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This work studies outcome uncertainty and competitive balance from a broad perspective. It considers
four sports with varying scoring rates, from soccer with typically three goals per match to netball with
one hundred goals per match. Within a general modelling framework for a two-competitor contest, we
argue that outcome uncertainty, the extent to which the outcome of a contest is unpredictable, depends
on scoring rate, on strength variation and on score dependence. Score dependence is essentially the
tendency for scores to alternate because possession alternates and possession is advantageous. We regard
competitive balance as lack of variation in strength or skill, so that when strength variation is large
competitive balance is low and vice versa. Thus, we argue that the outcome of a contest depends on
skill, scoring rate, score dependence and chance. This description of outcome is useful because it informs
policy-making in sport about the design of scoring systems and the control of competitive imbalance.
Broadly, we find that: soccer is relatively competitively unbalanced but outcomes are uncertain because
the scoring rate is low; the Australian football league is competitively balanced and so outcomes are
uncertain in spite of the high scoring rate in this sport; international rugby matches are relatively neither
competitive nor uncertain so that little is left to chance; and netball matches have uncertain outcomes
because scores are positively dependent.
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1. Introduction

In this paper, we model outcome uncertainty for invasive sports and suppose that outcome uncertainty
depends systematically upon three factors: the scoring rate of the sport, variation in the strengths or skill
of the competitors and score dependence. We argue that beyond this systematic variation in outcome the
result of a contest is down to chance (Reep and Benjamin, 1968). We explore these ideas in the context
of a typical match between two competitors (teams), drawn from a set of teams. We study three codes
of football with different scoring rates: association football (soccer); rugby football union (rugby); and
Australian rules football (footy). Rugby has a scoring rate that is roughly four times that of soccer and
footy twice that of rugby. The scoring rate in rugby has increased over time. We also consider a fourth
sport, netball, which has a very high scoring rate (about 40 times that of soccer). In this sport, we can
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2 P. SCARF ET AL.

Fig. 1. Mean total number of goals per match by year in international soccer, for all matches from 24 December 1944 to 25 May
2016 (data kindly supplied by Ian McHale).

model score dependence in an interesting way. On the basis of the findings from our analysis, the paper
discusses the implications for rule modifications and the design of new formats.

Formally, we regard outcome uncertainty as quantifying the unpredictability of the outcome in a
single contest or match between n competitors, drawn from a set of m competitors (m ≥ n). The
random variable X1, ..., Xn are the scores of the competitors in the match. Note, more generally, a
score Xi(t) for t ∈ [0, T] is a counting process (Andersen et al., 1993; Dixon and Robinson; 1998).
Quantifying uncertainty with probability (Lindley, 2000), outcome uncertainty is then precisely the set
of probabilities (Pr(Xi > maxi �=jXj), i = 1, ..., n), that is, the win probabilities of each of the competitors,
noting that these probabilities will not add to one if a tied outcome (draw) is possible. We will consider
the two-competitor case, and outcome uncertainty (Pr(X1 > X2), Pr(X1 < X2)). Thus, for our purpose,
outcome will be one of win, draw or loss. We use this definition because we take the perspective of a
consumer of sport who is principally interested in the outcome rather than the score, although there exist
consumers who are interested in exact scores, e.g. in betting markets (Dixon and Coles, 1997).

The paper is concerned with outcome uncertainty for a typical match, taking a match as the basic
unit of consumption of sport (Beech and Chadwick, 2013). We suppose the typical match is one of a
set of matches played in a tournament, however the tournament is structured. Outcome uncertainties
for tournaments (sets of matches) can be defined (e.g. Utt and Fort, 2002; Jessop, 2006; Owen et
al., 2007; Manasis et al., 2013), but for clarity of focus, we omit their consideration. Furthermore,
given the sports we consider in this paper, we focus on the two-competitor match, although the results
may be generalized (n > 2). We shall use the terms contest and match, and competitor and team,
interchangeably.

As stated above, we propose that scoring rate, variation in strength and score dependence are the
systematic components of outcome uncertainty. Scoring rate is the mean number of scores per match.
More precisely, the scoring rate in a match is the expectation of the counting process X(t), E(X(t)),
where X is the total score. It is the sum of the scoring intensities of the competitors or tendencies of
competitors to score in match. Thus, for international soccer for example, the scoring rate in a typical
match is approximately three (goals per match), see Fig. 1.

Strengths (or skill) underlie the scoring rates of competitors in a match, and we regard these strengths
as latent quantities, estimable but not strictly observable. Then, strength variation is the variability of
strengths (across competitors). The inverse of this variability will then quantify competitive balance,
so that strength variation is competitive imbalance. However, as strengths are latent, the estimation of
strength variation is not generally straightforward. Often, it is simpler to by-pass a match-outcome model
(and consequently a tournament-outcome model), and directly measure competitive balance using sets
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ON SKILL AND CHANCE IN SPORT 3

of match outcomes. Thus, much of the literature on competitive balance is concerned with defining
competitive balance metrics on the outcomes of a round-robin tournament or league, see for example
the discussion of ‘mid-term’ competitive balance in Pawlowski and Nalbantis (2019). The alternative
is the estimation of latent strengths using a match-outcome model, followed by the measurement of
the variation of those strengths (e.g. Koning, 2000). Conceptually, we use this latter approach because
it is then clear what is meant by strength, strength variation and competitive balance. Nonetheless,
practically, direct estimation (from tournament outcomes) and indirect estimation (via a match-outcome
model) are equivalent. Indeed, where strengths are multivariate (e.g. when a team possesses an attack
strength and a defense strength), then Lee (1997) argues that overall strengths (and equivalently team
ratings and implied rankings) are most conveniently estimated by simulating a round-robin tournament
using a match outcome model and estimated strength under the model. Then, for example, a convenient
measure of strength variation is the coefficient of variation of the number of wins (halving ties).
Nonetheless, which is the best way to measure competitive balance is not our concern here. We merely
suppose that strength variation exists and that it should be modelled and its influence on outcome
uncertainty assessed.

