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Abstract We fit stochastic spatial-temporal models to high-resolution rainfall6

radar data using Approximate Bayesian Computation (ABC). We consider7

models constructed from cluster point-processes, starting with the model of8

Cox, Isham and Northrop, which is the current state of the art. We then9

generalise this model to allow for more realistic rainfall intensity gradients10

and for a richer covariance structure that can capture negative correlation11

between the intensity and size of localised rain cells.12

The use of ABC is of central importance, as it is not possible to fit models13

of this complexity using previous approaches. We also introduce the use of14

Simulated Method of Moments (SMM) to initialise the ABC fit.15

Keywords Rainfall; spatial-temporal; spatiotemporal; Approximate16

Bayesian Computation.17

1 Introduction18

Our interest in spatial-temporal rainfall models comes from the use of rain-19

fall simulators to understand the responses of hydrological systems to rainfall20

events. It has been argued by many authors (for example Wheater et al. [26],21

Segond et al. [22], Chander et al. [6]) that using simulated rainfall with realistic22

spatial and temporal variation is an effective way of understanding the range23

and frequency of responses from any given hydrological system. In particular,24

extreme responses such as flash floods and debris flows are regularly triggered25

by storm cells with an area of 4 km2 and a duration of 30 minutes [10], so we26

want our models to have this level of detail.27

Spatial-temporal rainfall models can typically be broken down into two28

main parts: a model for the frequency, duration and extent of rainfall events,29

and a separate model for the spatial and temporal structure of a single event.30

The University of Sydney, Australia · Cardiff University, UK
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There is no precise definition of what constitutes a rainfall event, and in prac-31

tice it is somewhat model dependent. A rainfall event will not in general exhibit32

rainfall contiguous in space and time, but formally we imagine that during an33

event any point in space will be rained on more often than not. Within an34

event we do see contiguous convex patches of rain which we call rain cells. In35

this paper our rainfall events have a timescale of hours and a spatial scale of36

thousands of km2; we required that during an event at least 20% of the area37

of interest should receiving rain at any given time.38

We will concern ourselves solely with models for a single event, for which39

we consider stochastic cluster-type models. These models are constructed to40

mimic the cell-like structure of rainfall events, and are straight-forward to41

simulate. We start with the model of Cox & Isham [7] as extended by Northrop42

[15], which we call the CIN model, and then introduce a number of extensions.43

The CIN model and our extensions of it are all stationary models for the44

interior of a rainfall event; definitions are given in Section 2. To fit them we45

use high-resolution rainfall radar data, which gives rainfall intensity on a 1 km2
46

grid every 6 minutes. In what follows we use a single rainfall event covering an47

area of 180 × 180 km2 for a duration of 4 hours, described below. The thesis48

of Aryal [2] considers other rainfall events at the same and different locations49

and obtains similar results.50

The CIN model assumes that rain cells have constant intensity and does not51

allow dependence between the intensity and size of a cell. Our first extension—52

the CIN-1 model—incorporates more realistic rainfall intensity gradients and53

gives a quantitatively better fit. This mirrors recent results for point rainfall54

models [17]. Our second extension—the CIN-2 model—is designed to capture55

the negative correlation between the intensity and size of localised rain cells56

that has previously been observed in point rainfall models [11]. The results here57

are mixed, with moderate evidence of the negative correlation but without a58

better fit overall. The implications of this are discussed in the Conclusions59

section.60

Because it has an intractable likelihood function, in the past the CIN model61

has been fitted using the Generalized Method of Moments (GMM) [26]. GMM62

fitting matches theoretical and observed moments of the process, and thus is63

restricted to moments for which you have an analytic expression. However we64

do not have analytic expressions for the moments of our extended processes, so65

GMM fitting is no longer an option and we instead use Approximate Bayesian66

Computation (ABC). ABC fitting compares the observed process to simula-67

tions, and places no restrictions on the statistics used to compare them. It68

also has the advantage of providing credible intervals for the estimated pa-69

rameters. We give a brief description of ABC in Section 3, before dealing with70

the specifics of the case in hand. In [3] the authors give a comparison of GMM71

and ABC fitting for the Bartlett-Lewis point rainfall model, demonstrating72

the advantages of ABC.73

There is an extensive literature on modelling and simulating rainfall at a74

single point. In particular there are many models based on cluster point pro-75

cesses, going back to the rectangular pulse model of Rodriguez-Iturbe, Cox and76
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Isham [21]. The CIN model that we start with is a natural spatial-temporal ex-77

