
Cardiff University

Hyper-Heuristics for Two Complex Vehicle
Routing Problems: The Urban Transit Routing

Problem, and a Delivery and Installation Problem

Leena Ahmed, B.Sc. (Hons), M.Sc.

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

School of Computer Science and Informatics

December 2020

Declaration of Authorship

Statement 1

This Thesis is being submitted in partial fulfilment of the requirements for the degree of

PhD.

Statement 2

I, Leena Ahmed, hereby declare that this thesis entitled, “Hyper-Heuristics for Two

Complex Vehicle Routing Problems: The Urban Transit Routing Problem,

and a Delivery and Installation Problem", is all my own work, except as indicated

in the text. The report has not been accepted for any degree and it is not being submitted

currently in candidature for any degree or other reward.

Statement 3

I hereby give consent for my thesis, if accepted to be available online in the University’s

Open Access Repository.

Signed:

Date:

i

Abstract

Hyper-heuristics have emerged as general purpose search techniques that explore the

space of low-level heuristics to improve a given solution under an iterative framework.

They were introduced to raise the level of generality of search techniques representing

self-configuring and automated reusable heuristic approaches for solving combinatorial

problems. There are two classes of hyper-heuristics identified in the literatire: generation

and selection hyper-heuristics. In this thesis, we focus on the class of selection hyper-

heuristics and their efficient design and application on complex routing problems. We

specifically focus on two routing problems: the Urban Transit Network design Problem

(UTRP), and a rich vehicle routing problem for the delivery and installation of equipment

which was the subject of the VeRoLog solver challenge 2019.

The urban transit routing problem (UTRP) aims to find efficient travelling routes for

vehicles in public transportation systems. It is one of the most significant problems faced

by transit planners and city authorities throughout the world. This problem belongs to

the class of combinatorial problems whose optimal solution is hard to find with the com-

plexity that arises from the large search space, and the multiple constraints imposed in

constructing the solution. Furthermore, realistic benchmark data sets are lacking, mak-

ing it difficult for researchers to compare their problem solving techniques with those of

other researchers. We evaluate and compare the performance of a set of selection hyper-

heuristics on the UTRP, with the goal of minimising the passengers’ travel time and the

operators’ costs. Each selection hyper-heuristic is empirically tested on a set of known

benchmark instances and statistically compared against all the other hyper-heuristics

to determine the best approach. A sequence-based selection method utilising a hidden

markov model achieved the best performance between the tested selection methods, and

better solutions than the current known best solutions are achieved on benchmark in-

stances. Then, we propose a hyper-heuristic algorithm specifically designed to solve the

UTRP with defined terminal nodes that determine the start and end points of bus jour-

neys. The algorithm is applied to a novel set of benchmark instances with real world

size and characteristics representing the extended urban area of Nottingham city. We

compare the hyper-heuristic performance on the data set with the NSGAII algorithm

and real world bus routes, and prove that better solutions are found by hyper-heuristics.

Due to the clear gap in research between the application of optimisation algorithms in

public routes network optimisation and the real world planning processes, we imple-

mented a hyper-heuristic algorithm that interactively work with interface procedures

iii

to optimise the public transport lines in Visum transportation modelling software. We

adopt Selection Hyper-heuristics for two optimisation problems and the optimisation

objectives include the passengers’ average travel time and operators’ costs. The re-

sults demonstrate the successful implementation of the applied optimisation methods for

multi-modal public transport networks. Finally we introduce a population based hyper-

heuristic algorithm and apply it on a complex vehicle routing problem consisting of two

stages: a Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) for

the delivery of equipment, and the Service Technician Routing and Scheduling Problem

(STRSP) for the installation of the delivered equipment. This problem was the subject

of the VeRoLog solver challenge 2019. We apply the hyper-heuristic population-based

algorithm on a small and large size data sets, and show that our approach performed

better in terms of results and run time on small instances compared to the results of

a mathematical model implemented for this problem. We perform analysis of the new

proposed algorithm and show that it finds better quality solutions compared to its con-

stituent selection hyper-heuristics when applied individually. Finally we conclude the

thesis with a summary of the work and future plans.

iii

Acknowledgements

I would like first to pay my gratitude to God almighty who gave me the strength physi-

cally and mentally to complete my research tasks and to prepare this thesis.

I would like to thank the Computer Science and Informatics department in Cardiff Uni-

versity for offering me this great opportunity and funding my PhD studies, which allowed

me to persue the research field I adore the most. Without this opportunity, this thesis

would not have seen the light, I will be forever in debt for this incredible support and

opportunity.

I would like to express my sincere gratitude to my supervisor Dr.Christine Mumford

for her guidance, support, patience, understanding, and encouragement during the past

four years of my PhD. Her hard work with me throughout paper writing and conducting

experiments helped me a lot to overcome many challenges and shape my experience

especially in writing scientific papers. I owe her the success of this dissertation and

genuinely thank her for being the great person that she is.

I thank our colleagues from Nottingham University, Dr.Yong Mao, and Philipp Heyken

who I worked with closely and has been a great contributor in many of the projects

proposed in this thesis. I also thank the other authors from Lancaster University, and

Prof.Gromicio who gave incredible support for our VeRoLog project.

I would also like to thank my husband Dr.Ahmed Kheiri, first for playing a major role

in completing the projects on this thesis with his advice, guidance and hard work, and

second for being a great supporter to complete this thesis by encouraging me, pushing

me to achieve all this, and believing in me.

I also thank my family for their continuous support during my studies, and my two kids

who made this journey way more difficult but joyful at the same time.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

List of Figures ix

List of Tables xii

Abbreviations xiv

1 Introduction 1
1.1 Research Motivation and Contributions 3
1.2 Structure of Thesis . 5
1.3 Academic Publications Produced . 6

2 Vehicle Routing Problems and the Variants Solved 8
2.1 The Concept of Optimisation . 8

2.1.1 Optimisation of Combinatorial Problems 9
2.1.2 NP-Hard and NP-Complete Problems 10
2.1.3 Single and Multi-Objective Optimisation 12

2.2 Graph Structure . 14
2.3 The Vehicle Routing Problem . 16

2.3.1 The Travelling Salesman Problem 17
2.3.2 Overview of VRP Variants . 18

2.4 The Urban Transit Network Design Problem (UTNDP) 20
2.4.1 Difficulties of the UTNDP . 22
2.4.2 UTNDP and VRP . 22
2.4.3 The Urban Transit Routing Problem (UTRP): Problem Description 23

2.5 The VeRoLog 2019 Solver Challenge . 28
2.6 Summary . 31

v

Contents vi

3 Methods for Solving VRP Problems 32
3.1 Methods for Solving Combinatorial Optimisation Problems 32

3.1.1 Exact Mathematical Approaches 33
3.1.2 Heuristic Methods . 34
3.1.3 Meta-heuristics . 34

3.1.3.1 Evolutionary Algorithms 35
3.1.3.2 Swarm Intelligence . 36
3.1.3.3 Single Solution Based Meta-heuristics 36

3.2 Solving the Urban Transit Routing Problem 37
3.2.1 Analytical and Exact Mathematical Approaches 38
3.2.2 Heuristic Methods . 40
3.2.3 Meta-heuristic Approaches . 42

3.2.3.1 Genetic Algorithms . 42
3.2.3.2 Swarm Intelligence . 45
3.2.3.3 Single Solution based Meta-heuristics 47

3.2.4 UTRP Algorithms in Real-world Planning 49
3.2.5 Limitations of Previous Research in the UTRP 49

3.3 Solution Methods for VRP Delivery Problems 50
3.4 Optimisation with Selection Hyper-heuristics 53

3.4.1 Classification of Selection Hyper-heuristics 55
3.4.2 Online Learning Selection Hyper-heuristics 57
3.4.3 Population-based Selection hyper-heuristics 57

3.5 Selection and Move Acceptance Methods 59
3.5.1 Sequence-based Selection Hyper-Heuristic 60

3.6 Hyper-heuristics in Routing Problems . 62
3.7 Methods for Solving Multi-objective Optimisation Problems 64

3.7.1 Evolutionary Algorithms . 64
3.7.2 The Weighted Sum Method . 65
3.7.3 The Applied Weighted Sum Method 67

3.8 Summary . 67

4 Hyper-heuristics for Urban Transit Route Design Problem 69
4.1 Problem Model . 69
4.2 Hyper-heuristics Design and Solution Initialisation 71

4.2.1 Evaluation Method . 71
4.2.2 Initial Solutions . 72
4.2.3 Hyper-heuristics . 72
4.2.4 Low Level Heuristics . 74
4.2.5 Problem Instances . 75

4.3 Experimental Results . 76
4.3.1 Passenger Perspective . 77
4.3.2 Operator Perspective . 80
4.3.3 Longer Runs . 81
4.3.4 Obtaining Multiple Solutions . 81

vi

Contents vii

4.3.5 Analysis of SS-GD . 83
4.3.6 Comparison with Other Approaches 86

4.4 Summary . 86

5 Hyper-heuristics for Solving Real-world Applications of the Urban Tran-
sit Routing Problem 90
5.1 Optimising Bus Routes with Fixed Terminal Nodes: Comparing Hyper-

heuristics with NSGAII on Realistic Transportation Networks 91
5.1.1 The UTRP with Terminal Nodes 91
5.1.2 Problem Formulation . 93
5.1.3 Optimisation Procedure . 93

5.1.3.1 Creating an Initial Route Set Using a Heuristic Construc-
tion Procedure . 94

5.1.3.2 Objectives and Evaluation 96
5.1.3.3 Optimising Route Sets Using Selection Hyper-heuristics . 97
5.1.3.4 Low Level Heuristics . 98

5.1.4 Nottingham Data set . 99
5.1.5 NSGAII Optimisation . 102
5.1.6 Experimental Results . 103

5.1.6.1 SS-GD Results . 103
5.1.6.2 Comparison of SS-GD and NSGAII 105
5.1.6.3 Comparison with Real World Route Sets 106

5.2 Public Transport Network Optimisation in PTV Visum Using Selection
Hyper-heuristics . 108
5.2.1 Visum Transportation Modelling Software 110

5.2.1.1 History and Features . 110
5.2.1.2 Differences between Visum and the UTRP Network Models111

5.2.2 Selection hyper-heuristics for Optimising Visum Public Transport
Lines . 112
5.2.2.1 Low Level Heuristics . 114
5.2.2.2 Feasibility and Evaluation 115

5.2.3 Empirical Results . 117
5.2.3.1 Test on Small Instance 117
5.2.3.2 Application on City Size Network and Local Optimisation 120

5.2.4 Summary . 123

6 Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 125
6.1 Description of the Problem . 126
6.2 Solution Format . 129
6.3 Problem Instances . 130
6.4 Hyper-heuristics Methodology of CVRP for Delivery and Installation of

Machines . 130
6.4.1 Population-based Hyper-heuristic Framework (POHH) 132
6.4.2 Solution Representation and Feasibility 134

vii

Contents viii

6.4.3 Low Level Heuristics . 134
6.5 Experimental Results . 137

6.5.1 Results on the Small Dataset . 137
6.5.2 Results on Hidden Dataset . 141
6.5.3 Performance Analysis of POHH . 142
6.5.4 Performance Comparison to the Constituent Hyper-heuristics . . . 145

6.6 Summary . 147

7 Conclusion 149
7.1 Summary of Work . 149
7.2 Future Work . 154

Bibliography 157

viii

List of Figures

2.1 Relationship between P, NP, NP-Hard, and NP-Complete problems 12
2.2 Pareto-front and Pareto optimal solutions 13
2.3 Demonstration of different types og graphs 15
2.4 Solution to the basic VRP . 17
2.5 (a): Feasible route network containing three routes. (b): Transit net-

work showing the duplication of nodes and transfer edges connecting the
duplicates. (c): Infeasible disconnected network 26

3.1 Solution methodologies for CO problems 33
3.2 A generic selection hyper-heuristic framework. The green arrows represent

the acceptance component . 55
3.3 Example of updating the values in the transition and sequence construc-

tion matrices: We assume the application of the sequence [llh0, llh1, llh3]
improved the best solution. The scores of these low-level heuristics in
the “Transition Matrix" and the “Sequence Construction matrix" are up-
dated. This update increases the probability of selecting this sequence in
later steps. 62

3.4 Illustration of the weighted sum approach in a minimisation problem and
in non-convex Pareto front . 66

4.1 Low level heuristics set description. Straight arcs are edges in the route,
dashed arcs are edges removed after applying the low level heuristic,
curved arcs are edges added after applying the low level heuristic 75

4.2 Box plots from 10 runs for all selection methods combined with GD accep-
tance method for (a) Mandl6 instance, and (b) Mumford3 instance. Values
in Y axis show the average travel time and the lower boxes represent the
best selection methods . 80

4.3 A plot showing a number of solutions between the best passenger and
operator results in Mandl6 instance. Each point represents a different
solution with different weight values. 83

4.4 Operator and passenger costs change over time in (a) Mandl6 and (b)
Mumford3 instances . 84

4.5 Average utilisation rate for each low level heuristic considering the invo-
cations that generated improvements on the best solution in Mandl6 and
Mumford3 instances . 85

ix

List of Figures x

4.6 Transition and sequence construction frequency matrices for Mandl6 and
Mumford3 . 87

5.1 Feasible route network (a) becomes infeasible (b) by introducing three
terminal points (green) . 92

5.2 The usage map and the transformed usage map: darker colour = high
demand edges, lighter colour = lower demand edges. Green vertices =
terminal vertices, red vertices = non-terminal vertices. 95

5.3 Map of the study area together with nodes and network edges generated
with the method described in this section. The colours and numbers
indicate the areas of the instances: 1: Clifton (red), 2: Hucknall (blue),
3: South of Trent (brown) and 4: Nottingham (green). The instances
Hucknall and South of Trent are subsets of the Nottingham instance and
Clifton is a subset of South of Trent. 100

5.4 SS-GD results plotted against the evaluation results of the final popula-
tion. The blue dots are the results of the population evaluation and the
red dots are SS-GD results. 107

5.5 Description of one iteration of the SSHH algorithm application in the
global optimisation. Each iteration begins with box A: The generation of
sequence of heuristics and applying it to the current route set to create
a new route set. The new route set is tested for its feasibility. If the
new route set is feasible it is converted to stop point lists (Box B). The
stop point lists are implemented in Visum as line routes and other neces-
sary information for the evaluation are extracted (Box C). The evaluation
includes combining the objectives of passenger and operator costs (Box D).114

5.6 Low-level heuristics set description. Straight arcs are edges in the route
or added after applying the heuristic, dashed arcs are edges removed af-
ter applying the heuristic, red nodes are nodes added after applying the
heuristic. 116

5.7 Box plots from 10 runs for the SSHH and SR selections combined with IE
acceptance for the small network test case from the passenger and operator
perspectives. Values in Y axis are the normalised passenger and operator
costs. 119

5.8 Results of the global optimisation on a small network model for three
scenarios: passenger perspective, operator perspective, and balancing the
two objectives using two selection hyper-heuristics (SR and SSHH). Each
figure displays the development of the normalised passenger objective CP

averaged for ten runs (green with rectangles) the normalised averaged op-
erator objective CO (blue with pentagons) and the averaged combined
optimisation function fglobal (black with circles). The averages were cal-
culated for every successful iteration from ten independent runs. The bars
in the middle represent the standard deviation between the runs. 120

x

List of Figures xi

5.9 Results for PuT line global (a) and local (b) optimisation with SSHH on a
city-sized network. Displayed is the development of the normalised average
passenger objective CP (green with rectangles), the operator objective CO

