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Summary of thesis

Black holes: cosmic bodies of extreme gravity that nothing, not even light, can
escape. Einstein first told the world about the existence of these enigmatic objects
in his groundbreaking theory of General Relativity. It was not until 2015 that
black holes were probed directly through the first observation of gravitational waves.
The treasure trove of knowledge gleaned from this observation revolutionised our
understanding of the cosmos. Since this Nobel prize winning observation, the LIGO
Scientific, Virgo and KAGRA collaborations have observed fifty gravitational waves.

The aim of this thesis has been to take advantage of the growing population
of gravitational wave sources to answer the following fundamental question: do
binary black holes undergo spin-induced orbital precession? This has significant
implications on our understanding of how binary black holes form in nature.

To answer this question, I first introduced a brand new formalisation for mod-
elling a gravitational wave that originated from a precessing system. I then in-
troduced the “precession signal-to-noise ratio” which naturally followed from this
unique description. This novel tool quantified, for the first time, the significance
of precession in an observed gravitational wave. This elegant new formalisation is
presented in Chapter 2 and verified in Chapter 3.

In the subsequent four chapters, I used the “precession signal-to-noise ratio” to
answer the aforementioned question. In Chapter 4 I demonstrated that there is no
evidence for precession in any of the binary black hole candidates from the first
gravitational wave catalog. I then described how this lack of precession allows us to
constrain the properties of black holes. In Chapter 5 I presented the properties of
potentially the first neutron star-black hole binary observed – a system which is most
likely to have measurable precession as a result of the asymmetric component masses.
In Chapter 6 I calculated the “precession signal-to-noise ratio” for all gravitational
wave candidates observed in the first half of the third gravitational wave observing
run, and demonstrated that three observed gravitational waves could have originated
from precessing systems. In Chapter 7, I used the gravitational wave data from the
second gravitational wave catalog to determine the most likely spin distribution of
black holes. By doing so, I was able to determine whether the population of binary
black holes are likely to undergo spin-induced orbital precession.

Finally, in Chapter 8, I presented a new and innovative software package to
analyse, display and combine posterior samples. This package has become one of
the major workhorses of the LIGO Scientific, Virgo and KAGRA collaborations
and is widely distributed through the gravitational wave data analysis computing
environment.
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√
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Chapter 1

Introduction

Albert Einstein revolutionised our understanding of gravity in his groundbreaking

theory of General Relativity [1]. Einstein demonstrated that the equations proposed

by Isaac Newton over 200 years earlier [2] were actually a special case of a more gen-

eral theory; a theory which predicted phenomena that could not be explained in the

Newtonian picture. One such example are gravitational waves [3]. Gravitational

waves are disturbances to space-time caused by the acceleration of matter. Almost

100 years after Einstein first predicted the existence of gravitational waves, these

cosmic ripples were first detected in 2015 by the LIGO Scientific and Virgo collabo-

rations with two of the most advanced experimental setups ever built [4, 5, 6]. This

observation marked the beginning of the era of gravitational wave astronomy [7, 8].

1.1 Gravitational Waves

1.1.a Gravitational Wave Sources

Similar to electromagnetic radiation, different sources emit gravitational waves at

different frequencies (see the gravitational wave spectrum [9]). Typically, gravita-

tional waves are grouped into 3 main categories: high, low and very low frequency.

High frequency gravitational waves (10Hz < f < 103Hz), detectable with current

ground based gravitational wave detectors such as GEO [10], LIGO [4, 5], Virgo [6]

and KAGRA [11], originate from the collision of stellar mass compact objects (such

as black holes and neutron stars), supernovae [12] and rotating neutron stars [13, 14].

Potential space-based gravitational wave detectors, such as the Laser Interferometer

Space Antenna (LISA) [15], are designed to be sensitive to low frequency gravita-

tional waves: 10−4Hz < f < 1Hz. These detectors are likely to observe the coales-

cence of super massive black holes [16]. Gravitational waves emitted at even lower

frequencies are generated by non-stellar objects and may be detected through pulsar

timing arrays [17] and/or their imprint on the cosmic microwave background [18].

In this thesis, I will focus on high frequency gravitational waves; specifically those



1.1. Gravitational Waves
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Figure 1.1: Typical sensitivity curve for the LIGO gravitational wave detector lo-
cated in Livingston, Louisiana. The bump at 60Hz is a consequence of the detectors
AC power supply vibrating electronic equipment. The forest of peaks at ∼ 300Hz
and ∼ 500Hz are ‘violin modes’ arising from the vibration of wires suspending the
beam splitter and mirrors in each arm [25].

generated by the coalescence of stellar mass compact objects.

1.1.b Detecting Gravitational Waves

High frequency gravitational waves can be detected on Earth with Michelson inter-

ferometers [19] (although other types of detectors have been proposed [20]). Here, a

laser is split by a beam splitter into two beams which are sent down two orthogonal

arms of the interferometer. The beams are reflected by mirrors at the ends of each

arm, and recombined at the beam splitter where they are observed by a photodiode.

Any passing gravitational wave periodically changes the relative difference in arm

length and as such, modifies the interference pattern observed at the photodiode [see

e.g. 21].

After travelling cosmological distances, the gravitational wave amplitude, ex-

pressed as the dimensionless strain, is very small: O(10−21). This means that a grav-

itational wave passing through a Michelson interferometer with arm length 1m peri-

odically changes the relative difference in arm length by 10−21m [22]. Ground-based

gravitational wave detectors are therefore more complex than traditional Michelson

interferometers in order to detect these very small perturbations. For instance, in

order to amplify the effect of the gravitational wave signal, the orthogonal arms are

kilometres long [5, 23] and the laser is reflected back and forth many times prior to

recombining to increase the effective path length of each laser beam [24].

Ground based gravitational wave detectors are subject to many sources of un-
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Chapter 1. Introduction

wanted noise; for example ground noise caused by the motion of cars nearby and

strong winds hitting the sides of the orthogonal arms [26]. Consequently, sophisti-

cated techniques are employed to isolate and reduce external noise as far as possi-

ble [see e.g. 27, 28, 29].

In the absence of a passing gravitational wave, the output from the photodiode

can be used to generate a one-sided power spectral density (PSD) representing the

detectors sensitivity [30]. We show a typical PSD belonging to the gravitational

wave detector located in Livingston Louisiana in Figure 1.1, produced using the

BayesLine algorithm [31]. Although in general we see a relatively smooth function,

the PSD includes narrow lines arising from noise sources in the instrument. We see

a bump at 60Hz originating from the detectors AC power supply vibrating electronic

equipment and a forest of peaks at ∼ 300Hz and ∼ 500Hz arising from resonances

in the wires suspending the beam splitter and mirrors in each arm [25].

The Amplitude Spectral Density (ASD), defined as
√

PSD, describes the ampli-

tude of noise in the detector. Any gravitational wave signal originating from the

coalescence of stellar mass compact objects with amplitude lower than the ASD is

therefore too quiet to detect. We see that the noise amplitude is lowest within the

frequency range 10Hz < f < 103Hz with amplitude O(10−23 strain/
√

Hz).

1.1.c Observed Gravitational Waves

During the first gravitational wave observing run (O1), September 2015 to January

2016, the LIGO Scientific and Virgo collaborations witnessed the first set of gravi-

tational waves from binary black hole mergers [7, 32, 33]. The second gravitational

wave observing run (O2), November 2016 to August 2017, saw the first gravitational

wave from a binary neutron star coalesence [34] and a further seven gravitational

wave observations from binary black hole mergers [35, 36, 37, 38]. Groups outside

of the LIGO Scientific, Virgo and KAGRA collaborations have reported on addi-

tional gravitational wave candidates found during O1 and O2 [39, 40, 41, 42]. The

first half of the third gravitational wave observing run (O3a), April 2019 to October

2019, saw a second binary neutron star coalescence [43], numerous binary black hole

mergers [44, 45, 46] and potentially the first set of observations from neutron star

black hole mergers [44, 47]. We show the population of gravitational wave candidates

detected by the LIGO Scientific, Virgo and KAGRA collaborations during O3a in

Figure 1.2. This plot is split into three regions of parameter space; each region is

quantified by the mass of the primary and secondary compact objects in the binary,

m1 and m2 respectively (m1 > m2). Systems with m1,m2 > 3M� are most likely

binary black holes as neutron stars are unlikely to have masses above 3M� [48, 49].
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1.2. Spin-Induced Orbital Precession
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Figure 1.2: High frequency gravitational wave sources from binary mergers ob-
served by the LIGO Scientific, Virgo and KAGRA collaborations within the total
binary mass M and binary mass ratio q = m2/m1 ≤ 11parameter space. Each
contour shows the 90% credible region for a given event. The dashed lines delin-
eate regions where the primary/secondary compact object can have a mass below
3M�. The following exceptional event candidates are highlighted: GW190412 [45],
GW190425 [43], GW190426 152155 [44], GW190521 [46], GW190814 [47], and
GW190924 021846 [44]. Plot taken from Ref. [44].

1.2 Spin-Induced Orbital Precession

Compact stellar objects are parameterised by their mass m and spin S2. The spin

of each compact object is often parametrised by the dimensionless spin χ = S/m2,

which obeys the Kerr limit |χ| ≤ 1 [52].

Denoting the primary by 1 and the secondary by 2, a binary of compact stellar

objects has total spin S = S1 + S2, orbital angular momentum L and total angular

momentum J = L + S, as shown in Figure 1.3. If the spins of the compact objects

are parallel/anti-parallel with L, the direction of S1, S2 and L all remain fixed as

the emission of gravitational waves decreases the amplitude of the orbital angular

momentum and causes the system to spiral inwards. It is convenient to describe this

binary as an (anti-)aligned-spin system and we will use this notation throughout this

thesis. For a non-eccentric (anti-)aligned-spin binary, the amplitude and frequency

of the emitted gravitational wave increases as the orbital separation decreases. The

system eventually merges and forms a single perturbed black hole that emits gravi-

tational radiation as a superposition of quasinormal ringdown multipoles, until the

1This plot defines the mass ratio to be q = m2/m1 ≤ 1. The rest of this thesis defines the mass
ratio to be q = m1/m2 ≥ 1

2A neutron star has additional degrees of freedom quantifying its ability to deform, see Chapter 5
(Sec. 5.3.a) and e.g. [50, 51]
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Chapter 1. Introduction

Figure 1.3: A plot showing the orbital angular momentum L, total spin S and
total angular momentum J of the binary in the co-precessing frame. The normal
vector n̂ here indicates the line of sight of the observer, L̂, Ŝ and Ĵ are the orbital
angular momentum, spin angular momentum and total angular momentum vectors
respectively. S1x, S1y and S1z are the x, y and z components of the spin on the larger
object. Note that J,L and n̂ are shown to be co-planar only for ease of illustration.
It is not true in general.

Figure 1.4: A plot showing the trajectory of a binary undergoing simple precession.
For simplicity, only the path of the secondary compact object is shown. The red
line shows the first initial orbital plane of the binary. This plot was produced using
the BAM Numerical Relativity software [55, 56, 57]. As is customary in Numerical
Relativity, the x, y and z coordinates of the orbital plane are expressed in terms of
the total mass of the system M . The conversion factor is G/c2.
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1.2. Spin-Induced Orbital Precession

system settles down to its final state [53]. If the spins of the compact objects are

not parallel with L, i.e. the spins have a non-zero component within the plane of

the binary, the direction of S1,S2 and both the amplitude and direction of L vary in

time.3. This causes the orbital plane to undergo a General Relativistic phenomenon

known as spin-induced orbital precession [54].

For an (anti-)aligned-spin/non-precessing system, the orbital plane remains fixed

throughout the coalescence, as shown by the red track in Figure 1.4. This means that

the inclination angle of the source ι, the angle between the line of sight n̂ (here a caret

denotes a unit vector, e.g. â = a/|a|) and L, remains fixed. For a system where L ∦ S

and L� J , L, and therefore the orbital plane, precesses around (the approximately

constant) J with the spins precessing such that Ṡ = −L̇ [54, 58]. This is shown by the

blue tracks in Figure 1.4 and is known as simple precession. Since precession causes

the inclination angle of the system to become time dependent, it is often convenient

to denote the inclination of a precessing binary by the approximately constant angle

between J and n̂, denoted by θJN. As the maximum instantaneous energy emission is

approximately in the direction of L̂, the energy emitted in gravitational waves from

a precessing binary system in the n̂ direction is also time dependent. This introduces

characteristic amplitude and phase modulations in the observed gravitational wave

which are modulated on the precession timescale [54, 58]. For a small minority of

cases where L ≈ −S, we see transitional precession [54]. As L is radiated away

during inspiral through gravitational wave emission (recall that in the Newtonian

limit L ∝ √r, where r is the orbital separation), J crosses J = 0 resulting in a

change of sign and thus direction. In this thesis, I focus on systems that undergo

simple precession since detecting high frequency gravitational waves exhibiting the

effects of transitional precession are expected to be very rare [54].

For a system undergoing simple precession, the observed amplitude and phase

modulations depends on θJN, the polarisation ψ of the observed signal, β, the polar

angle between L and J and α, the azimuthal angle of L around J. These angles are

illustrated in Figure 1.3. For now we note several well-known features of precessing

waveforms [54, 58], which will be further sharpened throughout this thesis. The

strength of spin-induced orbital precession is characterised by β and by the preces-

sion frequency Ωp. β is determined primarily by the total spin within the plane of

the binary, the binary’s mass ratio q = m1/m2 ≥ 1, and separation r. At leading

order the magnitude of L is given by L = µ
√
Mr, meaning that we can write,

cosβ =
µ
√
Mr + S‖[(

µ
√
Mr + S‖

)2
+ S2

⊥

]1/2
, (1.1)

3Although the amplitude of S1 and S2 can vary in time [54], this effect is significantly smaller than
the change in L and therefore it is common to assume that it is constant. To a good approximation,
the orbit-averaged spin components parallel and perpendicular to L, S1,||, S2,|| and S1,⊥, S2,⊥ also
remain fixed
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where M = m1 + m2 is the total mass of the source, µ = m1m2/M is the reduced

mass and S‖ and S⊥ are the total spin parallel and perpendicular to L respectively.

In general, the larger the “opening angle” β, the more prominent the precession

effects. Although in simple precession cases β slowly increases during inspiral [54],

it typically varies very little over the portion of a binary’s inspiral that is visible

in a gravitational wave detector. This means that a) it is often possible to make

the approximation that β is constant and b) if the binary is viewed along Ĵ (i.e

n̂ is aligned with Ĵ), then ι ≈ β and therefore ι varies slowly and with minimal

oscillations due only to orbital nutation. This approximation has been used to good

effect in Ref. [59], and we will use it in some of the discussion in this thesis.

The precession frequency Ωp of L around J is given by Ωp = α̇, which, at leading

order, can be written as,

Ωp ≈
(

2 +
3

2q

)
J

r3
. (1.2)

This means that to first approximation it does not depend on the spins (or therefore

the opening angle β), but only on the binary’s total mass, mass ratio, and separation

(or equivalently orbital frequency). The number of precession cycles over a certain

time or frequency range (e.g., over the course of an observation), depends on the

total mass and mass ratio of the binary. In a gravitational wave observation there

is a partial degeneracy between the mass ratio and the aligned spin S|| [60, 61, 62],

meaning that one of the chief effects for a measurement of precession will be to

improve the measurement of these two physical properties [63].

It is often convenient to quantify the binary’s in-plane spin by the scalar quantity

χp [64] (although see Refs. [65, 66] for alternative measures). χp is obtained by

averaging the in-plane spin components that drive precession over a precession cycle,

meaning that it is more accurate for a system that undergoes many precession cycles.

Motivated by the leading-order post-Newtonian (PN) precession equations [54, 58],

χp =
1

A1
max (A1S1⊥, A2S2⊥) , (1.3)

where A1 = 2 + 3/(2q), A2 = 2 + 3q/2 and Si⊥ is the component of the spin

perpendicular to L on the ith object in the binary. χp takes values between 0

(non-precessing system) and +1 (maximally precessing system).

Whether or not a binary of compact stellar objects undergoes spin-induced or-

bital precession depends primarily on how the system came into existence. The

two favoured formation mechanisms for merging compact stellar objects are isolated

binary evolution and dynamical formation in clusters [see e.g. 67, for a review]. In

isolated models (also referred to as field models), two stars are born in a relatively

wide binary and coevolve. The radius of the binary is then rapidly reduced through

dynamically unstable mass transfer [68]. It is expected that binaries formed through

this channel have spins distributed about L with a some small unknown misalign-
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1.2. Spin-Induced Orbital Precession

ment angle [see e.g. 69, 70, 71]; little to no precession is expected in these binaries.

In dynamical models, two massive stars collapse to compact objects independently

within a dense stellar environment, such as globular clusters, and then form a binary

through interactions with other objects. It is expected that binaries formed through

this channel have spins isotropically orientated [72]; precession is expected in these

binaries.

1.2.a Modelling a precessing gravitational wave signal

Throughout this thesis, I primarily use the IMRPhenomPv2 phenomenological model

presented in Ref. [73] to model the gravitational wave emitted from a precessing

binary. This model exploits the phenomenology of simply precessing binaries, de-

scribed above, with the additional approximation that a precessing waveform can

be factorised into an underlying non-precessing waveform and the precessional dy-

namics [74]. IMRPhenomPv2 uses the IMRPhenomD [75, 76] waveform model as

the underlying non-precessing waveform. In IMRPhenomD both spin components

aligned with L are used to generate an approximate PN phasing and amplitude,

with corrections provided by fits to numerical-relativity waveforms, that are pa-

rameterised by two different combinations of the two spin components. Although

IMRPhenomD has been found to model well two-spin systems [77], its dominant spin

dependence can be characterised well by the effective spin,

χeff =
1

M

(
S1

m1
+

S2

m2

)
· L̂, (1.4)

which takes values between −1 (both maximal anti-aligned spins) and +1 (both

maximal aligned spins) to describe the magnitude of the spin aligned with L. For a

given configuration IMRPhenomPv2 a) modifies the final spin of the remnant object

calculated by IMRPhenomD to account for the additional in-plane spin components,

and b) applies a frequency dependent rotation to the modified IMRPhenomD wave-

form model to introduce the precession dynamics, which are modelled by frequency-

domain PN expressions for the precession angles for an approximately equivalent

single-spin system [64, 73], where the large black hole has spin χp.

There are several important features which are not incorporated in the IMRPhe-

nomPv2 waveform. These include two-spin effects [78, 79, 80], gravitational wave

multipoles other than the leading 22 mode [81], significant precession during merger

[82], and spin alignment due to spin-orbit resonances during inspiral [83, 84]. Some

of these effects will have an impact upon the distributions of black hole spin orien-

tations when the binaries enter the LIGO or Virgo sensitivity band while others can

leave imprints on the waveform which may be observable, particularly close to the

merger. As an example, by neglecting two-spin effects, χeff ceases to be a constant

of motion. Nonetheless, the IMRPhenomPv2 has been used in the analysis of all
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LIGO-Virgo observations during the first three observing runs [7, 32, 85, 38, 44], and

it captures much of the dominant phenomenology of precessing-binary waveforms.

1.3 Summary of Thesis

This thesis is split into three parts. The first explores the general relativistic phe-

nomenon of spin-induced orbital precession and introduces an elegant new represen-

tation. The second applies learnt techniques to observations made during the first,

second and third gravitational wave observing runs. The third presents a new and

innovate software package.

Chapter 2 presents a new formalisation for modelling a precessing gravitational

wave as a series of beating non-precessing harmonics. In Chapter 3 I use the formal-

isation introduced in Chapter 2 to identify which binaries are most likely to emit

gravitational waves with measurable precession while at the same time verifying the

concepts in Chapter 2.

In Chapter 4 I estimate the probabilitity for observing a precessing gravitational

wave and make a testable prediction for how many precessing binaries we expect

to observe in the third gravitational wave observing run. Chapter 5 presents the

inferred properties of potentially the first neutron star black hole candidate ever de-

tected and investigates whether the large mass ratio allows for an informative preces-

sion measurement. In Chapter 6 I consider all of the gravitational wave candidates

observed in the third gravitational wave observing run and identify if spin-induced

orbital precession has been measured in the population. Chapter 7 then builds upon

Chapter 6 and presents a study which identifies the mostly likely spin distribution

of black holes detected through gravitational waves.

Finally, Chapter 8 presents a new and innovative software package that has been

used to analyse all gravitational wave candidates to date and is central to making

gravitational wave data open and easily reproducible.
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Chapter 2

Two-harmonic approximation

for gravitational waveforms

from precessing binaries

This chapter is based upon the text of Fairhurst et al.[86] published as Phys. Rev.

D, 102, 024055. This work was led by Stephen Fairhurst, Rhys Green and Charlie

Hoy. My main contributions were to the code development, the analysis and figure

formatting. All lead authors jointly contributed to the writing of the paper.
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Chapter 2. Two-harmonic approximation for gravitational waveforms from precessing binaries

2.1 Introduction

When the spins of black holes in a binary system are mis-aligned with the binary’s or-

bital angular momentum, both the spins and orbital angular momentum will precess

[54, 58, 87, 88]. We therefore expect that most astrophysical binaries will undergo

precession, but to date there has been no evidence of precession in gravitational-wave

(GW) observations from the Advanced LIGO and Virgo detectors [38, 85]. This is

not necessarily surprising, because precession often leaves only a weak imprint on the

observable signal, particularly when the black holes are of comparable mass and the

binary’s orbit is face-on to the detector, which are the most likely configurations that

have been observed so far. Despite this heuristic picture, there is no simple means

to estimate the measurability of precession of a given binary configuration, and as

such it is difficult to predict when precession effects will be conclusively observed in

GW events.

Detailed parameter estimation techniques have been developed, which enable the

reconstruction of the parameters of observed signals [89, 90, 91, 92, 93], in addition

to approximate Fisher-matrix methods [61, 94]. In parallel, techniques have been

developed that provide an intuitive understanding of the measurement accuracy of

certain parameters (or parameter combinations) [95, 62, 96, 97, 98, 99]. These

have typically involved either approximations (such as leading order, Fisher Matrix

type calculations), restriction to a subset of system parameters (for example masses

and spins; timing and sky location; binary orientation). Combined, these give an

understanding of the accuracy of parameter estimation for non-precessing systems.

In parallel, there have been significant developments in understanding the impli-

cations of precession, starting with the early work in Refs. [54, 87, 88] which provided

insights into the impact of precession on the gravitational waveform emitted during

the inspiral of compact binaries. Subsequently, black hole binary waveforms which

incorporate precession through merger have been developed [73, 78, 81, 100, 101];

large scale parameter estimation studies of precession have been performed to iden-

tify the regions of parameter space where precession will be observable [102, 103,

104, 63, 105, 106, 107, 108]; and new theoretical insights into the impact of preces-

sion on both detection and parameter estimation have been obtained [59, 109, 110].

Complementary to this, there have been several efforts to understand the impact

of precession on searches [111, 59], and to implement searches for precessing signals

[87, 112, 113, 114, 88]. This has led to an increasingly clear picture of the impact

of precession: it is most significant for binaries with large mass ratios, where the in-

plane spin components are large and for systems where the total angular momentum

is mis-aligned with the line of sight.

At leading order, the gravitational waveform emitted by a precessing binary is

composed of five harmonics, which are offset by multiples of the precession frequency

[73, 110]. We show that these harmonics form a natural hierarchy with the ampli-
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2.2. Harmonic decomposition of the waveform from a precessing binary

tude of the sub-leading harmonics suppressed by a factor that depends upon the

opening angle (the angle between the orbital and total angular momenta). Using

this approximation, and restricting to the two leading harmonics, we are able to ob-

tain relatively simple expressions for the precession waveform. Each harmonic takes

the form of a non-precessing-binary waveform (i.e., with monotonic amplitude and

frequency evolution during the inspiral of non-eccentric systems), and the amplitude

and phase modulations of the complete precessing-binary waveform arise as beating

between the two harmonics.

The purpose of this chapter is to introduce this decomposition (Sec. 2.2), and

the two-harmonic approximation (Sec. 2.3), and to identify its range of validity

and accuracy (Sec. 2.4). We then discuss a proposed search for precessing binaries

using the two-harmonic approximation (Sec. 2.5) and finally introduce the notion

of a “precession SNR” that can be used to determine whether precession effects are

observable in a given system (Sec. 2.6).

2.2 Harmonic decomposition of the waveform from a

precessing binary

The gravitational waveform emitted by a precessing system, as observed at a gravi-

tational wave detector, can be expressed approximately as [88, 59]

h(t) = −
(
do
dL

)
Ao(t) Re

[
e2iΦS(t)

(
F+(C+ − iS+) + F×(C× − iS×)

)]
. (2.1)

Here, Ao(t) denotes the amplitude of the gravitational wave signal in a (time-varying)

frame aligned with the orbital angular momentum of the binary, and depends upon

the masses and spins of the binary.1 Since the amplitude scales linearly with the

luminosity distance, we have chosen to introduce a fiducial normalization Ao(t) for

a waveform at a distance do and explicitly extract the distance dependence.2 ΦS is

the phase evolution in the frame aligned with the total angular momentum J of the

binary. The phase evolution, ΦS , is related to the orbital phase, φorb, as

ΦS(t) = φorb(t)− ε(t) (2.2)

where [115]

ε̇(t) := α̇(t) cosβ(t) (2.3)

1Note that this expression, and what follows, does not include additional gravitational wave
multipoles beyond the leading order quadrupole. We will investigate including these additional
terms in a future work.

2Of course, the observed waveform is also affected by the redshifting of frequencies. For the
calculation discussed here, we work in the detector frame and consider the observed masses, which
are (1 + z) times the source frame masses.
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Chapter 2. Two-harmonic approximation for gravitational waveforms from precessing binaries

and, as before, β is the opening angle and α gives the phase of the precession of

L around J as shown in Fig. 1.3. F+ and F× give the detector response relative

to the J-aligned frame and C+,×, S+,× encode the time-varying response to the

gravitational wave due to the evolution of the binary’s orbit relative to the detector.

They depend upon the three angles introduced previously: the precession opening

angle β and phase α and the angle between the total orbital angular momentum and

the line of sight θJN. See Ref. [53] for the evolution equations of β and α accurate

to 2PN order. In terms of these angles, we can express C+,× and S+,× as3

C+ = −
(

1 + cos2 θJN

2

)(
1 + cos2 β

2

)
cos 2α

−sin 2θJN

2

sin 2β

2
cosα− 3

4
sin2 θJN sin2 β,

S+ =

(
1 + cos2 θJN

2

)
cosβ sin 2α+

sin 2θJN

2
sinβ sinα,

C× = − cos θJN

(
1 + cos2 β

2

)
sin 2α− sin θJN

sin 2β

2
sinα,

S× = − cos θJN cosβ cos 2α− sin θJN sinβ cosα. (2.4)

The non-precessing expressions can be recovered in the limit of β → 0 and

α → constant (which is then degenerate with the polarization of the system).

When β is non-zero, the effect of precession is to modulate the detector response

at frequencies Ωp and 2Ωp. To make the harmonic content of C+,× and S+,× more

explicit, we first introduce the parameter,

b = tan (β/2) , (2.5)

and write the response functions in terms of it. The terms involving β can be

expressed as

1 + cos2 β

2
=

1 + b4

(1 + b2)2
,

cosβ =
1− b4

(1 + b2)2
,

sin 2β

2
=

2b(1− b2)

(1 + b2)2
,

sinβ =
2b(1 + b2)

(1 + b2)2
,

sin2 β =
4b2

(1 + b2)2
. (2.6)

3We have re-written the C+ term relative to what is normally given in the literature, e.g. [88, 59],
to group terms with the same α dependence.

– 13 –



2.2. Harmonic decomposition of the waveform from a precessing binary

Substituting the trigonometric identities from Eq. (2.6) into the expressions for C+

and S+ in Eq. (2.4) we obtain,

(
do
dL

)
(C+ − iS+) = −e2iα

4∑
k=0

A+
k

[
bke−ikα

(1 + b2)2

]
,

(
do
dL

)
(C× − iS×) = ie2iα

4∑
k=0

A×k
[
bke−ikα

(1 + b2)2

]
, (2.7)

where we have introduced A+
k and A×k as

A+
0 = A+

4 =
do
dL

(
1 + cos2 θJN

2

)
,

A×0 = −A×4 =
do
dL

cos θJN,

A+
1 = −A+

3 = 2
do
dL

sin θJN cos θJN,

A×1 = A×3 = 2
do
dL

sin θJN,

A+
2 = 3

do
dL

sin2 θJN,

A×2 = 0 . (2.8)

In the approximation where the direction of total angular momentum is constant, the

A+,×
k are time independent amplitudes, and the time dependence of the amplitude

functions is captured as a power series in the parameter b = tan(β/2).

Finally, we can use the harmonic decomposition in Eq. (2.7) to obtain a decom-

position of the waveform, Eq. (2.1),

h(t) = Re

[(
Ao(t)e

2i(ΦS+α)

(1 + b2)2

)
4∑

k=0

(be−iα)k(F+A+
k − iF×A×k )

]
. (2.9)

This allows us to clearly identify the impact of precession on the waveform. First,

precession leads to an additional phase evolution at frequency 2Ωp and a decrease in

the amplitude by a factor (1+b2)2. The precessing waveform contains five harmonics

that form a power series in b, whose amplitude depends upon the detector response,

distance and viewing angle of the binary. The frequency of each harmonic is offset

from the next by the precession frequency Ωp. Similar results have been obtained

previously, by manipulating the spin-weighted spherical harmonic decomposition of

the waveform, e.g. [109, 110]. However, it was not previously observed that the

relative amplitudes of the harmonics were related in a straightforward manner.

As a final step, we would like to explicitly extract three more time-independent

angles that characterize the waveform, namely the polarization angle ψ, the initial
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phase φo and the initial polarization phase αo.
4

The unknown polarization ψ is currently folded into the detector response func-

tions F+,×. It is more useful to extract ψ and then consider the detector response

to be a known quantity dependent upon only the details of the detector and the

direction to the source. Thus, we write the detector response as,

F+ = w+ cos 2ψ + w× sin 2ψ,

F× = −w+ sin 2ψ + w× cos 2ψ, (2.10)

where w+ and w× are the detector response functions in a fixed frame — for a single

detector it is natural to choose w× = 0 and for a network to work in the dominant

polarization for which w+ is maximized [116]. The unknown polarization of the

source relative to this preferred frame is denoted ψ.

To isolate the initial orbital and precession phases, we explicitly extract them

from the binary’s phase evolution by introducing,

Φ(t) := ΦS(t)− φo + α(t)− αo

= φorb(t)− φo +

∫ α(t)

αo

2b2

1 + b2
dα . (2.11)

Thus Φ(t) vanishes at t = 0 and evolves as the sum of the orbital phase and an

additional, precession dependent, contribution.

We then substitute the expressions for F+,×, Eq. (2.10), and Φ, Eq. (2.11), into

the expression for h(t) given in Eq. (2.9), and isolate the time-varying terms from the

constant, orientation dependent angles. The waveform can be written as the sum of

five precessing harmonics, the amplitudes of which are constants that depend upon

the binary’s sky location, distance and orientation:

h =

4∑
k=0

w+(hk0A1
k + hkπ

2
A3
k) + w×(hk0A2

k + hkπ
2
A4
k), (2.12)

where hk0,π
2

are the waveform harmonics and Aµk are constants. The waveform har-

monics are

hk0(t) = Re

[
Ao(t)e

2iΦ

(
bke−ik(α−αo)

(1 + b2)2

)]
,

hkπ
2
(t) = Im

[
Ao(t)e

2iΦ

(
bke−ik(α−αo)

(1 + b2)2

)]
. (2.13)

The harmonics form a simple power series in be−iα, so the amplitude of each suc-

cessive harmonic is reduced by a factor of b, and the frequency is reduced by Ωp.

4The initial polarization phase αo is sometimes denoted in the literature as φJL.
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The amplitudes for the harmonics are given by

A1
k = A+

k cosφk cos 2ψ −A×k sinφk sin 2ψ,

A2
k = A+

k cosφk sin 2ψ +A× sinφk cos 2ψ,

A3
k = −A+

k sinφk cos 2ψ −A×k cosφk sin 2ψ,

A4
k = −A+

k sinφk sin 2ψ +A×k cosφk cos 2ψ, (2.14)

where the A+,× were introduced in Eq. (2.8), ψ is the polarization and the phase

angle for each harmonic is,

φk = 2φo + (2− k)αo . (2.15)

These amplitudes form a generalization of the F-statistic decomposition of the non-

precessing binary waveform (see e.g. [116]). In the limit that b→ 0, the precessing

decomposition reduces to the standard expression for the non-precessing waveform

as the amplitude for all harmonics other than k = 0 vanish.

The precessing waveform can equally well be written in the frequency domain by

performing a Fourier transform of the time-domain expressions given above [117]. In

this case, Eq. (2.12) is unchanged, as are the constant amplitude terms in Eq. (2.14).

The frequency dependent harmonics are simply the Fourier transform of the time-

domain modes given in Eq. (2.13), and naturally satisfy hkπ
2

= ihk0.

The expansion above is most natural when b < 1, which corresponds to opening

angles of β < 90◦. In cases where the opening angle is greater than 90◦ it is natural to

re-express the waveform in terms of c = b−1 = cot(β/2) in which case the waveform

can be expressed as a power series in c. We will not discuss the large opening angle

calculation further in this chapter, but note that many of the arguments presented

below would extend in a straightforward manner to this case.

2.2.a Obtaining the harmonics

Here, we give an explicit prescription to obtain the five harmonics for the waveform,

introduced in Eq. (2.12). To do so, we generate waveforms for orientations that con-

tain only a subset of the harmonics, and combine them to isolate a single harmonic.

