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Summary

Background

With the rise of virus genomics, we are now, more than ever, accumulating virus sequence data at an

astonishing rate. Now, online databases feature hundreds of thousands of genome sequences from

viruses such as influenza, HIV, or SARS-CoV-2. Sequencing in real-time has become possible. In

the face of this unprecedented scale, the need for high-performance bioinformatics methods for virus

whole genome sequencing pipelines has never been so great.

Methods

Broadly, two components of the RNA virus whole genome sequencing pipeline were approached,

with a particular focus on automation. In the first part, several methods for optimizing the sequence

reconstruction process were developed using several hundred influenza whole genome sequencing

samples from two seasons, including: a graph-based algorithm for reference selection; detection of

contamination and coinfection using mixture modelling; and fast virus genome comparison. In the

second part, phylogenetic analyses were developed and tested, making use of both the influenza

dataset and a collection of thousands of SARS-CoV-2 genomes. These analyses included: bench-

marking of methods for molecular dating of influenza virus data; phylodynamic exponential growth

modelling for SARS-CoV-2; and application of phylogenetic methods for inferring importation for both

influenza and SARS-CoV-2.

Results

A full whole-genome sequencing pipeline for influenza was implemented. Within this, multiple com-

ponents were developed and integrated with existing tools. Firstly, a graph-based algorithm was

successfully implemented for reference selection, whereby reference-based mapping was identified
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as a source of potential bias. In addition to this, mixture modelling was demonstrated to be appli-

cable to the task of detecting potential contamination post-assembly. Next, a variant of the diagonal

edit distance algorithm was developed to allow rapid exhaustive nearest-neighbor search for virus

whole-genome sequences, although for hundreds of thousands of sequences a seed-and-extend

approach is expected to be superior. In section two, phylogenetic and phylodynamic methods and

analyses were assessed for use in small geographical regions, on short time-scales, with focus on

single epidemics within Wales. I found methods for molecular dating to have varying performance in

this context, and make recommendations for their application. Lastly, it was found that WGS data and

molecular dating could be used in practice for routine surveillance, in particular to assess signatures

of importation and geographical spread of influenza and SARS-CoV-2.
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Chapter 1

Introduction

1.1 Influenza viruses

Influenza viruses are enveloped, single-stranded negative-sense RNA viruses of the family Orthomyx-

oviridae. Influenza types A and B represents a major public health burden worldwide (Woolthuis et al.;

2017)(Cox and Subbarao; 2000). These viruses cause an estimated 4-5 million severe infections, with

up to 500,000 deaths per year (Tafalla et al.; 2016). Influenza A in particular has demonstrated po-

tential to cause devastating pandemics; in 1918 ‘Spanish flu’ resulted in the deaths of approximately

50 million individuals (Morens et al.; 2010). As such, influenza viruses represent pathogens of major

importance. Considerable effort has been expended by international public health initiatives such as

the World Health Organization (WHO) Global Influenza Surveillance and Response System (GISRS).

To this end, whole genome sequencing (WGS) has been used to study influenza virus populations

for over a decade, and has emerged as an important tool in research and public health surveillance

(Holmes et al.; 2005a)(McGinnis et al.; 2016a)(Rutvisuttinunt et al.; 2013)(Meinel et al.; 2018a). Pro-

tocols have been developed (Zhou et al.; 2014)(Zhou et al.; 2009) that facilitate routine monitoring

of isolates by public health organizations, as well as the study of transmission events (Meinel et al.;

2018a)(Houlihan et al.; 2018b). Two important data sharing resources exist to this end; the NCBI

Influenza Resource (NIR) (Bao et al.; 2008a), and the Global Initiative on Sharing All Influenza Data

(GISAID) (Shu and McCauley; 2017), wherein over a hundred thousand influenza genome segment

sequences can be found at the time of writing, from isolates sampled across the globe. Methodolo-

gies exist for sequencing directly from clinical swabs with single-reaction genomic RT-PCR (Goldstein

et al.; 2017)(Zhou et al.; 2009). Furthermore, bioinformatics pipelines have begun to be developed

for efficient processing of this data (Borges et al.; 2018)(Wan et al.; 2015).
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Influenza A and B viruses possess a genome of 8 RNA segments (Bouvier and Palese; 2008), each

of which encodes for one of HA, NA, Polymerase basic 1 (PB1), PB2, Polymerase acidic (PA), Nu-

cleoprotein (NP), non-structural 1 (NS1), and matrix protein 1 (M1), as well as several other smaller

proteins, distinct in each type. Two fundamental evolutionary processes shape the influenza genome:

mutation and reassortment. HA and NA in particular are subject to immunological selection, since

these are the major antibody targets. This process is termed antigenic drift, which is the primary

mechanism whereby strains avoid natural or vaccine-induced immunity (Taubenberger and Kash;

2010). Novel antigenic variants of A/H3N2 appear every 3-5 years, and 3-8 years for IVBs and

A/H1N1 (Petrova and Russell; 2018).

1.2 The anatomy of a virus whole genome sequencing pipeline

Many examples of virus genomics pipelines exist in the literature and beyond, including: INSaFLU

(Borges et al.; 2018); MAJORA (Nicholls et al.; 2020); ViraPipe (Maarala et al.; 2018) for general virus

metagenomics; V-pipe (Cespedes et al.; 2020) for general; viral-ngs, provided by the Broad institute

(unpublished but widely used, see https://viral-ngs.readthedocs.io/en/latest/); VirusDetect

(Zheng et al.; 2017) for virus discovery from small RNAs; and many others (Chen, Huang and Sun;

2019; Bhuvaneshwar et al.; 2018; Li et al.; 2016). Typically, different laboratory protocols, experimen-

tal designs, hosts and viruses, lead to different bioinformatics requirements, and as such, custom

pipelines are often developed to address specific challenges, although some authors have attempted

to make large, general purpose pipelines. However, a few general tasks are performed by most

pipelines, although the implementation details may vary. Figure 1.1 summarizes a few of these com-

ponents of a virus sequencing pipeline used in routine epidemiology, from a software perspective.

1.3 String algorithms and their applications in RNA virus bioinformat-

ics

In the process of whole genome sequencing, complete genomes are not read directly from the se-

quencer. Instead, fragments called reads are generated, often in extremely large quantities. In mi-

crobiological research, these fragments are assembled into genomes, which in turn are the subject

of many different types of search queries. However, different organisms present different challenges.

For RNA viruses, complex intra-host population structures mean that, instead of a single genome,

many thousands of viral genomes are mixed together and then sequenced. This can present chal-
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Figure 1.1: Simplified schematic of an influenza virus sequencing pipeline. After sample collec-
tion and sequencing, reads are preprocessed and subsequently fed into the pipeline. Firstly, reads
are assembled, whether that is de novo or reference-guided, and resultant assemblies are filtered for
quality (A). Then, analyses making use of groups of finished sequences are performed (B). These
analyses generally involve phylogenetic tree building, molecular dating, and phylodynamics. These
activities may require appropriate subsetting of data into relevant groups. Indicated in black are activ-
ities that are explored during the course of this thesis. Specifically developed software components
are represented by circles.

lenges. Similarly, many RNA viruses are the subject of massive sequencing initiatives, which, in

combination with a high mutation rate, can mean that typical search strategies may be suboptimal.

As a result, software designed specifically for virus data in mind has emerged, building on previous

methods. Here, I provide a brief review of important work underpinning virus bioinformatics, includ-
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ing: a) fundamental definitions, data structures and algorithms in string matching, often also used

in work outside of bioinformatics; b) data structures and algorithms used in bioinformatics search

algorithms, such as string indexing; c) specific applications to de novo assembly and classification of

virus sequence data. Although these subjects span several fields within computer science and bioin-

formatics, often within the functionality of a single piece of software, many different methods must be

drawn upon. The primary aim of this review is to provide a foundation for development of software

and contextual discussion in subsequent chapters.

1.3.1 Fundamental string matching

Here, some fundamental definitions and basic algorithms for string matching are briefly described.

Although the basic algorithms in particular are not necessarily widely used in bioinformatics, they

constitute an importation foundation.

Strings

A string is a finite sequence S of symbols over an alphabet set Σ, where each c ∈ Σ is termed a

symbol (Sipser; 2012). For example, AAT is a string over the alphabet {A,C,G, T}. Let ε denote

the empty string. Furthermore, let Σ∗ denote the set of all strings of finite, non-zero length, that is

Σ∗ =
⋃
k∈N Σk. A substring of S is a contiguous sequence of characters of S, which is denoted S[i : j]

for indices i and j (left inclusive, right exclusive, as in the Python programming language). For some

string S, a k-mer of s is a substring of length k (Vyverman et al.; 2012). For example, AAT is a k-mer

of AATTT of length 3. k-mers are widely used within bioinformatics (Melsted and Pritchard; 2011).

Graphs

A directed graph is the tuple (N , E), composed of a set of nodes N , and edges E that connect them

(Sipser; 2012). Edges are described as pairs (v, u) for nodes v and u in N . For an undirected graph,

(v, u) and (u, v) are equivalent.

Finite Automata

Finite automata have found use in bioinformatics, such as in: motif searching and discovery (Marschall

and Rahmann; 2009; Marschall; 2011); protein classification (Psomopoulos et al.; 2004); phylogenet-

ics (Westesson et al.; 2011; Holmes; 2017; Westesson et al.; 2012); and systems biology (Yang et al.;

2010; Sütterlin et al.; 2009). Since some relevant algorithms are formulated as finite state machines,
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we briefly summarize the definition of finite automata. Formally, a finite automaton (FA) M is defined

(Sipser; 2012) by the tuple (Q,Σ, δ, q0, F ), where Q is a set of states (which the automata may take),

Σ the set of characters comprising the alphabet of the input, δ : Q × Σ → Q the transition function

(which determines how a given state transitions to a new state when combined with input), q0 the

initial state, and the set of acceptance states F ⊆ Q (which are comparable to those states for which

a boolean value of 1 is returned). For any string that is inputted into M , the final state after the last

input is either in F or not, which means we can define a notion of accepted strings. For a set of

accepted strings A, we define L(M) = A, and say that A is the language of M .

We extend this definition to the nondeterministic finite automata (NFA). In this case, the transition

function is ∆ : Q × Σ → P(Q), where P(Q) is the power set of Q. In practical terms, this means

that for any state and input, the transition may be made to more than one other state, and also that

transitions can also occur without an input character (termed ε-transitions). FA without these features

are described as deterministic finite automata (DFA). All NFA are equivalent to DFA; that is, they

can be transformed by consideration of a DFA with states that are themselves combinations of 2|Q|

finite states (Marschall; 2011). Although this may be costly, there are algorithms for construction of a

minimal DFA (that is one that accepts the same language with a minimal number of states) (Hopcroft;

1971).

Basic exact substring matching algorithms

One of the most important exact substring matching algorithms is the The Knuth-Morris-Pratt (KMP)

algorithm. KMP makes use of the self-similarity of a word W in order to perform matching to some

text S, reducing the time complexity of exact matches from O(|W ||S|) to O(|W | + |S|) (Morris and

Pratt; 1970; Knuth et al.; 1977). The algorithm allows us to ‘skip’ along the text, which is conceptually

similar to the Boyer-Moore algorithm (Boyer and Moore; 1977; Tarhio and Ukkonen; 1993) (though

the algorithms are different). For example, when scanning W = AACAAT to S = AACAACAAT ,

we may encounter the mismatch at the end of AACAAT and S[0 : |W |] = AACAAC. Naively, we can

increment our position in S to start next at 1, and start checking AACAAT against S[1 : |W | + 1] =

ACAACA. However, we know already that W [: −1] = AACAA matched S[0 : |W | − 1]. Since this

is true, it cannot be that W [: −1] = AACAA matches S[1 : |W |], because if this were true, AACA

would match itself, but shifted over by one position, which we know to be false. Since we know this to

be false, we can instead move to the next position for which this could be true, which coincides with

S[3 :] = AACAAT . We can perform this with a useful array L, which indexes the correct position.
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In this case, it is L = [0, 1, 0, 1, 2, 0]. How do we construct this? We iterate over prefixes W [: i];

for each new, encountered base wi, we ask if it matches another base wj , indexed by j. If so, we

set Li = Li−1 + 1 and increment i and j. If not, we set Li = 0 and j = 0, and increment i. The

KMP algorithm can be formulated as a DFA. The Aho-Corasick (AC) algorithm is similar to the KMP

algorithm, except that we use a dictionary of words (Aho and Corasick; 1975). Using the KMP for

each word, one at a time, would clearly result in additional complexity proportional to the number

of dictionary words. The AC algorithm avoids this by construction of a prefix trie, augmented with

suffix links. This is often formulated as a DFA. When a mismatch occurs, suffix links are followed

and the transition is made at a different position. Other algorithms exist, such as the Rabin-Karp

algorithm (Karp and Rabin; 1987), which makes use of a ‘rolling hash function’, and importantly

forms a precursor to minimizers (Schleimer et al.; 2003).

1.3.2 Indexes and data structures for biological sequences

Although work summarized in the previous subsection was historically crucial, algorithms such as

the KMP are often unsuitable for biological sequences, and alternative methods, especially based

on indexes, have been developed. An index, in common usage, refers to something that helps us

to locate something else more easily. Examples of these are keys in associative arrays. Within

bioinformatics, a search index is often some form of data structure that allows us to find strings

more easily. An example of this, as will be described, is the suffix tree, which allows substrings

to be queried in linear time (Gusfield; 1997), which is an example of a substring index (Grossi and

Vitter; 2005). Efficiently indexing collections of strings is crucial in many tasks within bioinformatics

(Vyverman et al.; 2012), such as mapping (Li and Durbin; 2009d). The indexed string-matching

problem differs from the string matching problem in that the text or collection of reference strings is

preprocessed into an index which can then be used to accelerate the search (Crochemore et al.;

2014). As we shall see, in some cases, often a useful search index can also serve as a compressed

representation of the underlying sequence data. Furthermore, the applicability of a given structure

depends on the features of the data and the possible trade-offs between memory and processing

requirements. Finally, we make the distinction between k-mer indexes (including BLAST) and full-text

indexes (Vyverman et al.; 2012).

Suffix trees

Suffix trees are important full-text substring indexes that allow fast (and approximate) substring

search (Weiner; 1973; McCreight; 1976). They can be considered compressed versions of the suf-

15



fix trie, and are considered to be of key importance in the field of string processing (Abouelhoda

et al.; 2004). Suffix tree construction can be performed in both O(n) time and space (Ukkonen; 1995;

Abouelhoda et al.; 2004). The suffix tree is also equivalent to a DFA known as a deterministic acylcic

word graph (Navarro; 2001), which is similar to a sufffix trie, except that it is not a tree, and hence

has O(|S|) nodes (some states may join back up with another state later). The language accepted

by a suffix tree is that of every substring of S. Similarly, the suffix automaton is a DFA that accepts

the language given by suffixes of S. Despite linear space suffix tree construction algorithms, space

requirements can still be large in practice, and data locality can be poor (Abouelhoda et al.; 2004).

The feasibility of practical application of the suffix tree may depend on the precise problem. Basic

problems such as finding all k occurrences of pattern P can be done in O(n+k). Suffix trees can also

be used to tackle many other problems (Gusfield; 1997), including the longest common substring by

building a generalized suffix tree from concatenated strings (Vyverman et al.; 2012), as well as max-

imal exact matches using suffix links. Sparse suffix trees can be used to reduce memory, whereby

only a subset of suffixes is stored (Kärkkäinen and Ukkonen; 1996).

Suffix array

A suffix array is an arrayA such that the ith element ofA is the index of the ith lexicographically sorted

(ith smallest) suffix of a string S. Li et al. (2018) provide an optimal algorithm for in-place suffix ar-

ray construction (Li et al.; 2018), which can be performed in O(n) time, provided the constraint that

|Σ| ∈ O(n). Suffix arrays are more space efficient than suffix trees (Manber and Myers; 1993), and

can be used for computation of the BWT (Li et al.; 2018). For general alphabets, the suffix array can

be found in O(n log n) (Franceschini and Muthukrishnan; 2007). In general, provided additional data

structures, suffix tree algorithms can be replaced by suffix array algorithms (Abouelhoda et al.; 2004).

For general suffix tree algorithms performed with suffix arrays instead, several data structures may

also be required (Abouelhoda et al.; 2004). The Burrows-Wheeler transform is related to the suffix

array A by the fact that the ith element of the BWT array B[i] = S[A[i] − 1]. Similarly, the LCP table

is an array whose ith element is the length of the longest common prefix of S[A[i− 1] :] and S[A[i] :],

that is, the length of the longest common prefix of strings indexed by consecutive elements of the

suffix array. Both the LCP array and BWT array can be computed in linear time from the suffix array

(Abouelhoda et al.; 2004). Examples of problems that can be computed by use of the suffix array

and LCP array is finding maximal unique matches (MUM), such as in MUMmer (Delcher et al.; 1999).

Querying the existence of a substring of length m can be performed in O(m) time.
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Strings referred to in the suffix array are prefixes of entries in the sorted table of cyclic permutations

used in the BWT. As such, to compute the BWT from a suffix array, one must only find the character

one position to the left of each suffix. E.g. if suffix array suffix i indexes into position j of S, that is

S[j :], then the ith element of the BWT is S[j − 1] (Li and Durbin; 2009d).

DA-FSA aka DAWG

A deterministic acyclic finite state automaton (DA-FSA), also known as a directed acyclic word graph

(DAWG), is similar to a compressed prefix trie (radix tree), except that, informally, suffixes of words

may rejoin other parts of the graph. In fact, a prefix trie is a type of DA-FSA. Formally, a DA-FSA is a

deterministic finite state automaton accepting a language L with an acyclic transition function (Daciuk

et al.; 2000). For a given language, a minimal acyclic finite state automaton (MA-FSA) is, amongst

the DA-FSAs that accept that language, the one with the minimal number of states.

Assembly graphs

De Bruijn graphs (DBGs) are an essential data structure for several tasks in bioinformatics, including

sequence assembly. Formally, we refer to the DBG of S as a tuple of vertices and edges (V,E), where

each v ∈ V is a k-mer, and (i, j) ∈ E if vi = aW and vj = Wb, where W is a substring of length

k − 1 (that is, the k-mers overlap by all but one base either side) (Rizzi et al.; 2019). For the more

general overlap graph (OG), each v is sequence of any length, and (i, j) ∈ E if there is any overlap

between vi and vj . String graphs (SGs), introduced by Myers (Myers; 2005; Medvedev et al.; 2007)

are OGs without edges that are ‘transitively inferrable’ (that is, by the transitive property, if (x, y) ∈ E

and (x, z) ∈ E, then (y, z) ∈ E; one of these edges can be inferred from the other two). OGs can be

reduced to SGs by transitive reduction (Myers; 2005) in linear time. A usual assembly procedure is

then to find paths within these graphs that are hoped to represent real biological sequences, termed

contigs. The problem of finding a path in an OG that visits each read (node) exactly once, the

Hamiltonian path problem, is intractable, although finding Eulerian paths in DBGs can be done in

linear time (Pevzner et al.; 2001). However, in practice, the Eulerian superpath problem must be

examined if one wants to incorporate read paths (and replace lost information), which is also NP-hard

(Medvedev et al.; 2007). As such, assembly protocols often make use of heuristics. CELERA(Myers

et al.; 2000) and CANU (Koren et al.; 2017) are examples of assemblers based on OLC. An example

of a DBG assembler is EULER (Pevzner et al.; 2001).
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Compact de Bruijn graphs

Compact representation of the De Bruijn Graph has previously been explored (Chikhi et al.; 2014).

Methods include hash tables, as in AbySS (Ji et al.; 2011), sparse bit arrays (Conway and Bromage;

2011), lossy representation via subsampling k-mers or Bloom filters (where nodes are inserted into

a BF) (Chikhi and Rizk; 2013), or minimizers (Chikhi et al.; 2014). Chikhi et al. (2014) developed

a low-memory method for DBG construction with a trade-off of increased run-time. Explicitly storing

nodes of a graph with k-mer labels, along with a hash map, DBGs for single large genomes can take

hundreds of GB of space (Conway and Bromage; 2011). Since each node in a DBG has outdegree

of at most |Σ|, DBGs can be stored efficiently by representation of nodes with 4 bits and appropriate

compression (Conway and Bromage; 2011).

Colored de Bruijn graphs

Basic approaches to de novo assembly were not designed or well suited to accommodate biologi-

cal variation not attributable to error (Iqbal et al.; 2012). Colored de Bruijn graphs (CBDGs), which

are essentially DBGs with additional node colors (labels), were introduced for applications such as

characterization of heterozygosity for a single individual or more complex variants such as deletions,

which may also involve the use of a reference sequence as a path through the graph, and heuristics

for identifying divergence from the path. CORTEX (Iqbal et al.; 2012) makes use of a hash table (with

an integer k-mer representation as key), with 4 bits per node as previously described (Conway and

Bromage; 2011) to encode edges, along with other information, packed into the value. Other methods

include those based on Bloom filters, BWTs, or minimizers (Chikhi et al.; 2014). VARI (Muggli et al.;

2017) made use of a Bloom filter trie (Holley et al.; 2016) and BWT to implement CDBGs. In Rain-

bowfish (Almodaresi et al.; 2017), further compression was used by means of reducing redundant or

repeated mappings. Almodaresi et al. (Almodaresi et al.; 2019) presented a method for compressing

the CDBG, where color class labels may consume a large amount of memory.

Burrows-Wheeler transform

The Burrows-Wheeler Transform (BWT) is an invertible mapping that, in simple terms, permutes a

string into a representation where similar characters are grouped together, and is used for string

compression (Manzini; 1999). The BWT has found application in short read aligners such as Bowtie

(Langmead et al.; 2009) and BWA (Li and Durbin; 2009d). Importantly, for mapping applications, a

result of Ferragina and Manzini (2002) is key (Ferragina and Manzini; 2000). Firstly, as noted by (Li
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and Durbin; 2009d), any substring W of S must be present in an interval of the suffix array A(S),

because it is a prefix of a suffix, which are sorted in A. This leads to the following theorem from (the

FM-index) (Ferragina and Manzini; 2000):

Theorem 1.3.2.1 Let i(W ) be the first suffix array index for which W is a prefix, and j(W ) the last.

Let C(a) represent the count of bases of S that are lexicographically smaller than a. Let h(a, k) be

the count of a in BWT [: k]. Then:

i(aW ) = C(a) + h(a, i(W )− 1) + 1

j(aW ) = C(a) + h(a, j(W ))

And i(aW ) ≤ j(aW )⇔W ∈ S.

The functions C and h are referred to as the FM-index functions (Rizzi et al.; 2019). How does this

work? In order to gain an intuitive understanding of this, consider each term: C(a) locates, in the SA,

the first position beginning with a, which is the start of a block that could contain the suffix aW ; next,

if there are any suffixes aW ′ smaller than aW , the number of occurrences of a in B[: i(W )] gives the

number of such prefixes, because for each such W ′ < W starting at SA index k, B[k] = a. BWA-SW

makes use of the algorithm of Hon et al. (Hon et al.; 2007) which allows for construction of the suffix

array in O(n) working space. The BWT, equipped with the FM index arrays, can be used to compute

read overlaps (greater than some overlap distance ε (Simpson and Durbin; 2010)) in linear time (Rizzi

et al.; 2019).

Filters

The Bloom filter (BF) (Bloom; 1970) is a commonly used data structures in bioinformatics (Holley

et al.; 2016; Bradley et al.; 2019). Briefly, given an array M of m bits (initially zero), approximate

membership query (and insertion) for an element x is performed by applying h hash functions, and

testing whether all values M [h(x)] = 1. BFs allow for false positives but not false negatives, and can

be used for querying large sequence datasets.

Counting quotient filters (CQFs), as Bloom Filters, are designed for approximate membership queries

(AMQs). In both of these cases, although false negatives are impossible, there is some probability

of a false positive, δ, specified by a parameter. As such, these data structures can be used to

quickly pre-filter queries, before a slower exact query. CQFs are extensions of Quotient Filters (QF)

(Bender et al.; 2012), which are compact hash tables. For the QF, false positives arise when two
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items have the same fingerprint (Bender et al.; 2012), that is, hash collisions (Geil et al.; 2018). A

GPU-accelerated implementation of the QF has been designed (Geil et al.; 2018). Mantis (Pandey

et al.; 2018a) makes use of a CQF, except instead of counts, k-mers are mapped to color classes

instead, which is a method for storing a CDBG. CQFs are a superior alternative to Bloom filters

(Pandey et al.; 2018a), such as in data locality (Geil et al.; 2018). CQFs may be used for k-mer

counting applications. Similarly, advanced k-mer counting programs may make use of bloom filters

and hash tables. SqueakR (Pandey et al.; 2018b) is an example of a k-mer counting tool that makes

use of a CQF.

1.3.3 The seed-and-extend paradigm

The seed-and-extend method in bioinformatics is simple but powerful. In this method, small fragments

termed seeds are matched first, and candidates are extended (Roberts et al.; 2004). This procedure

is heuristic. For example, for local alignment, instead of the classic dynamic programming method

that may be computationally infeasible, seed-and-extend can be rapid and often produce the same

results. However, much thought goes into the design of the seeds. Two important methods are

often used: minimizers and maximal repeats. Perhaps the most famous of a tool that makes use of

seed-and-extend is BLAST (Altschul et al.; 1990).

Maximal repeats (MEMs and MUMs)

A repeated pair of substring indices is the tuple ((i, j), (k, l)) such that i 6= k, j 6= l, and S[i : j] =

S[k : l], and is maximal (in left or right directions) if it cannot be extended (Abouelhoda et al.; 2006).

A repeated pair is supermaximal if it is not a substring of any other maximal repeat. Maximal exact

matches (MEMs) and maximal unique matches (MUMs) are both types of repeated pairs. a MUM

is a supermaximal repeat that occurs in strings S1 and S2 exactly once each. For two sequences, a

maximal exact matches (MEM) is a commmon substring that cannot be extended in either direction

(Khan et al.; 2009). Finding MEMs is a crucial stage for many applications for comparing pairs of long

sequences (Liu et al.; 2019). A few approaches can be used such as by building a generalized suffix

tree (or array) out of both sequences, or by using minimizers (Almutairy and Torng; 2018). MEMs

may perform best as anchor points for closely related sequences. A classic application of MUMs

can be found in MUMmer (Kurtz et al.; 2004), which uses suffix trees, or in sparseMEM (Khan et al.;

2009), with sparse suffix arrays. Computation of MEMs is an active area of research (Liu et al.; 2019).

Calculation of MEMs is considered to be an important first step in many genome against genome
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comparison programs (Ohlebusch et al.; 2010). Several whole-genome alignment programs make

use of MEMs or similar (Delcher et al.; 2002). MEMs can be computed from suffix arrays, with a few

auxiliary data structures (Abouelhoda et al.; 2006), which allow top-down, bottom-up and suffix-link

traversal. This fact was used to show every suffix tree algorithm can be replaced with a suffix array

algorithm (Abouelhoda et al.; 2004). Key to this is the concept of the LCP array, and the LCP interval

tree.

The typical approach for calculating MUMs involves the concatenation S1#S2. However, it is also

possible to ‘stream’ one sequence against another with a suffix tree for S1 (Delcher et al.; 2002).

Efficient implementations for finding MEMs and MUMs have been developed (Vyverman et al.; 2013;

Khan et al.; 2009).

Minimizers

Minimizers are intelligently chosen k-mer seeds or ‘fingerprints’ (Marçais et al.; 2017). The computa-

tion of minimizers are also referred to as ‘winnowing’ due to development for document fingerprinting.

Winnowing was introduced by Schleimer in 2003 for comparing the fingerprints of whole documents

(Schleimer et al.; 2003). Naively, one can try to k-merize an entire sequence S, but in many cases,

this may have large size. Alternatively, one can try to retain the every mth k-mer, but for many

applications this is not permissible, since it means that the resultant fingerprint is sensitive to rear-

rangements, violating what Schleimer describes as ‘position independence’ (Schleimer et al.; 2003).

The next approach was to take all hashes that are 0 mod p for some p, an approach attributable to

Manber (Manber et al.; 1994). Minimizers find use in many applications, from mapping (Li; 2016) to

classification (Wood and Salzberg; 2014). Initially, Schleimer formulated two goals: i) guaranteeing

that common substrings of length t are detected; ii) missing common substrings less than size k. The

solution presented by Schleimer was to choose, in windows of size w = t−k+1, the lexicographically

smallest hash, which satisfies position independence. As with many algorithms in bioinformatics, dif-

ferent schemes exist, which may have variable performance depending on application (Marçais et al.;

2017; Almutairy and Torng; 2018).

1.3.4 Example applications: assembly and classification of RNA viruses

As is the case for many domains of bioscience, advances in sequencing technologies have enabled

an unprecedented expansion of virus bioinformatics, although in some cases, collaboration between

virologists and bioinformaticians has been slower than in other fields (Ibrahim et al.; 2018). Many of
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these advances have illuminated extreme diversity of viruses, with abundance up to 10 times higher

than that of bacteria (Ibrahim et al.; 2018). This understanding has brought with it a renewed view

of viruses not only as pathogens, but as critical components of many biological systems. However,

many viruses can cause severe disease, which has never been more clear than with the rise of SARS-

CoV-2. Many hundreds of thousands of RNA virus genomes are now available in online databases,

such as GISAID (Shu and McCauley; 2017). However, virus data often presents unique challenges

for algorithm and software design (Hölzer and Marz; 2017), when compared to other organisms.

Assembly

Since it is relatively well known that general purpose assemblers such as Velvet (Zerbino and Birney;

2008) or SPAdes (Bankevich et al.; 2012) can perform poorly on RNA virus sequencing outputs, often

resulting in a large number of contigs (Baaijens et al.; 2019). Several de novo general purpose virus

assemblers have been developed, such as VICUNA (Yang et al.; 2012), although in practice these

may end up performing no better on a range of datasets. Some assembly pipelines have been devel-

oped that make use of conventional tools such as SPAdes with additional post-processing (Borges

et al.; 2018). Next, we examine a few specific cases.