(blue with pentagons), the combined optimisation function fglobal (a), and
the average reduction in the local objective CL (b)(black with circles). The
averages were calculated in steps of one minute from ten independent runs.
The bars show the standard deviation between the runs. The markers at
the right side bar show the distribution of the final values of the individual
runs after 16 hours of run time (also shown in table 5.6). Each marker
represents the final value of either fglobal (CL) (circles), CP (rectangles),
or CO (pentagons) for each run. Each colour uniquely identifies one of the
ten experiments. 121

6.1 Description of the customers states during the planning horizon. Dashed
arrows display technician routes and solid arrows display truck routes . . . 127

6.2 Solution example, and the routes of truck 1 in day 1, and technician 1 in
day 2. The red and blue arcs represent two different tours. The pink and
grey coloured boxes represent the depot and technician Ti respectively . . 129

6.3 Some selected low level heuristic descriptions. Blue and red arrows repre-
sent two different tours. Dashed arrows are edges removed by the appli-
cation of the low level heuristic . 138

6.4 Mean ranks of the finalists teams and the POHH algorithm computed
according to the competition rules . 142

6.5 Visualisation of sample instances . 144
6.6 Average utilisation rate . 146

xi

List of Tables

3.1 Some selected studies applying various meta-heuristic algorithms for the
optimisation of the route or the routes and frequencies in the UTNDP.
Studies applying GA methods are highlighted to show the prominence of
GA in previous literature. 48

3.2 Some selected routing problems in which hyper-heuristics were used as
solution methodologies . 63

4.1 Features of our dataset . 76
4.2 Results of the thirty selection hyper-heuristics from the passenger perspec-

tive for Mandl instances. Best values per each instance are highlighted in
bold . 78

4.3 Results of the thirty selection hyper-heuristics from the passenger perspec-
tive for Mumford instances. Best values per each instance are highlighted
in bold . 79

4.4 Results of the three best selection hyper-heuristics from the operator per-
spective. Best averages and minimum values per instance are highlighted
in bold . 81

4.5 Results of the long runs experiments from passenger and operator per-
spectives. Best values are highlighted in bold 82

4.6 Passenger perspective results compared to other approaches 88
4.7 Operator perspective results compared to other approaches 89

5.1 Features of the data set . 101
5.2 Results of SS-GD in all instances from the passenger, operator, and bal-

anced perspective. The results are reported using the average of the ten
trials, the maximum and minimum objective values, and the number of
iterations. 104

5.3 Comparison between the best results from the perspectives of passenger
and operator between SS-GD and NSGAII for each instance. 106

5.4 Comparison between the real world route sets and SS-GD best results
from passenger and operator and balanced perspectives for Nottingham
and South of Trent instances . 109

5.5 Results from passenger, operator, and balanced configurations for the two
selection hyper-heuristics. The results are normalised and averaged over
the ten runs. The standard deviation and the best results are also recorded.119

xii

List of Tables xiii

5.6 Final values of ten runs with global and local SSHH optimisation on Halle
network. Values normalised on initial values and minimal values are high-
lighted in bold. 122

6.1 Characteristics of the small and hidden instances 131
6.2 The algorithm parameters and the chosen values 139
6.3 Summary of the results. The table shows upper bound (or optimum),

lower bound (if not optimum), percentual deviation, solution time (in
second) . 140

6.4 The performance comparison of the finalists and POHH, based on the
average, and minimum of the objective values over 9 runs for each instance.
The top six methods per each instance are reported and best values are
highlighted in bold . 143

6.5 The performance comparison of POHH, SS-RR, SS-GD, SS-SA, SS-Naïve,
SR-RR, SR-GD, SR-SA and SR-Naïve based on the average (Avg), asso-
ciated standard deviation (Std), minimum (Min) of the objective values
over 9 trials and the pairwise average performance comparison of POHH
vs (SS-RR, SS-GD, SS-SA, SS-Naïve, SR-RR, SR-GD, SR-SA and SR-
Naïve) based on Mann-Whitney-Wilcoxon for each instance produced by
each approach. The hyper-heuristic producing the best value for Avg and
Min per each instance are highlighted in bold 148

xiii

Abbreviations

ACO Ant Colony Optimisation

ALNS Adaptive Large Neighbourhood Search

BCO Bee Colony Optimisation

CO Combinatorial Optimisation

COPs Combinatorial Optimisation Problems

CVRP Capacitated Vehicle Routing Problem

CVRPTW Capacitated Vehicle Routing Problem with Time-windows

DARP Dial-a-Ride-Problem

EA Evolutionary Algorithm

GA Genetic Algorithm

GD Great Deluge

GR Greedy

HC Hill Climber

HMM Hidden Markov Model

IE Improve or Equal

ILP Integer Linear Programming

LA Late Acceptance

MCVRP Multi Compartment Vehicle Routing Problem

MILP Mixed Integer Linear Programming

MOOP Multi Objective Optimisation Problem

MPVRP Multi Period Vehicle Routing Problem

NSGAII Nondominated Sorting Genetic Algorithm II

OI Only Improve

xiv

Abbreviations xv

POHH Population-based Hyper-heuristic

PSO Particle Swarm Optimisation

PuT Public Transport

RD Random Descent

RP Random Permutation

RPD Random Permutation Descent

RR Record-to-Record

SA Simulated Annealing

SDVRP Split Delivery Vehicle Routing Problem

SR Simple Random

SSHH Sequence based Selection Hyper-heuristic

SS-GD Sequence-based Selection combined with Great Deluge

STRSP Service Technician Routing and Scheduling Problem

TSP Travelling salesman Problem

TS Tabu Search

UTNDP Urban Transit Network Design Problem

UTRP Urban Transit Routing Problem

VeRoLog The Euro working group on Vehicle Routing and Logistics optimisation

VRP Vehicle Routing Problem

xv

Chapter 1

Introduction

Vehicle Routing Problems (VRPs) are one of the most important classes of NP-hard com-

binatorial optimisation problems that have been subject to research for more than fifty

years [1]. Due the complex nature of the VRPs and their real-world practicality, various

versions have been implemented with different structures and operational constraints,

challenging researchers to develop a rich suite of methodologies and efficient solution

methods for solving such a complex problem. There is a growing interest nowdays in

the application of optimisation techniques in real-world routing problems due to the in-

creasing demand by industrial and commercial partners who are competing to deliver

efficient services for their customers while effectively reducing their expenditures. As a

result, several well-known companies have been approaching academic institutions and

organising challenges in cooperation with research groups to encourage researchers into

developing efficient solution methods and to compete in delivering high quality results

for real-world problems encountered in their businesses. The research field also benefits

from such connections, which can result in the availability of real-world benchmarks, and

enrich the research with novel versions of routing problems from real life applications.

One important application of VRPs in the current urban societies is the development

of efficient public transit services. The ever-increasing use of private transportation

throughout the cities of the world is resulting in unacceptable levels of congestion, pollu-

tion, and environmental, social and economic cost. This has led to move towards improv-

ing public transportation services and encouraging citizens to use them more. To fulfil

the current needs of modern cities in delivering efficient, economical, and environmentally

friendly transportation systems, careful planning is required in the design phase to avoid

excessive waiting and travelling times and reducing the operational costs. The design

1

Chapter 1. Introduction 2

of public transit systems is a complicated task that needs to satisfy the requirements

of many stakeholders with conflicting needs, including passengers and transportation

companies. One key stage is the design of routes over a given network to provide an

efficient service for passengers and network operators. This problem is referred to as

the Urban Transit Routing Problem (UTRP). The UTRP is considered an enormous

challenge for optimisation algorithms, because of the huge complexity imposed by the

multiple constraints which define the criteria for accepting feasible solutions, and the

many conflicting objectives that the designed network should satisfy. This makes finding

near optimal solutions extremely difficult.

Years of research in the optimisation of combinatorial problems led to the development

of a variety of methods which participated in finding increasingly competitive results

in many intractable computational problems such as VRPs. However, most of these

methods have been finely tuned to work well on one problem or an instance of a problem.

This has lead to the lack of general problem solving methodologies and the creation of a

range of methods that work well on specific problem structures, while not being able to

perform as well in other problem versions without significant human input. This issue

has urged researchers to develop methods that are more general and can adapt to changes

in the problem domain. Recently, research has focused on a class of algorithms known as

hyper-heuristics [2] that have the potential to adapt to changes in the problem domain,

making their application to different problems and instances easier than other search

methodologies. Hyper-heuristics, which are defined as heuristics to choose heuristics, is

separated from any specific domain knowledge by what is called “domain barrier”, and

therefore it can focus on providing sufficiently good solutions without the need for lengthy

run-times or significant input. Since the development of the hyper-heuristic framework,

it has been utilised in solving several combinatorial problems, and routing problems is a

domain in which hyper-heuristics has had an outstanding record of success.

In this thesis, we apply a selection hyper-heuristic framework to two routing applica-

tions, one is the aforementioned UTRP, and the other problem is a rich VRP problem

comprising of two routing stages for delivery and installation. Despite the differences

between the two problems in their description and operational constraints, it was worth

investigating the effectiveness of the hyper-heuristic framework and its generality on dif-

ferent versions of real world routing problems, and showing that it can adapt to different

domains while delivering high quality performance.

We explore the capabilities of hyper-heuristics in overcoming challenges that other meta-

heuristic algorithms have struggled with, and show the impact of online learning in

2

Chapter 1. Introduction 3

improving the performance of hyper-heuristics. We test different combinations of se-

lection hyper-heuristics and perform extensive experiments on data sets with different

sizes and characteristics, and show the scalability of our methods and its adaptability

when more complexity is added to the problem domain. We provide a solid contribution

to the Urban Transit Routing Problem (UTRP) by developing a novel hyper-heuristic

algorithms for solving three different versions of the problem, and in one of them we

integrate our algorithms with a professional transportation modelling software. We fur-

ther explore our selection hyper-heuristic framework as a population-based approach in

a routing problem of two interconnected stages and prove that our algorithm is able to

find optimum solutions in a short time.

1.1 Research Motivation and Contributions

Meta-heuristics have enjoyed some success on versions of the UTRP, with genetic algo-

rithms (GAs) as a particularly popular choice [3–6]. However, one of the main shortcom-

ings of applying population-based algorithms to solve the UTRP are the significantly

long run times when solving large instances, which can extend to days rather than hours

as has been reported in [7]. Running such algorithms on large instances may often require

the use of a high performance cluster, and yet the execution time remains unreasonably

long especially when the number of generations increases. This has led to limiting the

implementation of population-based algorithms to relatively small instances. Cooper

et al. [8] used parallelism to solve the run time problems of the UTRP, but this cannot

be a definitive solution as it requires the use of a cluster of high performance computers.

In this thesis we propose hyper-heuristics as a possible way forward. Hyper-heuristics

have a clear advantage in terms of run time over population-based methods such as GAs

because their focus is on a single point in the search space, rather than a population

of points. Furthermore, hyper-heuristics have built-in mechanisms that carry out the

tuning and parameter setting without the need for human intervention, and use only

simple low level heuristics that are fast and easy to design. Although hyper-heuristics

are designed as problem independent methods, many researchers have shown that the

choice of selection hyper-heuristics components highly influence their performance [9, 10].

Thus, we focus on examining and comparing the performance of several selection hyper-

heuristics, combining different known selection and move acceptance methods on the

route design problem (UTRP) with the goal of minimising the average passengers travel

time, and the costs to the operators. Moreover, there is a lack in the UTRP research

3

Chapter 1. Introduction 4

for simplified models that are also applicable to real world size instances. Most of the

currently available methods applied to real world size instances of cities and towns are

specifically designed to work on those instances, and they are not available publicly in the

majority of these studies. This has motivated us to contribute with our methodologies to

find state-of-the-art results to a new published set of instances with real world size and

characteristics, and also to prove that hyper-heuristics continue to perform well in terms

of run time and solution quality compared to multi-objective evolutionary frameworks

such as NSGAII.

We have also observed the gap in the research between the purely academic studies in

the automatic public transport route optimisation and real world planning processes.

Therefore, there is an urge to develop algorithms that can bridge the gap between the

theoretical research of the UTRP and the real world transportation planning. A hyper-

heuristic is a good candidate for such application, being a single-point based framework,

and therefore able to facilitate the interaction with a transport modelling software pack-

age. Finally, we wanted to explore the generality of hyper-heuristics to solve different

VRP versions that is as complex as the UTRP, with a real world impact. The VeRoLog

solver challenge 2019 problem was an ideal platform to showcase our results and to test

the hyper-heuristic capabilities in terms of run times and solution quality against the

performance of exact mathematical methods, and the results of the challenge finalists.

The key research questions we are addressing in this thesis are:

1. How can a selection hyper-heuristic being a single-point based framework succeed in

overcoming the run time issues in population-based methods while delivering high

quality solutions in small as well as large size instances ? (chapter 4 publication 1)

2. How can we extend our implementation of the hyper-heuristic framework to be

applied on more complex versions of the UTRP and on instances with real-world

size and characteristics ?(chapter 5, publication 2)

3. How can we bridge the gap between academic versions of the UTRP and real-

world transportation systems planning by integrating the algorithms used to solve

the UTRP theoretically with a commercial software package used by transportation

systems planners ? (chapter 5, publication 3)

4. How can we generalise the application of hyper-heuristics in different domains of

complex routing problems and prove its effectiveness and computational efficiency?

(chapter 6, publication 4)

4

Chapter 1. Introduction 5

The main contributions of this thesis are:

• A novel implementation of a selection hyper-heuristic algorithm for solving the

UTRP by implementing and testing several components of selection and move

acceptance methods.

• Testing an online learning selection method based on the Hidden Markov Model

(HMM) and show that it is more effective compared to other non-learning random

selection methods.

• Comparison with the state-of-the-art methods from the literature and finding new

best results for Mandl instance with 6, 7, and 8 routes and the instances of Mumford

data set.

• Using the weighted sum approach to mitigate the effect of maintaining a population

of solutions which causes serious run time limitations while solving the UTRP.

• A hyper-heuristic algorithm for solving the UTRP on real world scale instances with

fixed terminal nodes. A set of specialised operators are implemented to handle the

presence of fixed terminals.

• A comparison with the NSGAII evolutionary multi-objective framework approxi-

mate Pareto front, and real-world bus routes to show the excellence of our results.

• The integration between hyper-heuristics as an optimisation method and the eval-

uation tools offered by the commercial transport planning software Visum, thus

allowing to solve versions of the UTRP that are more applicable to transport plan-

ners in real world.

• A novel population-based selection hyper-heuristic for solving the VeRoLog solver

challenge 2019.

• The comparison of the population-based selection hyper-heuristic framework with

a mathematical model results and the results of the competition finalists on large

scale instances.

1.2 Structure of Thesis

The thesis is structured as follows:

5

Chapter 1. Introduction 6

• Chapter 1: Introduces the thesis topic and describes the motivation of this study.

• Chapter 2: Introduces the main concepts applied throughout the thesis, and defines

the VRP variants solved.

• Chapter 3: Summarises the methods applied previously in the literature to solve

Vehicle Routing Problems (VRPs). The chapter also presents a comprehensive sur-

vey of the literature in the UTRP, and some well-known VRP variants related to the

problems tackled in the thesis. An introduction to the hyper-heuristic framework

and the online algorithm applied in the thesis is described.

• Chapter 4: This chapter describes the applied hyper-heuristic methodology for

solving the UTRP based on our work in [11]. We present our results with an

extensive analysis, and compare these results with the state-of-the-art methods

from the literature.

• Chapter 5: Explains the application of the developed hyper-heuristic algorithms in

two problems: a version of the UTRP with defined terminal nodes on a realistic size

instances , and the optimisation of the public transport lines in Visum transport

modelling software.

• Chapter 6: Describes our methodology and the developed population based hyper-

heuristic framework for solving a VRP version for the delivery and installation of

equipment which was the subject of the VeRoLog solver challenge 2019.