For simplicity, we restrict attention to the + polarization by fixing w+ = 1, w× = 0

and consider a binary at a distance dL = do.

Harmonics k = 0 and k = 4. When the viewing angle of the signal is aligned

with the total angular momentum, θJN = 0, the observed waveform contains only

the zeroth and fourth harmonics as A+,×
1,2,3 vanish for θJN = 0. We also fix αo = 0,
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Chapter 2. Two-harmonic approximation for gravitational waveforms from precessing binaries

to obtain,

hφo=0;ψ=0 = h0
0 + h4

0,

hφo=π
4 ;ψ=

π
4

= −h0
0 + h4

0. (2.16)

From these, we can extract the k = 0 and 4 harmonics,

h0
0 = 1

2

(
hφo=0,ψ=0 − hφo=π

4 ,ψ=
π
4

)
,

h4
0 = 1

2

(
hφo=0,ψ=0 + hφo=π

4 ,ψ=
π
4

)
. (2.17)

The π
2 phases of the harmonics can be obtained in an identical way.

Harmonics k = 1 and k = 3. When the signal is edge on, the × polarization

contains only the first and third harmonics. Then, fixing θJN = π
2 and ψ = π

4 , we

have,

hαo=0;φo=
π
4

= −2
(
h1

0 + h3
0

)
,

hαo=π
2 ;φo=0 = −2

(
h1

0 − h3
0

)
, (2.18)

so that,

h1
0 = −1

4

(
hαo=0;φo=

π
4

+ hαo=π
2 ,φo=0

)
,

h3
0 = −1

4

(
hαo=0;φo=

π
4
− hαo=π

2 ,φo=0

)
. (2.19)

Harmonic k = 2. Finally, from the + polarization of the edge-on waveform, we

can extract the second harmonic — in principle we could also get k = 0 and k = 4,

but we have already described a method to obtain them. Fixing θJN = π
2 and ψ = 0

we have,

hαo=0,φo=0 = 1
2h

0
0 + 3h2

0 + 1
2h

4
0,

hαo=π
2 ,φo=0 = −1

2h
0
0 + 3h2

0 − 1
2h

4
0, (2.20)

so that,

h2
0 = 1

6

(
hαo=0,φo=0 + hαo=π

2 ,φo=0

)
. (2.21)

Throughout the remainder of this work, we use the IMRPhenomPv2 signal model

to generate h. Since this model only incorporates leading order spin-orbit couplings

in the precession equations (see Sec. 1.2.a), the evolution of α and β are accurate to

1.5PN order. However, since our harmonic decomposition is in no way tied to the

particular waveform model used, we could use other waveform models for precessing

binaries which, for example, incorporate 2PN spin-spin effects and precession during
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2.2. Harmonic decomposition of the waveform from a precessing binary

merger. We expect that the broad features of many of the results presented in the

remainder of the chapter are relatively unaffected by the specific waveform choice,

but the details for any specific signal could change.

2.2.b Precession with varying orientation

The observable effect of precession will vary significantly with the binary orientation,

as has been discussed in many previous works, for example [54, 59]. Interestingly,

both the amplitude and frequency of the observed precession depends upon the view-

ing angle. The harmonic decomposition derived above provides a straightforward

way to understand this effect. The observed amplitude and phase modulations can

be understood as the beating of the different harmonics against each other, with the

amplitude of the composite waveform being maximum when the harmonics are in

phase and minimum when they are out of phase.

In Fig. 2.1, we show the waveform for four different orientations: a) along J, b)

× polarization at 45◦ to J, c/d) +/× polarization orthogonal to J. In all cases, we

show the last two seconds of the waveform (from around 25 Hz) for a 40M� binary,

with q = 6, and in-plane spin on the larger black hole of χp = 0.6. This configuration

gives an opening angle of β ≈ 45◦ (and b ≈ 0.4) which leads to significant precession

effects in the waveform.

When viewed along J, there is minimal precession as only the k = 0 and 4

harmonics are present in the system and the k = 4 harmonic is down-weighted by a

factor of b4 ≈ 0.03 relative to the leading harmonic. Furthermore, the modulation

comes from the beating of the k = 0 and k = 4 harmonics and occurs at four times

the precession frequency. When the line of sight is orthogonal to the total angular

momentum, the k = 0, 2, 4 harmonics are present in the + polarized waveform and

k = 1, 3 in the × polarization. The k = 0 and 2 harmonics have close to equal

amplitude (although k = 2 is down-weighted by b2 ≈ 0.17, the amplitude as given in

Eq. (2.8) is maximal). Consequently the observed waveform has maximal amplitude

and phase modulation due to precession. For the × polarized signal, it is the k = 1, 3

harmonics that contribute, with k = 3 a factor of b2 ≈ 0.17 smaller than k = 1.

Consequently, precession effects are less significant. In both cases, precession occurs

at twice the precession frequency as it is from the beating of k = 0 and k = 2 (+

polarization) or k = 1 and k = 3 (× polarization). For the × polarized signal with

θJN = 45◦, the k = 0, 1, 3, 4 harmonics are present, with k = 0, 1 dominating and

having approximately equal amplitude. For this signal, the binary precesses from a

face-on orientation, ι = 0 to edge-on, ι = 90◦, and the waveform amplitude oscillates

from the maximum to zero. Here, modulations occur at the precession frequency.
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Chapter 2. Two-harmonic approximation for gravitational waveforms from precessing binaries

Figure 2.1: The observed waveform from a 40M� binary with mass ratio q = 6,
χeff = 0 and χp = 0.6. The waveform is shown for four different binary orientations:
θJN = 0 (first row); θJN = 45◦, × polarization (second row); θJN = 90◦, + polar-
ization (third row); θJN = 90◦, × polarization (fourth row). For each waveform,
the harmonics that contribute to the signal, their sum and the envelope of the full
precessing waveform are shown. The insets show a zoom of a portion of the wave-
form to more clearly demonstrate that precession arises as a beating between the
different harmonics.
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2.2. Harmonic decomposition of the waveform from a precessing binary

Figure 2.2: The value of b across the parameter space of total mass, mass ratio, χeff

and χp. In each figure, two of the parameters are varied while the other two are fixed
to their fiducial values of M = 40M�, q = 4, χeff = 0, χp = 0.6 (this point is marked
with a ? in all the plots). The total mass has a limited impact on the value of b, for
masses over M ≈ 40M�; below this the b increases with mass, as the later parts of
the merger are brought into the most sensitive band of the detector. The value of b
is seen to increase as the mass ratio or precessing spin χp are increased and decrease
as the aligned component of the spin χeff increases. Thus, the value of b is largest for
a binary with unequal masses, a large spin on the more massive component which
has significant components both in the plane of the orbit and anti-aligned with the
orbital angular momentum.
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2.2.c Importance of precession over parameter space

From the intuitive discussion of precession presented in [54, 88, 59] and summarized

in Section 1.2, it is straightforward to identify regions of parameter space where

precession is most likely to have a significant impact upon the binary dynamics

and, consequently, the observed waveform. Specifically, we expect that higher mass

ratios, larger in-plane spins and negative aligned spin components will all lead to

a larger opening angle and more significant precession [59]. Here we briefly revisit

this discussion, framing our results in terms of the parameter b introduced earlier.

Explicitly, we introduce the waveform-averaged value of b as,

b :=
|h1|
|h0| =

√√√√√∫ df |h1|2
Sn(f)∫

df |h0|2
Sn(f)

, (2.22)

where h0,1 are the harmonics of the waveform introduced in Eq. (2.13) and Sn(f) is

the noise power spectrum of the detector. For this work, we choose Sn(f) to be the

design-sensitivity Advanced LIGO noise curve [38] and evaluate the integral over

the frequency range f ∈ [20, 1024] Hz 5. For binaries where the opening angle β is

approximately constant, b ≈ tan(β/2).

Fig. 2.2 shows the value of b on several two-dimensional slices through the four

dimensional parameter space of total mass M , mass ratio q, effective spin χeff and

precessing spin χp. Keeping other quantities fixed, the value of b increases with

total mass. For higher masses, the late inspiral and merger occur in the sensitive

band of the detectors and, close to merger, the opening angle increases as orbital

angular momentum is radiated. For masses above 40M� the mass dependence of

b is small, with only a 10% decrease from 40M� to 100M�. Thus, for the other

figures, we fix M = 40M� and investigate the dependence of b on q, χeff and χp.

The dependence of b follows directly from Eq. (1.1). The opening angle will increase

with mass ratio, as the orbital angular momentum decreases. The opening angle,

and also b, increase with χp. It follows directly from the definition that tanβ scales

linearly with χp, and hence approximately linearly for b = tan(β/2). Finally, the

opening angle decreases as the effective spin χeff increases, so that the largest value

of b is obtained with significant spin anti-aligned with J.

Over much of the parameter space we have explored, b . 0.3. This includes

binaries with mass ratio up to 4:1, with precessing spin χp . 0.6, and zero or positive

aligned spin, χeff ≥ 0. Only a small part of parameter space has b > 0.4, the value

used in generating the waveforms in Figure 2.1, and b > 0.5 is only achieved with

at least two of: a) close to maximal χp, b) high mass ratio, q & 5 or c) significant

spin anti-aligned with the orbital angular momentum χeff . −0.4.

5Using a realistic noise curve similar to the observed curves during 01 and O2 would change
the reported values slightly, as these noise curves are less sensitive than design, particularly at low
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2.2. Harmonic decomposition of the waveform from a precessing binary

Figure 2.3: The distribution of b for a 3 different populations of binary black holes.
Each population assumes either a low-isotropic, low-aligned or a flat precessing spin
distribution. A power-law distribution in masses is assumed in all cases (see text for
details).

Next, we consider the importance of precession for an astrophysically motivated

population. In Fig. 2.3, we show the distribution of b for three distributions of

black hole masses and spins. For each population, we generate 100,000 binaries

uniformly in co-moving distance, with masses drawn from a power law distribution

— p(m1) ∝ m−α1 , with α = 2.35 — and different spin distributions, which are the

same as those used in Refs. [118, 119, 120]. We consider populations where the spins

are preferentially low and aligned with the binary orbit; low and isotropically aligned

or drawn from a flat distribution and preferentially leading to precession. A low spin

distribution is a triangular distribution peaked at zero spin and dropping to zero

at maximal spin while a flat distribution is a uniform between zero and maximal

spin. The aligned distribution is strongly peaked towards aligned spins, while the

isotropic distribution assumes a uniform distribution of spin orientations over the

sphere. The precessing distribution is strongly peaked towards spins orthogonal to

the orbital angular momentum, i.e., with significant orbital precession [121, 122]. To

account for observational biases, we keep only those signals that would be observable

above a fixed threshold in a gravitational wave detector. We find that even for the

most extreme precessing population considered, the mean value of b is 0.15 with over

90% of binaries having b < 0.3. This result is obviously sensitive to the assumptions

on the mass and spin distribution. In Chapter 4 we investigate a larger number of

spin distributions, including ones which allow for large spin magnitudes, and we find

that the peak of the b distribution is below 0.2 and that over 90% of binaries have

frequencies. The qualitative patterns seen in the figure would remain the same however
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Figure 2.4: The value of b across the binary neutron star and neutron-star–black-
hole space. The top figure shows the variation of b for an NSBH system with a
1.4M� neutron star, χeff = 0 and varying black hole mass and χp. The bottom
figure shows the variation of b against mass ratio and χp for a binary neutron star
system of total mass 2.7M� and χeff = 0.

b < 0.4 in all cases.

Fig. 2.4 shows b for a range of neutron star–neutron star and neutron star–black

hole binaries. For neutron star–black hole binaries, the picture is similar to that for

black hole binaries, with large values of b observed for high mass ratios and large χp.

However, as an earlier part of the waveform is in the detector’s sensitive band, the

impact of precession is less observable at fixed mass ratio than for higher mass black

hole binaries. For neutron star binaries, the value of b remains below 0.15 across the

parameter space, and is less than 0.05 for reasonable neutron star spins, χ . 0.4.

2.3 The two-harmonic approximation

The precessing waveform can be expressed as the sum of five harmonics whose

amplitudes form a power series in b = tan(β/2). Furthermore, over the majority of

the space of binary mergers, the value of b is less than 0.3. In addition, for b ≤ 0.4

the dominant harmonic — the one containing the most power — must be either

k = 0 or 1. Thus, for the vast majority of binary mergers, we expect that these two

harmonics will be the most significant.

This motivates us to introduce the two-harmonic approximation, in which we
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generate a waveform containing only the k = 0 and k = 1 harmonics, i.e.,

h =
∑
k=0,1

w+(hk0A1
k + hkπ

2
A3
k) + w×(hk0A2

k + hkπ
2
A4
k) . (2.23)

We note that Eq. 2.23 assumes a constant opening angle since we surmise that bN =

b
N

when dropping higher order terms in the harmonic decomposition. Although

the opening angle must continually increase throughout the inspiral [54], it typically

varies very little across the sensitive frequency range of a GW detector [59]. This

means that it is often possible to make the approximation that β (and hence b)

remains approximately constant. We refer the reader to Ref. [59] for a detailed

discussion of the constant opening angle approximation. We note that all previous

equations are independent of the constant opening angle approximation.

The expression for the two-harmonic waveform can be simplified by restricting

to the single detector case (i.e., setting w+ = 1 and w× = 0), explicitly working with

the waveform in the frequency domain, for which hkπ
2

(f) = ihk0(f), and dropping the

subscript 0 on the zero-phase waveform, so that hk(f) := hk0(f). The two harmonics

of interest are,

h0(f) = Ao(f)e2iΦ(f)

(
1

(1 + b(f)2)2

)
, (2.24)

h1(f) = Ao(f)e2iΦ(f)

(
b(f)e−i(α(f)−αo)

(1 + b(f)2)2

)
, (2.25)

and the two-harmonic waveform then becomes,

h2harm = A0h
0 +A1h

1 , (2.26)

where,

A0 =
d0

dL

(
1 + cos2 θJN

2
cos 2ψ − i cos θJN sin 2ψ

)
× e−i(2φo+2αo),

A1 =
d0

dL
(sin 2θJN cos 2ψ − 2i sin θJN sin 2ψ)× e−i(2φo+αo). (2.27)

Thus, the two-harmonic waveform is composed of two components that have fre-

quencies offset by Ωp, and any observed amplitude and phase modulation of the

waveform is caused by the beating of one waveform against the other. The relative

amplitude and phase of the two harmonics is encoded by

ζ :=
bA1

A0
(2.28)

= beiαo

(
sin 2θJN cos 2ψ − 2i sin θJN sin 2ψ

1
2(1 + cos2 θJN) cos 2ψ − i cos θJN sin 2ψ

)
.
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The value of ζ depends upon the viewing angle, encoded in θJN and ψ, and the

initial precession phase αo. It is not difficult to show that ζ can take any value as

the parameters θJN, ψ, αo are varied. For example, at θJN = 0, A1 vanishes and so

does ζ, while at θJN = π/2 and ψ = π/4, A0 vanishes and ζ →∞. Since the initial

precession phase αo is a free parameter, the phase of ζ also can take any value.

The overall amplitude and phase of the signal also depends upon the distance and

coalescence phase so that any values of the amplitude and phase of the signal in the

two harmonics are consistent with a signal.

2.4 Validity of the two-harmonic waveform

To investigate the validity of the two-harmonic approximation, we compare the

approximate waveform with the full, five-harmonic, precessing waveform across the

parameter space. The error will be of order b2, which is small over much of the

parameter space, and for the majority of orientations.

Fig. 2.5 shows the overlap between the full waveform and a subset of the harmon-

ics for a binary with M = 40M�, q = 4 and χeff = 0, while varying the orientation

and value of χp. In each case, we calculate,

O(h, h′) =
maxφo(h|h′)
|h||h′| , (2.29)

where,

(a|b) = 4 Re

∫ fmax

fo

a?(f)b(f)

S(f)
df, (2.30)

and S(f) is the power spectral density of the detector data. Thus the overlap is

maximized over the phase, but not over time or any of the mass and spin parameters.

An overlap of close to unity shows that the two waveforms are very similar, while

a lower value of overlap implies significant deviations between the waveforms. As a

rule of thumb, an overlap O(h, h′) . 1− 3/ρ2 will be observable at a signal to noise

ratio ρ [123, 124, 62].

We calculate the overlap of the full waveform, h, against

1. the leading order waveform in the precession expansion, h0;

2. the dominant harmonic, i.e. the harmonic of h0 and h1 which contains the

largest fraction of the power in the full waveform;

3. the two-harmonic waveform with the appropriate values of A0 and A1.

For the + polarized waveform (left column), the k = 0 harmonic is dominant

for all values of θJN and χp, so that the observed overlap with the full waveform is

above 0.8 across the parameter space. For θJN ≈ 0 or small values of χp, the other

harmonics make a minimal contribution and the overlap is close to unity. For larger
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Chapter 2. Two-harmonic approximation for gravitational waveforms from precessing binaries

values of θJN and χp the other harmonics are more significant and the overlap drops

to 0.9 or less. The two-harmonic waveform is a significantly better match to the

full waveform, with an overlap greater than 0.99 for much of the parameter space,

and only below 0.9 for edge-on systems with high χp where the k = 2 harmonic

contributes most strongly (and the k = 1 contribution vanishes).

For the × polarized waveform (center column), the effect of incorporating the

k = 1 harmonic is dramatic. For θJN = 90◦ the k = 0 contribution vanishes and

only the k = 1, 3 harmonics are present. Thus, the overlap with harmonic k = 0

is essentially zero. Using the best of k = 0, 1 provides a good overlap with the

edge-on waveform, but there is still a poor overlap at θJN ≈ 60◦ where both the

k = 0 and 1 harmonics contribute significantly to the waveform. This effect has

been observed previously, for example in [59, 109] and a geometric understanding of

its origin provided. The two-harmonic waveform matches remarkably well to the full

waveform, with the largest differences for θJN = 90◦ and χp ≈ 1 where the overlap

drops to 0.99 due to the contribution from the k = 3 harmonic.

The right column shows the overlap as the orientation of the binary changes. As

expected, at points where the k = 0 harmonic vanishes (θJN = 90◦ and ψ = 45◦), the

overlap with this harmonic drops to zero. The dominant harmonic is a good match

to the waveform, except for orientations where two harmonics contribute signifi-

cantly. As discussed in detail in Ref. [59], this corresponds to configurations where

the binary orientation passes through the null of the detector response (i.e. the signal

goes to zero) once per precession cycle. Thus, the radius of the circle with poor over-

laps is approximately equal to the opening angle of the binary. The two-harmonic

approximation provides an excellent fit to the full waveform over the majority of ori-

entations, only dropping below 0.95 for orientations where θJN → 90◦ and ψ ≈ 0, 90◦,

where the k = 2 harmonic is most significant.

Next, we investigate the validity of the two-harmonic approximation for a pop-

ulation of binaries. To begin with, let us fix the masses and spins and just consider

the effect of binary orientation. As before, we choose M = 40M�, q = 4, χeff = 0

and χp = 0.6, corresponding to b ≈ 0.3, with the binary orientation distributed

uniformly over cos(θJN), φo, αo, ψ. Fig. 2.6 shows the distribution of the overlap be-

tween the full waveform and 1) the k = 0 harmonic, 2) the dominant harmonic and

3) the two-harmonic approximation. The results are shown for both a uniformly dis-

tributed population, and a population of signals observable above a fixed threshold

in the detector — thereby favoring orientations that produce the largest amplitude

gravitational wave. The median overlap with either the k = 0 or dominant har-

monic is . 0.9, while the two-harmonic approximation improves the median overlap

to 0.99. Using the dominant harmonic, there are a small fraction of signals with

overlaps of 0.7 or lower (and for the k = 0 harmonic, this tail extends to overlaps of

0.2), while for the two harmonic approximation, the worst overlap is 0.88.

We can use these results to obtain a rough sense of the benefits of performing
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2.4. Validity of the two-harmonic waveform

Figure 2.6: The distribution of the overlap of the precessing waveform with the
k = 0, dominant and two-harmonic waveforms for a population of signals with
M = 40M�, q = 4, χeff = 0. The top plot shows the overlap distribution for
χp = 0.6, with random orientation of the signal. The lighter shaded regions give the
distribution for a randomly oriented population of sources and the darker regions
for the expected observed distribution (for a uniform-in-volume source). The lower
plot shows the overlap between full and approximate waveforms as a function of b.
The lines on the plot show the value of the overlap for the median (solid line), worst
10% (dashed) and worst 1% (dot-dashed) of signals.

a search using the two-harmonic approximation. Previous, more detailed, inves-

tigations of this question have been carried out in, e.g. [114, 59, 125]. Current

gravitational wave searches make use of spin-aligned waveforms [126, 127], and a

precessing waveform will naturally be identified by a spin-aligned waveform which

matches well the dominant harmonic. Thus, we can use the overlaps between the

precessing waveforms and dominant harmonics as a proxy for the performance of

an aligned spin search. Since the median overlap is 0.9 we would expect to recover

approximately 70% as many signals (≈ 0.93 for a population uniform in volume)

as with a full precessing search, above a fixed threshold. A search based upon the

two-harmonic approximation would recover around 97% of these signals, indicating

an improvement of over 30% in sensitivity to such systems.
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We also show how the distribution of overlaps varies across the mass and spin

parameter space, as encoded by the parameter b and plotted for three choices of spin

distribution in Figure 2.3.6 For b . 0.13 — accounting for three quarters of signals in

the low-isotropic population — the median overlap between the dominant harmonic

and the full waveform is above 0.97. Thus, for the majority of expected signals, the

spin-aligned search will have good sensitivity. However, even for low values of b̄ there

will be some orientations of signals where two dominant harmonic will not match

the waveform well, while the two-harmonic waveform still provides an essentially

perfect representation of the waveform for all orientations. At b ≈ 0.25 the median

overlap with the dominant harmonic waveform drops to 0.9, and it is here that a

search with the two-harmonic approximation could provide a 30% improvement. We

note, however, that for the low-isotropic distribution this accounts for only 5% of

systems. While systems with such significant precession may be rare they would

come from interesting areas of parameter space, with high mass ratios and spins. It

is only at b = 0.4 that the median overlap for the two harmonic waveform drops to

0.97, indicating a 10% loss relative to an ideal search, but also 70% improvement

over a spin-aligned search.

2.5 Searching for precessing binaries

The two-harmonic approximation provides an ideal basis to develop a search for

binaries with precession. The typical approach to searching for binary coalescences

has been to generate a template-bank of waveforms that covers the parameter space

[128, 129, 130]. These templates comprise discrete points in the mass and spin space

chosen so that the waveform produced by a binary anywhere in the parameter space

of interest has a match of at least 97% with one of the templates. The waveform for

each template is then match-filtered against the data to identify peaks of high SNR,

and various signal consistency and coincidence tests are used to differentiate signals

from non-stationary noise transients [131, 132, 133, 126, 127]. Current searches make

use of a template bank covering the four dimensional mass and aligned-spin space

[134, 135].7 The search takes advantage of the fact that changing the sky location,

distance and orientation of the binary only changes the overall amplitude and phase

6While these plots were made with fixed masses and χeff , they should give a reasonable indica-
tion of the accuracy of the two-harmonic waveform across the mass and spin parameter space, as a
function of b. For different masses and spins, the evolution of the precession angle during the coa-
lescence can have a slight impact upon the relative importance of the modes but, as b typically does
not change significantly over the observable waveform, this effect is likely to be small. Furthermore,
as different modes are not perfectly orthogonal, the degree to which they are not will also have a
small effect upon the results. As shown in Section 2.6, the harmonics are close to orthogonal for
M . 40M� so that the results shown here will be representative, at least at lower masses.

7As we have discussed, the most significant effect on the observed waveform arises due to the
effective spin χeff , which is a combination of the aligned spin components of the two waveforms.
Thus, although the template space is four dimensional, one of the spin directions provides limited
variation to the waveforms, and thus is relatively straightforward to cover.
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of the signal, and these quantities can be maximized over in a simple manner.

When developing a search for precessing binaries, the search becomes more chal-

lenging due to the increasing number of parameters. In principle, it is necessary

to search over two masses and six spin components, although, in practice it will

probably be sufficient to restrict to the masses, χeff and χp. The second complica-

tion is that the observed morphology of the waveform varies as the orientation of

the binary changes, and it becomes necessary to search over binary orientation θJN,

polarization ψ and precession phase αo, although methods have been developed to

straightforwardly handle a subset of these parameters [136, 114].

The two-harmonic waveform can be used to maximize the SNR over the binary

orientation in a simple way. The two complex amplitudes A0 and A1, defined in

Eq. (2.27), are dependent upon five variables: the distance, dL, binary orientation,

θJN, ψ, and the initial orbital and precession phases, φo, αo. Since A0 and A1 can

take any value in the complex plane, it is possible to construct the two-harmonic

SNR by filtering the two harmonics h0 and h1 against the data and then freely

maximizing the amplitudes so that,

ρ2
2harm = ρ2

0 + ρ2
1 . (2.31)

If the harmonics are not orthogonal, the two-harmonic SNR should be calculated

using h0 and h1
⊥ — the k = 1 harmonic with any component proportional to h0

removed. The extrinsic parameters of the binary (distance, sky location, orientation,

orbital and precession phase) can be searched over through maximization over the

amplitudes of the two harmonics, leaving only the masses and spins as dimensions

to search using a bank of waveforms.

We must still construct a bank of waveforms to cover the four-dimensional pa-

rameter space of masses, the effective aligned χeff and precessing χp components of

the spins. The amplitude and phase evolution of a single harmonic does not carry

the tell-tale amplitude and phase modulation caused by precession, but does have

a different phase evolution due to precession [110, 73]. Since the phase evolution

of each precessing harmonic is degenerate with a non-precessing waveform with dif-

ferent mass-ratio or effective spin, the bank of templates will essentially be a bank

of non-precessing waveforms. This may allow us to reduce the size of the template

bank.

The k=0 harmonic of the precessing waveform has an additional phase (see

Eq. (2.11)) of,

δφ0(t) =

∫ t

to

2b2

1 + b2
α̇ dt′ . (2.32)

For systems in which orbital angular momentum dominates over spin angular mo-

mentum, the precession frequency is inversely proportional to orbital frequency,

Ωp = α̇ ∝ f−1 [54, 88, 59]. This is the same frequency dependence as the 1PN

– 30 –



Chapter 2. Two-harmonic approximation for gravitational waveforms from precessing binaries

Figure 2.7: The mismatch between the k = 0 (top) and k = 1 (bottom) harmonic
of two precessing signals as the effective spin χeff and precessing spin χp are varied.
For all waveforms, the total mass is fixed to 40M� and the mass ratio to 4. One
waveform has χeff = 0 and χp = 0.6 (the point marked by a star), while the spins
of the second waveform are varied. The blue and green lines show the value of χeff ,
for the k = 0 and k = 1 harmonics respectively, which gives the largest match with
the fiducial waveform; the red line is the average of these values.

contribution to the waveform, whose amplitude depends upon the mass ratio. Con-

sequently, it is reasonable to expect that the precession-induced phase will be indis-

tinguishable from a systematic offset in the binary mass ratio, or the effective spin

[96]. Similarly, the k = 1 harmonic has essentially the same amplitude evolution as

the non-precessing waveform, but with a phase difference of,

δφ1(t) = −
∫ t

to

1− b2
1 + b2

α̇ dt′ , (2.33)

which will also, in many cases, be degenerate with a change in the mass ratio or

aligned spin.

In Figure 2.7, we investigate the degeneracy in the spin (χeff–χp) space of the two

leading precession harmonics. We consider a system with masses, M = 40M� and

q = 4, and spins χeff = 0, χp = 0.6 and investigate how the two waveform harmonics

vary as the spins are changed. The figure shows the match — the overlap maximized

over time-offsets — between our fiducial waveform and one with the same masses

but different spins. For both harmonics, there is a band in the χeff–χp plane where
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2.5. Searching for precessing binaries

the is mismatch is small — the different phase evolution of each harmonic caused by

varying χp can be offset by a suitable change in χeff . The relation is approximately

quadratic, ∆χeff ∝ (∆χp)2, which is to be expected. Recall, from Eq. (2.32), that

change in phase due to precession is quadratic in b, and therefore also in χp at least

for small values of b. Meanwhile the phasing of the waveform varies, at leading

order, linearly with χeff .

This degeneracy in the χeff–χp plane suggests that a single template waveform

could be used to search over an extended region corresponding, for example, to

the region of mismatch < 0.03 in Figure 2.7. However, this will only work if the

degenerate region for the k = 0 and k = 1 harmonics is the same. It is clear from

Equations (2.32) and (2.33) and Figure 2.7 that they are not identical. Nonetheless,8

for the example we have considered, the two degenerate regions are similar, and

along the line that traces the mid-point between best fit values of χeff for the two

harmonics, both harmonics have a match above 0.97 with the initial point. Thus,

to an accuracy appropriate for generating a template bank, we can use the two

harmonics from a single waveform to cover a band in the χeff–χp plane which spans

all values of χp. This effectively reduces the dimensionality of the parameter space

to three dimensions: mass, mass ratio and one spin parameter.

Our proposal to develop a precessing search is as follows. First, generate a bank

of templates to cover the space of non-precessing binaries. At each M , q, χeff point

in the template bank, construct the two-harmonic waveform for a fixed value of

χp. Then, filter the data against the two harmonics and calculate the two-harmonic

SNR, as defined in Eq. (2.31) to identify candidate events in a single detector. It

will be necessary to extend the existing χ2 signal consistency test [132] to each

harmonic, taking into account the presence of the other harmonics, to reduce the

impact of non-stationarity in the data. Next, perform coincidence between detectors

by requiring a signal in the same template at the same time, up to the allowed time

delays based upon speed of propagation. For a non-precessing signal observed in

two detectors, the relative amplitude and phase of the SNR in each detector can

take any value, even though some are astrophysically more likely [137] (and this can

be used to increase search sensitivity). However, for the two-harmonic waveform

not every signal observed in two detectors will be compatible with an astrophysical

source. This can be seen through simple parameter counting: there are ten measured

quantities (two complex amplitudes and a time of arrival in each detector), which

depend upon eight parameters, the five orientation parameters (dL, θJN, ψ, φo, αo),

sky location and merger time. An additional coincidence test to check for consistency

between parameters will likely be necessary to reduce the search background. A

similar problem arises already in extending the amplitude and phase consistency of

8Strictly, when doing this comparison, we must use the same time offset for the two harmonics,
whereas the figure allows for an independent maximization of the time delay for each harmonic.
Fixing a single time delay does slightly decrease the matches, but not significantly enough to change
the conclusions.
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[137] to three or more detectors and methods developed for that purpose may be

helpful for the precessing search.

We can estimate the likely sensitivity improvement from a precessing search,

as we have briefly discussed in Section 2.4. A non-precessing search will typically

find the dominant harmonic of the waveform. Thus, for signals where two harmonics

provide a significant contribution, a search based on the two-harmonic waveform has

the potential to out-perform the non-precessing search. The two-harmonic waveform

has four degrees of freedom, encoded in A0 and A1, compared to two for the non-

precessing search. Thus, the noise background is higher for the two-harmonic search

and, based upon a comparison of the tails of the χ2 distribution with 2 and 4 degrees

of freedom, an increase of around 5% in SNR is required to obtain the same false

alarm rate (see e.g., Ref. [114] for a discussion of this issue). Thus, a signal will

be observed as more significant in the two-harmonic search than a non-precessing

search if the SNR can be increased by 5% or more. Fig. 2.6 shows that this occurs

for b & 0.15, and for binaries with b above this value the two-harmonic search has

the potential to outperform a non-precessing search. We note, however, that a given

template will cover a range of spin values and consequently a range of b, so it may be

more appropriate to deploy the two-harmonic search for templates with an average

of b which is greater than 0.15.

Another challenge of searches for precessing systems is the associated compu-

tational cost [114], which can be prohibitive. The maximum computational cost

for the two-harmonic search would be double that of a comparable non-precessing

search: it becomes necessary to filter both the k = 0 and 1 harmonics, and com-

putational time is dominated by this matched filtering. However, since both the

k = 0 and k = 1 harmonics are essentially non-precessing waveforms, there may

be waveforms associated with the k = 1 harmonics are already in the set of k = 0

waveforms, but associated with different parameters. If so, this could further reduce

the computational cost.

2.6 Observability of precession

The two-harmonic approximation allows us to easily identify regions of the binary

merger parameter space for which precession will leave an observable imprint on the

waveform. Since the amplitude and phase evolution of a single harmonic is generally

consistent with that of a non-precessing waveform (see above and [110, 109]), it

is only when two harmonics can be observed that we are able to clearly identify

precession in the system. We are therefore interested in deriving an expression for

the precession SNR, ρp, defined as the SNR in the second most significant harmonic,

and determining when it will be observable. If the two harmonics h0 and h1 in
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Figure 2.8: The overlap O(h0, h1) between the k = 0 and k = 1 harmonics across
two-dimensional slices in the parameter space of total mass, mass ratio, χeff and χp.
In each plot, two of the parameters are varied while the other two are fixed to their
fiducial values of M = 40M�, q = 4, χeff = 0, χp = 0.6 .
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Eq. (2.26) are orthogonal, then the precession SNR is simply,

ρp = min(|A0h
0|, |A1h

1|),

= ρ2harm

(
min(1, |ζ|)√

1 + |ζ|2

)
, (2.34)

where ζ, defined in Eq. (2.28), gives the ratio of the SNR in the k = 1 and k = 0

harmonics and ρ2harm is the total SNR in the two-harmonic waveform.