Finally, we argue that score dependence also influences outcome uncertainty. Score dependence is
the association between the scores of the competitors in a match that is induced by the structure and
rules of the sport. Thus, for example, catch-up rules may induce a positive dependence between scores.
A catch-up rule is one in which the restart of play following a score advantages the conceding competitor.
Thus, in basketball for example, possession at the restart is advantageous because the team in possession
typically scores, and the conceder restarts play with possession. The measurement of score dependence
again requires a model. To measure it directly would require repetitions of an identical match, which
never occurs in practice not least because in reality strengths are time-varying (Scarf and Rangel, 2017).

By studying these aspects of outcome uncertainty, we inform debates on the contributions of skill
and chance to outcome (see e.g. Rendleman Jr, 2020) and on what is it that consumers of sport desire. If
consumers seek the surprise and suspense that accrues from a close contest (Ely et al., 2015; Bizzozero et
al., 2016; Mutz and Wahnschaffe, 2016), then close contests are a good thing (Salaga and Tainsky, 2015),
and administrators should not only manage strength variation, through for example salary caps and the
draft (e.g. Késenne, 2000; Szymanski, 2003; Booth, 2005; Dietl et al., 2011; Lenten, 2016), but also
seek to manage scoring rate. If, on the other hand, consumers value scoring and other demonstrations of
skill and athleticism (Buraimo and Simmons, 2015; Caruso et al., 2019), then administrators need not be
so concerned with managing competitive balance. It would seem self-evident that consumers want both,
and there is evidence of this for some sports e.g. American football (Paul and Weinbach, 2007; Paul et
al., 2011). Nonetheless, this may not be universal across sports. Also, it may be important to segment
consumers, because there is evidence that partisan consumers (e.g. home team supporters in attendance)
may have a different perspective to impartial consumers (Buraimo and Simmons, 2008; Coates and
Humphreys, 2012). Furthermore, broadcast audience may dominate spectators, both in number and
revenue generation, and they may have different preferences (Buraimo and Simmons, 2009; Cox, 2018).

We draw on previous analyses of rugby (Scarf et al., 2019) and netball (Baker et al., 2021), and of
course soccer, for which there are many contributions (e.g. Karlis and Ntzoufras, 2009; Stefani, 2009;
Baker and McHale, 2018; Diniz et al., 2019). We also develop a new model for footy. The paper therefore
also makes a contribution to modelling footy scores per se that might be useful for forecasting scores in
that sport.

To our knowledge, this is the first work that studies skill and chance and hence competitive balance
and outcome uncertainty in a mathematical framework and across a broad range of sports. Very many
papers consider competitive balance and outcome uncertainty for soccer, where scoring rates are not
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4 P. SCARF ET AL.

Fig. 2. Mean total number of scores (tries plus penalties plus conversions plus drop-goals) per match by year in international
rugby.

increasing, and papers that account for the influence of scoring rate on competitive balance, like Salaga
and Fort (2017) for example, are few. It was the observation that the scoring rate in international rugby
has increased (Fig. 2) that motivated this work. This is because it was only then apparent that, given
fixed relative strengths (scoring rates), the scores of competitors in a match will tend to diverge as the
match progresses and hence as the scoring rate increases. Thus, as the scoring rate increases, match
outcomes tend to become more certain. We describe this scoring rate, outcome-uncertainty association,
and investigate to what extent score dependence moderates it, and what is the nature of competitive
balance.

We explore the issues of interest within the framework of a mathematical model of match scores,
which in its basic form is the Poisson match. This model is outlined in the next section. Then, in Section
3 we consider score dependence. Therein, we describe some models of scores with dependence. One in
particular is fitted to Australian Football League results. We also look at a model with score dependence
that is motivated by netball. In the final subsection of Section 3, we classify the sports we discuss by
their levels of scoring rate, score dependence and competitive balance. We finish with some general
observations on the implications for the design of sports contests.

2. The Poisson-match

A general framework for modelling strength variation is proposed in Maher (1982). Therein, competitor
strengths are multivariate, so that in a match between team i and team j the respective scoring rates are
(αi/βj, αj/βi) for some (i �= j ∈ (1, ..., m)), ignoring home-field advantage. Thus, the scoring rate of
team i depends on its own attack strength (αi > 0) and the defensive strength (βj > 0) of its opponent.
Then, in this general framework, strength variation in this match is the variability of the strengths Sij =
{(αi, βi, αj, βj), i �= j ∈ (1, ..., m)}. The scores themselves (at full time) are independent Poisson random
variables: Xi ∼ Po(αi/βj), Xj ∼ Po(αj/βi). This is the Poisson-match. It is a particular case of a negative
binomial match (McHale and Scarf, 2011) or more generally a match with two counting processes that
generate scores (e.g. Boshnakov et al., 2017; Baker and Kharrat, 2018). Other refinements of the basic
model have been proposed in which, for example, strengths are time-varying (e.g. Crowder et al., 2002;
Owen, 2011; Koopman and Lit, 2015; Percy, 2015), or in which scores are dependent (e.g. Dixon and
Coles, 1997; Karlis and Nzoutfras , 2003; McHale and Scarf, 2007, 2011). We will consider models
with dependent scores later in the paper. We shall suppose throughout that strengths are time varying.

A measure of variability of strength Vij might defined on the matrix Sij. Or V might be defined on
the matrix of strengths of all m teams in the tournament, S = {(αi, βi), i = 1, ..., m}. Thus, we suppose
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ON SKILL AND CHANCE IN SPORT 5

Fig. 3. Outcome uncertainty in the Poisson match, X1 ∼ Po(λ/(1 + ε)), X2 ∼ Po(ελ/(1 + ε)), independent, as a function of
overall scoring rate in the match, λ.

that Vij then quantifies strength variation for a particular match i versus j and V quantifies the strength
variation among m teams in a tournament for which a typical match is a contest between (any) two teams
in this tournament. In this way, one can anticipate whether a particular match between two particular
teams will be uncertain or suspenseful or might give rise to a surprising result, or whether the matches
(collectively) in a tournament will be uncertain, etc.