• Chapter 7: Summarises the research findings of this thesis and the future work.

1.3 Academic Publications Produced

The following academic articles, conference papers and abstracts have been produced as

a result of this research, and on which the thesis chapters are based on:

1. Leena Ahmed, Christine Mumford and Ahmed Kheiri (2019) Solving urban transit

route design problem using selection hyper-heuristics. European Journal of Oper-

ational Research, 274(2):545-559. [journal] (Chapter 4).

2. Leena Ahmed, Heyken Soares, Christine Mumford, Yong Mao. 2019. Optimising

bus routes with fixed terminal nodes. Presented at: The Genetic and Evolutionary

Computation Conference, Prague, Czech Republic, 13-17 July 2019GECCO ’19

6

Chapter 1. Introduction 7

Proceedings of the Genetic and Evolutionary Computation Conference (Chapter

5).

3. Heyken Soares, Leena Ahmed, Yong mao, Chrisitne Mumford (in press) Public

Transport Network Optimisation in PTV Visum using Selection Hyper-Heuristics.Public

Transport (Chapter 5).

4. Ahmed Kheiri, Leena Ahmed, Burak Boyaci, Joaquim Gromicho, Christine Mum-

ford, Ender Ozcan and Ali Selim Dirikoc (2020) Exact and hyper-heuristic solutions

for the distribution-installation problem from the VeRoLog 2019 challenge. Net-

works, 76(2):294-319 (Chapter 6).

There are also a number of abstracts produced out of this thesis that were presented in

well known conferences including: IMA and OR Society Conference 2017, OR Society

Annual Conference 2018 (OR60), New to OR (2019) OR Society Biennial Conference,

28th PTV Traffic User Seminar(2018).

7

Chapter 2

Vehicle Routing Problems and the

Variants Solved

2.1 The Concept of Optimisation

In mathematics and computer science, optimisation refers to the selection of the best

element from a set of available alternatives using a mathematical function, or a criterion

on which to base the selection decision. In the simplest form, optimisation can refer to the

minimisation or maximisation of a function named the “objective function”, by choosing

an input or a set of inputs, and calculating the value of the objective function. The

optimisation is usually subject to a set of constraints defined according to the problem

domain, and the optimised problem is either a maximisation or a minimisation problem,

where in the former the calculated objective value is maximised, and minimised in the

latter.

An optimisation problem can be formulated in the following way: f : A→ R, a function

from a set A to the real numbers R, the goal is to find an element xo ∈ A, such that

f(xo) ≤ f(x) ∀x ∈ A (minimisation), or f(xo) ≥ f(x) ∀x ∈ A (maximisation). The

set A is known as the “solution space”, or the space of candidate solutions, and f is the

objective function that calculates the value of the candidates in A. The solution xo is

the best global optimum and which the optimisation procedure seeks to find.

A variety of optimisation algorithms have been developed over the years motivated by

the practical importance of optimisation in taking critical decisions in many large scale

applications, and its contribution to cost saving and service improvements. However, due

8

Chapter 2. Problem domains definition and hyper-heuristics 9

to the enormous search spaces involved in many real-world problems, manual application

of these algorithms is not realistic. For this reason, the automation of the optimisation

process is the only valid option. In the next sections and chapters we will further explore

the time and computational complexity associated with some optimisation problems, and

describe the algorithms suitable for solving them.

2.1.1 Optimisation of Combinatorial Problems

As mentioned above, an optimisation algorithm aims to find the best configuration from

a set of variables defined on the solution domain to achieve defined goals. There are two

important paradigms of optimisation that are used to categorise optimisation problems:

discrete optimisation and continuous optimisation. In the discrete optimisation, some or

all of the decision variables belong to a discrete set of values, in contrast to the continuous

optimisation, in which the variables are allowed to take a value from within a range of

values. Within the discrete optimisation problems, there is a category of problems known

as the Combinatorial Optimisation problems (COPs).

Combinatorial optimisation is a special case of of discrete optimisation, where the search

for an optimal solution is conducted on a finite set of solutions which can be represented

by a structure, such as a graph or a permutation. According to Papadimitriou and Stei-

glitz [12], in COPs we are looking for an object from a finite set or possibly countable

infinite set, and this object can be a subset, a permutation, or a graph structure. As

in the general optimisation problems, the goal in a COP is to find a set of globally op-

timal solutions as defined by an objective function. However, in cases of COPs when

the space of finite solutions is very large and increases exponentially with the increase

in the problem size, exhaustive search methods become intractable and impractical to

apply. Typical example of problems involving combinatorial optimisation are: the Trav-

elling Salesman Problem (TSP), the Bin Packing Problem, Boolean Satisfiability (SAT),

Quadratic Assignment (QAT), and scheduling and timetabling problems.

Beside the theoretical relevance of COPs, they are also practically important due to their

applicability in many real-world scenarios. Such domains in which we can see COPs in-

clude: routing, scheduling, decision making, production planning, energy, transportation

and telecommunication. Many COPs can be represented as graphs. In this class of prob-

lems, the solution domain is represented by a graph structure, and the goal is to find

an optimal solution in the form of a sub-graph containing a subset of the graph edges

9

Chapter 2. Problem domains definition and hyper-heuristics 10

and nodes. Typically, route design optimisation problems are classified as graph-based

COPs.

In principal, if the feasible solution space is finite, any COP can be solved exactly by

an algorithm that can identify all the feasible solutions and find the best of them ac-

cording to the objective function evaluation. However, the feasible solution space grows

exponentially with the size of the instance to be solved, and therefore such a simple

approach is not applicable for practical problems. According to Blum and Roli [13],

solution methods for COPs can be broadly classified as complete, or approximate algo-

rithms. In the complete (exact) solution methods, an optimal solution is guaranteed to

finite size instances in bounded time, while for NP-hard COPs that cannot be solved in

polynomial time (section 2.1.2), these methods will require an exponential time in the

worst case to find an optimal solution which is a significantly high computation time for

practical purposes. For this reason, approximate methods have been more popular and

received increasing attention. Amongst these methods are heuristics (constructive and

local search methods), and meta-heuristics methods (discussed further in chapter 3).

2.1.2 NP-Hard and NP-Complete Problems

The foundations of the computational complexity theory were put down by Cook [14]

and Karp [15], who introduced a framework for measuring the computational complexity

of a problem. The computational complexity theory provides a basis for calculating

the complexity of a problem based on how the required time for solving the problem

increases as the problem size gets larger. In other words, the time complexity of a problem

is expressed in terms of a complexity function that calculates the time requirements for

each possible input length. This function is referred to as the big O notation. For a given

input of length n, the notation O() provides a function proportional to the maximum

number of operations that should be performed, given that input.

Algorithms with time complexity O(nk) for some constant k, are called polynomial time

algorithms. These algorithms are described as tractable, as it is quite feasible to run

algorithms of this complexity with large inputs using the kinds of computers we have

today. In contrast, exponential time algorithms of time complexity O(kn) are intractable

and grow much faster than any polynomial function. An intractable problem is a problem

that cannot be solved by any polynomial time algorithm, such as the above example of

exponential time algorithms, and the factorial run time algorithms O(n!) that grow even

faster.

10

Chapter 2. Problem domains definition and hyper-heuristics 11

An important class of computational problems are the non-deterministically polynomial

problems (NP), which are described as the decision problems that are whether or not it is

tractable to find their solution, the verification of this solution is polynomial or tractable.

The class of polynomial problems which can be solved by means of a polynomial-time

algorithm, is called P. Trivially, P is a subset of NP (P ⊆ NP).

If M and M’ are NP problems such that M’ is significantly harder than M (i.e., any

reduction, or translation of M’ to M takes more than polynomial time), then M cannot

be amongst the hardest of NP problems. For M to be one of the hardest NP problems,

it is necessary that any NP problem M’ is reducible to it in polynomial time. This is

the motivation for the following definitions: A decision problem M is NP-hard if any

NP problem can be reduced to M in polynomial time (so no NP problem is more than

polynomially harder than M), and M is not necessarily an NP problem (not a decision

problem that has a "yes" or "no" answer). A problem is NP-complete if it is both NP and

NP-hard, i.e., it is an NP problem for which no NP problem is more than polynomially

harder. Therefore, the NP-complete problems are the hardest amongst the NP problems.

Figure 2.1 illustrates the relation between P, NP-Hard, and NP-Complete problems.

We should note that the existence of NP-Hard, and NP-Complete problems are based

on the assumption that P 6= NP . Whether or not this assumption is actually true

remains one of the most famous unsolved problems in computer science. Currently, no

one has yet discovered an algorithm to solve an NP-complete problem in a polynomial

time, and it is also unproved that such algorithm does not exist. If a polynomial time

algorithm that solves one of the NP-complete problems is found, this will consequently

mean that the entire class NP is contained in P, so we would have P=NP. If this has

ever became true, it will have a profound scientific consequences, because it will lead

to the availability of polynomial algorithms to solve a large class of important practical

problems which are thought to be intractable and to which a great effort has been spent

to develop algorithms that solve it approximately.

Almost all vehicle routing and scheduling problems are NP-hard and cannot be solved in

polynomial time. Exact approaches are only successful in solving small versions of such

problems and are not feasible for larger instances in terms of the computational time

requirements.

11

Chapter 2. Problem domains definition and hyper-heuristics 12

NP-HardNP-Complete

NP

P

Figure 2.1: Relationship between P, NP, NP-Hard, and NP-Complete problems

2.1.3 Single and Multi-Objective Optimisation

A single objective optimisation problem can be defined as: the minimisation or maximi-

sation of a single function f(x) subject to a set of constraints, where x ∈ Ω. The function

f(x) is named the objective function, and x = {x1, x2 . . . xn} is an n-dimensional deci-

sion variable vector from some universe Ω. Ω is a domain that contains all the possible

x that satisfies the evaluation of f(x) and all its constraints. The vector x and the

scalar function f(x) can be discrete or continuous. In the single objective optimisation,

the optimisation focuses solely on minimising or maximising f(x) (i.e., single decision

optimisation).

Another category of optimisation problems named “multi-objective optimisation prob-

lems” (MOOPs) involve multiple objective functions that are to be minimised or max-

imised simultaneously, and similar to the single-objective problems, the multi-objective

problems contain a set of constraints that must all be satisfied by a feasible solution.

In a MOOP, the concept of a globally optimal solution does not apply, but rather the

goal is to find a set of solutions that provide a good balance between several contra-

dicting objectives. Most of the real world problems are multi-objective in nature and

involve several stakeholders and decision making criteria. Examples are Vehicle Routing

Problems (VRPs), where the efficiency of the service delivered to the customers must be

balanced with the total encountered costs.

MOOPs can be formally stated as follows: F (x) = {f1(), f2(x) . . . fk(x)}, subject to:

gi(x) ≤ 0; i = 1 . . . , n, s.t: x ∈ U , where x is a solution, k ≥ 2 is the number

of objective functions, n is the number of constraints, and U is a feasible set. The

solution x is given as a decision vector x = {x1, x2, . . . xm}, where m is the number of

decision variables. A single solution in MOOP cannot improve all objective functions

simultaneously, but rather Pareto optimality is used to describe the set of solutions that

12

Chapter 2. Problem domains definition and hyper-heuristics 13

0

F2

F
1

Pareto-front

Pareto-optimal

Non-optimal solution

Figure 2.2: Pareto-front and Pareto optimal solutions

provide a trade-off between the multiple objectives. A solution is said to be Pareto

optimal, if it is not possible to move from this solution to a solution that is better for one

objective without worsening the other objectives. The set of all Pareto optimal solutions

is known as the Pareto front or the non-dominated front (figure 2.2), and these solutions

are not dominated by any other solution in the search space.

Multi-objective optimisation techniques can be classified based on how to combine the

decision making and search into the following approaches:

• Priori approach: in this method, the weights and the preferences of the objectives

are set prior to the search process by the decision maker. An example of this is the

weighted sum approach, where the weight of each objective is set before the start

of the search.

• Posteriori approach: the search is conducted to find a set of solutions, and a decision

process is then applied to select the most appropriate solutions (trade-off solutions).

Examples of this approach are evolutionary algorithms.

• Interactive (progressive approach): in this class, the decision maker can adjust the

preferences while the search is ongoing, or alternatively it can be done automatically

by the algorithm (e.g. SAWing).

Several methodologies have been developed for solving MOOPs, including the weighted-

sum approach, the ε-constraint method, and Evolutionary Algorithms (EAs). Further

detail on some of these methods will be discussed in the following chapter.

13

Chapter 2. Problem domains definition and hyper-heuristics 14

2.2 Graph Structure

As mentioned in section 2.1.1, an important class of CO problems such as route design

optimisation problems are graph-based, where the solution forms part of a sub-component

of the graph, and all the operations are preformed on a graph structure. In this section we

represent the fundamentals of the graph theory, which is essential to the understanding

of the problems definitions proposed in this thesis.

Formally, a graph G = (V,E) is defined as a set of vertices V = {v1, v2, ...vn}, and a set

of edges E = {e1, e2, ...em}, where each edge e = {u, v} is associated with a set of two

unordered vertices belonging to V . In this example, the edge e, is said to be connecting

the two vertices u, v. An edge is defined as incident to a vertex, if this vertex is contained

within the set that defines this edge.

A simple graph is defined as a graph that is undirected, has at most one edge between

any two pair of vertices, and has no self loops. A loop exists in a graph when there is at

least one edge in the edge set that does not connect two distinct pair of vertices (i.e., it

connects an edge to itself, e = (u, u)). An edge that connects an edge to itself is named

a “loop”, and if it connects two distinct pair of vertices, it is named a “link”.

A multi-edge exists when the edge set contains more than one edge with the same incident

vertices, and a graph is named a multi-graph, if it contains a loop, or several edges

between the same pair of vertices. A graph is also defined as a directed graph when an

edge connects a pair of two ordered vertices, such that: {u, v} 6= {v, u}. An example of

a directed and an undirected graph is shown in figure 2.3.

A graph G′ is defined as the subgraph of the graph G, if it contains a subset of its

vertices V ′ ⊆ V , and a subset of its edges E′ ⊆ E. Of a particular interest is the

induced subgraph, in which a specific subset of the vertices is selected, along with the

set of edges that connected the pairs of vertices in this subset in the original graph. It

can be defined as the graph G′s that has the subset of vertices S, and has all the edges

in E with endpoints that belong to S. Figure 2.3(c), is an induced subgraph from the

undirected graph (a) that includes the vertices A, B, C, and E. Another important class

of subgraphs is the spanning subgraph which can be defined as G′ = {V,E′} , in other

words, it is the subgraph that contains all the existing vertices of the original graph and

a subset of its edges.

A walk in a graph is defined as a sequence of edges, that are connected by a sequence

of vertices. We can refer to it by W = v1, e1, v2, e2, . . . en, vn, such that each edge ei

14

Chapter 2. Problem domains definition and hyper-heuristics 15

A

B

D

C

E

(a) Undirected graph

A

B

D

C

E

(b) Directed graph

A

B C

E

(c) Induced subgrraph

A

B

D

C

E

(d) Spanning subgraph

A

B

D

C

E

(e) Unconnected graph

B C

D

EFA

1
2

3
45

6
7

8
9

(f) Undirected weighted graph

Figure 2.3: Demonstration of different types og graphs

has the the vertices vi−1, vi as its endpoints. A trail is defined as a walk with distinct

edges, and the path is a trail with distinct vertices. A connected graph is said to have

a walk between every possible pair of vertices in the vertices set, otherwise the graph is

unconnected leaving some of its vertices isolated (i.e., has no adjacent vertices).

A weighted graph, is the graph where each edge is associated with a weight value (figure

2.3 (f)). This graph is particularly useful in applications where the shortest path or the

distance between pairs of vertices should be calculated.