Let us briefly examine where in parameter space the two harmonics are close to

orthogonal. Where there are sufficient precession cycles we expect the two harmon-

ics, h0 and h1, will be close to orthogonal, and the overlap to be close to zero [110].

The overlap between the two harmonics for various two-dimensional slices through

the parameter space is shown in Fig. 2.8. At higher masses, where the binary com-

pletes one, or fewer, precession cycles in the detector’s sensitive band, there is a

larger overlap between the harmonics. At negative χeff and minimal χp, the overlap

is also significant. However, providing the mass of the system is below 50M�, for

the much of the parameter space the overlap is less than 0.1 and simple expression

in Eq. (2.34) will be applicable.

Taking into account the overlap between harmonics, the total power in the two-

harmonic waveform is,

ρ2
2harm = |A0h

0|2
(
1 + 2Re[ζ o1,0] + |ζ|2

)
. (2.35)

where o1,0 is complex overlap between the two harmonics:

o1,0 =
(h1|h0) + i(h1|ih0)

|h1||h0| . (2.36)

We can project the SNR onto directions parallel and perpendicular to the h0 wave-

form to obtain the SNR in these two directions as,

ρ2
0 = |A0h

0|2
(
1 + 2Re[ζ o1,0] + |ζ o1,0|2

)
,

ρ2
⊥,0 = |A0h

0|2|ζ|2
(
1− |o1,0|2

)
. (2.37)

Similarly, the power parallel to and perpendicular to the k = 1 harmonic is,

ρ2
1 = |A0h

0|2
(
|o1,0|2 + 2Re[ζ o1,0] + |ζ|2

)
,

ρ2
⊥,1 = |A0h

0|2
(
1− |o1,0|2

)
. (2.38)

The precession SNR is defined as the power orthogonal to the dominant har-
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monic,9

ρp := min(ρ⊥,0, ρ⊥,1), (2.39)

= ρ2harm min(1, |ζ|)
(

1− |o1,0|2
1 + 2Re[ζ o1,0] + |ζ|2

) 1
2

.

As expected, the precession SNR scales with the total SNR of the signal, so that

precession will be more easily observed for louder events. If there is significant de-

generacy between the harmonics, the numerator will be reduced, making the obser-

vation of precession more difficult. Finally, in the limit that o1,0 → 0, the expression

simplifies to the one given earlier for orthogonal harmonics in (2.34), as expected.

What value of ρp will be required to observe precession? This will happen if the

evidence for a signal with χp 6= 0 in the data is greater than that for a non-precessing

source. This can be evaluated through Bayesian model selection, by considering the

Bayes factor between the hypotheses. However, such a calculation requires a full

exploration of the parameter space. We can, instead, obtain an approximate answer

by considering the maximum likelihood. Since the two-harmonic waveform is more

general than the non-precessing waveform, it will always give a larger maximum

likelihood even in the absence of precession do to its ability to fit the detector

noise. Thus, we are interested in examining the expected increase in SNR due to

the inclusion of the second harmonic, in the absence of any power in it.

The two-harmonic SNR can be written as

ρ2
2harm = ρ2

np + ρ2
p . (2.40)

where ρnp is the non-precessing SNR or, equivalently, the SNR in the dominant

harmonic. In the absence of precession, ρp will be χ2 distributed with 2 degrees of

freedom, as we are able to freely maximize over the amplitude and phase of the two

harmonics independently [131, 133]. Consequently, in 90% of cases, noise alone will

give a value of ρp < 2.1. Therefore, as a simple criterion, we require that,

ρp ≥ 2.1, (2.41)

for precession to be observable. In Chapter 3 we use this definition to investigate in

detail the observability of precession over the parameter space.

As can be seen from Eq. 2.34, ρp relies upon the two harmonic approximation

and therefore inherently assumes that the k = 0, 1 harmonics dominate the harmonic

decomposition of a precessing gravitational wave. While this assumption is valid for

the vast majority of parameter space (see e.g. Figs. 2.2 and 2.5), there are regions

where either the k = 2, 3 or 4 harmonics contain more power than the k = 1

9In exceptional circumstances, where the overlap is large and ζo1,0 is close to −1, there can
be more power in ρ⊥,i than ρi. In such cases, it is natural to use ρi to determine if precession is
present, although this is not ideal as ρ⊥,i need not resemble a non-precessing waveform.
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harmonic, e.g. for systems that are viewed close to edge on with large in-plane

spins. This means that ρp will be underestimated for these systems. If we assume

an astrophysically motivated population of binary black holes, where the systems

are distributed uniformly in binary orientation, masses drawn from a power law

distribution and spins drawn from a low isotropic distribution (see Chapter 4 for

details), we find that 3 in every 1000 binaries detected by LIGO–Virgo contains

more power in either the k = 2, 3 or 4 harmonics than the k = 1 harmonic. This

means that on average ρp will be underestimated for 0.3% of binaries detected by

LIGO–Virgo. Therefore, while there are potential systematics in computing ρp using

only the k = 0 and k = 1 harmonics, this only affects a small population of binaries

which are unlikely to be observed with LIGO–Virgo.

2.7 Discussion

We have presented a new, intuitive way to understand the observability of precession

in GW observations. By keeping only the leading precession term, we have derived a

precession SNR and argued that this can be used to determine when precession will

be observable. Before discussing applications we point out the main limitations of

this analysis. As is clear from the formulation, this analysis works best for binaries

where b = tan(β/2) is small. This typically corresponds to situations where the

masses are comparable, the precessing spin is small and any aligned component of

the spin is aligned (rather than anti-aligned) with the orbital angular momentum.

We have shown above that this assumption is valid for a reasonable population.

We now point to several advantages and applications of this formulation:

First, it gives new understanding of the observability of precession, and also of

the origin of precession as the beating of two waveform components with slightly

differing frequencies (also discussed in [110]). It is difficult to identify the presence

of precession in a GW observation directly from χp, since the prior astrophysical

expectation disfavours χp = 0. While the deviation from the prior can be determined

through the Bayes factor, the results in this chapter suggest that the precession

SNR ρp could provide a direct measure of whether precession has been measured

in a signal. The potential applications of ρp are discussed in Chapter 4, and will

be investigated in more detail in Chapter 3, where we probe the measurability of

precession across the gravitational wave parameter space.

There exist a number of detailed population analyses which extract the features

of the underlying population of gravitational waves from the set of observed grav-

itational wave events, for example [138, 139, 140, 85]. These typically use the full

posterior distributions recovered from the gravitational wave signal [91, 141] to infer

the population and, as such, naturally account for precession effects in the observed

signals when inferring the black hole mass and spin populations. Nonetheless, there

have been a number of studies performed which investigate the population proper-

– 37 –



2.7. Discussion

ties using a subset of the recovered parameters, see e.g. [142, 118, 143, 144, 119, 85],

and have been successfully used to infer interesting properties of the mass and spin

distributions. The majority of these studies have restricted attention to the aligned

components of the spins. The precession SNR provides a straightforward method to

determine the significance of precession, and provides a way to probe observability

of precession in populations of binaries. In using this method we have been able to

derive constraints on the preferred spin distribution including precession effects (see

Chapter 4).

Both of the applications highlighted above are currently possible using other

more sophisticated but computationally expensive methods such as Bayesian model

comparison. This is, of course, a more general method that makes fewer assump-

tions than we do in computing ρp, however the computational costs associated with

calculating the marginal likelihood over multiple, e.g. precessing and non-precessing,

models per binary are not feasible for a large number of binaries. For example the

analysis in Chapter 4 involved calculating ρp for 1 million binaries, and computing

the Bayes factor for 1 million binaries would certainly not be practical. Similar,

lightweight analyses, could also be developed using the formalism introduced in, e.g.

[59], and if this is done,it would be interesting to compare them with the results

from the two harmonic analysis.

Finally, we have outlined a method by which the two-harmonic approximation

could be used to develop a search for precessing binaries. We have shown that in

principle that this approach could result in a significant increase in sensitivity with-

out the computational overheads associated with other precessing search methods.

In addition, the formalism should provide a way to identify the parts of parameter

space where a precessing search is likely to increase sensitivity. We plan a detailed

investigation into the feasibility of a precessing search based upon the two-harmonic

approximation in future work.
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Identifying when Precession can

be Measured in Gravitational

Waveforms

This chapter is based upon the text of Green and Hoy et al. [145] published as

Phys. Rev. D, 103, 124023. This work was led by Rhys Green and Charlie Hoy.

My main contributions were generating the workflow, managing the runs and paper

writing. Significant contributions were made to all sections but I specifically led

Sections 3.4.a, 3.4.d, 3.4.g. All authors edited the text.
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3.1. Introduction

3.1 Introduction

In September 2015, the first direct detection of GWs marked the beginning of GW

astronomy [7]. Another 14 detections have been announced by the LIGO Scientific

and Virgo collaborations (LVC), the vast majority of which were due to black hole

(BH) mergers [38, 43, 45, 47, 146, 46]. Additional events have also been reported by

independent groups [39, 40, 41, 42]. These GW observations have already provided

significant insights into gravitational physics, cosmology, astronomy, nuclear physics

and fundamental physics (see e.g. Refs. [147, 148, 149, 150, 151, 152, 153, 85]).

With an order of magnitude more observations expected over the next 5-10 years,

as the sensitivities of the LIGO [4, 5], Virgo [6] and KAGRA [11] detectors improve

and additional detectors come online, GW astronomy from compact-binary mergers

has the potential to transform our understanding of gravitational and fundamental

physics [154, 155, 156].

Everything we learn from GW BBH observations is a consequence of a detailed

parameter estimation analysis that extracts the source parameters of the binary.

While some parameters are extracted with good precision, inspiral dominanted sig-

nals show strong correlations between certain parameters which means that they

cannot be measured so accurately, for example correlations between the binary’s

distance and inclination [60, 8, 99], the two masses [60, 61], and the mass-ratio and

spin components aligned to the binary’s orbital angular momentum [61, 62, 157, 158].

As well as studies of the inspiral, work has been done to extract the source properties

for high mass signals dominated by the merger ringdown, see e.g. [159, 160, 104, 161].

Spin components misaligned with the binary’s orbital angular momentum, lead-

ing to a precession of the binary’s orbital plane and hence modulations of the ampli-

tude and phase, have not yet been unambiguously measured in GW observations [38],

see Fig. 3.1. Precession effects and correlations with other parameters are under-

stood in principle [54, 58] but since theoretical signal models of precessing binaries

that include the merger and ringdown date from only shortly before the first detec-

tions [73, 162], we have less experience of when precession will be measurable, and

what the impact will be on other parameter measurements.

The purpose of this chapter is to explore when precession will be measurable,

and its impact on other parameter measurements, in the kind of configurations that

are representative of expectations from binary populations based on LIGO-Virgo-

KAGRA observations to date [38]. By utilizing the precession SNR ρp, introduced in

Chapter 2, as a quantifier for the measurability of precession, we also verify that ρp

is indeed a good metric for the measurability of precession across the vast majority

of the parameter space, and relate it to the standard means to identify the presence

of precession, the Bayes factor. In doing so, we show that computationally expensive

parameter estimation runs can be avoided by simply calculating the precession SNR.

Previous work has explored the general phenomenology of precession effects:
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Figure 3.1: Plot showing the posterior distributions for χp and ρp for all LIGO/Virgo
BBH observations. The χp posterior distribution (left hand side, colored) is com-
pared to its prior (right hand side, white) in the form of a split violin plot. The
ρp posterior distribution is shown as a single violin. Horizontal grey lines show the
90% symmetric credible interval. The solid black line shows the ρp = 2.1 threshold.
Bounded KDEs are used for estimating the probability density. Data obtained from
the Gravitational Wave Open Science Center [163].
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its increased measurability with large in-plane spins [164, 94, 165], large mass ra-

tios [164, 94], high inclination [54, 59, 166, 167, 120, 104], and of course high

SNR [164, 94, 168]. Beyond these general expectations, the quantitative behaviour

of parameter measurements in the presence of precession has not been studied in

great detail for typical LIGO-Virgo-KAGRA observations. The measurability of

precession for high mass ratio LIGO-Virgo-KAGRA observations like GW190814

has been investigated in recent work [169].

In this chapter, we focus on the region of parameter space most likely to yield

binaries with observable precession: binaries of comparable mass, with moderate in-

plane and aligned-spin components [120]. We perform a series of one-dimensional

investigations of the parameter space, in which we vary one parameter at a time:

total mass, mass ratio, spins (both in-plane as characterized by χp, and the aligned

spin combination χeff), the binary orientation (both the inclination of the orbit and

also binary polarization), and the sky location and show the impact of varying each of

the binary parameters individually. These investigations serve to confirm that much

of the known phenomenology is apparent even at relatively low SNR, while also

demonstrating that the precession SNR can be effectively used across a significant

fraction of the parameter space to predict the observable consequences of precession

without the need for computationally costly parameter estimation analyses.

This chapter is structured as follows: Sec. 3.2 provides a brief recap of the

two-harmonic approximation that allows us to define ρp, and a summary of the

importance of precession across the parameter space. Sec. 3.3 provides an introduc-

tion to the parameter estimation techniques used here, and parameter estimation

results and interpretation for our fiducial system. In Sec. 3.4 we perform a series

of one-dimensional explorations of the parameter space. In Sec. 3.6 we compare

the predicted precession SNR with observations and in Sec. 3.5 we compare preces-

sion SNR with the Bayes factors between precessing and non-precessing runs. We

conclude with a summary and discussion of future directions.

3.2 Two harmonic approximation

In Chapter 2 we introduced a method for decomposing a precessing waveform into

a series of five non-precessing harmonics, where the characteristic modulations of a

precessing signal are caused by the beating of these harmonics. These harmonics

form a power series in the parameter b = tan(β/2). We found that in most regions of

parameter space, the two leading harmonics are sufficient to capture the significant

precession features in the waveform and the other harmonics can be neglected. As

discussed in detail in Sec. 2.4, these other precession harmonics can be ignored for

binaries where β . 45°. Thus, for almost all signals we expect to observe, the
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waveform can faithfully be expressed as,

h(f) ≈ A0h
0(f) +A1h

1(f) , (3.1)

where A0 and A1 are complex, orientation dependent amplitudes, and h0(f) and

h1(f) are the waveforms of the two leading harmonics.

The observability of precession can then be characterised by the precession SNR

ρp, defined as the SNR in the weaker of the two harmonics. ρp is a function of ρ,

the total signal SNR, the overlap between the two harmonics and ζ, the relative

significance of the two harmonics, see Eq. 2.39. ζ is defined as Eq. 2.28. However,

this expression is restricted to the special case where the detector response is only

a function of the polarization angle ψ, F+ = cos 2ψ and F× = − sin 2ψ. In this

chapter, we use a generalized form of Eq. 2.28 which accounts for the detector

responses dependence on the sky location,

ζ :=
bA1

A0
(3.2)

= beiφJL

(
F+ sin 2θJN + 2iF× sin θJN

1
2F+(1 + cos2 θJN) + iF× cos θJN

)
,

where the detector response F+,× is calculated using the polarization angle appro-

priate for a co-ordinate system defined with the z-axis along the direction of total

angular momentum J and the sky location. b is defined in Eq. 2.22, φJL is the

reference precession phase1 and θJN is the angle between J and the line of sight (see

Fig. 1.3).

The quantity ρp parameterises the observable precession, it is therefore the mea-

sured quantity in the data. By considering what we actually measure in the data

we are able to understand many of the correlations and degeneracies in the physical

parameters that are caused by the presence of (or lack of) measurable precession.

As discussed in Sec. 2.6, in the absence of precession, ρ2
p will be χ2 distributed

with two degrees of freedom. Consequently, if there is no observable precession in

the system, ρp ≥ 2.1 in only 10% of cases. Thus far we have used ρp = 2.1 as a

simple threshold to determine if there is any observable precession in the system.

We revisit this in more detail in Sec. 3.6.b.

3.2.a Observability of precession

The strength of the modulations in the GW signal depend primarily on the opening

angle, β, and this is reflected in the expansion parameter b in the two-harmonic

approximation; the precession frequency α̇ also plays a role. The strength of the

1This is equivalent to α0 in Chapter 2. We use φJL in this chapter to be consistent with other
parameter estimation studies.
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modulations in the observed signal also depend on the binary’s inclination to the

observer, θJN, and the detector polarisation ψ, and these are all incorporated into

the precession SNR ρp, through Eqs. (3.2) and (2.39). From these we can draw

immediate conclusions about the scenarios in which precession will be most easily

measured. These observations are in general not new (see, as always, the pioneering

discussions in Refs. [54, 58]), but we summarise them here and, where salient, present

them in terms of the two harmonic formalism, which highlights the insights and

intuition that are simplified in this formulation. We then compare these expectations

with the quantitative results that we find in our full parameter estimation study.

Our first basic picture of the strength of precession effects comes from Eq. (1.1),

which gives the dominant effect on β during the inspiral. If we first consider cases

where the spin is entirely in the orbital plane, i.e., S|| = 0, we see that the opening

angle β will be zero if S⊥ = 0 (as we would expect), and increases linearly for

small S⊥. The opening angle also increases as µ decreases, i.e., as the mass ratio is

increased. Eq. (1.1) is no longer accurate near merger, and for equal-mass systems

β does not become large, but for large mass ratios the opening angle can approach

90◦.

If we now consider non-zero S||, we see that the level of precession will be reduced

for systems with a positive aligned-spin component, and will be increased for systems

with a negative aligned-spin component. The importance of this effect will depend

on the other terms, but we can see that for a high-mass-ratio system where µ is very

small, and close to merger, so rM is also small, the aligned-spin component will

have a strong effect on β, and therefore the measurability of precession. A negative

S|| is necessary to achieve β > 90◦, and for large mass-ratio systems near merger

(small µ and rM) and large negative S||, β can approach 180◦, but such systems

will be rare.

The measurability of precession also depends on the orientation of the binary

with respect to the detector, θJN. As we see in Eq. (3.2), precession effects will be

minimal if θJN ∼ 0◦ or 180◦, i.e., the observer views the system from the direction of

Ĵ. We expect precession to be strongest in the observed waveform for orientations

close to θJN ∼ 90◦. Additionally, when the detector, or network is primarily sensitive

to the × polarization, precession effects will be more significant. The amplitude of

the k = 1 harmonic vanishes in the + polarization for both face on θJN = 0◦ and

180◦ and edge-on θJN = 90◦ systems, while the × polarization is maximal for edge-

on systems. Additionally, the × polarization for the k = 0 harmonic vanishes for

edge on systems, while the + polarization is only reduced by a factor of two. Thus,

even when b is small, there can be observable precession when the system is close

to edge on and the network is preferentially sensitive to the × polarization. For a

given choice of masses and spins, the maximum precession SNR is ρp = ρ/
√

2.
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3.3 Parameter Estimation Results

3.3.a Standard configuration

We begin by describing the results of the parameter recovery routine for a specific

simulated signal. The details of the signal are given in Tab. 3.1. These parameters

were chosen so that precession effects would be significant in the observed waveform

while still being consistent with the observed population of BBHs. In the following

sections, we vary over the parameters of the signal one-by-one to investigate the

impact of each parameter on the observability of precession and the accuracy of

parameter recovery. For each parameter, we are able to both increase and decrease

the significance of precession.

By taking the inferred properties of the BBHs observed in the first, second

and third observing runs [44], it is predicted that 90% of detected binaries will

have mass ratios q < 4 and ∼ 97% of BHs in these binaries will have masses less

than 45M� [170]. Our “standard” simulated signal was chosen to have total mass

M = 40M� and mass ratio q = 2 inclined at an angle of θJN = 60°. This corresponds

to component masses of 26.7M� and 13.3M�. This mass ratio and inclination was

chosen to increase the observability of precession.

Of the 50 events reported by the LIGO/Virgo, 13 exclude the aligned-spin mea-

sure χeff = 0 at 90% confidence [33, 38, 44]. The other 37 observations peak at

χeff = 0 [38, 44]. Based on this, studies have shown that it is likely BHs in binaries

have low spin magnitudes [85, 118, 119, 120]. For this reason, in our standard con-

figuration the BH spins were chosen such that there is zero spin aligned with the

binary’s orbital angular momentum, χeff = 0. We introduce precession by giving the

more massive BH a spin of 0.4 in-plane and leaving the second BH with zero spin;

two-spin effects are generally far weaker than the dominant precession effect, which

exhibits the same phenomenology as a single-spin system [171, 64]. From Eq. (1.3)

we see that this gives us a system with χp = 0.4. The opening angle for the binary

when the signal enters the detector’s sensitivity band is 10◦ and the average value

of the parameter b = tan(β/2) is b = 0.11, from Eq . (2.22). The signal is simulated

using the IMRPhenomPv2 waveform model that incorporates precession effects, but

not higher harmonics (` > 2) in the signal [73, 172].

Our “standard” simulated signal was chosen to be more favourable to preces-

sion measurements than typical LIGO-Virgo observations. Assuming systems are

distributed uniformly in binary orientation, masses drawn from a power law distri-

bution and spins drawn from a low isotropic distribution (see Ref. [120] for details),

we expect that 4 in every 100 binaries detected by LIGO-Virgo will be inclined at

angles greater than 60° and have b > 0.11.

The sky location of the binary was chosen to have RA = 1.88 rad,DEC =

1.19 rad. The coalescence time is t = 1186741861 GPS (corresponding to the merger
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time of GW170814 [37]). The polarization angle, defined by the orientation of the

orbital plane when entering the sensitive band at 20Hz, is ψ = 40°. The two har-

monic approximation is calculated in the J-aligned frame (ẑ = Ĵ). In this frame,

the polarization angle is ψJ = 120°, which gives antenna factors for H1 of F+ = 0.34

and F× = 0.53 and for L1 of F+ = −0.45 and F× = −0.30, thus both detectors are

roughly equally sensitive to the two GW polarizations.

We injected the signals into zero noise. The zero-noise analysis results will be

similar to those obtained from the average results of multiple identical injections in

different Gaussian noise realisations. The simulated signal is recovered using the

LIGO Livingston and Hanford detectors with sensitivities matching those achieved

in the second observing run (O2) [38]. A low frequency cut-off of 20Hz was used for

likelihood evaluations, this frequency is also used as the reference frequency when

defining all frequency dependent parameters such as θJN . Both the LIGO Livingston

and Hanford sensitivities improved prior to the third observing run [173] and are

expected to improve further prior to the fourth observing run (O4) [4]. The results

presented in this work are unlikely to be affected significantly by these changes and

therefore we expect the main conclusions to be valid for O4 and beyond.

The SNR of the signal is fixed to be 20, corresponding to a moderately loud

signal for aLIGO and AdV observations [4]. This sets the distance to dL = 223 Mpc.

The simulated SNR in the two detectors is 16.2 in L1 and 11.7 in H1. The simulated

precession SNR in each of the detectors is 3.7 and 3.4 respectively, giving a network

precession SNR of 5.0. Thus, we expect that precession will be clearly observable in

this signal.

3.3.b Parameter Estimation Techniques

We will adopt a parameter estimation methodology that uses matched filtering with

phenomenological gravitational waveforms and Markov Chain Monte Carlo (MCMC)

techniques to sample the posterior.

We begin by introducing the matched filtering formalisation for parameter es-

timation. We assume that the time series received from the GW detectors can be

decomposed as a sum of the GW signal, h(t), plus noise, n(t), which is assumed

stationary and Gaussian with zero mean,

d(t) = h(t) + n(t). (3.3)

Under the assumption of Gaussian noise, the probability of observing data d given a

signal h(λ) parameterised by λ = {λ1, λ2, ..., λN}, otherwise known as the likelihood,

is [174],

p(d|λ) ∝ exp

(
−1

2
〈d− h(λ)|d− h(λ)〉

)
, (3.4)
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where 〈a|b〉 denotes the inner product between two waveforms a and b and is defined

in Eq. 2.30.

The posterior probability density function can then be computed through a sim-

ple application of Bayes’ theorem,

p(λ|d) =
p(λ)p(d|λ)

p(d)
,

∝ p(λ) exp

(
−1

2
〈d− h(λ)|d− h(λ)〉

)
,

(3.5)

where p(λ|d) is the posterior distribution for the parameters λ, p(λ) is the prior

probability distribution where
∫
p(λ)dλ = 1, and p(d) is the marginalised likelihood

where p(d) =
∫
p(λi)p(d|λi)dλi. Posterior distributions for specific parameters can

then be found by marginalising over all other parameters,

p(λi|d) =

∫
p(λ|d)dλ1...dλi−1dλi+1...dλN . (3.6)

In the idealised situation of zero noise, Eq. (3.4) has a maximum at h(λ) = h(λ0).

However, as can be seen in Eq. (3.5) the posterior also includes priors, this means

that, as well as effects due to noise, certain priors may cause the maxima to be

deflected away from h(λ) = h(λ0). This would then lead to Eq. (3.6) recovering a

biased posterior. In this work, we consider the effect of three closely related priors,

– Global : the prior used during the parameter estimation analysis. This reflects

our prior belief before observing any data,

– Conditioned : the global prior conditioned upon the posterior distributions

of other parameters from the same analysis. For example since χeff and χp

are correlated, any informative measurement of χeff modifies our prior beliefs

about χp. This prior has been used in previous LVC publications, see e.g. [38],

– Informed : the global prior conditioned upon the posterior distributions from

a different analysis. Here, we use this to inform our expectations of the degree

of precession given the results from a non-precessing analysis. See Section 3.6

for details.

3.3.c Parameter recovery

We performed parameter estimation on the signal using the LALInference [91]

and LALSimulation libraries within LALSuite [175]. Parameter recovery was

performed with the IMRPhenomPv2 model [172, 73], which matches the simulated

signal to remove any systematic error caused by waveform uncertainty, and the

corresponding IMRPhenomD aligned-spin waveform model [76, 75], which does not

include any precession effects. Additionally, all analyses used exactly the same
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Figure 3.2: Comparison of the simulated precessing (green), non-precessing maxi-
mum likelihood (red), precessing maximum likelihood (black) and dominant precess-
ing harmonic (blue) waveforms as a function of frequency. Waveforms are projected
onto the LIGO Hanford detector.

priors as those used in the LIGO-Virgo discovery papers, for details, see Appendix

B.1 of [38]. All post-processing was handled by the PESummary python package

(see Chapter 8).

Tab. 3.1 summarises the key results for the standard configuration. All uncer-

tainties are the 90% symmetric credible intervals.

We begin by comparing the overall differences between parameter recovery with

the precessing, IMRPhenomPv2, and non-precessing, IMRPhenomD, runs. From the

table, we see that the maximum likelihood SNR for the non-precessing model is,

as expected, lower than for the precessing waveforms. This can be easily under-

stood from the two-harmonic approximation. Since the precessing waveform is well

approximated by the sum of two non-precessing harmonics, we would expect the

non-precessing recovery to accurately recover the more significant of these two. If

that were the case, the we would expect that,

ρ2
D ≈ ρ2 − ρ2

p, (3.7)

and this is indeed the case, as ρD = 19.52, ρ = 19.94 and the recovered power in the

second harmonic is ρp = 4.6. Furthermore, we see that the recovered waveforms con-

firm this expectation: the recovered waveform when we include precession matches

well with the simulated signal, while the non-precessing run recovers a waveform

that matches the dominant harmonic, as show in Fig. 3.2.

We first consider the accuracy with which the masses and (aligned) spins are
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Figure 3.3: 2d contour comparing q–χeff (top) and distance–inclination (bottom)
degeneracies when precession effects are included. Contours show the 90% confi-
dence interval. Bounded two-dimensional KDEs are used for estimating the joint
probability density. The black circle indicates the simulated values.
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recovered. As expected, the chirp mass of the system is well recovered, in that it

matches the simulated value with only a 2% uncertainty, which remains constant for

both precessing and non-precessing runs. As is well known, there is a degeneracy

between mass-ratio and spin, particularly during the inspiral part of the waveform

[61, 62, 157, 158], which leads to significant uncertainty in both parameters. In

Fig. 3.3 we show the recovery of the mass ratio and spin, for both precessing and

non-precessing runs. When the model used to recover includes precession effects, the

peak of the posteriors is located close to the simulated value (χeff = 0 and q = 2.0)

and, while the degeneracy leads to significant uncertainty in both parameters, the

mass-ratio distribution is clearly peaked away from q = 1. Interestingly, when we

recover with a non-precessing waveform model, the inferred aligned spin component

is systematically offset, with a peak at χeff ≈ 0.05. This can be understood by

recalling that precession induces a secular drift in the phase evolution of the binary,

and this can be mimicked by a change in the value of the aligned spin (see Chapter 2

and Ref [54]). This discrepancy has not been seen in LIGO/Virgo observations [38]

as we have not observed any systems with significant ρp (see Fig. 3.1). We investigate

this further in Sec. 3.4.d, where we study the effect of varying the mass ratio.

For non-precessing binaries, it is generally not possible to accurately recover the

distance and orientation of the source, due to a well known degeneracy (see e.g.,

Ref. [99] for details), although the observation of higher signal harmonics can break

this degeneracy through an independent measurement of the source inclination [60,

99, 176]. Similarly, the observation of precession can break this degeneracy [177].

Precession causes an oscillation of the orbital plane leading to a time-dependence of

the orientation of the orbital plane relative to the line of sight. Equivalently, in the

two-harmonic picture, precession leads to the observation of a second harmonic and,

consequently, additional constraints on the binary orientation as the amplitudes of

the harmonics depend upon the viewing angle. In Fig. 3.3, we show the inferred two-

dimensional distance and inclination posteriors for the precessing and non-precessing

runs. As expected, the precessing run constrains the source to be away from face-on,

while the non-precessing run simply returns the prior. However, even with observable

precession, the simulated distance and orientation are not accurately recovered —

a significant fraction of the posterior support is for a system at a greater distance

and oriented closer to face-on. We will see how these measurements improve with

stronger precession in Sec. 3.4.b.

The sky location of the source is not well recovered. The analysis was performed

with only the two LIGO detectors, and therefore we expect to recover the source

restricted to a ring on the sky, which corresponds to a fixed time delay between the

detectors [95, 97]. The location along the ring cannot be well constrained and, as

expected the inferred location is preferentially associated with sky positions where

the detector network is more sensitive. Thus, while the simulated sky location is

within the 90% region, it is not at or close to the peak. This impacts the recovery

– 51 –



3.3. Parameter Estimation Results

1.5

3.0
[

]

0.4

0.8

2.5 5.0
[ ]

3

6

1.5 3.0
[ ]

0.4 0.8 3 6

Figure 3.4: A corner plot showing the recovered values of binary orientation θJN ,
precessing spin χp, precession phase φJL and precession SNR ρp. Shading shows
the 1σ, 3σ and 5σ confidence intervals. Black dots show the simulated values. The
grey histograms show the informed prior, see Sec. 3.6. There is a clear correlation
between the binary orientation and inferred precession spin, with signals which are
close to face on (cos θ ≈ ±1) having larger values of precessing spin, while those
which are more inclined having less precessing spin. The precession SNR only weakly
correlated with χp.

of the distance, with the signal being recovered at larger distances, although the

simulated distance remains within the 90% range. In Section 3.4.g, we show results

from a set of runs with varying sky location, and verify that at sky locations where

the network is more sensitive, the distance posterior is more consistent with the

simulated value.

Lastly, we turn to measurement of precession. In Fig. 3.4 we show the recovered

distributions for binary orientation, θJN , precessing spin χp, initial precession phase,

φJL, and precession SNR, ρp. There is a clear correlation between the inferred

orientation and χp, with binaries that are more inclined having lower values of χp.

Neither of these quantities are directly observable, it is only the amount of observable

precession in the system, encoded by ρp, that can be measured. Thus the orientation

and spin must combine to give the right amount of power in precession, and we see

that this is the case — there is little correlation between the recovered values of
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ρp and the precessing spin χp. The inferred value of the precessing spin χp and

precession SNR ρp are both consistent with the simulated values. Specifically, the

signal has χp = 0.4 and this is consistent with the recovered value, although the

posterior distribution is broad, with support over essentially the entire range from

0 to 1. The precession SNR peaks well away from zero, giving clear indication of

precession in the system. However, the peak of the distribution occurs at 3.5, while

the simulated value is 5.0. We have deliberately chosen an event with significant

observable precession. Only a small fraction of the parameter-space volume leads

to such significant precession as shown by the informed prior on Fig. 3.4. This is

calculated by estimating the allowed values of ρp conditioned on the measurements

from a non-precessing analysis. See Sec. 3.6 for further details.

The precession phase, φJL, while not measured with great accuracy, does show

two peaks, which are consistent with the simulated value of 45° (0.8 rad). The pre-

cession phase can be inferred from the relative phase of the two precessing harmonics

using Eq. (3.2), provided the binary orientation is well measured. There is a clear

dependence with the binary orientation: if θJN < 90° then the peak is in φJL at the

simulated value and if it is greater then φJL is offset by 180°, to compensate for the

change in sign of the cos θJN terms in Eq. (3.2).

3.4 Impact of Varying Parameters

We now look at the effect of varying individual parameters one at a time on the

recovered posteriors, in particular focusing on the measurement of precession as de-

scribed by the posterior distributions of ρp and χp. All subsequent one-dimensional

investigations of the parameter space maintain a constant SNR (except for Sec.3.4.a

where the effect of the SNR is investigated). This is achieved by varying the distance

to the source.

Primary results presented in this section will be displayed in the form of violin

plots. We show the χp posterior distribution (left hand side, colored) compared to

the global prior (right hand side, white) unless otherwise stated. We show the ρp

posterior distribution as a single violin. Horizontal grey lines show the 90% symmet-

ric credible interval. Horizontal red lines show the simulated value. A solid black

line corresponds to the ρp = 2.1 threshold. Bounded KDEsare used for estimating

the probability density. We use the same 2d contour plots and multi-dimensional

corner plots as described in Sec. 3.3.c. Plots were generated with the PESummary

python package (see Chapter 8).