Assembly of viral quasispecies is well known to be problematic (Baaijens et al.; 2019; Rose et al.;

2016). For RNA viruses, an individual hosts a cloud of highly similar virus haplotypes, rather than

a single genome, which makes assembly difficult. Even if reconstruction of haplotypes is performed

accurately, estimation of their abundances is an equally difficult challenge; many approaches of this

kind rely on a fixed reference. For many viruses, reliance on a reference genome may be acceptable;

but for others, particularly where indels are more common, or diversity is extremely high (where many

host species exist) it may not be in general. For a diverse virus like influenza, which infects many

organisms and has a major reservoir in sea birds, reference-guideded assembly may be insufficient.

In the clinical case, reference genomes may be acceptable, since most human infections are derived

from well sampled lineages. However, for pandemic reassortants, this assumption may not hold.

Three options exist for de novo assembly: general purpose assemblers; metagenomic assemblers;

virus-specific assemblers (Hunt et al.; 2015; Baaijens et al.; 2019, 2017; Malhotra et al.; 2015). Of the

general purpose assemblers, SPAdes was reported to perform the best for virus datasets (Baaijens

et al.; 2019, 2017). Common metagenomic assemblers may not reconstruction variants at the strain

level effectively for RNA virus datasets (Rose et al.; 2016). Some metagenomic assemblers have

been designed specifically for bacteriophages (Antipov et al.; 2020). Whilst, on the surface these
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organisms may seem similar to RNA viruses, most bacteriophages have dsDNA genomes (Acker-

mann; 2009), and so present very different challenges. Similar, environmental sequencing for virus

discovery (Alavandi and Poornima; 2012) presents different challenges.

Classification

Taxonomic classification is performed in several domains. Traditionally, taxonomic classification is

performed on the basis of k-mers indexes (Menzel et al.; 2016). It has been argued that read map-

ping software is not appropriate for metagenomic classification due to the fact that, in metagenomic

data, query sequences may have low identity to their reference (Menzel et al.; 2016). General pur-

pose classifiers for microbiology include Kraken (Menzel et al.; 2016), Kraken2 (Wood et al.; 2019),

and Kaiju (Menzel et al.; 2016). BLAST still represents one of the best methods when adapted to

metagenomics, although it can be slow (Menzel et al.; 2016). Kraken is regarded as a fast but perfor-

mant option, although classification is generally performed to the genus level (Menzel et al.; 2016).

Kraken2 takes a similar approach, but, as in minimap2 (Li; 2018), uses only distinct minimizers in the

query (Wood et al.; 2019). Often, classification of unassembled sequences can be advantageous,

especially for metagenomic datasets. Kaiju (Menzel et al.; 2016) finds maximum exact matches with

the BWT, working with protein translations due to lower variability, which the authors demonstrate to

have superior performance to approaches based on k-mers. Finally, we note sequence classification

methods have been developed for virus metagenome datasets (Simmonds and Aiewsakun; 2018).

1.4 Characterization of variants and intrahost virus populations

RNA virus infections are often characterized by some degree of intra-host variation which should be

accounted for within bioinformatics pipelines. That is, instead of infection with a single strain, intra-

host RNA virus populations are in fact genetically heterogeneous (Xue et al.; 2018). Influenza intra-

host populations from a single source share similarities to those of coinfections between very similar

strains. However, coinfection from two different sources, or subtypes, clades, and sub-clades, may

often be distinguishable from normal populations. Furthermore, for influenza, intra-host variation is

minimal, when compared to other RNA viruses such as HIV (Xue et al.; 2018; McCrone and Lauring;

2016), in principle due to the short duration of influenza infection. The number of variant sites across

the entire genome with greater than one percent or so frequency is typically less than 15, with a

proportion usually less than 10% (Debbink et al.; 2017; Xue et al.; 2018). In general, detection

of coinfections is a special case of detection of mixtures. Mixture quantification, reconstruction of
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haplotypes, or variant calling from sequence data has been extensively studied. Here, I review many

of these methods and some important preliminaries to aid in their understanding.

1.4.1 Mixture models: a short primer

Here, I briefly summarize some important aspects of mixture modelling, since it is an important

foundation for several approaches used.

Finite mxture models

Mixture models are probabilistic models with a probability distribution function (density or mass) of

the form f(X|θ, q) =
∑m

i=1 qifi(X|θi), where X is some datum, qi is the ith mixture proportion of

m clusters, fi(X|θi) is some probability measure for the ith cluster with parameters θi (McLachlan

et al.; 2019). If we sample from a mixture of sub-populations (termed components), each of which

is individually homogeneous, then we may use a mixture model (Lindsay; 1995). A major challenge

exists in correct choice of a number of clusters when it is not known a priori (Rufo et al.; 2010).

In fact, finite mixture models are of deceptive simplicity. As will be described, several technical

challenges arise which can complicate practical application of these models. A typical example is

identifiability, which in the case of mixture models, is easily violated in a number of ways. Consider, for

example, a mixture of two Gaussians f(µ1, σ
2
1), f(µ2, σ

2
2). In this case, (1/3)N (0, 1) + (2/3)N (10, 1)

is not distinguishable from (2/3)N (10, 1) + (1/3)N (0, 1), since they will have the same likelihood.

In this sense, the likelihood function will not have a global maximum. This is worse for general

finite mixtures of K components, for which there are K! permutations that will evaluate to the same

likelihood (McLachlan et al.; 2019). In the context of Bayesian MCMC, this is referred to as the ‘label

switching problem’ (Jasra et al.; 2005). This kind of identifiability can be broken by the imposition of

identifiability constraints (ICs), or in the case of Bayesian MCMC, other approaches (see Jasra et al.

2005). However, even with constraints, problems can arise, as will be described.

Dirichlet process mixtures

In non-parametric Bayesian mixture modeling, the number of clusters does not need to be assumed

in advance (Görür and Rasmussen; 2010); non-parametric in here implies that there are, in a sense,

an infinite number of parameters (Li et al.; 2019). Finite mixture models can be extended to count-

ably infinite mixtures by the use of Dirichlet Process Mixture Models (DPMM). A Dirichlet process

(DP) can be considered to be a distribution over distributions (Li et al.; 2019). Formally, a random

probability distribution X ∼ DP (H,α) if, for any finite partition of the sample space, A1, A2, . . . , An,
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(
X(A1), X(A2), . . . , X(An)

)
∼ D(αH0(A1), αH0(A2), . . . , αH0(An)), where D is the finite Dirichlet

distribution, H0 is the base distribution, and α ∈ R+ is a ‘precision’ parameter (Müller and Quintana;

2004). Alternatively, the DP can be formulated by F (x) =
∑∞

i=1wiδµi(x), where µi ∼ H0, and the

weights wi are sampled recursively according to a stick-breaking process. For some intuition, con-

sider for each sample X, probability mass randomly distributed across a countably infinite number of

random points in the parameter space. For example, if H0 = N (0, 1), then the positions are randomly

distributed according to a standard normal, and the frequencies are randomly distributed according

to a stick-breaking process. In the DPMM, the conditional probability of being assigned to existing

cluster allows the construction of a Gibbs sampler (Görür and Rasmussen; 2010). A practical review

of the DPMM can be found in (Li et al.; 2019).

As an example of how the DPMM can be practically applied, I will explain the approach and imple-

mentation performed by Zagordi et al. (2011) with their tool ShoRAH (Zagordi et al.; 2011), which

was subsequently extended (Prabhakaran et al.; 2013). In their paper, these authors describe a

haplotype as a m × 4 matrix Θ = (θ1, . . . , θm), where each θi is a vector giving the probabilities of

a categorical distribution describing the generation of bases at position i, which increases flexibility

(as opposed to a fixed string). Aligned reads are then modelled as arising from a multinomial mix-

ture with parameters Θk, where k is the mixture component. Using Dirichlet priors for Θ and π, the

mixture proportions, the posterior distributions of cj |r, θ, π, θk|r, c, α, and π|c, γ, can be computed,

where c is the vector of cluster labels, r are the reads, and γ, α are hyperparameters. This is made

possible by the Multinomial-Dirichlet conjugacy: the posterior density of a parameter given a multino-

mial likelihood and Dirichlet prior is again Dirichlet (Holmes et al.; 2012). Sampling the cluster read

membership variables has several advantages. Firstly, it allows fast Gibbs sampling of haplotypes

since only reads that have been assigned to a given haplotype will contribute to it; because of this,

counts at a given position can be considered instead of full reads.

Parameter estimation

Here, I assume a basic understanding of maximum likelihood estimation (MLE), as well as Bayesian

Markov Chain Monte Carlo (MCMC) algorithms. It should be noted that high-dimensional parameter

spaces can be difficult for both EM (Wang et al.; 2015; Yi and Caramanis; 2015) and MCMC (Norris

and Da Silva; 2016). In general, this is a reflection of the ‘curse of dimensionality’ (Altman and Krzy-

winski; 2018). It may be desirable to reduce the feature space in order to improve performance and

tractability (McLachlan et al.; 2019). However, Gibbs sampling may be particularly well equipped for
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handling high-dimensional parameter estimation (Chen, Tang and Li; 2019).

Expectation Maximization is an iterative method for finding maximum likelihood or MAP estimates of

both parameters and hidden variables of a model (Dempster et al.; 1977). Although EM is considered

to be cutting edge for fitting Gaussian mixtures (Dasgupta and Schulman; 2007), it can suffer from

variable performance (Dasgupta and Schulman; 2007), notably depending on initialization (Melnykov

and Melnykov; 2012), due to the presence of local minima in the likelihood function. Initialization can

either be deterministic, such as with pre-clustering, or stochastic. In stochastic initialization, different

starting positions can be chosen, and then the local maximum with the largest likelihood can be used

(Melnykov and Melnykov; 2012). Although it has been claimed that EM is a sort of soft-clustering

approach, in high dimensions, the cluster memberships are in practice hard due to concentration

of the likelihood into a small volume (Dasgupta and Schulman; 2007). Additionally, size and shape

regularization has been previously handled (Borgelt and Kruse; 2004; Yi and Caramanis; 2015).

One of the most difficult parts of finite mixture modelling is choice of the number of clusters. Several

approaches have been described based on penalized likelihood critieria such as the AIC (see (Mel-

nykov et al.; 2010) for a summary). Further, the standard likelihood ratio test result of Wilks (Wilks;

1938) is not valid in many cases because of technical problems with approximating the likelihood,

including the null θ0 being present on the boundary of the parameter space Θ, or even worse in the

case of Gaussian mixtures, where the LR statistic is unbounded (Li et al.; 2009b). In fact, H0 consti-

tutes several lines in the parameter space Ω0 (Lindsay; 1995): θ1 = θ2; π = 0; π = 1, which can be

formulated as the the null H0 : α(1− α)(θ1 − θ2) = 0 (Li et al.; 2009b).

Since the usual X 2
d distribution of the statistic λ does not hold, alternatives have been developed,

such as: bootstrapping (Feng and McCulloch; 1996; McLachlan and Khan; 2004); restriction of the

parameter space (Chen and Cheng; 2000; Chen et al.; 2009); breaking the non-identifiability with the

modified likelihood ratio (which can be interpreted as a MAP approach) (Chen et al.; 2001). It can

be shown that, under some restrictive conditions, such as fixing all parameters except π, a type-II

likelihood ratio test can be used, which results in the chi-bar-squared distribution (Lindsay; 1995), a

mixture of the point mass at zero and a chi-squared with 1 degree of freedom. For a summary of

commonly cited results regarding the LRT, see (McLachlan and Khan; 2004). For normal mixtures,

simplifying the model or restricting the parameter space can make hypothesis testing more simple

(Liu and Shao; 2004; Chen et al.; 2009). One approach is, essentially, to calculate the maximum
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likelihood parameters via EM, and bootstrap the likelihood ratio distribution (Feng and McCulloch;

1996). Each of these methods may find use in different contexts. Simple maximum likelihood may

also find use. For example, after reconstruction of candidate haplotypes, Malhotra et al. (2015) (Mal-

hotra et al.; 2015) use progressive removal until the likelihood decreases. The suitability of particular

methods for different contexts may be questioned, however.

Many different approaches are used for detecting structure (which is fundamentally our task), includ-

ing model selection, hypothesis testing, and classification. Although in many ways, these methods

overlap, they are in fact suitable for different contexts. In the context of machine learning, classifica-

tion can be defined as the process of determining class labels for test data given training data and

labels (Aggarwal; 2014; Murphy; 2012). Clearly classification and hypothesis testing share similari-

ties. In medical diagnostics, the relationship is clear (Pepe; 2003). In the context of decision theory,

their similarities can be formalized (Parmigiani and Inoue; 2009; Wald; 1950).

1.4.2 Computational methods for RNA viruses

Taxonomic classification

Taxonomic classification in general involves the assignment of labels to sequences. For example,

individual reads can be classified at the genus level. Several pipelines designed for generalized

virus assembly perform taxonomic classification. For example, Genome Detective (Vilsker et al.;

2019) makes use of DIAMOND (Buchfink et al.; 2015) to identify viral reads, and place them into

bins for subsequent assembly. In general, this problem can be decomposed into two parts. The

first is accurate sequence alignment, which can be performed with several approaches, although

BLAST is generally considered to be the gold standard (Buchfink et al.; 2015). However, BLAST is

generally too slow for single reads (Buchfink et al.; 2015; Southgate et al.; 2020). VirAMP (Ajami

et al.; 2018), designed for human virome classification also makes use of DIAMOND; however, in this

case, the taxonomic level intended is coarse, with evaluation performed on a mix of several different

virus families. The second task is quantifying how these reads distribute amongst taxonomic bins.

This problem is non-trivial since many organisms may share large proportions of their genomes, and

coverage may be low, which may result in false positives. An excellent case study of these problems

can be found in the analysis performed by (Afshinnekoo et al.; 2015), where the authors claimed to

have found Yersinia pestis and Bacillus anthracis on the New York subway. These claims were widely

criticized (Ackelsberg et al.; 2015). General-purpose metagenomic taxonomic classification tools,

such as Kaiju (Menzel et al.; 2016) or Kraken2 (Wood et al.; 2019), generally do not aim for strain-
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level classification. Lastly, classification often relies on de novo assembly, which can unsurprisingly

lead to variable results (Sutton et al.; 2019).

Viral diversity estimation

Viral diversity can be studied on the scale of calling individual variants across an alignment, or glob-

ally, in terms of full haplotype reconstruction, or some combination of the two, which has been referred

to as ‘local’ (Posada-Cespedes et al.; 2017).

Variant calling

Early variant calling approaches made use of either basic statistical models or ad hoc approaches

(Howison et al.; 2019; Deatherage and Barrick; 2014; Wei et al.; 2011; Wilm et al.; 2012; Macalalad

et al.; 2012; Koboldt et al.; 2009), often involving thresholding. Some methods previously applied

to the study of intra-host populations do not make use of probabilistic models, but instead apply

heuristic approaches to removing technical errors (Koboldt et al.; 2009)(Rozera et al.; 2009)(Archer

et al.; 2010). Heuristic methods were often justified by the difficulties associated with distinguishing

rare SNVs from errors. Although intrahost virus population may be more complex than sequencing

data from other systems, this fundamental issue arises in several domains. As such, a number of

approaches were motivated by, or designed for, human genome sequencing projects.

In general, variant calling is complicated by technical errors and sampling during the sequencing

process, and has been studied extensively outside of virology (DePristo et al.; 2011). A common ap-

proach to resolve this issue is utilization of a statistical model, such as a binomial, in conjunction with

a hypothesis test. In order to account for sequencing error distributions, sequencing of controls may

be performed (Wang et al.; 2007; Gerstung et al.; 2012), or a constant specified error rate (Wei et al.;

2011). LoFreq (Wilm et al.; 2012) included the utilization of per-base Q-scores. Furthermore, align-

ment positions may be considered in pairs or higher-order combinations, in order to phase variants

(Macalalad et al.; 2012; Yang et al.; 2013). Covama (Routh et al.; 2015) considers large matrices

of all pairwsie sites and linkage disequilibrium. Furthermore, several computational tasks may be

closely related to variant calling. For example, MAQ and SOAPsnp were designed with genotyping

in mind (Li et al.; 2008, 2009c); Goya et al. (2010) presented SNVMix (Goya et al.; 2010) for tumour

sequencing; as in other tools, data takes the form of sampled allelic counts. Ultimately, these tools

compare a sequence data to a reference and aim to identify differences not due to error, although in

general, genotyping may be tasked with inferring genotypes with higher ploidy, rather than a single
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variant as in a virus.

As an example, I briefly summarize the approach used by LoFreq (Wilm et al.; 2012). These authors

use a Poisson-binomial to model the number of variant bases in a given alignment column. Unlike in

the conventional binomial, which is composed of N i.i.d Bernoulli random variables, in the Poisson-

binomial, each Bernoulli random variable can have a distinct success probability, which in this case

is determined by the Phred score. P-values can be computed under the null hypothesis recursively.

McCrone et al. (2016) argued that it is very easy to overestimate viral diversity using common meth-

ods such as LoFreq (Wilm et al.; 2012) and DeepSNV (Gerstung et al.; 2012). This is easy to

envision, since additional sources of error may be present on the basis of RT-PCR.

Haplotype reconstruction

The realization that considering single sites in isolation results in a loss of information allows in-

sight into the entire haplotype sequences that may be present in a sample. Although tools such

as V-Phaser (Yang et al.; 2013) may consider co-variation, this can be taken further. The goal of

most haplotype reconstruction is to use this incomplete data to, in some way, estimate the haplotype

sequences from which the reads are drawn. Two principle methods are used to this end: mixture

modelling and graph algorithms. For pyrosequencing data, (Eriksson et al.; 2008) made use of er-

ror correction and subsequent haplotype reconstruction via read graphs and subsequent frequency

estimation with expectation-maximization (EM). In order to do so, the authors find consistent paths

through a read graph, and a set of haplotypes that explain the reads. By using their haplotype re-

construction algorithm to define a set of haplotypes for which frequency estimation is performed, the

authors are essentially reducing the support of the haplotype distribution to a finite set. Since there

are 4L possible haplotypes for a given genome length L, reduction of the support to a subset of

m � 4Lcan be useful, computationally. If a haplotype is not consistent with any reads at all, then it

will not have high likelihood. Similarly, ViSpA aims to assemble viral quasispecies and provide an es-

timate of their frequencies (Astrovskaya et al.; 2011), making use of a read graph in order to produce

haplotype sequences, followed by EM.

ShoRAH (Zagordi et al.; 2011) employs a DPMM, error-correction by cluster centroids, and haplotype

reconstruction (Zagordi et al.; 2010). Unlike the previous two methods, ShoRAH was designed for

both 454 and Illumina Genome Analyzer sequencing reads. The authors make use of overlapping
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windows that are covered by some subset of the reads, for local reconstruction (error correction), fol-

lowed by global reconstruction using EM, following the procedure described by (Eriksson et al.; 2008).

Qure (Prosperi and Salemi; 2012) makes use of several herustic procedures, as well as probabilistic

clustering similar to (Zagordi et al.; 2010), but do not actually make use of the Dirichlet process or

Gibbs sampler. DPMM have found use in global reconstruction (Prabhakaran et al.; 2013); building

on previous work, Prabhakaran et al. use a truncated DP mixture, but this time, employ an increasing

sequence of nested windows, updating prior probabilities using the previous window, as the window

grows.

A wide range of graph-based algorithms have been developed. HaploClique makes use of a read

graph and maximum clique enumeration, where fully connected subgraphs, which represent groups

of compatible reads, are extracted (Töpfer et al.; 2014). SdpR employs correlation clustering (Barik

et al.; 2018). In general, these methods rely on construction of a graph, and some kind of partitioning

or construction of paths based on a cost function. Some approaches assume an input set of ideal,

error-corrected and aligned reads (Prosperi et al.; 2011). Other probabilistic methods make use of a

first step where super-reads are constructed in order to make subsequent estimation tractable (Ahn

and Vikalo; 2017).

Recent efforts have been dedicated to full de novo quasispecies assembly, such as Virus-VG (Baai-

jens et al.; 2018), SAVAGE (Baaijens et al.; 2017), PEHaplo (Chen et al.; 2018), MLEHaplo (Malhotra

et al.; 2015). These methods tend to be graph-based; for example, Virus-VG constructs a contig vari-

ation graph (contig paths), and seeks to convert it to a genome-variation graph, where paths are

full haplotypes. MLEHaplo relies on construction of candidate haplotypes from a de Bruijn graph, fol-

lowed by maximum likelihood estimation via backward elimination (progressive removal of haplotypes

until likelihood increases) (Malhotra et al.; 2015).

1.5 Fast nearest neighbor search and the edit distance

In virus pangenomics, especially in molecular epidemiology, after sequence assembly it may be de-

sirable to query a sample against a database of hundreds of thousands of virus genome sequences

in order to establish candidates for epidemiological linkage, or determine possible countries of ori-

gin for imported cases. This can be achieved by global alignment, or by faster methods for string

comparison. Global alignment is a common computational challenge in bioinformatics that in general
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relies on dynamic programming for an exact solution. Furthermore, global alignment can form the

core of subroutines within other bioinformatics software, such as multiple sequence alignment or read

mapping (Li; 2013). Both global and local alignment can be framed in terms of approximate string

matching (ASM), a common task from computer science (Navarro; 2001). As in alignment, ASM is

usually divided into tasks; dictionary retrieval and substring matching. These are analogous to global

and local alignment in bioinformatics. Due to its simplicity and historical usage in computer science,

calculation of the edit distance tends to have faster algorithms than other alignment cost functions.

Here, I briefly review these algorithms.

Approximate nearest neighbor and range search

One may desire to employ algorithms for neighbor search that make use of an alignment distance,

analogously to spatial partitioning schemes. In general, two problems are faced when trying to use

these algorithms: high dimensionality, and non-metric cost functions. For dimensionality greater than

10, exact k-NN algorithms often perform worse than linear scan (Ponomarenko et al.; 2014). For

collections of hundreds of thousands of DNA sequences, each 30 kilobases in size, as with influenza

or SARS-CoV-2, even filtering may be slow. For metric spaces with millions of sequences, navigable

small world graphs (NSW) can be used (Malkov et al.; 2014; Malkov and Yashunin; 2018). In other

domains, structures such as K-D trees (Bentley; 1975), or approaches based on locality sensitive

hashing (LSH) can be employed. For near-metrics, which would be metrics except that they only

satisfy the triangle inequality up to a constant multiplicative factor (including weighted global align-

ment distances), trees can also be used (Sahinalp et al.; 2003). However, for non-metric dissimilarity

functions, the choices are few.

Nearest neighbor search for Levenshtein distance and Hamming distance have been researched ex-

tensively. Aside from bionformatics, searching for nearest neighbors in Hamming spaces arises in

areas such as computer vision. One such example is multi-index hashing (Norouzi et al.; 2012). Con-

ceptually, this relies on creating m hash tables for non-overlapping kmers, and calculating a bound

on the number that must be matching in order for, say, a hamming distance of most r. For example,

for a Hamming distance of 2, at most 2 kmers will mismatch. One problem is the presence of gaps

or missing information, where a string with a gap could fit into 4 possible bins at that kmer position.

For approximate string matching, B-K trees (Burkhard and Keller; 1973) make use of the triangle in-

equality for searching discrete spaces, which were introduced due to the fact that traditional tree data
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structures such as in spatial partitioning break down in high dimensions, which may occur with long

strings. However, in general, since there are no bounds on the degree of B-K tree nodes, speed-up

can be variable depending on application.

Locality sensitive hashing (LSH) is an approximate method for clustering and nearest neighbor

searches. LSH finds use in many areas of bioinformatics. Frequently, the technique is applied to

sets of kmers in order to estimate the Jaccard index, a measure of set similarity (Marçais et al.;

2019), where kmer order is ignored. Marccais et al. (2020) introduced a form of LSH that also de-

pends on order, in order to approximate the edit distance. An example of LSH is MinHash (Broder;

1997), which has found common use in MASH (Ondov et al.; 2016), although alternatives such as

the HyperLogLog sketch also exist (Baker and Langmead; 2019). Again, missing data, such as poor

coverage complicate these applications.

The edit distance

The edit distance, also known as the Levenshtein distance, is the number of operations required

to transform one string into another (Navarro; 2001). Although many applications in bioinformatics

employ more complex dissimilarity functions, for example which may define a matrix of substitution

costs between amino acids, the edit distance is of key importance for big data applications because

of special accelerated algorithms. Formally, as defined by (Levenshtein; 1966), let S1, S2 be two

strings over an alphabet Σ. Then the edit distance d(S1, S2) is equal to the minimum number of

substitutions, insertions, or deletions required to convert S1 into S2, or vice versa. This distance is a

metric (Levenshtein; 1966). Let the edit distance of substrings S1[: i] and S2[: j] be denoted as dij .

An important property of the edit distance, that we will refer to as the recurrence relation (Gusfield;

1997), is as follows: for integers i, j, di,j = min(di−1,j + 1, di,j−1 + 1, di−1,j−1 + δij , where δij is 0

if S[i] = S[j] and 0 otherwise. The generalized edit distance is an extension of the edit distance

for which substitutions, insertions, and deletions can have variable costs. Other related dissimilarity

functions are the Hamming distance (which is a special case of the edit distance), the q-gram or

k-mer distance, and the block distance (Navarro; 2001). For the Hamming distance, α = k/m gives

the error ratio (Navarro; 2001). If the cost function δ fulfills the triangle inquality and is strictly greater

than zero then if an element is subjected to an operation it is not modified again (Wagner and Fischer;

1974).
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Computing the edit distance with dynamic programming

The standard O(n2) dynamic programming algorithm for computing the edit distance is often called

the Levenshtein (Levenshtein; 1966), Needleman-Wunsch (Needleman and Wunsch; 1970), or Wagner-

Fischer (Wagner and Fischer; 1974) algorithm. A good exposition, with further developments, is given

by Ukkonen (Ukkonen; 1985a). Let Cij be the edit distance between S1[: i] and S2[: j], respectively.

The core of these algorithms is the recurrence Ci,j = min(Ci−1,j−1 + δ(xi, yj), Ci−1,j + 1, Ci,j−1. Note

two important properties of this computation for the edit distance, Cij − Ci−1,j−1 ∈ {0, 1} (diagonal

property ) and Cij − Ci−1,j ∈ {−1, 0, 1} and Cij − Ci,j−1 ∈ {−1, 0, 1} (adjacent property ). Another

important property, the cutoff property, is that given Cij > k, ∀r > 0, Ci+r,j+r > k, which allows us

to abandon calculation should the threshold k be hit. Many variants for this algorithm have been

developed with a range of cost functions. Ukkonen gives a straightforward method for bounding the

number of computation by considering only diagonal strips of a given width in the middle of the align-

ment (Ukkonen; 1985a). In this case, the optimal alignment cannot be retrieved (Ukkonen; 1985a).

It is important to know that C can also be computed row-wise, or even diagonally (Navarro; 2001).

Ukkonen’s algorithm was particularly useful for computation of whether the edit distance is within

k. Landau and Vishkin (Landau and Vishkin; 1988) improved the worst case of this algorithm, and

Landau et al. subsequently implemented incremental computation (Landau et al.; 1998). Wu et al.

developed an O(kn/ log n) algorithm, where k is the max distance, making use of a ‘4-Russians’ ap-

proach. Importantly, Myers (Myers; 1999) introduced a O(nm/w) bit-vector algorithm, where w is the

machine word size. I next describe a few of these important algorithms. Many of these algorithms

are described in terms of automata theory; in principle, an automaton for computing the edit distance

may achieve an O(n) search, but may be difficult to construct (Navarro; 2001). For approximate string

matching, or edit distance computation with some practical bound k, O(kn) runtime can be achieved

(Ukkonen; 1985b).

Ukkonen’s algorithms

In an important paper (Ukkonen; 1985a), Ukkonen improved on the basic algorithm to allowO(smin(m,n))

time and space complexity for computation of s, the distance, derived from a method for verifying that

s ≤ t in O(tmin(m,n)) time. These algorithms rely on the diagonals of the matrix dij . The latter

emerges from a corollary 1 in (Ukkonen; 1985a): that if (i, j) (with score dij) lies on an optimal path

between d00 and dmn, then −p ≤ j − i ≤ n −m + p, where p = b(1/2)(dmn/∆ − |n −m|)c, and ∆

is the minimum indel cost over characters (where we assume m ≤ n, or we can reorder the strings

such that this is true). In this case, only 1 + |n −m| + 2p ≤ 1 + t/∆ diagonals are evaluated, each
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with length min(m,n), so the algorithm is O(tmin(m,n)). The space complexity can be reduced as

before. Furthermore, if one stores pointers to the leftmost and rightmost value ≤ t for each row,

the band of diagonals can be shrunk as the distance increases, until they meet, with rejection; this

does not change the worst case complexity. The edit distance can be computed from this procedure

by iterate calls with increasing t; this calculation surprisingly has complexity O(smin(m,n)) (Ukko-

nen; 1985a). Finally, the author presents another O(smin(m,n)), O(min(s,m, n)) algorithm, which

we call the diagonal algorithm, that is in practice faster than the previously described iterative tests, if

δ(a, b) = 1 for all a 6= b. A good exposition of this algorithm is given in (Landau et al.; 1998). In short,

it involves a variant of Dijkstra’s algorithm (Dijkstra et al.; 1959) to greedily (hence it is referred to as

the ‘greedy algorithm’) search for the shortest path between (0, 0) and (m,n) (Landau et al.; 1998),

which functions by incrementally extending diagonal stretches. Ukkonen’s algorithm is O(n + d2) on

average for random strings with O(d2) space for the alignment, and O(d) space without. Furthermore,

the requirements of the algorithm are that the match is zero and the mutations are positive (Powell

et al.; 1999). This was also independently discovered by (Myers; 1986). Ukkonen’s algorithm, whilst

it is on average O(n+ d2), can be improved to worst case O(n+ d2) using preprocessed suffix trees

admitting a LCA query, although this is reportedly not practical (Myers; 1986; Landau and Vishkin;

1988; Landau et al.; 1998).