Finally, we define the concept of adjacency between the graph vertices. Two vertices are

adjacent to each other if and only if there exists an edge connecting these two vertices.

In other words, adjacent vertices are incident on an edge. A single vertex can be adjacent

to several vertices, and the degree of a vertex is defined as the number of its adjacent

vertices. An isolated vertex has a degree zero, and the presence of a such vertex in the

graph means that this graph is unconnected (i.e., figure 2.3 (e), vertex D).

A graph can be simply represented by a structure called an adjacency matrix. For a

graph G, where |V | = n, the adjacency matrix Anxn is a matrix with entries of zero and

15

Chapter 2. Problem domains definition and hyper-heuristics 16

one values, where each entry Ai,j equals one if the two vertices vi, vj are adjacent, and

zero otherwise. This matrix is symmetrical in the case of simple undirected graphs (i.e.,

directed graphs are generally not symmetric).

2.3 The Vehicle Routing Problem

The well-know class of combinatorial optimisation problems, known as vehicle routing

problems, emerged in the fields of transportation, and distribution management moti-

vated by the needs of these industries to save expenditures, where major savings can

occur by optimising some measures of the transportation system. In fact, a large por-

tion of the logistics costs are related to distribution, leading to more attention to apply

optimisation techniques for costs saving.

Routing and scheduling problems encountered in industry or travel have a high degree

of complexity, involving multiple variables and constraints. Modelling these problems

require some types of simplifications and adjustments to make them tractable by op-

timisation algorithms. Nevertheless, even with these simplifications, obtaining optimal

solutions is still a challenge.

The VRP is one of the most well-known and extensively studied problems in combina-

torial optimisation, and the foundation of this research dates back to 1959 in the study

by Dantzig and Ramser [16] named “A Truck Dispatching Problem”. The study tackled

a real-life application of distributing gasoline among a number of service stations, with

the goal of finding optimal travel routes with the minimum travelling distance. Since

the introduction of this problem sixty years ago, it has attracted a great number of re-

searchers given its complexity and challenging nature, and most importantly its practical

applicability in the real-world. Due to this, many other VRP variants were proposed to

model real life situations.

The main goal in VRPs is to determine a set of routes for a fleet of vehicles located

at one or multiple depots to serve the demand at a number of geographically dispersed

locations known as customers. These vehicles are operated by a crew of drivers and travel

through an appropriate road network. In the most basic version of a VRP (figure 2.4), a

homogeneous fleet of vehicles serves customers’ demand by visiting each customer exactly

once, and the journey of each vehicle starts and terminates at the depot. The objective is

to find a set of routes, each performed by a single vehicle, such that all customers’ requests

16

Chapter 2. Problem domains definition and hyper-heuristics 17

C1

C2

C3 Depot

C4

C5

C6

Figure 2.4: Solution to the basic VRP

are delivered, the operational constraints are satisfied, and the overall transportation

costs (i.e., travel time, distance) are minimised.

Further, there are many other constraints that can be added to to the basic version,

depending on the nature of the delivery/distribution problem. One of the most commonly

applied constraints is a capacity constraint on the size of the vehicles. This version of the

VRP is named the Capacitated VRP, in which each customer demand must not exceed

the vehicle capacity. The CVRP is one of the most well studied versions of the VRP and

forms the basis of other variants (see section 2.3.2 for more on VRP variants). The CVRP

can be considered the simplest VRP version, in which it is assumed that the vehicles are

identical and belong to the same depot. Using the graph notations, the CVRP can be

described as: a set of customers C = {c1, c2, . . . cn} scattered on different geographical

locations (x1, y1), (x2, y2) . . . (xn, yn), and a depot node {0} located at position (x0, y0).

A graph G = (V,A) exists, where the graph vertices V = {0}
⋃
C. There are a number

of vehicles M located in the depot to serve customers’ requests, and each has a limited

capacity Q, where customer demand di cannot be divided, and hence cannot exceed the

vehicle capacity (di ≤ Q ∀ci ∈ C).

2.3.1 The Travelling Salesman Problem

VRPs are NP-hard combinatorial problems originating from the classical Travelling

Salesman Problem (TSP). The Travelling Salesman Problem (TSP) is a well-known NP-
hard problem that has been studied by many researchers due to its various applications

in real-world problems. Some of these applications include: computer wiring, dashboard

design, job sequencing, vehicle routing, and warehouse automation systems. It was firstly

defined by the two mathematicians William R Hamilton and Thomas Kirkman in the

17

Chapter 2. Problem domains definition and hyper-heuristics 18

19th century. The basic definition of the problem involves a salesman who wishes to

travel between a number of cities returning home at the end, and the goal is to find the

sequence in which he can visit all the cities while minimising the total travelled distance.

Although the problem definition appears to be simple, it is until now considered one of

the most challenging problems in the field of operational research [17]. We will briefly

describe the mathematical definition of the TSP, as it is considered the basis for other

important routing applications.

Following the graph theory described in section 2.2, the TSP involves a graph G =

{V,E} containing a set of vertices V , and a set of edges E. The goal is to find a

minimum distance circuit that passes each vertex only once and returns back to the origin

vertex. This cycle is known as a Hamiltonian cycle. For example, if the graph G has

the set of vertices V = {a, b, c, d}, a Hamiltonian cycle can be {(a, b), (b, c), (c, d), (d, a)}.
Therefore, the TSP aims to find the minimum cost Hamiltonian cycle through the given

cities. Typically, the TSP is formulated as a weighted graph, and the edge weights can

be calculated in several ways such as the euclidean distance between two points using

the formula: If it is required to calculate the distance between two cities at locations

i = (x1, y1), and j = (x2, y2) then: Di,j =
√

(x1 − x2)2 + (y1 − y2)2.

Several problems have originated from the TSP, such as the multiple TSP and other

Vehicle Routing Problems (VRPs). In the multiple TSP, more than one salesman can

be used in the solution and accordingly the solution consists of multiple routes. This

draws a similarity to the VRP, where Dantzig and Ramser [16] proved that this problem

is a actually a generalisation of the TSP. However, VRP variants involve various oper-

ational constraints, in terms of the vehicles capacity, deliveries time windows, and the

distribution and scheduling of deliveries making them even more challenging to address.

2.3.2 Overview of VRP Variants

In real world applications, and because of the complexity and diversity of the real-world

systems, the CVRP only represents a narrow class of cases in a simplified way. However,

the CVRP is one of the elementary variants of VRP from which other variants originated.

Recalling from section 2.3, in the basic CVRP version, the goal is to find the minimum

cost routes for serving a set of geographically dispersed customers with known demands.

A fleet of homogeneous vehicles with fixed capacity located at a central depot serves the

customers’ requests, and each customer is visited exactly once to satisfy his/her demand.

Here we present the main categories of other VRP variants in more detail.

18

Chapter 2. Problem domains definition and hyper-heuristics 19

• The VRP with Time Windows (VRPTW): imposes a time interval (“time window”)

on the delivery of each customer’s request. Two further categories can be identified:

the VRP with soft time windows (VRPSTW) [18] in which violating the time

windows is allowed but associated with a penalty, and the VRP with hard time

windows (VRPHTW) [19] in which the time windows must be respected.

• The Multi-Period VRP Problem (MPVRP) [20]: in this variant deliveries are sched-

uled within a planning period, with each customer requiring one or more visits

during this period. The service days are known and the frequency of customer

visits is predetermined.

• The Multi-Compartment VRP, and the Multi-Commodity VRP (MCVRP): con-

centrate on delivering different types of commodities to the customer, by either

using a single vehicle, or by splitting them to several vehicles, thus requiring mul-

tiple visits to the same customer.

• The Pickup and Delivery Problem (PDP) [21, 22]: This problem involves picking up

and delivering customers’ requests from certain points of pick up and delivery, and

this must be achieved by the same vehicle. Other variants of VRP have originated

from the PDP such as: the VRP with backhauls, the VRP with simultaneous pick

up and delivery, the VRP with mixed pick up and delivery, and dial a ride.

• The Split Deliveries VRP (SDVRP) [23]: in the SDVRP, the constraint that each

customer is visited by only one vehicle is relaxed, and thus customers’ demand can

be split between several vehicles for delivery.

• The Multi Depot VRP (MDVRP) [24]: In this variant, it is assumed that there are

multiple depots from which customers can be served.

• The Multiple Trips Vehicle Routing Problem (MTVRP) [25]: This problem as-

sumes that trucks can visit the depot more than once in the time horizon for stock

replenishment.

• The Open VRP (OVRP): in this variant, it is not necessarily the case that the

vehicles end their journey at the depot location.

• The Stochastic VRP (SVRP): some elements of the problem are stochastic and

unpredictable such as the number of customers, their requests, or their serving

time.

19

Chapter 2. Problem domains definition and hyper-heuristics 20

• The Workforce Routing and Scheduling Problem (WRSP): this problem can be

categorised as a general VRP and is concerned with the routing of staff from

their home location to their working sites. A similar problem to the WRSP, is

the Service Technician Routing and Scheduling Problem (STRSP), which involves

designing the least cost routes for vehicles carrying a number of service technicians.

2.4 The Urban Transit Network Design Problem (UTNDP)

The problem of designing urban transit routes and schedules for a public transport infras-

tructure with known demand following practical constraints is referred to as the Urban

Transit Network Design Problem (UTNDP). The UTNDP is a combinatorial optimisa-

tion problem that is NP-hard and is characterised by its computational intractability.

For this reason, research has attempted over the years to develop numerous algorithms

for solving the problem efficiently in a short computational times.

The UTNDP can be considered a very special variant of VRP problems, where there is no

central depot from which vehicles start and terminate their journeys. Rather, passengers

are picked up and dropped off at several locations along the routes, for example at bus

stops. The main focus as in the general VRP is to reduce the total travelled distance

encountered by the passengers as well as the expenditure of the operators.

The UTNDP is an important practical problem, that has a high impact on the develop-

ment of the current urban societies. Having a robust infrastructure for public transport

is a reflection of urbanisation, as well as being an essential service for individuals. More-

over, it contributes considerably on reducing the dependability on private cars, which

recently resulted in many social, and environmental problems, causing high rates of ac-

cidents, traffic, and pollution. Due to the challenging nature, and the important social

and practical impact of the problem, researchers tackled it as early as 1925 and several

solution approaches, and algorithms have been applied and new studies continue to com-

pete to find state of the art results and efficient algorithms for the optimal design of

public transport routes.

The two main components of the UTNDP problem are: the Urban Transit Routing

Problem (UTRP) and the Urban Transit Scheduling Problem (UTSP). Generally, the

UTRP deals with the design of efficient transit routes on a given transportation network

with known pick-up/drop-off locations, while the UTSP deals with the development of

schedules and timetables for the vehicles travelling along the designed routes to serve

20

Chapter 2. Problem domains definition and hyper-heuristics 21

passengers between their origin and destination locations. These two problems are usu-

ally solved sequentially, as the routes must be designed first before setting the schedules

and timetables. The UTNDP has been classified by Ceder and Wilson [26] into five main

stages that together contribute in the design of a public transit system: (1) network

design (2) frequency setting (3) timetable development (4) vehicle scheduling (5) driver

scheduling. The first stage, the transit routes design, is the most important, and on

which the other stages are based.

The UTNDP is a very difficult and heavily constrained optimisation problem, due to

its composition of several sub-problems and design stages as mentioned in the above

paragraph, that are all NP-hard in nature and require to search for optimal solutions

for an extremely large solution space. The UTNDP also deals with a complete set of

decision-making processes in transportation systems including strategic, tactical, and

operational decision making [27]. Moreover, the transit systems of transportation modes

are characterised by their stochastic nature and complexity, making the UTNDP ex-

tremely difficult, requiring simplifications to be tractable for modelling and solving by

optimisation algorithms.

In fact, most studies focus on tackling either one of the design stages, or commonly the

first two design stages are combined together in a problem named “route design and

frequency setting”. Moreover, this problem is inherently multi-objective consisting of

several criteria that should be optimised simultaneously. Mainly, the objectives that

most studies have focused on are: the passenger costs represented by the total travel

time, the percentage of transfers, and the operator costs represented by the total covered

distance, or the fleet size. Transportation companies try to reduce their costs which

can affect the service provided to the passengers, making the objectives of the problem

conflicting in nature. Some of the factors that affect the operator costs are the transit

vehicle size, distance travelled, vehicle operation hours for specific routes configuration,

and the fleet size. On the other hand, the passengers require a transportation service

with rapid travel times, less transfers, and frequent service. Other stakeholders who

are involved in the development of a transit system are national and local government,

local businesses, and taxpayers. All these stakeholders have their own benefit from the

designed system and evaluate its efficiency with respect to their own perception and view.

In a following section, we focus on the description of the UTRP, defining the problem

mathematically and showing its deep-rooted complexity.

21

Chapter 2. Problem domains definition and hyper-heuristics 22

2.4.1 Difficulties of the UTNDP

Over years of research, the UTNDP has been identified as an extremely difficult and

challenging problem, even for the most efficient optimisation algorithms. The majority

of the reasons for the UTNDP complexity have been identified in John [7], Fan [28]

doctoral theses:

• The problem is NP-hard, which means that the difficulty in finding a solution

increases exponentially with the size of the problem.

• Although many models have been presented in the literature for solving the UT-

NDP, these models differ hugely in their description of the problem, constraints,

and the objective functions considered. Therefore, there is no standardised ac-

cepted model that can be adopted as a reference.

• The constraints of the problem can be difficult to model and to satisfy, making the

search and check of feasible solutions a complex process that involves considerable

computation. .

• Different parts of the solution heavily depend on each other, and therefore it is

difficult to evaluate a single route in isolation from the other routes in the route

set. The quality of the route set is determined by all the routes belonging to it,

and should be evaluated as a whole.

• The problem involves multiple conflicting targets making the problem inherently

multi-objective. For example, reducing the service costs, and maximising the pas-

sengers benefit and welfare are targets that compete with each other.

• The collection of the input data in order to efficiently design a route set that

reflects the real nature of the transport system is extremely difficult. Demand

figures change throughout the day, and the passengers’ behaviours are stochastic,

and therefore finding an accurate measures is challenging. The consequence of this

is that the design of routes can be totally wrong if the input data is poor.

2.4.2 UTNDP and VRP

The UTNDP falls into the broad category of VRP problems, although there are many

key differences between the UTNDP and the various delivery problems discussed earlier.

Generally, most VRPs involve multiple trips that originate and terminate at a depot

22

Chapter 2. Problem domains definition and hyper-heuristics 23

location, and each route (vehicle) services a number of customers with pre-determined

demands (requests), and a time window for the delivery/pick-up time. In the route design

problem of the UTNDP, a set of routes is designed to pick-up and drop-off passengers

from their origin to destination points, following a fixed schedule. The passenger cannot

determine a preferred time window, but rather waits at the bus stop for the next vehicle

to arrive. The VRP problems are solved on a daily basis to serve the varying demand of

the customers, while the UTRP aims to design routes for the long term strategic planning

with estimated demand figures. The general objectives in both problems are common,

aiming to reduce the total costs associated with the total travelled distance and raising

the customers’ (passengers) satisfaction.

The closest variant to the UTRP amongst the other variants of VRP is the dial a ride

problem (DARP). The DARP deals with the transportation of customers from their

selected origin point to multiple destination points, using vehicles that are shared by a

number of customers with different requests. However, there are several differences that

distinguish the two problems. In the DARP, the vehicles are assigned on the basis of

customers’ requests and accordingly the routes are determined, while in the UTRP the

routes are pre-determined and fixed, and the passengers cannot request their pick-up

vehicle or preferred time for pick-up and arrival, instead the timetables are followed. In

other words, in the DARP, customers’ preferences and choices are taken into account,

in contrast to the UTRP where passengers make selections from available routes and

schedules according to personal preferences. The DARP is also planned on day to day

bases, accommodating to the new received requests, and therefore the demand is variable.