3.4.a SNR

We start with the fiducial run configuration described above and vary the SNR of

the simulated signal.
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Figure 3.5: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (top) and ρp compared to a non-central χ distribution
with 2 degrees of freedom and non-centrality equal to the median of the ρp distri-
bution (bottom). Distributions are plotted for varying SNR. Parameters other than
the SNR of the signal match the “standard injection” (see Table 3.1).
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In the strong-signal limit, where the likelihood surface can be well approximated

by a multivariate gaussian, it is well known that the accuracy with which parameters

can be measured is generally inversely proportional to the SNR [60, 61]. However,

this is not always the case due to, for example, degeneracies between parameters

(see Ref. [178] for a discussion of the limits of this approximation).

Fig. 3.5 shows that as the SNR of the simulated signal increases, the accuracy

and precision of the inferred χp posterior distribution improves. As expected the

width of the 90% credible interval decreases approximately linearly with increasing

SNR. The improvement in the χp posterior distribution can be mapped to a linear

increase in ρp.

When the simulated signal has low SNR (ρ = 10), the recovered χp posterior dis-

tribution resembles the prior, implying that there is no information about precession

in the data. For this case, ρp matches the expected distribution in the absence of any

measurable precession — a χ distribution with 2 degrees of freedom. As the SNR

increases (ρ = 20-30), the 5th percentile of the the ρp distribution is comparable

or greater than the ρp = 2.1 threshold. This maps to the χp posterior distribution

removing all support for near-zero χp (χp . 0.1). For larger SNRs (ρ > 40), the en-

tire ρp distribution is greater than the 2.1 threshold. This implies significant power

from precession. For these cases, we remove support for maximal precession χp ∼ 1.

As expected we find good agreement between ρp and a non-central χ distribution

with 2 degrees of freedom and non-centrality equal to the inferred power in the second

harmonic (median of the ρp distribution).

3.4.b In-plane spin components

We now look at the effect of varying the amount of precession in the system, varying

χp from 0 to 1 in steps of 0.25. At χp = 1 we have maximal spin, all in the plane

of the binary. The inferred values of precessing spin and precession SNR are shown

in Fig. 3.6. We observe, as expected, that increasing the in-plane spin leads to an

increase in the magnitude of precession effects observable in the system. With zero

precessing spin, there is no evidence for precession in the system; the recovered χp is

consistent with zero2. Similarly, there is no support for significant precession SNR,

with ρp constrained near zero. As χp increases, the amount of precession in the

system grows and the measurement of χp becomes both more accurate and more

precise. Fig. 3.6 shows the relationship between ρp and χp, and a larger value for

ρp enables a better measurement for χp.

Fig. 3.7 shows how the inferred mass ratio–aligned spin and distance–orientation

contours change as the magnitude of the in-plane spins change. When there is

no observable precession in the system, there is a clear degeneracy in both cases.

However, as precession effects become stronger the degeneracy between both pairs

2We do not expect the χp posterior to contain χp = 0 as there is no prior support there, however
the posterior is relatively well constrained at low precession.
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Figure 3.6: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (top) and ρp (bottom). Distributions are plotted for
varying χp. Parameters other than χp match the “standard injection” (see Table 3.1)
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Figure 3.7: Two dimensional posteriors for (top) mass ratio and aligned spin, χeff ,
(bottom) binary orientation and distance. Contours show the 90% confidence inter-
val. Bounded two-dimensional KDEs are used for estimating the joint probability
density. The black circle with corresponding horizontal and vertical lines indicates
the simulated values. For the simulated distance, a solid horizontal band indicates
the maximum and minimum simulated values.
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of parameters is broken. If ρp is small then this can be explained by both a small

amount of precession observed at almost any inclination angle, or a large χp observed

close to face on, as seen in Fig. 3.4. Since precession effects are not strong enough

to provide an accurate measurement of the orientation, the degeneracy between

distance and θJN persists. When ρp clearly excludes small values, there is no support

for close to face-on signals, allowing a more precise measurement of the inclination

angle θJN , breaking the degeneracy with distance.

Stronger precession also allows for improved measurement of the mass ratio. The

opening angle β, and consequently the precession parameter b̄, increases as the mass-

ratio is increased, as can be seen from Eq. (1.1). Thus, when strong precession effects

are observed, the signal is inconsistent with an equal mass system. In addition, the

difference in frequency between the two leading precession harmonics depends upon

the mass-ratio (see Chapter 2), and this may also improve our measurement of q.

This can also be seen from the precession dynamics, where the precession rate of

L around J , α̇, depends the mass ratio, and the number of observable precession

cycles corresponds to improved accuracy in the measurement of the mass ratio [63].

As χp is increased, the peak of the recovered ρp distribution is closer to the

simulated value. This is likely due to a better measurement of the binary orientation

as shown in Fig. 3.7.

3.4.c Inclination

It is well known that the inclination angle will affect our ability to measure pre-

cession, as outlined in the discussion in Sec. 1.2. In particular, from Eq. (3.2) we

see that in the two-harmonic approximation the second harmonic vanishes when

θJN = 0◦ or 180◦. In this section we consider the effect of changing the orientation

of our standard configuration, which allows us to quantify how it will manifest in

realistic LIGO-Virgo signals. A related study has looked at the effect at higher mass

ratios [169].

The effect of varying θJN is shown in Fig. 3.8. For binaries where the total

angular momentum is nearly aligned with the line of sight, precession effects are

not observable, as is clear from both the ρp and χp posteriors. It is not until

θJN ≥ 40° that we begin to be able to measure precession. Although the accuracy

of the measurement clearly improves as we increase θJN , the uncertainty in the

measurement of χp remains large and even at θJN = 90° the posterior is very broad.

This can be understood by considering the degeneracies shown in Fig. 3.4 for the

standard signal and in Fig. 3.9 for the θJN = 90◦ signal. In both cases, the measured

quantity, ρp, is relatively well constrained but neither the binary orientation nor χp

are accurately measured. The observed precession is consistent with both a highly

inclined system with lower precessing spin (i.e., low χp and large θJN ) or by a less

inclined system with higher precessing spin (i.e., high χp and small θJN ). Both of
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Figure 3.8: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (top) and ρp (bottom). Distributions are plotted for
varying θJN . Parameters other than θJN match the “standard injection” (see Ta-
ble 3.1)
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Figure 3.9: A corner plot showing the recovered values of binary orientation θJN ,
precessing spin χp and precession SNR ρp for a system simulated at edge on. Shading
shows the 1σ, 3σ and 5σ confidence intervals. Black dots show the simulated values,
We see the strong correlation between θJN and χp reflecting the measurement of a
certain ρp

these will produce similar observable effects in the waveform.

This allows us to explain the measured posterior for χp. At low inclination the

posterior is consistent with small values of χp. While we are unable to rule out

large χp, there is limited support as it would require the system to be observed very

close to face-on, otherwise precession effects become significant. At large values of

θJN , when precession is clearly observable in the signal, χp = 0 is excluded but the

distribution remains broad and extends to χp = 1.

3.4.d Mass ratio and aligned spin

Fig. 3.10 shows how the inferred precessing spin and precession SNR varies with the

mass ratio of the system. As expected from the general considerations presented

in Sec. 1.2, as the mass ratio increases, an in-plane spin on the larger BH leads to

a larger opening angle and more significant precession effects. For near equal-mass

systems (q . 1.5), the inferred χp posterior distribution resembles its prior, and

there is not significant power in precession, as shown by the value of ρp. As the
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mass ratio increases, the inferred power in precession also increases and for q & 2.5,

the 90% credible interval of the inferred ρp distribution is entirely above ρp = 2.1.

At this stage, precession is clearly identified and χp ≈ 0 is clearly excluded. In

addition, the maximum value of χp is also bounded away from maximal.

Fig. 3.11 shows how varying χeff affects our ability to measure precession. A

system with a large negative χeff results in a larger opening angle compared to an

equivalent system with a large positive χeff . Thus, based upon Eq. (1.1), we expect

the observable impact of precession to be greater for negative values of χeff and

smaller for positive values. The results are consistent with this expectation, in that

the precession SNR decreases with increasing χeff and the width of the recovered

χp distribution increases. However, for the χeff = 0.4 analysis, we find that the

range of χp is restricted, with both χp = 0 and χp = 1 excluded. This is not due

to the measurement of precession, but is actually due to the measured non-zero

aligned-spin component.

A non-zero measurement of χeff forces χp < 1 as the primary and secondary spin

magnitudes must be less than unity. For example, in the χeff = 0.4 analysis, we

measure χeff = 0.38+0.07
−0.07. Under the single spin assumption, this limits χp < 0.95.

Similarly, since we are using prior distributions that are uniform in spin magnitude

and orientation, the observation of a large aligned spin component leads to greater

support for a large in-plane spin component. This is shown in Fig. 3.12, where we

plot both the uninformed prior on the primary spin as well as the prior conditioned

on χeff = 0.4, which removes all support for χp ≈ 0.

The χp measurement for the χeff = 0.27 and 0.4 analyses are similar to the

conditional prior but do restrict the lower χp bound beyond prior effects. Although

the distribution for ρp does extend to zero, it still peaks above ρp = 2.1 indicating

some evidence, although not particularly strong, for precession.

As we vary the mass ratio and aligned spin, the length of the waveform will

change. In particular, the aligned spin and high mass ratio configurations produce

longer waveforms than those with anti-aligned spins and equal masses [179]. In

principle, this will impact the measurability of precession, as longer waveforms allow

for a greater number of precession cycles in the detectors’ sensitive band. For very

short signals, with less than one precession cycle in band, the two leading harmonics

are no longer orthogonal (or even approximately so), which make it more challenging

to unambiguously identify the second harmonic. This is not an issue for the signals

considered here, but does become important when we vary the mass of the binary in

Section 3.4.e. With a greater number of precession cycles, we will also be able to more

accurately measure the precession frequency (the frequency difference between the

harmonics), which may improve the measurement of mass ratio [63]. However, it is

still the precession SNR that determines the observability of precession. Finally, we

note that changing the mass ratio and aligned spin will change the overall amplitude

of the waveform. Since our study is performed at a fixed SNR, this simply leads to
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Figure 3.10: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (top) and ρp (bottom). Distributions are plotted for
varying mass ratio. Parameters other than the mass ratio of the signal match the
“standard injection” (see Table 3.1).
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Figure 3.11: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior conditioned on the χeff and mass ratio posterior distribu-
tions (top) and ρp (bottom). Distributions are plotted for varying χeff . Parameters
other than the χeff of the signal match the “standard injection” (see Table 3.1).
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Figure 3.12: 2d contours showing the prior 90% credible interval over the primary
spin magnitude and spin direction parameter space. Blue shows the global prior and
red shows the global prior conditioned on the χeff = 0.4 mass ratio and χeff posterior
distributions

the signals being placed at a larger or smaller distance and therefore doesn’t impact

the results presented here.

3.4.e Total mass

We now vary the total mass of the system, keeping all other parameters including

mass ratio fixed, in steps of 20M�. As before, we keep the SNR of the system

constant at 20, so the higher mass systems are generated at a greater distance. The

inferred distributions for χp and ρp are shown in Fig. 3.13.

As the total mass of the source increases, the length of the waveform decreases,

as does the number of precession cycles, with the number scaling approximately

inversely to the total mass (see Eq. (45) of [54]). From the two-harmonic per-

spective, a small number of precession cycles leads to a large overlap between the

harmonics. Specifically, for the M = 100M� system the overlap between the nor-

malised harmonics is 〈ĥ0|ĥ1〉 = 0.77, where ĥ = h/|h| and the inner product is
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Figure 3.13: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (top) and ρp (bottom). Distributions are plotted for
varying total mass. Parameters other than the total mass of the signal match the
“standard injection” (see Table 3.1)
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defined in Eq. (2.30). At M = 20M�, the harmonics are close to orthogonal with

〈ĥ0|ĥ1〉 = 0.15. The opening angle doesn’t change significantly, with b̄ = 0.14 at

M = 20M� and b̄ = 0.21 at M = 100M�.

At lower masses, M ≤ 40M�, while the precessing spin is not tightly constrained,

it is clearly restricted to be non-zero and the precession SNR has essentially no

support for ρp = 0. For the 60M� and 80M� mergers, the precessing spin is still

peaked close to the simulated value while ρp peaks above 2.1 showing evidence for

observable precession, although both ρp and χp distributions do extend to zero.

For the high-mass system, M = 100M�, the χp posterior more closely matches

the prior and we are unable to exclude χp = 0. The inferred ρp distribution peaks

close to zero, and is consistent with no precession, even though the precession SNR

in the simulated signal is similar to the lower mass signals. This is likely due to the

breakdown of the two-harmonic approximation for this short signal. In particular,

for a high-mass system, the power orthogonal to the leading harmonic will depend

sensitively upon the initial precession phase φJL. The fact that the recovered value

of ρp is inconsistent with the simulated value may be due to this fact: the value of

φJL = 45◦ used in the simulation leads to maximal observable precession. Across the

full parameter space there are very few configurations with significant precession, so

this observation is dis-favoured by our priors. We explore the prior effects such as

this in detail in Sec. 3.6.b.

3.4.f Polarization

The effect of changing the relative sensitivity to the two GW polarizations is clear

from Eq. (3.2). Recalling that b̄ = 0.11 and θJN = 60◦, we can express ζ (the ratio

of the amplitudes of the two harmonics) as

|ζ| = 0.15

∣∣∣∣ F+ + 2iF×
1F+ + 0.8iF×

∣∣∣∣ ,
Thus, ζ, and consequently the imprint of precession on the waveform, will be max-

imized when the detector network is primarily sensitive to the × polarization and

minimized when the network is sensitive to the + polarization. We can investigate

this by varying the polarization angle of the simulated signal, in steps of 10° from

the “standard” value of 40°. At ψ = 40°, the sensitivity to the two polarizations is

approximately equal, |F×|/|F+| = 0.9. It is largest for ψ = 20° where |F×|/|F+| = 25

and smallest for ψ = 60° where |F×|/|F+| = 0.04. This leads to a variation in the

precession SNR from ρp ≈ 3 to ρp ≈ 7.

In Fig. 3.14 we show the recovered posteriors for χp and ρp for a set of runs where

the precession is varied. The precession SNR varies in accordance with expectation

— it is largest at ψ = 20°, where the median of the posterior is at ρp = 6 and there

is no support for non-precessing systems, and smallest at 60° where the posterior
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Figure 3.14: Violin plots showing the recovered posterior distributions distributions
for χp compared to its prior (top) and ρp (bottom). Distributions are plotted for
varying ψJ . Parameters other than ψJ match the “standard injection” (see Ta-
ble 3.1)
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extends down to ρp = 0. The amount of observable precesssion directly impacts the

inferred distribution for ρp. For the ψ = 60° signal, the posterior for χp is consistent

with zero, or small in-plane spins, and large values are excluded. Meanwhile for

ψ = 20°, χp < 0.1 is excluded while extremal in-plane spins are consistent with the

observation.

It is well known that precession leaves a stronger imprint upon the × polariza-

tion. However, we are not aware of previous results showing how simply changing the

polarization of the system can so dramatically change the observable consequences

of precession — from being barely observable when the observed signal is primarily

the + polarization to being strongly observed in ×. Using the two-harmonic ap-

proximation, we are able to straightforwardly predict this effect and then verify it

with detailed parameter estimation studies.

3.4.g Sky Location

We performed a series of runs where we altered the sky location of the signal,

keeping the masses and spins of the components fixed. We also maintained the

binary orientation θJN = 60°, but varied the distance and polarization of the source

to ensure that the SNR remained constant and that the relative contribution of

the + and × polarizations was consistent with the standard run. Furthermore, sky

locations were restricted to those for which the relative time of arrival between the

Hanford and Livingston detectors remains the same (i.e., we were sampling from the

nearly degenerate ring on the sky of constant time delays). Details of the runs are

given in Tab. 3.2.

Table 3.2 shows that the inferred luminosity distance remains approximately

constant despite the simulated luminosity distance varying by almost a factor of

two. In addition, the recovered ρp distribution remains consistent with the “stan-

dard” injection. Fig. 3.15 shows that the inferred sky position of the source remains

essentially unchanged, and consistent with locations of the detectors’ greatest sen-

sitivity. We note here that for this study we only considered the two detector LIGO

network. Including VIRGO would likely have considerably improved the precision

of the inferred sky location. We do not expect that this would affect any of the

inferred physical parameters or any of the main conclusions in this work.

3.5 Relating ρp posteriors to Bayes Factors

An alternative method for identifying evidence for precession can be calculated

within the Bayesian framework. We can calculate the Bayes factor, B, by com-

paring the marginalized likelihoods (see Eq. (3.5)) from two competing hypotheses

(A, B) [180],

lnB = ln p(dA)− ln p(dB). (3.8)
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Label RA/rad DEC/rad ψ/◦ dL/MPc ρp dL/MPc

A 0.31 0.92 320 370 5.02 480+130
−180

B 0.80 1.15 345 320 5.09 470+140
−160

C 1.31 1.22 10 280 5.11 450+150
−160

D 1.88 1.19 40 220 5.05 430+160
−160

E 6.11 0.21 40 310 5.09 440+150
−170

Table 3.2: Table showing the simulated parameters for the sky location set (see
Sec. 3.4.g). All other parameters match the “standard injection” (see Table 3.1).
The recovered luminosity distance (far right column) is also shown.
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Figure 3.15: Skymap showing the different simulated sky positions, see Table 3.2.
The solid lines show the 90% credible intervals and the markers show the simulated
sky position. Their respective colors matches their corresponding credible intervals.
We vary the distance and polarization of the source to ensure that the SNR remains
consistent with the standard injection in Table 3.1.

Bayes factors have thus far been the gold standard for identifying evidence for pre-

cession within the GW community and have been used extensively in previous works,

see e.g., Ref. [169].

In the same way that Bayes factors can be used to quantify evidence for preces-

sion, it is also possible to quantify the significance of a GW signal by calculating the

Bayes factor for signal verses noise [90]. It has been shown that the log Bayes factor

for signal versus noise scales approximately with ρ2 [181]. Here, we investigate the

relationship between the Bayes factor in favour of precession and the precession SNR

ρp. Both of these quantities have been used together in recent works when assessing

the evidence for observable precession [45, 47, 169]

For a subset of the runs described in Section. 3.4.c, we reran the analysis using

the aligned-spin waveform model IMRPhenomD. Bayes factors in favour of precession

could then be calculated and compared to the derived ρp posterior distributions.

Fig. 3.16 shows an approximately linear relationship between the log Bayes factor

(ln BF) and the square of the precession SNR (ρ2
p). This is expected given that the

likelihoods recovered from the precessing waveform model will be larger than the
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Figure 3.16: Plot comparing the Bayes factor in favour of precession to the inferred
ρp distribution. Bayes factors were calculated by comparing the evidences for a
precessing analysis and a non-precessing analysis. The uncertainties on the Bayes
factors are calculated by taking the 90% confidence interval across multiple LAL-
InferenceNest chains. The solid line uses the median of the ρp distribution. The
shading gives the 1σ and 2σ uncertainties on the ρp measurement. The solid black
lines shows the ρp = 2.1 threshold.

likelihoods recovered from the aligned-spin waveform model by a factor of exp(ρ2
p/2).

The commonly used heuristic when assessing the strength of evidence using Bayes

factors is that 1 ≤ ln BF ≤ 3 is marginal evidence and ln BF > 3 is strong evidence

in favour of a hypothesis. From the plots above we conclude that if 90% (50%)

of the ρp posterior distribution is above the ρp = 2.1 threshold, this corresponds

to a ln BF ≈ 3.5 (ln BF ≈ 0.8) and is therefore very strong (marginal) evidence for

precession. The posterior distribution on ρp can therefore be approximately mapped

to the commonly used ln BF. Assessing the strength of evidence for precession using

ρp would also reduce the need for additional parameter estimation runs using non-

precessing models, which are necessary to compute the Bayes factor. This reduction

in computational cost will not be significant for a single event, but for population

analyses and large scale PE studies this alternative metric could be extremely useful.

3.6 Predicting the Precession SNR Posterior

For the majority of simulations presented in this chapter, the distribution for the

precession SNR, ρp, has been peaked significantly below the simulated value, al-

though in nearly every case the simulated value does lie within the 90% confidence

region. While the naive expectation is that the recovered posterior will peak at the

simulated value, for complex parameter recovery where there are dependencies and
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degeneracies between the different parameters, this is often not the case. We have

already seen that the distance is typically over-estimated in the simulations we have

performed — this is a well-known effect and arises for two reasons, first that the

network is less sensitive to sources from the chosen sky location than from other

locations consistent with the observed signal (as discussed in Sec. 3.4.g), and second

that the signal was simulated significantly inclined from face-on, yet preferentially

recovered close to face-on (as discussed in Sec. 3.4.c). Similarly, it seems likely that

the signals we have simulated have more significant precession effects (deliberately,

as we wish to understand the observability of precession) than the vast majority of

possible sources. Thus, our conjecture is that the likelihood peaks at the simulated

value of ρp but the posterior distribution will be biased to recover a smaller value

owing to the much larger volume of parameter space consistent with low ρp. To

demonstrate this, we calculate a prior distribution for ρp which uses the information

gleaned from a non-precessing analysis to take into consideration the much larger

volume of parameter space consistent with low ρp. We then show that when mul-

tiplying the likelihood by the prior, the predicted posterior for ρp agrees well with

the inferred posterior from a fully precessing parameter estimation analysis.

Let us first show that the likelihood peaks at the simulated value of ρp. The

two-harmonic approximation allows us to factorize the likelihood in Eq. (3.9) into

two terms: a non-precessing component (dependent on h0) Λnp(λ) and precessing

component (dependent on h1) Λp(λ),

p(d|λ) ∝ exp

(
−1

2
〈d− (A0h

0 +A1h
1)|d− (A0h

0 +A1h
1〉
)

(3.9)

∝ exp

(
〈d|A0h

0〉 − |A0|2
2
〈h0|h0〉

)
× exp

(
〈d|A1h

1〉 − |A1|2
2
〈h1|h1〉

)
∝ Λnp(λ)× Λp(λ),

For simplicity we use the approximations that 〈h0|h1〉 = 0 and that h0 is the dom-

inant harmonic, i.e., that the SNR in the h0 harmonic is larger than in h1. The

calculation proceeds analogously when h1 is dominant, and can be extended to the

general case by replacing h1 by its projection onto the space orthogonal to h0.

We can re-express the precessing contribution to the likelihood Λp in terms of the

precession SNR using Eq. (2.34). To do so, we introduce ρ̂p which is the simulated

value of ρp, and ρp(λ) which is the precession SNR for the set of parameters λ.

Furthermore, we define the simulated phase (as given in Eq. (2.27)) of the precession

harmonic as φ̂1 and the phase associated with the parameters λ as φ1(λ). Following

the procedure described in, e.g. Ref. [182], we can rewrite the precession likelihood

as

Λp(ρp, φ1) ∝ exp
(
−1

2

(
ρ2

p(λ)− 2ρ̂pρp(λ) cos(φ̂1 − φ1) + ρ̂2
p

))
. (3.10)
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In general, we have no prior knowledge of the precession phase, so it is natural to

assume a uniform prior on φ1. We may then analytically marginalise Λp(ρp, φ1) over

φ1 to obtain,

Λp(ρp) ∝
∫ 2π

0
Λp(ρp, φ1) p(φ1) dφ1 (3.11)

∝ I0(ρ̂p ρp) exp

(
−
ρ̂2

p + ρ2
p

2

)
.

We therefore see that the precession likelihood peaks at ρ̂p. We may then calculate

the posterior distribution for ρp using Bayes’ Theorem,

p(ρp|d) ∝ p(ρp)Λp(ρp) , (3.12)

where p(ρp) is the prior for the precession SNR.

Previously, in Chapter 2, we obtained a distribution for p(ρp|d) by maximising

the likelihood over A1. This is equivalent to assuming uniform priors for the real

and imaginary components of A1, and leads to a prior p(ρp) ∝ ρp. It follows from

Eq. 3.12 that this results in a χ2 distribution with 2 degrees of freedom. Here,

we instead use a prior for ρp which is informed by the information obtained from

a non-precessing analysis, we refer to this as the informed prior. This informed

prior better represents our prior knowledge about ρp before explicitly accounting for

precession in our analysis.

The majority of parameters required to calculate the informed prior are already

given in the non-precessing results. The two exceptions are the amplitude of the

precessing spin χp and the initial precession phase φJL. As discussed in Section 3.4.d,

we can obtain a prior for χp conditioned upon the other parameters, specifically the

mass ratio and aligned spin χeff , and this can be used to generate the informed prior

on ρp. The initial precession phase is unconstrained by the non-precessing parameter

recovery, this then allows us to assume it to be uniformly distributed. By calculating

the predicted posterior distribution for ρp based upon a set of non-precessing samples,

we may examine the effect of other measured parameters on the final ρp distribution.

For example, if the aligned-spin run favours a binary that is close to equal mass and

an orientation consistent with a face-on system, then our prior belief will be that the

precessing SNR will be low — it is only with unequal masses and systems misaligned

with the line of sight that there are significant precession effects in the observed

waveform. A prior belief of ρp peaking at low values will cause the predicted ρp

to peak at values lower than the simulated one and consequently so too will the

inferred posterior distribution for ρp inferred from a full 15-dimensional parameter

estimation analysis.
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Figure 3.17: The predicted distribution for the precession SNR ρp (dashed orange)
calculated as the product of the precessing contribution to the likelihood (black
dotted line) and the informed prior of ρp (blue) for the q = 4 simulation presented
in Sec. 3.4.d. For comparison, we show the inferred ρp posterior distribution from
the full 15 dimensional parameter estimation analysis (solid orange) and ρp for the
injection (red line). The informed prior is peaked at low values of ρp causing the
peak of the posterior to be smaller than the maximum likelihood value.
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Figure 3.18: Violin plot comparing the observed ρp distribution (colored) from a
precessing analysis, and the predicted distribution (white) based on the aligned-
spin results and simulated value of ρp for the set of varying mass ratio simulations
presented in Sec. 3.4.d. The predicted and observed distributions for precession SNR
are in good agreement, even though the ρp in the simulated signal (red lines) lies
above the peak of either distribution.
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3.6.a Precessing signal

We now apply this conjecture to a precessing signal by attempting to predict the

posterior distributions for ρp. This allows us to investigate how much our recovered

posterior distributions may differ from the idealised case of a precession likelihood

function distributed about the simulated (true) value. In Fig. 3.17 we show the re-

sults of this for the q = 4 simulation presented in Sec. 3.4.d. This specific simulation

was chosen since this case has the largest ρp and corresponds to a simulation where

a non-precessing analysis is less justified. It is therefore a good case to show how the

combination of the informed prior and the additional likelihood from precession Λp

correctly estimates the large ρp. In Fig. 3.18, we show how the predicted posterior

distribution compares to the inferred distribution over the full range of mass ratio

simulations presented in Sec. 3.4.d.

In Fig. 3.17 we show this predicted distribution, the informed prior, the χ2

likelihood function and the posterior distribution obtained from a full parameter

estimation analysis. By explicitly calculating the informed prior and likelihood

terms separately for ρp, we can see the effect of the prior on the ρp posterior. The

prior strongly disfavours large observable precession and therefore pulls the posterior

towards smaller values than the simulated value i.e. where the likelihood function

peaks.

In Fig. 3.18, we show a comparison between the predicted and measured ρp

distributions for the set of runs with varying mass ratio presented in Sec. 3.4.d. When

we calculate the posterior, explicitly accounting for the parameter space weighting

encoded in the informed prior on ρp, we find good agreement between the predicted

and the inferred ρp distributions and note that neither predicted nor inferred are

centred around the true value for the set of signals that we have simulated. Of course,

if we were to draw signals uniformly from the prior distribution, we would expect

to observe the inferred distributions of ρp matching with the simulated values.

3.6.b Non-precessing signal

We now look at the expected posterior distribution for ρp when there is no precession

in the the signal. As explained in Sec. 2.6, previously a χ2 distribution with two

degrees of freedom was used to model the ρp distribution in the absence of any pre-

cession. This then led to the natural heuristic that ρp = 2.1 should be the threshold

for observable precession. Using Eq. (3.12) we can now use a more informative prior

on ρ̃p and obtain a more accurate estimate of the expected posterior distribution in

the absence of precession. We do this by using parameter estimation samples from

an aligned-spin model and setting the simulated precession SNR to be 0, this then

allows us to account for the effects of priors and different noise realisations.

In Fig. 3.19 we show the predicted and observed distributions for the preces-

sion SNR for a non-precessing signal. We use a non-precessing equivalent of the
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Figure 3.19: Distribution of ρp in the absence of precession for the “standard in-
jection”. The inferred ρp distribution using the IMRPhenomPv2 approximant for
recovery is shown by the solid orange line. The dashed orange line shows the pre-
dicted distribution using samples collected from an aligned-spin analysis and setting
the simulated precession SNR to be 0. We also shows the χ2 distribution derived
previously in Chapter 2 as a red dashed line

“standard” injection as our simulated signal (i.e., we set χp = 0 while ensuring all

other parameters match those in Tab. 3.1). We inject with zero noise and use the

IMRPhenomPv2 model for parameter recovery.

The inferred ρp distribution is peaked at lower values that the χ2 distribution as

shown in Fig. 3.19. However using the prediction from the likelihood (Eq.3.9) and

the informed prior we are able to obtain a better estimate of the posterior in the

absence of precession. This estimate can be obtained without performing parameter

estimation incorporating precession, this therefore allows for a better metric for

determining whether or not there is measurable precession in the system.

The distribution for the informed prior on precession SNR will depend upon

the details of the signal. In particular, it will be strongly peaked near zero for

events that are likely to have small opening angle (eqivalently b̄), i.e., events that

are close to equal mass and have significant spin aligned with the orbital angular

momentum, while high mass-ratio events and those with large anti-aligned spins will

lead to greater support for large values of ρp. Furthermore, for binaries where the

orientation can be well measured, without precession information, for example where

higher modes are important, those that are close to face-on will lead to predictions

of smaller ρp while those that are edge-on will give larger values. Given that the

majority of signals observed to date are consistent with equal mass binaries, in most

cases the prior on ρp will tend to be peaked at low values. Consequently, the simple
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threshold of ρp & 2.1 as evidence for precession, remains appropriate and is likely

more stringent than suggested by the simple likelihood calculation.

3.7 Discussion

In most candidate astrophysical binary distributions, precession is likely to be first

measured in a comparable-mass binary (see Chapter 4). We have considered a fidu-

cial example of such a possible signal (mass-ratio q = 2, SNR ρ = 20, and in-plane

spin χp = 0.4, such that the precession contribution to the total SNR is ρp = 5),

and performed an extensive parameter-estimation study that has systematically ex-

plored the impact on parameter measurements of changes in each of the key source

parameters: the SNR, the in-plane spin magnitude, binary inclination, the binary

mass ratio and aligned-spin contribution, the binary’s total mass, the polarisation,

and sky location. These examples illustrate well-known features of precession sig-

nals [164, 94, 54, 59, 166, 167, 120, 168], and quantify their effect on both the

measurement of precession, and their impact on the measurement accuracy and

precision of other parameters.

We have also verified that ρp provides a suitable and intuitive metric for deter-

mining whether or not we have measured precession, and shown that there is an

approximate mapping between ρp and the use of the Bayes factor to assess the ev-

idence of precession. We suggest that given these results, future large scale studies

of precession can be made considerably computationally cheaper by computing ρp,

rather than a full Bayesian analysis.

We note that as ρp captures precession by identifying additional power beyond

a simple non-precessing waveform model, it could therefore be effected by phenom-

ena such as eccentricity and higher order multipoles. As BFs simply compare the

evidence for two models, one precessing and one non-precessing, using BFs as the

sole metric would also be biased by properties like eccentricity and higher order

multipoles.

However, a similar approach to the 2-harmonic decomposition for precessing sig-

nals has recently been applied to GWs including the effects of higher harmonics [182].

In future work, we will combine these approaches and explore the measurability of

precession in systems with significant evidence for higher harmonics, and the impact

of the combination of higher modes and precession upon parameter accuracy. It may

also be possible to account for eccentricity through a similar decomposition.

As highlighted in section 3.6 these decompositions provide powerful insights into

how the addition of physical phenomena introduce information into the analysis.

Here we show that the likelihood can be simply factored into precessing and non-

precessing contributions. This then allows us quantify the extra information that can

be gained from a precessing analysis and even predict the recovered ρp distribution

with or without these effects taken into consideration in the analysis.
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The current study does not include higher harmonics, and uses a signal model

(IMRPhenomPv2) that neglects two-spin precession effects, mode asymmetries that

lead to out-of-plane recoil [183], and detailed modelling of precession effects through

merger and ringdown. Although these effects are typically small, so is the imprint

of precession on the signal, and it would be interesting in future to investigate the

impact of these additional features on our results. We also emphasize that, although

we consider it to be extremely useful to provide quantitative examples of the effects

of each of the binary parameters, these will necessarily depend on the location in

parameter space of our fiducial example. However, having chosen a configuration

from amongst what we expect to be the most likely signals, we hope that these

examples will act as a useful guide in interpreting precession measurements when

they arise in future gravitational-wave observations.
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Chapter 4

When will we observe binary

black holes precessing?

This chapter is based upon the text of Fairhurst et al.[120] published as Phys. Rev.