Thus, in our framework, strength is necessarily relative, strength is the relative tendency to score,
strengths are latent, competitive imbalance is strength variation, and outcome uncertainty depends
on both strength variation and the scoring rate. Figure 3 illustrates the relationship between outcome
uncertainty and strength variation and scoring rate for a Poisson match in which the overall scoring rate
is λ, team 2 is ε (ε > 1) times as strong as team 1, so that scoring rates of team 1 and 2 are λ/(1 + ε)

and ελ/(1 + ε), respectively.
Some interesting observations follow from Fig. 3. For a given strength ratio ε > 1 (noting that in

reality two competitors cannot be of equal strength), there exists a scoring rate that maximizes outcome
uncertainty. As the scoring rate increases above this the outcome becomes more certain, in favour of
the stronger competitor. At the other extreme (very low scoring rate) a draw is inevitable. Interestingly,
scoring in soccer is such that outcome uncertainty is roughly maximized, arguing that a typical soccer
match has an expected outcome 1–2 (λ = 3, ε = 2) (from the point of view of the weaker side). Thus,
implicitly, soccer is the sport that favors the underdog to the greatest extent. In the Poisson match, if the
match duration is allowed to vary and scoring rates are specified per unit of time rather than per unit of
match-duration, then an increasing scoring rate is equivalent to an increasing match-duration. Thus, for
a sport with a scoring rate that is not low, that is, with the exception of soccer, shortening a match will
tend to increase outcome uncertainty (c.f. t20 cricket, Cannonier et al., 2015).

Figure 4 shows the corresponding plot when the scores have independent negative binomial
distributions. These plots describe outcome uncertainty when scores are overdispersed relative to the
Poisson match. We only consider the case ε = 2 (team 2 scores at twice the rate of team 1), so that we
can show the outcome uncertainty for different values of the overdispersion parameter, θ . To specify θ ,
we interpret a negative binomial distribution as a gamma-Poisson mixture. Then,

√
θ is the coefficient of

variation of the gamma distribution of the Poisson mean. Thus, supposing that coefficients of variation
of 0.1, 0.2 and 0.4 are small, moderate and large, we use the corresponding values of θ (0.01, 0.04
and 0.16). The case θ = 0 is the Poisson match (solid line in Fig. 3). Figure 4 indicates that over-
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6 P. SCARF ET AL.

Fig. 4. Outcome uncertainty as a function of overall scoring rate in the match, λ, for the negative-binomial-match, X1 ∼
NB(λ/3, θ), X2 ∼ NB(2λ/3, θ), such that X1 and X2 have means λ and 2λ and coefficients of variation

√
θ + 3/λ and

√
θ + 3/2λ,

respectively, for various values of the overdispersion parameter θ . Note, when θ = 0, there is no overdispersion and X1 and X2
are Poisson.

dispersion weakens the relationship between scoring rate and outcome uncertainty, and a high level of
overdispersion moderates the effect of increasing scoring rate on the win-probability quite strongly.

One may contrast these subtle influences of scoring rate with the case in which scores are
ignored, and outcomes are win or loss. Then, the Bradley-Terry model (Bradley and Terry, 1952),
and variations of it (e.g. Glickman, 2008; Dewart and Gillard, 2019; Baker and Scarf, 2021), is
a convenient quantification of outcome uncertainty. Therein, given two competitors with strengths
η1, η2 > 0, the probability that team 1 wins depends only on strength variation ε = η2/η1, that is,
Pr(win) = η1/(η1 + η2) = 1/(1 + ε). In this modelling framework, competitive balance (strength
variation) and outcome uncertainty are equivalent. Therefore, in a win-loss outcome model, competitive
balance is outcome uncertainty. In a model of scores, competitive balance is one of a number of factors
that contributes to outcome uncertainty.

3. Score dependence

It is now interesting to consider the extent to which the effect of scoring rate on outcome uncertainty
is moderated by dependence between scores, particularly for high scoring rate sports. Australian rules
football, or footy, is a sport with a scoring rate that is higher than rugby. In this section, we investigate
score dependence, and whether it exists, for this sport. Following the footy analysis, we also briefly
discuss a bivariate model with score dependence for netball, a very high scoring rate sport. Score
dependence in soccer has been considered by others and we do not repeat that. For brevity, we do
not analyze score dependence in rugby.

3.1 Australian rules football

The Australian Football League (AFL) is the professional league for Australian rules football, or footy.
The results of all matches are available (AFL, 2019), and the tournament format, team membership and
team strengths have been relatively stable since its inception in 1897 (Fig. 5). There are two modes
of scoring, a goal worth six points and a behind worth one point. Scoring rates have been decreasing
since the 1980s (Fig. 6), the period in which professionalism, the draft and salary caps were introduced
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ON SKILL AND CHANCE IN SPORT 7

Fig. 5. The evolution of strength of teams over 122 years of AFL. More precisely, log2(ηit/ηt) versus t, where ηit is the annual
mean points-value of scores per match for team i in year t and ηt is the annual mean points value of scores of all teams in year t.
For each individual plot, the horizontal scale is 1897–2019 and the vertical scale is −1 to +1.

Fig. 6. Mean points/goals/behinds per match per team by year.

(Clarke, 1993). As strengths are relative, we have plotted a proxy for strength (relative scoring rate) on
a common scale (Fig. 5). The absence of dominance is apparent.

We use recent seasons (2002–2019) to fit models of interest. As there are two modes of scoring, the
score is a four-tuple and so we use a four-variate Poisson distribution to model the score, to estimate
team strengths and to assess the level of score dependence. The models are described next.

3.2 Multivariate Poisson distributions

The Poisson match can be generalized to allow for dependence and for multiple scoring modes.
Considering dependence first, the bivariate Poisson (Karlis and Nzoutfras, 2003) provides an elegant
solution to modelling positive dependence. Consider three independent Poisson random variables,
X1, X2, XD, with means μ1, μ2, μD > 0. Then X = X1 + XD and Y = X2 + XD are each necessarily
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8 P. SCARF ET AL.

Poisson, with means μX = μ1 + μD and μY = μ2 + μD, joint distribution

pXY

(
x, y|μ1, μ2, μD

) = exp
(−μ1 − μ2 − μD

) μx
1

x!

μ
y
2

y!

min(x,y)∑
r=0

x! y!

r! (x − r) ! (y − r) !