tension of these models, and is the most sophisticated spatial-temporal model78

of this type to have appeared in the literature to date. The surveys of Onof et79

al. [16] and Wheater et al. [25] provide a good summary of the current state80

of the art for these models.81

There are two main alternative approaches to spatial-temporal rainfall82

modelling. The first, dating back to Le Clerc and Schaake [12], is to extend83

point models into space using techniques such as the depth area reduction84

factor (DARF). These approaches are often used to simulate a single extreme85

rainfall event, but by their construction they ignore the internal spatial struc-86

ture.87

The second alternative is to use random fields rather than cluster processes.88

Such models do capture the spatial structure of a rainfall event though lack89

the physical intuition of processes built from cluster point processes. Recent90

examples of this type of model can be found in the papers of Paschalis et al.91

[18] and Benoit et al. [5]. These types of model have also been successfully92

incorporated into more general weather generators [1,19].93

The data94

The CIN model and our generalisations are stationary and are used to model95

the “interior” of a rainfall event. We will suppose that we have observations96

of the rainfall in some finite space-time window A× [0, T ], where T is chosen97

so that the leading and trailing edges of the rainfall event are not observed.98

For this study we used radar data collected at Laverton, Melbourne, on 24th99

September 2016 from 12:54 to 16:48 hours, calibrated by the Australian Bureau100

of Meteorology using rain-gauge data. The data gives rainfall depth in 10−2mm101

averaged over 1 km2 pixels every 6 minutes for a period of 4 hours. The radar102

covers a circular region of 128 km radius, but we restrict ourselves to a square103

study area of size 180 × 180 km2. To reduce the noise in the data, rainfall104

depths of less than 0.01 mm for a six minute interval are rounded down to 0.105

A contour plot of the spatial rainfall intensity at a single time-point is106

given in Figure 1(a). Looking at the spatial maximum and mean over the107

study period, and the percentage of the study area covered by rain (Figure108

1(b–d)), it is reasonable to consider this space-time region as being in the109

interior of a rainfall event.110

2 The Cox-Isham-Northrop model and extensions111

The Cox-Isham-Northrop (CIN) rainfall model is a spatial-temporal stochastic112

model for a rainfall event, constructed using a cluster point process. The cluster113

process is constructed by taking a primary point process, called the storm114

arrival process, and then attaching to each storm center a finite secondary115

point process, called a cell process. To each cell center we then attach a rain116
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(a) Sample rainfall for a single time point.
(b) Spatial maximum rainfall (mm) over time.

(c) Spatial mean rainfall (mm) over time.
(d) Percentage of sample area covered by rain-
fall over time.

Fig. 1: Rainfall on 24th September 201 from 12:54 to 16:48 hours at Laverton,
Melbourne.

cell, with an associated area, duration and intensity. The storm and cell centers117

all share a common velocity. The total rainfall intensity at point (x, y) and time118

t is then the sum of the intensity at (x, y) of all cells active at time t [7,15].119

The storm arrival process is taken to be a Poisson process in R
2 × [0,∞)120

with homogeneous rate λs. Let v = (vx, vy) be the velocity of the rainfall121

event, so if a storm center arrives at (u, s) then at time s + t it will be at122