D, 102, 041302. This work was led by Stephen Fairhurst, Rhys Green, Mark Hannam

and Charlie Hoy. My main contributions were writing the code which performed the

population analysis described in Sections 4.3 and 4.4 and paper writing. All authors

contributed equally to writing.
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Chapter 4. When will we observe binary black holes precessing?

4.1 Introduction

The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) [5]

and Advanced Virgo (AdV) [23], provide a unique method of observing mergers of

black holes and/or neutron stars. Observations to date already provide insights into

the mass and spin distributions of black holes [38, 85].

One important general relativistic effect that has not yet been observed is orbital

precession. This arises when the black-hole spins are not aligned with the binary’s

orbital angular momentum. In contrast to Newtonian mechanics, where all angular

momenta are individually conserved, in general relativity the binary’s total angular

momentum is (approximately) conserved, and the orbital angular momentum (and

hence the orbital plane) and spins precess around it [54, 87]. This leads to modula-

tions in the amplitude and phase of the gravitational wave (GW) signal. These are

in general small effects and, in addition, whether they can be measured depends not

only on the black-hole masses and spin magnitudes and directions, but also on the

binary’s orientation relative to the detector, and the observed GW polarization. For

this reason, until now there was no straightforward way to determine how signifi-

cantly precession would be imprinted onto a given waveform. The usual approach

is to perform computationally expensive Bayesian analyses (see e.g. [38, 91]), but

even then, the misaligned spin components (which signify whether the binary is pre-

cessing) are degenerate with other parameters, and do not provide a direct measure

of precession features in the signal. This makes it difficult to infer the impact of

precession measurements on the properties of astrophysical binary populations and

their formation mechanisms.

4.2 Observability of precession

In Chapter 2, we demonstrated that a precessing waveform can be decomposed

into a series of five non-precessing harmonics, where the characteristic modulations

of a precessing signal are caused by the beating of these harmonics. Since the

individual harmonics are indistinguishable from non-precessing waveforms, it is only

when two precession harmonics can be independently observed that precession can

be unambiguously identified. For precession to be observable, we therefore require

that the expected signal-to-noise ratio (SNR) in both of the harmonics is above some

threshold.

The expected SNR for a signal h embedded in data from a detector with a noise

power spectral density S(f) is given as ρ̂2 = (h|h), where (h|h) is the inner product

defined in Eq. 2.30. In cases with more than one precession cycle between fo and

fmax, the two harmonics will be close to orthogonal, (h0|h1) ≈ 0, and the precession

SNR is simply defined as the expected SNR in the weaker harmonic. When there

is less than one precession cycle, it is necessary to also subtract the power aligned
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with the dominant harmonic before determining whether the second harmonic is

observable. This is explained in detail in Chapter 2.

It remains to determine a threshold above which ρp can be considered as evidence

for precession. Consider the situation where an event has been observed, so there is

significant SNR in at least one harmonic. In the absence of measurable precession,

and assuming well-modelled Gaussian noise, the SNR in the second harmonic will

be χ2 distributed with two degrees of freedom, where the two degrees of freedom

correspond to the real and imaginary parts of the complex amplitude. Therefore,

in the absence of precession, ρp > 2.1 is expected in less than 10% of cases, and

ρp > 3 in approximately 1% of cases. We therefore use these simple thresholds as a

measure of the strength of evidence for observable precession.1

In Fig. 4.1 we show the recovered distribution of χp and ρp for a number of

signals, both real and simulated. For each signal, we use a nested sampling routine

within the LALInference code [90, 91] to obtain posterior probability distributions

for the parameters. This is the same infrastructure that was used to measure the

properties of the LIGO-Virgo observations, and we present our results in the same

form as in, for example, the GWTC-1 catalogue [38], by using the PESummary

library (see Chapter 8). The new feature is our calculation of ρp.

First, we show the recovered χp and ρp distributions for a set of simulated

signals, generated using the IMRPhenomPv2 model [73], each with the same choices

of masses and spins — total mass M = 40M�, mass ratio 2:1, and an in-plane spin

of χp = 0.4 on the large black hole only — but varying orientation, encoded by the

angle θ between the total angular momentum and the line of sight. The distance to

each signal is chosen to ensure a fixed expected SNR of 20 in the aLIGO detectors at

the sensitivity of the second observing run (O2) [38], resulting in a distance variation

by a factor of ≈ 3.5 between the least and most inclined systems.

For binaries with total angular momentum closely aligned with the line of sight,

θ < 45°, the precessing SNR is consistent with no power in the h1. The posterior

on χp is consistent with the prior at low χp but excludes χp & 0.7. When θ > 45°,
the angular momentum is significantly mis-aligned with the line of sight and there

is significant power in both harmonics, leading to a value of ρp inconsistent with

noise alone and little support for values of χp . 0.1. However, using χp alone, even

after performing the parameter recovery there are no simple criteria to determine

when precession is observed. A natural choice might require that the 90% confidence

interval for χp exclude zero, but this will always be the case, primarily due to the

shape of the prior. Furthermore, even though we know all of the parameters a

priori, it is impossible to determine whether precession will be observable without

generating the waveform and performing the parameter recovery.

1A more detailed analysis would consider the volume of the binary parameter space consistent
with the non-precessing and precessing parameters and use these to appropriately weight the likeli-
hoods of the precessing and non-precessing signals. This will have some impact on the required ρp

threshold, but is unlikely to change it significantly.
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Figure 4.1: For a set of simulated signals with fixed masses and spins (see text),
we show the posterior and prior (white) distributions for χp (top), and posterior
distributions for ρp (middle) for a range of different binary orientations, θ. The grey
lines show the 90% confidence regions, the solid red lines show the true values of
χp and ρp respectively and the dashed black and grey lines indicates the thresholds
for observable precession at ρp = 2.1 and ρp = 3. The bottom panel shows the ρp

distribution for the ten binary-black-hole observations in O1 and O2 [38].
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The precession SNR solves these problems. A value of ρp > 2.1 tells us immedi-

ately that there is evidence of observable precession. Most significantly, the expected

precession SNR ρp (red lines on the middle plot) can be calculated directly from the

signal parameters; no detailed parameter estimation analysis is necessary. Thus,

for the first time, we are able to identify immediately whether precession would be

measurable in a given configuration. We see in Fig. 4.1 that for each inclination,

the true value for ρp lies within the recovered 90% credible interval however the

posterior is not centred around the true value. This is due to selection and prior

effects. In Chapter 3, we investigated these selection effects as well as providing a

detailed exploration of the observability of precession over the parameter space of

masses, spins and binary orientation.

Fig. 4.1 also shows the distribution of ρp for the BBH merger signals that were

observed in the aLIGO and AdV O1 and O2 runs [38]. No evidence of precession

was found in these signals [85], as is made clear from the recovery of ρp. There are

several cases where the distribution extends to higher values, but the median never

exceeds the 2.1 threshold. These results demonstrate the efficacy of ρp.

4.3 When will we observe precession?

We can use the observation of precession to distinguish different binary formation

scenarios. The precession SNR makes it straightforward to perform an in-depth

investigation of various models and identify the fraction of signals for which preces-

sion effects will be observable. Such a study was not previously possible, due to the

difficulty in classifying observability of precession. Instead, limited investigations of

the parameter space have been performed [102], or inferences of the distributions

for the spin magnitudes and orientations obtained [140, 138], again with a limited

sample size.

We investigate nine astrophysically-motivated populations of black hole binaries,

comprised of three distributions of spin magnitude, and three distributions of spin

orientation for the individual black holes in the binary. The spin-magnitude distri-

butions are those used in Refs. [118, 142, 119]: low and high are triangular, peaked

either at zero or extremal spin, and flat is a uniform distribution between zero and

one. The spin-orientation is characterized by the distribution for the angle σ between

each black hole’s spin and the orbital angular momentum: aligned is a triangular dis-

tribution in cosσ, which peaks at 1 and can take values 0.85 < cosσ < 1.0, (σ . 30°);
precessing is triangular in cosσ peaked at 0, with values −0.15 < cosσ < 0.15,

(80° . σ . 100°); isotropic is uniform in cosσ between −1 and 1. For each popula-

tion, we generate 105 binaries with masses drawn from a power law mass distribution

with p(m1) ∝ m−2.35, and p(m2) uniform in m2 between 5M� and m1 (as in [119]),

and distributed uniformly in volume and binary orientation.
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Aligned Isotropic Precessing

Low 0.043 0.644 0.151 0.194 0.173 0.150

Flat 0.077 0.448 0.276 0.040 0.327 0.019

High 0.105 0.331 0.354 0.013 0.412 0.005

Table 4.1: The probability of observing precession, ρp > 3, for an observed binary
(white) from each spin distribution and the probability of not observing precession
in 10 random draws (grey) from each spin distribution.

Table 4.1 shows the probability of observing precession in a single event drawn

from each of the nine populations, observed with O2 sensitivity while assuming zero

noise. For this study, we use the higher threshold of ρp > 3, corresponding to a 1%

false rate, to indicate strong evidence for observed precession. When observing a

population of events, the number of events exceeding this threshold when there is

no precession in the system remains low.2

As expected, we are most likely to observe precession when the black holes have

high spins that lie preferentially in the orbital plane (high-precessing configurations)

and least likely for black holes with low spins, or with spins preferentially aligned

with the orbital angular momentum (low-aligned configurations). Given that pre-

cession has not been observed in GW detections to date, we are able to restrict the

spin distribution. Table 4.1 shows the probability of detecting ten signals with no

observable precession from each of the nine spin distributions. Based on precession

measurements alone, we strongly disfavour all precessing distributions. Although

these are already considered astrophysically unlikely, there are models that predict

preferentially in-plane spins [121, 122]. We also disfavour isotropic spins with flat

or high magnitudes. Thus, the lack of observed precession points towards low spins,

or spins preferentially aligned with the orbital angular momentum.

Previous constraints on spins have primarily been provided by considering the

measurable aligned-spin component [118, 142, 119, 38] and provide strong evidence

against all but low aligned or iostropic distributions, with low isotropic spins pre-

ferred. Combining the aligned spin and precession results will further restrict the

spin distribution consistent with GW observations, and will likely require spin mag-

nitudes even smaller than our low distribution (see also Ref. [85]).

2As our analysis assumes zero noise, the fraction of binaries with observable precession will be
slightly underestimated. At a threshold of ρp > 2.1, the effect would be significant while at a
threshold of ρp > 3, the difference is small.
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Figure 4.2: The distribution of χp, θ and q for observable binaries (grey), and those
with measurable precession (blue), assuming a low isotropic spin distribution. θ is
the inclination angle folded to [0, π/2]. The y-axis labels the number of observed
events in each bin, out of 105 simulated signals with low isotropic spins.
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4.4 Where will we observe precession?

We are able to identify, for the first time, the regions of parameter space that lead to

signals with observable precession. In Fig. 4.2, we show the expected distribution of

the precessing spin χp, binary orientation θ and mass ratio q for observable binaries

and binaries with observable precession, ρp > 3, assuming a low isotropic distribu-

tion of spins. We identify clear regions of the parameter space where precession is

more likely to be observed: large values of χp, binaries that are close to edge-on,

θ > 45◦, and systems with high mass ratio. Regions where the chance of observing

precession is close to zero include binaries with χp < 0.2 or where the total angular

momentum is within 20° of the line of sight. These results are consistent with expec-

tations based upon smaller studies using detailed parameter estimation techniques

[102]. We also note that most observations of precession will be in comparable-mass

binaries, i.e., q ≤ 2. This is a surprising, new result. It is well known that pre-

cession is more easily measured at higher mass ratios [54], which is confirmed by

our study: precession is observed in <12% of detections with q < 2, but >35% for

q > 2. However, with ∼ 90% of observations expected to have q < 2, these vastly

outnumber the higher-mass-ratio observations, and we find that ∼75% of precession

observations will come from detections of binaries with q < 2.

4.5 Discussion

In this chapter we have used a simple method to identify when precession is mea-

surable in a compact binary GW signal. The gravitational waveform is well approx-

imated by the first two harmonics in a power series expansion in the tangent of the

half-opening angle (see Chapter 2), and the unambiguous observation of precession

requires the identification of both of these harmonics in the data. The precession

SNR ρp is a simple measure of this observability. We have demonstrated the efficacy

of ρp through parameter estimation studies and also provided the distributions of ρp

for the aLIGO-AdV observations to date. Using our definition of precession SNR,

we have identified how often precession will be observed for a variety of potential

astrophysical spin distributions. For the most likely distribution, based on current

observations (low-aligned) there is a 83% chance that precession will be measured

after ∼40 observations, and is therefore likely to be observed during the current third

aLIGO-AdV observing run (O3). The non-measurement of precession by the end of

O3 would place much stronger constraints on spin orientations and magnitudes.

The precession SNR has many applications. Most immediately, it allows us to

determine the measurability of precession in a system without performing computa-

tionally expensive parameter estimation. This allows us to, e.g., easily fold precession

information into population analyses of black-hole binaries. In future work, we will

explore whether the value of ρp can be used to predict the measured χp distribution.
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The precessing SNR also gives us a simple way to identify regions of the parameter

space where precession is important, a necessary first step in extending existing GW

searches to explicitly use precessing waveforms [114].
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Chapter 5

GW190814: a potential neutron

star black hole observation

In this chapter I explore neutron star-black hole (NSBH) binaries. In Section 5.2 I

introduce how the lack of a clear NSBH binary observation in the first and second

gravitational wave observing runs allowed us to place upper limits on the inferred

merger rates of NSBH binaries in the universe. This work was published by the

LIGO Scientific and Virgo collaborations in Phys. Rev. X, 9, 031040. I produced

Figure 5.1 and this demonstrates my contribution to Figure 14 in Ref. [38]. In

Sec. 5.3 I discuss the properties of a potential NSBH binary detected in the first

half of the third gravitational wave observing run and identify if precession has been

measured in this asymmetric binary. Section 5.3.c was published by the LIGO Sci-

entific and Virgo collaborations in Astrophys. J. Lett., 896, L44. I was one of the 8

lead authors for this paper and was a leading contributor to Section 4: Properties of

GW190814. I also assisted with other sections of this paper for which my contribu-

tions varied. I produced Figures 5.7, 5.10, 5.14 and the top panel of Figure 5.9 for

the Astrophys. J. Lett., 896, L44 publication. The other plots in this chapter were

generated by PESummary (see Chapter 8) using public data from the Gravitational

Wave Open Science Center [184]. These plots have not previously been published.

All text and figures in Section 5.3.e are unpublished.

DISCLAIMER: This chapter presents results and text that was previously published

by the LIGO Scientific and Virgo collaborations. Some of the plots in this chapter

have not previously been published and therefore have not been through a rigorous

review process. Consequently, these plots and associated text do not reflect the

scientific opinion of the LIGO Scientific and Virgo collaborations. I would, however,

like to gratefully acknowledge LIGO, the LIGO Scientific and Virgo collaborations

and their funding agencies.
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5.1. Introduction

5.1 Introduction

During the first two observing runs (O1 and O2), Advanced LIGO [5] and Advanced

Virgo [6] observed the first detection of a binary black hole (BBH) (GW150914; [7])

and a binary neutron star (BNS) (GW170817; [34]) coalesence. Throughout O1 and

O2, the LIGO–Virgo collaboration (LVC) announced, in total, 10 BBH systems and

1 BNS system [38]. Additional events have been reported by independent groups [39,

40, 41, 42].

The first six months of the third observing run (O3a) saw a further 39 gravitational-

wave (GW) candidates announced [44]. These additional candidates include GW190425,

the coalescence signal of what is most likely a BNS with unusually large chirp mass

and total mass [43], GW190412, the first BBH coalescence with an unequivocally

unequal mass ratio q = m1/m2 of 3.61+1.06
−1.11 [45] and GW190521, the heaviest BBH

coalescence detected by the LVC [46] (all measurements are reported as symmetric

90% credible intervals around the median of the marginalized posterior distribu-

tion, unless otherwise specified). Although the astrophysical origin of most GW

candidates in O1, O2 and O3a are known, two remain uncertain: GW190426 [44]

with masses m1 = 5.7+3.9
−2.3M�,m2 = 1.5+0.8

−0.5M� and GW190814 [47] with masses

m1 = 23.2+1.1
−1.0M�,m2 = 2.59+0.08

−0.09M�. Both of these candidates are consistent with

originating from either a BBH or neutron star-black hole (NSBH) binary, hereafter

denoted as “potential NSBH” candidates.

One of the methods for understanding if a GW originated from a BBH or NSBH is

through examining the secondary mass of the binary. If the secondary mass is heavier

than the maximum allowed neutron star (NS) mass Mmax, the GW cannot have

originated from an NSBH. Unfortunately, although theoretical estimates allow for

masses up to ∼ 3M� [48, 49], the maximum NS mass is unknown as it is determined

by the unidentified NS equation of state (EOS). We must therefore compare the

secondary mass to the observed population of NS masses: [1.0 − 2.14]M� [185,

186]1. If the secondary mass is heavier than the maximum allowed NS mass and

the lowest observed black hole (BH), the GW likely originated from a BBH system.

Electromagnetic observations have highlighted that black holes are unlikely to have

masses less than 5M� [188, 189, 190, 191]. If the secondary mass lies within the

mass gap between the known NS and BH populations, understanding the origin of

the GW remains a challenge.

The observation of a confirmed NSBH would be the first detection of a brand

new subclass of compact binary objects. Owing to the lack of a direct observation,

the event rates for NSBH mergers is highly uncertain [38, 192]. Based on estimates

from Ref. [192], the fourth observing run (O4) will likely see 1 to 92 confirmed NSBH

1The estimate for the most massive known neutron star in the galaxy has recently been revised
in Ref. [187]. Since the work from Fonseca et al. [187] was circulated after the GW190814 discovery
paper [47] was published, we continue to use the estimate from Ref. [186] for the rest of this chapter
to ensure consistency
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mergers [4].

NSBH binaries are an astrophysically interesting class of systems. Their GW sig-

nal contains signatures of the physical conditions of matter at nuclear densities (see

e.g. [193]). A direct observation may therefore provide insight into the highly uncer-

tain NS EOS and for models of stellar evolution and core collapse [194]. Although

typical NSBH mass ratios are unknown, population synthesis models suggest that

mass ratios q < 10 are astrophysically most likely [195, 196]. The unequal mass ratio

implies that NSBH binaries are also one of the most promising sources for detect-

ing precession (see Chapter 3 and Ref. [169]) and multipoles beyond the dominant

quadrupole moment [197].

In this chapter, we present a calculation for the upper bound of the merger rate

of NSBH systems based on the detector sensitivity network operating at O1 and

O2 sensitivity. We then provide details about one of the potential NSBH systems

observed during the third gravitational wave observing run, including a full bayesian

analysis to determine its source properties.

5.2 NSBH merger rates during O1 and O2

O1 and O2 saw no clear NSBH mergers, although GW data alone cannot exclude

the possibility that GW170817 is an NSBH [198, 199, 200]. We therefore wish to

place upper limits on the rate of NSBH mergers in the local universe. This requires

knowing the volume over which the gravitational wave detectors are sensitive to

NSBH signals. We estimate this by injecting a large set of simulated waveforms

sampled from an astrophysical population of NSBH sources into the gravitational

wave strain data and identifying how many of these sources are found/missed at a

detection threshold of FAR (false alarm rate) = 0.01yr−1. The sensitive volume can

then be calculated as,

〈V 〉 = V0
Nfound

Ninj
, (5.1)

where Nfound is the total number of found injections, Ninj is the total number of

injections performed and V0 is the astrophysical volume. We define V0 as,

V0 =

∫ zmax

0

dVc
dz

1

1 + z
dz, (5.2)

where zmax is the maximum redshift used in the injection campaign, dVc/dz is the

differential co-moving volume and 1 + z in the denominator accounts for the time-

dilation in the intrinsic rate caused by the expanding universe. We evaluate this

integral through Monte Carlo integration methods. This procedure is explained

in detail in Ref. [201]. We use a total of six NSBH populations which differ by

their combination of BH masses and spin distributions. We fix the black hole mass
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to be 5M�, 10M� and 30M� and use 2 different spin distributions: isotropic and

aligned/anti-aligned. The BH spin magnitudes are uniform in [0, 1] and the NS spin

magnitudes uniform in [0, 0.05]. We fix the neutron star mass to the canonical value

MNS = 1.4M�, use an isotropic distribution of sky location and source orientation

and choose distances assuming a uniform distribution in volume. We use the pycbc

search pipeline [202, 127] to identify the sources and model the waveforms using

precessing BBH models [79] (since at the time of this analysis NSBH models were

not available [203, 204]). This may introduce a small error especially for the low

black hole mass injections were tidal effects are more prominent (see Section 5.3.a

for details).

The astrophysical rate of NSBH coalescences R is then calculated by,

R =
ξ

〈V T 〉 (5.3)

where ξ is the expected number of observed NSBH events in a given analysis, 〈V T 〉
is the product of the population averaged sensitive volume 〈V 〉 and the time T over

which ξ observations have been made. The likelihood for finding zero observations

in the data s follows the Poisson distribution for zero events p(s|ξ) = e−ξ. From

Bayes’ theorem, the posterior for ξ is,

p(ξ|s) ∝ p(ξ)e−ξ, (5.4)

where p(ξ) is the prior on ξ, chosen to be uniform as it yields a more conservative

upper limit. It follows from Eq. 5.3 that the joint posterior distribution on the

astrophysical rate and the sensitive volume is,

p(R, 〈V T 〉 |s) ∝ p(R, 〈V T 〉)e−R〈V T 〉, (5.5)

where p(R, 〈V T 〉) is the joint prior. A posterior for the rate is then obtained by

marginalising over 〈V T 〉,

p(R|s) =

∫
d 〈V T 〉 p(R, 〈V T 〉 |s)

∝
∫
d 〈V T 〉 p(R, 〈V T 〉)e−R〈V T 〉.

(5.6)

The upper limit Rc on the rate with confidence C is then given by the solution to,

∫ Rc

0
dRp(R|s) = C (5.7)

To evaluate Eq. 5.6, we expand the joint prior p(R, 〈V T 〉) = p(R| 〈V T 〉)p(〈V T 〉)
where p(R| 〈V T 〉) is chosen to be uniform on R. As with Ref. [205], we use a log-

normal prior on 〈V T 〉,
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Figure 5.1: The 90% upper limit for the rate of NSBH mergers based on a LIGO-
Hanford, LIGO-Livingston detector network operating at O1 and O2 sensitivity.
The rate is measured at a set of three discrete black hole masses (5, 10, and 30M�)
and the neutron star mass is fixed at 1.4M�. The rate is calculated for two spin
distribution choices: isotropic (dashed) and aligned/anti-aligned (solid).

p(〈V T 〉) = lnN (µ, σ2) (5.8)

where µ is the calculated value of ln 〈V T 〉 and σ represents the fractional uncertainty

in 〈V T 〉 which we set to be 18% to account primarily for calibration error.

In Fig. 5.1 we show how the 90% upper limit on the rate of NSBH binaries varies

for different black hole masses and spin distributions during O1 and O2. We see

that the rate is larger for isotropic spins compared to (anti-)aligned spins and for

smaller BH mass systems, and that all upper limits are below 610Gpc−3y−1. The

rates are larger for isotropic spins because the search uses a template bank of (anti-

)aligned systems and consequently loses sensitivity when searching for systems with

misaligned spins. The rates are larger for small BH mass systems since lower mass

NSBH sources produce quieter signals and therefore cannot be observed to the same

distances as higher mass NSBH sources. Our results are of course dependent on the

prior chosen for R and consequently ξ. An alternative prior which has been used

previously in literature [206] is the Jeffreys prior, defined as p(ξ) ∝ ξ−0.5. This prior

suppresses larger rates and therefore we would expect to observe fewer mergers per

year.
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5.3 GW190814

On 2019 August 14 at 21:11:00 UTC, GW190814 was observed in coincidence by

the LIGO-Livingston and Virgo gravitational wave detectors by the low-latency

GstLAL matched-filtering search pipeline for coalescing binaries [207, 208, 126,

209, 210] 2. Although LIGO-Hanford was in a stable operating configuration at

the time of GW190814, the detector was not in observing mode due to a routine

procedure to minimize angular noise coupling to the strain measurement [213] (this

same procedure took place at LIGO-Hanford around the time of GW170608; we

refer the reader to [36] for details of this procedure). Within a 5 minute window

around GW190814, this routine procedure was not taking place. Therefore upon

re-examination, LIGO-Hanford data for GW190814 are usable in the nominal range

of analysed frequencies. GstLAL and PyCBC reanalysed the data and found a

coincident gravitational-wave signal in all three detectors. Alerts were then issued

notifying the astrophysical community that based on the outputs from GstLAL

and PyCBC, GW190814 was likely to originate from an NSBH source with more

than > 99% probability [214].

The source properties of GW190814 were inferred by performing a coherent

Bayesian analysis on 16 s of data from LIGO-Livingston, LIGO-Hanford and Virgo.

Both the LALInference stochastic sampling software [91] and a parallelised ver-

sion of the parameter estimation software Bilby (pBilby; [215, 141]) were used

to sample the posterior distribution. We used a low-frequency cutoff of 20 Hz for

LIGO-Hanford and Virgo and 30 Hz for LIGO-Livingston for all likelihood evalua-

tions. LIGO-Livingston used a higher low-frequency cutoff owing to the presence of

scattered light, a common source of noise in all three interferometers [216].

Our analysis revealed a merger signal with the most unequal mass ratio observed

with gravitational waves (1/q = 0.112+0.008
−0.009) at a signal-to-noise ratio (SNR) of ' 25

with a primary component conclusively a black hole with mass m1 = 23.2+1.1
−1.0M�.

The nature of the 2.59+0.08
−0.09M� secondary component is unclear. Forming coalescing

compact binaries with this unusual combination of masses at such a rate challenges

our current understanding of astrophysical models.

5.3.a Difference between NSBH and BBH signal models

GW190814 was first classified as a potential NSBH source with more than > 99%

probability [214], based on the secondary mass of the best matching (highest SNR)

template from the GstLAL search pipeline. This template had a secondary mass

which lies in the observed mass gap between known NS and BH populations. Ex-

cluding the possibility that GW190814’s source includes an exotic object (such as

2Other low-latency searches, including the matched-filtering based MBTA [211] and Py-
CBC [127, 137, 212, 202] pipelines, could not detect the event at the time as its SNR in Virgo
data was below their single-detector detection thresholds
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Figure 5.2: Comparison of the NSBH signal model EOBNR NSBH [204] (or-
ange) and the BBH signal model SEOBNRv4 [219] (grey) for parameters match-
ing the NSBH numerical relativity waveform of top: SXS:BHNS:0004, middle:
SXS:BHNS:0003 and bottom: SXS:BHNS:0001 [220, 221]. These parameters were
chosen such that the top panel has ftd < fISCO, middle has fISCO < ftd < fringdown

and bottom has ftd > fringdown. The inset in each plot shows a zoomed in portion of
the signal around merger. We apply time and phase shifts to align the waveforms.
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a boson star [217] or a gravastar [218]), GW190814’s source is therefore either an

NSBH or a BBH.

In order to avoid making any unnecessary assumptions, we wish to analyse

GW190814 using a single waveform model which remains a good approximation

for both systems. Given that there have been some major developments at in-

cluding precession and subdominant multipole moments into BBH signal models in

recent years [222, 80, 81, 79, 223, 224], but not yet NSBH signal models [204, 203],

it is preferable to analyse GW190814 assuming the system is either a BBH or can

be well approximated by a BBH system. This is because both precession and sub-

dominant multipole moments are likely to leave strong imprints in the gravitational

wave given the high mass ratio estimate (see Chapter 3 and Refs [169, 176]. Below

we discuss the differences between NSBH and BBH signal models and then describe

under what conditions an NSBH signal model can be approximated by an equivalent

BBH model.

When in the presence of another object’s gravitational field, a star is subject

to tidal forces. If these two objects are at a close enough separation R that the

tidal forces are larger than the star’s self-gravity, the star is tidally disrupted and

will loose mass in a process known as mass shedding (depending on the duration of

exposure). By assuming a quasi-circular orbit, we can relate this separation to an

orbital frequency ftd [225, 226].

Mass shedding modifies both the amplitude and phase of the emitted gravita-

tional wave [204, 203]. However, depending on the value of ftd, these modulations

may or may not be measurable. For certain ftd they may not even occur at all.

The observability of mass shedding depends on ftd, the frequency at the Innermost

Stable Circular Orbit (ISCO), fISCO, and the frequency at which the binary merges,

often approximated by the ringdown frequency of the binary fringdown.

For the case where ftd < fISCO, the NS undergoes mass shedding with potentially

some of the NS matter remaining outside of the BH in the form of an accretion

disk [225]. For such cases, the late inspiral, merger and ringdown present for BBH

signals is exponentially suppressed. This results in the emitted GW exhibiting a

truncated chirp-like shape with a phase drift compared to the GW emitted by a

BBH system, see the top panel of Figure 5.2.

For the case where fISCO < ftd < fringdown, the NS undergoes mass shedding

during late inspiral but forms no accretion disk around the remnant black hole. This

is because all of the matter that has been shed from the NS lies inside of the ISCO

and thus cannot form a bound orbit around the BH. Since most of the NS remains

intact as it plunges into the black hole, the emitted GW will be similar to a BBH

up until merger where both a mild phase shift and amplitude suppression are seen.

For this case the ringdown portion of the signal is also suppressed, see the middle

panel of Figure 5.2.

For ftd > fringdown, it is assumed that the NS remains completely intact as it
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Figure 5.3: Plot showing ftd/fringdown across the mass ratio tidal deformability pa-
rameter space for 2 different black hole spins, left : χ1z = −0.5, right : χ1z = 0.5.
The contours shows the region where ftd = fISCO. Light (dark) colours show the
region of the parameter space where ftd > (<)fringdown. We used the IMRPhe-
nomNSBH [203] model to calculate ftd and fringdown.

plunges into the BH. Here, the GW amplitude (early and late inspiral, merger and

ringdown) is almost indistinguishable from a GW emitted by an equivalent BBH,

with often a very small phase drift, see the bottom panel of Figure 5.2. For this case,

BBH waveform models are able to approximate the emitted GW. This discussion

excludes the effects of precession and subdominant multipole moments. We briefly

discuss the impact of these phenomena at end of Sec. 5.3.b.

Whether or not the GW emitted by an NSBH binary can be approximated by a

BBH signal model is therefore heavily dependent on the ratio of ftd and fringdown.

Let us now briefly summarise the dependencies of ftd and fringdown and quantify the

region of the NSBH parameter space for which ftd > fringdown.

Both the tidal disruption and ringdown frequencies are a function of the BH’s

mass and spin and the NS’s mass and radius [227, 228, 229, 230, 231]. Given that

the NS radius is dependent on the unknown NS EOS, it is customary to replace

this dependency with a single EOS-invariant parameter: the tidal deformability

parameter Λ [232]. Λ encodes how easily an object can be deformed in the presence

of an external tidal field [50]. For instance, a large, less compact star is easier to

deform than a small, more compact star. This means that a large less compact star

has a larger tidal deformability [51]. Λ is bounded to be greater than or equal to 0

where a value of Λ = 0 corresponds to an object which cannot be deformed under

tidal forces. It has been shown that this limit corresponds to a black hole [see e.g.

233, 234, 235].

In Figure 5.3 we show how ftd/fringdown varies across the mass ratio – tidal

deformability – black hole spin χ1z parameter space. χ1z can take values between

[−1, 1], where positive (negative) values imply that the black hole spin is (anti-

)aligned with the orbital angular momentum. We see that ftd > fringdown for smaller

tidal deformability and for larger mass ratios [236, 237] with the black hole spin
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Figure 5.4: Corner plot showing the posterior distribution of the tidal deformability
Λ, mass shedding starting frequency ftd and ringdown frequency fringdown for a
combined set of samples collected with two NSBH signal models [203, 204]. The
histograms along the diagonal show the marginalized 1d posterior distributions. In
the fringdown–ftd panel, the black dashed line shows ftd = fringdown and the grey
region shows ftd < fringdown.

having little effect in comparison to Λ and q. We understand this because a) tidal

effects scale inversely with mass ratio (∼ q−4) [203, 204] meaning that for unequal

mass ratio systems mass shedding starts at higher orbital frequencies and b) NSs

with smaller tidal deformabilities are smaller, more compact and have a larger self-

gravity which requires larger tidal forces (smaller separations) to overcome.

5.3.b Motivating the use of BBH signal models for the analysis of

GW190814

If we wish to describe GW190814 with BBH signal models, we require ftd > fringdown.

From Figure 5.3, we understand this requires large mass ratios and/or small tidal

deformabilites. To obtain estimates for these parameters, we performed parameter
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Figure 5.5: Comparison between the maximum likelihood waveforms for GW190814
inferred from two different analyses: one where GW190814’s source is assumed to
be a BBH (EOBNR) and another where GW190814’s source is assumed to be an
NSBH (EOBNR NSBH). The top panel shows both maximum likelihood waveforms
projected onto the LIGO-Hanford detector within the frequency domain. For com-
parison we also show the amplitude spectral density (ASD) of LIGO-Hanford at
the time of the detection in red. The vertical orange line shows an estimate for
the merger frequency fringdown. We apply a normalisation factor (2

√
f) to all wave-

forms such that the area between the signal and ASD is indicative of the SNR of
GW190814 [32, 30]. The bottom panel shows the accumulated time-domain phase
error between the two maximum likelihood waveforms over the length of the EOBNR
NSBH signal. We apply time and phase shifts to aligned the waveforms.

estimation using the EOBNR NSBH [204] and Phenom NSBH [203] signal models3;

two complementary models representing two different approaches to model the same

binary system, one based on the effective-one-body approach (EOBNR; [219, 79, 223,

224]) and the other on a phenomenological approach (Phenom; [76, 75, 222, 80, 81]).