(
μ3

μ1μ2

)r

, (1)

covariance μD, and hence correlation

ρ = μD/

√(
μ1 + μD

) (
μ2 + μD

)
> 0. (2)

Thus, if the means are equal (μ1 = μ2 = μD) then ρ = 1/2. When μD = 0, (1) reverts to the case
of two independent Poisson distributions, the Poisson match.

For example, with μ1 = αi/βj and μ2 = αj/βi, team i scores X1 goals due to its attacking strength
and its opponent’s defensive weakness, and vice versa, and both teams score X3 goals due to some
common cause. Structural aspects of the sport or environmental conditions (e.g. state of the pitch or
weather) or coincident strategies (e.g. attacking play) might underlie a common cause. The model can
be further generalized to allow for negative dependence (Karlis and Ntzoufras, 2005), and for ‘diagonal
inflation’ (more tied results than otherwise expected), although ‘diagonal deflation’ (fewer tied results)
might be appropriate in some sports. Other bivariate Poisson models might also be used (Inouye et al.,
2017). Negative dependence is not really our concern in this paper.

Turning now to multiple scoring modes, these are most easily modeled using multiple Poisson
matches, one for each mode, so that modes and team scores are independent. Thus, each team might
have an attack-strength and a defense strength for each mode M: (αM

i , βM
i ) (Baker and McHale, 2013;

Scarf et al., 2019). Team-wise positive dependence can be modeled for each mode using (1). Mode-
dependence might be treated similarly, although negative dependence, whereby more of one type of
score is associated with fewer of the other, may be more plausible in practice than positive dependence.
This then would necessitate the specification of a suitable multivariate Poisson distribution.

Models with positive score dependence are fitted to the footy results in Section 3.6. However, next
we consider how score dependence moderates outcome uncertainty.

3.3 Outcome uncertainty for the bivariate Poisson

We consider the bivariate Poisson model with joint distribution (1). It is convenient to use X and Y to
denote the scores of teams 1 and 2. However, the reader should be aware that this is a variation on the
notation used in Section 2 and in Fig. 3 in particular. Our purpose here is to calculate Pr(X = Y) and
Pr(X > Y) given the scoring rate λ, relative strength of teams ε and correlation ρ. We suppose that the
strengths of teams only impact upon the scoring components X1 and X2 and that all three components,
that is, including XD, impacts upon the scoring rate. Thus, ε = μ2/μ1 and

λ = E(X) + E(Y) = μ1 + μ2 + 2μD. (3)

The correlation is specified in expression (2). λ, ε, ρ then imply μ1, μ2, μD, which can be calculated
with these three equations. Then it is simplest to simulate X1, X2, XD and hence X and Y .

In Fig. 7, we plot Pr(X = Y) and Pr(X > Y) as a function of λ for given ε and ρ. The Poisson
match (independent scores) (ρ = 0) is included there. We can see that, for a given competitive balance
(strength variation), for a high-scoring sport to possess a level of outcome uncertainty that is typical
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ON SKILL AND CHANCE IN SPORT 9

Fig. 7 Outcome uncertainty in the bivariate Poisson for strength ratio ε = 2; Pr(X = Y) (left) and Pr(X > Y) (right) against the
match scoring rate λ for various values of ρ = corr(X, Y).

of soccer the positive dependence must be large. We can quantify this statement more precisely as
follows. The contest with μ1 = 1, μ2 = 2, μD = 0, calling this the (1–2)-Poisson match, has outcome
uncertainty that is equal to the bivariate Poisson μ1 = 1, μ2 = 2, μD = (λ − 3)/2, for any λ > 0.
This is because the score component X3 with mean μ3 is common to both scores and so it is X1, X2
that determines the outcome. This dependent contest has scoring rate λ (from 3) and correlation ρ =
(λ − 3)/

√
(λ − 1)(λ + 1) ≈ 1 − 3/λ (from expression 2). Thus, the (λ = 6, ε = 2, ρ = 1/2)-contest,

the (λ = 12, ε = 2, ρ = 3/4)-contest, and the (λ = 24, ε = 2, ρ = 7/8)-contest, etc., all have the same
outcome uncertainty (approximately) as the (1,2)-Poisson match.

On this basis, it seems implausible that a high level of competitive imbalance, frequent scoring and
suspense and surprise can co-exist in a sport. Footy is high scoring, arguably a 24-scores contest (Fig.
6). We investigate competitive balance and score dependence in this sport next.

We make one remark before we turn to that. Another possible source of outcome uncertainty is that
‘on any given Sunday’ (Thompson, 1975) competitors do not play according to their strength. Short-
term strength variation can explain over-dispersion (relative to the Poisson distribution) and naturally
motivates the negative-binomial match. Furthermore, comparison of Figs 4 and 7 indicate that over-
dispersion has a similar moderating effect on the win-probability, scoring-rate relationship but without
the drawback of increasing the draw-probability. On the other hand, one may be interpreting chance or
noise as short-term strength variation and thus be over-explaining it (Baker and McHale, 2018).

3.4 Model fitting

We must accept that the strengths of competitors evolve over time. An effective means of handling slow
evolution of strengths is the discounted likelihood method of Dixon and Coles (1997). Strengths are
estimated at successive time-steps (e.g. at the end of each season or each round of matches during a
season). At each time-step, the results of prior matches contribute to the likelihood function, but their
likelihood contributions are weighted (discounted), so that more recent matches are more important and
matches in the distant past carry little or no weight. A discount parameter φ can be optimized using, say,
one-step-ahead forecasting performance. Standard model selection criteria (e.g. AIC or BIC) cannot
be used because the ‘effective’ dataset varies with the discount factor. At each time-step, strengths
estimates can be expressed relative to the mean strength, so the evolution of strengths over time of a set
of competitors can be presented graphically. Strength estimates can also be smoothed (e.g. Baker and
McHale, 2014).
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10 P. SCARF ET AL.