(u+ tv, s+ t). Storm durations are random with an exp(γs) distribution.123

While a storm is active it produces cells at a rate λc in time, starting124

with a cell at the moment the storm begins. If the storm arrives at (u, s) and125

produces a cell at time s+ t, the cell will be centered at u+ tv+w, where w126

comes from a Gaussian distribution with mean 0 and covariance Σ. The cell127

centre then also moves with velocity v. We parameterise Σ using the storm128

diameter ds, eccentricity e and orientation ω. d−1
s has a gamma distribution129

with mean µ1/ds
and coefficient of variation CV1/ds

.130

Individual cells have random durations, distributed as exp(γc), and ran-131

dom diameters dc (the major axis). Rain cells are elliptical, with the same132

eccentricity e and orientation ω as the storms. d−1
c has a gamma distribution133

with mean µ1/dc
and coefficient of variation CV1/dc

. It is convenient to use134
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Fig. 2: Schematic of the temporal structure of the CIN model: a) Storm process
(storm origins at Ti) and cell processes (the solid points show cell origins). The
Sj
i note the times from the storm origins to cell origins; b) Storm durations

Di, cell durations L
j
i , and cell intensities Xj

i .

µA, the expected area of a rain cell, instead of CV1/dc
, where135

µA = π
√

1− e2µ1/dc
(1 + CV −2

1/dc

).

For the CIN model the intensity of a rain cell is constant over the area136

and duration of the cell, with an exponential distribution mean µX . The dis-137

placement, duration, diameter, and intensity of a cell are all independent, and138

independent of other cells. We give a schematic of the temporal structure of139

the CIN model in Figure 2 and of the spatial structure in Figure 3.140

All together the CIN model has 13 parameters: velocity v = (vx, vy); ec-141

centricity e; orientation ω; storm rate λs; mean storm duration 1/γs; storm142

diameter given by µ1/ds
and CV1/ds

; cell rate λc; mean cell duration 1/γc; cell143

diameter given by µ1/dc
and µA; and mean cell intensity µX .144

Generalisations of the CIN model145

To date the CIN model has been the most detailed spatial-temporal rainfall146

model available using a stochastic cluster process construction. This is not147

because of a lack of scientific imagination, but because of the difficulty in148

obtaining theoretical moment expressions for these types of models, which149

have in the past been required for model fitting. We present here two novel150

extensions of the CIN model, incorporating increased flexibility and realism.151

We extend the model in two stages; in both cases the temporal structure of152

the process is unchanged and we refine the spatial structure of the rain cells.153

The first stage we call the CIN-1 model; we incorporate two changes to154

give more realistic rainfall intensity gradients and provide a better match with155
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⊗

⋆

⋆

⋆

⋆

Fig. 3: Schematic diagram of the spatial structure of the CIN model. The
centre point is a storm centre (which has a constant velocity). Stars are cell
centres and the lines indicate the displacement of cell centres from the storm
centre. The dashed curves indicate the cell areas, and the dotted curve gives
a 95% prediction region for the storm area.

observations. Firstly we suppose that the rainfall intensity decreases continu-156

ously from the centre of a cell to the edge, rather than acting as a step function.157

If a and b are the lengths of the semi-major and semi-minor axis of a rain cell,158

and X is the intensity at the cell centre (cx, cy), then we model the intensity159

at (x, y) as160

X

√

1−
(x− cx)2

a2
−

(y − cy)2

b2
.

Secondly we seek to capture an observed variation in the eccentricity of the161

cells: some cells appear circular in shape while some are long and thin. Accord-162

ingly we suppose that cell eccentricity has a normal distribution with mean163

µe and variance σ2
e , truncated to [0, 1].164

For the second stage CIN-2 model we introduce correlation between cell165

intensity and diameter, again reflecting observed behaviour [11]. Specifically,166

for cell intensity X and cell diameter dc, we suppose that167

log

(

X
dc

)

∼ N

((

µX

µdc

)

,

(

σ2
X ρX,dc

σXσdc

ρX,dc
σXσdc

σ2
dc

))

.