Hirschberg’s algorithm

Hirschberg’s algorithm has O(nm) time and O(min(m,n)) space, and both calculates d(S1, S2) and

retrieves the operation sequence (Hirschberg; 1975; Powell et al.; 1999). The algorithm was originally

devised for computing the longest common subsequence (LCS). The algorithm is fairly simple: it

proceeds by splitting S1 into two halves. Then, the standard DP algorithm of each half against S2 is

performed for both; the first is as the usual procedure, whereas the second is performed in reverse.

Then, the correct partition of S2 into two halves is found by considering the border where the two

alignments meet. This can be stated in general by: if d(S1, S2) is the optimal alignment of S1, S2,

then for any partition S1 = A+ B, there is a corresponding one of S2 = C +D such that d(S1, S2) =

d(A,C) + d(B,D).

Bit Parallelism

Bit parallelism is exploited in several algorithms, the first of which was due to (Baeza-Yates and

Gonnet; 1992), which is also known as the bitap algorithm, which has exact and fuzzy (computing

neighbors within k) variants, for querying a small pattern P against text T . Let B be a table for which
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character c has bit mask B[c] = bm . . . b1, with bi set iff Pi 6= c. For example, B(A;ATGAT ) = 10110.

Let D = dm . . . d1 (initially 1m) store the state of a search, with di = 0 iff P [1 : i] currently matches the

text (where a match is reported if dm = 0). For each Tj , D′ = ((D � 1)|B[Tj ]). This algorithm was

extended for regular expressions (Wu and Manber; 1992). One issue with basic bit parallel algorithms

is that they are not well equipped to handle large patterns (Navarro; 2001). Wu and Manber (1992)

extended the algorithm such that, for a basic automaton recognizing Lk(P ), each row is contained in

a single word. Naturally, this is not applicable for large biological sequence patterns.

Wu et al. developed a sub-quadratic algorithm to build a NFA for recognizing edit distances based on

the ‘Four Russians’ technique (Wu et al.; 1996). An important observation, as in Wu et al., is that not

only can we compute the difference matrix D (e.g. Cij−Cij−1 instead of C, but also that, for each cell

at position (i, j), the value is determined by a finite number of values in adjacent boxes. Consider a

‘cell’, consisting of four coordinates

a c

b d

 of C, where d is at (i, j). Assume that at the position of d,

Pi = Tj (δij = 0). We can ask the following question: given a, b, c, is d < b? This may seem obvious,

and follow on from the basic DP rule. However, we can actually answer this question with only the

differences b − a, c − a. For example, if b > a, then d < b. This yields a set of boolean equations.

Although the required relations are described originally in (Myers; 1999), a clearer formulation is

given by (Hyyrö; 2001; Hyyrö and Navarro; 2005). In order to handle |P | > w, blocks of size w are

computed. In this case, the correct boundary conditions must be accounted for. Furthermore, this

algorithm can be combined with Ukkonen’s banding cutoff algorithm (Hyyrö; 2003). This algorithm is

also known as the bit-parallel matrix simulation (BPM) algorithm (Hyyrö; 2001; Hyyrö and Navarro;

2005; Šošić and Šikić; 2017).

Recent advances in the edit distance

Obtaining a subquadratic algorithm for computing the edit distance has been the focus of much re-

search (Haeupler et al.; 2019). During the last 10 years there has been a significant amount of devel-

opment in the field of approximating the edit distance in subquadratic time (Chakraborty et al.; 2018;

Andoni and Nosatzki; 2020), although approximation factors better than 3 have not been achieved

(Haeupler et al.; 2019). Several approaches have examined special cases for input strings, including:

when input strings are compressible (Gawrychowski; 2012); when they are perturbed (Spielman and

Teng; 2009); additional augmentation strings are supplied (Goldwasser and Holden; 2017). In par-

ticular, (Goldwasser and Holden; 2017) show how to compute EDIT (with other DP problems such
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as dynamic time warping) with correlated instances; in this case, the correlation between instances

is exploited to solve the problem together. It should be noted that this is not the same as sequential

learning. The approach of (Andoni and Krauthgamer; 2008) relies on a similar model for auxiliaries

as in (Goldwasser and Holden; 2017). Other important applications are edit-similarity joins and edit

distance metric embeddings (Indyk; 2001; Wang et al.; 2012; Gouda and Rashad; 2017; Kouckỳ and

Saks; 2020; Zhang and Zhang; 2017, 2019).

LSH has also been applied for approximate similarity searches under the edit distance (McCauley;

2019). Algorithms that rely on preprocessing (Goldenberg et al.; 2020), or those based on automata

theory have also been developed (Holub and Melichar; 2000; Mitankin et al.; 2011). Another inter-

esting development is that of methods based on incremental learning (Breimer et al.; 2003). Other

examples include: quantum algorithms (Boroujeni et al.; 2018); high-performance software libraries

(Šošić and Šikić; 2017); as well as pre-alignment filters for short read alignment (Alser et al.; 2019);

local alignment similarity joins (Wang et al.; 2017). Often, interdisciplinarity may be restricted for

these problems (Wandelt et al.; 2014). Wendel et al. (2014) performed a large scale benchmarking

of approximate search and join problems. Many of these approaches have pros and cons which de-

pend on the precise datasets applied. As such, even if asymptotically, some approach may appear

best, it may not be for all datasets.

Given many similar strings, computing the edit distance of each to a single query clearly may utilize

many of the same computations. For many of these strings, in fact, in the standard DP algorithm, the

optimal path through d may be nearly identical. Learning approaches have been applied to string edit

distance (Ristad and Yianilos; 1998).

Within the field of bioinformatics, the edit distance is regularly used in recent research, particularly in

mapping applications (Alser et al.; 2017). Recent developments include: fast libraries for edit distance

calculation, where sequences of length a million have run-time on the order of seconds to minutes

(Šošić and Šikić; 2017); LSH for the edit distance (Marçais et al.; 2019).

Indexing

Tries or their compressed analogues (Hanov; 2013; Lu et al.; 2014; Gouda and Rashad; 2017; Qin

et al.; 2019), or a MA-FSA (Hanov; 2013; Daciuk et al.; 2000) can be used to first index sequences.

In the tree-based approach, we do not need to perform the same computation for every common

36



prefix in the references; instead, we an save components of the desired matrix and reuse them. This

approach is hard to find in academic literature, but is often credited to a blog by Steve Hanov (Hanov;

2013; Waddington; 2016; Saluja et al.; 2017; Fahda and Purwarianti; 2017). However, in Hanov’s

original implementation, the naive O(nm) DP is used. As it turns out, Ukkonen developed a very

similar version of this algorithm designed for substring search, which made use of a suffix tree (Ukko-

nen; 1993). Furthermore, similar approaches have been developed previously for autocompletion

and neighbor joins (Chaudhuri and Kaushik; 2009; Ji et al.; 2009). A large component of optimizing

tree-based methods is selection of which nodes to compute (Qin et al.; 2019), and strategies for

filtering nodes.

Filtering for the edit distance

Since computation of the edit distance is so expensive, many efforts are directed first towards fil-

tering (Lu et al.; 2014). With a smaller pool of candidate neighbors, the search is quicker. Several

approaches exist to this end, including those based on n-grams (Lu et al.; 2014), tries, or B+ trees (Lu

et al.; 2014). q-gram approaches simply require a sufficient number of q-grams to be held in common

with a query, using inverted lists. Furthermore, q-gram based approaches may require a much larger

amount of memory, depending on the value of q. Q-grams were originally introduced by Ukkonen

(Ukkonen; 1992), can be computed in O(m+ n), and provide a lower bound for the edit distance.

1.6 Trees and molecular clocks for RNA viruses

Once sequences have been assembled and grouped, phylogenetic analysis usually follows. Molec-

ular clock inference and divergence dating has become a key process in molecular epidemiology

and the study of pathogens. Many examples exist in the literature of their application. For example,

using molecular sequence data, (Streicker et al.; 2010) saught to quantify per-capital cross-species

transmission rates for rabies virus between North American bats and humans, and (Robbins et al.;

2003) estimated the date the HIV-1 epidemic began in the US, and also inferred population history.

For an overview of molecular clock methods see, including many practical considerations, see (Ho

and Duchêne; 2014; Kumar and Hedges; 2016). For a review of computational optimization, see

(Stamatakis; 2019; Guindon and Gascuel; 2019).
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1.6.1 The tree likelihood

DNA substitution models

Not only are DNA substitution models at the computational core of phylogenetic estimation, and mod-

ern molecular clock methods as well, substitution parameter estimates can affect dating (Shapiro

et al.; 2006; Schenk and Hufford; 2010)(Posada; 2001). Substitution models have been developed

for over 40 years (Arenas; 2015), and include the Jukes-Cantor (JC) (Jukes and Cantor; 1969),

Hasegawa-Kishino-Yano (HKY) (Hasegawa et al.; 1985), and General Time-Reversible (GTR) (Tavarè;

1986) models. Additionally, specification of Gamma-distributed rate heterogeneity (Yang; 1994) and

proportion of invariant cites (Shoemaker and Fitch; 1989) can be incorporated into these models

(Arenas; 2015). Correct choice of substitution models is an important step in phylogenetics pipelines

(Arenas; 2015). For example, The HKY model (Hasegawa et al.; 1985) of DNA evolution assumes

finite, independent sites, with i.i.d substitution events. Let a DNA string be (x1, x2, ..., xs), with 4S

possible states. The model assumes that the evolutionary process is Markovian with:

d

dt
P (t) = P (t)Q

Where Q is the infinitesimal generator. Depending on the model used, Q has a varying number of

parameters. For example, in the HKY model:

Qij =


απj transition

βπj transversion

−
∑

i 6=a απa −
∑

i 6=b βπb i = j

where a are bases that can transition to i, and b are bases that can transvert to i. The General Time

Reversible (GTR), was developed by (Tavarè; 1986), which consists of 6 transition rate parameters,

and a stationary distribution.

Felsentein’s algorithm

The fundamental core of many phylogenetics analyses requires evaluating the tree likelihood (Felsen-

stein; 1981), also known as the phylogenetic likelihood function (PLF), which is known to be a com-

putationally demanding task. As in Felsenstein’s original 1981 paper (Felsenstein; 1981), sites are

typically treated as independent, so likelihood of trees is computed at individual sites and their prod-

uct taken. Assume a tree topology T , branch lengths ~b, and a substitution model with parameters θ.
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Let Pij(t) be the Markov transition probability at time t. If the ancestral states are known, then we

can calculate both the conditional probability P (D|T , S) or the joint probability P (D,S|T ). It may now

become clear that the states S are, in a sense, hidden or latent variables. Briefly, recall:

P (A,B,C) = P (A)P (B|A)P (C|B,A)

But if, for argument’s sake, C⊥⊥B conditional on A, such as in a phylogenetic tree then:

P (A,B,C) = P (A)P (B|A)P (C|A) = P (A)
∏

X∈{B,A}

P (X|A)

In general, for random variables with tree-like structures, we can therefore exploit the structure of the

variables (as we will see, importantly for improving run-times) to define useful recurrence relations.

Since most of the time the ancestral states are not known, they must be integrated out. For n interior

nodes, we will have 4n possible internal states at each locus. However, due to the structure of the

tree, the likelihood for each site can be computed in O(n). Felsenstein’s tree likelihood can be stated

for general node states. Firstly, note, if the root state is not known:

L(T |D) = P (D|T ) =

∫
P (D|T , s0)P (s0)ds0

Furthermore, we define the quantities, for each node n with state s:

L(n)
s = P (D|T , s) =

∏
i∈Cn

∫
P (Di|Ti, sc)P (si|w)dsi

Where Dc is the data under child node c, and Tc the subtree rooted at node c. Here the integral is

general, and for discrete states corresponds to a sum. The choice of root state is arbitrary for the

purposes of calculation. For integrating out ancestral states, in Felsenstein’s original formulation, for

discrete nucleotide character states, this was:

L(n)
s = P (Sn = s,Dn|Tn,~bn) =

∏
i∈Cn

(∑
si

Ps,si(bi)L
(i)
si

)
Note that this formula assumes both the topology and the branch lengths are known. Computing

the maximum likelihood branch lengths can be performed numerically as usual. However, this is

slow, especially since the full likelihood requires O(nL), where L is the alignment length (although

some heuristics can accelerate this). Derivatives for the tree likelihood can be computed to make use

of conventional numerical optimization algorithms where required (Schadt et al.; 1998; Ji et al.; 2020).
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Given the above, it is possible to directly calculate the maximum marginal likelihood of a state for

the root. However, it is also possible to compute the ancestral states that maximize the posterior

P (s|D, T ) in linear time with dynamic programming (Pupko et al.; 2000). For example, for recon-

struction of ancestral sequence states, let be the Cn(s), the maximal reconstruction of the subtree

at n given a parental state s, and Mn(s) the corresponding likelihood. Then, given suitable initial

conditions at the leaves (see (Pupko et al.; 2000) for details):

Mn(s) = max
j
Pij(tn − tp)

∏
c∈C

Lc(j)

Cn(s) = arg max
j
Pij(tn − tp)

∏
c∈C

Lc(j)

Why does this work? Consider a tree T = T1 ∪T2. Let w be a maximal reconstruction of the states of

T . Let n be the node in T1 that joins T1 and T2. Let s be the state of n in the maximal reconstruction.

Then the states of T2 must be the same as the maximal reconstruction of T2 conditional on s at n. In

theory, for other node states, the relationship holds.

Optimization of the PLF

High performance libraries have been developed in C++ for likelihood calculations (Flouri et al.; 2015;

Ayres et al.; 2012), amongst other phylogenetic tasks. Calculation of independent sites can be paral-

lelized trivially, although in computation, faster methods may be utilized (Stamatakis; 2019). Further-

more, optimization of model parameters is challenging. Optimization of branch lengths, in particular,

can be complicated by local maxima (Chor et al.; 2000). Typically, in optimization, many of the like-

lihood vectors associated with nodes do not need to be recomputed (Stamatakis; 2019), and the

principle means by which this can be achieved is by collapsing duplicate patterns in the tree across

sites down to a single representative; this is known as the site repeats (SR) method. The simplest

type of site repeat is when entire columns of a MSA are identical. However, subtrees may also be

identical between sites. These can be efficiently identified (Kobert et al.; 2017). Efficient paralleliza-

tion with SR has been explored (Morel et al.; 2017). Furthermore, for nodes with two child tips, or

one child tip and one internal tip, likelihood vectors can be precomputed. x86 vector instructions are

also commonly explored. Several open theoretical problems exist. External memory algorithms have

also been developed (Izquierdo-Carrasco and Stamatakis; 2011) for when memory requirements are

problematic.

40



1.6.2 Methods for molecular clock estimation

The molecular clock is often first credited to Zuckerkandl and Pauling (Zuckerkandl and Pauling;

1962). Although the use of this phrase may refer in particular to a strict molecular clock, where the

substitution rate is constant, due to the development of relaxed models, we refer explicitly to a strict

clock when the rate is assumed to be constant. Furthermore, the rate defined here is distinct from

the biochemical mutation rate; mutation rate is the error rate during replication, whereas substitution

rate is the rate of spread and fixation of new mutations, although they may be equal under some

assumptions including neutrality (Drummond et al.; 2003). The relationship between mutation rate

and evolutionary rate is complex. Although under neutrality, evolutionary rate should be a linear

function of mutation rate, this is not the case when neutrality is violated (Sanjuán; 2012). Clock rate

variations may be caused by horizontal gene transfer, such as recombination (Schierup and Hein;

2000), or positive selection (Wróbel et al.; 2006). In terms of positive selection, evolutionary rates

can vary even over the course of a single infection. Neutral sites can be examined in order to attempt

to control for positive selection (Wróbel et al.; 2006). As a consequence of this, we might ask: is it

possible to accurately date sequences on short epidemiological time scales? In analysis of 50 RNA

viruses statistically significant rate variation was found by (Jenkins et al.; 2002). Rates of evolution for

rabies virus varied between species in different geographical ranges (Streicker et al.; 2012), possibly

due to variable seasonality and climate-associated transmission. For closely related viruses, host

factors may result in variable evolutionary rates, particularly those factors that influence transmission

or replication (Streicker et al.; 2012). Furthermore, the mutation rate itself can vary between hosts

(Combe and Sanjuan; 2014). So, rates can vary, and as such, molecular clocks should be informed

for each dataset, rather than assumed from previous studies. It should be no surprise then, that

for influenza, a virus with animal reservoirs, reassortment, complex patterns of selection, seasonal

variation, and so on, that molecular clock rates would vary across branches. Strict clock rates may

be more accurate for shallow phylogenies (Brown and Yang; 2011). This makes sense because the

time-scale during which selection and horizontal gene transfer can act is reduced. The observation

that clock rates are also estimated to be higher for small-scale outbreaks has been suggested as

possibly a result of purifying selection (Möller et al.; 2018; Woodhams; 2006; Ho et al.; 2005).

In general, molecular clock estimation methods can be categorized as regression or distance-based,

maximum likelihood, or Bayesian (Drummond et al.; 2003). Early strict molecular clock estimation

methods relied on simple linear regression (Gorman et al.; 1990) or comparing pairs of sequences

(Li et al.; 1988). For example, where a pairwise method was used to estimate rates in different re-
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gions of HIV proteins using a fixed tree (Li et al.; 1988). With this method, if t is the time between

isolation of two sequences, a the (constant) clock rate, ti and li the time and branch length between

common ancestor of each i in a pair, then l2 − l1 = at2 − at1 = at. Also, if outgroup is i = 3,

l2 − l1 = d23 − d13. So a = (d23 − d13)/t. Although t1 and t2 are not known, their difference is.

Also, l2 − l1 could be calculated from a fixed tree, or from divergence estimates to an outgroup. So,

with l2 − l1 = a(t2 − t1) = at. Intuitively, this method works because there is an extra time period

between sampling of the taxa; a clock rate estimate is the difference in length over the difference in

time. Methods based on mean path lengths (Britton et al.; 2002) can also be used, where the mean

distance between a calibration node and its terminal (Rutschmann; 2006). Least squares can also

be used to provide an approximate solution (To et al.; 2016).

For probabilstic methods that assume a Markov model of substitution, Felsenstein’s pruning algorithm

(Felsenstein; 1985) can be used directly for clock estimation (Rutschmann; 2006)(Rambaut; 2000)

for taxa with non-contemporaneous tips. Methods based on UPGMA were also developed as an ex-

tension of the pairwise method (Drummond and Rodrigo; 2000). Root-to-tip regression methods are

flawed precisely because taxa are not statistically independent (Drummond et al.; 2003). Pair-wise

linear regression methods, such as those used by Drummond and Rodrigo (2000) (Drummond and

Rodrigo; 2000), make use of the fact Θ = 2Neµg, where Ne is the effective population size, and µ the

mutation rate (per site per generation), and E[dij ] = µ|ti−tj |+Θ. Generalized least squares methods

account for non-independence of samples, and assume time itself is a random variable (Drummond

et al.; 2003). In a Bayesian setting, as a probabilistic method, similar substitution models can be

employed to maximum likelihood methods. In some contexts, such as with the software BEAST,

complex models that incorporate molecular clocks, substitution models, and demographic tree pri-

ors can be simultaneously estimated (with computational cost). In this case, and others where tree

priors are used, they can affect molecular clock estimates (Möller et al.; 2018). Treedater (Volz and

Frost; 2017) makes use of the Langley-Fitch model (Langley and Fitch; 1974), which assumes a low

mutation rate and large genome such that reversions are rare, with Poisson-distributed substitutions

across branches. In order to account for rate variation (overdispersion), Volz and Frost make use a

gamma-Poisson (Negative Binomial) distribution.

Treetime (Sagulenko et al.; 2018) employs a method similar to expectation-maximization by itera-

tively optimizing ancestral states followed by branch lengths, since computationally, for short branch

lengths, each can be optimized easily conditionally on the other one. Branch lengths and ancestral
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states are iteratively, alternatively optimized, similar to as in EM. The authors make use of the fact

that, if ancestral state reconstruction is performed first, branch lengths can be maximized in linear

time.

If evolution proceeds under a strict molecular clock, then the resultant tree should be ultrametric;

that is, the genetic distance between any two isochronous sampled taxa and their MRCA should be

equal, and as such all tree leaves should be at the same position. Tests were developed early for

the hypothesis of strict a molecular clock (Tajima; 1993). Likelihood ratio tests were also applied to

heterochronous samples (Rambaut; 2000); in this case, the likelihood of the strict clock can be com-

pared to the likelihood of an unconstrained tree by the usual statistical procedure. Bootstrapping and

jackknifing can also be performed, which may not require independence of samples. With parametric

bootstrapping, data is simulated under the inferred model, and with non-parametric, data is subsam-

pled, though this should be performed on nucleotide sites, not root-to-tip distances (Drummond et al.;

2003). Likelihood-based methods that use Felsenstein’s likelihood are more accurate and sensitive,

and admit likelihood ratio tests (Drummond et al.; 2003). Similarly, multiple rates dated tips (MRDT)

models allow stepwise changes in substitution rates, and can also be subjected to likelihood ratio

tests (Drummond et al.; 2003). Since the strict clock, although not the most realistic, is simple and

computationally easy to estimate, the development of tests for the strict clock hypothesis is an active

area of research (Antoneli et al.; 2018).

For autocorrelated relaxed clocks, the evolutionary rate itself has an evolutionary rate (Gillespie;

1994). These models generally could be partitioned into those where rates are autocorrelated

amongst branches, that is, rates are inherited ancestrally, or per-branch rates are independent, and

constrained by some distribution, (Rutschmann; 2006). Autocorrelated relaxed molecular clocks were

introduced, in a Bayesian setting with (Thorne et al.; 1998). In this case, the number of substitutions

(or generally events) is Poisson with rate B(T ) =
∫ T

0 R(t)dt. With Felsenstein’s likelihood, a separate

rate is estimated for each branch, which corresponds to an ‘unrooted’ tree (in the absence of an out-

group) (Drummond et al.; 2006). Examples of models of rate evolution include lognormal, gamma,

exponential, and the Orstein-Uhlenbeck (OU) process (Aris-Brosou and Yang; 2002). In the lognor-

mal model (Thorne et al.; 1998), discrete rates are drawn from a lognormal centred at the rate of the

ancestor of a given branch. Others include the Cox process (Cutler; 2000). Alternatively, for ‘local’

clock models, branches are partitioned, and given specific rates (Aris-Brosou and Yang; 2002); for

example, if one knows that two parts of a tree would have different rates, then two rates can be mod-
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elled, rather than one. For example of a rigorous comparison of clock rate evolution, see (Aris-Brosou

and Yang; 2002). The relaxed molecular clock can be estimated in conjunction with integration over

trees (Drummond et al.; 2006). Furthermore, random local clocks can also be estimated in this man-

ner (Drummond and Suchard; 2010): 22n−2 random local clock change points can be estimated in a

Bayesian setting, and, simultaneously, the posterior probability of a single rate, i.e. a strict clock, can

be evaluated.

Clearly, the estimation of molecular clock rates is complex, and often computationally difficult. As

such, naive application of methods to epidemiological research could easily result in poor estimates.

Furthermore, specific application domains may require specific methods or parameters. For example,

BactDating was developed and benchmarked with a two step approach, with conventional phyloge-

netic tree estimation and subsequent dating, allowing for signals of recombination to be assessed

in between (Didelot et al.; 2018). Interestingly, one of the main benefits of BactDating is cited as

the use of a fixed tree, though it should be noted that fixed trees are possible with BEAST. It is not

uncommon for studies to make use of a fixed tree for clock-rate estimation. In some cases, the num-

ber of mutations across a branch is assumed to be Poisson (Volz and Frost; 2017; Huelsenbeck and

Ronquist; 2001); in other cases, the non-integer nature of estimated tree branches motivates the use

of a Gamma distribution with equal variance (Didelot et al.; 2018).

1.7 Experimental objectives

This thesis is divided into two parts; one focused on aspects of sequence reconstruction, and one

focused on aspects of analysis. The first part is comprised of the following objectives:

1. Typically, in sub-routines that involve mapping, fixed references are utilized; often, these are

old or arbitrarily chosen sequences. I aimed to demonstrate complications involved in

hard-coding RNA virus reference sequences, and develop an algorithm for intelligent

selection of influenza references to minimize bias.

2. In large sequencing initiatives, cross-contamination of samples can occur. Furthermore, bi-

ological coinfections can result occur in influenza infection. A large body of work exists for

the characterization of population structure in virus WGS reads. I aimed to show that this

work can be leveraged for the automated detection of mixed samples for sequencing

pipelines.
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3. In routine epidemiology, retrieving the nearest neighbors for a sequenced sample is a routine

task used as a sub-routine in various activities, including typing, phylogenetics, phylodynamic

models, and the characterization of importation events. Often, this relies on a pseudo-alignment

or a slow multiple sequence alignment (MSA). For the final chapter in this section, I adapted

fast algorithms for calculation of the edit distannce to calculation of the SNP distance,

for exhaustive search of huge reference datasets.

The second part of this thesis is focused on RNA virus phylogenetics and phylodynamics. In particu-

lar:

1. Molecular dating of RNA virus sequences has become well established over the last decade;

however, the success and accuracy of various methods can depend on the information present

in the sequences, which is a function of mutation rates and time-scales, amongst other vari-

ables. I benchmarked several tools for molecular dating of samples from simulated in-

fluenza epidemics, and examined their applicability in routine epidemiology.

2. Phylodynamic modelling allows inference of population parameters from observable patterns

in trees, which has found increased use in public health surveillance. I used phylodynamic

methods to characterize the exponential growth of SARS-CoV-19 during the first wave of

the COVID-19 pandemic in wales, and evaluate the difficulties in this approach for routine

epidemiology.

3. Lastly, I applied simple ancestral state reconstruction methods for the isolation of im-

ported lineages into Wales during the COVID-19 pandemic and examined signatures of

importation, as well as geographical mixing. Unlike more sophisticated methods, I argue

that simple methods could be automated in future.
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Part I

Optimized software for influenza virus

whole-genome sequencing pipelines
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Chapter 2

Influenza virus reference selection from

short read data

A derivative of this work has been submitted to bioRxiv.org as a pre-print, and later published in

Bioinformatics. As presented, the writing and work of this chapter was carried out by Joel Southgate,

including algorithm development and analysis. Laboratory work was carried out by collaborators as

indicated in authors’ contributions. Intellectual inputs are also indicated in authors’ contributions.

2.1 Abstract

2.1.1 Background

Influenza viruses represent a major public health burden worldwide, resulting in an estimated 500,000

deaths per year, with potential for devastating pandemics. Considerable effort is expended in the

surveillance of influenza, including major World Health Organization (WHO) initiatives such as the

Global Influenza Surveillance and Response System (GISRS). To this end, whole-genome sequenc-

ing (WGS), and corresponding bioinformatics pipelines, have emerged as powerful tools. However,

due to the inherent diversity of influenza genomes, circulation in several different host species, and

noise in short-read data, several pitfalls can appear during bioinformatics processing and analysis.

2.1.2 Results

Conventional mapping approaches can be insufficient when a sub-optimal reference strain is chosen.

For short-read datasets simulated from human-origin influenza H1N1 HA sequences, read recovery

after single-reference mapping was routinely as low as 90% for human-origin influenza sequences,

and often lower than 10% for those from avian hosts. To this end, I developed software using de Bruijn
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Graphs (DBGs) for classification of influenza WGS datasets: VAPOR. In real data benchmarking

using 257 WGS read sets with corresponding de novo assemblies, VAPOR provided classifications

for all samples with a mean of >99.8% identity to assembled contigs. This resulted in an increase

of the number of mapped reads by 6.8% on average, up to a maximum of 13.3%. Additionally, using

simulations, I demonstrate that classification from reads may be applied to detection of reassorted

strains.

2.1.3 Conclusions

The approach used in this study has the potential to simplify bioinformatics pipelines for surveillance,

providing a novel method for detection of influenza strains of human and non-human origin directly

from reads, minimization of potential data loss and bias associated with conventional mapping, and

facilitating alignments that would otherwise require slow de novo assembly. Whilst with expertise and

time these pitfalls can largely be avoided, with pre-classification they are remedied in a single step.

Furthermore, this algorithm could be adapted in future to surveillance of other RNA viruses. VAPOR

is available at https://github.com/connor-lab/vapor. Lastly, VAPOR could be improved by future

implementation in C++, and should employ more efficient methods for DBG representation.

2.2 Background

Influenza virus WGS in routine surveillance poses several challenges. Firstly, the RNA genome of

the influenza virus, as with other RNA viruses, is diverse and mutable, which can result in genome

divergence on a yearly basis; this process also leads to antigenic drift, which is the primary mech-

anism whereby strains avoid natural or vaccine-induced immunity (Taubenberger and Kash; 2010)

(Petrova and Russell; 2018). Secondly, due to the presence of several intermixing host species, prin-

cipally swine and birds in addition to humans, novel pandemic strains can emerge by the process

of reassortment, which occurs when one or more of the 8 RNA segments of the influenza genome

are exchanged (Bouvier and Palese; 2008), resulting in a new virus that has a genome of mixed

segments. These processes can both present a challenge to epidemiological surveillance and cause

major public health crises; as such, it is crucial that bioinformatics approaches utilized with influenza

virus datasets are robust.