Different discounting schemes are possible: e.g. exponential discounting (fast decay of weights);
power-law discounting (slow decay of weights); block discounting (zero weight for distant matches,
equal weight for recent matches). Strength estimates under the first will have greater currency than
under the second, but less precision because the size of the effective dataset will tend to be smaller.
Thus, at time-step t, a match played at time τ between teams i and j with score (xi, yj) is discounted by

multiplying its log-likelihood contribution log pXY(xi, yj) by e−φ(t−τ), (1 + (t − τ)/12)φ , or 1 if t − τ <

φ and 0 otherwise. Where a new team enters the dataset at some time, then one can postpone estimation
for it until sufficient results have accrued, or one can use shrinkage (e.g. Baker and McHale, 2017) so
that new teams perform like an average team. This is not a significant issue in the AFL dataset.

It is sensible to parameterize strengths as (αi = eai , βi = ebi) so that there are no boundary
conditions (positivity) on the parameters ai and bi. Then, numerical problems with log-likelihood
maximization can be avoided. We use this exponential parameterization of strength for estimation but
prefer the (αi, βi) parameterization for explanation.

Strength parameters can only be determined up to a common constant because strengths in the
models are relative. Thus, for example, the match outcome probability is the same for teams with
overall strengths η1 and η2 as for teams with overall strengths κη1 and κη2 (viz, Bradley-Terry outcome
probabilities η1/(η1 + η2) and η2/(η1 + η2)). Therefore, a parameter constraint is required, such as
α1 = 1,

∑m
i=1αi = 1/m, or

∑m
i=1αi = x where x is the mean score per team over all matches (a known

constant). In the last of these specifications, attack strengths are then always expressed relative to x. For
the footy analysis that follows, we label the current strongest team as team 1 and set α1 = 12 (and hence
a1 = log 12), since typically a team will score twelve goals in a match.

Finally, parsimonious models may be desirable. For a Poisson match, one can make the attack- to
defense-strength ratio a constant across teams: βi = ecαi. For the multiple-mode Poisson match, mode-
strengths can be handled similarly, so that common to all teams αM

i = ecMαi.

3.5 Modelling home advantage in AFL

To estimate team strengths well, it is necessary to estimate the effect of home advantage. In AFL, home
advantage is a complicated issue because some teams share grounds and distances travelled are skewed.
Careful coding of home, away and neutral matches for teams is required (Ryall and Bedford, 2010). For
goals (scoring-mode one), we use two parameters. The first parameter (δ) models ground familiarity
and crowd factors, inflating the goal-attack strength of the home team (multiplying by the factor eδ),
deflating it for the away team (multiplying by the factor e−δ), and having no effect at a neutral or shared
ground. Stefani and Clarke (1992) use a similar approach but for the winning margin.

A second parameter (γ ) models a travel effect, noting that a home team may travel due to the
complicated home-ground assignments. We follow Ryall and Bedford (2010) and suppose that the travel
effect only acts when a team has travelled between states, and if the team travels a distance d inter-state
then its goal-attack strength is reduced by the multiplicative factor e−γ loged.

For behinds (scoring-mode two), it is convenient to use two additional parameters, acting in the same
way, so that in the independent modes case, the likelihoods for goals and behinds can be maximized
separately. However, common familiarity and travel parameters can be specified.

3.6 Results of model fitting for AFL

We use results for 22 complete seasons March 1997 to September 2018 and five rounds of the 2019
season, 4290 matches in all (AFL, 2019). Over this period, the number of teams and number of matches
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ON SKILL AND CHANCE IN SPORT 11

Table 1. Forecast performance for one month ahead for power-law discounting for Model 1

φ −0.9 −1.5 −2.5 −2.7 −3.1 −3.5

Percentage correct forecasts 65.3 66.9 68.6 69.0 68.7 68.7

in each season has changed, with the addition in 2011 of Gold Coast and in 2012 of GW Sydney (Fig.
5). In the 2018 season, 18 teams each played 22 matches to determine the eight qualifiers for the play-
offs, a 4-round knock-out tournament in which the top four qualifiers can lose once and still win the
tournament.

In our full model of the match i versus j, the score (XG
i , XB

i , XG
j , XB

j ) has probability

p
(

xG
i , xG

j , xB
i , xB

j

)
= p

(
xG

i , xG
j

)
p
(

xB
i , xB

j

)
,

(so that scoring modes are independent), where

p
(

xM
i , xM

j

)
= exp

(
−μM

i − μM
j − μM

D

) (
μM

i

)xM
i

xM
i !

(
μM

j

)xM
j

xM
j !

min
(

xM
i ,xM

j

)
∑
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xM
i ! xM

j !

r!
(

xM
i − r

)
!
(

xM
j − r

)
!

(
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D

μM
i μM

j

)r

,

with μM
i = exp{aM

i − bM
j + hM

i (i, j)} and μM
j = exp{aM

j − bM
i + hM

j (i, j)}, and where hM
i (i, j) is the

home-advantage effect for team i when i plays j and hM
j (i, j) is the corresponding effect for team j when

i plays j, all for each mode of scoring, M = {G, B}. There are 38 parameters for each scoring mode:
18 defense parameters (one for each team), 17 attack parameters (recalling that one parameter must
arbitrarily fixed), one joint scoring parameter (μM

D ) and two home advantage parameters (δM, γ M).
The specific home-advantage effects are as follows. When team i plays team j at their shared ground,

hM
i (i, j) = 0 and hM

j (i, j) = 0 for M = {G, B}. When team i at home plays team j, and i and j are from

the same state, hM
i (i, j) = δM and hM

j (i, j) = −δM for M = {G, B}. When team i at home plays team j,

who travel d kilometres inter-state, hM
i (i, j) = δM and hM

j (i, j) = −δM − γ Mloge(d) for M = {G, B}.
The models are fitted monthly, starting in 2002. To decide the discounting scheme, one-step ahead

(monthly) forecasts of results (win, draw, loss) for the period 2007–2019 were compared (Table 1) for
the model with independent Poisson matches for goals and behinds, Model 1. This model and others
fitted are described in Table 2. Results of matches involving the Gold Coast and GW Sydney were
forecast only from 2014. We chose power law discounting, {1 + (t − τ)/12}φ , with φ = −2.7 for time
measured in months. This gives an effective sample size of approximately 120 matches for each model
fit. With exponential discounting the forecast performance was similar but the standard errors on the
parameter estimates were much larger, likely due to a smaller effective sample size.

