in the mixture is combined with
another Gaussian and a power-law to simultaneously model the spin component
aligned with the orbital angular momentum and the mass ratio distribution, thus
also wing us to capture their variation with the chirp mass. Additionally, we can
also introduce broadband smoothing by restricting the Gaussian mixture to lie
within a threshold distance of a predefined reference chirp mass distribution.
Using simulated data we show the robustness of our method in reconstruct-
ing complex populations for a large number of observations. We also apply
our method to the publicly available catalog of GW observations made during
LIGO’s and Virgo’s first and second observation runs and present the recon-
structed mass, spin distribution, and the estimated merger rate of binary black
holes.
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1. Introduction

The tally on the number of observed binary black hole mergers is increasing [1–7]. Currently,
data until the end of the first half of the third observation run is publicly available when there
were around 50 confirmed observations [8]. Multiple observations are facilitating the modeling
of population level properties of these binaries. Although the first results presenting the recon-
structed mass, spin and redshift distribution show large credible intervals amounting up to two
orders of magnitude, the uncertainties are expected to reduce as the catalog of observations
grow in number [7]. However, some of the factors contributing to this uncertainty may not be
completely mitigated by only increasing the catalog size. This is primarily because the gravi-
tational waves (GW’s) provide information on those signal parameters that directly impact the
phase evolution. For most of the observations, the phase evolution of GW’s is dominated by
the chirp mass (M) and a combination of mass ratio and an effective-spin term (χeff ). These
are defined as

M =
(m1 m2)(3/5)

(m1 + m2)(1/5)

χeff =
s1z + q s2z

1 + q
, (1)

where q ≡ m2/m1 is the mass ratio corresponding to the component masses of the binary m1

and m2, and s1z and s2z are the component of the spins aligned with the orbital angular momen-
tum [9–15]. Similarly, the amplitude is directly affected by a combination of the redshift and
the inclination angle [16]. Moreover, chirp mass is completely degenerate with the redshift.
Thus, there occurs a large uncertainty in the measurement of the component masses and the
spins.

Yet another source of uncertainty is introduced by the methodology used in reconstruct-
ing the population properties. If the methodology does not model the population properly, the
reconstruction may miss the intricate features in the distribution. Multiple methods have been
developed to model the population properties of the binary black holes [17, 18, 18–29]. Often
these methods assume a phenomenological shape for modeling the distribution of a property.
For example, power-law distribution has been often used in modeling the component or the
chirp mass distribution [17–20, 30]. An alternative approach is to perform a model-independent
fitting like described in [31–33] ([33] discuss efficient modeling of the masses and spins on
simulated data that does not suffer from selection bias).

In this article we describe VAMANA, a mixture model framework for reconstructing the
population properties. We model the chirp mass distribution using a mixture of weighted Gaus-
sians which we expect to be capable of modeling a variety of complex distributions [34].
Multiple binary formation channels can introduce features in the mass spectrum [28, 35–37]
and thus modeling the chirp mass distribution, which is not known a priori, using a mixture
model makes intuitive sense. Additionally, we combine each of the Gaussian in the mixture
with another Gaussian and a power-law to simultaneously model the spin component aligned
with the orbital angular momentum and the mass ratio distribution. This also allows us to
capture their variation with the chirp mass. We further discuss the method in section 2 and
present results for modeling performed on simulated and publicly available data in section 3.
VAMANA is available online [38].
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2. Method

The methodology to model population properties of merging compact binaries has been
discussed in multiple publications [39–41]. Following [40], the posterior on model hyper-
parameters is given by equation (2),

p
(
λ| {d}

)
∝

Nobs∏
i=1

∫
dθ p

(
di|θ

)
p
(
θ|λ

)∫
dθ pdet (θ) p

(
θ|λ

) p (λ) ≡ eLp (λ) , (2)

where d ≡
{

d0, . . . , dNobs

}
is the set of observations,λ is the population model, θ are the signal

parameters and pdet(θ) encodes the probability of an event with signal parameters θ to be
observed with confidence. p(λ) is the prior probability on the model hyper-parameters and
L is the log-likelihood. The analysis samples model hyper-parameters using Markov Chain
Monte Carlo (MCMC) and thus does not require the normalisation constant for equation (2).
In practice equation (2) is estimated using discrete samples. Parameter estimation (PE) analysis
samples p(di|θ) for a population model p(θ|λPE) [42], and large scale injection campaign are
performed to estimate the sensitivity of the detector network for a population model p(θ|λinj)
[17]. Both the numerator and the denominator are then calculated for a target population p(θ|λ)
using importance sampling [39, 43]. We note that the denominator in equation (2), V(λ) ≡∫

dθpdet(θ)p(θ|λ), makes correction for the selection bias and is termed the sensitive volume
for the population p(θ|λ) [43].