Figure 4 represents the intensity of a single cell in (a) the CIN model and168

(b) the CIN-1 and CIN-2 models.169

3 Model Fitting Using ABC170

The CIN model has an intractable likelihood: calculating the rainfall intensity171

at any given point requires integration over all configurations of the underly-172

ing cluster point-process, which is impractical. Thus likelihood-based model173

fitting—such as maximum likelihood or Bayesian MCMCmethods—can not be174

used. Moreover, for spatial-temporal data classical likelihood-free approaches175
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(a) (b)

X X

dc dc

Fig. 4: Cell intensities for (a) CIN model (b) CIN-1 and CIN-2 models.

using ranks, permutations or bootstrapping also don’t work. Wheater et al. [26]176

successfully used the Generalised Method of Moments (GMM) to fit the CIN177

model. However GMM requires analytical expressions for various moments178

and in this case their derivation relies on the strong independence assump-179

tions present in the CIN model, so this approach does not carry over to the180

CIN-1 and CIN-2 models.181

Simulation based model fitting has been increasing in popularity since the182

late 1980’s, mirroring the increase in desktop computing power. The Simulated183

Method of Moments (SMM) of McFadden [14] uses simulation to estimate184

moments which are then compared to observed moments much like GMM, and185

can be used to fit the CIN-1 and CIN-2 models (see Gouriéroux and Monfort186

1993 [8] for a review of SMM). However SMM is limited in that it only provides187

point estimates and does not allow model comparisons, so we only use it to188

provide initial estimates for our ABC procedure (details are given below). For189

estimation problems with a small number of parameters (not the case here)190

we can combine simulation with kernel density estimation to estimate the191

likelihood and hence obtain approximate maximum likelihood estimates (see192

for example Jones 2007 [9]). Alternatively the synthetic likelihood approach193

of Wood 2010 [27] is a more widely applicable method that uses simulation194

to form a Gaussian approximation to the likelihood, allowing likelihood-based195

inference. Rather than synthetic likelihood we have opted to use Approximate196

Bayesian Computation (ABC), which avoids any questions about whether it197

is appropriate to use a Gaussian approximation, and has all the benefits of198

Bayesian inference. ABC has already been successfully applied in many fields,199

but this is its first application to a spatial-temporal rainfall model.200

ABC is a likelihood-free Bayesian inference technique, which uses simula-201

tions from the likelihood of interest in the absence of an analytic form. The202

technique developed from numerically intensive techniques for estimating pop-203

ulation genetics models [20], and has since seen steadily increasing use in a204

variety of applications. The recent collection edited by Sisson, Fan and Beau-205

mont [24] gives a comprehensive introduction to the subject. In what follows206



8 Nanda R. Aryal, Owen D. Jones

we use ABC-MCMC, introduced by Marjoram et al. [13], which uses Markov207

Chain Monte Carlo to speed up the effective sampling rate of vanilla ABC.208

We suppose that we have an observation D from some model f(·|θ), de-209

pending on parameters θ, and that we are able to simulate from f (so f(·|θ)210

is the likelihood). Let π be the prior distribution for θ and S = S(D) a vector of211

summary statistics forD, then ABC generates samples from f(θ|ρ(S(D∗), S(D)) <212

ǫ), where D∗ ∼ f(·|θ), θ ∼ π, and ρ is some distance function. If S is a suf-213

ficient statistic, then as ǫ → 0 this will converge to the posterior f(θ|D).214

ABC-MCMC adds a proposal chain with density q and an additional rejection215

step, to generate a sample {θi}. Let θ0 be some initial choice for θ then the216

algorithm is as follows:217

FOR i = 1 to N

1 Given current state θi propose a new state θ∗ using q(·|θi)
2 Put α = min {1, (π(θ∗)q(θi|θ

∗))/(π(θi)q(θ
∗|θi))}

3 Go to 4 with probability α, otherwise set θi+1 = θi and
return to 1
4 Simulate data D∗ ∼ f(·|θ∗)
5 If ρ(S(D∗), S(D)) ≤ ǫ then set θi+1 = θ