Parameter estimates are shown in Table 3 for the minimum-parameter model with Poisson matches
(Model 1) for goals and behinds. Shown there are the pseudo-maximum likelihood estimates (pMLEs)
under the discounting scheme and the maximum likelihood estimates without discounting. We present
the latter in order to demonstrate the home-ground advantage effects because these effects are not well
estimated under the former. Note, as strengths are relative, the standard error broadly relates to the
respective strength difference, relative to the reference team, team 1 (Adelaide). Therefore, we present
the strength difference for each team.
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12 P. SCARF ET AL.

Table 2. Description of models of match i vs j with outcome (XG
i , XB

i , XG
j , XB

j )

Model Description Dependence Parameters Constraint

1 Poisson matches for goals and behinds, with
defense strength proportional to attack
strength and behind strengths proportional to
goal strengths
μG

i = exp(aG
i − aG

j − c + hG
i (i, j)) =

ehG
i (i,j)αG

i /(ecαG
j )

μG
j = exp(aG

j − aG
i − c + hG

j (i, j)) =
ehG

j (i,j)
αG

j /(ecαG
i )

μB
i = exp(aG

i − aG
j − c + cB + hB

i (i, j))

μB
j = exp(aG

j − aG
i − c + cB + hB

j (i, j))

No 23 aG
1 = log(12)

2 Bivariate Poisson for goals, Poisson match for
behinds, with attack and defense strengths as
Model 1
μG

i = exp(aG
i − aG

j − c + hG
i (i, j)) + μG

D

μG
j = exp(aG

j − aG
i − c + hG

j (i, j)) + μG
D

μB
i = exp(aG

i − aG
j − c + cB + hB

i (i, j))

μB
j = exp(aG

j − aG
i − c + cB + hB

j (i, j))

Yes 24 aG
1 = log(12)

3 Poisson matches for goals and behinds, with
defense strength proportional to attack
strength and separate goal and behind
parameters
μG

i = exp(aG
i − aG

j − c + hG
i (i, j))

μB
i = exp(aB

i − aB
j − d + hB

i (i, j)), etc.

No 40 aG
1 = log(12)

aB
1 = log(12)

4 Poisson matches for goals and behinds with
separate goal and behind attack strengths and
common defense strength for each team
μG

i = exp(aG
i − bj + hG

i (i, j))

μB
i = exp(aB

i − bj + hB
i (i, j)), etc.

No 57 aG
1 = log(12)

5 Poisson matches for goals and behinds with
separate goal attack and defense strengths and
behind attack proportional to behind defense
μG

i = exp(aG
i − bG

j + hG
i (i, j))

μB
i = exp(aB

i − aB
j − d + hB

i (i, j)), etc.

No 57 aG
1 = log(12)

aB
1 = log(12)

6 Poisson matches with separate attack and
defense strengths for both goals and behinds
μG

i = exp(aG
i − bG

j + hG
i (i, j))

μB
i = exp(aB

i − bB
j + hB

i (i, j)), etc.

No 74 aG
1 = log(12)

aB
1 = log(12)
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ON SKILL AND CHANCE IN SPORT 13

Table 3. For Model 1, pMLEs with power-law discounting (φ = −2.7) and MLEs without
discounting, fitted to results from March 1997 to April 2019. As strengths are relative, shown also is
strength difference relative to team 1, Adelaide (aG

1 = log(12) = 2.485)

With discounting Without discounting

Parameter Estimate Difference SE Estimate Difference SE

c −2.514 0.025 −2.621 0.004
cB −0.1107 0.037 −0.142 0.005
δG 0.0040 0.027 0.0213 0.0043
δB 0.0369 0.028 0.0287 0.0046
γG 0.0108 0.007 0.0122 0.0011
γB 0.0005 0.007 0.0069 0.0012
aG

i Brisbane Lions 2.391 −0.094 0.057 2.417 −0.068 0.008
Carlton 2.334 −0.151 0.057 2.402 −0.083 0.008
Collingwood 2.522 0.037 0.057 2.460 −0.025 0.008
Essendon 2.457 −0.028 0.057 2.436 −0.049 0.008
Fremantle 2.373 −0.112 0.057 2.395 −0.090 0.008
Geelong 2.565 0.080 0.053 2.508 0.023 0.008
Gold Coast 2.287 −0.198 0.055 2.287 −0.198 0.011
GW Sydney 2.539 0.054 0.056 2.376 −0.109 0.012
Hawthorn 2.463 −0.022 0.054 2.453 −0.032 0.008
Melbourne 2.440 −0.045 0.056 2.365 −0.120 0.008
North Melbourne 2.389 −0.096 0.055 2.440 −0.045 0.008
Port Adelaide 2.517 0.032 0.056 2.440 −0.045 0.008
Richmond 2.546 0.061 0.056 2.405 −0.080 0.008
St Kilda 2.424 −0.061 0.055 2.427 −0.058 0.008
Sydney 2.410 −0.075 0.055 2.471 −0.014 0.008
West Coast 2.436 −0.049 0.055 2.451 −0.034 0.008
Western Bulldogs 2.407 −0.078 0.057 2.426 −0.059 0.008

The implied strengths are remarkably balanced (very low variation). Indeed, for most of the pMLEs
of strength difference, the absolute ratio of the estimate to its (approximate) standard error is less than
2, so that few teams have strength that is significantly different to the reference team.

The parameter c broadly determines the average goal-scoring rate in a match, and cB determines
the ratio of expected behinds to expected goals. Thus, when two equal-strength teams play, we expect
e−c = 12.35 goals each and e−c × e−cB = 12.35 × 1.12 = 13.8 behinds each, implying a total score of
(88, 88).

We forecast results (win, draw, loss) and scores one-step ahead (monthly) and out-of-sample, for
2007 onwards. For Model 1, the percentage of correct results-forecasts was 69.9%, the Brier score was
0.199, and for scores the mean-absolute-error was 19.4. This indicates that forecasting performance of
the model is quite weak, because we would expect a naïve forecast, based on two Poisson distributions
for goals and behinds and ignoring strength variation, to perform nearly as well. Thus, AFL results are
quite unpredictable. We return to this point later in this section.