2.1. Choice of signal parameters

The signal parameters are broadly categorised as (a) intrinsic signal parameter: that are directly
responsible for the orbital evolution of the binary, such as, masses, spins, tidal deformability,
eccentricity, periastron distance, etc, and (b) extrinsic signal parameters: that are observer-
dependent, such as, luminosity distance, inclination of the binary from the line of sight, sky
location, coalescence phase of the GW signal and coalescence time of the GW signal. Masses,
spins, and redshift are signal parameters of primary interest for the binary black hole popula-
tion. Usually, component masses, spin magnitude, and tilt-angle are chosen as the population
property for reconstruction [19]. However, only a few parameters are directly responsible for
the GW signal’s phase evolution. The dominant term for a binary’s phase evolution is the chirp
mass [9]. The second leading order is a function of χeff and q [9, 10, 14]. At this order, a high
χeff —low q binary is indistinguishable from a low χeff —high q. The presence of this degen-
eracy between the masses and spins can be observed in most of the observations. Only for a
small number of observations the individual spins or mass ratios are measurable. Taking the
example of the recently announced asymmetric binaries GW190412 and GW190814 [44, 45],
that were observed at a high signal-to-noise ratio (SNR) and with evidence of contribution from
the higher harmonics in the signal, the spins on the primary mass was measurable but limited
constraints were put on either the secondary spin magnitude or the tilt-angle respectively.

As not all the masses and spins are measured accurately, when reconstructing population
properties, one may expect that by using priors close to the true astrophysical distributions
the overall statistics will converge to the true astrophysical distribution for a large number of
observations. Alternatively, it has been shown explicitly in [46] and argued in [40] that different
priors on masses result in different inference on the spins and vice-versa. Moreover, the signal
parameters are estimated with the assumption that the underlying noise in the instrument is
Gaussian, however, as this is rarely the case, even with good priors the inference on the masses
and spins may become biased and the reconstructed population may not converge to the true
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distribution even with a large number of observations. It is conceivable that a combination of
improper prior with the non-convergence to the true distribution can result in biased inference
on the population.

Most of the observations will not have signature for higher harmonics or precession [47,
48]. Thus, we choose signal parameters that are measured accurately. We choose chirp mass
as a population property as it is measured accurately for a wide range of masses [14, 49].
Additionally, we choose mass ratio and component of the spins aligned with the orbital angular
momentum as the other population properties. Furthermore, we assume the same distribution
for both the spins. This choice abates the degeneracy in the masses and spins by favoring
population models that can produce a small value of χeff due to small value of s1z and s2z and
disfavouring population models that can produce a small value of χeff by a large positive value
of s1z and a large negative value of s2z or vice-versa. Thus we choose to model the intrinsic
signal parameters using distributions totaling three (θ ≡ M, q, sz)1.

2.2. Modeling using Gaussians

Gaussian mixtures are often used in classifying or modeling the probability density of the
observed data. A Gaussian mixture can also approximate a function with the hyper-parameters
of the components calculated using expectation–maximisation [51, 52]. In a Bayesian setting,
likelihood is expressed as a sum of mixtures with an assumed prior distribution of the mixture
hyper-parameters [53]. The number of components in the mixture can be fixed with the number
of components chosen based on the goodness of fit and the complexity of the mixture [54, 55]
or can be flexible as informed by the data [56].