Figure 5.4 shows the three-dimensional joint posterior distribution for ftd, fringdown

and the tidal deformability Λ for the combination of EOBNR NSBH and Phenom

NSBH samples. We see that ftd > fringdown at more than 99% probability. This

implies that if GW190814’s source is an NSBH binary, it is extremely likely that the

NS plunged into the BH without a) being tidally disrupted, although we are unable

3In LALSimulation [175] the full name of the EOBNR model is SEOBNRv4 ROM NRTidalv2 -
NSBH and Phenom model is IMRPhenomNSBH
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EOBNR EOBNR NSBH

Primary mass m1/M� 24.43 23.76
Secondary mass m2/M� 2.46 2.49
Inverted mass ratio 1/q 0.1 0.1
Chirp mass M/M� 6.04 6.02
Total mass M/M� 26.89 26.25
Primary spin magnitude χ1 0.08 0.04
Effective inspiral spin parameter χeff 0.04 0.03
Tidal deformability parameter Λ - 635.37
Luminosity distance DL/Mpc 284.14 302.93
Source redshift z 0.06 0.07
Inclination angle θJN/rad 0.64 0.52
Network Signal to noise ratio ρHLV 23.97 23.97

Table 5.1: Table showing the maximum likelihood values for GW190814 inferred
from two different analyses: one where GW190814’s source is assumed to be a
BBH (EOBNR) and another where GW190814’s source is assumed to be an NSBH
(EOBNR NSBH). The inclination angle is folded to [0, π/2].

to exclude the possibility of tidal disruption or b) the SNR of the signal is not large

enough measure the very small phase drift (see Fig. 3 in Ref [203]). This implies

that any differences in the amplitude and phase compared to a BBH signal model

are at magnitude that cannot be measurable at current detector sensitivities. This

explains why our analysis returned an uninformative posterior distribution for the

tidal deformability.

Interestingly, our analysis reveals a sharp cutoff in ftd at ∼ 500 Hz. From Fig-

ure 5.4 we see that this cutoff is a result of limiting the tidal deformability Λ < 3000

(prior railing). If Λ were allowed to take values larger than 3000, the NS would be

larger and less compact for a given mass. This implies that a lower tidal force would

be required to initiate mass shedding, which, given that tidal forces scale inversely

with binary separation (for fixed configuration), occurs earlier in the inspiral and

therefore at lower frequencies. Our analysis adopted a boundary at Λ = 3000 due

to limitations with the available NSBH signal models [203]. This restriction is rea-

sonable given that GW170817 constrained the NS tidal deformabilities Λ < 3000 at

more than 99% probability.

Given that ftd > fringdown at more than 99% probability, it is likely that GW190814

can be well approximated by a BBH signal model. To confirm this, we analysed

GW190814 using a set of aligned spin quadrupole only BBH signal models and

compared maximum likelihood samples (maxLs) with the NSBH signal models. By

doing so, we compare waveforms which best match the data and neglect any dif-

ferences in prior volumes. These BBH models, SEOBNRv4 ROM [219] (EOBNR)

and IMRPhenomD [76, 75] (Phenom), are close to, and if not exactly equivalent

to, the BBH limit of the NSBH signal models used previously.
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Figure 5.5 plots the recovered maxL waveforms from the EOBNR and EOBNR

NSBH analyses in the frequency domain. We see that the two maxL waveforms

agree very well. The amplitudes are almost indistinguishable and the phase differ-

ence is comparable to the error between EOBNR NSBH and numerical relativity

waveforms [204]. We note that over time, the phase error increases. This is consis-

tent with the fact that the tidal-phase correction accumulates over many cycles. We

also highlight that a small difference in amplitude is seen for frequencies post merger

f & fringdown. However, since these differences lie below the ASD, they cannot be

detected at current detector sensitivities.

We also show the maxL values for each parameter in table 5.1. Although in

general we see very good agreement between the two analyses, we see differences in

the inferred distance and inclination angle. This is expected given that the distance-

inclination angle degeneracy [60, 8] is only broken with aligned spin quadrupole

only models for a small fraction of binaries: those that are viewed close to edge-on

75◦ . θJN . 105◦ [99]. We do observe that the waveform amplitudes (cos θJN/DL,

(1 + cos θJN
2)/2DL

4) remain approximately constant between the models. Based

on this comparison, we can conclude that if GW190814 originated from an aligned

spin NSBH binary, it is exceptionally well modelled by an aligned spin BBH merger.

This confirms the conclusions in Ref. [236].

So far, we have excluded the effects of precession and subdominant multipole

moments in our discussion. However, it has been shown previously that a) tidal

disruption of the NS is less likely in a precessing NSBH binary [see e.g. 238, 239]

and b) higher order tidal corrections caused by subdominant multipole moments

introduces a 6 0.7% correction [240]. Consequently, if the effects of precession and

subdominant multipole moments were included in our analysis, a GW190814-like

NSBH merger would still be exceptionally well modelled by a BBH merger. Given

that precessing higher order multipole moment models currently only exist for BBH

systems, these results show that it is reasonable to perform a full Bayesian analysis

of GW190814 using these BBH signal models which contain more physics.

5.3.c Analysing GW190814 with BBH waveform models

Our primary analyses include the effects of subdominant multipole moments (also

referred to as higher order multipole moments HM) in precessing waveform tem-

plate models (PHM): IMRPhenomPv3HM (Phenom PHM; [80, 81]) from the phe-

nomenological family and SEOBNRv4PHM (EOBNR PHM; [79, 224]) from the

EOBNR family. We find no significant evidence that one waveform family is pre-

ferred over the other as the Bayes factor between Phenom PHM and EOBNR PHM

is log10 B ' 1.0. As a result, we combine the posterior samples with equal weight, in

4The waveform amplitudes are defined in terms of the angle between the orbital angular mo-
mentum and line of sight ι, however since both EOBNR and EOBNR NSBH signal models are
non-precessing, ι = θJN and therefore we are free to use either variable
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Figure 5.6: Time-domain data (sampled at 4096 Hz) and reconstructed waveforms
of GW190814, for the top: LIGO-Hanford, middle: LIGO-Livingston and bottom:
Virgo GW detectors. Times are shown relative to August 14 2019 at 21:10:39 UTC.
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Figure 5.7: Posterior distribution of the primary and secondary source masses for
the SEOBNRv4PHM and IMRPhenomPv3HM waveform models. The posterior
distribution resulting from the combination of their samples is also shown. Each
contour, as well as the coloured horizontal and vertical lines, shows the 90% credible
intervals. The right panel compares m2 to predictions for the maximum NS mass,
Mmax from a) studies of the remnant of GW170817 (solid grey band) b) theoretical
estimates (orange) and c) fitting the known population of NSs in binaries (green).
The grey dashed line and shading represent the measured mass of the heaviest pulsar
in the Galaxy (median and 68% confidence interval; [186]).
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Figure 5.8: Posterior distribution of the secondary source mass compared to the
posterior distribution for the maximum NS mass estimated by fitting the known
population of NSs in binaries [241] (green curve in the right hand panel of Fig-
ure 5.7). The black dashed line shows m2 = Mmax and the grey region shows
m2 > Mmax.
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effect marginalizing over a discrete set of signal models with a uniform probability.

A summary of the inferred source properties of GW190814 is given in Table 5.2.

Figure 5.6 compares the time-domain data and the reconstructed waveforms for

GW190814 for the 3 GW detectors used in this analysis.

We found that the secondary mass lies in the range 2.50–2.67M�, placing it in the

hypothesised lower mass gap between known NSs and BHs, 2.0–5M� [188, 189, 190,

191], see Figure 5.7. The secondary object is heavier than the most massive known

pulsar in the Galaxy (2.14+0.10
−0.09M� at 68.3% credible interval; [186]), the primary

component of GW190425 (1.61–2.52M�; [43]), and the bounds on maximum NS

mass from a) studies of the remnant of GW170817, b) theoretical estimates [242] and

c) fitting the known population of NSs in binaries [241]. It is, however, comparable

to the ∼ 2.7M� putative BH remnant mass of GW170817 [243]. The primary object

is most likely a BH with mass 23.2+1.1
−1.0M�.

In Figure 5.8 we directly compare the posterior distribution for the secondary

mass with the maximum NS mass estimated by fitting the known population of NSs

in binaries [241]. We identify that the secondary mass is less than the maximum

NS mass at a probability P(m2 ≤ Mmax) ∼ 0.29. We therefore favour the m2 >

Mmax scenario, albeit not very strongly because of the distribution’s long tail up

to ∼ 3M�. However, the empirical Mmax prediction is sensitive to selection effects

that could potentially bias its posterior [244]. This posterior also does not take

into consideration the discovery of GW190425 [43] which could impact the Mmax

prediction.

The time delay of a signal across a network of gravitational wave detectors,

together with the relative amplitude and phase at each detector, allows us to measure

the location of the GW source on the sky [245]. We localize GW190814’s source to

within 18.5 deg2 at 90% probability, as shown in Figure 5.9. Despite this tight

constraint, we fail to localise GW190814 to a single point on the sky. As shown in

Figure 5.9, the secondary sky position is caused by a small secondary peak in the

arrival time at Virgo. This is consistent with a secondary peak in the Virgo SNR

time series reported by the search pipelines.

Spins are a fundamental property of BHs. Their magnitude and orientation carry

information regarding the evolution history of the binary. We parameterise the spin

components parallel to the orbital angular momentum by the effective inspiral spin

parameter χeff [246, 247, 248, 249]. We infer that χeff = −0.002+0.060
−0.061. The tight

constraints are consistent with being able to measure the phase evolution from the

long inspiral.

Orbital precession occurs when there is a significant spin component perpendicu-

lar to the orbital angular momentum (within the orbital plane of the binary) [54]. We

parameterize precession by the effective precession spin parameter 0 ≤ χp ≤ 1 [64].

It is well known that orbital precession is easier to measure for asymmetric mass

ratios (see Chapter 3 and Ref. [169]) and edge-on systems [54, 88, 102, 104, 120,
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Figure 5.9: Posterior distributions for the sky location of GW190814. The top panel
shows the 90% credible interval for a LIGO Livingston–Virgo (blue) and LIGO
Hanford–LIGO Livingston–Virgo (orange) detector network based on the rapid lo-
calization algorithm BAYESTAR [97]. The sky localization circulated 13.5 hours
after the event, based on a LIGO Hanford–LIGO Livingston–Virgo bayesian analy-
sis is shown in green. The purple contour indicates the final sky localization. The
bottom panel plots two 2D probability distributions on the same axis. In blue we
show the 2D probability distribution for the merger time as reported by the Virgo
gravitational wave detector tV and the right ascension α and in red we show the 2D
probability distribution for tV and declination δ (red).
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Combined samples. The tilt angles are 0◦ for spins aligned and 180◦ for spins anti-
aligned with the orbital angular momentum. The tiles are constructed linearly in
spin magnitude and the cosine of the tilt angles such that each tile contains iden-
tical prior probability. The color indicates the posterior probability per pixel. The
probabilities are marginalized over the azimuthal angles.

86, 145]. Given that GW190814 constrains the inclination of the binary to be

θJN = 0.8+0.3
−0.2 rad (folded to [0, π/2]) and has an inferred inverted mass ratio of

1/q = 0.112+0.008
−0.009, GW190814 provides the tightest constraint on precession from

any GW to date: χp = 0.04+0.04
−0.03. By computing the Bayes factor between a precess-

ing and non-precessing signal model (log10B ∼ 0.5 in favor of precession), we find

inconclusive evidence for in-plane spin.

The asymmetry in the masses of GW190814 means that the spin of the more

massive object dominates contributions to χeff and χp. As both χeff and χp are

tightly constrained, we are able to bound the primary spin of GW190814 to be

χ1 ≤ 0.07 as shown in Figure 5.10. This is the strongest constraint on the primary

spin for any gravitational-wave event to date [38, 43, 45].

The joint posterior probability of the magnitude and orientation of χ1 and χ2

are shown in Figure 5.10. This plot is constructed such that the prior has uniform

shading and therefore any deviations from uniform shading indicates a distribution

which differs from the prior. We see that the primary spin is tightly constrained

to small magnitudes, but its orientation is indistinguishable from the prior distribu-
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Figure 5.11: Posterior distribution of the effective spin and secondary source mass
using a suite of waveform models. Each contour shows the 90% credible intervals.
The top and right panels show the marginalized posterior distribution for effective
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(generic spin directions + higher multipoles), Phenom/EOBNR HM (aligned-spin
+ higher multipoles) and Phenom/EOBNR (aligned-spin, quadrupole only) indicate
the different physical content in each of the waveform models.

tion. The spin of the less massive object, χ2, remains unconstrained; the posterior

distribution is broadly consistent with the prior.

5.3.d Near-zero precession impacting accuracy of source properties

Our coherent Bayesian analysis has shown that GW190814 is consistent with a

23.2+1.1
−1.0M� − 2.59+0.08

−0.09M� binary merger with near-zero in-plane and aligned spin

components. Given that GW190814 lies in a region of the parameter space that has

previously been unexplored via gravitational-wave emission, we tested the accuracy

of our gravitational wave models by comparing the Phenom and EOB waveform

families. Differences in the inferred secondary mass and effective spin are shown

in Figure 5.11. The results indicate that both the Phenom and EOB waveform

families agree exceptionally well with the inferred secondary mass and effective spin

magnitude robust to possible waveform systematics.
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Surprisingly, Figure 5.11 also shows that the non-measurement of precession

impacts the inferred mass ratio and effective spin of the binary, with precessing

signal models constraining the mass ratio and effective spin more than aligned spin

signal models despite measuring near-zero χp. This arises because inferences between

in-plane and aligned spin components are correlated owing to the prior distribution

used. To remain agnostic, we often use an isotropic distribution for spin orientations

and a uniform distribution for spin magnitudes [see Appendix B.1 of 38]. This

prior leads to significantly larger support for small values of aligned spin upon an

inference of small in-plane spin. To demonstrate this, Figure 5.12 compares 2 priors

for χeff : an isotropic prior described above, and a restricted isotropic prior which

is equivalent to the isotropic prior with the constraint that χp < 0.05. We see

that an inference of low in-plane spin causes ∼ 4× as much support for χeff = 0

compared to the isotropic case, with close to zero prior support for |χeff | & 0.2.

This means that as GW190814 is consistent with near-zero χp, precessing signal

models effectively use the restricted isotropic prior for χeff , whereas because aligned

spin signal models cannot make any inferences about the in-plane spin, they use an

equivalent of the wider isotropic prior [see equation A7 in 250]. Since the mass ratio

and aligned spin are degenerate [62] the tighter constraint on χeff for the precessing

signal models leads to a tighter constraint on the mass ratio, enabling for a more

precise measurement of the secondary mass.

To demonstrate that the improved measurement in χeff and m2 is a result of a

near-zero measurement on χp, we can simply re-weight the aligned spin results to

use the restricted isotropic prior. In Figure 5.13 we perform this re-weighting with

the Phenom HM analysis and we now see excellent agreement between the 90%

credible intervals of the Phenom PHM and the reweighted Phenom HM analysis.

We have therefore shown that the non-measurement of precession allows for tighter

constraints on the effective spin and secondary mass when using the isotropic prior.

However, it can be shown that this effect is robust and does not depend on the

selected prior. For instance, we see a similar effect if we use a more astrophysically

motivated distribution for χeff (for example the distribution in Ref. [170]). This

effect has also been studied for NSBH systems in Ref. [251].

5.3.e Minimal assumption analysis of GW190814

As we have seen, GW190814 is unlike any other gravitational wave signal observed

to date. Not only does our analysis indicate that GW190814 was detected with

the second largest signal-to-noise ratio (SNR) of any gravitational wave detection

' 25, but its source has the most unequal mass ratio observed with gravitational

waves: 1/q = 0.112+0.008
−0.009. Given that relative importance of a subdominant multi-

pole moment increases with mass ratio, GW190814 exhibited the strongest evidence

for higher-order multipoles compared to any previous gravitational wave observa-
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Figure 5.14: Posterior distributions for the precessing SNR, ρp (green) and the
optimal SNR in the (3,3) sub-dominant multipole moment, ρ (orange). The grey
dotted line shows the expected distribution for Gaussian noise.

tion with a Bayes Factor in favour of a higher-multipole vs. a pure quadrupole

model of log10 B ' 9.6. Through computing the optimal SNR in each subdominant

multipole [182], we found that the (`,m) = (3, 3) multipole was strongest with an

orthogonal optimal SNR of ρ33 = 6.6+1.3
−1.4, as shown in Figure 5.14.

GW190814 also provides the tightest constraint on precession from any GW to

date. This, combined with the constraint on the inclination angle, unequal mass

ratio and large SNR, meant that the inferred power from precession (see Chapter 2)

was ρp = 1.27+1.9
−1.0. This resembles the expected distribution in the absence of any

precession in the signal, as shown in Figure 5.14.

Given the strength of both ρ33 and ρp, only a limited region of parameter space

is consistent with these SNRs. For instance, as demonstrated in Ref. [169], if

GW190814’s source had χp > 0.1, we would recover a significant Bayes factor with

precession SNR distinctly different from the noise distribution. We therefore wish to

perform a minimal assumption analysis of GW190814 and limit the parameter space

consistent with ρ33 and ρp without performing an expensive Bayesian analysis. We

choose to focus our attention on the orientation, mass ratio, and χp parameter space,

although in principle it could be extended for any parameter choice. We define the

orientation to be the angle between the total angular momentum and the line of

sight θJN such that it remains approximately constant for precessing systems. The

technique described below is independent of the distance to the source and will be

useful if search pipelines are capable of computing ρ33 and ρp (see Sec. 2.5 for details

about how ρp could be returned by the search pipelines).

We start with the chirp mass, merger time and SNR for the best matched

template from the search pipelines [207, 208, 126, 209, 210, 211, 127, 137, 212]
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Figure 5.15: Region of the inclination θJN , mass ratio q = m1/m2 > 1 and in-plane
spin χp parameter space that is consistent with the chirp mass and merger time
from the best matched template and the reported SNR in the (3, 3) multipole ρ33

(orange) and the SNR from precession ρp (green). Reading from left to right and
down, χp increases; in the top left : plot we fix χp = 0.01, top right : χp = 0.05,
bottom left : χp = 0.1 and bottom right : χp = 0.25. The solid green and orange
lines show the region of the parameter space consistent with the peak of the inferred
distribution for ρp and ρ33. The darker and lighter colored regions encase 68% and
95% of the ρ33 and ρp distributions. The single data point with associated errors
corresponds to the reported inclination and mass ratio values in Table 5.2.

and the sky location from the skymap produced by the rapid Bayesian algorithm

BAYESTAR [97], all of which are available through Gravitational-Wave Candidate

Event Database [252]. We then assume that the peaks of the inferred distributions

for ρp and ρ33 calculated from a full Bayesian analysis are equivalent to what would

be returned from by the search pipeline. We then associate an uncertainty for each

of these SNRs according to non-central χ2 with 2 degrees of freedom. This was

shown to be a reasonable approximation in Ref [182]. Next we grid the orientation,

mass ratio, and χp parameter space using 6400 bins. We restrict the orientation

to take values between 0 < θJN < π/2, mass ratio between 1 < q < 20 and

χp ∈ [0.01, 0.05, 0.1, 0.25]. We then calculate ρp and ρ33 for each bin and isolate the

region consistent with the reported values. We also assume that χeff = 0 through-

out this analysis, however, it is trivial to include this as an extra degree of freedom

without significantly increasing the computational cost.
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First we consider the region of parameter space consistent with ρ33. Ref. [182]

provides a relationship between ρ33, the inclination angle5, the intrinsic properties

of the source and the SNR in the dominant quadrupole ρ22, valid only for non-

precessing systems,

ρ33 = 2ρ22 α33 sin θJN , (5.9)

where α33 encodes the relative amplitude of (3, 3) multipole and is a function of the

intrinsic properties of the source6. Given that ρ33 is dependent on the luminosity

distance to the source, the GW detector network and its sensitivity, we consider the

detector and distance invariant quantity ρ33/ρ22. Since ρ33 = 6.6+1.3
−1.4 and ρ22 = 24.5,

we bound ρ33/ρ22 ∈ [0.19, 0.35] (ρ33/ρ22 ∈ [0.23, 0.31]) at 95% (68%) confidence.

In Figure 5.15 we show the region of the parameter space consistent with the

ρ33/ρ22 measurement. Given we also vary the in-plane spin of the binary χp,

we make the assumption that Eq. 5.9 holds for precessing systems with χp ∈
[0.01, 0.05, 0.1, 0.25]. This assumption is valid for small values of χp but becomes

invalid as χp increases. This is why the region consistent with ρ33/ρ22 remains

constant in all panels. Focusing on the top left panel, we see that as θJN de-

creases, q must increase to maintain constant ρ33. We understand this because the

significance of the (3, 3) multipole (α33) increases with mass ratio [see e.g. Refs.

182, 253, 254, 255, 256] and therefore sin θJN must decrease to compensate. We

also see that for q . 3 there is no region of the parameter space consistent with

ρ33/ρ22. This because for ρ33/ρ22 = 0.19 (lower bound of the 95% credible interval),

α33 > 0.095. For GW190814’s chirp mass, this is only achievable for q & 2.6.

Next we consider the region of parameter space consistent with ρp. In Chapter 2,

we defined ρp as,

ρp = ρ22

(
min(1, |ζ|)√

1 + |ζ|2

)
(5.10)

where ζ is a function of the inclination angle, detector response functions F+,×, the

reference precession phase φJL and the binary’s opening angle b ≈ tan
(
β/2

)
(this

is valid when β is approximately constant over the observed waveform),

ζ = beiφJL

(
F+ sin 2θJN + 2iF× sin θJN

1
2F+(1 + cos2 θJN ) + iF× cos θJN

)
. (5.11)

Similar to ρ33, we see that ρp is also dependent on the luminosity distance,

5Ref. [182] defines the equation for ρ33 in terms of the angle between the orbital angular mo-
mentum and the line of sight ι. Since this equation is only valid for non-precessing systems, ι is
equivalent θJN

6α33 also depends on the detector sensitivity but since this is a weak dependence, we ignore this
for our analysis
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GW detector network and its sensitivity. We therefore consider the ratio ρp/ρ22

which is generally detector invariant (see Eq. 2.34 and surrounding text for details).

Consequently, we bound ρp/ρ22 ∈ [0.01, 0.14] (ρp/ρ22 ∈ [0.04, 0.10]) at 95% (68%)

confidence. Unlike ρ33/ρ22, ρp is also dependent on the in-plane spin (through

b). We therefore consider the region of θJN − q − χp parameter space which is

consistent with ρp/ρ22. Figure 5.15 shows that as θJN decreases, the mass ratio

must increase to ensure constant ρp (for fixed χp). We understand this because

there is a positive relationship between q, θJN and ρp, i.e. an increase in q and/or

θJN , causes an increase in ρp (see Chapter 3). This can be seen from Eqs. 5.10, 5.11

and the equation for the opening angle in Chapter 1 (Eq. 1.1). For instance, when

θJN increases we see that ζ increases. Likewise, when the mass ratio increases, the

binary’s opening angle increases and as such ζ also increases. Thus, to maintain

constant ζ, and therefore ρp/ρ22, a decrease in θJN is compensated by an increase

in q. We also see that to ensure fixed ρp/ρ22, θJN and q both decrease for increasing

χp. This is because an increase in χp translates to a larger binary opening angle

and consequently a larger ζ. This means that the calculated values of ζ in each bin

for the χp = 0.25 case will be greater than the corresponding values for the χp = 0.1

case. To ensure constant ζ and therefore ρp/ρ22, θJN and q both decrease.

By combining the constraints from the ρ33 and ρp measurements we are able

to limit the parameter space consistent with the reported chirp mass, merger time,

ρp/ρ22 and ρ33/ρ22 of GW190814. We are able to constrain χp < 0.1 with χp < 0.05

more likely, 3 . q < 20, 0.5 . θJN . We see that based on the results from Table 5.2,

this minimal non-Bayesian analysis has captured χp and θJN to a good estimate

but it has failed to reduce the parameter space consistent with q. It is possible that

we can reduce the allowed mass ratio by considering the orthogonal optimal SNR in

multipoles other than (`,m) = (3, 3), since each have a different dependence on the

mass ratio and inclination angle [see e.g. Fig.2 in 182]. However, we leave this to

future work.

5.4 Conclusion

Neutron star black hole binaries are an interesting subclass of compact binary ob-

jects, which if detected could provide valuable insights into the highly uncertain NS

EOS models of stellar evolution and core collapse [194]. In this chapter we have

described how the data from the first and second gravitational wave observing runs

combined with the lack of a direct NSBH binary allow us to place limits on the rate

of NSBH mergers. We then described how during their third observing run, the

LIGO and Virgo detectors observed a novel source unlike any other known compact

binary coalescence detected so far: GW190814. We verified that in this region of

parameter space there is little to gain from performing this analysis under the as-

sumption that the source is a BBH or NSBH. We therefore used the more advanced
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BBH signal models to extract the source properties of GW190814. Thanks in part to

the observation of significant power in the subdominant multipoles, and the conclu-

sive measurement of little to no spin precession, we obtained precise measurements

of its physical source properties.

We also demonstrated that, owing to the unique combination of masses, large

SNR and low primary spin magnitude, we are able to bound GW190814’s source

properties to within a good estimate without using expensive Bayesian techniques.

We suggest that given this result, future search pipelines should return an estimate

for ρp and ρ33 as it would then be possible to provide a quick estimate for the source

properties which could then be used as jump proposals to reduce computational cost

in a full Bayesian analysis.
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Chapter 6

Precession in the first half of

the third gravitational wave

observing run

In this chapter I explore whether precession has been observed in the first half of

the third gravitational wave observing run. This work presents my contribution to

Hoy and Mills et al. (in preparation). This work was produced by Charlie Hoy.
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6.1 Introduction

Between 2015 and 2017, the Advanced LIGO [5] (aLIGO) and Advanced Virgo [6]

(AdV) gravitational wave (GW) detectors performed their first and second GW

observing runs (O1 and O2). During this time, the LIGO Scientific and Virgo

collaboration (LVC) announced GWs originating from a binary neutron star [34]

and 10 binary black holes [38]. Independent groups also reported on additional GW

candidates [39, 40, 41, 42].

An important General Relativistic effect that was not clearly observed during O1

and O2 was spin-induced orbital precession (see Chapters 3 and 4). Spin-induced

orbital precession arises when there is a misalignment between the orbital angular

momentum and the spins of each compact object [54]. The importance of spin-

induced orbital precession increases as the binary’s mass ratio (q = m1/m2) in-

creases [54, 164, 94, 169, 145]. Clear evidence for asymmetric masses was absent in

the binaries detected during O1 and O2 [38], making the observation of precession

challenging.

In 2019, aLIGO and AdV conducted the first half of their third GW observing

run (O3a). Within 6 months of observing time, the LVC revealed a further 39 GW

candidates in the second gravitational wave catalog (GWTC-2) [44]. In contrast to

O1 and O2, several events in O3a had unequivocally unequal masses. First among

these is GW190412 [45], with a mass ratio of ∼4:1. GW190412 was the first event

where the amount of precession in the system was constrained away from the prior.

Several months later GW190814 was detected with highly asymmetric component

masses (∼9:1) and a secondary component with a mass larger than any previously

discovered neutron star and lighter than any black hole [47]. This led to the most

precise precession measurement of any event observed to date. It was demonstrated

that the precession measurement improved parameter estimates, and in particular

reduced the uncertainty on the mass of the smaller object. It has previously been

reported that no single event in O3a unambiguously exhibits spin-induced orbital

precession [45, 47, 44, 170].

In this chapter, we take advantage of ρp, first introduced in Chapter 2, to build

upon these statements. We calculate the signal-to-noise ratio (SNR) from preces-

sion for every event in O3a and compare it to the expected distribution in the

absence of precession. Unlike Refs. [44, 170], we show that several events in O3a ex-

hibit spin-induced orbital precession. Namely, GW190412, GW190929 012149 and

GW190915 235702.

6.2 Setup

To calculate the ρp for each GW candidate, we use the publicly available data files

made available through the Gravitational Wave Open Science Center [184]. We use
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Event ρp DJS

GW190408 181802 1.0+1.8
−0.9 0.03

GW190412 3.0+1.6
−1.5 0.36

GW190413 134308 0.7+1.5
−0.6 0.04

GW190413 052954 0.6+1.4
−0.5 0.01

GW190421 213856 0.7+1.4
−0.6 0.03

GW190424 180648 0.6+1.4
−0.5 0.01

GW190425 0.6+1.6
−0.5 -

GW190503 185404 0.8+1.8
−0.7 0.03

GW190512 180714 0.8+1.6
−0.7 0.01

GW190513 205428 0.8+1.6
−0.6 0.01

GW190514 065416 0.5+1.2
−0.4 0.03

GW190517 055101 1.0+2.0
−0.8 0.02

GW190519 153544 1.0+1.9
−0.7 0.07

GW190521 0.7+1.4
−0.6 -

GW190521 074359 1.6+2.5
−1.2 0.09

GW190527 092055 0.7+1.7
−0.6 0.01

GW190602 175927 0.5+1.0
−0.4 0.01

GW190620 030421 0.8+1.7
−0.6 0.01

GW190630 185205 1.0+1.8
−0.8 0.02

GW190701 203306 0.5+1.0
−0.4 0.0

GW190706 222641 0.5+1.1
−0.4 0.01

GW190707 093326 0.8+1.4
−0.6 0.0

GW190708 232457 0.7+1.5
−0.6 0.0

GW190719 215514 0.6+1.5
−0.5 0.01

GW190720 000836 0.7+1.2
−0.6 0.01

GW190727 060333 0.7+1.6
−0.6 0.01

GW190728 064510 0.8+1.3
−0.6 0.01

GW190731 140936 0.5+1.3
−0.4 0.0

GW190803 022701 0.6+1.4
−0.5 0.01

GW190814 1.8+1.6
−1.2 0.03

GW190828 063405 0.9+1.6
−0.8 0.01

GW190828 065509 1.0+1.9
−0.8 0.03

GW190909 114149 0.6+1.4
−0.5 0.05

GW190910 112807 0.8+1.6
−0.7 0.02

GW190915 235702 1.7+2.5
−1.4 0.17

GW190924 021846 0.6+1.2
−0.5 0.0

GW190929 012149 2.1+3.0
−1.9 0.23

GW190930 133541 0.7+1.3
−0.5 0.01

Table 6.1: Table showing the the precession SNR ρp and the Jensen Shannon Di-
vergence DJS between a precessing and non-precessing distribution (see text) for all
events in the second gravitational wave catalogue [44]. For events where DJS could
not be calculated, due to a lack of publicly available non-precessing samples, we
add a hyphen. Where applicable we report the median values along with the 90%
symmetric credible intervals.
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Figure 6.1: Plot showing the ρp distributions for all observations in the second grav-
itational wave catalogue (GWTC-2) colored by the median of their ρp distribution.
The 5 events with the largest largest evidence for precession (based on their DJS

values, see text) are labelled. The average distribution is shown in red. The average
distribution of ρp in a stretch of noisy data under the assumption that all sources
are non-precessing is shown in black. The grey track which peaks close to ρp = 2
corresponds to GW190814.

the data files re-weighed to a flat-in-comoving-volume distance prior [see Appendix

C of 44] to match Ref. [44].

As part of the publicly available data files, numerous datasets containing poste-

rior samples collected with different signal models are available. To calculate ρp, we

wish to use posterior samples obtained with signal models that include precession.

Since the “PublicationSamples” dataset, as used in Ref. [44], always contains pos-

terior samples obtained with precessing signal models (see Table VIII in Ref. [44]),

we use these samples to calculate ρp. These results may differ from previously pub-

lished results [45, 47] since for the majority of candidates, the “PublicationSamples”

dataset contains posterior samples obtained with precessing higher order multipole

signal models. Our results are consistent with those reported in Ref. [44].

Table 6.1 presents a summary of the main results. All measurements are reported

as symmetric 90% credible intervals around the median of the marginalized posterior

distribution, unless otherwise specified. Figure 6.1 shows the inferred posteriors for

ρp for all events in O3a.

6.3 Evidence for precession in O3a

Here, we calculate ρp for each event in O3a and compare it to the expected distri-

bution in the absence of precession. This allows us to identify if any event in O3a
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shows evidence for precession. In Chapter 2, we found that under the assumption of

Gaussian noise, ρp is expected to follow a χ distribution with 2 degrees of freedom.

This means that from noise alone, you would expect to measure ρp > 2.1 10% of the

time. It was then shown in Chapter 3 that when parameter estimation is performed

on a signal in zero noise, the inferred ρp is well described by the product of two

terms, an informed prior – the ρp distribution calculated using the results from a

non-precessing analysis and in-plane spins drawn from their respective priors – and

a precessing likelihood, dependent on the true ρp of the signal. We demonstrated

that this method works well for estimating the inferred ρp when parameter estima-

tion is performed on a non-precessing signal (for this case the true ρp = 0). In this

chapter we take advantage of these calculations to estimate the expected distribu-

tion of ρp for each event in a stretch of noisy data under the assumption that the

source is non-precessing (denoted by ρNP
p ). We then compare the inferred ρp to ρNP

p

to identify if there is evidence for precession in the system.