The multipliers for home ground familiarity, interpreting the MLEs (without discounting), are eδG =
e0.0213 = 1.022 and eδB = e0.0287 = 1.029, corresponding to 2.2 and 2.9% increases in goals and
behinds, respectively. This is roughly two points. On the other hand, for travel, when a team travels
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14 P. SCARF ET AL.

Table 4. pAIC comparison for the models fitted at two time points (T = 2009, T = 2019) and for
three values of the power-law discount parameter (φ = −1.5, φ = −2.7, φ = −3.5). Actual pAIC
shown for minimum pAIC model, otherwise shown relative to minimum pAIC model

φ −1.5 −2.7 −3.5
T 2009 2019 2009 2019 2009 2019

Model p
1 23 391837.3 715896 418636.8 744534.2 424448.4 749335.1
3 +17 +25.0 +15.5 +27.2 +17.2 +27.6 +16.7
4 +34 +9.9 +36.3 +21.4 +43.6 +24.4 +44.5
5 +34 +21.7 +33.8 +32.2 +41 +35.2 +41.5
6 +51 +33.3 +56.2 +46.0 +62.8 +49.2 +62.6

1000 km, say, the multipliers are e−γGloge(1000) = 0.919 and e−γBloge(1000) = 0.953 for goal and behinds,
corresponding to 8.1 and 4.7% decreases. This is roughly 6 points. So, hosting a team that travels inter-
state confers an advantage of approximately 8 points. In comparison, Stefani and Clarke (1992) reported
a 9.8 point ‘home advantage’.

We did not achieve success with fitting the model with bivariate Poisson for goals, Model 2 of Table
2. Inspection of the profile log-likelihood for the dependence parameter μD suggested that dependence
between goals is not positive (the profile log-likelihood was a strictly decreasing function of μD in the
interval [0,5]. Therefore, this model is not appropriate for footy. We might tentatively conclude that
there is no evidence of positive dependence between competing teams’ goals.

Table 4 shows the pseudo-Akaike Information Criterion (pAIC) for each of the fitted models of Table
2, with the exception of the bivariate model, computed at various time points and for different values of
the discount factor. The pAIC should be interpreted with care because likelihood comparisons between
models are not strictly valid when datapoints (matches) do not carry equal weight in the likelihood. We
can however see that Model 1 (the minimum parameter model and without dependence) is best in the
sense of minimum pAIC, for all combinations of the discount factor and time point that we study. Note,
the values of the discount factor correspond (approximately) to effective sample sizes of 315, 120 and
86 matches, respectively, which in turn correspond to 1.5, 0.6 and 0.4 seasons.

For the fitted Model 1 at each month, since there is one strength parameter for each team, we can
show the strength evolution of teams over time (Fig. 8). Rather than keep the strength of one team fixed,
we linearly transform the estimated strengths aG

i so that at each time step the mean strength is 0. Then at
each time step, a team is either above average (strength greater than 0) or below average. Since strength
is relative, there is no reason to show a vertical scale in Fig. 8. To obtain the standard errors of the
strengths at each time step, we sample from the empirical sampling distribution of the pseudo MLEs.
We take 10000 samples, apply the same linear transform to these and use the 2.5- and 97.5-percentiles to
provide an approximate 95% confidence interval. The evolution of these intervals creates the ribbons in
Fig. 8. This figure illustrates the balance of strength (skill) in AFL. Strengths are similar. Indeed, at the
final time-step (April 2019), there appears to be little strength variation between teams, which concurs
with the estimates in Table 3. There appears to be no dominance, although strength variation over time
within teams is a little higher than strength variation between teams at a fixed time. On this last point, at
April 2019, the coefficient of variation (CV) of strengths is 0.076, and the average of the CVs of team
strengths over time is 0.070.
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ON SKILL AND CHANCE IN SPORT 15

Fig. 8. Monthly strength estimates for 2002–2019 by team for Model 1 (Poisson matches for goals and behinds). Horizontal axis:
2002–2019. Ribbons show approximate 95% confidence envelopes.

3.7 A bivariate binomial model with score dependence

We now describe another bivariate score model with dependence, motivated by scoring in netball. First
define a sequence of play in a two-player contest as all the events from the point at which the contest
starts or restarts following a goal (or score) up to and including the subsequent goal. Denoting the final
score by (X1, X2), then provided X1 +X2 is not fixed, it can be shown that under some general conditions
corr(X1, X2) > 0. Thus, for example, Baker et al. (2021) show that if N ∼ Po(λ), Y1 ∼ B(N, p1) and
Y2 ∼ B(N, p2) independently given N, and X1 = Y1 + N − Y2 and X2 = Y2 + N − Y1, then

E
(
X1

) = λ
(
p1 + 1 − p2

)
,

E
(
X2

) = λ
(−p1 + 1 + p2

)
,

E
(
X1 + X2

) = 2λ,
var

(
X1

) = λ
(
1 + 3p1 − p2 − 2p1p2

)
,

var
(
X2

) = λ
(
1 − p1 + 3p2 − 2p1p2

)
,

and

corr
(
X1, X2

) = 1 − p1 − p2 + 2p1p2√(
1 + 3p1 − p2 − 2p1p2

) (
1 − p1 + 3p2 − 2p1p2

) > 0. (4)

This contest is called a binomial-match, and it can be used to model the game of netball. This is
because in netball the restart alternates so that each team has approximately an equal number of restarts
in a match, and if the team restarting does not score in a sequence of play then the other does (except
for interruptions of play at quarter ends). The model supposes that team 1 (2) has a probability p1 (p2)
of scoring in the sequence of play which it starts. The positive correlation is the result of the positive
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16 P. SCARF ET AL.

Fig. 9. Contour plot of the correlation (4) for 0.2 ≤ p1, p2 ≤ 1.

Table 5. Comparison of sports in terms of scoring rate, strength variation and score dependence

Sport Scoring rate Strength variation Dependence

Soccer Low Very high Negligible
Rugby Moderate Moderately high Not known
Footy (AFL) Moderately high Low None found
Netball Very high Moderate Yes

association of the score of each team with the total number of scores. Positive correlation also arises
when restarts do not alternate, as in basketball, in which the conceder restarts. In netball, at the very
highest level, ‘conversion’ probabilities (strength parameters) of p1 ≈ p2 = 0.75 are typical, whence
corr(X1, X2) = 0.455. Figure 9 shows the correlation for other values of p1 and p2. For typical values
of the conversion probabilities (see Baker et al., 2021), the correlation varies between 0.3 and 0.5,
approximately. Given our findings in Section 3.3, this correlation is barely sufficient to make a six-goal
contest as unpredictable as a typical soccer match.