In this analysis we model the population using a mixture of components. To effectively
capture the variation of the mass ratio and the aligned spin component with the chirp mass,
each component comprises of a Gaussian to model the chirp mass, another Gaussian to model
the aligned spin components and a power-law to model the mass ratio distribution. Equation (3)
describes the distributions used in modeling the population. The notations used in this model
are described in table 1,

p(θ|λ) ≡ Π(M, q, s1z, s2z)

=

N∑
i=1

wiφ(M|μM
i , σM

i )φ(s1z, s2z|μsz
i , σsz

i )P(q|αq
i , qmin

i , 1.0). (3)

Probability distribution in equation (3) is extended to include the merger rate by incorporating
the Poisson term [57]

p(μ) =
μ−Nobs e−μ

Nobs!
, (4)

where μ = RV(λ) is the expected number of observations for the merger rate R.
The posterior on the hyper-parameters of the reconstructed population, p(θ|λ), are obtained

by using Metropolis–Hastings sampling [58]. Proposals of hyper-parameters are made and
acceptance probability is calculated using proposal distribution and the full joint density L.

1 It has been suggested that the primary and the secondary black holes can have different spin distribution (e.g. see
[50]); if future observations corroborate this suggestion, extending VAMANA to include s2z is straightforward.
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Table 1. Description of notations used in describing the model.

λ Prior Minimum Maximum Proposal Scale/DOF/width of
value value distr. the proposal distr.

μM
i Uniform in log Fixed Fixed Uniform See equation (7)

σM
i Uniform Fixed ∝μM

i /
√

N Chi-square Variable
μsz

i Uniform Fixed Fixed Uniform See equation (7)
σsz

i Uniform Fixed ∝1/
√

N Chi-square Variable
qmin

i Uniform Fixed Fixed Normal Fixed
αq

i Uniform Fixed Fixed Normal Fixed
wi Uniform Fixed Fixed Dirichlet Variable
R Uniform in log Fixed Fixed Normal Fixed

2.3. Constraints and smoothing

The proposed chirp mass in VAMANA is a combination of Gaussians with no constraints on
their scale or location and thus to contain the error encountered in importance sampling while
evaluating equation (2) we constrain the Gaussians modeling the chirp mass distribution to
have σM

i always larger than 0.05 μM
i and the Gaussians modeling the aligned-spin distribution

to have σsz
i larger than 0.05. This condition ensures that Gaussians have scales larger than the

usual standard deviation for the parameter estimates of M/χeff for most of the observations.
To help with better observing features and trends we can also introduce a broad-band

smoothing by using a reference population. We can perform this by iteratively changing the
hyper-parameters of a simple phenomenological model that uses,

• A power-law with fixed cutoff range to model the chirp mass distribution, p(M) =
P(M|Mmin,Mmax,αM

reference), where we set the cut-offs at the first percentile of the chirp
mass estimates of the lightest binary black hole observation (Mmin

s ) and at the eighti-
eth percentile of the chirp mass estimates of the heaviest binary black hole observation
(Mmax

s ). Although seemingly arbitrary, these are broad choices and have a negligible
impact on the results as the PE samples have negligible support outside this range.

• A truncated Gaussian with boundaries at smax
z = ±0.99 to model the spin distribution,

p(sz) = ψ(sz|μsz
reference, σsz

reference).
• And a power-law distribution with boundaries at 0.1 and 1 to model the mass ratio

distribution, p(q) = P(q|0.1, 1.0,αq
reference).

and identify the maximum likelihood fit as the reference population. There are four hyper-
parameters in our phenomenological model. We update the values of the hyper-parameters to
the ones drawn using normal distributions around the current values every-time the likelihood
increases.

In equation (5) we define a distance measure reff , inspired from the idea of importance
sampling,

reff =
1
n

∑i=n
i=1wi

max(w)
,

wi =
P(Mi|λproposed)
P(Mi|λreference)

, (5)
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Table 2. Hyper-parameters used in VAMANA.