∗, otherwise set
θi+1 = θi

END FOR

218

Unlike [13] we put the MCMC rejection step 3 before the ABC comparison219

step 5, to avoid unnecessarily running the simulation in step 4. Note that if220

we wish to use a non-uniform kernel in step 5 (see for example Sisson and221

Yan [23] §4.3: a non-uniform kernel allows us to assign weights to those θ
∗

222

we accept, depending on ρ(S(D∗), S(D)), with smaller distances giving larger223

weights) then we can no longer separate the MCMC rejection step and the224

ABC comparison step, which increases the simulation burden. Sisson and Yan225

argue that using a kernel with unbounded support can improve the mixing of226

the Markov chain, however we did not find this to be a problem. In particular,227

using a regression adjustment [4] allows some relaxation of the threshold ǫ, to228

increase the acceptance rate without deliteriously impacting the posterior.229

Practically, if θ0 has very low posterior probability then ABC-MCMC can230

fail to accept any new sample points. Previous authors have suggested using231

a separate ABC step (without MCMC) to find a θ0 with large posterior prob-232

ability; we found that using Simulated Method of Moments (SMM) instead233

requires much less computation time. SMM is a variant of the Generalised234

Method of Moments (GMM) that uses Monte-Carlo estimates of moments,235

rather than analytic expressions (McFadden 1989 [14]). Thus, like ABC, using236

SMM we have much more freedom in the choice of moments used to fit the237

model to the data, and we found that it worked well using the same summary238

statistics S that we use for the ABC fitting.239

Following Wheater et al. [26], for the CIN model the velocity v, eccentricity240

e and orientation ω were all estimated using temporal and spatial autocovari-241

ance estimates, and then fixed. For the CIN-1 and CIN-2 models we used our242
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estimate of e for µe but also need to estimate σ2
e . To do this we divided the243

study region spatially into four equal parts, then estimated the eccentricity244

for each part at each time point, giving four time-series of estimates for µe.245

Treating each series as an AR(1) process with mean µe, we can correct for the246

autocorrelation to get the usual moment-based estimate for σ2
e .247

The remaining parameters are all estimated using ABC. It is possible to248

include v, e and ω in the ABC fitting rather than estimate them separately,249

however we found that doing so had no appreciable impact on the fit of the250

other parameters while it did increase the time required to run the ABC251

procedure.252

We used the same set of 23 summary statistics for the CIN, CIN-1, and253

CIN-2 models:254

– The overall mean and standard deviation of rainfall, taken over all pixels255

and all times.256

– The spatial-temporal auto-correlation, with lags of (x, y, t), where x and y257

are measured in pixels and t is in units of 6-minutes. We take t = 0, x ∈258

{−1, 0, 1}, y ∈ {−1, 0, 1}, and t = 1, x ∈ {−1, 0, 1}+vx, y ∈ {−1, 0, 1}+vy.259

Here vx and vy are the velocity components, in units of pixels per 6-minutes.260

Note that the lag (0, 0, 0) auto-correlation is just the variance and so has261

already been included.262

– The probability of an arbitrary pixel and time being dry.263

– The ratio of dry/wet area and mean and standard deviation of wet area,264

averaged over time.265

For the distance function ρ we used a weighted sum of squares ρ(S(D∗), S(D)) =266

∑

i wi(S
∗(i)− S(i))2, where S∗(i) and S(i) are the i-th components of S(D∗)267

and S(D) respectively. We found empirically that a good choice for wi is to268

take it inversely proportional to the variance of S∗(i) conditioned on using a θ269

with high posterior probability. Given that θ0 was chosen using SMM to have270

maximal posterior probability, we used a separate sample of S(D∗) given θ0271

to calculate the wi.272

The choice of summary statistics S and distance metric ρ plays a large273

part in the performance of ABC. Ideally S should be sufficient, but certainly274

it should reflect those aspects of the real process considered most important.275

However choosing S too large reduces the efficiency of ABC, though this can276

be mitigated to some extent by using the approach of Beaumont et al. [4],277

which uses local linear regression to correct for bias in the posterior that can278

result from conditioning on ρ(S(D∗), S(D)) ≤ ǫ instead of on D∗ = D.279

The remaining parameters were transformed to reduce dependence and280

skewness, and mapped to (−∞,∞) (given as θ(1), . . . , θ(9) and ψ(1), . . . , ψ(11)281

below). This makes it easier for the proposal chain to spend its time in regions282

of high posterior probability. Vague normal priors are used for all the trans-283

formed parameters, and for the proposal chain we used a random walk with284

N(0, 0.22I) steps.285
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For the CIN and CIN-1 model our new ABC-parameters are