Where available, we use the “AlignedSpinIMR” dataset for each gravitational

wave candidate [184] to calculate the informed prior for each event. We then ran-

domly draw a sample from the χ distribution with 2 degrees of freedom to represent

the value of ρp consistent with a specific realisation of the noise. Since we assume

the observed gravitational wave is in the presence of noisy data and its source is

non-precessing, we use this value as the true ρp when calculating the precessing

likelihood. We next combine the informed prior with the precessing likelihood to

estimate the likely distribution of ρp for a specific realisation of the noise. We repeat

this procedure 100 times to represent different realisations of the noise. We then

take the median of these distributions as our estimate for ρNP
p . We show the average

distribution of ρNP
p across all events, ρ̄NP

p , in Figure 6.1.

Figure 6.1 shows that in general there is no strong evidence for precession in

O3a as the average ρp distribution across all events ρ̄p is almost indistinguishable

from ρ̄NP
p . Of all of the events in O3a, GW190412 [45], GW190929 012149 [44]

and GW190814 [47] have the largest ρp with ρp = 2.99+1.58
−1.51, ρp = 2.13+3.04

−1.91 and

ρp = 1.75+1.60
−1.23 respectively. To identify which events show evidence for precession

we compute the Jensen-Shannon divergence DJS [257] between ρp and ρNP
p (as was

done in Ref [44] between χp and the conditioned χp prior). This statistic is designed

to quantify the difference between probability distributions. It is based on the

Kullback–Leibler divergence (DKL) [258], which quantifies the information gain from

distribution A to distribution B, but unlike DKL it is symmetric and always has

a finite value: DJS ∈ [0, 1]bits. When DJS = 0 (DJS = 1), the distributions A

and B are identical (significantly different). Unlike other statistical tests (e.g. the

Kolmogorov–Smirnov test [259, 260]), it is preferable to use DKL or DJS since they

consider the entire distribution of A and B. In this work we use DJS rather than

DKL since we found it to be more stable under random fluctuations and it also does

not suffer from infinite values when distribution A has zero probability (for instance
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when ρp = 0).

We find that most events have DJS < 0.05bits which indicates the ρp and ρNP
p

agree well, see Table 6.1. This highlights that for most events, the observed signal is

consistent with originating from a non-precessing binary. This is why ρ̄p is almost in-

distinguishable from ρ̄NP
p . However, there are a few notable exceptions: GW190412,

GW190929 012149, GW190915 235702 have DJS > 0.1 bits and GW190521 074359,

GW190519 153544 have DJS > 0.05 bits. We discuss why our analysis demonstrates

GW190412, GW190929 012149 and GW190915 235702 show the largest evidence

for precession in detail below. Since Ref. [44] identified GW190521 and GW190814

as having two of the most informative χp distributions compared to the prior, we

also describe why our analysis does not highlight these events.

GW190412 likely originated from a precessing system since the inferred ρp is

significantly larger than ρNP
p with DJS = 0.36 bits, see Figure 6.2. We understand

this because a) GW190412 is consistent with an exceptionally large ρp (compared to

the other events in O3a) as a result of the second largest mass ratio q = 3.6+1.1
−1.1 and

inclination angle constrained away from face-on θJN = 0.7+0.3
−0.2 rad (folded between

[0, π/2]), see Chapter 3 for details, and b) GW190412’s informed prior is broad ρp =

3.3+5.6
−2.7, meaning that ρNP

p approximately peaks at the maximum of the precessing

likelihood. Since the precessing likelihood peaks at ρp = 1.2, with ∼ 1% probability

of random drawing a value consistent with GW190412’s large ρp = 2.99, ρNP
p peaks

at much smaller values than the inferred ρp. This results in a large Jensen-Shannon

divergence. We find that GW190412 is inconsistent with a non-precessing system

at > 97% probability. This result differs from the conclusions presented in Refs [45,

261] which are based upon the more commonly used Bayes factors between the

precessing and non-precessing hypothesis. Figure 6.2 also shows that ρNP
p is shifted

to larger values than average. This follows from the fact that GW190412’s aligned

spin analysis also confidently identifies GW190412 as an unequal mass ratio system

(q = 3.2+1.1
−1.1). This means that for a given in-plane spin sample drawn from the

prior, the calculated value of ρp will be larger for GW190412 than for an equal mass

ratio binary.

GW190929 012149 shows the second largest evidence for precession with DJS =

0.23 bits. From Figure 6.2, we see that this is because GW190929 012149’s ρp is dis-

tinctly different from ρNP
p . In fact, GW190929 012149’s ρp distribution is bimodal.

The reason for this is because GW190929 012149’s mass ratio is bimodal: one peak

at q ∼ 1, which maps to the peak at low ρp, and another at q ∼ 3. If we restrict

q < 1.5 (i.e. only consider samples from the equal mass peak), we find that ρp is

indistinguishable from ρNP
p with DJS = 0.02. If we restrict q > 1.5, we recover only

the second peak of ρp and find DJS = 0.28. This means that GW190929 012149 has

the second largest evidence for precession as a result of the high mass ratio peak.

Unlike GW190412, GW190929 012149’s ρNP
p distribution is consistent with ρ̄NP

p de-

spite having support for large mass ratios. This is because the aligned spin analysis
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Figure 6.2: ρp distributions for First row : GW190412, Second row : GW190929 -
012149, Third row : GW190915 235702, Bottom row : GW190814. The blue line
shows the expected distribution of ρp in a stretch of noisy data under the assump-
tion that the source is non-precessing, ρNP

p . The blue shaded region shows the 1σ

uncertainty of ρNP
p . The black line shows the average ρNP

p across all events.
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identifies GW190929 012149 as a near equal mass ratio system, with no support for

a second peak (q = 2.0+2.8
−0.9).

GW190915 235702 has DJS = 0.16 bits. GW190915 235702 is consistent with

one of the largest inclination angles (θJN = 0.9+0.5
−0.6 folded between [0, π/2]) of any

event in O3a. This means that although GW190915 235702 is consistent with an

equal mass binary (q = 1.4+0.9
−0.4), ρp is the fourth largest of any event in O3a. The

inclination dependence on ρp is discussed at length in Chapters 2, 3 and 4. As

can be seen in Figure 6.2, the inferred ρp is different from ρNP
p but not to the

same extent as GW190412 and GW190929 012149. This explains why GW190412

and GW190929 012149 have larger Jensen-Shannon divergences. Interesting, ρNP
p is

consistent with ρ̄NP
p . This is because the aligned spin analysis is unable to break

the distance – inclination degeneracy [99], and as such, simply recovers the prior for

θJN . This reduces the inferred value of θJN considerably and as a result reduces ρNP
p .

We understand that it is consistent with ρ̄NP
p because the majority of aligned spin

analyses in O3a recover the prior for the inclination angle and equal mass binaries.

We see that GW190814 is consistent with originating from a non-precessing

system with DJS = 0.03 bits. This is expected given the near-zero χp measurement

(χp = 0.04+0.04
−0.03). Despite this, GW190814 has the third largest ρp in O3a. This

apparent contradiction is a result of GW190814’s large mass ratio (q = 9.0+0.8
−0.6). As

shown in Figure 6.2, we see that because of GW190814’s extraordinary mass ratio,

ρNP
p peaks at significantly larger values than average, with ρp also entirely contained

within the 1σ uncertainty. This means that although ρp is large for this system, it

is still consistent with originating from a non-precessing binary. This explains why

DJS = 0.03bits.

GW190521 had the largest inferred χp in GWTC-2: 0.68+0.26
−0.44. Surprisingly,

GW190521 has a small ρp: 0.7+1.4
−0.6. We understand this because GW190521 is the

largest mass event detected with LIGO/Virgo. This means that GW190521 is very

short in duration: 4 cycles (2 orbits) within the detectors’ sensitive frequency band.

Consequently, GW190521 is decomposed into two near parallel “precession harmon-

ics” (with overlap |Oprec
1,0 | = 0.97+0.01

−0.03). This means that any power orthogonal to

the dominant harmonic is small and ρp is small by definition (we refer the reader

to Chapter 2 for a detailed discussion). Several explanations for the large χp have

been suggested, including possible evidence for eccentricity [262] and head-on colli-

sions [263]. Unfortunately we are unable to compare ρp to ρNP
p since there are no

publicly available non-precessing samples for GW190521.

6.4 Conclusion

In this chapter we have determined the significance of precession in the latest obser-

vations made by the LIGO Scientific, Virgo and KAGRA collaborations. We have

demonstrated that in general there is no strong evidence for precession in O3a but
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GW190412, GW190929 012149 and GW190915 235702 are most likely to have orig-

inated from precessing systems. We note that these results only compare the one

dimensional distributions and we present a more detailed analysis in Chapter 7.

– 122 –



Chapter 7

Constraining black-hole spins

with gravitational wave

observations 2

This chapter reproduces the text of Hoy et al. (in preparation). The code used in

this analysis was built upon work done by Tiwari et al. [119]. All extensions were

written by Charlie Hoy. I wrote all Sections and produced all Figures.
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7.1 Introduction

During the first and second gravitational wave (GW) observing runs (O1 and O2) [38]

of the Advanced LIGO [5] and Advanced Virgo [6] GW observatories, the LIGO sci-

entific and Virgo collaborations announced eleven GW candidates; ten from merging

black-hole binaries (BBHs) [7, 33, 35, 36, 37, 38] and one from a binary neu-

tron star coalescence [34]. Independent groups also reported additional GW candi-

dates [39, 40, 41, 42]. By combining parameter estimates for these BBH observations,

first attempts at deciphering the astrophysical distribution of black hole spins were

conducted [118, 264, 119, 265, 120, 266]. However, the limited sample size meant

that only weak constraints could be placed on the distribution of black hole spins.

During the first half of the third gravitational wave observing run (O3a), a further

39 GW candidates were announced [44]. Similar to those from O1 and O2 [85], most

of these detection’s remained largely uninformative about the presence of the General

Relativistic phenomenon of spin-induced orbital precession[44] — the misalignment

of the binary’s orbital angular momentum and the spins of each compact object

resulting in characteristic modulations to the GWs amplitude and phase [54]. A

direct measurement of spin-induced orbital precession provides a unique insight into

the astrophysical distribution of black hole spins [e.g. 71, 72].

Precession is often parameterised by a single effective parameter χp, ranging

between 0 (no precession of the orbital plane) and 1 (maximal precesion) [64]. χp is

widely used for inferring the occurrence of precession in GW data [see e.g. 38, 44],

although alternative metrics have also been proposed [e.g. 65, 66]. In Chapter 2, we

introduced a different metric to quantify precession: the precession signal-to-noise

ratio (SNR) ρp, described as the contribution to the total SNR of the system that

can be attributed to precession. ρp is calculated by decomposing a GW into two non-

precessing harmonics and isolating the SNR contained in the harmonic orthogonal

to the dominant one. By deconstructing a precessing gravitational wave in this form,

the characteristic amplitude and phase modulations can be interpreted as the beating

of these harmonics. If ρp is small (ρp . 2.1), the amplitude of the second harmonic is

insignificant and any beating of the harmonics is negligible. For this case, we would

observe a GW which looks like the dominant non-precessing harmonic. Although

ρp is dependent on the GW detector network and its sensitivity, if the harmonics

are close to orthogonal, ρp can be scaled by the total SNR ρ to provide a detector

invariant quantity ρp/ρ (see Eq. 2.34 noting that ρ is denoted as ρ2harm). This is a

useful quantity for population studies since it means results are independent of the

detector network and the chosen detector sensitivity. This implies that the ρp & 2.1

criterion used in previous works for quantifying the measurability of precession [see

e.g. 44, 45, 47, 86, 120, 145] becomes ρp/ρ & 2.1/ρ, which is bounded between

0 ≤ ρp/ρ ≤ 1/
√

2, where the upper bound implies equal power in both harmonics.

Consequently, for systems with large ρp/ρ, precession contributes significantly to
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the total SNR of the system.

Ref. [170] recently showed, through a hierarchical Bayesian analysis [267, 268,

269], that the population of known BBHs provides clear evidence for misaligned

spins despite no single event unambiguously exhibiting evidence for spin-induced

orbital precession. By assuming a population model where the spin magnitude of

each black hole is described by a beta function [140] and the orientation by a model

allowing for both isotropic and aligned spins [138], it was shown that the underly-

ing spin distribution peaks at spin magnitudes ∼ 0.2 with preference for primarily

aligned spins (although there is non-vanishing support for angles > 90◦ indicating

the presence of misaligned component spins). This has significant implications, as

measuring the spin distribution can distinguish between the two favoured binary

formation mechanisms. These are field binaries which are formed from isolated stel-

lar progenitors and expected to have spins distributed about the orbital angular

momentum with some unknown misalignment angle [e.g. 69, 70, 71], and dynamic

binaries which are expected to have randomly orientated spins and formed when two

black holes become gravitationally bound in dense stellar environments [e.g. 72].

In this chapter we use publicly available data from the second gravitational wave

catalogue (GWTC-2) [44] to draw inferences about the underlying spin distribution

of black holes. We show that if we use the same set of BBHs, we obtain the same

conclusions as Ref. [170] irrespective of whether we use χp or ρp/ρ to parameterize

precession, i.e. the current population of binary black holes prefers a spin distri-

bution model with mild preference for aligned spins and spin magnitudes peaking

at ∼ 0.2. However, we show that the distribution in Ref. [170] is only marginally

preferred to other distributions used in this chapter with odds ratios & 3 : 1. By

inspecting each BBH separately, we also show that preference for the distribution

reconstructed in Ref. [170] is a result of a small subset of observations (13/44), with

the majority of events preferring a distribution which has isotropic spins and sig-

nificantly lower spin magnitudes. Finally, we hint at potential structure in the spin

magnitude parameter space, with lower mass events preferring lower spin magnitudes

and higher mass events preferring higher spin magnitudes.

7.2 Method

We use Bayesian model selection to calculate the odds ratio between 9 different spin

distributions using the publicly released posterior samples from GWTC-2, made

available through the Gravitational Wave Open Science Center [GWOSC; 184]. As

in Ref. [170], we only consider BBHs with false alarm rates (FARs) < 1yr−1. This

means we exclude 2 marginal events included in Ref. [44]: GW190719 215514 and

GW190909 114149 (we consider GW190426 152155 to a be marginal neutron star

black hole candidate). Unlike Ref. [170], we consider how our results change if

GW190814 is included in our analysis. This is because GW190814 is more likely
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Figure 7.1: 2-dimensional probability density functions (PDFs) showing support
across the Top: χeff–χpand Bottom: χeff–ρp/ρ parameter space for a selection of the
different spin distributions used in our analysis (see text for definitions). Each con-
tour shows the 90% credible interval. We show the preferred model from Ref. [170]
in black. The 2-dimensional PDF for GW190521 [46] is shown in green. Gaussian
kernel density estimates are used to estimate the probability density.
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(71%) the result of a BBH merger [47]. For each GW candidate considered, we ran-

domly draw 104 samples from the ‘PublicationSamples’ dataset to ensure a consistent

number of samples across the population. Unless otherwise stated, the odds ratio is

compared to the gentle aligned distribution displayed in Figure 10 of Ref. [170], de-

noted LVC. Given that population studies of BBHs from O1, O2 and O3a disfavour

highly spinning black holes [118, 119, 120, 170], we only consider spin distributions

with either low (L) [consistent with 118], very low (VL) [consistent with 85] or

extremely low (EL) spin magnitudes,

pEL(a) ∝ e−8a

pVL(a) ∝ e−5a

pL(a) ∝ (1− a)

(7.1)

where a = |cS/(Gm2)| is the spin magnitude of a black hole with mass m and

spin S. We consider 3 distributions for the tilt angles: aligned (A), nearly aligned

(NA) and isotropic (I). The A and NA distributions are both triangular in cos θ,

with a peak at 1, taking values between 0.999 ≤ cos θ ≤ 1 and 0.85 ≤ cos θ ≤ 1

respectively. The A and NA distributions resemble field binaries with misalignment

angles 3◦ and 30◦ respectively. The I distribution is uniform in cos θ between −1

and 1 and resembles dynamic binaries. A universe modelling each spin distribution

is generated by randomly drawing 107 binaries.

As it is difficult to constrain the individual black hole spins at typical SNRs [270],

we use a mass weighted effective spin χeff to describe the average projection of

spins parallel to the orbital angular momentum [248]. Precession, arising from the

projection of spins perpendicular to the orbital angular momentum, is described

by χp and ρp/ρ. Figure 7.1 shows how a subset of these spin distributions vary

across the χp–χeff and ρp/ρ–χeff parameter space. The A distributions can easily

be distinguished from the I distributions as χeff> 0 and ρp/ρ is small by definition.

Following the methodology described in Ref. [119], we calculate the odds ratio

between two spin distribution models λ1 and λ2 as,

Oλ1,λ2 =
p(λ1|{d})
p(λ2|{d})

≈
[
Vpop(λ1)

Vpop(λ2)

]−N N∏
i=1

[∑
j p(θ

j
i |λ1)/π(θji )∑

j p(θ
j
i |λ2)/π(θji )

]
×
[
p(λ1)

p(λ2)

]
, (7.2)

where p(λ|{d}) is the posterior distribution for the model λ given a set of BBH

observations {d}, Vpop(λ) is the sensitive volume for the model λ, θji is the jth pos-

terior sample for observation i,
∑

j p(θ
j
i |λ)/π(θji ) is the sum over posterior samples

re-weighted from the default prior universe used in the LVC analyses π(θji ) (LAL

prior), to the universe assuming a given model λ p(θji |λ), p(λ) is the prior on the

model and we restrict θ = (M, q, χeff , [χp, ρp/ρ], ι). As with Ref. [119], we assume

all models are equally likely i.e. p(λ1)/p(λ2) = 1.
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Figure 7.2: Sensitive volumes for 10 different spin distributions with respect to the
preferred model in [170] (LVC), see text for model definitions. This ratio to the
power of the number of observations accounts for the selection effects.

For LVC parameter estimation analyses, the prior universe is taken to be flat

in m1 and m2 (with the condition that m1 ≥ m2) and spin vectors are assumed to

be uniform in spin magnitude and isotropic on the sphere [see Appendix B.1 of 38].

When generating a universe for a given model λ, we use the same mass distribution

but vary the spin magnitude and orientation vectors. All other binary parameters

are randomly drawn from the same distributions as used in Ref. [38].

The sensitive volume Vpop(λ) is essential for accounting for selection effects. It is

estimated numerically by injecting GW signals drawn from model λ into GW strain

data and searching for them assuming a given detection threshold [201]. Currently

search pipelines employ non-precessing waveform approximants for matched filter-

ing [127, 126]. This means that current techniques to estimate the sensitive volume

omit precession (although see Ref. [271] which suggests an alternative method that

includes precession). Since precessing signals will be recovered at lower probabilities

than an equivalent precessing search pipeline, we can expect that the sensitive vol-

ume will be underestimated for systems where precession effects are observable [272].

However, in Chapter 2, we argued that for signals with low ρp this effect is mini-

mal. Given that for most models used in this chapter ρp/ρ is small, we approximate

Vpop(λ) by Vpop(λnp): the sensitive volume for the non-precessing equivalent λ. This

is the same assumption used in Ref. [170].

In Figure 7.2 we show Vpop(λnp) for each spin distribution model compared to

LVC. We see that as the spin magnitude increases and spin orientation becomes more

aligned, the sensitive volume increases. We understand this because binaries with a

larger aligned spin (larger χeff) can be observed at a greater distance. We therefore

expect ELI to have the lowest (LA to have the largest) sensitive volume as it leads

to a population with the smallest (largest) aligned spin. Given that the odds ratio

(see Equation 7.2) involves dividing by the models sensitive volume, assuming all

other parameters are equal, the model with the lower sensitive volume is preferred.

Although for a single event this effect if minimal, for 44 observations the odds ratios

increases by of ∼ 10 in favour of ELI over LVC.
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Figure 7.3: Top: Odds ratios for different spin distributions in reference to the
preferred model in Ref. [170] (LVC), see text for model definitions. The grey and
red bars indicate the inferred odds ratios when χp and ρp/ρ is used to parameterise
precession respectively. Dashed lines show the inferred odds ratio when GW190814
is included in the analysis. Only the largest four odds ratio are shown. Models that
are not shown have odds ratios < 10−5 : 1. Bottom: Odds ratios for ELI against
LVC for each binary black hole candidate considered in this analysis [44]. An orange
line shows an odds ratio of 1 meaning that neither model is preferred. An odds ratio
greater than 1 shows preference for ELI over LVC. In both cases odds ratios are
calculated using two different paramerisations of precession: χp (grey) as used in
Ref. [44] and ρp/ρ (red). Odds ratios are calculated using the posterior samples
released as part of GWTC-2 [44, 184].
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Figure 7.4: Posterior distributions for Top: χeff , Middle: χp, Bottom: ρp/ρ for
binary black hole candidates in the second gravitational wave catalogue (GWTC-
2) [44, 184]. Light grey and red traces show the posterior distributions for events
which prefer ELI over LVC and LVC over ELI respectively (see bottom panel of
Figure 7.3). Solid black and red curves shows the average of the light grey and red
traces respectively. The orange curves show the default χeff and χp priors used in
the LVC analyses. For the middle plot, we restrict the y axis to be less than 12 such
that all posterior distributions can be distinguished. This means that for one of the
posterior distributions, a portion of the distribution cannot be seen.
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7.3 Results and Discussion

The top panel of Figure 7.3 plots odds ratios with respect to the LVC spin distri-

bution for two different metrics for precession: χp and ρp/ρ. Models that are not

shown have odds ratios < 10−5 : 1. For both metrics we see that when GW190814

is excluded from our analysis, the same conclusions as Ref. [170] are obtained: the

LVC spin distribution is the preferred model for the selected BBH candidates. How-

ever, for the first time, we can quantify by how much this model is preferred. Our

analysis infers that the LVC spin distribution is only marginally preferred with both

VLI and ELI disfavoured by odds ratios 2.8 : 1 and 3.8 : 1 for the χp analysis and

5.9 : 1 and 5.5 : 1 for the ρp/ρ analysis respectively. This equates to about 0.9σ and

1.1σ for the χp analysis and 1.4σ and 1.3σ for the ρp/ρ analysis respectively. When

GW190814 is included, ELI and LVC are equally likely with odds ratios for both

metrics ∼ 1 (1.2 : 1 and 0.9 : 1 for the χp and ρp/ρ analyses respectively).

In the bottom panel of Figure 7.3 we show how the odds ratio of ELI vs LVC

changes as a function of GW candidate. This provides key insight into why the

LVC spin distribution is marginally preferred and why this preference changes when

GW190814 is included. In general, we see good agreement between the χp and ρp/ρ

analyses for each event. The largest disagreement is for GW190521 where the χp

and ρp/ρ analyses prefer LVC over ELI by 1.2 : 1 and 1.4 : 1 respectively. We

explain why this event has the largest disagreement in Section 7.3.a. Given that the

largest disagreement is ∼ 0.2σ, we report the average odds ratio for a single event

unless otherwise stated. Figure 7.3 shows that most BBHs detected through GWs

(31/44) prefer ELI over LVC with GW190814 displaying the strongest preference:

5 : 1. Given that the inferred χeff and χp distributions from GW190814 are strongly

peaked near-zero, it is no surprise that ELI is preferred. In this particular region of

parameter space ELI has ∼ 7× more support than LVC. Since comparing support in

a given region of the parameter space is effectively computing a simplified version of

Eq. 7.2, we expect this calculation to be indicative of the odds ratio. It is therefore

a good sanity check for our results.

As expected, all candidates that support χeff > 0 at more than 90% proba-

bility (GW151226, GW170729, GW190412, GW190517 055101, GW190519 153544,

GW190620 030421, GW170706 222641, GW190720 000836, GW190728 064510,

GW190828 063405, GW190930 133541) prefer LVC over ELI. This is because the

majority of the LVC distribution supports χeff > 0, 70% compared to 50% for

ELI, and has a longer tail up to larger χeff , ∼ 0.32 compared to ∼ 0.1 for ELI.

GW190517 055101 [44] and GW190412 [45] show the largest preference for LVC

with odds ratios 11 : 1, 5 : 1 respectively. GW190517 055101 has the largest χeff

observed so far, with χeff= 0.52+0.19
−0.19. In this particular region of the χeff parameter

space, LVC has ∼ 15× more support than ELI, suggesting that the odds ratio is

heavily influenced by GW190517 055101’s χeff measurement. We find that if this
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single event is removed from our analysis, ELI is preferred over LVC with odds ratios

3 : 1 and 2 : 1 for the χp and ρp/ρ analyses respectively. Meanwhile, GW190412

supports χeff > 0.15 at 90% confidence and is consistent with a mildly precessing

system, χp = 0.31+0.19
−0.16. For this region of parameter space, LVC has ∼ 5× more

support than ELI.

In Figure 7.4 we plot the posterior distributions for χeff , χp and ρp/ρ for all

events used in this analysis. We see that of those events which prefer ELI over LVC,

the χeff distribution is on average strongly peaked at zero with width comparable

to ELI (see Figure 7.1). We also see that on average there is no information from

precession, with χp resembling the LAL prior and near zero ρp/ρ. The strong

peak at χeff= 0 and lack of information from precession, means that isotropic spin

distributions are preferred. As the width of the χeff distribution is narrow, extremely

low spin magnitudes are preferred. Of those events which prefer LVC over ELI, the

average χeff distribution is positive, peaking at ∼ 0.2, with little support for χeff ≤ 0.

We also see that the average χp distribution peaks at slightly larger values than the

LAL prior while the average ρp/ρ resembles the average distribution for those events

which prefer ELI over LVC. Because of this, any model which allows for large in-

plane spins will be favoured more by the χp analysis. For this case, the combination

of the positive χeff measurement disfavouring isotropic spin distributions, and the

non-zero χp and ρp/ρ disfavours aligned spin models. Given that LVC has support

for large positive χeff while still allowing for mild precession, this model is preferred

for this subset of binaries. In general, we note that the χeff measurement is the

prevailing quantity for why the population prefers LVC over ELI.

Next we comment briefly on the difference between the χp and ρp/ρ analyses on

a population level. From Figure 7.3 we see a 0.4σ, 0.7σ and 1.7σ difference between

the χp and ρp/ρ analyses for the ELI, VLI and LI spin distributions respectively. We

see that the difference becomes larger for larger spin magnitudes. We understand

this trend because when calculating ρp/ρ for all BBHs considered, we see that the

distribution has a narrow peak near zero (implying a lack of measurable precession

in the majority of signals) while the χp distribution is broad and resembles the prior,

see Figure 7.4. This implies that any model which has ρp/ρ peaking in a different

location to the majority of signals, will be heavily disfavoured. However, because the

χp distribution is broad, any model will still receive reasonable support compared

to the ρp/ρ case. Therefore, we argue that this growing difference is expected, given

that larger spin magnitudes predict larger degrees of precession and consequently

larger ρp/ρ. We stress here that the purpose of this chapter is not to determine which

metric is optimal, only to provide evidence that neither model should be rejected or

favoured.
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7.3.a GW190521

GW190521 is an exceptional event, it is consistent with a merger of two black holes

with masses 85+21
−14M� and 66+17

−18M�, and χp = 0.68+0.26
−0.44. Owing to the large total

mass, GW190521 is very short in duration, with only 4 cycles (2 orbits) within the

sensitive frequency band of the GW observatories [46]. In contrast to the χp mea-

surement, the inferred ρp/ρ demonstrates a lack of measurable precession within

the gravitational wave signal: ρp/ρ = 0.16+0.33
−0.13. This apparent contradiction be-

tween the inferred χp and ρp/ρ measurements is due to GW190521’s short dura-

tion. With only 4 visible cycles, GW190521 is decomposed into two near parallel

“precession” harmonics (with overlap |Oprec
1,0 | = 0.97+0.01

−0.03). This means that any

SNR orthogonal to the dominant harmonic is small and ρp/ρ is near-zero as a re-

sult. This contradiction between precession measurements highlights the difficulty

in extracting source properties from a GW with only 4 visible cycles. It has been

suggested that the large χp could be a consequence of, for example, eccentricity [262]

or head-on collisions [263]. However, neither affect ρp since the short duration of

this signal means that the overlap between harmonics is always large. Precession

in the system is not the only observed contradiction. Recently, Nitz et al. [273]

challenged the inferred source properties of GW190521. They demonstrated that

it is possible to obtain component masses which straddle the pair instability mass

gap [274, 275, 276, 46, 146] with q ∼ 10. A region of parameter space which was not

explored in Ref. [46] owing to prior constraints.

As discussed above, when calculating the odds ratios for GW190521, the ρp/ρ

and χp analyses disagree more than any other event. Both demonstrate preference

for LVC over ELI, but the ρp/ρ analysis calculates a greater preference for LVC than

the χp analysis. The reason for this difference is because the LVC model predicts

ρp/ρ = 0.10+0.45
−0.09, which is consistent with GW190521’s inferred distribution, and

χp = 0.19+0.30
−0.15, which is inconsistent, see Figure 7.1. Given that the LVC model has

more support in the ρp/ρ parameter space than the χp parameter space, a larger

odds ratio is expected.

7.3.b Possible structure in the preferred spin distribution

By analysing BBHs in GWTC-2, it has been suggested that more massive BBHs

could have formed from hierarchical mergers [277, 278, 279, 146], where the rem-

nant of a previous binary becomes part of a new one [e.g. 280]. Given that the

remnant of a previous equal mass binary is expected to have dimensionless spin

χ ∼ 0.7 (inherited from the angular momentum of the previous binary) [281], we

expect more massive BBHs to favour spin distributions with larger spin magnitudes

if they were formed from hierarchical mergers. We therefore investigate whether the

preferred spin distribution changes as a function of mass. For the purpose of this

study we simply use 2 bins: one for low mass BBHs where both component masses
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are less than 50M� and another for high mass BBHs where at least one component

mass is greater than 50M�. These bins were chosen since it is predicted that there

exists a mass gap within the range ∼ 50− 120M� as a result of the pair-instability

supernova theory [see e.g. 274, 275, 276, 46, 146]. This means that if an observed

BBH has one or more component masses greater than & 50M�, it is likely that it

was formed through a hierarchical merger. The following candidates have at least

one component mass greater than 50M� (based on the median of their mass dis-

tribution): GW170729, GW190519 153544, GW190602 175927, GW190620 030421,

GW190521, GW190701 203306, GW190706 222641, GW190929 012149.

Figure 7.5 shows that for BBHs with both component masses less than 50M�,

ELI is the preferred spin distribution model even when GW190814 is excluded from

the analysis. We find that that when GW190814 is excluded, ELI is preferred to

LVC with an odds ratio of 5 : 1 for both χp and ρp/ρ analyses. This is compared

to 22 : 1 and 24 : 1 when GW190814 is included for the χp and ρp/ρ analyses

respectively. VLI, which has greater support for lower spin magnitudes than LVC,

is the second preferred model with odds ratios 2.2 : 1 and 1.5 : 1 for the χp and ρp/ρ

analyses. Isotropic spin models are preferred to aligned models by an odds ratio

> 106 : 1. This suggests that lower mass BBHs have lower spin magnitudes. On the

other hand, we see the opposite trend for BBHs with at least one component mass

greater than 50M�. For this case models with higher spin magnitudes (LVC, LI) are

favoured against models with lower spin magnitudes (ELI, VLI). We have therefore

shown that for lower mass BBHs, extremely low isotropic spins are preferred over

low spins by ∼ 100 : 1. Whereas for higher mass BBHs, this is reversed and low

spins are preferred over extremely low by ∼ 20 : 1. This suggests that using a single

model to describe all BHs is not appropriate, especially with a growing catalog of

BBH observations.

Ref. [170] also investigated whether there is evidence for a mass dependence in

the BH spin distribution through a hierarchical Bayesian analysis of the population

of known BBHs. Similar to the work presented here, Ref. [170] also found a weak

preference for higher spin magnitudes in higher mass events (see e.g. Figure 13 of

Ref. [170]). However, since the uncertainty on their measurement was broad, a mass

dependence could not be confidently claimed. We anticipate that by using a discrete

set of 9 different spin distributions, rather than a continuous model, we are able to

reduce the possibility of over-fitting the noise and more clearly identify a possible

mass dependence in the spin distribution. However, further work needs to be done

to confirm the results presented in this section.

7.4 Conclusion

We have shown that, although we find preference for the same model as Ref. [170]

when using the same sample of BBH mergers in GWTC-2, this distribution is only
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marginally preferred to other models used in this chapter. We also show that the

preference can change depending on whether GW190814 is included in the analysis

or not. We also show that the majority of BBH mergers in GWTC-2 prefer a spin

distribution model which has lower spin magnitudes and more isotropic spins than

that predicted in Ref. [170]. Finally, we demonstrate that there is potential structure

in the preferred spin distribution with BBHs containing at least one component

mass > 50M� preferring higher spin magnitudes than BBHs with no component

mass > 50M�. We emphasise that these conclusions depends on our choices of

possible spin distributions.
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Chapter 8

PESummary: the code agnostic

Parameter Estimation Summary

page builder

This chapter is based upon the text of Hoy and Raymond [282] submitted to Soft-

wareX as arXiv:2006.06639. Charlie Hoy wrote all sections and created all Figures.