In the UTRP, It is assumed that the demand levels remain the same with insignificant

variance during the day. The DARP is on a smaller scale and is a more flexible application

compared to the UTRP, which is a long term planning application that is performed on

a larger scale. This makes the UTRP a unique VRP variant that requires specialised

algorithms to solve it.

2.4.3 The Urban Transit Routing Problem (UTRP): Problem Descrip-
tion

The urban transit routing problem (UTRP) involves developing a set of routes for an

existing transport network following a set of constraints, and can be defined as the

physical design of the of the UTNDP [29]. The transport network defines the layout of

the street network and the connections between bus stops. The layout of the transport

23

Chapter 2. Problem domains definition and hyper-heuristics 24

network can be given as a graph structure, where the bus stops are the graph nodes,

and their connections are the graph edges (arcs). The goal is to develop a set of routes

that allow each passenger to travel from any source to any destination point in the

network, with the minimum travel time and transfers, while keeping the expenditures of

the operating companies at an acceptable levels.

The route network is a part of the transport network, where several paths (i.e., routes)

are superimposed to form a network. It should form a spanning subgraph of the transport

network, containing all the nodes of the transport network and a subset of its edges. Most

importantly, the route network must be connected, such that, there is a path connecting

every pair of nodes in the network in order to satisfy the network demand. Here, we

will define these terms mathematically and the objective functions. The formulation we

describe for the UTRP is a simplified formulation based on an undirected graph.

The transport network can be represented using an undirected graph: G = {V,E}. The
vertices in the graph V = {v1, v2, . . . , vn} represent access points (i.e., bus stops), and

the edges connecting the vertices E = {e1, e2, . . . , em} ⊆ V ×V represent direct transport

links (i.e. roads). We also present two symmetrical matrices:

1. A travel time matrix T , which associates each edge with a specific weight value

representing time required to traverse the edge. tij is the travel time between vi
and vj . Note that tij = +∞ if vi and vj are not directly connected, and tii = 0

T =

t1,1 t1,2 · · · t1,n

t2,1 t2,2 · · · t2,n
...

...
. . .

...

tn,1 tn,2 · · · tn,n

2. A demand matrix D, representing the number of passengers travelling between

two points in the network (which may consist of several edges in the transport

network), where dij , represents the number of passengers travelling from vertex vi
and vj , and dii = 0.

D =

d1,1 d1,2 · · · d1,n

d2,1 d2,2 · · · d2,n
...

...
. . .

...

dn,1 dn,2 · · · dn,n

24

Chapter 2. Problem domains definition and hyper-heuristics 25

In order to construct an efficient route network, the demand estimations should be re-

alistic and accurate. There are many possible approaches to estimate the demand be-

tween given origin and destination points in the network, some of these approaches are:

conducting a public and private vehicle analysis, carrying out surveys on the local pop-

ulation, and examining the current ticket sales. However, it is still difficult to acquire

such estimations, as the demand changes dynamically and is very sensitive to factors

like service quality, and pricing policies [28]. The demand is a point to point demand,

and only gives the number of travellers between two points in the network and does not

give the total passengers flow. The passengers flow in the network (i.e., determining the

total passengers volume on a path or a link) is calculated using a demand assignment

procedure, which is performed concurrently with the route design to adjust the route

frequencies. In this case the vehicle capacity is an important factor, and the frequency of

the route with the assignment procedure results can determine if the passengers volume

can be serviced by the vehicles operating on the route. The travel times between two

points in the network are calculated depending on the problem modelling procedure.

Usually shortest path algorithms are employed for this purpose, and the average of the

travel time in both directions is considered.

A route ra = {vi1 , vi2 , . . . , viq}, where vik ∈ {v1, v2, . . . , vn}, is defined as a simple path

in the graph connecting a set of edges. A route network R = {ra : 1 ≤ a ≤ |R|},
is a connected set of routes, and the spanning subgraph of the transport network, in

the sense that it should contain all the vertices present in the transport network, and

a subset of its edges. The route network is what actually represents a solution to the

UTRP. We will also define the transit network, which is the network constructed during

the evaluation of the route network. During the evaluation, transfer nodes are identified

and each node that corresponds to a transfer point between two routes is duplicated, and

the two duplicates are connected through a transfer edge (Figure 2.5). As a result, the

size of the route network can grow as much as an order of magnitude during evaluation,

depending on the number of routes, their lengths and connectivity.

Mathematically, let Ea be the set of edges of route ra. G′ = {V ′, E′} is the transit graph
in which V ′ ⊆ R × V . We define the node yrai as a pair consisting of a route ra, and a

vertex, vi ∈ V . Let (yrai, yrbj) ∈ E′ be the edge from node yrai to node yrbj in the transit

graph. Consequently, we define two types of edges: (i) transport edges (E′1) correspond

to in-vehicle travel links between two nodes within the same route, and (ii) transfer edges

(E′2) correspond to transfers from one route to another.

25

Chapter 2. Problem domains definition and hyper-heuristics 26

1

2

5

3

6

4

7

(a)

1b

1a

2

5

3b

3a

6

4b

4a

7

(b)

1

2

5

3

6

4

7

(c)

Route 1
Route 2
Route 3
Transfer Link

Figure 2.5: (a): Feasible route network containing three routes. (b): Transit network
showing the duplication of nodes and transfer edges connecting the duplicates. (c):

Infeasible disconnected network

Two objectives are considered in our model, the passenger cost, and the operator cost. An

efficient public transportation system from the perspective of passengers, is a system with

the lowest travel time, and the least number of transfers, or no transfers at all. Whereas

the network operators are looking to reduce their cost and increase their profits. These

objectives are contradictory, since reducing the overall expenditures may result in a poor

service for passengers and vice versa.

To evaluate the passenger cost for a route network R = {r1, r2, . . . , r|R|}, the relevant

transit network is built during the evaluation to incorporate both in-vehicle travel time,

and transfer penalty. The passenger cost represents the average travel time of a single

passenger when travelling in the network between source and destination. The mini-

mum journey to travel between the two vertices vi, vj in the route network (R) is given

by the shortest path αij(R) from node {yrai : vi ∈ ra} to node {yrbj : vj ∈ rb} in

the transit network, including both transport edges (Equation 2.1) and transfer edges

(Equation 2.2).

E′1 =
⋃

ra∈R
{(yrai, yraj) : (vi, vj) ∈ Ea} (2.1)

E′2 =
⋃
vi∈V
{(yrai, yrbi) : vi ∈ ra ∩ rb} (2.2)

26

Chapter 2. Problem domains definition and hyper-heuristics 27

The passenger cost is the total travel time made by all passengers who travel from their

source to destination using the shortest path, over the entire demand served by the

network [6]:

Cp(R) =

∑
i,j=1 dijαij(R)∑

i,j=1 dij
(2.3)

The transport network operators aim to reduce the total cost of the system, while sat-

isfying at least a minimum level of service quality. The operator costs include the fleet

size required to satisfy the demand, the total distance travelled by the vehicles, the costs

of maintenance, and the drivers employment costs. To simplify the operator costs, we

use the sum of the cost (in time) for traversing all the routes in one direction [6]:

Co(R) =
∑
ra∈R

∑
(vi,vj)∈Ea

tij (2.4)

We use the following properties, which were also adopted by other studies [3, 30] to

describe an efficient transit route network:

• The route network should satisfy most (if not all) of the transit network demand.

• The network provides directness for the passengers as much as possible, without

the need to make a transfer during their journey.

• The network should reduce the overall travel times of the passengers.

• Prioritise the layout of those routes with the highest network demand.

We also use other performance indicators commonly quoted in the literature [3, 5, 6, 31]

to evaluate the route sets more comprehensively.

• d0: The percentage of demand satisfied with zero transfers.

• d1: The percentage of demand satisfied with one transfer.

• d2: The percentage of demand satisfied with two transfer.

• dun: The percentage of demand unsatisfied (assuming that making three transfers

or more is unacceptable).

We have a set of constraints that define the feasibility criteria of a route network. We

list these constraints as follows:

27

Chapter 2. Problem domains definition and hyper-heuristics 28

• C1: A route network must contain all the vertices (bus stops) present in the road

network.

• C2: All routes present in the route network must be free of cycles. This means a

route with duplicate vertices is not accepted.

• C3: The route network must be connected allowing a passenger to reach any

destination in the network from any source.

• C4: The number of vertices in any route must not be less than a minimum num-

ber, and not exceed a maximum number. These numbers are present as problem

parameters set by the user.

• C5: The total number of routes in the route network is set to a specified number

determined as a parameter by the user.

We have previously mentioned the complexity of the UTRP, and the difficulty of incorpo-

rating real world assumptions and constraints. For this reason, we have applied a set of

constraints to simplify our model, in order to allow us to focus on a general methodology

for network design that can be compared to previous work. Our assumptions are listed

below [6]:

• Vehicles travel back and forth on the same route, and reverse their direction every

time they reach the route terminal.

• The choice of a route from the passenger perspective is based on the shortest path

(in terms of travel time + transfer time) between their origin and destination.

• The time the passenger needs to make a transfer is set to 5 minutes.

• Only symmetrical networks are considered. The values of the demand and travel

time are the same regardless of the travel direction between any two points.

• The demand and the travel time between any two points in the network is fixed.

• One way streets are not considered. We assume that all road segments are traversed

in two directions.

2.5 The VeRoLog 2019 Solver Challenge

Gromicho et al. [32] introduced the VeRoLog solver challenge (2018-2019) of the Euro

working group in logistics and optimisation in cooperation with the Dutch based company

ORTEC. Similar challenges were introduced in the years 2014 [33], 2015 [34], and 2017

[35][36]. The organisation of the challenges is a collaborative effort with companies, such

as PTV, the leading German company in developing software solutions and consultations

28

Chapter 2. Problem domains definition and hyper-heuristics 29

in traffic, transportation, and logistics, who organised the first and second editions in

2014 and 2015. The third edition in 2017 was organised by ORTEC, one of the largest

providers of advanced planning and optimisation solutions and services. The aim of these

challenges is to motivate the efficient design of algorithms to solve complex vehicle routing

problems with multiple constraints, inspired by a real world situation, and to challenge

participants to provide efficient solution methodologies under certain time restrictions.

The VeRoLog 2019 challenge tackled a multi-period VRP problem for a number of vehi-

cles that travel from a central depot to deliver machines to customers based at several

locations on their request. Each vehicle has a fixed capacity, and therefore can carry

machines up to their limit and can travel back to the depot to transport additional ma-

chines. Additionally, each customer has a preferred time window for the delivery of their

request. The subsequent installation of these machines requires a number of technicians,

where the routing and the scheduling of the technicians is required such as to reduce

each technician working days, and to minimise the number of days between the delivery

and the installation of a certain request (see section 6.1 in chapter 6 for further details

on the problem description).

More formally, the overall problem is an integrated version of the capacitated vehicle

routing problem with time windows (CVRPTW) [1], and the service technician routing

and scheduling problem (STRSP) [37]. The problem is highly complex, combining two in-

teracting and co-dependent NP-hard routing problems into a single model, each problem

having its own set of constraints, making it a unique and challenging topic. Additionally,

the problem of the challenge shares characteristics with other VRP variants, such as: 1)

The Split Delivery VRP (SDVRP): a single customer can order more than one machine

type and these orders can be splitted between several vehicles 2) the Multi-period VRP

(MPVRP): each customer can be visited more than once during the planning period 3)

Multiple Trips VRP (MTVRP): the vehicles can travel back to the depot to carry more

machines if they have not exceeded their maximum travelling distance per day.

The VeRoLog 2019 challenge is a unique VRP version considering its set of constraints

and the integration with the staff rostering and routing problem. To the best of our

knowledge there is no similar version investigated in the literature, and the best matching

study to our problem description is by Bae and Moon [38] where they extended the

Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW) to a problem

of service vehicles used for delivery and installation of electronics. They developed a

mixed integer programming model, a heuristic and a genetic algorithm, and compared

their performances. There are differences between this study and the VeRoLog problem,

29

Chapter 2. Problem domains definition and hyper-heuristics 30

for example we consider a longer planning horizon, and deal with multiple types of

machines. We also allow multiple visits to the customer by different vehicles, while their

model only allows a single visit for both delivery and installation. They also assign a

maximum period of time between delivery and installation that must not be exceeded,

while in our model we restrict this time by imposing a penalty.

The full description of the challenge and the competition rules can be found in the

challenge official web page 1. To summarise, the challenge was conducted in a number of

phases each with specified submission dates, where each phase requires the submission

of the results for a set of instances published publicly to the competitors. The final

phase which names the restricted resources challenge, required the submission of the

competitors’ solvers to run it by the competition organisers on a hidden set of instance.

Based on the results of this challenge, the competitors were ranked and the finalists were

announced. Eight teams were announced finalists, and the top three teams received the

first, second, and third prizes. Here, we will summarise the approaches of some of the

finalists teams who published their methods and results.

The third ranked team, COKA coders published their results in [39] and they adopted a

matheuristics approach hybridising heuristic methods with mathematical programming

tools, more specifically a mixed integer programming method. First they decomposed the

problem into sub-problems: trucks and people. The people (i.e., technicians) problem was

further decomposed into routing and scheduling sub-problems, while such decomposition

was not required for trucks. Further they described their novel matheuristic approach:

“columnwise neighborhood search” to solve the decomposed sub-problems optimally or

near-optimally as MIPs. They also show how the solutions to the sub-problems were fused

to find a solution to the overall problem. The approach used by this team was different

from the other approaches by using integer programming. The winner team published

their results in [40] describing their solution method which combines an Adaptive Large

Neighbourhood Search (ALNS) meta-heuristic with a Variable Neighbourhood Descent

(VND) procedure and integrates these components through an adaptive layer that guides

the search. The adaptive layer adjusts the solution method to the characteristics of the

instance to be solved and balances intensification and diversification during the search.

It also controls the search by allocating more time to solve the sub-problem that has the

highest weight in the objective function. A decomposition approach was applied resulting

in decomposing the problem into two main sub-problems for the routing of trucks and

technicians respectively, such that the improvement on each sub-problem is handled
1https://verolog2019.ortec.com/

30

Chapter 2. Problem domains definition and hyper-heuristics 31

separately using the specialised heuristics in turn. The comparison of their methods

with the second ranked team showed the efficiency of their heuristic-based approach in

finding very competitive results in short time duration specifically for smaller instances.

Our solution method for solving the VeRoLog solver challenge is based on a population-

based hyper-heuristic approach and a specialised set of low-level heuristics that take into

account the inter-connectivity of the two routing phases for the trucks and technicians.

We also develop a feasibility test to check that all the problem constraints are satisfied at

each iteration. A mathematical model for the problem was developed, where we compare

its results with the results of our hyper-heuristic framework and show that it is possible to

find optimal solutions through hyper-heuristics in a faster computational time compared

to the mathematical approach. In chapter 6 we will discuss the challenge further, and

propose our solution methodology and results.

2.6 Summary

In this chapter, we introduced the basic definitions and concepts related to this research.

We begin the chapter by defining the concept of mathematical optimisation, focusing

on a special class of discrete optimisation problems named Combinatorial Optimisation

Problems (COPs). We further demonstrate that optimisation problems differ in their

complexities and some cannot be solved exactly in a polynomial time requiring the use

of solutions methods such as heuristic methods to find sub optimal solutions in a feasible

run time. We move forward to define the main problems tackled in the thesis starting

with the VRP problem, demonstrating its origin, structure, and its several variants.