θ(1) = log(λsγ
−1
s ), θ(2) = log(λsγs),

θ(3) = log(λcγ
−1
c ), θ(4) = log(λcγc),

θ(5) = log(µXµA), θ(6) = log(µXµ
−1

A ),

θ(7) = log(µ1/dc
), θ(8) = log(µ1/ds

),

θ(9) = log(CV1/ds
).

For the CIN-2 model we replace parameters µ1/dc
and µA by µdc

and σ2
dc

,
and gain parameters σ2

X and ρX,dc
.

ψ(1) = log(λsγ
−1
s ), ψ(2) = log(λsγs),

ψ(3) = log(λcγ
−1
c ), ψ(4) = log(λcγc),

ψ(5) = log(µX), ψ(6) = log(1/σ2
X),

ψ(7) = log(µdc
), ψ(8) = log(1/σ2

dc

),

ψ(9) = log

(

ρX,dc
+ 1

1− ρX,dc

)

, ψ(10) = log(µ1/ds
),

ψ(11) = log(CV1/ds
).

Comparison of Fitted Models286

Using the spatial autocorrelation function we estimated v = (vx, vy) = (0.10, 29.9),287

e = µe = 0.86, σ2
e = 0.04 and ω = 39◦.288

In the Appendix Figures 9–11 plot the posterior sample traces for models289

CIN, CIN-1 and CIN-2. In each case the chains appear stationary and exhibit290

good mixing.291

For the CIN model using a threshold of ǫ = 10 the overall acceptance292

rate was approximately 4.1%. Increasing ǫ improves the acceptance rate and293

the degree of mixing, at the expense of reduced accuracy for the posterior294

approximation. For the CIN-1 and CIN-2 models the acceptance rates were295

approximately 5% and 11% respectively, using thresholds of ǫ = 14 and 8. For296

ABC-MCMC rather than the acceptance rate—which is commonly reported297

for vanilla ABC sampling—a better measure of sampling efficiency is the “ef-298

fective sample rate” for each parameter, which combines the efficiency of the299

MCMC sampling and the ABC rejection step and is given by the effective300

sample size for the sampling chain divided by the number of simulations re-301

quired to produce them. For the CIN, the effective sample rate varied from302

0.002 to 0.004 depending on the parameter. For the CIN1 and CIN2 models303

the effective sample rate varied from 0.001 to 0.003 and from 0.001 to 0.005304

respectively.305

Posterior plots for models CIN, CIN-1 and CIN-2 are given in Figures 5–7.306

In all three cases we get nice peaks on our posteriors. Posterior summaries307
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Fig. 5: CIN model: posteriors for θ(i), i = 1, 2, ..., 9. Priors are given by the
dashed lines.

for the original (untransformed) parameters are given in Tables 1–3 in the308

Appendix.309

To compare the performance of our three models we use posterior predictive310

probabilities to judge how close each model is to the original data, as measured311

by our distance ρ. That is, we compare for each model the distribution of312

ρ(S(D∗), S(D)) where D is the original data and D∗ is generated by the model313

when θ is distributed according to the posterior. We can sample from this314

distribution by sampling θ from the posterior, generating D∗ from θ and the315

model, and then calculating ρ(S(D∗), S(D)). We can then estimate the c.d.f.316

of ρ(S(D∗), S(D)) using the e.d.f. of a suitably large sample.317

Figure 8 plots the estimated c.d.f. of the posterior for ρ(S(D∗), S(D)) under318

models CIN and CIN-1. We see that the CIN-1 and model gives a better319

fit than the CIN model, that is, it more likely to produce data close to our320

observation. The CIN-2 model does not give an improved fit, however it does321

show moderate evidence of negative correlation between cell intensity and322

diameter: the posterior mean for ρX,dc
is −0.69 with a 95% credible interval of323