Despite the increasing application of Next-Generation Sequencing (NGS) to influenza, the pitfalls
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associated with current bioinformatics approaches have not been explored in depth. Influenza virus

assembly poses additional challenges due to biological population complexity and additional error

resulting from RT-PCR(Orton et al.; 2015). Firstly, I aim to provide evidence that current mapping ap-

proaches can, due to diversity of influenza genome sequences, result in unmapped reads, which can

potentially result in data loss and bias in sequences that are subsequently recovered, analyzed, and

submitted to public databases. This has been previously noted in other RNA viruses (Wymant et al.;

2018). Whilst alternatives, such as read classification by mapping to a large database of influenza

sequences (Yu et al.; 2014) and subsequent de novo assembly can help to resolve this issue, such

pipelines are often complex, slow, and require expertise that is not necessarily available in routine

surveillance or public health laboratories. Secondly, even if bioinformatics pipelines are chosen judi-

ciously, sequences of zoonotic origin may fail to be identified, resulting in a dataset that appears to be

low coverage, missing segments, or missing potential future pandemic reassortments. Furthermore,

even with recent assembly programs, misassembly can occur (Wymant et al.; 2018).

I aim to show that this problem can be resolved by classification of isolates directly from reads prior to

analysis by directly querying a De Bruijn graph (DBG) built from the reads. Mapping reads directly to

a DBG has been previously argued to be less biased than that of mapping to assembled contigs (Li-

masset et al.; 2016). Directly querying DBGs instead of assembled sequences has been previously

addressed (Limasset et al.; 2016)(Holley and Peterlongo; 2012)(Liu et al.; 2016)(Salmela and Rivals;

2014), although examples focus on mapping reads to a DBG. To my knowledge these approaches

have not been applied to pathogen classification from reads. Instead of mapping reads to a DBG, I

sought to further develop a simple method for querying short influenza genome sequences against a

short read DBG in order to retrieve the most similar reference for mapping applications. In doing so,

I leverage the large number of publicly available influenza segment sequences. I compare a tool that

implements this algorithm, VAPOR, with both slow BLAST-based (Altschul et al.; 1990) and fast k-

mer-based MASH (Ondov et al.; 2016), and show superior or equivalent results in several use cases

with reasonable run-times. I show through simulation, that given a set of influenza reads, possibly

contaminated with human or bacterial sequences, a highly similar strain in the NCBI influenza virus

resource (NIVR) database (>20,000 strains) can be selected, achieving reasonably fast near-strain-

level classification.
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2.3 Methodology

2.3.1 WGS datasets

Total RNA was extracted from patient samples using the NucliSens easyMAG instrument according to

the manufacturer’s instructions. Following RNA extraction, a one-step RT-PCR (Quanta biosciences

qScript XLT kit, following manufacturer’s instructions) was then undertaken to generate DNA for se-

quencing using the primers previously described for influenza A (Zhou et al.; 2009) and influenza B

(Zhou et al.; 2014). Sequencing was performed using Illumina sequencing instruments. Libraries

were prepared using NexteraXT, and samples were then multiplexed for sequencing. Samples were

run on a MiSeq (2x250bp V2 kit 44 samples) and NextSeq (2x150bp Medium Output kit 213 sam-

ples). In total, 257 samples were utilized. Short read data can be found at https://s3.climb.ac.

uk/vapor-benchmark-data/vapor_benchmarking_realdata_reads_filtered_18_03_18.tar. For

publicly available data, any reads that were classified as human by Kraken2 (Wood and Salzberg;

2014), or those that mapped to the hg38 human genome with minimap2(Li; 2018), were removed.

These WGS datasets were then processed by extraction of influenza reads by mapping with min-

imap2 (Li; 2018) to 8 curated influenza segment reference fasta files (19,594 sequences in to-

tal), one at a time, produced by from all influenza segment sequences downloaded from the NIVR

(https://www.ncbi.nlm.nih.gov/genomes/FLU/) and clustered to 99.5% identity with cd-hit-est (Li

and Godzik; 2006). Extracted reads were assembled with IVA (Hunt et al.; 2015). For all 257 datasets

used, a near-full length (>90%) contig could be assembled for at least one major segment protein.

Samples for which a contig could not be assembled were not used. In total, 1,495 segment contigs

were included.

2.3.2 Mapping assessment

Four mapping programs were assessed in this analysis: Minimap2 (Li; 2018), BWA-MEM (Li and

Durbin; 2009d), NGM (Sedlazeck et al.; 2013), and Hisat2 (Kim et al.; 2015). Default settings were

used for all tools. Each experiment can be reproduced using the code and instructions found at

https://github.com/connor-lab/vapor_mapping_benchmarking. Four mapping simulations were

performed in total.

For assessment of the sufficiency of single reference strains for mapping reads from diverse samples,

two simulations were performed. Firstly, for assessment of robustness to species origin, read sets
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were simulated with ArtificialFastqGenerator (AFG)(Frampton and Houlston; 2012) from 552 avian,

16,679 human, and 4,054 swine H1N1 HA coding sequences from the NIVR (Bao et al.; 2008a). An

additional 0.05% in silico substitution was introduced into simulated reads to account for RT-PCR

technical errors and biological intrahost variation. This rate was chosen to be in accordance with

experimental observations made by Orton et al. (2015) (Orton et al.; 2015), although it may be con-

servative. Reads were then mapped to the A/California/07/2009 (H1N1) HA reference sequence.

Secondly, for assessment of robustness to random divergence, technical and biological noise, reads

were simulated from A/Perth/16/09 (H3N2) HA, with additional in silico mutation with per-base rates

between 2% and 16%, which was performed uniformly across the chosen reference sequence; reads

were simulated as above, then mapped back to A/Perth/16/09 (H3N2). This was performed 1000

times for each mutation rate. A/California/07/2009 (H1N1) and A/Perth/16/2009 (H3N2) were used

as references since they are common clade representatives, as well as vaccine recommendations.

Samtools (Li et al.; 2009a) was used to retrieve successfully mapped reads, which were then counted.

For comparison of mapping with and without VAPOR classification, and potential zoonotic virus de-

tection, 33,133 unique full-length influenza A HA coding sequences of any lineage or species were

downloaded from the NIVR, and 5000 pairs were chosen randomly; the first of the pair was used for

read simulation as above, and the second as a mapping reference. In the second run with VAPOR

classification, a single sequence was randomly chosen as before, but the reference was chosen by

VAPOR version 1.0.1. As before, successfully mapped reads were extracted with samtools, then

counted.

To assess the potential benefit of classification with VAPOR on real data, 206 of 257 read pairs

were subjected to mapping with Minimap2 with default settings for short reads (-x sr), both with and

without VAPOR classification. 51 of 257 samples with less than 1000 HA reads were excluded to

avoid very low coverage samples skewing calculation of mean percentage gain. In the first case,

reads were mapped to a set of 4 HA references from different subtypes: A/Perth/16/2009 (H3N2),

A/California/07/2009 (H1N1), B/Florida/4/2006 (Yamagata), B/Brisbane/60/2008 (Victoria). In the

second case, VAPOR was used to choose a single reference from 53,758 influenza A and B HA

references. The number of reads mapping and the number passing VAPOR pre-filtering was recorded

in each case.
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2.3.3 Algorithm overview

Definitions

Let R = {r1, r2, · · · , r|R|} and S = {s1, s2, · · · , s|S|} be indexed multisets of strings (sequencing reads

and references respectively), over a common alphabet Σ = {A, T,C,G}, where |R| denotes the

cardinality of set R. Let W = (N,E,W ) be a weighted De Bruijn Graph built from reads R, where

N,E,W are sets of nodes (k-mers), edges (k − 1-mer overlaps), and node weights (sequencing

depth for some k-mer), for some k ≥ 2 (by default k = 21). I assume a model read generation

process reflective of RNA virus sequencing: let the multiset X = {x1, x2, · · · , x|X|}, be a population

of virus sequences (quasispecies) for some gene, for which I suppose there is some major variant x∗

with the greatest multiplicity. Let reads R be generated from this population, with varying coverage

across the gene (possibly by several orders of magnitude), and additional errors (due to RT-PCR and

sequencing). I attempt, using heuristics, to find a reference that is similar to x∗.

Mapping and Scoring

VAPOR maps each reference s against W, such that the ith k-mer of s, denoted s[i, i + k] is either

mapped to some node n ∈ N , or mapped to a gap. I note that s[i, i + k] does not have to equal n.

Let s′ be the string representation of the path mapped to by s. Figure 2.1 demonstrates the concept

of this mapping.

I next formulate a scoring function fW(s, s′). I chose to favor sequences for which there is high weight

inW; due to the high degree of variation in RNA virus datasets, and large number of closely related

reference sequences, many k-mers may be present in theW at low frequency, such that there may be

several reference sequences which correspond exactly to a path inW. Conversely, since sequencing

depth in these datasets may be highly skewed, I seek to also reward matches which cover a greater

proportion of the reference, rather than those that have high depth for a short subsequence, then

poor matches elsewhere. In order to capture this trade-off, I define:

fW(s′, s) = ψ(s′) ·
|s|∑
i=1

Miδ(s
′
i, si) (2.1)

where ψ(s′) is the fraction of non-gap bases of s′, |s| is the length of string s and Mi is the max-

imum sequencing depth of k-mers that overlap with the ith base of s′. That is, for the sequence

of node weights wi with corresponding k-mer nodes ni of s′, Mi = max{wi, wi+1, · · · , wi}, where

i = max(0, i− k+ 1) and δ(s′i, si) = 1 if s′i = si, and 0 otherwise. Since any reference can be mapped

onto the graph in many ways, I attempt to heuristically find high scoring placements.
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Preprocessing

VAPOR first filters reads to remove non-target sequences (e.g. bacterial) and decide orientation

of reads. As input, VAPOR takes a fasta file of full or approximately full length reference segment

sequences, and a .fastq (or .fastq.gz) file of WGS reads. Firstly, VAPOR builds a set of k-mers

U from all reference sequences. Next, the ith read is decomposed into a set of non-overlapping

subsequences of length k (words), Ai, and if |Ai ∩ U |/|Ai| ≤ t (the proportion of read words also

present in the references), where |A| gives the number of elements of the set A, for some specified

parameter t, the read is discarded. This is repeated for the reverse complement; if both are kept, the

highest score decides orientation. Furthermore, in order to try to eliminate erroneous k-mers, any

node nj ∈ N with corresponding weight wj ∈W less than a coverage parameter c is discarded.

Core algorithm

Firstly, W is built from the filtered reads. Then for each input reference sequence, s, the core algo-

rithm of VAPOR makes use of a heuristic seed-and-extend procedure to find a high scoring mapping

of s ontoW. Each reference sequence, s, with length |s|, is decomposed into a sequence of k-mers.

Querying proceeds in four phases, where the query is walked along the wDBG: k-mer seeding, trim-

ming, bridging, and scoring. I seek to simultaneously perform the mapping and compute the array

M ′ = (M1δ(s1, s
′
1),M2δ(s2, s

′
2), · · · ,M|s|δ(s|s|, s′|s|)) as in (1). Firstly, an array a is initialized from exact

k-mer matches, where am is the weight of the mth k-mer of the reference, and any not in N are set

to zero. For speed considerations, only a subset of seed arrays are extended: those with a fraction

of nonzero elements greater than a user-defined parameter --min kmer cov (default: 0.1), and in a

top user-defined percentile --top seed frac (default: 0.2). In order to reduce the number of subop-

timal exact matches, seeds are trimmed. Each seed (sequence of k-mer matches) in the array a, is

trimmed back (set to zero) at both ends until a suboptimal branch points in the graph within ρ posi-

tions of the end of the seed is found. This procedure is used to heuristically prevent suboptimal seeds

to low coverage regions of the wDBG, possibly generated by error or low frequency variants. Next,

bridging is performed. For the ith gap (run of zeros) in a of length l, a bridge bi is formed by walking

l locally optimal (where there is a branch, the edge with the highest weight) edges in the wDBG from

the last matching k-mer. As such, bridging attempts to extend a mapping with only exact matches to

one with inexact matches. Next, the array M is computed by 1) inserting bridge k-mer weights and

2) re-calculating the weight at each position j as Mj (as defined in mapping and scoring). Finally,

each bridge, bi, a string, is then compared to the ith gap string, the original substring in the reference

sequence corresponding to the gap, in order to compute δ(s′j , sj) as in (1). For any sj in an exact
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B

A

Figure 2.1: Simplified VAPOR algorithm. Firstly, pre-processing and graph construction is per-
formed (A), where target reads R (solid black lines) are filtered from non-target (e.g. bacterial) reads
(dotted lines) using a fast k-mer comparison to references S. This is followed by wDBG construc-
tion. Then, mapping and scoring is performed simultaneously (B), where each reference sequence
s (dashed line) is mapped to the wDBG, W, built from these reads. This is done in two main steps:
exact k-mer matching (black circles) and extension (white circles) by heuristic graph traversal.

match, δ(s′j , sj) = 1 by definition. Figure 2.2 shows the steps involved in computing the array M ′ for

an example graph mapping.

VAPOR is implemented in Python3, with source code available at github.com/connor-lab/vapor.

2.3.4 Classification benchmarking

VAPOR was compared to MASH (Ondov et al.; 2016) and BLAST (Altschul et al.; 1990) read classifi-

cation by simulation. BLAST consensus classification was performed by BLASTing each read, taking

the best scoring references by e-value then bit score, summing the number of times each result oc-

curs in all reads, and returning the most frequent. Reads were simulated as follows: a reference, so,

was chosen from 46,724 unique full-length influenza A HA sequences from the NIVR, and mutated

uniformly with a given probability (0.01, 0.02, 0.03) to generate a mutated sequence sm; reads were

simulated with AFG as before, with a higher uniform error rate of 1%, in order to provide a challenging

classification task representative of difficult datasets. To provide an additional challenge, I simulated

an intra-host population with 4 minor sequence types, mixed in the ratio of 100:5:1:1:1, with each
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B

C

Figure 2.2: Scoring procedure for an example graph mapping. An example mapping of a ref-
erence s (dashed line) to a graph W (solid lines), with exact matches (black circles) and inexact
matches (white circles), is shown (A), with string representation of the path, s′ (B). Firstly, a weight
array a is retrieved for which ai gives the weight of the ith reference k-mer in the wDBG, where
gaps are given a weight of zero. These exact matches are then extended with bridges b to inexact
matches. Next, per-base weights M are calculated such that each base is given the greatest weight
of any k-mer that includes it, which also functions to assign weights to terminal characters of a string
(or substring before a gap) that do not have k-mers (such as “TA” at the 4th position). Finally, the
array M ′ is computed as M ′i = δi ·Mi, where δi = 1 if s′i = si, and zero otherwise. For VAPOR, I chose
to multiply the sum of this array by the fraction of non-gap (non-zero) positions, in order to penalize
high weight, high gap mappings.

sequence additionally mutated by 1% relative to the major sequence. This process was performed

500 times for each category. Performance was assessed as follows: The Levenshtein distance of

the mutated sequence sm was taken with respect to the original sequence so as a baseline, denoted

by L(sm, so); the reads were classified by each tool with all 32,804 references as a database, and

the best hit sc returned by each were compared to the mutated sequence to obtain L(sm, sc). Global

alignment was performed with the pairwise2 module of Biopython(Cock et al.; 2009) (with cost pa-

rameters 0, -1, -1, -1). I defined the additional Levenshtein distance, LA = L(sm, sc) − L(sm, so).

This distance was chosen because, for mutated sequences, it captures the additional error in classi-

fication beyond that caused by uniform mutation to the original reference. I note that L(so, sm) may

occasionally be sub-optimal, that is there may exist s′o such that L(s′o, sm) < L(so, sm) where in silico

mutations introduced resulted in a sequence more similar to some other sequence in the database

than the original.

For real datasets, 257 raw read sets that produced full-length contigs for at least one segment were

chosen from the sequencing runs described above. The assembled contigs were annotated with

BLAST (sorting by e-value, bit-score, and length), and raw reads classified by VAPOR. The percent-

age identity of VAPOR classifications to each contig was recorded.
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2.3.5 Detection of reassortments and zoonotic strains

For assessment of reassortment classification, two simulations were performed. Firstly, 9659 avian,

18,308 human, and 2893 swine complete influenza genome sets were downloaded from the NIVR.

250 human genome sets were randomly selected. Another 250 were randomly selected with a single

segment swapped with a randomly chosen avian or swine segment. For each, 1000 reads from each

segment were simulated uniformly with an error rate of 0.5%. Each set of reads was classified with

VAPOR. For the reference strains chosen by VAPOR for each segment, respective HA sequences

were compared by global alignment, and percentage identity (PID) taken. If the maximum pairwise

distance between chosen strain HA sequences exceeded a given threshold v, a classification of

true was returned. Receiver operating characteristic (ROC) curves were generated by varying the

parameter v. For assessment of intra-subtype reassortment classification, the same experiment was

performed with randomly chosen H3N2 genomes.

2.3.6 Computational resources

In all cases, experiments were performed natively on a 96 core, 1.4 TB memory CentOS version

7.4.1708 virtual machine hosted by CLIMB (Connor et al.; 2016), with GNU parallel (Tange; 2011)

where required.

2.4 Results

2.4.1 Benchmarking single-reference mapping

A range of mapping programs (Minimap2, BWA-MEM, Hisat2, and NGM) were compared to assess

possible data loss when single references are chosen for mapping of short reads from influenza virus

WGS datasets. For the first experiment, simulated reads from 16,679 human, 552 avian, and 4054

swine H1N1 HA sequences retrieved from the NIVR were mapped to the reference strain A/Cali-

fornia/07/2009 (H1N1). Reads were simulated with an additional 0.05% error on top of simulated

sequencing error to account for the combined effect of intra-host population variation and RT-PCR

error. This error rate was found to be conservative when compared to the raw error rate in the real

datasets, which was frequently higher than 2%. The proportion of successfully mapped reads for

each tool and host species is given in Figure 2.3. In this case, using a single reference strain with

any of the programs resulted in unmapped reads. NGM resulted in the lowest average percentage of

unmapped reads. When utilizing a database of all H1N1 sequences from human hosts, Minimap2,
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NGM, BWA-MEM, and Hisat2 had mean mapping percentages of 87.2, 92.2, 89.1, and 84.9% re-

spectively; as such, even for these influenza sequences, data loss was not uncommon, possibly due

to samples in the database representing human infection from zoonotic strains. However, for avian

and swine samples, read recovery was poor. For NGM, only 34.1% of avian reads mapped success-

fully on average. Swine sequences were mapped with intermediate success. This provides evidence

that, should zoonotic strains be sequenced in routine surveillance, they may fail to map entirely, and

go uncharacterized. I note that this analysis is not an evaluation of overall mapping performance,

since such an analysis must include mapping scores, but evidence that regardless of software, data

loss may potentially occur.

Secondly, in order to assess how read recovery varies with sequence divergence, reads were sim-

ulated by taking the coding sequence of A/Perth/16/09 HA and subjecting it to in silico per-base

uniform mutation with a specified probability, with additional read error of 0.05% as before. These

results, shown in Figure 2.4, demonstrate that, for all mapping programs, at approximately 10% mu-

tation, read recovery begins to regularly diminish, which is insufficient for robust mapping of influenza

strains from different species given high diversity and mutation rate. Furthermore, for several of the

programs tested, mapping quality was suboptimal beyond 1-3% mutation.

2.4.2 Classification performance simulation

Since utilizing a single, standard reference can have complications, I explored methods for refer-

ence selection. In order to assess the performance of classification from simulated reads, VAPOR

was compared to MASH and consensus BLAST classification. Reads were simulated from randomly

selected NIVR H1N1 HA sequences mutated with a given uniform per-base probability, with addi-

tional read error of 1% to provide challenging datasets. A fourth category included simple simulated

intra-host populations (denoted as 3%/Q). Figure 2.5 shows the additional Levenshtein distance,

LA = L(sm, sc)−L(sm, so), for each tool, where so, sm, and sc are the original, mutated, and retrieved

database sequences respectively. Mean coverage for simulated reads was 77.76 for single-sequence

simulations, and 96.03 for simulated intra-host populations. The average additional distance of re-

trieved sequences for MASH were 4.69, 5.24, 6.83, and 7.28, showing some sensitivity to additional

simulated variant noise; for all cases mean additional distance for BLAST and VAPOR were below

0.74 and 0.88 respectively. For MASH, the 75%, 95%, and 99% percentiles for retrievals for the 3%

threshold were 11.00, 24.00, and 37.04. However, for BLAST and VAPOR, these percentiles were

under 12 and 14 respectively for all cases. These results show that references chosen by BLAST
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Figure 2.3: Density histograms showing proportion of mapped reads in samples, by software
and dataset. Reads were simulated for each dataset retrieved from the NIVR: 16,679 Human H1N1
HA (left column); 552 avian H1N1 HA (middle column); 4054 Swine H1N1 HA (right column). All
sequences were mapped to California/07/2009. For human sequences, most simulated datasets
mapped successfully, although even for this dataset, around 10% of samples had some proportion
of unmapped reads. However, for avian and swine sequences, mapping quality was poor, and often
failed entirely. Even for the best performing software, NGM, avian sequences in particular mapped
poorly.

and VAPOR were often near-optimal or optimal, despite a large amount of noise, and that the perfor-

mance difference between these approaches was very small. These results show that the algorithm

used by VAPOR facilitates accurate classification of influenza strains directly from reads, compara-

ble in accuracy but faster than BLAST for WGS read sets, which is generally not computationally

tractable for datasets with millions of reads.
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Figure 2.4: Box plots showing percentage of simulated Human H3N2 HA reads mapping to
Perth/16/2009 for each software, with in silico uniform mutation at indicated per-base proba-
bility. Reads were simulated from in silico uniformly mutated Perth/16/2009 HA with the indicated
per-base probability, approximately corresponding to 2 to 16% divergence. Reads were additionally
subjected to 0.05% substitution to account for technical noise, such as from RT-PCR, and biological
noise, such as from intrahost variation. Data loss was frequently observed with all tools beyond 10%
mutation. Outliers are indicated as diamonds. N=1000 for each category.

2.4.3 Real data classification performance

Unlike BLAST and MASH, VAPOR can be applied directly on reads with no pre-processing. As

such, in order to validate the performance of VAPOR directly on real datasets, I took raw reads from

257 samples corresponding to 1495 segment contigs previously processed and assembled with IVA,

with a single full length contig each previously annotated by BLAST. In each case, corresponding
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Figure 2.5: Box plots showing additional Levenshtein distance LA = L(sm, sc) − L(sm, so) of
input sequence to output reference chosen by VAPOR, MASH, and BLAST consensus classi-
fication. Reads with 1% error rate were generated from randomly selected references mutated in
silico by 1%, 2%, 3% and 3% with additional biological intra-host variant noise simulation 3%/Q, and
repeated 500 times for each category. LA is defined as Levenshtein distance of a classified sequence
sc to original mutated sequence sm, minus the distance of the original mutated sequence sm to the
original non-mutated reference sequence so. Outliers are indicated as diamonds. Performance of
VAPOR was generally equivalent to that of BLAST. For both of these tools, classification most often
resulted in none, or a few extra incorrect bases. Sequences ranked highest by MASH were often
sub-optimal.

reads were classified by VAPOR. The chosen reference was compared by global alignment to the

assembled full length contigs. Figure 2.6 gives a scatter plot showing the PID of references retrieved

by VAPOR to the assembled contig versus the PID of references selected by BLAST classifications of

contigs. Comparison to BLAST classification of contigs was used to provide a baseline near-optimal
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Figure 2.6: Scatterplots showing PIDs of VAPOR read classifications versus BLAST contig
classifications with respect to assembled contigs for all 8 major segment coding sequences.
Black lines indicate x = y. Points that fall below this line were classified better from reads with
VAPOR. Points above the line were classified better with BLAST from contigs. VAPOR is capable in
general of performing classification of reads to within 1% of the correct sequence. The mean PID
of VAPOR classifications for all segments was 99.82%. For datapoints under 98% PID, BLAST was
generally also not able of providing a better classification given the reference database.

classification. The mean percentage identity between contig and VAPOR classification was 99.82%.

In the case of NS1, VAPOR outperformed BLAST annotation of assembled contigs, with a mean

of 99.48 versus 98.74. On closer inspection, this was a result of the method used to sort BLAST

results. These results show that in most cases tested, VAPOR was able to accurately identify a

sample from reads with comparable performance to BLAST annotation of assembled contigs. I note

that, for some contigs, neither BLAST nor VAPOR could achieve classifications with a PID greater
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Figure 2.7: Read recovery versus percentage identity for randomly chosen influenza A HA
sequence pairs. Influenza A HA sequences were chosen randomly from the NIVR database in pairs,
one used as a reference, and one used to simulate reads for mapping. For percentage identities
lower than 10%, mapping was unreliable. Furthermore, notably between strains of differing host
origin, percentage identity was observed in many cases to be as low as 60%. These trends were
observed for all tools, although performance dropped off more gradually for NGM.

than 97%. Manual examination of these samples showed large deletions, with at least one a likely

misassembly (deletion including start codon, inclusion of 5’ UTR).

2.4.4 Mapping with pre-classification

In order to assess the utility of pre-classification for mapping, 25,533 full-length HA coding sequences

from human, avian, and swine hosts were downloaded from the NIVR, and pairs were chosen ran-
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Figure 2.8: Hamming distance of public database sequences from A/Perth/16/2009..

domly; one was used for read simulation, and the other as a mapping reference. In this case, mapping

was performed both with and without pre-classification with VAPOR. Figure 2.7 gives the percentage

of reads recovered against percentage identity for a pair, which shows that, for pairs chosen with

less than 90% percentage identity, read recovery was poor. For mapping without pre-classification,

mean recovery rates for Minimap2, NGM, BWA-MEM, and Hisat2 were 12.4%, 23.1%, 15.9%, 6.9%.

However, with pre-classification using VAPOR, the mean was over 99.72% for all tools. These re-

sults demonstrate that mapping pipelines that include pre-classification are robust to sequences of

zoonotic origin. Raw mapping performance was also assessed on real data by mapping datasets

with Minimap2 with and without pre-classification. Figure 2.9 shows the number of additional reads

mapped when pre-classification was performed. In all but one case, this resulted in a greater num-

ber of mapped reads, with a mean of 7816.03, corresponding to a mean percentage gain of 6.85%,

including a case with over 68,000 additional reads. The maximum percentage increase was 13.32%.

An outlier did occur where the number of mapped reads decreased. In this case, VAPOR identified

several thousand more reads as influenza than were mapped. On further inspection, for this sample,

reads mapped to both A/Perth/16/09 (H3N2) and A/California/07/09 (H1N1), indicating that the sam-

ple represented influenza from two different subtypes. As such, this sample may represent a true
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Figure 2.9: Additional Number of reads mapped by Minimap2 with VAPOR pre-classification
for 257 real WGS datasets. Pre-classification with VAPOR on average resulted in 7816.03 more
mapped reads. Several samples gained more than 50,000 reads by choosing a suitable reference.
For one sample, representing a possible coinfection, 5221 fewer reads mapped when using a single
reference chosen by VAPOR.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 2.10: Receiver operating characteristic (ROC) curve for classification of simulated re-
assortment events. Although most zoonotic reassortments were detected at all parameter values
(top), intra-H3N2 lineage (bottom) reassortments were more difficult to detect. The curve was gener-
ated by varying v, the minimum PID between VAPOR classifications of individual segment strains on
the basis of HA. Due to the noise present in VAPOR classifications, as well as the close sequence
similarity of H3N2 sequences, all parameter values with high TPR corresponded to a large FPR.
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biological coinfection or a contamination, and could not be mapped to a single reference.

2.4.5 Detection of reassorted strains directly from reads

In order to assess the application of read pre-classification to reassortment detection directly from

reads, 250 simulated reassortment events with zoonotic strains were mixed with 250 complete genome

sets, reads simulated, then classified by VAPOR. A simple reassortment classifier was used on the

output of VAPOR, which compared the minimum pairwise PID of the HA sequences of the 8 strains

assigned by VAPOR to each segment; if this PID was below a given parameter v, a reassortment

was called. A ROC curve is shown in Figure 2.10, illustrating the performance of this classification

strategy. Simulated zoonotic reassortments were detected with 97.2% true positive rate (TPR) and

0.08% false positive rate (FPR) for a v of 91.35%. This is expected because, as previously shown,

VAPOR generally was able to classify strains to within a few base-pairs; randomly chosen zoonotic

strains generally had PIDs of less than 90% to human strains, depending on origin. I note that, given

the database used, some avian strains may have been isolated from humans, and labelled as human;

as such, perfect classification with this dataset may be impossible. In order to provide a more difficult

reassortment detection task, the same experiment was performed between human H3N2 sequences.

I found at a PID threshold of 96.3%, a TPR of 76.8% could be achieved at a FPR of 10.8%. This

result was expected given that sequences from different H3N2 strains generally have a PID within a

few percent. In total, these results provide evidence that reassortments with zoonotic strains can be

detected directly from reads with reasonable accuracy, but that intra-lineage reassortments may be

more difficult.

2.5 Discussion

2.5.1 Mapping approaches and improvement with VAPOR

I provide evidence that, in the best case, approaches for influenza virus analysis that use mapping

to a single reference may result in small amounts of data loss due to biological variation and noise.

This problem has potential to worsen over time given continued and rapid divergence, and could

have implications for standard references described by organizations such as the WHO. However,

in the worst case, using a hard-coded reference sequence in bioinformatics pipelines can result in

data loss. As shown in Figure 2.8, influenza strains continually accumulate substitutions relative to a

single reference (approximately 5 substitutions per year for H3N2), and reads may have a high error

rate (>2%). Often, mapping to a single reference may be most unreliable for important samples, such
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as zoonotic transmission events. In the worst cases, mapping may fail completely, when usable data

is present, requiring time and expertise to resolve with more complex methods. Our approach largely

avoids these pitfalls altogether, allowing much simpler pipelines and alignment visualization via stan-

dard genome browsers, while also retaining the advantages of using a mapping-based approach for

analysis. I chose Minimap2, BWA-MEM, NGM, and Hisat2 in order to represent a range of mapping

softwares. BWA in particular has found use in general for influenza read mapping (Rutvisuttinunt

et al.; 2013)(Borges et al.; 2018)(Yu et al.; 2014)(Wu et al.; 2014)(Imai et al.; 2018a)(Leonard et al.;

2016)(Jonges et al.; 2014). In other cases, software such as Bowtie2(Langmead and Salzberg;

2012) have been used (Meinel et al.; 2018a)(Goldstein et al.; 2017) for mapping to single refer-

ences. In some cases, references were chosen by mapping-based approaches for selection (Yu

et al.; 2014). Of these softwares, only NGM was developed with specific robustness to variation.