We also define the Urban Transit Network Design Problem (UTNDP) and describe the

reasons for its complexity, relating and comparing it to the VRP to show its differences

and similarities. We formulate the UTRP model which will be adopted for solving the

problem in chapters 4 and 5 describing the problem constraints, objectives, and the

route set assessment. We concluded the chapter by discussing the problem central to the

VeRoLog solver challenge 2019 which we tackled in chapter 6. We give an introduction

to the VeRoLog challenges and the purpose for organising them with emphasis on the

challenge of 2019. We also survey some of the approaches of the competition winners.

31

Chapter 3

Methods for Solving VRP Problems

In this chapter we overview the methods widely used to solve COPs, starting with exact

mathematical approaches, and shifting towards heuristic and meta-heuristic methods,

demonstrating the evolution of the research due to the application of meta-heuristic

algorithms. We further explain the application of these various methods in solving dif-

ferent variants of the VRP for delivery applications, and the UTRP focusing mainly on

the important contributions made by meta-heuristics. Further, we introduce the hyper-

heuristic framework and describe the hyper-heuristic methodologies that were applied on

the several problems addressed in this thesis with specific emphasis on online learning

in selection methods and population-based hyper-heuristic algorithms. We finalise the

chapter by summarising methods commonly used in solving MOOPs and describe the

approach applied in this thesis for solving multi-criteria problems such as the UTRP

using a single-point based framework such as selection hyper-heuristics.

3.1 Methods for Solving Combinatorial Optimisation Prob-

lems

Methodologies for solving COPs fall into one of the following categories: mathematical

modelling, heuristics, and meta-heuristics (see figure 3.1). In the following sections we

will be discussing each of these categories in further detail.

32

Chapter 3. Methods for Solving VRPs 33

Solution
Methods
for COPs

Exact Methods Heuristics Meta-heuristics

Linear Program-
ming
Branch and X
(bound,cut,price)
Dynamic Pro-
gramming

Construction

Improvement

Single Solution

Tabu search

Simulated An-
nealing

Population

Swarm Intelli-
gence
Evolutionary
Algorithms

Figure 3.1: Solution methodologies for CO problems

3.1.1 Exact Mathematical Approaches

Mathematical approaches rely on mathematical formulations for the design of the ob-

jective function and its constraints. One of the best known mathematical programming

methods is linear programming, where the objective function and the constraints are

given as linear functions. When some or all of the decision variables are restricted to

integers, the mathematical optimisation is called Integer Linear Programming (ILP), and

if the decision variables are a mix of discrete and continuous, it is called a Mixed Inte-

ger Linear Programming (MILP). Other classical mathematical algorithmic frameworks

include Dynamic Programming [41], and Branch and Bound (B&B) [42]. Mathematical

programming approaches are useful when optimal solutions are to be found, and they

can tackle COPs that are solvable in polynomial time as well as large size COPS in some

cases.

Nevertheless, one of their main drawbacks is that for many COPs, they fail to scale to

large size instances and cannot solve them in a finite amount of time. Chakroborty [43]

stated that transportation engineering contains a multitude of optimisation problems

that pose an extreme difficulty on traditional mathematical approaches, and one of such

problems is the UTNDP. For these problems, simplifications should be introduced to the

size and complexity of the model in order to apply the mathematical approaches, and

33

Chapter 3. Methods for Solving VRPs 34

for this reason their application became less favourable. In such cases, approximation

methods can handle the practical size and the complexity of the problem instances.

3.1.2 Heuristic Methods

As a result of the failure of mathematical approaches in solving large scale versions of CO

problems, heuristic methods have grown in popularity with the advance in computing

technology, and have been applied since then in many studies.

Heuristic methods are used to approach an intractable optimisation problem by finding

sub-optimal solutions in a polynomial time. Pearl [44] defined heuristics as an intelligent

search strategy for computer problem solving. In optimisation problems, a heuristic is

defined as a “rule of thumb” to guide the computational search for finding a solution.

Although heuristics are designed to speed up the search process, they cannot guarantee

to find an optimal solution unlike mathematical methods. However, in some NP-hard

problems such as VRPs, it is a better choice to give up the search for optimal solutions

in favour for improvements in run-time, or to find solutions for larger instances.

Heuristic methods are categorised according to how they explore the search space into

construction and improvement heuristics. A construction heuristic attempts to build an

optimal solution from scratch, while an improvement heuristic starts from a candidate

solution and iteratively moves from one solution to another in its neighbourhood (i.e., a

neighboured solution is generated by making small changes in the candidate solution).

Heuristic methods are characterised as problem-dependent, which means they are specific

to the problem they are trying to solve. This has motivated researchers to develop

domain-independent and more generally applicable methods such as meta-heuristics and

hyper-heuristics.

3.1.3 Meta-heuristics

The last decades have witnessed a great growth in computing power, and as a result

meta-heuristic approaches have emerged as popular techniques to solve hard combina-

torial problems. Meta-heuristics were defined by Sörensen and Glover [45]: “A meta-

heuristic is a high level problem-independent algorithmic framework that provides a set

of guidelines or strategies to develop heuristic optimisation algorithms”. Sörensen and

Glover [45] also used the term meta-heuristic to define “ a problem-specific implemen-

tation of a heuristic optimisation algorithm according to the guidelines expressed in a

34

Chapter 3. Methods for Solving VRPs 35

meta-heuristic framework”. Due to the adaptability of meta-heuristics to different prob-

lems with complex structures, and their efficient computational performance and speed,

research shifted towards using them for solving NP-hard problems. Meta-heuristic meth-

ods such as genetic algorithms, tabu search, simulated annealing, and particle swarm

optimisation have played an important role in developing the research of CO and have

outperformed previously applied heuristic approaches.

Meta-heuristics can be classified into two main broad categories: population based and

single solution based. The single solution based meta-heuristics employ a single solution

during the search, while the population based maintain a pool of candidate solutions

(population). Some hybrid algorithms combine the two approaches into a single method.

Here we demonstrate some of the well-known classes of meta-heuristic algorithms that

are commonly used in solving VRPs and the UTNDP.

3.1.3.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of population based search methodologies,

which are inspired by the Darwinian theory of evolution. Each iteration of EA corre-

sponds to a generation, through which a number of solutions in the population named

individuals can reproduce. New solutions are created (i.e., offspring) by the recombi-

nation of two individuals (i.e, parent solutions) which are selected from the population

using a selection strategy, and mutation is then performed on the new individuals to en-

courage diversity. The fitness of the new solutions are evaluated, and a selection strategy

is applied to determine which individuals to remain in the next generation. The main

operations of a generic EA are demonstrated by algorithm 1. Some of the well-known

algorithms grouped under the category of EAs are: Genetic Algorithms (GAs), Evolution

Strategies (ES), Evolutionary Programming (EP), and Genetic Programming (GP) [46].

Genetic Algorithms (GAs) are one of the most well known and mostly used algorithms

amongst EAs that use the concepts of natural evolution and genetics for problem solving.

Generally, a GA consists of a similar set of functions as the generic EA, but their imple-

mentation can different substantially according to the problem. The main components

of a general GA are: solution representation (chromosomes), selection strategy, type of

crossover, and mutation operators.

Until now, GAs are the dominant approach for solving the UTNDP, and several variants

and approaches were developed and proved to find competitive results. For more in

depth overview on GA methods and their application reader can refer to [47]

35

Chapter 3. Methods for Solving VRPs 36

Algorithm 2: Evolutionary Algorithm

1 CreateInitialSolutions() // Initialise the population ;
2 Evaluate()// Evaluate each individual in the population;
3 repeat
4 SelectParents()// Select individuals from the population for mating;
5 Crossover() // apply cross over operator with a probability ;
6 Mutate() // apply mutation operator with a given probability ;
7 Evaluate()// Evaluate new individuals;
8 ReplaceSolutions() // Generate new population of solutions ;
9 until noGenerations;

3.1.3.2 Swarm Intelligence

Swarm Intelligence (SI) is an artificial intelligence discipline concerned with the design

of intelligent multi agent systems by taking inspiration from the collective behaviour of

social insects such as ants and bees [48]. The idea is that multiple smart agents can

interact locally to achieve a common complex goal without the need for a centralised

control system. Every individual uses simple rules to govern their actions, and the

swarm reaches a desirable goal by the interaction of the entire group. Currently, the

most well known swarm intelligent algorithms widely used in optimisation problems are

Ant Colony Optimisation (ACO) [49] which mimics the way ants search food in nature,

Bee Colony Optimisation (BCO) [50] inspired by the movement of bees during nectar

collection process, and Particle Swarm Optimisation (PSO).

3.1.3.3 Single Solution Based Meta-heuristics

Single solution based meta-heuristics share the advantage of their ability to intensify the

search on local regions in the search space, focusing on a single solution that is iteratively

improved. Moreover, they are generally computationally faster by eliminating the need

to maintain and evaluate individuals in the population. Some of the commonly applied

single-point based meta-heuristics include: Local search algorithms (Hill Climbing (HC),

Iterated Local Search (ILS)), Simulated Annealing (SA), Tabu Search (TS), and Greedy

Randomised Adaptive Search Procedure (GRASP).

Local search algorithms [51] is a widely used set of algorithms that are based on the

idea of examining the search space by initialising a solution and iteratively move to

other neighbouring solutions. The neighbourhood of a solution are the set of solutions

that can be generated by making changes (usually small) on the candidate solution, and

36

Chapter 3. Methods for Solving VRPs 37

the decision at each step of the search is based only on information about the local

neighbourhood. The Hill Climbing algorithm (HC) is one of the well known local search

methods which gradually improves a candidate solution by selecting the best neighbour

based on an evaluation function. However this method can easily get stuck in a local

optimum, a state where no more better neighbouring solutions can be found. Iterated

Local Search (ILS) [52] improves the hill climbing local search by avoiding the easy

entrapment in a local region in the search. It performs repeated iterations of perturbation

and local search on a local minimum solution generated by the local search until satisfying

a termination condition. This way, ILS maintains the balance between the exploration

an exploitation processes by using perturbation and local search operators respectively.

Simulated Annealing (SA) is a probabilistic meta-heuristic framework that imitates the

process of annealing in solids. At each decision point a new solution is generated, and it

is accepted if its better than the previous solution. Worsening solutions are occasionally

accepted to prevent entrapment in local optima. A worsening solution is accepted with

a probability equals P = e
∆
T , where ∆ is the solution quality change, and T is the

method parameter, called temperature which regulates the probability to accept solutions

with higher objective value (cost). Generally speaking, the search starts with a high

temperature, and then according to the cooling schedule, the temperature decreases

gradually throughout the search process.

Tabu search is a meta-heuristic introduced by Glover [53] in 1986. The idea of the

algorithm is that it prohibits the recent moves in the search by maintaining a memory

structure named a tabu list that prevents the repetition of the recently visited solutions.

This can help the search in escaping the local optima.

GRASP [54] is an iterative meta-heuristic framework in which each iteration is made up

of two phases: construction phase and local search phase. In the construction phase a

solution is built, and repaired if it is not feasible, and a local search procedure is then

applied to improve this solution until a local optima is reached, while keeping the best

solution. Repeating the two phases with a new solution constructed at each iteration

enhances the local search diversification.

3.2 Solving the Urban Transit Routing Problem

There is a considerable amount of research published on transit planning, due to its

practical importance. Some researchers focused on a single aspect of transit planning,

37

Chapter 3. Methods for Solving VRPs 38

while others tried to solve multiple aspects simultaneously. Solution methodologies,

problem models, and objectives differ substantially between different studies, making

it difficult for any researcher to effectively compare their algorithm’s performance with

others. We try in this section to survey the different studies and methodologies that

attempted to design algorithms for the problem of the optimal design of routes in urban

transit systems on benchmark and on larger scale instances. We show the advance in

research over the years, and how the emergence of meta-heuristics has helped significantly

in the design of powerful algorithms that can handle such a computationally complex

problem.

3.2.1 Analytical and Exact Mathematical Approaches

Analytical and mathematical methods were the first approaches for solving the UTRP,

although they tend to focus on specific aspects of the problem using simplified network

structures. Analytical methods attempt to find route attributes for a given network

such as routes length and spacing, and develop relationships between the transportation

network components rather than designing the actual routes. The disadvantages of

analytical models have been pointed out by researchers, where Ceder [55] mentioned that

these methods are suitable only when approximate values for the design parameters are

needed to assess policies and not for a complete design. Tom and Mohan [56] stated that

these methods are of a theoretical interest only. One of the early studies that applied

analytical methods in the design of bus transit services is Holroyd [57], where they

attempted the problem of finding the optimum positions of bus routes and the optimum

frequency on these routes in an urban area. Their objectives are to minimise the sum

of time costs associated with bus journeys, and the cost of providing a bus service. The

problem is studied theoretically in a large uniform area with the bus routes forming a

square grid. Byrne [58] built a model of a transit system in polar coordinates and radial

transit lines with the purpose of finding line positions and headways that minimise the

user and the transit agency costs. This is achieved in relation to a population density

function, where the author stated that determining transit line locations must be done

in relation to the population density in the region. In Byrne [59] different line speeds are

introduced to a similar model under similar objectives. The study concluded that low

speed lines should be terminated in some cases if they are adjacent to a high speed line.

Examples of other studies that extensively analysed the UTRP under such methods are

[60–62].

38

Chapter 3. Methods for Solving VRPs 39

Mathematical programming approaches were attempted in the UTRP as early as 1970.

Van Oudheusden et al. [63] used two well known location-allocation mathematical pro-

gramming problems: the set Covering Problem (SCP), and the Simple Plant Location

Problem (SPLP) for the design of bus network routes. It was found that the SCP is

more effective when fixed demand is assumed, while SPLP is more powerful under the

more realistic assumption of variable demand. van Nes et al. [64] combined heuristic and

mathematical methods to design a model suitable for redesigning parts of a transport

network, or the design of a complete network and the assignment of the frequencies. The

designed model uses a single optimisation process that can be used for several design

methods. It provided good results with test networks and actual data. Bussieck [65]

presented in his doctoral thesis a mathematical programming approach for the problem

of line planning in a public rail transport system. The study describes an approach based

on Integer Linear Programming (ILP) which provides an effective tool for modeling line

optimisation problems focusing on a specific approach for line planning that aims to

maximise the number of direct travellers. A cost optimal line planning problem is also

introduced and solved as an integer nonlinear program. The ideas in his research can be

generalised to other modes of transportation networks.

Wan and Lo [66] implemented a mixed integer model for solving the route design problem

and the frequency determination of the lines simultaneously. The problem is solved

as a mixed integer formulation with the objective of minimising the sum of operating

costs for all transit lines. The model was tested on a small example network of 10

nodes, and the final solution consisted of three routes. The authors stated that their

work provides a good starting point for extending the model to consider both user and

operator perspectives. They also mentioned that devising heuristic methods is crucial

for application in practical size networks.

Guan et al. [67] dealt with the problem of simultaneous transit line configuration and

passenger line assignment. The study focused on large city railways and the tests are

carried out in Hong Kong city. Using a linear binary integer program that can be

solved in any integer system such as a standard branch and bound method, the work

attempts to model the transit line planning and the passenger transfer process. The

objective is to minimise the total length of transit lines and the total length travelled

by passengers, under constraints of routes length, maximum number of transfers and

capacity. Several simplifications were introduced to reduce the computational burden

on the binary integer program. The authors concluded the study by pointing out the

39

Chapter 3. Methods for Solving VRPs 40

need for more efficient algorithms for solving large size networks, and suggested meta-

heuristics such as Simulated Annealing, Tabu Search, and Genetic Algorithms for this

purpose.

Barra et al. [68] proposed a constraint satisfaction model to the solve the transit net-

work design problem which was tested on a Constraint Programming (CP) system. They

considered several service parameters in their model including minimum frequency, max-

imum transfers, and routes limits. The method is designed to be interactive, allowing an

expert to use their experience by changing the design parameters to enhance the results.