(−0.93, 0.10). We discuss the implications of this in the Conclusions section.324

We can also construct posterior predictive distributions for (S∗(i)−S(i))2.325

That is, we can compare the fit of each model as measured by individual326

components of the summary statistic S. They are given for the CIN and CIN-327

1 models in Figures 12 and 13 in the Appendix. Generally the CIN-1 model328
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Fig. 6: CIN-1 model: posteriors for θ(i), i = 1, 2, ..., 9. Priors are given by the
dashed lines.

performs better than the CIN model, though not uniformly, but without any329

obvious pattern to the exceptions.330

4 Conclusions331

By using Approximate Bayesian Computation (ABC) we have been able to332

fit extensions of the spatial-temporal model of Cox, Isham and Northrop [7,333

15] (CIN model), allowing for more realistic rainfall intensity gradients and334

correlation between the intensity and size of localised rain cells. Using rainfall335

radar data for a rainfall event in Melbourne, Australian, and looking at the336

posterior predictive distribution of the distance between the observed and337

simulated data, we showed that the CIN-1 model gave a better fit than the338

CIN model. We also demonstrated moderate evidence for negative correlation339

between the intensity and size (diameter) of rain cells.340

ABC is a very flexible methodology, and the approach demonstrated here341

could be easily applied to further generalisations of the CIN model. When in-342

troducing correlation between the cell intensity X and cell diameter dc we used343

a multivariate lognormal distribution as this was a parsimonious way to do so,344

however it appears that while there is moderate evidence that the correlation345

is non-zero, qualitatively the lognormal marginals did a poor job of matching346

observed cell diameters, producing too many small cells. This suggests that we347

could improve the model further by using a copula to capture the dependence348
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Fig. 7: CIN-2 model: posteriors for ψ(i), i = 1, 2, ..., 11. Priors are given by the
dashed lines.

between X and dc and experimenting with marginals other than the lognormal349

(the CIN and CIN-1 models use the exponential and gamma distribution for350

X and dc respectively). A further extension would be to parametrise the cell351

intensity profile illustrated in Figure 4 to interpolate between the two models352

More generally, by considering different components of the distance be-353

tween observed and simulated data we can see where one model outperforms354

another, which has the potential to inform future efforts at model refinement.355

Moreover additional components can be added to the summary S to focus on356

specific aspects of the model. For example if the maximum rainfall intensity357

produced by the model was considered particularly important, then this could358

be included in S and hence targeted when fitting the model.359

Finally we note that from a technical point of view we showed that ABC-360

MCMC could be improved by separating the ABC and MCMC rejection steps361

and by using the Simulated Method of Moments (SMM) to initialise the pro-362

posal chain.363
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Fig. 8: Posterior distribution of ρ(S(D∗), S(D)) for the CIN model (blue) and
CIN-1 model (red). The CIN-1 model is more likely to produce simulations
D∗ close to D, as measured by ρ, that is, it gives a better fit than the CIN
model.
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Appendix368

Here we provide additional details of the model comparisons discussed in Sec-369

tion 3.370

Figures 9–11 plot the posterior sample traces for models CIN, CIN-1 and371

CIN-2. In each case the chains appear stationary and exhibit good mixing.372

Tables 1–3 give posterior summaries for the parameters of the CIN, CIN-1373

and CIN-2 models. We notice that for the CIN-2 model some credible intervals374

are wider than the CIN model and the CIN-1 model estimations, particularly375

mean storm duration γ−1
s , mean cell duration γ−1

c .376

Figures 12 and 13 give posterior predictive distributions for (S∗(i)−S(i))2,377

for the CIN and CIN-1 models. That is, we can compare the fit of each model as378

measured by individual components of the summary statistic S. Generally the379

CIN-1 model performs better, though not uniformly, but without any obvious380

pattern to the exceptions.381

Fig. 9: ABC-MCMC fitting for CIN model: posterior chains for θ(i), i =
1, 2, . . . , 9.
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Fig. 10: ABC-MCMC fitting for CIN-1 model: posterior chains for θ(i), i =
1, 2, . . . , 9.
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Fig. 11: ABC-MCMC fitting for CIN-2 model: posterior chains for ψ(i),i =
1, 2, . . . , 11.