Charlie Hoy is the primary author of the PESummary sofware. All authors edited

the text.
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Required Metadata

C1 Current code version 0.6.0

C2 Permanent link to code/repository
used for this code version

https://github.com/pesummary/
pesummary/tree/v0.6.0

C3 Legal Code License MIT

C4 Code versioning system used git

C5 Software code languages, tools, and
services used

Python, Javascript, HTML, CSS,
Bootstrap, Unix/MacOS

C6 Compilation requirements, operating
environments & dependencies

numpy≥ 1.15.4, h5py, matplotlib,
seaborn, statsmodels, corner, tables,
deepdish, pandas, pygments, astropy≥
3.2.3, lalsuite≥ 6.70.0, ligo-gracedb,
configparser, gwpy, plotly, tqdm≥
4.44.0

C7 If available Link to developer documen-
tation/manual

See https://lscsoft.docs.ligo.org/
pesummary

C8 Support email for questions charlie.hoy@ligo.org

Table 8.1: Code metadata (mandatory)

8.1 Motivation and significance

Bayesian inference is central for many areas of science [e.g. 283, 284, 285, 286] as it

allows for the identification of model parameters which best describes the collected

data [e.g. 287, 288], see Section 8.2.a for more details. Since the first detection of

gravitational-waves (GWs) [7], cosmic ripples predicted by Einstein’s theory of Gen-

eral Relativity [289, 290], Bayesian inference has been used to infer the astrophysical

source properties from GWs measurements [see e.g. 8, 243, 38], understanding the

properties of noise within the GW detectors [291] and understanding the astrophysi-

cal population of GW sources [292]. For a detailed review of how Bayesian inference

is used within the GW community see [267]. In addition, with more areas of science

entering the ‘open data era’, there is a need for a robust, easy to use and code

agnostic software to interpret and distribute the output from all Bayesian inference

codes.

PESummary, the Parameter Estimation Summary page builder, is a Python

package that provides an intuitive, object-oriented user interface for displaying, in-

terpreting, comparing and distributing posterior samples from any parameter esti-

mation code. PESummary’s unified input/output (I/O) system enables the com-

parison of samples from codes that previously stored data in incompatible formats.

Since its first use in 2019, PESummary has grown to be a key component in

the workflow of the LIGO Scientific [293], Virgo [294] and KAGRA [295] collab-

orations (LVK), as shown in Figure 8.1. It is used to analyse and compare the
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Figure 8.1: Flow chart showing the role of PESummary within the gravitational
wave community. Dashed paths are specific for the LIGO Scientific, Virgo and KA-
GRA collaborations (LVK). Once a gravitational-wave is observed and uploaded to
GraceDB, numerous Bayesian inference analyses are launched to extract the astro-
physical source properties from the gravitational-wave measurement. The output
data from all analyses is then passed to PESummary for post-processing. Along-
side webpages for displaying, interpreting and comparing the Bayesian inference
data, PESummary produces skymaps and source classifications, and a single uni-
versal ‘metafile’ containing information about each Bayesian inference analyses un-
dertaken. This file can then distributed to the wider community. For the LVK
workflow, skymaps and source classification probabilities are uploaded to GraceDB
for circulation.

outputs from the popular GW Bayesian inference software packages: LALInfer-

ence [296], RIFT [297, 298, 299], PyCBC [92] and Bilby [300, 301, 215] (both

PyCBC and Bilby provide an interface for a number of popular sampling pack-

ages [e.g. 302, 303]), as well as circulating both skymaps through the GW candidate

event database GraceDB [252] and Bayesian inference data through the LIGO Docu-

ment Control Center. PESummary was critical in the parameter estimation analysis

of GW190412 [45], GW190425 [43] and the re-analysis of the first gravitational-wave

transient catalog (GWTC-1) [38] using Bilby. The released data were also in the

PESummary data format [304, 305].

This chapter does not present a complete record of all the capabilities of PESum-

mary, for more information, see https://lscsoft.docs.ligo.org/

pesummary/stable docs/index.html.
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8.2 Software description

The main PESummary interface is implemented in pure Python [306] with the core

library relying on a number of established scientific programming packages [307, 308,

309, 310, 311, 312, 313, 314, 315] and the GW library requiring custom GW data

analysis software: LALSuite [175] and GWpy [316].

PESummary can be used for more than simply post-processing parameter esti-

mation results. This library includes, but not limited to, new Kernel Density Esti-

mators [317] to estimate PDFs of random variables within specified domains (one

and two dimensional), a unified infrastructure for reading data in different formats,

a release ready HDF5 [308] file for storing one or more Bayesian inference analyses,

a comprehensive plotting suite and webpage module for analysing and comparing

Bayesian inference data, and checkpointing, a requirement for cloud based comput-

ing.

PESummary is designed to be as modular and adaptable as possible, ensuring

the code will age gracefully with advances in Bayesian inference software. Where

possible, the code is kept general meaning additional post-processing techniques can

easily be implemented into the PESummary framework.

8.2.a Software Architecture

PESummary is structured around a small number of class objects. Each object

provides class and instance methods to provide the user with a complete interface

for all operations.

Tabular Data

Bayesian inference returns the best fit model parameters through a posterior prob-

ability distribution function (PDF) calculated through Bayes’ theorem [318],

p(θ|d) =
p(θ)p(d|θ)
p(d)

(8.1)

where p(θ|d) is the posterior probability of the model having parameters θ given the

data d, p(θ) is the prior probability of the model having parameters θ, p(d|θ) is the

likelihood of observing the data given a model with parameters θ and p(d) is the

evidence of the data, a model independent quantity. Often the likelihood and the

posterior probability distribution function are unknown analytically. Consequently,

most Bayesian inference packages are designed to draw samples from the unknown

posterior PDF [319, 320]. Samples approximating a posterior PDF for a single

parameter, otherwise known as a marginalized posterior PDF, are then identified

by integrating the posterior PDF over all other parameters. Often, these posterior

samples are output in the form of a table saved in a ‘result file’.
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PESummary’s stores posterior samples in a custom high level table structure,

pesummary.utils.samples dict.SamplesDict, a subclass of the Python

builtin dict object. This class offers numerous methods for analysing the stored

data, including the .plot method. Each marginalized posterior distribution is

stored as a pesummary.utils.samples dict.Array object, an inherited class

of numpy.ndarray [321]. This structure provides direct access to the optimised

array functions from NumPy [307] and the usability and familiarity of dictionaries.

A popular algorithm for sampling from the posterior distribution is Markov-

Chain Monte-Carlo [319]. For this case, multiple Markov chains are often run

in parallel to test convergence through the Gelman-Rubin statistic [322]. PE-

Summary stores multiple Markov chains in the pesummary.utils.samples -

dict.MCMCSamplesDict) class, a dictionary where each chains posterior samples

are represented by a pesummary.utils.samples dict.SamplesDict object.

Algorithms for removing burnin are available via the .burnin() method. Conver-

gence between chains can be measured via the .gelman rubin() method.

Often multiple Bayesian inference analyses are performed to identify how the

PDFs vary for different settings. Consequently, PESummary provides the pesum-

mary.utils.samples dict.MultiAnalysisSamplesDict class, inherited

from the the Python builtin dict object, for storing multiple

pesummary.utils.samples dict.SamplesDict tables, each with an assigned

label.

8.2.b Packages

PESummary has followed the same methodology as Bilby by separating the top

level code into 2 packages: core and gw. The core package provides all of the nec-

essary code for analysing, displaying and comparing data files from general inference

problems. The gw specific package contains GW functionality, including convert-

ing posterior distributions, deriving event classifications and GW specific plots, see

Sec.8.2.b.

The core package

The pesummary.core package provides all of the code required for post-processing

general inference result files. It is designed to be generic and therefore work with

the output from any Bayesian inference software. It provides a unified interface for

producing plots, calculating useful statistics and generating webpages.

Plots are generated via the pesummary.core.plots.plot module. One di-

mensional marginalized posterior distributions are visualised as either a histogram, a

kernel density estimate (scipy.stats.gaussian kde or

pesummary.core.plots.plots.bounded 1d kde.Bounded 1d kde) or cumu-

lative distributions. Diagnostic plots displaying the marginalized trace or autocor-
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relation are also available. Comparison plots between multiple result files can be

achieved by producing comparison one dimensional marginalized posterior distribu-

tions, cumulative distributions, box plots, violin plots, two dimensional contour and

scatter plots or Jensen–Shannon [257] and Kolmogorov–Smirnov [323, 324] statistics.

The pesummary.core.webpage.webpage module is a Python wrapper for

writing HTML. The pesummary.core.webpage.webpage.page class provides

functionality for generating multi-level navigation bars, tables of images and/or data,

modal carousels and more. The design and functionality of the webpages are con-

trolled through the pesummary.core.css and pesummary.core.js modules;

each containing custom style sheets (CSS) or JavaScript files (JS) respectively.

The combine corner.js script contains functionality to generate custom cor-

ner plots by manipulating a pre-made figure [made with e.g. 310]. By providing an

interface for the user to specify parameters they wish to compare, the PESummary

webpages allow for the PDF, and its correlations, to be interactively explored.

The gw package

The gw package provides the functionality for parameter estimation specific to GW

astronomy. Building on the core package, the gw module provides additional meth-

ods and classes for handling GW specific data files. Although the gw package is

tailored for compact binary coalescence data files, we provide GW specific methods

which can be applied to the Bayesian inference data from any transient GW source.

The gw package provides a comprehensive conversion module

(pesummary.gw.file.conversions) for deriving alternative posterior distri-

butions from the input, e.g. the primary mass and secondary mass from chirp mass

and mass ratio. Assuming a binary black hole merger, the conversion class provides

multiple methods for estimating the properties of the final black hole: final mass (or

equivalently the energy radiated in gravitational-waves), final spin, peak luminosity

and final kick velocity [79, 224, 75, 80, 81, 325, 326, 327, 328, 329, 330, 331, 332].

All fits are calibrated to numerical relativity and are interchangeable via keyword

arguments provided to the conversion class.

On the 17th August 2017, alerts [333] were sent out to more than 60 interna-

tional groups of astronomers notifying them that a GW had just been detected:

GW170817 [334]. Each group began observing the night sky to independently ob-

serve the source of the GW. GW170817 opened the window of a long-awaited multi-

messenger astronomy [335]. Through interfacing with the ligo.skymap [336] pack-

age, PESummary provides an intuitive method for generating skymaps: data files

showing the most likely source location of the GWs. These skymaps are distributed

to astronomers through GraceDB, see Figure 8.1. In the last GW observing pe-

riod, 26 alerts were sent out regarding possible GW candidates, each containing

skymaps [337]. PESummary also interfaces with the PEPredicates [338] and P-
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Package Format Class Description

core .dat .default.Default ‘.dat’ format with
parameter names as
header

core .txt .default.Default ‘.txt’ format with
parameter names as
header

core .h5/.hdf5 .default.Default ‘.hdf5’ format with
data stored in a group
called ‘posterior’ or
‘posterior samples’

core .json .default.Default ‘.json’ format with pos-
terior samples stored in
a group called ‘poste-
rior’ or ‘posterior sam-
ples’

core Bilby .bilby.Bilby Result file produced by
Bilby

gw Bilby .bilby.Bilby Result file produced by
Bilby

gw LALInference .lalinference.
LALInference

Result file produced by
LALInference

Table 8.2: A selection of formats that can be read in with PESummary and accessible
through the unified I/O interface for the listed class object(s). The core classes are all
prepended by pesummary.core.file.formats, the gw classes are all prepended
by pesummary.gw.file.formats.

Astro [339] packages to provide source classification probabilities for the type of

compact binary merger observed; such as the probability that the system is a bi-

nary black hole or a binary neutron star. Both the skymap and source classification

probabilities are vital for electromagnetic follow-up campaigns.

PESummary takes advantage of the plotly [315] interactive plotting package

to produce interactive corner plots for extrinsic and intrinsic parameters. The pe-

summary.gw.plots.publication module also allows for ‘publication’ quality

plots to be produced, for instance those in [38].

8.2.c Software Functionalities

Unified input/output

Bayesian inference packages output their posterior samples in varying formats. In

just the GW community alone, LALInference, Bilby and RIFT output their

data in 3 different formats: HDF5 [308], JSON [340] and dat. Although Bilby

is able to output it’s data in HDF5, it’s posterior samples are stored differently to

LALInference: LALInference stores posterior samples as a numpy.recarray
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while Bilby writes each marginalized posterior distribution as a separate dataset,

and an alternative software package for reading HDF5 files is required. Each data

file also stores different metadata in different locations. This incompatibility makes

it difficult to compare the contents from different Bayesian inference samplers both

in and out of the GW community.

PESummary provides a unified infrastructure for reading data in different for-

mats via the pesummary.io module. The universal pesummary.io.read()

function reads data stored in all common file formats via the

pesummary.core.file.formats module. The GW specific package extends

the allowed file formats via the pesummary.gw.file.formats module. See Ta-

ble 8.2 for a reduced list. Once read, the posterior samples from different data files

can be compared through the common ‘.samples dict‘ property. All read result files

can be written to a specified file format via the common .write method. This

method calls the universal pesummary.io.write() function.

PESummary offers the pesummary.core.file.meta file module for pro-

ducing a universal file containing posterior samples and metadata for one or more

analyses. This single ‘metafile’ aims to store all information regarding the Baysian

inference analysis. This includes prior samples, configuration files, injection infor-

mation, environment information for reproducibility etc. For GW analyses, the

pesummary.gw.file.meta file module allows for the PSD, skymap data and

calibration information to also be saved.

Executables

PESummary provides multiple executable Python scripts to act as an intermediary

between the command line and the core functionality. See Table 8.3. summary-

pages is the main executable and combines summaryclassification, sum-

maryclean, summarycombine, summarydetchar, summaryplots and sum-

marypublication. summarypages is the most general executable provided by

PESummary. Its GW workflow is described in Fig. 8.2. The core workflow is similar,

except GW specific plots and webpages are not generated and the core classes are

used.

The summarypages executable takes one or more result files as input via the

--samples command line argument. A plethora of optional command line argu-

ments are also available to allow for complete customisation1. All options are then

passed to the pesummary.gw.inputs.GWInput class (inherited from the pe-

summary.core.inputs.Input class) which checks the inputs. Amongst these

checks, the samples are extracted from all result files (see Section 8.2.c), converted

to generate additional PDFs, and stored in a pesummary.utils.samples -

dict.MultiAnalysisSamplesDict object with an assigned label.

1For details run summarypages --help or vist the online documentation available
https://lscsoft.docs.ligo.org/pesummary/stable docs/core/cli/summarypages.html.
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Executable Description

summaryclassification Generate GW event classification probabilities

summaryclean Clean and convert an input result file

summarycombine Combine multiple result files into a single format

summarycompare Compare the contents of multiple files

summarydetchar Generate GW Detector characterisation plots

summarygracedb Retrieve data from the online GW Candidate Event
Database [252]

summarymodify Modify a PESummary meta file

summarypages Generate webpages, plots and a meta file for N re-
sult files

summarypageslw Generate webpages, plots and meta files for a select
number of parameters

summaryplots Generate specific plots for a given result file

summarypipe Generate a summarypages executable given a
GW run directory

summarypublication Generate publication plots for N result files

summaryrecreate Launch the GW analysis that was used to generate
the PESummary meta file

summaryversion Version of PESummary installed

Table 8.3: A selection of executable python scripts provided by PESummary

All properties of the GWInput class are then used to initiate the pesum-

mary.cli.summaryplots.PlotGeneration class. Here, all plots are gener-

ated on multiple CPUs, if specified, with the .generate plots method. This

includes source classification plots, marginalized posteriors, interactive plots and

more. Initial skymaps are generated based on a two-dimensional histogram of the

right ascension and declination samples. A subprocess is then launched to generate

the more accurate ligo.skymap skymap. This implementation allows for the rest

of the pipeline to continue without having to wait for the often time-consuming

ligo.skymap skymap to be produced. Once complete, the initial skymap is over-

written.

All webpages are then produced by running the .generate webpages method

once the pesummary.cli.summarypages.WebpageGeneration class is ini-

tialised with all GWInput properties. This includes single webpages for each param-

eter in each result file, interactive corner pages, comparison pages for all common

parameters, a version page providing version and environment information and a

downloads page. Finally a single metafile containing all information from the run is

produced. This includes environment information, posterior samples, command line

arguments and more. This file is available for download via the downloads page.

The output from summarypages is completely self-contained; allowing for it

to distributed if required. An example of the summarypages output can be seen

here: https://pesummary.github.io/GW190412/home.html. This output was pro-
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Figure 8.2: Workflow for the most general executable provided by PESummary:
summarypages. Here we show the workflow when the gw package is used.

duced from Listing 8.4.

Amidst the collection of optional command line arguments, the pesummary.gw

module also provides a dynamic argument parser. This allows for dependent argu-

ments to be passed from the command line (see section 8.3.e).

8.3 Illustrative Examples

Below we provide a limited set of examples to demonstrate some of the features of

PESummary. All data and scripts that are used as part of this section can be down-

loaded from https://github.com/pesummary/pesummary-paper-data. More exam-

ples can be found in the PESummary repository. The following examples assume

that you have cloned the pesummary-paper-data repository and you are in the base

directory.

8.3.a Example 1: Running with emcee

This example shows the flexibility of the PESummary post-processing package. We

run the Fitting a model to data tutorial provided as part of the emcee[302] sampling

package. We save the posterior samples to a ‘.dat’ file and run with 8 chains. All

post-processing is then handled with PESummary, see Figure 8.3 for example output.

The emcee code snippet, as well as the posterior samples can be downloaded from

the pesummary-paper-data repository.
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Figure 8.3: The output marginalized posterior for each chain (Top) and the posterior
from combining all chains (Bottom) resulting from Listing 8.1. The injected value
is shown in orange.

Listing 8.1: Running PESummary on the emcee output.

python emcee_tutorial.py

chains=($(ls emcee_output/chain_*.dat))

summarypages --webdir ./webpage --samples ${chains[@]}

--labels tutorial --mcmc_samples --inj_file

emcee_output/injected.txt

8.3.b Example 2: Reading a result file

This example demonstrates how to read in a PESummary ‘metafile’ using the pe-

summary.io module. We use the posterior samples.h5 file produced as part

of Listing 8.1 (running Listing 8.1 is not necessary for this example, the metafile

is available in the pesummary-paper-data repository) and specify that we would

like to use the core package meaning only the core file formats are allowed. We

show how to extract the posterior samples for a specified analysis, how to access

the marginalized posterior samples, and how to extract the prior samples and any
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stored configuration files. Some of the attributes of each object are also shown. For

full documentation, run the inbuilt Python help function help [341].

Listing 8.2: Example code to read in a PESummary result file with PESum-

mary.

from pesummary.io import read

f = read("posterior_samples.h5", package="core")

multi_analysis_samples = f.samples_dict

print(type(multi_analysis_samples))

analysis = multi_analysis_samples.labels[0]

posterior_samples = multi_analysis_samples[analysis]

print(type(posterior_samples))

print(posterior_samples.keys())

marginalized = posterior_samples["m"]

print(type(marginalized))

print(marginalized.average(type="median"))

priors = f.priors["samples"]

config = f.config

8.3.c (GW) Example 3: analysing public LIGO and Virgo posterior

samples

This example demonstrates how to extract and analyse public LIGO and Virgo

posterior samples. It includes demonstrations of how to produce ‘standard’ plots

for the ‘combined’ analysis stored in the PESummary ‘metafile’ through the .plot

method, see Figure 8.4. We use the publicly available posterior samples.h5 file,

which has been copied to the pesummary-paper-data repository.

Listing 8.3: Extracting data from public LIGO and Virgo posterior samples

from pesummary.io import read

f = read("GW190412_posterior_samples.h5", package="gw")

analysis = "combined"

posterior_samples = f.samples_dict[analysis]

psds = f.psd[analysis]

calibration_envelope = f.priors["calibration"][analysis]

prior_samples = f.priors["samples"][analysis]

hist = posterior_samples.plot("mass_1", type="hist")

hist.show()

skymap = posterior_samples.plot(type="skymap")

skymap.show()

plot = psds.plot(fmin=20)

plot.show()
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Figure 8.4: The output marginalized posterior (top), skymap (middle) and PSD plot
(bottom) from Listing 8.3.
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8.3.d (GW) Example 4: Producing a summary page for public

LIGO and Virgo posterior samples

This example demonstrates how a summary page can be generated from publicly

available LIGO and Virgo data files. We use the same publicly available data file as

Listing 8.3. This ‘metafile’ contains a total of 10 Bayesian inference analyses, each

using different standard models used by the LVK. In this example, we choose to

compare only a select subset: an analysis conducted with the IMRPhenomPv3HM

model [81] and the SEOBNRv4PHM model [224, 162, 79] (see [45] for details).

We specify that we would like to use the gw package (--gw), run on 15 CPUs (--

multi process 15), and generate ‘publication’ quality plots (--publication).

The output page can be found at: https://pesummary.github.io.

Listing 8.4: Generating a html page to compare and analyse the public

LIGO and Virgo posterior samples. This may take some time.

summarypages --webdir ./GW190412 \

--samples GW190412_posterior_samples.h5 \

--gw --compare_results IMRPhenomPv3HM SEOBNRv4PHM \

--publication \

--multi_process 15

8.3.e (GW) Example 5: PESummary’s dynamic argument parser

argparse, the Python module for handling command-line arguments (CLA) [342],

requires a known list of arguments. This means that they cannot depend on another

variable. Through the pesummary.gw.command line module, PESummary al-

lows the user to specify CLAs which change depending on the provided label. Below

we show how PSDs can be provided to summarypages dynamically through the

--{} psd CLA. Result files and psd data was created using the ‘make data for list-

ing5.py’ script made available in the pesummary-paper-data repository.

Listing 8.5: Example usage of PESummary’s dynamic argument parser

summarypages --webdir ./webpage \

--samples test.hdf5 test.json \

--labels hdf5_example json_example \

--hdf5_example_psd H1:psd_H1.dat \

--json_example_psd V1:psd_V1.dat L1:psd_L1.dat \

--gw

8.3.f (GW) Example 6: Reproducing LIGO and Virgo plots

This example demonstrates how to reproduce a subset of plots in the first GW

transient catalog (GWTC-1) [Figures 4 and 5 in Ref. 38]. We use publicly avail-

able posterior samples released as part of GWTC-1 (ignoring the GW170809 [38]
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prior choices file): https://dcc.ligo.org/public/0157/P1800370/005/GWTC-1 sam-

ple release.tar.gz, which have been copied to the pesummary-paper-data repository.

Figure 8.5 shows an example of the output. When running this Listing, PESum-

mary will print multiple warnings to stdout. These warnings are expected and

shows that PESummary is robust to potential failures and will continue to pro-

duce an output while still warning the reader appropriately. One such example is a

message warning the user that the ‘./GWTC-1 sample release/GW170817 GWTC-

1.hdf5’ cannot be read in and data will not be added to the plot as this file contains

‘multiple posterior sample tables: IMRPhenomPv2NRT highSpin posterior, IMR-

PhenomPv2NRT lowSpin posterior’ and we have not specified which we wish to

load from the command line.

Listing 8.6: Example code to generate GW plots with PESummary. This

may take some time.

FILES=($(ls ./GWTC-1_sample_release/*_GWTC-1.hdf5))

LABELS=()

for i in ${FILES[@]}; do

label=‘python -c "print(’${i}’.split(’_GWTC-1.hdf5’)[0])"‘

LABELS+=($(python -c "print(’${label}’.split(’./GWTC-1

_sample_release/’)[1])"))

done

COLORS=(’#00a7f0’ ’#9da500’ ’#c59700’ ’#55b300’ ’#f77b00’ ’#ea65ff

’ ’#00b1a4’ ’#00b47d’ ’#00aec2’ ’#9f8eff’)

LINESTYLES=(solid dashed solid solid dashed solid solid dashed

dashed dashed solid)

summarypublication --plot 2d_contour \

--webdir ./GWTC-1_sample_release \

--samples ${FILES[@]} \

--labels ${LABELS[@]} \

--parameters mass_1_source mass_2_source \

--colors ${COLORS[@]} \

--linestyles ${LINESTYLES[@]} \

--publication_kwargs xlow:0 xhigh:80 ylow:0

yhigh:50

summarypublication --plot violin \

--webdir ./GWTC-1_sample_release \

--samples ${FILES[@]} \

--labels ${LABELS[@]} \

--parameters mass_ratio
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8.4. Impact

Figure 8.5: Two plots output from Listing 8.6. Top: Recreation of Figure 4 in
Ref. [38], Bottom: Recreation of Figure 5 in Ref. [38].

8.4 Impact

PESummary is now a widely used library in the LVK. In just over one year, PE-

Summary has become the post-processing software for the main LVK GW parameter

estimation codes [300, 301, 296, 343, 344, 345, 250] and is relied upon for the open

data release of the LVK parameter estimation data products [346]. Rather than

releasing multiple data products in different formats spread across numerous URLs,

PESummary has greatly simplified this to simply releasing a single file [304, 305].
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This can propel future research in the field, as researches no longer have to create

custom scripts for combining, retrieving, and recreating the initial analysis.

The flexibility and intuitive Python executables provided by PESummary, has

significantly improved the efficiency of researchers (often early-career graduates or

graduate scientists), by reducing the need for repetitive tasks. In particular, PESum-

mary’s interactive corner plots has led to the increased knowledge of degeneracies

between parameters for researchers within the LVK.

PESummary is also fully incorporated into the automated low-latency alert work-

flow [347]. Posterior based classifications are therefore automatically produced and

posted to the online GW Candidate Event Database [252] from the automatic pa-

rameter estimation follow-up. This information will greatly aid electromagnetic

followup campaigns.

8.5 Conclusions

In this chapter we have described PESummary, the Parameter Estimation Summary

page builder. This Python package provides a modern interface for displaying in-

terpreting, comparing and distributing Bayesian inference data from any parameter

estimation code. PESummary has been used extensively by the international GW

community, and has been crucial for Advanced LIGO’s [5] and Advanced Virgo’s [6]

third gravitational wave observing run.

Although PESummary is primarily used for post-processing GW Bayesian infer-

ence data from compact binary coalescenses, looking forward, we plan to incorporate

other GW fields, e.g. Tests of General Relativity [see e.g. 153]. This will enable

PESummary to be the driving force behind the post-processing and distribution of

all Bayesian inference data output from the LVK. We will also continue to expand

our already comprehensive plotting suite to improve its versatility for any Bayesian

inference analysis.
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Conclusion

Almost a century after Einstein first proposed his revolutionary theory of General

Relativity [1], a Nobel prize-winning team [348] witnessed one of the most violent

processes in the universe: the cataclysmic collision of two black holes, releasing tiny

cosmic ripples known as gravitational waves [7, 8]. Excitingly, over the past five

years, around fifty gravitational waves have been observed, each contributing to the

growing census of known black holes [7, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 44,

45, 46]. As existing ground based gravitational wave detectors [4, 5, 6] continue

to increase their sensitivity, and future detectors join the network [11, 349], the

number of gravitational wave observations is expected to increase. For instance, the

fourth gravitational wave observing run (O4), scheduled to start in mid 2022 [350]

with a network of four gravitational wave detectors [4, 5, 6, 11], is predicted to

observe ∼ 5× more binary black hole coalescences than the third gravitational wave

observing run (O3) [4]. With this ever increasing catalog of binary mergers, we

hope to gain greater understanding of the underlying properties of binary black

holes in the universe. One such property which is pivotal to our understanding is

spin-induced orbital precession [54] as it is one of the most promising tracers for

understanding the formation mechanism of binary black holes. We therefore require

a method to easily quantify if spin-induced orbital precession has been observed in

gravitational wave data.

To summarize, this thesis has provided details of an elegant new representation of

orbital precession in binary systems. I demonstrated that this novel approach made

it possible to easily quantify if there is any measurable precession in gravitational

wave data, allowed us to identify which binaries are most likely to emit gravitational

waves with measurable precession, and used the observed gravitational wave detec-

tions from the first, second and first half of the third gravitational wave observing

runs to a) calculate the probability of observing precession for a multitude of pos-

sible spin distributions, b) predict that precession is likely to be observed during

O3, c) demonstrate that several events in O3a are likely to have originated from

precessing systems and d) make inferences about the underlying spin distribution of
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black holes in the universe. This thesis has described techniques and tools that are

necessary to make crucial steps towards understanding the formation mechanism of

binary black holes. The first portion of this thesis introduced an innovative tool

for quantifying orbital precession in gravitational wave data and demonstrates its

efficacy. This tool formed the basis for subsequent chapters.

Chapter 2 demonstrated that a gravitational wave emitted from a precessing sys-

tem can be decomposed into a power series of 5 non-precessing gravitational waves,

where the characteristic amplitude and phase modulations are a consequence of their

constructive and destructive interference. We showed that in the majority of the

parameter space, the leading two terms are enough to reconstruct a precessing grav-

itational wave (the “two-harmonic approximation”). This allowed us to introduce

the notion of a “precession signal-to-noise ratio” which was used to determine, for

the first time, whether precession effects are observable in a given system.

Chapter 3 presents an extensive parameter-estimation study to identify the bi-

nary parameters where we are able to accurately identify precession. Through per-

forming a series of one-dimensional investigations of the parameter space, and com-

paring the inferred precession signal-to-noise ratio to the often used scalar quantity

χp, we verified that the precession signal-to-noise ratio provides a suitable and in-

tuitive metric for determining whether or not precession effects are observable in a

given system. We also demonstrated that there is an approximate mapping between

the precession signal-to-noise ratio and the Bayes factor, which suggests that future

large scale studies of precession can be made considerably cheaper through the use

of the precession signal-to-noise ratio.

The second portion of this thesis demonstrated that the precession signal-to-noise

ratio can be used to make inferences about the properties of black holes based on data

collected from the first, second and third gravitational wave observing runs. It also

presented a method for analysing systems without performing expensive Bayesian

analyses through taking advantage of the precession signal-to-noise ratio.

Chapter 4 exploited the precession signal-to-noise ratio to calculate the probabil-

ity of observing a black hole binary with measurable precession for nine astrophysically-

motivated populations. We then identified which of the models considered is most

likely given the data from the first and second gravitational wave observing runs. We

made the prediction that for the most likely spin distribution model, there is an 83%

chance of observing precession after ∼ 40 observations. We also presented the sur-

prising new result that most observations of precession will be in comparable-mass

binaries. A study of this nature was previously not possible owing to the difficulty

in classifying observable precession.

Chapter 5 discussed the properties of potentially the first neutron star black hole

binary ever detected. Not only does this observation potentially point to a brand

new subclass of compact binary objects, but also demonstrated that compact objects

exist in the hypothesised lower mass gap between the populations of known neutron
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stars and black holes; the secondary object in this binary is either the lightest black

hole or the heaviest neutron star ever observed in a double compact-object system.

This observation challenges our current understanding of astrophysical models. In

the final section of this chapter, I demonstrated that the in-plane spin and incli-

nation angle of this system can be estimated to within a good accuracy without

performing expensive Bayesian analyses. This was done by utilizing the precession

signal-to-noise ratio. This method indicates that it may be possible to estimate all

source properties to within a good estimate by simply using information from the

gravitational wave search pipelines. The hope is that this method can be optimized

and extended to provide an algorithm that can estimate the source properties within

several minutes after the gravitational wave was first observed.

Chapter 6 calculated the precession signal-to-noise ratio for all of the events in

the first half of the third gravitational wave observing run (O3a). By comparing the

average precession signal-to-noise ratio across all events to the expected distribution

from noise, we demonstrated that in general there is no strong evidence for precession

in the population of BBHs in O3a. However, we highlighted that three gravitational

wave candidates could have originated from precessing systems, with GW190412

disfavouring the non-precessing scenario by > 97% probability.

Chapter 7 took advantage of the precession signal-to-noise ratio and presented

a detailed model selection analysis to make inferences about the most likely spin

distribution of black holes given the gravitational wave data from the first, second

and third gravitational wave observing runs. We first demonstrated that the results

presented in Ref. [170] are robust. However, we then highlighted that the majority of

events prefer a different distribution: one with lower spin magnitudes and isotropic

spins. We then pointed to potential structure in the black hole spin distribution,

with high mass events preferring larger spin magnitudes than low mass events. This

chapter combines the work from Chapters 2, 3, 4 and 6.

Finally, in the third portion of this thesis, Chapter 8 presented a new and in-

novative software package to analyse, display and combine posterior samples. This

package has become one of the major workhorses of the LIGO, Virgo and KAGRA

collaborations and is widely distributed through the gravitational wave data analysis

computing environment. This package is central to making gravitational wave data

open and easily reproducible.

Through the use of the precession signal-to-noise ratio, this thesis has demon-

strated that there is no strong evidence for precession in the population of binary

black holes. It then used this information to constrain the underlying spin distri-

bution of black holes in the universe. However, these conclusions are dependent

on the small number of gravitational wave candidates observed to date. Since O4

is predicted to detect ∼ 5× more binary black hole events than O3, we expect to

observe more events in extreme regions of the parameter space (asymmetric mass ra-

tios and high spin magnitudes) for which spin-induced orbital precession, if present,
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will be easier to measure (see Chapter 3 for details). O3 has already hinted at

events in these extreme regions of the parameter space [45, 46, 47]. Consequently,

as demonstrated in this thesis, any future study which investigates the observability

of precession in the growing population of binary black holes would benefit greatly

from the precession signal-to-noise ratio. This is because of it’s ability to provide a

more intuitive understanding and a reduction in the computational cost of multiple

analyses. As Chapter 2 eluded to, future work which incorporates the two harmonic

approximation into existing search pipelines would be extremely beneficial and per-

tinent as it increases our sensitivity to possible precessing binaries. It also means

that estimates for the precessing sensitive volume can be calculated. Leading on

from this, any future study which builds upon the work conducted in Chapter 5

and constructs a pipeline which bounds the source properties from the output of the

search pipelines would be extremely valuable. This is because it has the potential to

greatly reduce the computational cost of Bayesian analyses through incorporating

custom jump proposals [see e.g. 301]. Finally, as Chapter 7 identified, any future

studies which estimate the spin distribution of black holes should consider how their

inference changes as a function of mass. The is because high mass candidates, which

are not expected to form via the same method as low mass candidates, could in-

fluence results and cause incorrect conclusions to be drawn about the formation

mechanism of binary black holes.
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