N Number of components in the mixture s2z Second aligned spin component
wi Mixing weights μsz

i Mean of the Gaussians modeling the
aligned spin distribution

φ Normal distribution σsz
i Standard deviation on the Gaussian

modeling the aligned spin distribution
M Chirp mass P Powerlaw distribution
μM

i Mean of the Gaussians αq
i Slope of the power-law

modeling the chirp mass
σM

i Standard deviation of Gaussians qmin
i Minimum value of the mass

modeling the chirp mass ratio (maximum is one)
s1z First aligned spin component L Log likelihood

Figure 1. An example elucidating the procedure to make proposals for μM
i and μsz

i . The
locations of Gaussians modeling the chirp mass/aligned-spin are sampled by making
proposals uniformly between xmin and xmax. The procedure to calculate xmin and xmax is
described in equation (7). The dashed lines in the plots show the interval in which the
next proposal is made for a Gaussian located at the solid line. The width of the interval
is smaller where the change in density is steep as shown by the green lines and larger
where the change in density is shallow as shown by the red lines. The width of the support
interval depend on the reference population as well as δF .

where w ≡ (w0, . . . ,wn) are ratios of the probabilities calculated on n chirp mass bins centered
at Mi. This measure is closely related to the Euclidean distance-squared between the refer-
ence population’s chirp mass distribution and a proposed chirp mass distribution as defined in
equation (6) with p = 2 [59],

Lp =

∫ (
p(M|λproposed) − p(M|λreference)

)p
dM. (6)

We can expect the reference chirp mass distribution to have an L1 value close to zero for the
true chirp mass distribution for a large number of observations. Additionally, we do not expect
our simple phenomenological model to fit the data very well, and thus L2 value will be non-
vanishing and will depend on the complexity of the true distribution. Hence we can employ
the Gaussian mixture to explore the chirp mass distribution in the vicinity of the reference
distribution and putting a threshold on the distance between the reference and the proposed

6
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Figure 2. An example prior distribution for the case of two Gaussians obtained by per-
forming the analysis with a flat likelihood and no smoothing. The red curves are the
expected distributions.

chirp mass distribution provides broadband smoothing. Unlike a phenomenological function
that gets modified throughout the chirp mass range, we explore all distributions—expressible
as the sum of weighted Gaussians—that are within a distance measure from the reference chirp
mass distribution. Although a threshold can be applied on either reff or Lp, we choose to put a
threshold on reff . reff lies between zero and one with a threshold of zero allowing the mixture
of Gaussians complete freedom and a threshold of close to one requiring proposed chirp mass
distribution to be close to the reference chirp mass distribution.

7
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Figure 3. The reconstructed (top) chirp mass, (bottom) mass ratio and aligned spin
distribution for the toy models described in equation (8). The curves are the mean dis-
tribution with shaded region representing the 90% credible interval. The dashed curves
are the true distributions. The reconstructed mass ratio and aligned spin distributions
distribution have been marginalised over the chirp mass.

2.4. Priors and proposals

Table 2 lists the prior applied on the hyper-parameters. Except for the location of Gaussians
modeling the chirp mass and the merger rate, that follow a uniform-in-log prior, a uniform prior
is applied on all the remaining hyper-parameters. The range of all the priors is fixed except for
the maximum value of σM

i which is chosen proportional to μM
i /

√
N and for the maximum

value of σsz
i which is chosen inversely proportional

√
N. With these choices, the mean of the

chirp mass distribution corresponding to the hyper-parameter priors is approximately uniform-
in-log and the priors on the chirp mass, aligned-spin, and mass ratio remain almost unchanged
for a wide range of component number. This will also provide consistent scaling when the
number of components is increased to model a bigger GW catalog in the future. The prior
on the merger rate is scale-invariant and does not contribute to the posterior of other hyper-
parameters [60]. The scale-invariant uniform-in-log prior on μM

i also keeps the prior intact
in the event its ranges needs adjustment due to the addition of future observations with chirp
masses outside the current range.
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Figure 4. The plot shows the reconstruction of aligned spin and mass ratio as dependent
on the chirp mass for the model (ib). There are ten contours in each plot showing equally
spaced credible intervals with the first one for the 5% confidence and the last one for the
95% confidence.

The scales of the Gaussians modeling the chirp mass and the aligned-spins are proposed
using the χ2 distribution. To avoid Gaussians getting stuck at local maxima each proposal
is made using a different value of the degrees of freedom (DOF) with these values drawn
from a uniform distribution. A large value of DOF proposes closer to the current value of
the scale while a small value of DOF proposes farther from the current value of the scale. The
hyper-parametersαq

i , qmin
i , and merger rate are proposed by drawing from a normal distribution

around the current values. The scale of the proposing Gaussians is pre-fixed. We use Dirichlet
distribution to propose the mixing weights with DOF drawn from a uniform distribution.