Parameter Mean Median 95 % Credible Interval
λs 0.0008 0.0006 (0.0003, 0.0026)

γ−1
s 14.8159 13.2333 (2.9086, 38.5852)
λc 0.6968 0.6201 (0.2321, 1.7451)

γ−1
c 5.3733 4.6462 (2.6768, 13.1802)

µ1/ds 0.5199 0.4006 (0.0738, 1.8749)
CV1/ds 1.9438 1.5953 (0.1467, 6.0694)
µX 0.1946 0.1917 (0.0792, 0.3332)
µA 37.2997 32.6773 (11.8394, 93.7327)

µ1/dc 0.0595 0.0548 (0.0255, 0.1211)

Table 1: Posterior estimates of the ABC-parameters for the CIN model.
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Parameter Mean Median 95 % Credible Interval
λs 0.0008 0.0005 (0.0002 0.0036)

γ−1
s 12.7340 12.3910 (1.0938 38.4967)
λc 0.6166 0.5722 (0.1171, 1.8787)

γ−1
c 10.7880 7.6703 (4.0369, 35.9604)

µ1/ds 0.8022 0.7224 (0.3761, 1.6064)
CV1/ds 1.2535 1.2105 (0.5601, 2.1132)
µX 0.2850 0.2731 (0.1508, 0.4848)
µA 33.0017 31.5407 (4.6533, 92.1609)

µ1/dc 0.0840 0.0771 (0.0441, 0.1617)

Table 2: Posterior estimates of the ABC-parameters for the CIN-1 model.

Parameter Mean Median 95% Credible Interval
λs 0.0006 0.0006 (0.0002, 0.00150

γ−1
s 31.797 32.462 (4.4944, 64.524)
λc 0.1887 0.1801 (0.0457, 0.4429)

γ−1
c 13.883 11.407 (5.6338, 42.133)

µ1/ds 1.3331 1.1647 (0.1671, 4.3280)
CV1/ds 1.2102 1.1901 (0.6291, 1.9917)
µX 0.1882 0.1258 (0.0426, 0.7603)
σ2

X 0.5235 0.4519 (0.0671, 1.5503)
µdc 2.7478 2.7523 (0.7829 , 5.6306)
σ2

dc
0.8602 0.7859 (0.4335, 1.7103)

ρX,dc -0.6906 -0.7564 (-0.9327, 0.0996)

Table 3: Posterior estimates of the ABC-parameters for the CIN-2 model.
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Fig. 12: Predictive probability for the CIN model (blue line) and
CIN-1 model (red line). Plots (a) and (b) are for mean and stan-
dard deviation summaries. Plots (c) to (j) are spatial correlations
ρ(−1,−1, 0), ρ(−1, 0, 0), ρ(1, 1, 0), ρ(0,−1, 0), ρ(0, 1, 0), ρ(1,−1, 0), ρ(1, 0, 0),
and ρ(1, 1, 0). Plots (k) and (l) are of ρ(−1 + vx,−1 + vy, 1), and
ρ(−1 + vx, 0 + vy, 1).
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Fig. 13: Predictive probability for the CIN model (blue line) and CIN-1 model
(red line). Plots (a) to (g) are of spatial autocorrelations ρ(−1 + vx, 1 +
vy, 1), ρ(0+vx,−1+vy, 1), ρ(0+vx, 0+vy, 1), ρ(0+vx, 1+vy, 1), ρ(1,+vx,−1+
vy, 1), ρ(1,+vx, 0 + vy, 1), and ρ(1,+vx, 1 + vy, 1). Plots (h) and (i) are of dry
probability of an arbitrary pixel and dry and wet area ratio. Plots (j) and (k)
are of mean wet area over time and standard deviation of wet area over time.
Plot (l) is of total distance form all summaries.
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