Furthermore, the experiments reported were not intended as complete evaluations of the programs,

since such an evaluation must also include mapping quality. Our data, however, does demonstrate

that pre-classification with raw reads provides a broad strategy to improve robustness of pipelines and

achieve faster results. For the chosen references, A/Perth/16/2009 (H3N2) and California/07/2009

(H1N1) were chosen as vaccine strains recommended by the WHO multiple times, and have also

been used previously as references (Rutvisuttinunt et al.; 2013). In other cases, different single refer-

ences have been used (Meinel et al.; 2018a). They represent single strains that are well known, and

may be used to represent each subtype. I do not believe that using different individual strains would

affect the trends demonstrated.

I note that alternative approaches exist, including mapping to a large sequence database, but this

does not allow for visualization of an alignment, and subsequent analysis such as characterization

of point mutations. I note that in principle, pre-classification with any software could work reasonably

well. MASH performed well in simulations. However; using an optimal reference is ideal, since for

later advanced applications, such as transmission events, or study of intra-host variation, the closest

possible reference may be necessary. Furthermore, VAPOR permits simultaneous filtering out of

any non-human or bacterial reads with optimal reference selection. Whilst BLAST performed well

for individual read classification, it is often too slow for general application. With regards to de novo

assembly, in the cases where not enough initial data exists to assemble fragments, mapping allows

analysis of limited fragments. Furthermore, assembly of virus genomes can be slow, often taking

several days for a single sample when contaminant reads - such as human DNA are present. Finally,

misassembly can occur (Wymant et al.; 2018).
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In all but one of the real data cases examined, pre-classification with VAPOR resulted in a greater

number of mapped reads than mapping to 4 reference strains from A/H3N2, A/H1N1, B/Victoria, and

B/Yamagata. However, for a single sample, which contained influenza sequences from two clades,

the number of mapped reads was reduced. Although VAPOR can report the number of influenza se-

quences detected in total, future study should be utilized to develop methods of coinfection detection.

In these relatively rare cases, a single reference is not sufficient for mapping.

2.5.2 VAPOR algorithm and performance

I have presented a novel approach to virus classification from short reads data using DBGs. How-

ever, studies on the use of graph data structures in bioinformatics have been accumulating. These

studies could be leveraged to improve the speed and memory efficiency of VAPOR, via efficient DBG

representations, or graph traversal algorithms. In future study, as public sequence data accumulates,

VAPOR may show promise in WGS approaches for other RNA viruses with small genomes, such as

measles virus, Hepatitis C Virus, Human Immunodeficiency Virus (HIV), or Ebola virus. In general,

this approach may have applications to short, variable genomes with high redundancy databases. I

have shown that in many cases, VAPOR outperforms MASH, and has comparable performance to

BLAST-based approaches. Furthermore, the algorithm used by VAPOR is well suited to simultane-

ous pre-filtering of contaminating human or bacterial sequences in samples, although I note that, in

cases of coinfection, the developed algorithm may not be sufficient. Lastly, improved speed may be

achieved by future implementation in C++, although generally, for the datasets examined, VAPOR

can run within 5 minutes on a laptop with a 2.60GHz i7-6600U CPU.

Several default parameters were explored during development, but not exhaustively. A k-mer size of

21 was utilized, as this was also able to perform read pre-filtering from contaminating sequences,

without addition of a separate parameter. Similarly, parameters controlling the minimum fraction of

required kmers for seed extension, as well as the top percentile of seeds chosen for extension could

be adjusted, possibly to improve speed. However, in the read sets examined, the default parameters

were generally sufficient to ensure matches were found, and did not appear to exclude potentially

optimal matches. However, for novel strains that differ greatly from all strains previously observed,

more sensitive parameterizations may be required.
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2.5.3 Real-data classification

As demonstrated in 2.6, the BLAST contig classification strategy I used performed poorly on NS1.

This was due to sorting by e-value, bit-score, and length over percentage identity, combined with

the presence of some NS1 sequences in the database which were longer than the required coding

region. I opted to include this result to illustrate a potential pitfall that can occur with automated BLAST

classification. Although sorting by PID may alleviate this problem, it may also yield shorter, incomplete

alignments. For some samples, neither BLAST nor VAPOR could retrieve a sequence closer than

96% to the assembled contig. For some samples, this was due to large deletions present in the

assembled contig. Although some of these deletions may be present in the true biological sequences,

for at least one, this was due to suspected misassembly. These assemblies were also included to

draw attention to potential problems that may be encountered during analysis. Furthermore, samples

with deletions of ambiguous origin could not be excluded.

2.5.4 Reassortment classification

Over 97% of simulated zoonotic transmission events or reassortments could be identified at a cost of

a 0.08% FPR using a simple alignment strategy whereby the PID of the HA sequences correspond-

ing to the strains assigned to each segment are compared. Whilst some false positives occurred,

this strategy provides a basis for pre-screening that can then be confirmed with slower methods as

required. Intra-subtype classification from a single host species, such as human H3N2 was more

difficult to classify. In this case, reported positives could be further validated by slower methods such

as phylogenetic placement of assembled contigs. I note that it is not known a priori if any of the NIVR

genomes are reassortments themselves. It is also possible that randomly choosing zoonotic strains

to reassort is not biologically accurate, since there may be a limit on the similarity of reassorted se-

quences. However, I applied the same methodology to H3N2 sequences in order to demonstrate

feasibility in detecting reassortment between very similar strains, although this was less accurate.

2.5.5 Conclusions

Here I demonstrate that influenza sequence pre-classification with VAPOR allows alignment visu-

alization, minimizes data loss, reduces pipeline complexity, and allows for classification of zoonotic

strains and reassortments directly from reads. I believe that the simplicity of this approach has poten-

tial to alleviate several difficulties associated with current bioinformatics pipelines, and could reduce

workloads in public health surveillance. Lastly, whilst I have tested VAPOR extensively for use with
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influenza, I believe this approach may be more broadly applicable to other sequence data, particularly

small RNA and DNA viruses.

2.6 Availability of data and materials

All scripts and pipelines used for simulations can be found https://github.com/connor-lab/ in the

following repositories: vapor benchmark mapping; vapor benchmark simulation; vapor benchmark realdata;

vapor benchmark simulation. Short read data can be found at https://s3.climb.ac.uk/vapor-

benchmark-data/vapor_benchmarking_realdata_reads_filtered_18_03_18.tar. Human sequences

were depleted from this data as described in Methodology. All other data required for reproduction of

results can be obtained according to the instructions found in the respective repositories.
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Chapter 3

Influenza virus coinfection and

contamination detection for automated

WGS pipelines

3.1 Abstract

In order for a RNA virus bioinformatics pipeline to be robust, it must be able to handle edge cases.

Here, I examine approaches to detection of mixed samples in order for them to be properly han-

dled and analyzed. True influenza coinfections, whilst rare, are both clinically relevant, and allow

reassortment to occur, which is the mechanism by which pandemic strains may arise. Furthermore,

contamination between samples, which is expected to happen, is important from a quality control

standpoint, since these samples may result in data loss or sequence bias. In the context of routine,

high-throughput bioinformatics pipelines, it is therefore important that mixed samples are reliably de-

tected and quantified, and likely contaminations differentiated from coinfections. Existing bioinformat-

ics methods for this task are either based on broad sequence classification, which can perform well

for divergent sequences, or designed for quasispecies quantification. As such, I developed a method

based on mixture modelling and expectation-maximization, commonly used for full quasispecies esti-

mation, for the purpose of quantifying and classifying contamination between closely related samples

in the context of a whole-genome sequencing pipeline. These results, using simulations and mixtures

of real data, indicate that mixtures can be reliably detected, even between very closely related se-

quences. For simulations, I found the average error in estimated mixture proportion to be less than

2%. Furthermore, I identified 10 real data samples as candidate mixtures, with 4 of these mixtures

with a mixing proportion greater than 10%.
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3.2 Introduction

During the process of sequencing, what is believed to be a sample representing a single virus

genome may in fact be a mixture resulting from coinfection or contamination. The former may have

important clinical (such as for patient outcome), epidemiological or evolutionary (such as resultant

reassortment or recombination) consequences. The latter may complicate the sequence assembly

process or result in the generation of erroneous sequences, which can be found in relatively large

quantities in on-line databases (Rayko and Komissarov; 2020).

3.2.1 Influenza virus coinfection

Coinfection of individuals with influenza A and B has previously been observed (Perez-Garcia et al.;

2016), as well as between viruses of mixed subtype, such as between A/H3N2 and A/H1N1 (Falchi

et al.; 2008; Kendal et al.; 1979; Lee et al.; 2010; Ducatez et al.; 2010; Liu et al.; 2010; Myers et al.;

2011), or between seasonal H1N1 and H1N1pdm09 (Ducatez et al.; 2010). For example, Rith et

al. (2015) recorded a coinfection between A/H3N2 and A/H1N1pdm09 that resulted in a reassortant

virus (Rith et al.; 2015), which led to their suggestion that coinfections should be considered during

routine surveillance. Proportions of coinfecting viruses have been reportedly such that one strain is

present in a dominant proportion (Falchi et al.; 2008), but (Rith et al.; 2015) reported high viral titers

for both. It is well known that coinfection with different influenza viruses can result in pandemic strains.

Indeed, this is believed to be the direct mechanism whereby they arise (de Silva, Tanaka, Nakamura,

Goto and Yasunaga; 2012). One potential implication of coinfection between seasonal viruses and

pandemic strains is that a further reassortment will result in enhanced pathogenicity or antiviral re-

sistance (Lee et al.; 2010; Schrauwen et al.; 2011; Peacey et al.; 2010). In support of this concern,

coinfections between the H1N1 pandemic strain and seasonal H1N1 were observed (Peacey et al.;

2010). Even between currently circulating strains, coinfection can result in reassortants, with exam-

ples such as H1N2 observed from reassortment between A/H3N2 and A/H1N1pdm09 (Wiman et al.;

2019). Althogh coinfections can be confirmed with specific PCR, depending on coinfecting viruses

(Peacey et al.; 2010), currently the detection of putative mixed infections in bioinformatics pipelines

is performed by heuristic procedures or not at all (Wan et al.; 2015; Zheng et al.; 2017; Borges et al.;

2018; McGinnis et al.; 2016b), unless the mixture is composed of viruses from disparate subtypes,

in which case standard taxonomic identification can be performed. For example, INSaFLU relies on

flagging samples with a large number of SNVs. However, the reliability of such a procedure has not

been established.
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3.2.2 Experimental objectives

Given that an extensive body of literature exists for quantification of complex quasispecies popula-

tions, I believed that bioinformatics pipelines could incorporate more specific methods for detecting

mixed samples than heuristics based on the number of SNVs. As such, in this study, my primary

objectives were:

1. Formulation of a suitable mixture model for co-infections and contaminations.

2. Development of two methods of inference based on EM: i) one allowing the unconstrained esti-

mation of a coinfecting sequence from an alignment and ii) one where the alternative coinfecting

sequence is constrained to a panel of references.

3. Development of an automated decision rule for determining whether a dataset is a coinfection.

In particular, I aimed to assess the modified LRT for mixture models under certain conditions.

4. In principle, mixture modelling and EM are routine tasks for more conventional data-types, with

existing libraries. However, I aimed to perform mixture modelling with a full read alignments as

data, instead of reducing the data to multinomial counts at sites. As such, I aimed to implement

our method as software with improvements to allow fast likelihood calculations.

3.3 Methodology

3.3.1 Mixture model formulation

Let a collection of n reads, denoted X, be generated by a mixture of two virus genomes s0 and s1

with proportions π and 1 − π, respectively, and a common error rate γ. The probability of observing

read i is modeled as:

P (Xi = x|s0, s1, π, γ) = πP0(Xi = x|s0, γ) + (1− π)P1(Xi = x|s1, γ)

Here, the generation probability mass functions P0 and P1 are assumed to be of the form:

Pk(Xi = x|sk, γ) =
l∏

j=1

(1− γ)δsk,j (Xi,j) + γ(1− δsk,j (Xi,j))

where δsk,j is the Kronecker delta function, which is 1 if sk,j = Xij (utilizing a global index for j),

and zero otherwise. For position- and base-independent (no base quality scores) error rates, this

is (1 − γ)NmatchγNmismatch . I justify this simplification of population structure by pointing to previous
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observations that, at least for influenza, de novo minor variants are uncommon and in low frequency.

The number of variants across the entire genome with greater than one percent or so frequency is

typically less than 15, with a proportion usually less than 10%. (Debbink et al.; 2017; Xue et al.;

2018). Therefore, I define a model of coinfection, as opposed to intra-host diversity, as two strains of

some distance d, and with some appreciable proportions π and 1−π. Here, the parameter γ captures

biological population variation, assumed to arise by mutation, as well as RT-PCR errors, and errors

generated from reads. For computational purposes, I make the assumption that s0 is fixed as the

consensus, in which case the model resembles an admixture (Di and Liang; 2011).

3.3.2 Real datasets

Of 257 WGS previously published (Southgate et al.; 2020) short read sequencing .fastq files (see

Chapter 3), 173 assembled to produce full length HA sequences, and 138 of these were influenza

A H3N2 or H1N1. Samples that did not produce assemblies, or those from influenza B, were not

used. For simulated mixtures of real data, forward reads were mapped with minimap2 (Li; 2018) to

sample 100, and sam files were processed with samtools (Li et al.; 2009a). 190 pairs of alignments

were then chosen and mixed together. Since, for many real datasets, coverage is extremely skewed,

a subsampling strategy across the genome was utilized, where reads were sequentially sampled

randomly at each position from left to right, repeatedly.

3.3.3 Dataset simulation

A reference was selected for s0 at random from a reference set R of 8942 known full length influenza

A HA sequences from the NCBI influenza virus resource (Bao et al.; 2008b), with s1 selected after

from references differing by at least one position, then mutated randomly at two more positions each

to model sequence novelty. Additionally, in order to simulate more realistic populations, additional

minor quasispecies were generated by a stick-breaking process with parameter α = 5. For the stick-

breaking process, 90% of the mass was assigned to the input (in order to increase the concentration),

and the remaining 10% distributed by pk = Vk
∏k−1
k′=1(1 − Vk′) with Vk ∼ Beta(1, 5) (Ren et al.; 2011)

(the maximum frequency was chosen to be the input). FASTQ files with --nreads reads, with each

read of length --read length 200, were then simulated from these populations by uniform mutation

with per-base probability γ; the population represented by s0 was sampled with probability π, and that

of s1 with probability (1− π). Reads covering unknown bases in the reference were excluded, incor-

porating basic sample coverage variation. These simulations were performed with unpaired reads.

Finally, simulated reads were mapped to the major consensus sequence with minimap2 (Li; 2018),
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and bams were indexed with samtools (Li et al.; 2009a). For estimation, .bam files were imported

with pysam, a python wrapper for htslib (found at https://github.com/pysam-developers/pysam).

3.3.4 Expectation-maximization

Expectation-Maximization (EM) was used as described previously (Dempster et al.; 1977). For each

read Xi, Let Zi be a latent class variable, indicating whether the reads was generated from genome

0 or genome 1. For brevity let δsk,j (Xij) be denoted δsk,j .

P (Zi = k|Xi = x, γ, s0) ∝ P (Xi = x|Zi = k, γ, s0) =
∏
j

(
(1− γ)δsk,j + γ(1− δsk,j)

)
As previously described for mixture models (Fan et al.; 2010), we compute the array T for each

iteration (where θ denotes the set of model parameters).

T
(t)
i,k = P (Zi = k|Xi = xi; θ

(t)) =
π

(t)
k P (Xi = xi|Zi = k, θ(t))

P (Xi = xi|θ(t))

This array, at each iteration t, gives the membership probabilities for each read given the parameters

at t. Next, I utilize the Q function:

Q(θ|θ(t)) =

n∑
i=1

EZi|Xi,θ(t)

[
logL(θ;Xi, Zi)

]
=

n∑
i=1

1∑
k=0

T
(t)
i,k logP (Xi = x|γ, s0, s1, Zi = k) +

n∑
i=1

1∑
k=0

T
(t)
i,k log πk

I next seek to maximize this function. Note that the above sum can be separated into two parts which

are maximized independently. From standard theory (Fan et al.; 2010) it can be shown that the πk

that maximizes this function is given by:

π
(t+1)
k =

1

n

n∑
i=1

T
(t)
i,k

Next, I consider the other parameters s0, s1, γ. Let j be the global (genome) index of the jth base of

the ith read.

(γ(t+1), s
(t+1)
0 , s

(t+1)
1 ) = arg max

γ,s0,s1

n∑
i=1

∑
j

T
(t)
i,0 log

(
δs0,j(1− γ) + (1− δs0,j)γ

)
+ T

(t)
i,1 log

(
δs1,j(1− γ) + (1− δs1,j)γ

)
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Since, for any genome cluster sk, and read base j,

log
(
δsk,j(1− γ) + (1− δsk,j)γ

)
= δsk,j log(1− γ) + (1− δsk,j) log(γ)

However, instead of iterating over read indices j, we can re-write the function to be maximized in

terms of matching and mismatching genome indices (where J0 and J ′0 are sets of matching and

mismatching positions, respectively), which I denote W :

W (γ, s0, s1|θ(t)) =
n∑
i=1

[∑
j∈J0

T
(t)
i,0 log(1− γ) +

∑
j∈J ′

0

T
(t)
i,0 log γ +

∑
j∈J1

T
(t)
i,1 log(1− γ) +

∑
j∈J ′

1

Ti,1 log γ
]

Or, we can index the same sum by iterating over genome indices first, and reads that map to those

indices. Let Vj be the set of reads that covers position j, then:

W (γ, s0, s1|θ(t)) =
n∑
i=1

[∑
j∈J0

T
(t)
i,0 log(1− γ) +

∑
j∈J ′

0

T
(t)
i,0 log γ +

∑
j∈J1

T
(t)
i,1 log(1− γ) +

∑
j∈J ′

1

Ti,1 log γ
]

=

L∑
j=1

∑
i∈Vj

log(1− γ)T
(t)
i,0 δs0,j + log γT

(t)
i,0 (1− δs0,j)

+
L∑
j=1

∑
i∈Vj

log(1− γ)T
(t)
i,1 δs1,j + log γT

(t)
i,1 (1− δs1,j)

=

L∑
j=1

Wj0(s0,j , γ) +

L∑
j=1

Wj1(s1,j , γ)

This leads us to the following:

Theorem 3.3.4.1 For all γ ∈ (0, 0.5), W (γ, s0, s1|θ(t)) is maximized by the strings s∗0, s
∗
1 for which

position s∗0,j , s
∗
1,j minimizes the total number of mismatches, weighted by membership probability of

reads covering position j. That is:

s∗0,j = arg max
c∈Σ

n∑
i=1

δ(Xi,j , c)Ti,0

and

s∗1,j = arg max
c∈Σ

n∑
i=1

δ(Xi,j , c)Ti,1

independently of the value of γ (provided it is stricty less than 0.5).

Proof:
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1. Let γ be fixed in (0, 0.5). Let Vj be the set of reads that covers position j. Importantly, we can

index the sums by genome position. Let the quantity we seek to maximize, conditional on γ, be

W (γ, s0, s1|θ(t)) as above. Then, for a given γ, the string bases at each site j can be maximized

independently, and both strings can also be maximized independently.

2. Since γ < 0.5, log(γ) < log(1− γ) since log is monotonic and γ < 1− γ.

3. Let s∗0,j be such that the number of mismatched bases of reads Xij , weighted by membership

probability T (t)
i,0 , is minimized. I proceed by contradiction. Assume that s∗0,j does not maximize

W (i.e. the string that does maximize W has some other base b at position j). Then changing

s∗0,j to b must increase W . However, let:

Wj0(s0,j) = log(1−γ)
( ∑
i∈Vj∧Xij=s0,j

T
(t)
i,0

)
+log(γ)

( ∑
i∈Vj∧Xij 6=s0,j

T
(t)
i,0

)
= log(1−γ)wj +log(γ)w′j

Since s∗0,j minimizes the weighted number of mismatches, changing from s∗0,j to b will move

some terms T (t)
i,0 from the left sum to the right, which has a smaller coefficient, that is, wj must

decrease by some ε, and w′j must increase by the same amount:

Wj0(s∗0,j)−Wj0(b) = log(1− γ)wj + log(γ)w′j − log(1− γ)(wj − ε)− log(γ)(w′j + ε)

= log(1− γ)ε− log(γ)ε > 0

which is a contradiction, since by assumption, Wj0(s∗0,j)−Wj0(b) < 0.

Unsurprisingly, for all relevant values of γ, the strings that maximize the Q function are those that

minimize the weighted number of mismatches to the reads. On the other hand, given two strings, the

value of γ that maximizes Q is standard:

γ(t+1) =

∑n
i=1mi,0T

(t)
i,0 +mi,1T

(t)
i,1∑n

i=1 liT
(t)
i,0 + liT

(t)
i,1

where li is the length of read i, and mi,k is the number of mismatches of read i to string k.

3.3.5 EM regularization

I utilized regularization to restrict the estimated strings to be within a given range of distance to

one another, as well as to be constrained to a reference panel. I reformulate this problem with the
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constraints. In this case, I assume s0 is fixed:

s
(t+1)
1 = arg max

s1
W (s1)

Subject to:

h(s
(t+1)
1 , s0) > d

where h is the hamming distance. This is equivalent to a MAP-EM using a prior probability of zero on

any strings that do not satisfy the constraints.

I first examine the distance-based constraint for h(s
(t+1)
1 , s0) > ε. Let S be the set of all admissible

strings. Let s∗ be the string for which Q is maximized. Swapping any base of s∗ that does not match

s0 so that it does match reduces Q. Let J = {j : s0,j 6= s1,j} be the indices where the strings

differ, W = {Wj0(s0j) : i ∈ J } be the set of terms for each genome position when maximizing

W (s0, s1|γ, θ(t)). Finally, let Id be the indices with the d largest contributions to Wj1. Then the

constrained maximum:

arg max
s1

Wj1(s1|γ, θ(t)) =


s∗1j j ∈ Id

s0j otherwise

To see why this is maximal, take any other position j (or set of positions) where s1 varies from s0, but

where j 6∈ Id. If any j′ ∈ Id is swapped for j, then Wj1(s0, s1|γ, θ(t)) is smaller, and so Q(θ|θ(t)) is not

maximized. I use the same procedure for choosing reference-constrained values for s1.

3.3.6 Likelihood calculation

In order to compute the full log likelihood, per-read likelihoods must be calculated:

logP (Xi|s, π, γ) = log
(
πP0(Xi|γ) + (1− π)P1(Xi|γ, s)

)
Both P0 and P1 are, assuming a position-homogeneous mutation rate, a function of the number of

mismatches to the zeroth and first cluster sequence, respectively. Consider an update from s to s′

and re-computation of the likelihood. If s′ differs by a single base at some position, then only the

reads that overlap that position will have a new likelihood term. As such, by maintaining an index V ,

such that Vjc gives a list of reads that have base c and position j, for a sequence of substitutions from

s to s′, we can query this index and update the likelihood components for each of these reads without
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iterating over all N reads.

Further, this loop can be computed in O(VjcJ) instead of O(VjcL) time, where J is the number of

changes in a transition between s and s′, since, for each read only constant time is required for an

update: consider a new string s′ with one substitution at position j that is covered by read Xi. Let

p0 = P0(Xi|γ) and p1 = P1(Xi|γ, s). If Xij = sj (using a global index for j), then p′1 = p1(γ/(1 − γ)).

So, if there are J substitutions in a transition from s to s′, only J updates, and evaluation of the

mixture likelihood, are recomputed. If the parameter π changes, then neither P0 nor P1 need to be

recomputed. For the slowest parameter update, γ, all components must be updated. To accelerate

this case, instead of re-counting the hamming distance between a given read and s, I store the

number of mismatches for each read in an array N , since I assume position-independent mutations

in practice. After initialization, this array is dynamically updated on the transition from s to s′.

3.3.7 Masking sites

For the non-reference panel estimation, in order to decrease the cost associated with both sampling

γ, as well as the number of sites L, a form of heuristic feature selection was implemented by site

masking. Sites are passed through a preliminary filter which attempts to fix those which have low

variation, that is those sites that are heuristically judged as unlikely to house SNVs. For example, if

the set of sequences of a sub-clade has a diameter (with respect to the Hamming metric) of 50, I ex-

pect at most 50 sites of the alignment to require estimation. For those sites with the lowest variation,

a point estimate of γ can be performed via specification of the --point estimate gamma argument.

Secondly, only positions, and respective bases, which are likely to be SNVs, are estimated during

estimation.

Three modes of site masking were implemented (--basic mask,--window rank mask,--rank mask).

Site fixation was implemented per-window. For the basic mask, and including in the other filters, only

sites that surpass a depth of 20 were considered. For the rank mask, the top 100 sites are unmasked,

but not necessarily distributed into windows. For the window rank mask (influenza simulations), 100

sites were allowed to be unfixed across the HA sequence (approximately 1800 sites), distributed in

200 base windows, where the locally top sites are unmasked.
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3.3.8 Decision rule

I utilize a modified likelihood ratio test, as in (Chen and Cheng; 2000) for H0 : π = 1, s0 = s1, with the

statistic:

−2(ln(1, γ̃, ŝ1)− ln(π̂, γ̂, ŝ1))

Which I assume to be asymptotically 1
2X

2
0 + 1

2X
2
1 distributed (Lindsay; 1995). Since the likelihood is

not continuous w.r.t. the parameter s1, which is discrete, I fix the estimated s1.

3.4 Results

3.4.1 Simulations

Simulated populations

Figure 3.1 gives summary statistics for the simulated populations. The mean hamming distance

between selected reference pairs was 60.23 (standard deviation 42.59). The sample mean of ex-

pected distance between quasispecies and their generating sequence s0 for the major population

was 0.085 (standard deviation 0.0388), which was approximately the same for the minor populations

as expected. I note that this is the mean amongst samples, where each sample itself represented

a probability mass function (and hence we refer to mean of expectations instead of mean of sample

means). The mean sample mean coverage was 579.80 (standard deviation 26.29). The mean sam-

ple mean hamming distance of reads to the consensus was 5.09 (standard deviation 1.9). As such,

the number of mismatches in reads was relatively high on average.

Estimation for simulated populations

For the unconstrained estimation, where d(s0, s1) > 5, but bases are not constrained to a reference

panel, the mean absolute error for π, |π − π̂| was 0.026, and for γ, was 0.00027. As such, the point

estimates for these parameters was reasonably good, despite the presence of quasispecies in these

mixtures. For the LRT without quasispecies as shown in Figure 3.5 the chi-bar-squared distribution

was a relatively good fit for λ. Figure 3.4 shows the distribution of log(λ + 1) for both simulations

under the null π = 1.0 (orange), and mixtures (blue). This was still a relatively good fit for the chi-bar-

squared. The LRT statistics for the two populations were well separated. As shown by the ROC curve

in Figure 3.6, a 0.965 TPR could be achieved at a FPR at zero, since for many of the LRT statistics

for the mixtures, the probability under the null was zero, so a decision based on any p-value greater
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Figure 3.1: Summary statistics for simulated populations. From top left to bottom right: histogram
showing distance of simulated major and minor sequence; the mean hamming distance of quasis-
pecies to the cluster centroid; standard deviation of the same; maximum of the same; coverage mean
and standard deviation; mean hamming distance between reads and the major sequence.
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than zero would still result in a high TPR.

Figure 3.3 illustrates the error in π̂ as a function of π for the panel constrained estimation. For

the constrained EM algorithm, the mean error, 0.0178, was lower than that for the unconstrained

estimate, and appeared to be less biased.
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Figure 3.2: π versus π̂ for unconstrained estimation. Mean absolute error |π − π̂|: 0.026. Black
line x = y.
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Figure 3.3: π versus π̂ for reference-constrained estimation. Mean absolute error |π− π̂|: 0.0178.
Black line x = y.
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Figure 3.4: Log of likelihood ratio statistic for simulation (with quasispecies) (blue) versus null
simulation A3 (with quasispecies) (orange). Orange line: theoretical chi-bar distribution. Vertical
blue line: 95 % theoretical density. The two populations are well separated.
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Figure 3.5: Likelihood ratio statistic for null simulation without quasispecies. Orange line:
theoretical chi-bar distribution. Vertical blue line: 95 % theoretical density.

3.4.2 Real data

In order to deal with uneven coverage, for real datasets, a subsampling strategy across the genome

was utilized, where reads were sequentially sampled randomly at each position from left to right,

repeatedly. For real datasets, forward reads were mapped against a single reference HA sequence.

Resultant alignments were mixed in pairs. Figure 3.7 gives the π̂ against π for synthetically mixed
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Figure 3.6: ROC curve for detecting mixtures. Here, p is varied. AUROC: 0.994, min: 0.965. Most
of the observed mixtures have test statistics with probability near zero under the null, causing the
intercept.

real influenza alignments. Estimation was performed with a panel of full length assembled HA se-

quences. The mean error was 0.0304, which was slightly worse than the simulated datasets. This

was somewhat expected, since factors such as coverage vary more widely for real data.

In a test of 97 real read sets, 10 were found to have significant signatures of cross-contamination

with an estimated sequence different to that of the consensus and π̂ > 0.5% (samples 101, 103,

111, 150, 166, 171, 225, 26, 36, 42) and λ > 6 (chosen ad hoc by consideration of Figure 3.9.