3.8 Discussion of competitive balance in football and netball

Having presented various models for various sports, we now summarize the scoring rate, strength
variation and score dependence (Table 5) of the fitted models for each of these sprots. Taking score
dependence first, this is negligible for soccer in respect of its effect on outcome uncertainty. The
evidence for this claim can be found in Dixon and Coles (1997), Karlis and Nzoutfras (2003) and
McHale and Scarf (2007, 2011). For rugby union, score dependence has not been studied. For footy
(AFL), we find no evidence of it in this paper. For netball, Baker et al. (2021) assume it exists implicitly
through their model specification.

Strength variation is most easily studied using a standard within-season competitive balance
measure. Thus, in Fig. 10, we show the coefficient of variation (CV) of number of wins in a season
(halving ties where applicable) for an example of each of the four sports that we discuss. The coefficient
of variation is the ratio of the standard deviation to the mean of the number of wins, a dimensionless
quantity. We calculate this for 18 seasons (except for netball). The footy data here are the AFL seasons
over the period. For soccer, we use the FA premier League. For rugby union, we use the English premier
league, and for netball we use the UK Superleague (premier division netball in the UK). Figure 10
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ON SKILL AND CHANCE IN SPORT 17

Fig. 10. Coefficient of variation of strength for the four sports.

suggests that AFL is the most competitively balanced and soccer the least. The netball data are rather
limited for making firm conclusions. Also, season length (games played) is short for netball relative to
the three codes of football, whence CV would not be an appropriate comparator (Owen and King, 2014).

Thus, among the codes of football, footy has the highest scoring rate and correspondingly the
lowest strength variation. Soccer is to the contrary. Thus, we can speculate that the low scoring rate
in soccer permits a somewhat laissez-faire attitude to competitive imbalance, and that for footy the high
scoring rate necessitates the imposition of administrative control of competitive imbalance, through the
salary cap and the draft. However, the evidence that revenue redistribution and administrative control
mechanisms have a substantial impact upon the level of competitive balance is mixed (Fort et al., 2016).
Nonetheless, score dependence can mitigate the effect of competitive imbalance on outcome uncertainty
in a very high scoring-rate sport, and this would appear to be the case for netball. Thus, a mathematical
analysis can suggest the means for increasing balance (see e.g. Brams and Ismail, 2018; Lambers and
Spieksma, 2020) when regulation may be ineffective.

4. Conclusion

We study outcome uncertainty in mathematical models of scoring motivated by four sports with different
scoring rates and scoring rules. Our aim is to consider the effect of scoring rates and score dependence
on outcome uncertainty, while controlling for variation in the relative strengths or skill of competitors.
We define outcome uncertainty as the probability that a weaker side wins a typical contest. We regard
strength variation (skill variation) as competitive (im)balance.

Published studies to date on the measurement of outcome uncertainty have considered soccer for
the most part, where there has been a tendency to use the terms outcome uncertainty and competitive
balance interchangeably. Taking a mathematical view suggests that scoring rate regulates the relative
importance of skill and chance. For given relative strengths of competitors, chance may play only a
small part in a sport with a high scoring rate. That is, as the scoring rate increases, outcomes become
more certain, and in the limit the best team will always win. Nonetheless, positive score dependence
moderates this scoring rate, outcome uncertainty effect, so that outcome uncertainty increases as score
dependence increases. The structure and rules of a sport determine the level of score dependence.

We should caution that these findings apply to the mathematical models. The findings are essentially
descriptions of the properties of the models that we consider. If we accept that the mathematical models
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18 P. SCARF ET AL.

of scoring are valid representations of the scoring in the sports themselves, then we can conclude, albeit
tentatively, that scoring rate, moderated by score dependence, regulates the relative importance of skill
and chance in these sports.

For the sports themselves, our analysis suggests that: soccer is relatively competitively unbalanced
but outcomes are uncertain and chance features strongly because the scoring rate is low; the Australian
football league is competitively balanced and so outcomes are uncertain in spite of the high scoring
rate; international rugby matches are relatively neither competitive nor uncertain; and netball matches
have uncertain outcomes largely because scores are positively dependent. Nonetheless, the correlation
typical of netball-match would be barely sufficient to make a six-goal contest as unpredictable as a
typical soccer match, which we have argued is a three-goal contest.

Our findings have implications for rule changes and for the design of new formats. These are that (i)
administrators should consider unintended consequences of new rules for scoring rate and thus balance,
and (ii) it may be beneficial to design new formats so that scores are positively dependent. It is interesting
to note that recent evidence indicates that the introduction of video review to soccer has reduced the
scoring rate (Spitz et al., 2021). Returning to the implications of our findings, (i) is predicated on the
notion that chance (uncertain outcomes) and the surprises and suspense that ensue are good things, that
is, they are desired by consumers of sport. On the other hand, one-sided contests and frequent scoring,
and the athleticism and play associated with scoring, may be greater goods. In this case, (ii) is relevant
because positive dependence permits more scoring but not at the expense of outcome uncertainty.

Our analysis is limited by the central assumption that scores are Poisson distributed, and thus that
we model the score in a contest as a Poisson match, or more generally as a bivariate Poisson. However,
we might expect the same broad conclusions to follow for a more general class of score distributions,
provided these are not highly over-dispersed (relative to the Poisson distribution). Consequently,
investigation of the extent of over-dispersion in specific sports would be interesting, although separating
over-dispersion from short-term strength variation will be difficult. Nonetheless, one could speculate
about rule-changes that might increase dispersion. Other potential developments are: extending our
study to other sports e.g. handball, which has a moderately high scoring rate; the study of dependence
in rugby union contests; and modelling footy scores with multivariate Poisson and negative binomial
distributions. More interesting, perhaps, and more challenging, would be a study of the relative
desirability of the qualities we discuss among consumers of sport.
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