Their objectives included passenger satisfaction, and budget constraints represented by

the total travelled distance, or the necessary fleet to operate the designed network. The

model was tested on small instances derived from Mandl’s network, and they stated that

the CP package is unable to process large instances.

3.2.2 Heuristic Methods

Probably, Patz [69] was the first to tackle the route design problem using heuristics. He

developed an iterative procedure to generate network lines (routes) based on penalties.

Initially the network contains lines between each origin- destination pair with associated

penalties calculated from the number of passengers who need transfers to complete their

journey. The network lines are iteratively deleted based on these penalties. His approach

was applied on a small ten node instance, but was not extensible.

Another early attempt to apply heuristic approaches was the study by Lampkin and

Saalmans [70], who solved a case of a municipal bus problem by tackling it in four stages:

reorganising the routes structure, determining frequencies on the routes, designing bus

schedules and setting the timetables. A heuristic procedure is developed to design the

network by building an initial route skeleton, and nodes are added one by one to this

skeleton in later steps. Frequencies are then allocated to the routes so as to maximise the

passenger service. A linear programming model is then used to assign buses to journeys.

Dubois et al. [71] studied the problem of modifying a transportation network to fit with

the existing demand. A set of heuristic procedures were applied to the re-planning of

bus routes in some medium size towns networks. They mentioned that heuristics are

the only viable methods when the network size is no longer small, and proposed three

greedy heuristic procedures for minimising the travel time and maximising accessibility.

His methods has been tested in the design of transport networks in ten towns in France.

40

Chapter 3. Methods for Solving VRPs 41

Sonntag [72] solved the transit network design on a rail system using a heuristic approach.

In his work, an initial route set is created between every pair of stops and the initial routes

are iteratively improved and infeasible routes are removed to find the best shortest paths

with reasonable travel times and least number of transfers for passengers.

Following that, Mandl [73, 74] published his work, which is considered one of the most

fundamental studies in the UTNDP, that assisted future research in understanding the

principles of applying heuristics to the route design problem. His pioneering work pro-

duced the Swiss 15 node instance, which has become a defacto benchmark used by most

researchers. The process consists of two phases: route generation, and route improve-

ment. In the route generation phase, a shortest path algorithm is applied to compute

the shortest paths for every vertex pair. These routes are then added in the route set

by selecting the routes that has the most number of nodes, while the unseen nodes are

added iteratively to the routes in the most convenient way. In the second phase, a

heuristic algorithm is proposed that improves a given transportation network with the

average transportation cost as an objective. This heuristic algorithm idea is to search for

new routes, so that the entire route set remains feasible, and the average transportation

cost is improved. If a new set of routes is found that is better than the old one, it is

accepted and the search procedure continues until no further improvement is achieved.

The improvements on the route set that were considered are:

• Create new routes by exchanging parts of routes at an intersection point.

• Add a node to a route if this node is close the route and the transportation demand

between this node and the other nodes in the route is high.

• Reduce the length of a route by excluding nodes that are served by other routes,

and the transportation demand between this node and the other nodes in the route

is low.

Ceder and Wilson [26] identified the sequence of operations involved in the bus system

design and planning: network design, frequencies setting, timetables development, bus

scheduling, and driver scheduling. They also proposed a two level approach, stating

that it is desirable that the design process incorporates alternative levels of complexity,

due to the overall complexity of the bus system design and the vast number of involved

factors. The first level of their model tackled the design of routes considering only the

passenger perspective, while the second level determines the bus schedules and timetables

taking both passenger and operator objectives into account. They also presented a route

41

Chapter 3. Methods for Solving VRPs 42

construction algorithm which produces an output that can be fed into both levels and also

produces a set of feasible routes and their directness measures. Despite the sophisticated

ideas presented in their work, its application was demonstrated on a very simple example

of a five nodes network which does not sufficiently test the effectiveness of the proposed

model.

Baaj and Mahmassani [75, 76] also developed a three stages heuristic approach based on

artificial intelligence tools composed of a route generation algorithm guided by the pas-

sengers demand, followed by an analysis procedure to compute a number of performance

measures for the initially generated route set. Finally a route improvement algorithm

utilises the computed measures to produce feasible, improved route sets. Lee and Vuchic

[77] developed an iterative heuristic procedure to solve the network design and frequency

setting problem with variable transit demand under a given fixed total demand. The

objective was to decrease the total travel time through an improvement procedure on an

initially generated network utilising the shortest paths. A transit assignment procedure

was also applied to concentrate demand on certain routes eliminating less efficient routes.

Some heuristic methods are based on heuristic construction procedures, which attempt

to build optimal public transport route sets from scratch. An example of such method

is the heuristic algorithm developed by Simonis in 1981 [78]. This method starts by

generating a route using the shortest path between the highest density demand points

and then deletes the demand satisfied by this route. The process iterates to the next

highest demand points until a maximal number of routes is reached.

3.2.3 Meta-heuristic Approaches

3.2.3.1 Genetic Algorithms

Genetic algorithms (GAs) have been a very popular choice for solving the UTNDP and

its components, despite their requirement for high computational power an their long

run times compared with other methods. Nevertheless, recent research still focuses on

their implementation and competitive results are acquired by this method.

Pattnaik et al. [79] was one of the first attempts to apply GAs to the transit route network

design problem. They attempted to find transit routes and their associated frequencies

with the objective of reducing the overall system cost (i.e. user and operator). They

designed a two phase model: the first phase generates candidate solutions guided by the

42

Chapter 3. Methods for Solving VRPs 43

demand matrix and the route set constraints, and the second phase applies a GA to

improve the quality of the route sets. They experimented with both fixed-length and

variable-length string encoding schemes. Similar work was developed later by Tom and

Mohan [56] using a simultaneous route and frequency coded model.

Chakroborty and Wivedi [3] proposed a three stage approach: an initial generation pro-

cedure using heuristic methods, a modification procedure based on a GA, and finally

an evaluation procedure where they used a fitness function weighting three components:

passengers in-vehicle and transfer times, percentage of demand satisfied with zero, one,

and two transfers, and the percentage of unsatisfied demand. They applied their pro-

posed method to Mandl’s benchmark and could find better results compared with other

methods at that time. In [43], Chakroborty addressed both transit route design and

scheduling problems sequentially by applying the same GA approach they used in their

previous work on Mandl’s benchmark. The work also focused on showing the effectiveness

of GA approaches on this problem compared to the previous traditional approaches.

Fan and Machemehl [4], used a genetic algorithm approach to examine the underlying

characteristics of an optimal bus transit network with variable transit demand. The

framework of the proposed solution is constructed of three main components; an initial

candidate route set generation procedure, a network analysis procedure that decides

transit demand matrix, assigns transit trips and determines service frequencies, and

finally a genetic algorithm procedure that selects a route set from the huge solution

space.

In Szeto and Wu [80] a bus network design problem for the town of Tin shui wai in

Hongkong was solved, with the aim of improving bus services by reducing transfers, and

passengers travel time. They proposed an integrated solution method to solve the route

design problem and frequency setting problem simultaneously, and used the real world

instance of the town. The authors used a GA to solve the network design problem and

incorporated it with a frequency setting heuristic based on neighbourhood search to add

frequencies to the routes.

Cipriani et al. [81] addressed the transit network design with elastic demand to define

lines, frequencies, and vehicle sizes with aim of reducing operator costs, waiting time, and

unsatisfied demand. The authors propose a solution approach consisting of two stages:

(i) implementing a heuristic algorithm to generate potential lines and their frequencies

and (ii) a GA that recombines lines to generate a new population of individuals while the

fitness function evaluates them using a probabilistic modal split model which determines

43

Chapter 3. Methods for Solving VRPs 44

the mode choice behaviour of users, and a hyper-path transit assignment model that

determines the route choice behaviour of users.

Mumford [6] developed several intelligent genetic operators within an evolutionary bi-

objective framework, with the joint goals of minimising passengers average travel time,

and operator’s cost. A heuristic-based method was implemented to seed the population

with feasible route sets, in addition to a new crossover operator, and mutation operators

to add and delete groups of nodes to the routes. This work proposed four new benchmark

instances which were made public for researchers.

Chew et al. [82] also approached the UTRP as a bi-objective problem. In their proposed

algorithm the initial population is created with the aid of Floyd’s algorithm for all pairs

shortest paths. Their experiments were tested on Mandl’s instance and compared with

the work of Mumford [6] and Fan and Mumford [5], where they reported improved results.

The work in John et al. [83] is built upon the work of Mumford [6] using an NSGA-II

bi-objective framework. They developed a new powerful heuristic construction method

for candidate route sets generation and implemented eight new operators to perform

replace, exchange, and merge operations. Their approach found improved results from

both the passenger and the operator perspectives. The method was later implemented

in a parallel model by Cooper et al. [8] to improve its efficiency in terms of run times. In

Heyken Soares et al. [84] the algorithm of John et al. [83] was adjusted to solve a version

of the UTRP with terminal nodes at the routes ends, and additional mutation operators

were introduced. The algorithm was used to provide preliminary results for a new data

set presenting the extended urban area of Nottingham city, which was generated from

real-world data available in public sources.

Nayeem et al. [85] presented a genetic algorithm with an elitism approach. They gener-

ated the initial population using a greedy algorithm, and created the route set through

choosing the pair of nodes with the highest demand and finding the shortest path be-

tween them. They also improved the genetic algorithm proposed in their previous work

by allowing the population size to increase through copying high quality individuals from

current generation to the next. The approach outperformed the known state-of-the art.

However their objective evaluation focused only on the passenger perspective.

Arbex and da Cunha [86] addressed the network design problem and the frequency setting

of the routes simultaneously and proposed an Alternative Objective Genetic Algorithm

(AOGA) to efficiently solve the problem. Their approach consisted of alternating the fo-

cus of the optimisation to one of the objectives at each generation, and they incorporated

44

Chapter 3. Methods for Solving VRPs 45

both passenger objective as the sum of in-vehicle travel times, transfer and waiting times

and the operator objective as the total operating fleet in the network. They applied their

method on Mandl’s instance with routes sizes 4, 6, and 8 and proved that their proposed

GA is competitive with the current published results.

Most recently, Yang and Jiang [87] implemented a novel initial route set generation algo-

rithm, and a route set size alternating heuristic that changes the number of routes in a

solution, and embeds them into a NSGAII framework to provide an approximate Pareto

front in terms of the passenger and operator costs. Their initial generation procedure

assumes that maximising the demand satisfied directly is a key component to gener-

ate an efficient initial route set. They tested their algorithms on Mandl and Mumford

benchmark instances, and their results on Mumford data set outperformed all the current

available results including the recently developed hyper-heuristic approach in [88].

Other studies along with those listed above that applied GA to the route design prob-

lem/route design and frequency determination are given in table 3.1.

3.2.3.2 Swarm Intelligence

Various Swarm Intelligence algorithms have been applied to solve the UTRP and proved

to be competitive and efficient compared to GA implementations. Yu et al. [89] devel-

oped a method that aims to maximise demand density on routes by dividing the transit

network design process into three stages: First an empty network is built, and skeleton

routes are added such as to maximise direct traveller density until constraints such as

route length, demand, and directness constraints are exceeded. After this, main routes

are laid into the transit network according to the maximum traveller density. Last,

branch routes are laid on the transit network which includes skeleton and main routes.

Their model aims to maximise the demand density of each route which is the transit

demand divided by the length of the route, and the transit demand includes both direct

trips and transfers. The ACO algorithm is applied to determine the design of the skele-

ton, main and branch routes while adhering to the problem constraints. Two test cases

were used in this work, a simple network which has six nodes and nine links, and data

from Dalian city in China, and the results showed that the optimised transit network

can be improved with respect to transfers. Poorzahedy and Rouhani [90] tackled the

route design problem for bus networks to minimise the travel time of the users, while

maintaining the fleet size requirements. The ACO algorithm was applied to solve their

model on the network of Sioux Falls, as well as a real scale network representing the city

45

Chapter 3. Methods for Solving VRPs 46

of Mashhad in Iran. Their developed Ant System works on a decision graph instead of

the bus network itself, and their method has been calibrated to both network examples

where they demonstrate its efficiency in each.

Nikolić and Teodorović [91] developed a model for solving the network design problem

based on Bee Colony Optimisation (BCO), with the objectives of maximising the num-

ber of satisfied passengers, minimising transfers and minimising the total travel times of

all served passengers. They proposed a simple greedy algorithm to generate the initial

route set which aims to increase the number of direct trips by finding the nodes with the

highest direct service demand, and calculating the shortest path between these nodes.

These shortest paths are then added to the initial route set until the desirable number

of routes in the route set is reached. They proposed two types of artificial bees to per-

form modifications on the solution. The algorithm was applied to Mandl’s network and

compared to the current best known solutions, where new best solutions were achieved

for Mandl’s problem versions with 4, 6, 7, and 8 routes. In [92] the authors extended

their work to simultaneously determine the frequencies on the designed routes.

Kechagiopoulos and Beligiannis [93] proposed a PSO algorithm as a first attempt to ap-

ply it for solving the UTRP. Their model focused on the solution representation in terms

of the route network and the evaluation procedure which evaluates two objectives: the

passenger and the operator costs. They compared the performance of their method with

other seven known methods in the literature and found that their approach is competitive

on Mandl’s instance with 4, 6, 7, and 8 routes. Recently, Jha et al. [94] implemented a

Multi-objective particle swarm optimisation with multiple search strategies (MMOPSO)

to solve the bus route design problem and frequency setting. Their approach consisted

of two stages: a route set generation phase for the route design based on a GA imple-

mentation, and the frequency setting phase which is solved as a multi-objective problem

by applying the MMOPSO framework to generate an approximate Pareto set of solu-

tions between passenger and operator costs. They applied their methods to Mandl’s

benchmark and compared it with the state-of-the-art in the route design phase. They

also justified the results of the second phase by comparing them with NSGAII results.

Buba and Lee [95] proposed a hybrid differential evolution algorithm with particle swarm

optimisation (DE-PSO) to simultaneously optimise the routes’ configuration and their

associated frequencies with the objective of minimising the passenger and operator costs.

They conducted their experiments on Mandl’s benchmark and a larger instance repre-

senting the Rivera city, Northern Uruguay. They demonstrated that their algorithm

46

Chapter 3. Methods for Solving VRPs 47

is competitive with other approaches on Mandl’s benchmark and their multi-objective

framework finds a diverse set of non-dominated solutions.

3.2.3.3 Single Solution based Meta-heuristics

Fan and Machemehl [96] used a SA algorithm to select the best set of routes from a

pool of candidate routes. A set of initial solutions was created using Dijkstra’s shortest

path algorithm and Yen’s k-shortest path algorithm. Route frequencies were determined

simultaneously using a network analysis procedure to enable the computation of the

required performance measures. The objective was to minimise the sum of the user

costs, operator cost and unsatisfied demand. Three experimental networks were tested

and a GA was implemented for comparison with the results. Their results proved the

success of SA over GA in most cases of the tested example networks. Fan and Mumford

[5] applied SA with a make-small-change procedure as a neighbourhood operator. At

first, a random route set is generated and the make-small-change procedure applies one

of three moves: add a vertex to a randomly selected route, delete a vertex from the

route, or invert the route vertices order. The SA algorithm was applied and compared

to a simple hill climbing algorithm on Mandl’s benchmark, and was able to find better

results.