The number of unmixed samples with extreme values of λ was greater than expected. This may be

due to the fact that, in these datasets, technical or quasispecies mutations/errors can occur that are

present in the sequence of some other sample, even if at very low proportion. Of these samples, 4

were estimated to have a proportion greater than 10%. In order to investigate further, variants were

called with LoFreq (Wilm et al.; 2012). Of the 10 flagged samples, all except 3 had SNVs at every

positions of difference between their consensus and the estimated sequence, indicating that they

may have been contaminations. For two of the sequences, 42 (1/4) and 166 (9/23), only some of the

differences were detected by LoFreq. This may be due to reduced coverage of a contamination, or

due to coinfection with a novel sequence not present in one of the assembled samples. 2 samples

detected as significant had a reference assembly that was different to their consensus (either due to

a misassembly, or perhaps due to read sub-sampling); since the used version of codetectem relied

on this assumption, they were excluded from this particular analysis. Future updates to codetectem
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could be used to account for this edge case. As shown in Figure 3.8, many samples had a large

number of variants exceeding a 1% threshold, indicating that a method based solely on detection of

variants alone may not be straightforward.
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Figure 3.7: π versus π̂ for artificial mixtures of real data. Mean error |π − π̂|: 0.0304. Black line:
x = y.
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Figure 3.8: Number of variants called by LoFreq with a proportion greater than 1%. Mean:
57.53, 75% percentile: 95.

84



0 2 4 6 8 10
log( + 1)

0
6

12
18
24
30
36
42
48
54
60
66
72
78

Figure 3.9: Histogram (density) showing −2(L(θ0)−L(θ̂)) for real datasets (grey) and simulated
mixtures of real data (orange). Although it is not known how many datasets were contaminated or
coinfected in reality, it is believed that the number of sequences with large values (λ > 4, are high
λ >> 4 are extremely improbable under the null) is much higher than expected. Other reasons could
exist for this, such as poor model fit (perhaps due to minor variants and extremely biased coverage).
Some of the mixed samples had λ = 0; however, some of these mixtures had extreme differences
in the number of reads (several orders of magnitude), and so subsampling 5000 reads could easily
result in a dataset that is in fact, not a mixture.

3.5 Discussion

3.5.1 Overview

In principle, a method based on EM has several advantages over simply attempting to examine sam-

ples with a large number of variants called by tools such as LoFreq, such as inference of cluster

membership probabilities, which allows for reads to be separated out or cleaned for separate assem-

bly. In principle, by calculating the likelihood for full reads, I also retain information within reads that

is lost by reducing them to an array of multinomial counts. For example, a 2-base array with A/G

ratio 0.8 at position j, and a C/G ratio of 0.9 at position j′ may appear to support haplotypes AC

and GG in a proportion 0.85. However, with skewed coverage, the variants could in fact be AG and

GC. Whole reads, however, if they cover j and j′, can identify the correct haplotypes. Furthermore,

my method explicitly models the proportions of the sequences, which is more difficult if only consid-

ering the marginal variants at each position, especially with thresholding. Finally, my model-based

approach also gives some theoretical justification for classifying mixtures without true coinfections as

training data, and reports the proportion π.
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3.5.2 Simulated populations

I simulated populations with additional quasispecies variants, which were designed to be present at

a combined frequency of up to a few percent, such as for influenza. Naturally, the simulation of these

variants was not biologically realistic. The mean mismatch rate in simulated reads was relatively high,

at 3.5%; real datasets had a mismatch rate slightly lower, but were up to 4%. As such, I believe that

the simulated populations did have relatively large sequence variation. However, in real populations,

variation is not randomly distributed, as in simulations; error during the RT-PCR process can lead to

the appearance of minor variants. Furthermore, coverage for real sequences is not uniform, as it was

in simulation, but is often highly skewed. Deviation from the null in many of the unmixed real-datasets

could possibly be explained by these two factors.

3.5.3 Model

Similarly, the model I used did not explicitly account for quasispecies variants, although I hoped that

the model would be flexible enough via the error rate γ. It is possible that a more sophisticated model

could account for this better, especially in other viruses where quasispecies variants are present in

higher quantities.

I chose to model the full read likelihood, including its order, instead of summing bases at each posi-

tion in the alignment and employing a multiomial model as others have done previously. In principle,

using multinomial counts does not account for the correlation between bases, and cannot as easily

identify, for example, a sequence with two SNPs, versus two sequences with one SNP (and cannot

make use of their co-occurrence in reads). Although this approach is compuationally demanding, I

have developed an algorithm that reduces the complexity to be linear in the number of bases aligned

to each position that will change; this could make the difference between 2 × 20, for a depth of 20 at

both positions, to 2×20×200 calculations. I found that using the naive approach was computationally

infeasible (hours), whereas, for 5000 reads, my unoptimized Python implementation generally con-

verged within a few minutes.

Another weakness of my method is that per-base error probabilities are not incorporated. Future work

could incorporate base qualities, and additionally, prior information of variability across the length of

the influenza genome.
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3.5.4 Inference

For simulated populations, performance was good, even with the presence of simulated quasispecies,

for both unconstrained and reference-constrained estimation. Without quasispecies, the chi-bar dis-

tribution for data simulated under the null was a reasonably good fit. With quasispecies, a second

mode could be observed. However, in comparison to simulated mixtures, the test statistic λ was

separated by several orders of magnitude between the two populations. A likelihood ratio test based

using my simple model as such would likely be too sensitive, and as such, the parameter p would

have to be tuned to specific use cases.

For mixtures of real data, estimates of π were good; the mean error was just 2%. For application

directly on real data, results were harder to assess; since I cannot guarantee that these samples

are not contaminated, the unmixed datasets could not be assumed to have been generated under

the null. As such, I ran reference-constrained codetectem directly on these datasets, and found that

many of them had large values of λ. This led us to impose the dual constraint π̂ < 0.99 and λ > 50.

Furthermore, I used LoFreq to assess whether the positions that varied between the two sequences

were also present as SNVs, which in most cases, they were. I recommend that LoFreq is also incor-

porated into the pipeline. For one sample in particular (sample 2), 223 SNVs were identified; although

codetectem identified this sample, it is unlikely that the sequence estimated as s1 was actually the

contamination sequence. In this case, it is possible that sample 2 represents a coinfection, or a con-

tamination between influenza A and influenza B (which was not assessed).

3.5.5 Use of fixed reference panels

The use of a fixed reference panel allows us to screen for contamination between specific candidates,

with potentially higher performance than trying to model any sequences in the unconstrained problem.

For example, for the real datasets, I used assembled sequences from these samples as a panel,

allowing us to screen for contamination within a run.

3.5.6 Software considerations

The first version of codetectem was implemented in Python 3, which is slow. Future versions should

be implemented in C++ or similar for a speedup of several orders of magnitude, which would also

allow for a larger number of reads to be sampled. Although codetectem was implemented with soft-
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ware design principles in mind, and some test coverage, this should be increased in future releases;

it is possible that some outliers in these results are the result of unexpected behaviour in implemen-

tation (bugs). Furthermore, my update algorithm optimizations could have benefit in other developed

software. I note that this is only possible because I use a discrete string representation of the coin-

fection; for approaches using arrays v ∈ [0, 1]L×4 to represent populations, optimized updates would

not be possible.

3.5.7 Pipeline implementation

These results show that codetectem could be useful, but I recommend that LoFreq also be used for

examining the SNVs. Furthermore, I suggest that a quick, pairwise mixing experiment is performed

per run (as in 3.9) to check performance for a given dataset, especially if different laboratory protocols

or input viruses change.

3.5.8 Future work

Future work could focus on the following goals: the software should be implemented in C++ for

speed, such as to increase the read sample size; implementation of read pairs, instead of using

single, unpaired reads; results should be compared to what can be achieved with ShoRAH and other

state of the art tools for estimating virus population structures in short reads; define a model with

over-dispersion so as to accommodate quasispecies and RT-PCR errors that introduce structure into

the data; test on other respiratory viruses such as SARS-CoV-2.
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Chapter 4

Virus pangenome range query and

nearest neighbor search for large-scale

phylogenetic pipelines

4.1 Abstract

4.1.1 Background

For modern phylogenetic pipelines that process thousands of pathogen genomes, especially those

used during the COVID-19 pandemic, range queries and nearest neighbor search is often necessary,

such as for identification of possible linked cases. In order to draw trees, multiple sequence alignment

must be performed, which can either be a full MSA, which can be slow and memory intensive, or a

pseudo-MSA, where sequences are aligned to a reference, which is less accurate and may still be

slow, depending on cost functions used for alignment. If the edit distance is used as the cost function,

fast algorithms exist. From a given alignment, the SNP distance can be computed, which has a

simpler correspondence to evolutionary distance than an alignment score. Furthermore, unknown

bases (Ns) present in appreciable quantities can complicate calculation of the SNP distance. Here, I

explore the task of fast nearest-neighbor search and range query for virus genomes.

4.1.2 Methods

Firstly, a fast method for computing SNP distances for SARS-COV-2 genome sequences, called

NBRFIND, was developed. I assessed SNP distances calculated from alignments computed under the

edit distance and a scheme with higher indel costs. I then extended the fast diagonal algorithm of
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Ukkonen to accommodate: higher indel costs; simultaneous calculation of the SNP distance, to pre-

vent explicitly computing the alignment; a probabilistic mismatch score that can incorporate unknown

bases. Secondly, I performed preliminary work to explore search strategies. I briefly explored i) the

utility of radix trees to eliminate redundant calculations when computing the SNP score of a query

against thousands of references and ii) kmer-based filtering.

4.1.3 Results

For computing SNP distances for SARS-CoV-19 genomes, NBRFIND was found to be nearly as quick

on average as edlib, the state of the art for edit distance calculation, and more accurate, with respect

to SNP distances calculated from the alignments. However, edlib offered much faster run-times for

outlier sequences. Although our algorithm would still be too slow to permit a linear scan of many

queries against hundreds of thousands of references, the task can be easily parallelized. Preliminary

results for both k-mer filtering and a radix-tree based algorithm did not indicate sufficient benefit for

further work. More extensive future research could examine the best way to perform range queries

by filtering or pruning. Currently, I suggest the best approach to finding epidemiologically relevant

sequences still relies on a MSA or pseudo-MSA for pre-alignment, which can then be reused. Lastly,

given the heuristics employed to improve runtimes, I conclude that practically speaking, an approach

based on seeds (such as MUMs) may be superior.

4.2 Background

During the COVID-19 pandemic, genomics became a core part of the UK’s response (The COVID-19

Genomics UK (COG-UK) consortium; 2020), in particular to aid in several aspects of surveillance,

including but not limited to: studying transmission chains; epidemiological dynamics and importa-

tion, including spatial dynamics; identification of mutations that may alter viral fitness; integration with

other epidemiological data for understanding impacts on health and treatment. At the forefront of

these efforts was the $20 million COVID-19 Genomics (COG) Consortium, whose efforts directly fed

into the UK Scientific Advisory Group for Emergencies (SAGE). Within COG, data is incorporated

into a phylogenetics pipeline which aggregates thousands of SARS-CoV-19 genomes into a large

alignment phylogenetic tree (Nicholls et al.; 2020). Whilst these trees are highly curated, the pipeline

involves strict filtering for quality, including by genome coverage, followed by multiple sequence align-

ment (MSA) and tree building. These processes can be slow for large sequence collections, and

relying on weekly upload schedules for data. As a result, for participating centres, waiting for such
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a pipeline to complete before performing data analysis (several days) may not be sufficient for epi-

demiological investigations. Furthermore, for other future applications, such predictive applications of

phylodynamics, where inferences must be made in near real-time, an additional delay of several days

would be unacceptable. In principle, many genomic analyses do not require such a large collection

of genomes. In cases where, for example, only a small subset of samples is required, such as cluster

investigation, or phylodynamic studies into smaller sub-regions, only an input sample set, and their

nearest neighbors, are required. However, without a MSA or a tree of all samples, the latter is difficult

to ascertain.

Two related problems, the range query (Hu and Lee; 2005) and nearest neighbor search (Dhanabal

and Chandramathi; 2011) are applied to similar problems in a diverse range of fields, where query

data points are compared to a collection of data points, of which only certain elements are of inter-

est. Naturally, depending on the domain, methods vary widely. In the naive approach, for a query

of length N and a reference set of length M , a linear scan can be performed. However, for large

collections of data points, and more importantly costly distance calculation, this can be unacceptably

slow. In low-dimensional spaces, performant, exact algorithms exist. In high dimensional spaces,

exact methods may also perform poorly. As a result, many applications also resort to approximate

methods, or filtering, where a fast filter can exclude unlikely candidate matches. In the field of string

matching, extensive work has been performed addressing both range queries and nearest neighbor

search under metrics such as the edit distance. While some algorithms are theoretically superior,

in practice some algorithms may be more performant on different datasets, depending on pattern

length, the edit distance itself, the text length, and the alphabet size (Navarro; 2001). Furthermore,

many algorithms were developed with approximate string matching as an intended application, which

is a form of local edit distance, instead of global distance. Furthermore, a lack of comparison for

practical applications was noted by (Hyyrö; 2003).

For comparison of SARS-CoV-2 genomes for epidemiological purposes, a few unique problems are

posed. Firstly, our algorithm must be of high sensitivity; for example, in outbreak investigation, all rel-

evant samples must be found in order to discover any transmissions across country, or to find where

the lineage was imported from. Secondly, since the genomes themselves are long strings, compari-

son can be slow, and many existing string matching methods (for example designed for words in the

English language) are unsuitable. Furthermore, it is not clear what distance metric or dissimilarity

function would be most suitable for comparing these genomes; the edit distance could be insufficient,
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due to the presence of a potentially low coverage, as well as inadequacies as a model for sequence

alignment. However, it is closely related to other global alignments. In this case, the SNP distance

provides a better proxy for evolutionary proximity; most phylogenetic tree building rely on variant sites,

not indels.

General scoring schemes can penalize gaps over mismatches, in order to produce an alignment

which aims to mimic realistic evolutionary processes. However, algorithms with arbitrary scoring

schemes are slower in practice than the edit distance, for which faster algorithms exist. However, if

we wish to calculate the SNP distance from an alignment (the hamming distance over an alignment

ignoring gaps), the alignment must be accurate. For example, for the edit distance, whether an indel

or a mismatch is used in the alignment is an arbitrary choice provided both have the same score.

As such, I compute alignments for SARS-CoV-2 genomes with the edit distance scoring scheme, as

well as one where where mismatches cost 1 and indels cost 2, which I refer to as the 2-indel cost

function. I then compare the resultant SNP distances of these alignments with one produced by a

multiple sequence alignment with mafft (Katoh et al.; 2005), the gold standard in multiple sequence

alignment used for virus phylogenetics.

4.2.1 Experimental objectives

Here, I assess several methods for exact calculation of the SNP distance between SARS-COV-2

genomes, which could then be utilized in clustering algorithms (such as in (Berman and Shapiro;

1998)). Specifically, I describe the following experimental objectives:

1. Formulate a good distance metric or dissimilarity function for use as a criterion for nearest

neighbor search for SARS-CoV-2 genomes, with particular focus on the SNP distance. In doing

so, compare SNP distances computed from global alignments based on the edit distance, and

those based on a more realistic (but still fast) scoring scheme.

2. Develop a model used for fuzzy comparison of strings with many unknown bases (Ns).

3. Develop an algorithm for fast calculation of the SNP distance between SARS-CoV-2 genomes,

and compare run-times with the state of the art for edit distance.

4. Assess the potential speed up in multiple comparisons offered by compression via radix trees,

which are compatible with progressive global alignment, by examining the compression ratio of

SARS-COV-2 genomes in a radix tree.
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5. Assess the viability of basic filtering with kmer-based approaches.

4.3 Methodology

4.3.1 Estimating SNP distance from alignments

I compared the SNP distance calculated from alignment with the edit distance cost function (1 for

mismatches, 1 for indels) as well as one based on the a cost function that penalizes indels twice

much (1 for mismatches, 2 for indels), which I refer to as 2-indel, to SNP distances calculated from

a multiple sequence alignment computed with MAFFT, a state of the art multiple sequence alignment

program (Katoh et al.; 2005).

Fuzzy SNP distances for sequences with Ns

Here I describe a basic probabilistic model to evaluate P (d(x, y)) < ε. Let mutations be generated

across the genome uniformly with probability µ. Let the number of mismatches with Ns be N , and

the number of matching and mismatching alignment positions without an N be M (proper matches or

mismatches). Let d(x, y) = d + dN (x, y) where dN (x, y) is the random variable denoting the number

of mismatches in the N unknown alignment pairs, and d the observed mismatches in the M observed

bases. Then, P (dN (x, y) < k − d|d), which is 0 if d ≥ k, is given by:

P (d(x, y) < k|d) =P (dN (x, y) < k − d|d,M,N)

=
k−d−1∑
z=0

P (dN (x, y) = z|d,M,N)

=
k−d−1∑
z=0

∫ 1

0
P (dN (x, y) = z|d,M,N, µ)P (µ|d,M,N)dµ

=

k−d−1∑
z=0

∫ 1

0
P (dN (x, y) = z|µ,N)P (µ|d,M)dµ

where z are the additional number of mutations that could have occurred in the N ambiguous

matches. Also, the final equality results because dN (x, y) is conditionally (on µ) independent of

M , and the prior is assumed to be dependent only on M and d. Since I use a binomial model for the

distribution of mutations in unknown bases, I use a Beta conjugate prior, so:

µ|d,M ∼ Beta(α+ d, β +M − d)
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Which results in a Beta-binomial, so:

P (d(x, y) < k|d,M,N) =
k−d−1∑
z=0

(
N

z

)
B(z + α+ d,N − z + β +M − d)

B(α+ d, β +M − d)

Diagonal alignment algorithm for 2-indel: uk2

As a basis of approach I employ the diagonal algorithm of Ukkonen and Landau (Ukkonen; 1985a),

as described previously, which is fast for similar strings. I adapt this scheme in order to incorporate

the expression ‘any base’ (N ), and to utilize the global alignment distance with indels twice as costly

as mismatches. In order to achieve this, I utilize a variant on this recurrence:

∀h > 0, Lh(d) = SLIDEd

(
max


Lh−2(d+ 1) + 1 d < h

Lh−1(d) + 1 always

Lh−2(d− 1) d > −h

)

Furthermore, I permit ‘N’ to match any base in the SLIDE function. Practically, I also adjust the diag-

onal growing diagonal band, such that −bh/2c < d < bh/2c, since, for edit distance h, there can be

at most bh/2c indels. In order to record the number of mismatches during computation, I additionally

store an array M which records the number of mismatches, analogously to L, although it does not

determine the optimal step, but serves as a record (in this case, multiple solutions with different num-

bers of mismatches is possible).

I used several heuristics in addition to improve run-times. When a diagonal SLIDE occurs that in-

cludes a sufficient number of matches, ending at (i, j), the alignment process is stopped and restarted

at (i+1, j+1). This method works on the basis that, if a SLIDE operation matches more than θ bases,

then that diagonal is likely to be on the optimal path later on. For example, if a run of 1000 bases

match, it is unlikely that they are not matches in the final alignment, given that these genomes do not

have large repetitive regions. In this case, if SLIDE proceeds by more than θ bases, one can evaluate

the number of mismatches on that diagonal to be reflective of the true SNP distance, and bail early if

it exceeds a threshold k. For range queries, this can be used for early bailing during calculation. This

procedure is similar to seeding with exact matches.
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4.3.2 Preliminary exploration of nearest-neighbor search strategies

Radix Tree-based 2-indel algorithm: tree uk2

Several data structures can be used to index strings in order to accelerate batch computations. For

the array L, clearly for any query P , any two sequences T1, T2 with common prefixes will share many

of the same computations. As such, these prefixes can be reused. Let T1 = R+S1 and T2 = R+S2.

In order to assess how much redundant calculation is performed with our chosen genome set, I built

a Radix tree from a set of 5000 genomes, and recorded the total edge length as a function of the

number of genomes.

k-mer filtering

Since the edit distance computation is expensive, and for the largest genome collections there may be

up to 100,000 genomes of length 30 kilobases, a linear scan becomes too slow. As such, I assessed

k-mer based dissimilarity filtering methods. 5000 random SARS-CoV-2 genome pairs were subjected

to basic preprocessing previously, and the SNP distance was plotted against k-mer distances (k ∈

(21, 50, 300)). Additionally, I evaluated MASH with default settings for the same purposes.

4.3.3 Data used

I made use of SARS-CoV-2 genomes generated by the COG consortium (The COVID-19 Genomics

UK (COG-UK) consortium; 2020). Furthermore, since the algorithm is, in practice, much faster for

nearly-aligned sequences, I quickly perform the following pre-filter: i) genomes with more than 10% Ns

were discarded; ii) the coding region were extracted; iii) any other ambiguous bases were converted

to ‘N’s.

4.4 Results

4.4.1 Global alignment algorithm

Comparison of global alignment with uk2 and the edit distance

For 10,000 genome pairs, I compared the SNP distance computed from 1) a MAFFT MSA with de-

fault settings, 2) alignments using the double indel, single mismatch cost function, and 3) alignments

using the edit distance. There was no difference in the SNP distances computed from the first two

processes. For the edit distance alignment, the mean error (difference to the score calculated from
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MAFFT MSA) was 0.357, which was driven primarily by outliers (see Figure 4.1). Whilst the edit dis-

tance had a low error, my approach had zero in the observed samples. As such, the chosen scoring

function was superior to that obtained under the edit distance cost for computing SNP distances and,

for this data, was found to be equivalent to a more realistic cost function, as used by default in MAFFT.
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Figure 4.1: Comparison of SNP distance S calculated from alignments minimizing the edit
distance, in comparison to Sval, computed from a MSA with MAFFT. Here, 10, 000 randomly
sampled genomes were used, and the log score log10 |S − Sval| calculated. Whilst the edit distance
produced alignments most often similar to MAFFT, occasionally outliers with present. The mean error
in SNP distance was 0.357.

A basic run-time comparison was performed between the core of NBRFIND and edlib, as shown in

Figure 4.2, where NBRFIND was allowed to terminate alignment early based on a maximum SNP

distance of 5, such as in a range query. Since edlib, or any other basic global alignment algorithm,

cannot perform early bailing based on the SNP distance, but only on the alignment score, the run-

time for calculating the SNP distance from an edlib alignment will be at least as costly as the core

alignment as it excludes post-processing. 5000 trimmed SARS-CoV-2 whole genomes with up to

10% gaps were queried with a randomly query, 1000 times. For a maximum distance of 5, Calculation

from the edit distance was marginally faster, with a mean of 43.19 seconds, compared to that of 48.86
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seconds for NBRFIND. This was expected, since NBRFIND has a more complex cost function, and also

computes the SNP distance simultaneously. However, a few outliers that took around 500 seconds

were observed, although this proportion was small; since the diagonal algorithm has complexity

O(nd), outlier sequences with errors or a large number of indels may take longer to align. In this

case, edlib offered superior performance, although alignment post-processing was not included in

the timings.
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User time
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Figure 4.2: Basic runtime comparison of the core algorithm of NBRFIND with that of edlib for
5000 comparisons.

4.4.2 Preliminary investigation of nearest-neighbor search strategies

Filtering

I found that neither basic filtering based on the Jaccard index J , of k-mers (k ∈ (21, 50, 300)), nor the

MASH distance, would be likely to offer the required sensitivity and specificity for practical applica-

tion. Figure 4.3 shows the relationship between SNP distance and MASH distance for 1000 pairs of

SARS-CoV-2 genomes. Since the objective was high sensitivity and specificity, I believe these results

indicate both could not be achieved using the MASH distance.

97



0.0
01

0.0
00

0.0
01

0.0
02

0.0
03

0.0
04

0.0
05

Mash Distance

0

6

12

18

24

30

36

S

Figure 4.3: MASH distance (default parameters) vs SNP distance.

Data structures for sequence compression

Figure 4.4. gives the ratio of radix tree edge length to total sequence length as a function of the

number of added genomes for 5000 genomes. As demonstrated, as N grows large this proportion

approached just under 0.5 (in particular 0.489 at sequence 5000). As such, the compression ratio will

likely not sufficiently improve run-times compared to the naive search, which is more easily paral-

lelized.

4.5 Discussion

4.5.1 Alignment algorithm

The alignment score and algorithm developed in this chapter allowed for the calculation of SNP dis-

tances without explicitly producing an alignment identical to those produced from a state of the art

MSA. Furthermore, I developed an approach to estimating the probability of a given SNP distance

when unknown bases are included. In comparison to the state of the art in terms of alignment speed,

edlib, our alignment performed well when allowing early exiting based on the SNP distance, but
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Figure 4.4: Total sequence length versus Radix tree edge length for 5000 SARS-CoV-2
genomes. Here, N denotes the number of genomes added to the Radix tree so far. As expected, the
proportion rapidly decreases as sequences are added, since common prefixes are not repepated.

poorly in comparison for some outliers; on average, 5000 comparisons could be made in under a

minute. Conventional approaches for alignment, including edlib, would not be able to perform early

exiting based on the SNP distance, since this must be calculated from an alignment. However, whilst

this performance may seem reasonable, only with parallelization could it be practically useful. For

60 queries, 5000 comparisons would likely take nearly an hour. Furthermore, a database of can-

didate sequences could be considerably larger than this, at least for SARS-CoV-2. Currently, the

fastest method for nearest neighbor search would be to use a pseudo-MSA constructed by aligning

to a single reference, and calculation of the hamming distance. For extremely large database sizes,

however, even this calculation can be costly.

The developed approach may still be useful in tasks that require finding nearest neighbors, such as

search strategies that involve pruning or partitioning the database, such as greedy clustering. Fur-

thermore, it should be noted that, although my approach was implemented in C++, code optimizations

could yield performance gains. Finally, subsequent to the project study, a diagonal algorithm for affine

gap penalties was developed (Marco-Sola et al.; 2020). This development is an improvement on the
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algorithm developed in this chapter.

4.5.2 Search strategies

Initially, NBRFIND was intended to be used within an appropriate neighbor searching strategy. In met-

ric spaces of low dimension, conventional methods can be applied. However, for high-dimensional

spaces, many exact methods break down, and approximate methods are preferred (Ponomarenko

et al.; 2014). Most k-ANN search algorithms make use of the triangle inequality to narrow down the

search space. However, when this is violated, the choices are slim (Ponomarenko et al.; 2014). For

any amount of Ns, assume d(s1, s2) = d(s1, s3) = 0. It is possible that d(s2, s3) is still large. For some

(dis)similarity functions, special solutions exist (Zhang and Srihari; 2002). I explored two techniques

to improve on brute force: use of radix trees for reducing redundant computation of shared prefixes,

and k-mer filtering.

I explored the radix tree for collapsing down common sequence prefixes. However, the compression

ratio achieved was only about 50%. This was somewhat expected; if one assumes a new sequence

is one mutation away from an existing sequence in the tree, then, assuming uniform distribution of

mutations across the genome length, the number of new bases would be the suffix beginning at the

mutation position, which would have expectation 0.5. On a test of 500 genomes, trie building took

5.022 seconds on average with a Python implementation. Although this building process is linear

in the number of genomes, it is expected to require over 8 minutes to build the full genome set,

although it could be considerably faster in C++. An additional problem for the radix tree is Ns; se-

quences with a large number of randomly distributed Ns are less likely to have long common prefixes.

Our preliminary investigation indicates that basic k-mer filtering with MASH would not offer good

performance for filtering candidate sequences. Results for plain Jaccard distance are ommitted for

brevity, but were found to be similar. The relationship between J and h, the alignment score was

also not strong. Several causes could be responsible for this, including the fact that sequences are

highly similar, and the presence of Ns (that is, partial genome coverage) in these sequences con-

founds similarity calculation. However, simply ommitting k-mers with Ns did not sufficiently change

results, as expected. Statistical evaluation and ROC curves were not produced after graphical in-

spection of these scatter-plots as is was likely that no filtering threshold with these distances would

be acceptable.
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Conclusions

NBRFIND offered superior precision and similar speed to edlib in aligning SARS-CoV-2 genomes,

although speed was poor for some outliers. Furthermore, for the naive linear scan nearest neighbor

search, performance was not sufficient for single-threaded application. For access to a large number

of threads, exact search could extract nearest neighbors in reasonable time. Furthermore, methods

based on pseudo-MSAs are likely to offer better performance. Future study could be directed at

approximate nearest neighbor algorithms to avoid the costly naive linear scan, although this goal

may conflict with requirements for high precision.
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Part II

Phylogenetic methods for respiratory

virus surveillance
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Chapter 5

An assessment of phylogenetic

resolution for routine molecular

epidemiology

5.1 Abstract

5.1.1 Background

Influenza A and other respiratory viruses are a severe global public health burden. For monitoring,

sequencing has become key, augmenting traditional epidemiology. Traditionally, this comprised se-

quencing of HA and NA genes, but WGS has been increasingly adopted. Within the application of

phylogenetic methods to virus epidemiology, phylogeny reconstruction and dating forms the founda-

tion of increasingly complex phylodynamic methods. However, performances of these foundational

processes are rarely quantified, especially with respect to the required number of genome segments.

Molecular clock methods can be especially difficult to apply, since the rate of molecular evolution can

be complex and variable, and computationally, inference is not straightforward. Routine application

of activities such as estimation of tMRCA can perform poorly if not configured precisely. Further-

more, these methods can be very difficult or impossible to experimentally test after an inference has

been made. As such, the adoption of molecular dating methods has not been as quick within routine

epidemiology as other activities, such as cluster investigation.
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5.1.2 Methods

Here, a set of analyses was performed to benchmark phylogenetic resolution and dating, and com-

pare performance under different numbers of segments. Firstly, I compared bootstrap support for real

data between trees constructed with 1 to 8 genome segments, as well as molecular clock estimates

for HA-NA versus the whole genome, and evaluated inferences that can be made with the different

datasets. I also compared three commonly used tools for molecular dating, treedater, treetime, and

BEAST, on data from simulated influenza A epidemics, and examined the accuracy for small time

periods that can be found in molecular epidemiology.