Astrophysical chirp mass distribution is expected to have a fall-off similar to a power-law
distribution, thus a shift in the location of a Gaussian at lower chirp mass will cause a larger
change in the likelihood compared to the same shift in the location of a Gaussian located at a
higher chirp mass value. The spins have been measured to be low and distributed normally [6],
thus a shift in the location of a Gaussian at lower aligned/anti-aligned spin value will cause a
larger change in likelihood compared to the same shift in the location of a Gaussian located
at a higher aligned/anti-aligned spin value. To sample the posteriors efficiently the location of
Gaussians are proposed using uniform distribution but with support range adjusted according
to the current location. For the current location x, the support range [xmin, xmax] is calculated
using the following prescription,

xproposed = U(xmin, xmax),

xmin = F−1(maximum(0,F (x) − δF )),

xmax = F−1(minimum(1,F (x) + δF )), (7)

where U is the uniform distribution,F is the cumulative density function andF−1 is the inverse
distribution function corresponding to Pref(M) or ψref(sz). δF determines xmin and xmax, and
directly impacts the interval [xmin, xmax]. We show this pictorially in figure 1.

We have verified that the analysis reproduces the priors for the case of flat likelihood. We
show this in figure 2. The number of Gaussians and the ranges or the hyper-parameters will
need to be modified as catalog for the observations grows in size. We discuss this further in the
context of the presented results in subsection 3.2.
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Figure 5. Prior chirp mass, mass ratio, and aligned spin-distribution were obtained by
performing the analysis with a flat likelihood with no smoothing constraints. (Top) The
shaded region is the 90% credible interval for the chirp mass. The black curve is the
mean distribution and the dashed black curve is the uniform-in-log distribution. The red
dashed lines are the boundaries Mmin

s and Mmax
s , and the blue curve is obtained by

stacking the chirp mass estimates of all the observations into a histogram, (bottom) the
shaded 90% credible interval for mass ratio and aligned-spin distribution corresponding
to the priors used in this analysis. The curves are the mean distribution.

3. Results

In this section, we discuss the robustness of VAMANA in reconstructing complex distributions
using toy models that mimic the primary features of a full analysis. We also apply the analysis
on the publicly available data and present the reconstructed mass and spin distribution, and the
estimated merger rate for binary black holes.

3.1. Toy model

In an analysis with the real data, the presence of measurement uncertainty requires the
likelihood to be marginalised over it and presence of selection effect requires proper re-scaling

10
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Table 3. Marginal likelihood for analysis with different number of components. For a
larger component number, marginal likelihood monotonically decreases. The marginal
likelihood remains unchanged for a wide range of component number. We cannot con-
clude the most optimum component number and present results for reconstruction that
uses six components.

# of components 3 4 5 6 7 8
Marginal likelihood 324.3 324.5 324.5 324.5 324.4 324.2

Figure 6. (Left) The natural log of the likelihood defined in equation (2) showing no
visible trend in their values indicate proper convergence of the sampler. (Right) The
salmon band is the 90% confidence of the cumulative probability of the posterior predic-
tive obtained after applying selection effects to the reconstructed chirp mass distribution.
The gray band is the 90% confidence obtained by bootstrapping various realisations of
the observed data. Each realisation of the observed data is generated by re-weighting
the chirp mass estimate of the observations to the reference population and selecting
one data point from each one of them. The observed data is enclosed within the 90%
confidence of the posterior’s prediction.

of the density. We have verified that both these procedures are performed accurately. Thus, we
directly focus on the modeling capability of the analysis by concocting two complex toy model
populations with distribution defined as,

(ia) p(M) = P
(
M|Mmin = 8.0M�,Mmax = 46.0M�,α = 2.5

)
or

(ib) p(M) = 0.85 × P
(
M|Mmin = 6.0M�,Mmax = 46.0M�,α = 2.0

)
+ 0.1 × φ

(
M|μ = 20M�, σ = 2M�

)
+ 0.05 × φ

(
M|μ = 30M�, σ = 3M�

)
(ii) p(sz) = φ

(
sz|μ =

((
M
5.0

)1/4

− 1

)
/3, σ = 0.1

)