5.1.3 Results

Whole genome sequencing was found to provide increased resolution for phylogenetic reconstruction

in terms of bootstrap support, allowing identification of outbreak samples with high support from a

single season. It was found that, for sequencing, at least 5 of the 8 segments provide good phyloge-

netic resolution. With only HA and NA, resolution was insufficient for many downstream phylogenetic

tasks on the scale of a single season. I found that molecular clock estimates were also improved,

with less variance, and estimates were more consistent with previous studies. In simulation, I found

that on the scale of a single season (a few months), molecular clock estimates were reasonable but

not precise; mean error in estimated TMRCA was on the order of a third of the epidemic time-scale.

5.2 Background

Although until recently, most sequencing efforts for influenza have been directed to HA alone, whole

genome sequencing has begun to emerge as a powerful tool in the study of influenza virus pop-

ulations, since the whole genome contains more information. Laboratory protocols have become

increasingly standardized and optimized (Zou et al.; 2016)(Wüthrich et al.; 2019)(Lee et al.; 2016)

to enable reproducible single-reaction RT-PCR and next-generation sequencing (NGS) (Zhou et al.;

2009)(Zhou et al.; 2014) by public health laboratories. Single-molecule sequencing platforms such

as the MinION (Imai et al.; 2018b) have also been explored. As a result, whole-genome sequence

data is beginning to accumulate alongside the large number of HA and NA gene segments in public

databases (Bao et al.; 2008a)(Shu and McCauley; 2017), which has been used to provide use-

ful insights into the evolution and spread of influenza, as well as increasing rapidity and accuracy

of analysis, with examples including: defining outbreaks (Meinel et al.; 2018b)(Houghton et al.;

2017)(Houlihan et al.; 2018a); study of intra-host quasispecies populations (Meinel et al.; 2018b);
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examination of amino acid substitutions associated with antigenicity, antiviral susceptibility (McGinnis

et al.; 2016a), severity (Galiano et al.; 2012) or hospitalization (Mishel et al.; 2015); identification of

reassortment events (Goldstein et al.; 2018)(Holmes et al.; 2005b)(Oong et al.; 2017); phylogenetic

clustering of severity (Goldstein et al.; 2018); characterization of co-circulating lineages (Baillie et al.;

2011)(Holmes et al.; 2005b); analysis of spatio-temporal dynamics (Lewis et al.; 2015)(Baillie et al.;

2011).

However, whilst laboratory methods have become widely applicable, best practices for the analysis of

the data generated have not been standardized, and importance has not been demonstrated for all

applications. Crucially, benchmarking of the improved resolution provided by whole genome informa-

tion, and when it is useful or necessary, have not been performed. A wide range of approaches have

been used for reconstruction of trees, cluster definition, and hypothesis testing, that do not always

make optimal use of the data available. Tree reconstruction has often been performed with basic

methods (Tamura et al.; 2004)(McGinnis et al.; 2016a)(Meinel et al.; 2018b). Methods for inferring

quasispecies variants have been simple (Meinel et al.; 2018b), and some concerns have been raised

with regards to hypothesis testing of the association of molecular features with epidemiological quan-

tities, particularly with regards to sampling procedures (Goldstein et al.; 2018) and the trade-off with

statistical power(Lewis et al.; 2015). Recently, methods for phylogenetic inference and modelling have

become increasingly sophisticated, including methods for controlling for sample non-independence in

testing significance of tip associations (Felsenstein; 1985)(Ives and Zhu; 2006)(Parker et al.; 2008),

methods for phylodynamic analysis with large datasets (Sagulenko et al.; 2018), inference of reas-

sortment events (Nagarajan and Kingsford; 2010), and complex phylogenetic modelling platforms

such as BEAST (Bouckaert et al.; 2014). To accompany this increasing complexity, it is important

that foundational tasks such as tree building and clock-rate estimation are benchmarked.

Some previous research has attempted to demonstrate the utility of WGS over single-gene ap-

proaches. Most often these include the demonstration that certain tasks cannot be performed without

whole genome information, such as: identification of amino acid substitutions associated with clini-

cal features (Simon et al.; 2019); analysis of quasispecies variants (Simon et al.; 2019)(Barbezange

et al.; 2018); detection of reassortments (Simon et al.; 2019)(Nagarajan and Kingsford; 2010)(Gold-

stein et al.; 2018); detection of variants associated with vaccine status (Simon et al.; 2019); phyloge-

netic clustering of severe cases (Simon et al.; 2019)(Goldstein et al.; 2018). The superior resolution

of WGS trees has been noted (Goldstein et al.; 2018). Other analyses emphasizing the superiority
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of WGS include a study performed by Meinel et al. (2018) (Meinel et al.; 2018b), who argued that

WGS offered superior resolution to single-segment analysis; when analyzing clustering on the basis

of single segments, the authors found that spurious clusters were identified.

Modern molecular epidemiology requires not only building a phylogenetic tree but, increasingly, di-

vergence dating and phylodynamics as well. However, the gap between the former and the latter

categories can be large. Arguably the most important software for the latter, BEAST, requires techni-

cal knowledge that exceeds the requirements for phylogeny construction, which has become routine,

since models are more easy to miss-specify, and results of inference can be misleading or dangerous

as a result. Furthermore, understanding of the data regimes for which these analyses are feasible,

and how reliable they are, is not well understood. As such, there is considerable work required to

improve the accessibility and standardization of these kinds of analyses. The ability to obtain good

estimates for clock rates and tMRCA is dependent on many variables, such as the clock rate, number

of samples, epidemic duration, and more. When the information in sequences is low, estimates can

be poor (Guindon; 2010). Few studies benchmark performance of inference, and usually only for

particular scenarios. For example, cross validation of tip dates is rarely used (Smith and OMeara;

2012; Sanderson; 2002). Some benchmarking studies do exist, such as (Duchêne et al.; 2016) and

(Didelot et al.; 2018).

5.2.1 Objectives

The objectives of this chapter were to assess improvements in phylogenetic resolution for influenza

virus molecular epidemiology using whole genome data, and demonstrate the data ranges in which

downstream analyses become infeasible. Specifically, I aimed to:

1. Compare conventional phylogenetic resolution (such as node support) obtained when using

conventional influenza HA/NA gene sequences to that of WGS data.

2. Assess whether BEAST can be utilized for dating WGS data for a single influenza season, and

compare the results to those obtained with HA and NA alone.

3. Perform stochastic epidemic simulations in order to examine the theoretical data regimes for

which molecular dating is performant, comparing BEAST (Bouckaert et al.; 2014), treedater

(Volz and Frost; 2017), and treetime (Sagulenko et al.; 2018).
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5.3 Methodology

5.3.1 Real datasets

Influenza A/H1N1pdm09 from the 2018/2019 season (155 samples) and A/H3N2 from both the

2017/2018 season (99 samples) and the 2018/2019 season (77 samples) were collected for both

routine surveillance and clinical investigation. Only genome sequences with at least 90% coverage

of HA, and 60% coverage of the other 7 segments, were included.

5.3.2 Comparison of resolution for increasingly complete genomes

In order to gain an indication of the extent to which the number of genome segments improves phylo-

genetic resolution, 77 influenza A/H3N2 whole genome sequences were used to build 8 phylogenetic

trees, adding in segments for each: HA; HA-NA; HA-MP-NA; HA-MP-NA-NP; HA-MP-NA-NP-NS;

HA-MP-NA-NP-NS-PA; HA-MP-NA-NP-NS-PA-PB1; HA-MP-NA-NP-NS-PA-PB1-PB2. Multiple se-

quence alignment was performed with MAFFT (Katoh et al.; 2009). Trees were built with iqtree

(Nguyen et al.; 2015), with ModelFinder Plus for model selection, 1000 ultrafast bootstrap replicates

(Hoang et al.; 2018), and rooted using Perth/16/2009 as an outgroup. In order to assess the accu-

racy of clades, the distribution of internal branch lengths, as well as bootstrap support as a function

of number of genome segments, was recorded using BioPython (Hoang et al.; 2018). Trees were

plotted using the R package ggtree (Yu et al.; 2017).

5.3.3 Simulation

For a demographic model, I use a general stochastic SIR model as previously described (Buckingham-

Jeffery et al.; 2018) (Ball; 1986)(Allen; 2017). Briefly, let St, It,Rt be the sets of susceptible, infected,

and recovered individuals at time t over the course of an outbreak, and St = |St|, It = |It|, Rt = |Rt|

the counts in each class taking values in N≥0. I assume {(St, It), t ≥ 0}, with S0 = N − I0, I0 = M ,

and S+I+R = N is a Markov process with transition probabilities as previously described. Trajecto-

ries were simulated with the Gillespie algorithm (Gillespie; 1977). Then, given a stochastic trajectory,

an influenza genealogy was simulated by explicitly tracking a population evolving under this trajectory,

assuming uniform sampling of participating infected individuals at each event. In turn, sequence evo-

lution was simulated along the branches of these trees as with the Gillespie algorithm (analogously to

above) under the assumption of a strict molecular clock with rate µ, and HKY model with parameter

κ uniformly samples from [0.5, 2.0], since nucleotide substitution rates can vary several fold (Posada

and Crandall; 2001).
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Since there is uncertainty regarding suitable parameter values θ = (N,M,R0, γ, µ), samples were

drawn from P (θ, {(St, It), t ≥ 0}) = P ({(St, It), t ≥ 0}|θ)P (θ) as follows: firstly, parameters were

drawn from prior distributions (as described in section epidemiological priors), followed by a trajec-

tory conditional on θ, via the Gillespie algorithm (Gillespie; 1977). Simulation from a wide parameter

space allows us to explore whether evolutionary analysis is sensitive to these parameter values. Be-

cause stochastic epidemics can die off quickly, rejection sampling was used (Hobolth and Stone;

2009) to condition on trajectories that result in sufficient infected individuals.

For the first simulated experiment, T1, transmission trees and sequence data were simulated from the

whole concatenated genome of Perth/16/2009 (H3N2). Sample sizes were chosen to range between

10 and 50, with minimum epidemic size 1000, S0 ∼ Uniform(1000, 10000), R0 ∼ Uniform(1.1, 2.0), γ =

90 (per year, corresponding to an expected infectious duration of just over 4 days), µ ∼ Uniform(0.0004, 0.004).

5.3.4 Molecular clock estimation

Treedater (Volz and Frost; 2017) was used for preliminary exploration of molecular clock signal by

fitting a strict clock model (ω0=0.003, searchRoot=nTips, maxit=5000), performing root-to-tip regres-

sion, calculation of quantile plots, and identification of outliers. Furthermore, in order to gain insight

into the degree of molecular clock signal and accuracy in dating ancestral nodes in a single sea-

son with differing numbers of segments, this procedure was performed for both whole genomes for

A/H1N1 and A/H3N2 datasets, and for A/H1N1 with each segment. Bayesian evolutionary modelling

was performed with BEAST2 (Bouckaert et al.; 2014). For the purposes of assessing molecular clock

estimation with differing genome coverage, for whole genome A/H3N2 (18/19) and HA-NA A/H3N2

(18/19) datasets, a flexible Bayesian skyride (Minin et al.; 2008), demographic prior with default priors

was used with a HKY (Hasegawa et al.; 1985) substitution model (log Normal kappa (1.0, 1.25)), and

strict molecular clock (Uniform prior (0.001, 0.004)). MCMC was run with a chain length of 10 million,

sampling every 10,000 states.

5.3.5 Epidemiological priors

Estimates of infectious duration (1/γ) vary, due to factors such as nonlinear dependence of infectivity

on viral shedding. However, some estimates are presented in the range of 4-8 days (Tsang et al.;

2015). As described by Tsang et al. (2015), most transmissions occurs within a few days, with peak

infectivity at approximately 1 day after the onset of symptoms. Although peak infectivity was around 1
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day, this value is probably too small to use as a proxy for an exponential recovery rate. Other studies

have estimated peak transmissability at day 2 (Carrat et al.; 2008). Furthermore, mean serial inter-

vals have been estimated as 2.6 days for influenza (Suess et al.; 2010). In a small study of ferrets,

the infectious duration was at least 3 days (Inagaki et al.; 2015), and for a few secondary infections 4

days, but none at 5 days. As such, a 1/γ ∈ [1, 5] is feasible. At the same time, estimates of peak viral

shedding are around 2 days since innoculation (Carrat et al.; 2008). Without explicitly accounting for

an exposed but not transmitting compartment E this extra day with an SEIR model, 1/γ was allowed

to be higher than 1.

Estimates of seasonal influenza R0 range from 0.9 to 2.1. This is lower than for novel pandemic

strains (Coburn et al.; 2009). A similar review provided an IQR of 1.19-1.37 (Biggerstaff et al.; 2014).

As such, the R0 value was constrained to between 1.0 and 1.5, with a mean around 1.3. Again, due

to the mass action assumptions of the model, some degree of variation around this value was allowed.

The clock rate of influenza is on the order of 10−4 to 10−3 per base per year (Shao et al.; 2017). Jang

et al. (2018) estimated the substitution rate of H1N1 HA and NA to be around 2×10−3 and 1.8×10−3

respectively (Jang and Bae; 2018).

5.4 Results

5.4.1 WGS provides superior phylogenetic node support

Figures 5.1 and 5.2 show phylogenies for 77 influenza A/H3N2 samples collected during the 2018-

2019 season, constructed with HA only and with all 8 segments. Phylogenetic resolution incremen-

tally improved as segments were added into the reconstruction process (see also Figure 5.3). For

example, consider the tree with all 8 segments. A group with 99% bootstrap support is observed,

including taxa: A/Burry Port/1014/2019; A/Burry Port/8088/2019; A/Burry Port/1888/2019; A/New-

port/1070/2019; A/Ebbw Vale/3447/2019. However, for the phylogenetic tree with HA alone, this

group was not observed. Instead, these taxa are present within a larger polytomy consisting of

a dozen taxa, with zero branch lengths. As another example, A/Lampeter/0442/2019 and A/Lam-

peter/7085 are grouped together with 98% bootstrap support on the whole genome tree, but not on

the HA-only tree. Finally, the samples in the tree from Usk were not resolvable with HA alone; impor-

tantly, these were associated with an outbreak in 2019. Furthermore, boxplots in Figure 5.3 show the

distribution of node supports for each tree. Mean node support increased as segments were added.
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For the segment combinations as described, the mean internal node supports were: 69.27, 78.22,

77.6, 83.08, 86.09, 86.20, 88.45, 88.83. Interquartile ranges for each also increased dramatically. For

HA alone, the lowest quartile was under 10%, and for the whole genome tree, was over 75%. These

results demonstrate that for single seasons, influenza phylogenetic trees have increased resolution

with whole genome sequences.
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Figure 5.1: Phylogenetic tree for 77 H3N2 HA sequences from the 2018-2019 season. Several
polytomies occur toward the top of the tree. Importantly, samples associated with Usk cannot be
resolved. Red numbers indicate bootstrap suport.
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Figure 5.2: Phylogenetic tree for 77 H3N2 whole genome sequences from the 2018-2019 sea-
son. Most of the internal nodes for Usk outbreak subclades have high bootstrap support (indicated
by red numbers).

5.4.2 WGS can provide sufficient information for molecular clock estimation for a

single influenza season

Molecular clock estimation and diagnostics were performed with treedater (Volz and Frost; 2017) for

all three WGS datasets (A/H1N1 18/19, A/H3N2 17/18, A/H3N2 18/19). In all cases, a strict molecu-

lar clock was estimated. For A/H1N1 (18/19), the estimated clock rate was 2.50 × 10−3 and tMRCA

was 2.26 years. For A/H3N2 (17/18), the rate was estimated as 3.05× 10−3 and tMRCA 2.64 years.

For A/H3N2 (18/19), the rate was estimated as 3.16 × 10−3, with a tMRCA of 3.21 years. It should

be noted that given the datasets, the results are exploratory and indicative of clock signal, but bias
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Figure 5.3: Boxplots showing node supports for increasing number of genome segments.
Node supports improve with increasing number of segments, up to around 5 segments. For HA
alone, the bootstrap support of nodes is quite poor.

is introduced in both the tree-building procedure, population structure, rate variation, and possible

reassortment. Given that, within each tree, disparate lineages that diverged several years ago ex-

ist, it is probable that factors of this kind biased clock-rate estimates. This can be observed in the

root-to-tip regression plots, and quantile plots, where deviations are observed. As a comparison,

using only the HA and NA genes of the A/H3N2 (18/19) dataset, the clock-rate was estimated to be

2.8× 10−3, with a tMRCA of 5.82 years. Compared with the whole genome dataset with RTT regres-

sion (p = 6.05 × 10−5), the RTT regression was still significant p = 0.0129. Although the clock rates

estimated from the two datasets was similar, the TMRCA was nearly twice as old.
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As shown in Figure 5.4, inference on HA and NA alone with BEAST yielded µ̂ with a much higher

variance. Figure 5.4 gives posterior distributions for strict molecular clock with both whole genome

and HA and NA alone. For HA and NA, the posterior mean estimate was 4.45 × 10−3, with a 95%

HPD of [3.0× 10−3, 5.9× 10−3]. However, for the whole-genome sequences, the posterior mean was

2.45 × 10−3, with a 95% HPD interval of [1.49 × 10−3, 3.51 × 10−3]. This result indicates that, within

a single season, influenza whole genome sequences offer more precise molecular clock estimates.

However, since µ is unknown (and in fact likely to have high variance), it is not known which mean

was closer to the true value. It should be added that, even with HA and NA only, the molecular clock

estimate 95% HPD did only span about 5.9× 10−3, which could be considered reasonable.
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Figure 5.4: Posterior samples for µ for HA and NA alone (grey) and whole genome (blue) for 77
H3N2 samples from the 2018-2019 season. The estimates derived from whole genomes had lower
variance than those from only HA and NA.

5.4.3 Simulations

For simulated populations, the mean epidemic duration was 0.314 years (standard deviation 0.111),

mean diversity was 5.423 (standard deviation 3.350), mean total number of infected individuals was

3177.113 (standard deviation 1827.73). Figure 5.5 summarizes the statistics of these simulations.

All methods performed reasonably well in simulation, even on an average time scale of 3.6 months,

as shown in Figure 5.6. The mean normalized error (µ − µ̂)/µ for treedater, treetime, BEAST-HKY,

BEAST-JC, ad BEAST-HKY-VAL were 0.309, 0.032, -0.007, 0.0047, and 0.0008. As demonstrated
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by fixing the tree with BEAST-HKY-VAL, the clock rate estimation was the best. Furthermore, the

difference between BEAST-HKY and BEAST-JC was small, implying that the substitution model itself

was not as important for clock rate estimation, at least for κ in the regime tested. For BEAST-HKY

and BEAST-JC, I assessed the proportion of node times that fell into the estimated 95% HPD interval,

which were 0.849 and 0.852, respectively. This indicated that most of the time, for these simulations,

TMRCA dates fell within the margin of error (this was not 95%, but some error is expected, since the

model is not exactly specified, by design). TMRCAs were also estimated, as shown in Figure 5.7.

Errors were normalized by epidemic duration, since for longer epidemics, ((T − T̂ )/H, where H is

the epidemic duration, since we are interested in the error in terms of the epidemic timescale). The

mean errors were 1.340, 0.568, 0.354, 0.375, and 0 for treedater, treetime, BEAST-HKY, BEAST-JC,

and BEAST-HKY-VAL (the last had a fixed tree). As such, the best performing, BEAST-HKY, had a

mean error in TMRCA of about 35% of the epidemic duration. These results imply that high-precision

estimation of TMRCAs may still be difficult.

5.5 Discussion

5.5.1 Resolution

Phylogenetic reconstruction was found to be more confident for WGS (that is, each node had higher

bootstrap support, and polytomies were more resolved) during our analysis, and bootstrap support

across nodes increased as a function of the number of segments. However, as is the case with many

phylogenetic analyses, it cannot be stated that these reconstructions were in fact more accurate, be-

cause it is not possible to validate the true phylogenetic relationship between the samples. Although

it may seem that the HA-only tree exhibited the main structural features of the whole genome tree, the

tree itself represents multiple introductions into Wales (that is, the virus was imported multiple times).

Further analysis (see Chapter 7) can be used to examine which subclades may represent imported

lineages. In principle, I note that 5 segments may be sufficient; however, this many segments are

only sequenced typically by whole genome sequencing.

Importantly, the samples associated with the Usk 2019 outbreak were only resolved on the whole

genome tree. This indicates that, for routine epidemiological investigation, if analyses are required

on the level of outbreaks, the whole genome is required. For example, in order to assess whether

a community sample sits within an outbreak (implying outbreak to community transmission), those

samples must be resolved.
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Figure 5.5: Basic statistics for simulated epidemics. Some parameters are expectedly associated,
such as diversity and µ, or epidemic duration and R0.

5.5.2 Molecular clock estimation

For molecular clock estimation, our results suggest that the whole genome offers the best perfor-

mance. Using BEAST for real data, it was found that estimates using the whole genome versus

those with just HA and NA resulted in much smaller 95% credible intervals. The posterior distribution

using the whole genome was more consistent with estimates of µ from the literature (Jang and Bae;

2018). The posterior mean for HA and NA, at 4.45× 10−3, was likely too high. However, it should be
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Figure 5.6: Box-plots giving normalized error in clock rate for each method. BEAST performed
best of these methods, though there was not a large difference between HKY and JC models. For
the fixed tree, BEAST-HKY-VAL, some error was still observed, implying that the tree building process
does not drive all or most of the resultant uncertainty.

reiterated that it is not possible to prove that the whole genome estimates were more accurate than

those from HA and NA alone. I note that, using treedater, the clockrate estimates were reasonable

for both datasets. However, the TMRCAs (for example A/H3N2 18/19) were nearly 2 times larger with

HA and NA alone. I therefore caution results obtained using only HA an NA.

For our simulations, BEAST performed the best, and HKY and JC models performed approximately

the same, despite the fact that simulations were performed according to the HKY model. This indi-
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Figure 5.7: Box-plots giving normalized error in tMRCA for each method. The error (T − T̂ ) is
normalized by epidemic durationH, in order to allow comparison of simulated epidemics with variable
durations (sometimes several times). In the best case, the mean error in tMRCA was around 25% of
the epidemic duration.

cated that, at least for our epidemic time scales, the exact substituion model was not crucial. In all,

the clock-rate estimates were reasonably good for these simulations; for BEAST and the fixed tree,

the posterior mean was less than 1% different from the true value. Treedater was found to perform

worse, with an average of 30% error in the clock rate.

Conversely, it was found that estimation of TMRCA was worse for all methods. Even for BEAST, this

could be frequently incorrect by over 30% of the epidemic duration. In all cases, inference appeared
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to be biased. Further research could be done to elucidate the causes of this bias in TMRCA. Until

further study can be performed to better understand the computational or statistical reasons for this,

I suggest that in routine epidemiology, estimation of the TMRCA should be performed with cautious

interpretation.

I note that, although filters were applied, outliers could have resulted from computational problems,

such as poor ESS for BEAST, or an insufficient number of iterations for treedater.

5.5.3 Tree Prior

It is noted that previously, general epidemic models have been utilized in Bayesian inference (Vaughan

et al.; 2019), though inference is much slower. Furthermore, epidemiological parameter values in this

case were not a subject of interest. The tree prior that was chosen to use for BEAST, the flexible

Bayesian skyride, can capture a range of dynamics, but due to the discrete nature of the process

(effective population size can vary in time intervals, which themselves have a Brownian motion prior),

it is not exact.

5.5.4 Simulations

Whilst these simulations, using the general stochastic epidemics, were more realistic than ODEs, they

were not realistic. In particular, real datasets for epidemic viruses feature considerable structure due

to importation, or population variables such as age. These simulations were, in a sense, reflective

of the simplest possible epidemic scenarios. In that sense, the performance on these simulated

datasets may be the best possible.
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Chapter 6

Exponential growth modelling of

SARS-CoV-2 during the first pandemic

wave with phylodynamics

6.1 Abstract

Phylodynamic modelling has seen increasing use for estimation of epidemiological and evolutionary

parameters of the COVID-19 pandemic. Here, a coalescent exponential growth model was employed

to estimate growth rates, doubling time, and prevalence of COVID-19 prior to 23/03/2020 in the Cardiff

postcode area in Wales. 42 publicly available SARS-CoV-2 whole genome sequences collected by

Public Health Wales (PHW) were used. Doubling time was found to be 7.12 days (95% HPD: 3.68

to 25.58), which is consistent with other reports. Prevalence was estimated to be 30,599 (95%

HPD: 801 to 222,648), which corresponded to approximately 3% (95% HPD: 0.07 to 22%) of the

local population, the mean of which is likely to be an overestimate. Importantly, I demonstrate that

prevalence estimates are sensitive to several epidemiological point estimates. These, and similar

results, should be interpreted with care, and referred to in comparison to the results of other modelling

approaches.

6.2 Introduction

Phylodynamic models have begun to demonstrate utility in estimation of the evolutionary and epi-

demiological parameters of pandemic viruses from sequence data. These approaches have previ-

ously been used in the study of the H1N1 pandemic in 2009, and considered beside other modelling
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approaches (Fraser et al.; 2009). Recent examples applied to the COVID-19 pandemic include esti-

mation of molecular clock rates (Rambaut; 2020), phylogeography (Lycett; 2020), exponential growth

models (Danesh et al.; 2020), estimation of R0 with birth-death models (Vaughan et al.; 2020), and

estimation of both incidence and prevalence (Bedford; 2020). As another example, refer to the prelim-

inary report by Volz et al. (2020), where parameters of exponential and SEIR models were estimated

with sequence data (Volz et al.; 2020).

Here I employ a coalescent model with exponential growth demographic (see (Kuhner et al.; 1998;

Drummond et al.; 2002)), as well as point estimates of epidemiologicial parameters from literature and

recent reports, to estimate prevalence of COVID-19 in the Cardiff postcode area, before 23/03/2020.

For examples of exponential growth models applied to phylodynamic inference see (Faria et al.; 2014;

Shiino et al.; 2010; Salemi et al.; 2008).

6.3 Methods

6.3.1 Sampling

Sampling bias, such as epidemiological linkage or geographical biases, can effect parameter estima-

tion for phylodynamics (de Silva, Ferguson and Fraser; 2012), as can sampling strategies (Hall et al.;

2016; Frost and Volz; 2010), such as temporal distribution (Stack et al.; 2010), and sub-sampling

(which may also be required for computational reasons). As such, 42 samples collected earlier than

23/04/20 (before lock-down) near Cardiff (identified by a CF outer postcode) were used, although epi-

demiological linkage of these samples was not known. Also, although Kingman’s coalescent (King-

man; 1982) assumes a small sample fraction, it has been shown to be fairly robust to violations of this

assumption (Fu; 2006). As such, for samples taken in South Wales, it should be noted that sampling

fraction may be higher than normal, though it is not believed that this fraction would be high enough

to substantially effect parameter estimates.

6.3.2 Investigation of temporal signal

A preliminary tree (HKY+G) was constructed with IQ-TREE (Nguyen et al.; 2015), and root-to-tip

regression with best-fitting root was performed with TempEst (Rambaut et al.; 2016).
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6.3.3 Model

A HKY DNA substitution model was used with a strict molecular clock (Hasegawa et al.; 1985), and

a coalescent exponential growth demographic model. Models were constructed and run with the

BEAST2 software (Bouckaert et al.; 2014) with a chain length of 10 million, and samples logged

every 1000 states.

6.3.4 Priors

Previous estimates of the molecular clock rate, µ, have varied. However, a previous analysis with

global sequences gave a 95% highest posterior density (HPD) interval of 0.14× 10−3 to 1.31× 10−3,

with a posterior mean of 0.8 × 10−3 (Rambaut; 2020). Given that several analyses have been pro-

duced independently (although perhaps with overlapping datasets) with values in a similar range, an

informative log-normal prior was used for clock rate, (‘real space’ mean 9.0 × 10−4; stdev 0.1). Uni-

form priors were used for exponential growth rate (r ∈ [0, 1000]) and initial effective population size,

Ne(0) ∈ [0, 1000]). For substitution model prior κ, a default log-normal (mean 1.0, stdev 1.25) was

used.

6.3.5 Prevalence calculation

When employing the coalescent model, the quantity Ne is inferred, rather than the true population

size. Ne is a quantity that is, in the presence of offspring distributions with higher variance than

that of the Poisson distribution (Fraser and Li; 2017), lower than the true population size. τ is the

generation time. As performed and suggested by Volz et al. (Bedford; 2020; Volz et al.; 2020, 2013),

as well as Bedford (Bedford; 2020), I utilized the equation derived by Fraser and Li (2017) (Fraser

and Li; 2017):

Ne(t) =
N(t)

σ2/R+R− 1

where R and σ2 are reproduction number and variance of the offspring distribution, respectively. As

performed by Bedford (Bedford; 2020), an R0 of 2.68 (Wu et al.; 2020) was used with a generation

time of 7.5 days (Li et al.; 2020). Furthermore, it was assumed that the offspring distribution (here

a negative binomial is assumed) is overdispersed, based on previous studies of SARS (Lloyd-Smith

et al.; 2005) (k̂ = 0.16), as well as a recent report (in press) from the LSHTM (k̂ = 0.1) (Endo; 2020).

Parameterized in terms of the mean R and dispersion, k, the variance of the NB is R(1+R/k) (Lloyd-

Smith; 2007). Finally, a generation time τ = 7.5 days was used.
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6.4 Results

Exponential growth rate had a posterior mean of 35.51 and 95% HPD interval of [9.89, 68.83] (ESS:

507). This growth rate is similar to that previously estimated (Bedford; 2020), corresponding to an es-

timated doubling time of 7.12 days (95% HPD: [3.68, 25.58]), which is also similar to previous epidemi-

ological estimates from Wuhan (7.4 days) (Li et al.; 2020). Effective population size had a posterior

mean of 7.5, and 95% HPD interval of [0.5, 49.9] (ESS: 583). The molecular clock-rate was estimated

to be 8.37× 10−4 (95% HPD interval: [6.82× 10−4, 9.91× 10−4]; ESS: 3958), and time to most recent

common ancestor (TMRCA) of 69.02 (95% HPD interval: [32.485, 145.3795]; ESS 408) days. Figures

6.1 and 6.2 give estimated trajectories of both effective population size, Ne(t), and prevalence, I(t).

These results suggest that, on 22/03/20, an estimated 30599.33 individuals were infected (95% HPD:

[801.82, 222648.03]). Given an approximate population size estimate of 1005334 for this area (ONS,

2015) (ONS; 2020), an approximate fraction of 3% is estimated to have been infected (95% HPD:

0.07 to 22%). Finally, in order to gauge the sensitivity of these estimates to the assumed dispersion

parameter k, Figure 6.3 gives the estimated prevalence on 22/03/20 with different values. As shown,

for values less than 0.1, estimates of prevalence can increase sharply, so point estimates are unlikely

to be suitable.

6.5 Conclusions

As noted in a comment by du Plessis (Rambaut; 2020), early estimates of clock-rate are difficult.

Here, I used a strong prior on clock-rate, so estimates should additionally be interpreted with caution.

I reiterate that these concerns also apply, if not more strongly, to demographic inference. The results

presented in particular suffer from: i) sampling biases, in particular possible epidemiological linkage,

as well as sequences sampled only from hospitals ii) poor fit of exponential model beyond the start

of the outbreak, where growth is slower than exponential iii) use of point estimates of parameters

such as k, to which results are clearly sensitive. These results should therefore be interepreted with

caution in comparison to other modelling studies.
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Figure 6.1: Estimated effective population size over time in the Cardiff postcode area before
lockdown. Black line: posterior mean. Shaded area: 95% HPD interval.
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Figure 6.2: Estimated number of infected individuals over time in the Cardiff postcode area
before lockdown. Black line: posterior mean. Shaded area: 95% HPD interval.
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Figure 6.3: Sensitivity of prevalence estimate on 22/03/20 to the assumed dispersion parameter
k of the offspring distribution. Black line: posterior mean. Shaded area: 95% HPD interval.

124



Chapter 7

Characterizing the importation of

respiratory viruses with phylogenetic

methods

7.1 Abstract

7.1.1 Background

In Wales, whole-genome sequencing (WGS) was rapidly deployed during the COVID-19 pandemic

to help characterize the genome of SARS-CoV-2, utilizing many of the techniques first developed for

epidemiological surveillance of influenza. Genomic data is unique in that it offers potential insight

into the patterns of importation of a virus into, and within, a single country. Furthermore, once impor-

tation has been characterized, epidemiological cluster investigations can be simpler, since different

imported sub-lineages can be excluded as epidemiologically unrelated. Here, I aimed to demonstrate

applicability of these methods for both influenza and SARS-CoV-2 data.

7.1.2 Methods

Here, ancestral state reconstruction methods were applied to 77 influenza A/H3N2 samples from

across Wales to examine population structure in relation to importation on a micro-scale. Then,

utilizing 6,243 publicly available SARS-CoV-2 genomes sequenced by Public Health Wales as part of

the COVID-19 pandemic response, the macro-scale trends in the rate of importation throughout the

pandemic were characterized.
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7.1.3 Results

For the influenza A/H3N2 dataset, characterization of imported sub-lineages allowed for the clarifica-

tion of the relationships between samples. Furthermore, for the COVID-19 dataset, results indicated

a trend in the rate of importation throughout the pandemic, beginning with a decrease from the early

months, followed by a peak coinciding with the relaxation of lockdown, shortly before the second

wave.

7.2 Introduction

Phylogenetic methods have found routine use in cluster investigation (Poon et al.; 2016; Kim et al.;

2017; Roy et al.; 2019; Lau et al.; 2016). However, due to the large quantities of genomic data

available for many viruses, phylogenetic methods can now be applied to the examination of both

spatio-temporal dynamics, and, pertinently, importation and exportation between nations (Dellicour

et al.; 2020; da Silva Candido et al.; 2020; Dudas et al.; 2017; Baillie et al.; 2011; Bahl et al.; 2011).

It has been demonstrated for many viruses that throughout an epidemic, repeated importation and

extinction occurs. For example, multiple importation events of Zika virus into the United States were

characterized (Grubaugh et al.; 2017) using molecular dating methods, as well as incidence and traf-

fic data. A pre-print by du Plessis et al. (2020) (du Plessis et al.; 2020) examined the importation

dynamics of SARS-CoV-2 during the first wave of the pandemic. Importantly, their study made use of

phylogenetic methods augmented with travel data. Many of these methods make use of phylogeog-

raphy, in particular those implemented in BEAST (Lemey et al.; 2009; Baele et al.; 2018). Lemey

et al. (2014) (Lemey et al.; 2014) used discrete phylogography to combine mobility data with gene

sequence data and demonstrate the impact of air travel on the dynamics of H3N2. In this study,

the authors quantify the amount of “trunk time” that is taken up by each discrete location. Simi-

larly, (Bedford et al.; 2010) define locations that dominate the evolutionary tree trunk of influenza

A (H3N2). Lemey et al. (2020) (Lemey et al.; 2020) adapted these methods to incorporate travel

histories. Interestingly, they demonstrate the Markov jump trajectory plot. Due to the rapid accumu-

lation of sequence data during the COVID-19 pandemic, efforts have also been directed toward the

development of analytical pipelines (Dellicour et al.; 2020); Dellicour et al. (2020), in their pre-print,

demonstrate their pipeline on sequence data from Belgium, and point out that Bayesian methods

may be too slow for large datasets. ‘Markov jumps’ (Minin and Suchard; 2008a,b), which represent

transitions between locations that occur on branches, or the expectation thereof, have been used in

several studies (Lemey et al.; 2014; Bahl et al.; 2011) .
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For discrete phylogeography, as a subset of discrete trait analysis (DTA) (Baele et al.; 2018) which

can also be applied to other traits (such as in (Faria et al.; 2013)), covariates can now be incorporated

(Lemey et al.; 2014). An alternative to DTA is the structured coalescent (De Maio et al.; 2015; Müller

et al.; 2017), which may not be sensitive to sampling bias in the same way as DTA (Müller et al.; 2017).

Experimental objectives

Phylogenetic methods were used for ancestral state reconstruction in order to characterize importa-

tion events. Specifically, objectives were the following:

1. Apply maximum parsimony ancestral state reconstruction techniques to characterize groups of

taxa associated with independent importations of influenza A/H3N2 during the 2018-2019 sea-

son, with particular focus on a cluster of samples identified as part of an outbreak investigation.

2. Application of these methods, as well as Bayesian modelling, on large scale SARS-CoV-2

datasets to investigate patterns of importation during the first and second waves of the COVID-

19 pandemic.

7.3 Methodology

7.3.1 Datasets

For the influenza analysis, previously described H3N2 datasets were used (see (Southgate et al.;

2020)). For the SARS-CoV-2 analysis, COG-UK (The COVID-19 Genomics UK (COG-UK) con-

sortium; 2020) phylopipe data was used up to 2020-11-09, including 104 568 genome sequences.

Sequences obtained from lighthouse labs (LHL; Pillar 2) were excluded due to skewed sampling

frequencies over time.

7.3.2 Influenza analysis

In order to characterize potentially imported lineages, ancestral state reconstruction was performed.

A phylogeny with Welsh samples and all globally available genomes with 90% coverage of HA and

60% coverage of other segments was constructed with IQTree (Nguyen et al.; 2015). Sequences

were downloaded from the NCBI influenza virus resource (Bao et al.; 2008b), comprising 1482
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(A/H3N2, 18/19) samples. A GTR substitution model and 2000 ultrafast bootstrap replicates (Hoang

et al.; 2018) was used. Multiple sequence alignment was performed as previously. Then, using char-

acter states denoting Wales and global states, maximum parsimony ancestral state reconstruction

was performed using Sankoff’s algorithm (Sankoff; 1975). In order to visualize these assignments,

reconstructions were used to decorate the nodes of a small tree constructed of Welsh samples, again

using IQTREE (Nguyen et al.; 2015). H3N2 trees were rooted using A/Perth/16/2009 as an outgroup.

7.3.3 SARS-CoV-2 importation analysis

For the first, fast analysis, a full phylogeny was obtained from the COG-UK dataset (The COVID-19

Genomics UK (COG-UK) consortium; 2020), and used gotree (https://github.com/evolbioinfo/

gotree) to perform ACCTRAN (Swofford and Maddison; 1987) ancestral state reconstruction. Maxi-

mal ‘imported’ subtrees were then extracted at ’Wales’ nodes with ’not Wales’ direct ancestors, cal-

culated using BioPython (Talevich et al.; 2012). The earliest sample date within a subtree was used

as the first realization of a sample from that subtree (not the root date).

For the second analysis, stratified sampling was performed across time (month) and location (Wales,

not Wales) to obtain 10,000 sample taxa (max sample date 2020-11-03) from the COG-UK dataset

(The COVID-19 Genomics UK (COG-UK) consortium; 2020). A tree was then obtained (also com-

puted by the COG-UK group (The COVID-19 Genomics UK (COG-UK) consortium; 2020)) for these

taxa, and used treetime (Sagulenko et al.; 2018) with a fixed clock rate (1.0 × 10−3) to obtain a time

scaled phylogeny. A 2-rate epoch model was then used (Membrebe et al.; 2019), implemented in

BEAST v1.10.4 (Suchard et al.; 2018) in order to assess differences in subsitution rate for discrete

location trait over time in two broad regimes, high and low restriction epochs, corresponding to strin-

gent lockdown and relaxation. Approximately (to the day), the transition points were 2020-03-29 and

2020-07-17, with rates r1, r2, r1.

7.4 Results

7.4.1 Visualizing influenza importation events

Figure 7.1 gives the H3N2 phylogenetic tree (as in the previous chapter), except with additional an-

cestral state reconstruction for internal nodes. This analysis indicated that the samples fall into over

30 separately imported groups, many of which were singletons, implying that influenza was seeded

into Wales several dozen times in the 2018-2019 season, as opposed to having been fewer, larger
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outbreaks. This is somewhat expected, given the strong travel links between Wales and England.

More importantly, the Usk outbreak samples all fell within a single imported lineage. Without an-

cestral state reconstruction, as demonstrated in previous chapters, some samples may appear to

be epidemiologically related when they are not. Consider the Usk outbreak group (A Usk 3851,

A Usk 3844, A Usk 3848, and A Usk 3845). In figure 7.1, 3 other samples fall within the same im-

ported sub-clade. Firstly, without this resolution, one could only compare these samples with ones

from other sub-clades, which for epidemiological investigation, would not be meaningful. Further-

more, one may be tempted to analyze these samples on a level that includes other, neighboring

samples. However, under the assumption that the reconstruction is correct, it is possible to rule out,

for example A Newport 1149, as being epidemiologically related to the Usk outbreak.

7.4.2 COVID-19 importation

During the COVID-19 pandemic, over 10,000 SARS-CoV-2 genomes were sequenced by Public

Health Wales (the sample distribution of these is given in Figure 7.2). Ancestral state reconstruction

was then applied to a larger scale, in order to assess signatures of changes in the rate of importation.

As with the influenza dataset, inimported sub-lineages were inferred using global sequences. Figure

7.4 shows the distribution of samples over time, with the distribution of the first observed time of each

imported sub-lineage, as well as their ratio. As expected, this ratio was highest during the beginning

of the pandemic, and began to decrease until around July. This decrease was expected, since be-

havioral and policy factors were in place to reduce travel and transmission of the virus. During July

and August, which coincided with relaxation of many lock-down measures, a rapid increase in this

proportion was observed. Unsurprisingly, the second wave of COVID-19 also followed quickly after.

It should be noted that this signature could also be caused by other features of the virus transmission

dynamics (see Discussion).

In order to further assess an aspect of this data, imported lineages with exactly 2 samples were

collected. For three time intervals (before 2020-04-01, before 2020-07-15, and before 2020-11-01),

the number of pairs that were concordant for local authority were counted (that is, the pairs that were

sampled from the same local authority). As shown in Table 7.1, during the second interval, the pro-

portion that were concordant was maximal. Overall, the three categories were significantly different

(Chi-square, p < 0.0001). Under some assumptions (see Discussion), it is expected that pairs of

imported samples chosen should have the same geographical co-localization. However, it should be

noted that several other factors could explain this observation.
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In order to produce a more robust estimation, and understand the uncertainty associated with the an-

cestral state reconstruction method, Bayesian estimation was performed for a fixed time-tree (10 000

taxon) analysis with a 2-epoch discrete migration model between Wales and not Wales, specifying 2

rates in 3 epochs (r1, r2, r1), as shown in 7.4. Uncertainty due to the ancestral state reconstructions

for a fixed tree was relatively small. The mean posterior rate ratio ˆ(r1/r2) = 9.13 was significantly

greater than one with estimated posterior probability (P̂ < 0.0005), as shown in Figure 7.5. The

trends observed were largely consistent with the faster ancestral state reconstruction analysis.
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Figure 7.1: Phylogenetic tree for influenza A/H3N2 (2018-2019) with ancestral state reconstruc-
tions at internal nodes. Blue nodes indicate common ancestors inferred to be in Wales, and red
those that are elsewhere globally. This reconstruction implies that influenza was seeded into Wales
at least several dozen times during the 2018-2019 season. Furthermore, the reconstruction demon-
strates a natural way to group samples in terms of potential epidemiological relatedness.

130



2.5

5.0

7.5

10.0
Density

Figure 7.2: Spatial sampling distribution. Points were jittered with Gaussian noise. Kernel density
estimate derived from unjittered points. The majority of samples came from the South Wales area,
in particular around Cardiff. Reflecting population density, most samples were collected either from
North or South Wales, with few between.

7.5 Discussion

7.5.1 Importation of influenza A/H3N2 during the 2018-2019 season

Results indicated that it is possible to further identify candidate epidemiological relevance on the

basis of sub-lineage identification. It was possible to identify the epidemiologically investigated Usk

outbreak as associated with an importation event with 3 other samples, implying that they may have
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Figure 7.3: Sub-lineage size distribution. The vast majority of sub-lineages had a single or very
few samples. In comparison, relatively few had hundreds of samples, although two outliers existed
with over 300 samples.

been, at least for some time-frame, epidemiologically relevant. This method could also be used to

discount epidemiological relationships between samples that appear to be closely related. I also note

that, in terms of population structure, influenza A (H3N2) during the 2018/2019 season represented

dozens of separate importation events. Given that many of these sub-lineages represented more

than one sample (in some cases with quite large), it is expected that a reasonable number of these

importation events were captured; if the sampling proportion of imported lineages were poor, one

would expect most imported subtrees to be singletons.

7.5.2 Importation dynamics of SARS-CoV-2 during the first and second wave

A similar approach was applied to the first analysis, on a larger scale, to capture the statistical prop-

erties of importation over time, and were able to capture broad trends. As expected, importation was

highest during the very start of the epidemic when sampling began (also a result of low sampling

proportion, and a small database of contextual sequences to allow the ASR procedure to work). In-

terestingly, signatures of rising importation proportion appeared before the onset of the second wave,
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Figure 7.4: Proportion of lineages imported over time as estimated by ancestral state recon-
struction. Here, the black line gives the number of samples that are the first in some imported
sub-lineages out of the total number of sequences in that interval. This is expected to partly reflect
the proportion of cases that were imported. As can be seen, during the start of the epidemic, this
quotient was highest, and then tapered off, as expected. During July and August, this ratio again
began to rise, which coincided with easing of lockdown restrictions. In green, indthe same inference
but made with BEAST and the time-scaled phylogeny is indicated, with intervals representing the
95% HPD interval. These intervals were relatively small, indicating that the reconstruction itself rep-
resented a relatively small source of uncertainty. In orange is the same BEAST analysis, except only
counting leaf transitions. Finally, in the background, grey denotes the sequence counts, and brown
the number of samples first in an imported subtree, as by the ASR analysis.

indicating that this analysis could be used as part of routine monitoring during pandemics to help

predict a rise in cases. These results indicate that independently imported sub-trees can be identi-

fied with reasonable certainty by maximum parsimony, especially for those nodes with high bootstrap

support, where there is not expected to be uncertainty in the tree itself. The trends indicated by the

maximum parsimony method were largely consistent with those observed from the Bayesian analy-

sis. Furthermore, for 10,000 taxa, the 95% HPD intervals were narrow.

Despite these results, some caveats should be stated. Firstly, utilizing a fixed clock rate of 1 × 10−3

is not likely to be correct, given that substitution rates can vary between populations and time scales.

Furthermore, fixed branch lengths were also utilized; a full BEAST analysis usually integrates over

branch lengths and topologies. As such, this could mask a considerable amount of uncertainty. How-

ever, it should be stated that, at least in the MP ASR analysis, most of the imported subtrees were,
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Figure 7.5: Samples from posterior distribution for rate quotient r1/r2.

Table 7.1: Contingency table for imported pairs

Concordant LA 2020-04-01 2020-07-15 2020-11-01

False 32 43 8
True 29 157 18

in fact, singletons, or few taxa. As such, it is expected that many transition events to take place close

to or on tips; tips have fixed dates, so these events are invariant to clock rates and branch lengths.

It should also be stated that, although we count transitions at nodes, in fact the transitions occur

on branches. Methods have been developed to estimate the position along a branch length when a

transition occurs (Minin and Suchard; 2008a). The 2-rate epoch model was a coarse simplification

of what is expected in reality; that is, that the importation rate changes continuously through time.

One could add more rates to improve the resolution of this inference, or in principle use an approach

similar to the Bayesian skyride (Minin et al.; 2008). However, I suggest that the 3-epoch model still

provided useful support for the changing rate of importation over time reflected in the node proportion

statistics. Furthermore, it is expected that this model provides a better fit than a single-rate model.

Recently developed methods could be used to assess model fit in this case (Baele et al.; 2012).

134



7.5.3 Conclusions

The results of this study indicate that ancestral state reconstruction can be used to identify inde-

pendently imported subtrees during an epidemic, which can assist in epidemiological investigations.

Furthermore, I provide evidence for broad trends in importation rate throughout the COVID-19 pan-

demic, which coincided with the start of the second wave.
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Chapter 8

Discussion

8.1 Bioinformatics methods for influenza virus whole genome sequenc-

ing pipelines

In this work I have developed bioinformatics strategies for RNA virus whole genome sequencing ini-

tiatives. For large-scale projects, hundreds or thousands of sequences can be processed per month,

which must be automated. Existing tools can be used to this end, though often they have not been

designed for the specific datasets at hand. Often, verifying outputs of existing software can be costly

in terms of person hours. Furthermore, often as a new virus is sequenced or the input data is ad-

justed, such as due to a change in laboratory protocols, or even sequencing instruments, existing

software may prove unsuitable. As such, providing optimized software for not just sequence assem-

bly, but also aspects of quality control, or downstream steps, can be valuable, reduce waiting times,

and costs associated with manual curation of outputs, as well as offering safeguards by automatic

flagging of samples. Furthermore, downstream tasks may also be complex, and receive less atten-

tion; defining outbreaks, finding nearest neighbors, and classifying sequences. Often, these tasks

are routine for analyses, but can be labor intensive. Here, I developed three software components:

VAPOR, for reference selection or classification of unassembled reads; CODETECTEM, for automated

detection of mixed infections or sample contaminations; NBRFIND, for range and nearest neighbor

queries.

Firstly, I designed VAPOR, a program for classifying influenza virus short read data prior to assembly.

VAPOR was designed to make use of a DBG mapping strategy, where references are queries against a

DBG built from raw reads. This process allowed us to retrieve influenza reads from nasal swab sam-

ples with carryover from the human host or bacteria, and identify a closely related sequence from a
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large database with high accuracy. For real data, most of the classifications retrieved a neighbor with

> 99.8% identity to subsequently assembled contigs. Furthermore, I found that when using VAPOR

in this way, I had an increased retrieval in the number of reads by up to 13.3%. I believe that this

approach allows for most efficient use of the available data, minimizing read loss. In principle, further

analysis, such as of variants, may also be affected by loss of reads when choosing a too-distant

reference for alignment.

Although VAPOR was applied to HIV, with 79, 448 HIV env sequence obtained from the LANL database

(Kuiken et al.; 2001) (data not shown), I believe future work could be used to demonstrate applica-

bililty to a wider range of viruses, such as SARS-CoV-2. However, the algorithm used was relatively

memory intensive; for short influenza segments this was not problematic, and could be run with a few

GB in a few minutes on a personal laptop, but for larger genomes, such as SARS-CoV-2, this may

require more memory. Furthermore, future work could be used to improve on the algorithm, since

much research has recently been performed into data structures for pan-genomicss.

Occasionally, samples can be contaminated, or be isolated from legitimate coinfections. It is there-

fore important to identify these samples, both for quality control purposes, but also in order to detect

clinically or epidemiologically relevant samples. Since, for influenza, mixed infections are the mecha-

nism by which pandemic strains arise, it is important to identify these samples, especially when they

have mixed host origin. Furthermore, mixed samples could bias downstream analyses, and lead to

chimeric or ambiguous assemblies. As such, I developed a mixture modelling approach using EM for

mixed sample identification. In simulation, even with simulated quasispecies, I found that estimates

of the mixture parameter π could be made generally to within 1% of the true value, although this did

not account for uneven sequencing depth across the genome. Additionally, I identified 10 potential

mixtures in the real datasets, 4 of which were found to have a high proportion. I developed a hypoth-

esis test approach to evaluate the probabililty under the null of a given mixture, which was found to

perform reasonably well, but was probably too sensitive. I made the additional suggestion that the

mixture proportion π should also be larger than some pre-determined threshold, and that candidate

coinfections could also be subject to SNV calling with LoFreq (Wilm et al.; 2012).

Future work on CODETECTEM should include implementation in C++ for speed, as well as software

functionality for automatically creating test datasets with simulated mixtures of real data, in order to

assess good threshold for flagging samples. Furthermore, some mixtures could, in principle, rep-
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resent more than two genomes; as such, future implementations could leverage approaches from

general mixture modelling studies targetting intrahost populations, such as in (Zagordi et al.; 2011).

For nearest neighbor search and range query, I developed an approach based on the diagonal transi-

tion algorithm for calculating SNP distances under a cost function where indels are twice as costly as

substitutions. I found that, although the cost function was superior to the edit distance (the former was

in agreement with SNP distances calculated from a MAFFT (Katoh et al.; 2005) MSA), and speed

was on average comparable to that of edlib (Šošić and Šikić; 2017), for some outliers, this approach

was considerably slower. Since I required high specificity and sensitivity, I found that basic k-mer fil-

tering was unlikely to be adequate. Furthermore, an approach based on radix trees that I developed

was also unlikely to be of much use since the compression achieved was only around 2X, which was

not worth the cost associated with tree building and loss of simple parallelizability. On average, this

approach was able to search 5000 reference sequences for a single query in under 50 seconds. As

such, I expect searching hundreds of thousands of sequences to take around 15 minutes, which may

or may not be acceptable given the available CPU resources.

Future work for NBRFIND could make use of recent developments in data structures for pan-genomics,

as frequently applied in bacterial genomics. However, since ultra-high accuracy is desired, and the

ability to account for variable coverage, other methods may also be difficult. One option is to explore

approaches such as those used by MUMmer (Marçais et al.; 2018).

To my knowledge, this pipeline is the first where individual software components have been designed

specifically for the task. In future, I aim to comlete implementation a pipeline using NextFlow (Di Tom-

maso et al.; 2017), with each software component acting as a module.

8.2 Whole genome sequencing for virus phylogenetics

With growing datasets and increasingly sophisticated phylogenetic and population genetic methods

for analysis of virus genome sequence data, expertise and requirements increase in tandem. Here, I

examined aspects of this: data requirements and resolution for phylogeny construction and molecu-

lar dating, in order to assess potential and limitations of data and time regimes for routine molecular

epidemiology; exponential growth modelling for pandemic viruses; methods for assessing signatures

of importation for both examination of imported subtrees for the micro-scale, as well as examination
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of macro-scale signatures of importation during the first and second wave of the COVID-19 pandemic.

In this section, I firstly examined the resolution achievable for influenza virus phylogenetics with tradi-

tional HA-NA sequencing compared to WGS. Whilst it may seem obvious that the whole genome pro-

vides more information than 2 genes, without benchmarking the quantitative difference is not known.

At the time of writing, the benefits of WGS were initially described, but WGS had not become any

way as near as widespread as HA-NA sequencing. I found that, as expected, that more sequences

provided better resolution, up to around 5 of the 8. Practically speaking, since WGS often results in

dropped segments, this is a reasonable expectation. At this point, bootstrap support for trees became

greatest. With HA-NA only, resolution is not sufficient to, for example, resolve outbreak-associated

clades. I reiterate the calls for WGS to be performed during routine surveillance of influenza.

Furthermore, with simulated idealized epidemics, typically a few months in duration, I examine the

time frames and error in molecular clock estimates obtained using WGS data for influenza. Impor-

tantly, I found that the error in estimated TMRCA tended to be on the order of a third of the epidemic

duration. As such, I recommend that caution be applied to methods that rely on molecular clock

estimates for applications that require precision. For example, in cluster investigation, the TMRCA

estimated for a small number of samples should be assumed to be imprecise. Again, this may be

as expected, given the considerable uncertainty and assumptions (that are rarely satisfied) that go

into molecular clock estimates, however, it is important to quantify. Clock rates estimated from these

simulations varied with different tools; error ranged from around approximately 30% for treedater, 3%

with treetime, less than 1% with BEAST, and 0.08% for a fixed known tree with BEAST. As such, I

found that BEAST performed best for these simulated epidemics, although believe for real data these

error rates will be much higher. In addition, I found that with HA and NA alone, posterior distributions

sampled by BEAST had much higher variance than those for the whole genome. Whilst these sim-

ulations were unrealistic, they represent the best case; performance on data from real eidemics is

likely to be worse. Here, in summary, I believe I have made compelling argument for the superiority

of WGS over HA-NA sequencing alone.

Next, I performed exponential growth modelling for the first wave of the COVID-19 pandemic using

42 SARS-CoV-2 genomes from the CF postcode area with BEAST. I found a consistent doubling

time (approximately a week) with previously reported figures for exponential growth phase. I applied

methodology for relating the effective population size Ne(t) to the prevalance I(t). However, I identify
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several flaws with this procedure: firstly, 95% HPD intervals are extremely wide (801 to 200,000), and

secondly, they are sensitive on epidemiological point estimates of the overdispersion parameter k of

the offspring distribution. I demonstrate that for smaller values of k, I(t) becomes very large, and

variance increases. I believe that these methods can contribute to other methods for estimating ex-

ponential growth rates and prevalence using phylodynamics, but should probably not be considered

strong evidence. I also note that successful phylodynamic estimation depends on accurate clock rate

estimation.

In the final results chapter, I demonstrate the successful application of phylodynamic methods for

characterizing importation in two contexts. In the first case, I show that basic methods for ancestral

state reconstruction (ASR) can allow us to isolate subtrees that may have been imported, augmenting

existing cluster investigation procedures. This procedure can be used to define imported sublineages,

and in some cases, exclude the possibility of epidemiological linkage. Although the maximum par-

simony ASR procedure may be a heuristic, and may also be sensitive to sampling, in many ways it

is a formalization of what is already done by hand; that is, sequenced sampes will be examined by

an expert on a tree in context with global samples, and if enough global sequences sit between two

candidates, their linkage may be considered unlikely. In many ways, since this study was performed,

a procedure of this type has been (and is used at the time of writing) used for defining SARS-CoV-

2 UK lineages (The COVID-19 Genomics UK (COG-UK) consortium; 2020). In the second case, I

demonstrate how these methods can be used to cature bulk trends over time. I compared the MP

ASR method to a more sophisticated epoch model with BEAST. These results were largely consis-

tent; in both cases, spikes in importation were captured immediately preceding the first and second

waves. I believe that these methods could be developed over time and be used routinely, possibly to

inform policy makers, and assist in the prediction of epidemic growth.

In total, I argue that although these methods can provide powerful insights, phylodynamic methods

represent an additional layer of complexity on top of fundamental procedures such as sampling and

clock estimation, which can easily go wrong. If these procedures are not specified correctly, the entire

procedure will fail too. Robust benchmarking and refinement of methodology is crucial going forward,

especially for automation. I also demonstrate that the cutting edge ecosystem of phylodynamic meth-

ods only become unlocked once sufficient genome content is sequenced. At least for influenza and

SARS-CoV-2, this requires whole genome sequencing, which I recommend as the standard.
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M. R., White, S., Thézé, J., Magnani, D. M. et al. (2017). Genomic epidemiology reveals multiple

introductions of zika virus into the united states, Nature 546(7658): 401–405.

Guindon, S. (2010). Bayesian estimation of divergence times from large sequence alignments, Molec-

ular Biology and Evolution 27(8): 1768–1781.

Guindon, S. and Gascuel, O. (2019). Numerical optimization techniques in maximum likelihood tree

inference, Bioinformatics and Phylogenetics, Springer, pp. 21–38.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences : computer science and computa-

tional biology, Cambridge University Press.

153



Haeupler, B., Rubinstein, A. and Shahrasbi, A. (2019). Near-linear time insertion-deletion codes

and (1+ ε)-approximating edit distance via indexing, Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing, pp. 697–708.

Hall, M. D., Woolhouse, M. E. and Rambaut, A. (2016). The effects of sampling strategy on the quality

of reconstruction of viral population dynamics using Bayesian skyline family coalescent methods:

A simulation study, Virus evolution 2(1).

Hanov, S. (2013). Fast and easy Levenshtein distance using a trie, November 30: 4–30.

Hasegawa, M., Kishino, H. and Yano, T.-a. (1985). Dating of the human-ape splitting by a molecular

clock of mitochondrial DNA, Journal of molecular evolution 22(2): 160–174.

Hirschberg, D. S. (1975). A linear space algorithm for computing maximal common subsequences,

Communications of the ACM 18(6): 341–343.
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