(iii) p(q) = P
(
q|qmin = 0.1, qmax = 1.0,α = −2.0

)
. (8)
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Figure 7. (Top) The reconstructed chirp mass distribution. The dark salmon band is the
50% credible interval, the light salmon band is the 90% credible interval and the salmon
curve is the mean distribution, (bottom) the reconstructed primary mass distribution. The
salmon band is the 90% credible interval and the salmon curve is the mean distribution.
For comparison, the reconstructed primary mass corresponding to model C from the
LIGO/Virgo analysis is shown in blue color [19]. The figure also includes the mean
distribution obtained by analysis using four and eight components.

and simulating data directly from this population. For these analysis we generate 1000 simu-
lated data points and use nine Gaussians to reconstruct the population. The primary goal of the
analysis is to verify a bias free methodology. Figure 3 plots the reconstructed population and
figure 4 plots the reconstructedM− sz andM− q distribution. The reconstructed distribution
show excellent agreement with the true distribution.

We estimate the significance of any feature extracted by the analysis by making compar-
isons. For example, we can compare the significance of the two peaks in the reconstructed
mean by comparing them with the underlying power-law distribution in the (ib) distribution.
For this case we obtain a log Bayes factor of 98 and 43 respectively, i.e. the peaks are highly
significant compared to the underlying power-law distribution. On the other hand, our (ia) dis-
tribution reconstructs a seemingly spurious peak centered at 38M�. However, we calculate a
log Bayes factor of around 1 when we compare this peak with the true distribution, i.e. this
peak is barely worth mentioning.

12
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Figure 8. The posterior on the mass ratio (q) and aligned spin component (sz). The
salmon band is the 90% credible interval and the curve is the mean value. These
distributions evidently favor closer to unity mass ratios and small magnitude for the
spin-components aligned with the orbital angular momentum.

Figure 9. The variation of the aligned-spin and mass ratio with the chirp mass of. Due
to the higher spin of GW151226, there is support for a positive spin for low masses. For
heavier masses the spins are small. The mass ratio remains close to one throughout the
chirp mass range. There are ten contours in each plot showing equally spaced confidence
intervals with the first one for 5% confidence and the last one for the 95% confidence.

3.2. Reconstruction using observed GWs

In this section, we further discuss methodology by presenting the results obtained for the obser-
vations made during LIGO’s and Virgo’s first and second observation run [1]. The analysis that
uses all publicly available observations is discussed in a separate article [61]. We only select the
events with a false alarm rate of at most once in five years in PyCBC or GstLAL search analy-
sis [62, 63]. PE samples of these observations are publicly available along with the prior used
in producing these samples [64]. PE analysis samples were generated using a stochastic sam-
pler LALInference [42]. Independent searches have reported few more GW observations [2–5]
but we leave these observations out until a unified framework is in place that can consistently
include observations made by many independent searches. Sensitive volume is estimated on the

13
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Figure 10. The posterior on the measured rate. The 90% confidence interval, enclosed
within the dotted lines, is [11.2–49.3] Gpc−3 yr−1.

recovered injections that follow the power-law distribution in chirp mass and mass ratio, and
uniform distribution in aligned spin components. Injections are distributed uniformly in extrin-
sic signal parameters, except the redshift, for which they are distributed uniform-in-comoving
volume. The recovered injections are defined as the ones that cross a network SNR of 9.0 on a
given power spectral density (PSD). We use multiple PSDs chosen uniformly over the observa-
tion time. The threshold of 9.0 is chosen as all the observations have been observed at a higher
SNR by the search analysis, moreover, a simple quadrature sum suggests that the contribution
from instrument noise is low at this SNR threshold enabling our method in estimating SNR
similar to an actual search analysis. However, we expect the sensitive volume estimation to be
approximate and may result in a slightly biased reconstruction.

Instead of listing the hyper-parameter ranges, we show the distribution of chirp mass, mass
ratio, and aligned-spin corresponding to the priors used in figure 5. We have performed the
analysis using a number of components between 3 and 8. Table 3 lists the marginal log likeli-
hood for these analyses. The marginal likelihood remains mostly unchanged for a wide range
of component number2. We present results that use six components. Moreover, we have chosen
to not apply any smoothing. We perform sanity checks to verify if the observed distribution
is consistently predicted by the reconstructed distribution. We also check if the sampler has
converged by observing the presence of any trend in the likelihood value of the posterior. Both
of these checks are presented in figure 6.

Figure 7 plots the chirp mass and the primary mass distribution. The primary mass distri-
bution is obtained by making a variable transformation. The figure shows the reconstructed
primary mass distribution obtained using ‘model C’ in the LIGO/Virgo analysis [19]. It also
shows effect of changing the number of components in the analysis. The reconstructed mean is
consistent for most of the mass range except for the feature at around 18M� which is increas-
ingly pronounced with the increase in the number of components. This feature is primarily
due to the observation GW151012. The four component analysis is most consistent with the
LIGO/Virgo analysis but the six component analysis is most favored. As the analysis is data

2 To calculate an approximate value for the marginal likelihood we use the prescription defined in [65].

14



Class. Quantum Grav. 38 (2021) 155007 V Tiwari

Figure 11. The curves are the mean reconstructed chirp mass and the bands are the 90%
credible interval. The salmon plot has no smoothing applied, while the blue curve applies
reff = 0.2.

driven it is expected that fluctuation in data can give rise to features in the reconstructed mean.
However, the significance of a feature can be estimated in various ways, e.g. (i) by comparing
the mean distribution with feature replaced by a best fit powerlaw, (ii) by making a comparison
with the mean reconstruction obtained using a phenomenological model, and (iii) by compar-
ing two reconstructions obtained using a different number of components with one that shows
the presence of feature and other that does not. For the feature at 18M�, the Bayes factor is
only 1.2 between the six and four component analysis. Thus it is not noteworthy in the pre-
sented analysis. Figure 8 plots the mass ratio and aligned-component spin distributions. All the
observations favor a mass ratio of closer to unity. Reconstruction suggests that the formation
channels for black holes prefer producing equal mass binaries with the fractional contribution
declining rapidly for lower mass ratios. The measured spins on all the observations are also
small. The only exception being GW151226 which has a moderate spin magnitude. VAMANA
facilitates the modeling of spins and mass ratio as dependent on the chirp mass. Figure 9 shows
the variation of the aligned spin with the total mass of the binary. Except for GW151226, the
spins are consistent with small magnitudes and do not vary with the chirp mass of the binary
black holes. As has already been reported in multiple publications, this is in contrast to the
black hole spins measured in x-ray binaries or the spins expected in the hierarchical merger
scenario where black holes that acquired a remnant spin during their mergers go on and merge
again with other black holes [66–70]. Finally figure 10 plots the posterior on the merger rate,
the 90% confidence interval of which is 27.0+22.3

−15.8 Gpc−3 yr−1.

3.2.1. Effect of smoothing. Figure 11 shows the effect of smoothing on the reconstructed chirp
mass distribution. The apparent effect is suppression of features that are not strongly supported
by the data. An optimum smoothing threshold can be chosen by a bandwidth selection method
operating under some rule-of-thumb. Alternatively, a value that maximises the marginal like-
lihood can also be used. For the analysis performed on the real data marginal likelihood is
maximised for reff = 0.2.
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4. Conclusion

In this article, we introduced VAMANA, a flexible scheme to model the properties of binary
black hole population using a mixture model. We employ a mixture model in reconstructing the
chirp mass, aligned-spin, and mass ratio distribution. We show that the analysis is capable of
reconstructing complex distributions such as the power-law distribution and expect this flexible
methodology will facilitate the extraction of any intricate features in the population. We did
not introduce redshift as a signal parameter in this article but have proposed an extension in a
separate article [71]. Moreover, this method can be extended to include binary neutron star and
neutron star-black hole binaries but including low mass, compact binaries will further increase
the dynamic range of the chirp mass distribution. A limited number of Gaussians will probably
not be sufficient to model a density that changes by a few orders of magnitude over the chirp
mass range. Alternatively, this analysis can be broken into two on the chirp mass range to
model. We plan to include some of these developments in future works.
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