Fan and Machemehl [97] used tabu search to solve the optimal bus transit route design

problem at the distribution node level. Their approach consists of three stages: an

initial candidate route set generation procedure that generates all feasible sets of routes

following the practical transit guidelines, a network analysis procedure that computes

performance measures, assigns transit trips and calculates frequencies, and a Tabu search

procedure that guides the candidate solution generation process. The objective is a

weighted sum of passenger and operator costs and unsatisfied demand. Three different

variants of Tabu algorithm were implemented and compared to genetic algorithms to

measure the performance quality of TS, and the results showed clearly that it outperforms

GAs. Mauttone and Urquhart [98] solved the UTRP as a multi-objective problem by

applying a heuristic based on the GRASP meta-heuristic. They proved that their method

produced better non-dominated solutions than the weighted sum method with the same

computational efforts for Mandl’s instance and another real test case. Kılıç and Gök

[31] reported the importance of good quality initial solutions. They proposed a new

initial route generation method that employs the level of demand as guidance for their

construction. They used hill climbing and tabu search algorithms to test their method,

and implemented simple operators to modify route sets including add, delete and swap.

47

Chapter 3. Methods for Solving VRPs 48
T
a
bl

e
3.

1:
So

m
e
se
le
ct
ed

st
ud

ie
s
ap

pl
yi
ng

va
ri
ou

s
m
et
a-
he
ur
is
ti
c
al
go
ri
th
m
s
fo
r
th
e
op

ti
m
is
at
io
n
of

th
e
ro
ut
e
or

th
e
ro
ut
es

an
d
fr
eq
ue
nc
ie
s

in
th
e
U
T
N
D
P.

St
ud

ie
s
ap

pl
yi
ng

G
A

m
et
ho

ds
ar
e
hi
gh

lig
ht
ed

to
sh
ow

th
e
pr
om

in
en
ce

of
G
A

in
pr
ev
io
us

lit
er
at
ur
e.

N
o.

R
ef
er
en
ce

Y
ea
r

O
bj
ec
ti
ve
s

D
ec
is
io
n
V
ar
ia
bl
es

M
et
ah

eu
ri
st
ic

1
P
at
tn
ai
k
et

al
.[
99

]
19
98

T
ot
al

tr
av
el

ti
m
e

R
ou

te
s,

Fr
eq
ue
nc
ie
s

G
A

2
C
ha

kr
ob

or
ty

an
d
W

iv
ed
i[
3]

20
02

P
as
se
ng

er
an

d
O
pe

ra
to
r
co
st
s

R
ou

te
s

G
A

3
B
ie
lli

et
al
.[
10

0]
20

02
M
ul
ti
ob

je
ct
iv
e

R
ou

te
s

G
A

4
T
om

an
d
M
oh

an
[5
6]

20
03

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s,

Fr
eq
ue
nc

ie
s

G
A

5
N
ga
m
ch
ai

an
d
Lo

ve
ll
[1
01

]
20
03

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s,

Fr
eq
ue
nc
ie
s

G
A

6
A
gr
aw

al
an

d
M
at
he
w

[1
02
]

20
03

G
en

er
al
is
ed

tr
av
el

co
st

an
d
op

er
at
or

co
st

R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

P
ar
al
le
lG

A
7

Fa
n
an

d
M
ac
he

m
eh
l[
4]

20
06

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s,

Fr
eq
ue
nc

ie
s

G
A

8
Fa

n
an

d
M
ac
he

m
eh
l[
96

]
20

06
P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s,

Fr
eq
ue
nc
ie
s

SA
9

Y
an

g
et

al
.[
10

3]
20

07
m
ax

im
um

di
re
ct

tr
av
el
le
rs

pe
r
un

it
le
ng

th
R
ou

te
s
an

d
st
op

s
P
ar
al
le
lA

C
O

10
Fa

n
an

d
M
ac
he

m
eh
l[
97

]
20

08
P
as
se
ng

er
an

d
op

er
at
or

co
st
s
an

d
un

sa
ti
si
fe
d
de

m
an

d
R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

T
ab

u
Se
ar
ch

11
Fa

n
[2
8]

20
09

T
ot
al

tr
av
el

di
st
an

ce
an

d
tr
an

sf
er
s

R
ou

te
s

SA
12

Y
u
et

al
.[
10

4]
20
10

T
ot
al

di
st
an

ce
an

d
tr
an

sf
er
s

R
ou

te
s
an

d
fr
eq
ue

nc
ie
s

G
A

13
B
ag

lo
ee

an
d
C
ed
er

[1
05

]
20

11
M
in
im

um
pa

ss
en

ge
r
di
sc
om

fo
rt

R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

G
A

an
d
de
co
m
po

si
ti
on

14
Sz
et
o
an

d
W
u
[8
0]

20
11

T
ot
al

tr
av
el

ti
m
e

R
ou

te
s
an

d
fr
eq
ue
nc

ie
s

G
A

15
C
ip
ri
an

ie
t
al
.[
81

]
20

12
P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s
an

d
fr
eq
ue

nc
ie
s

P
ar
al
le
lG

A
16

C
he
w

an
d
Le

e
[1
06
]

20
12

P
as
se
ng

er
co
st

R
ou

te
s

G
A

17
M
um

fo
rd

[6
]

20
13

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s

E
A

18
C
he
w

et
al
.[
82
]

20
13

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s

G
A

19
N
ik
ol
ić

an
d
T
eo
do

ro
vi
ć
[9
1]

20
13

to
ta
lt

ra
ve
lt

im
e

R
ou

te
s

B
C
O

20
A
fa
nd

iz
ad

eh
et

al
.[
10

7]
20

13
P
as
se
ng

er
an

d
O
pe

ra
to
r
co
st
s

R
ou

te
s

G
A

21
Jo

hn
et

al
.[
83

]
20
14

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s

N
SG

A
II

22
C
oo

pe
r
et

al
.[
8]

20
14

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s

P
ar
al
le
lG

A
23

N
ay
ee
m

et
al
.[
85

]
20

14
P
as
se
ng

er
co
st
s

R
ou

te
s

G
A

24
N
ik
ol
ić

an
d
T
eo
do

ro
vi
ć
[9
2]

20
14

P
as
se
ng

er
an

d
op

er
at
or

co
st
,u

ns
at
is
fie

d
de

m
an

d
R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

B
C
O

25
K
ılı
ç
an

d
G
ök

[3
1]

20
14

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s

T
ab

u
Se
ar
ch

26
A
m
ir
ip
ou

r
et

al
.[
10

8]
20

14
to
ta
lw

ai
ti
ng

ti
m
e

R
ou

te
s

G
A

27
K
ec
ha

gi
op

ou
lo
s
an

d
B
el
ig
ia
nn

is
[9
3]

20
14

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s

P
SO

28
A
rb
ex

an
d
da

C
un

ha
[8
6]

20
15

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

G
A

29
Zh

ao
et

al
.[
10

9]
20
15

P
as
se
ng

er
co
st

an
d
un

sa
ti
sfi
ed

de
m
an

d
R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

M
em

et
ic

A
lg
or
it
hm

30
O
w
ai
s
et

al
.[
11

0]
20

15
P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

G
A

31
N
ay
ee
m

et
al
.[
11

1]
20

18
M
ul
ti
-o
bj
ec
ti
ve

R
ou

te
s

E
A

32
B
ub

a
an

d
Le

e
[1
12

]
20

18
P
as
se
ng

er
co
st

an
d
un

sa
ti
sfi
ed

de
m
an

d
R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

D
iff
er
en
ti
al

E
vo
lu
ti
on

(D
E
)

33
B
ub

a
an

d
Le

e
[9
5]

20
19

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s
an

d
fr
eq
ue
nc

ie
s

D
E
-P

SO
34

H
ey
ke
n
So

ar
es

et
al
.[
84
]

20
19

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s

N
SG

A
II

35
Is
la
m

et
al
.[
11

3]
20

19
M
in
im

is
e
tr
av
el

ti
m
e
an

d
m
ax

im
is
e
sa
ti
si
fie

d
de
m
an

d
R
ou

te
s

St
oc
ha

st
ic

B
ea
m

Se
ar
ch

(S
B
S)

36
Fa

n
et

al
.[
11
4]

20
19

A
ve
ra
ge

pa
ss
en

ge
r
tr
av
el

ti
m
e
an

d
nu

m
be

r
of

tr
an

sf
er
s

R
ou

te
s

F
lo
w
er

P
ol
lin

at
io
n
A
lg
or
it
hm

(F
PA

)
37

Jh
a
et

al
.[
94

]
20

19
T
ra
ve
lt

im
e
an

d
op

er
at
or

co
st

R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

M
M
O
P
SO

/G
A

38
D
ur
an

et
al
.[
11

5]
20

19
T
ot
al

tr
av
el

ti
m
e
an

d
C
O

2
em

m
is
io
ns

R
ou

te
s
an

d
fr
eq
ue
nc

ie
s

G
A

39
M
ah

da
vi

M
og

ha
dd

am
et

al
.[
11
6]

20
19

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

G
A

40
D
ur
an

-M
ic
co

et
al
.[
11
7]

20
20

T
ot
al

tr
av
el

ti
m
e
an

d
C
O

2
em

is
si
on

s
R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

M
em

et
ic

A
lg
or
it
hm

(M
A
)

41
Y
an

g
an

d
Ji
an

g
[8
7]

20
20

P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s

N
SG

A
II

42
C
ha

ia
nd

Li
an

g
[1
18
]

20
20

P
as
se
ng

er
tr
av
el

ti
m
e
an

d
nu

m
be

r
of

ve
hi
cl
es

R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

N
SG

A
II

43
Li
an

g
et

al
.[
11

9]
20

20
P
as
se
ng

er
an

d
op

er
at
or

co
st
s

R
ou

te
s
an

d
fr
eq
ue
nc
ie
s

C
oo

pe
ra
ti
ve

co
ev
ol
ut
in
ar
y
M
O
E
A

48

Chapter 3. Methods for Solving VRPs 49

3.2.4 UTRP Algorithms in Real-world Planning

Despite the huge amount of research on computer-based solutions for solving the UTRP,

there are few studies that have been actually used in real-world planning processes [120].

One example is the work by Pacheco et al. [121], who proposed a solution algorithm to

a bus design problem posed by the city council of Burgos city in Spain. The problem

consisted of designing bus routes and assigning buses to these routes to optimise the

service level such as to reduce the waiting times at bus stops and the duration of trips.

Two algorithms were implemented, a local search and a tabu search and the two decision

levels are optimised in alternating steps. Their algorithm was able to perform better than

the tools used in planning by the city authorities. Another example is the study from 2012

by Cipriani et al. [81] in cooperation with the mobility agency of Rome, Italy. It included

the application of a genetic algorithm on undirected graph representing the street network

of Rome. The results show improvements over the existing bus route network in terms

of waiting times, operator costs and unsatisfied demand. According to the authors, the

mobility agency of Rome started implementing their results in 2012. Many other studies

compare their results against the real existing routes, showing that their methods can

lead to improvements over an existing service (e.g. [84, 100, 105, 122]). However, the

results of these studies have not been verified in real-world planning processes.

3.2.5 Limitations of Previous Research in the UTRP

There are some clear limitations with most previous approaches applied to solve the

UTRP. The lack of benchmark data for the problem is a serious issue, and many re-

searchers implemented methods that are highly specific to given towns or cities. Fur-

thermore, these instances are not publicly available so we cannot judge the generality of

the applied methods. Other researchers who implemented and tested their methods on

benchmark instances used Mandl’s 15 node benchmark, which is a very small instance.

We cannot judge the performance of a method in terms of scalability based on such a

small network. If we consider GA approaches in particular, with a population of perhaps

several hundred solutions to maintain, the run-time for a road network of 100 vertices or

above can be measured in days rather than hours.

Moreover, we notice there is a wide range of objective functions and route set evaluation

methods used by different studies. The lack of standardised methods for the evaluation

and assessment of efficient route networks makes the direct comparison among different

studies not possible. Moreover, we identified that GAs for solving the UTRP are the

49

Chapter 3. Methods for Solving VRPs 50

dominant algorithms in the literature so far with the most competitive results despite

their computational burden. The proposed single point based algorithmic solutions so

far do not compete with the results of the studies applying GAs. There is a lack of

computationally efficient algorithms with ability to scale and provide high quality results

at the same time. This has given the inspiration to test the hyper-heuristic approach as

a possible way forward and to address these limitations.

3.3 Solution Methods for VRP Delivery Problems

In this section, we turn our attention to a different class of VRPS, concerned mainly

with the delivery of goods, rather than the transport of passengers such as in the UTRP.

The term VRP was first introduced in [16] as a truck dispatching problem, where they

modelled the problem of how a homogeneous fleet of vehicles can serve oil demand

of a number of gas stations from a central hub, with a minimum travelling distance.

This method was the first proposed heuristic approach for solving a VRP, and was then

generalised in [123] to a linear optimisation problem: how to serve a number of customers

located around a central depot, using a fleet of vehicles with varying capacities. These

two studies have put the fundamentals and the first formal definition of the currently

known Capaciated Vehicle Routing Problem (CVRP).

Due to the wide available literature on VRPs, we will limit the survey here to the VRP

variants related to the problem addressed in VeroLog solver challenge 2019, and the

reader can refer to published books and survey papers for more literature and taxonomy

of VRP studies [1, 17, 20, 124].

The CVRP problem has been tackled by several approaches and algorithms including

exact mathematical approaches, with branch-and-cut (BC) algorithms [125, 126], and

algorithms based on the set partitioning formulation [127, 128] being the most suc-

cessful. One of the first attempts to describe an exact BC algorithm for solving the

CVRP is in [125], where they successfully solved for the first time a CVRP instance with

135 customers. Many studies also applied heuristic methods in the CVRP, an example

study is Fisher and Jaikumar [129] who proposed a heuristic that performs a generalised

assignment procedure to assign customers to vehicles with an objective function that

approximates delivery costs. Also, one of the earliest proposed heuristic algorithms for

solving the CVRP is the study of Clarke and Wright [123], which is considered the first

study that proposed the CVRP as its current formulation. In terms of meta-heuristics,

50

Chapter 3. Methods for Solving VRPs 51

Genetic Algorithms (GAs) have been widely applied to the CVRP. In the work of Morgan

and Mumford [130] a hybrid GA was developed to solve the CVRP by slightly perturbing

the customers coordinates to fool the the Clark and Wright simple heuristic and produce

better solutions than if the heuristic is applied to the original customer locations. It is

also common in many studies to combine local search techniques with GAs to improve

offspring [131–134].

For the version of CVRP with Time Windows (CVRPTW), exact methods have been

successful for cases with up to 100 customers [135], and as a result heuristic and meta-

heuristic methods have been preferred for solving instances of large scale. Examples of

heuristic methods applied to the VRPTW that use route construction and local search

algorithms can be found in [136–138], and other studies that applied meta-heuristics such

as genetic algorithms, ant colony, tabu search, and simulated annealing are in [139–142].

In Beltrami and Bodin [143], the Periodic VRP (PVRP) problem was addressed for the

first time to solve a problem related to garbage collection at industrial sites, and the

nature of the demand required several visits to each site in a duration of a week. The

authors introduced two key heuristics to solve the problem. A study by Rahimi-Vahed

et al. [144] applied a path relinking algorithm to the multi-depot periodic vehicle routing

problem by generating a reference set of elite solutions, and combining characteristics

from those solutions to find better solutions. The computational results show that this

method produces good results in both run-time and solution quality. Archetti et al. [145]

presents three ways to formulate the multi-period vehicle routing problem with time

windows and solve the problem using a branch-and-cut algorithm. The algorithm was

able to find good solutions for small problems of ten orders, but was unsuccessful in larger

problems. Alonso et al. [146] proposed a tabu search algorithm for the periodic vehicle

routing problem with multiple trips and accessibility restrictions such that not every

vehicle can visit every customer. When tested on randomly generated test problems, it

performed reasonably well with regards to solution quality. Furthermore the computation

time was manageable for instances as large as 1000 orders. We refer the reader to [20]

for more literature on the PVRP.

Mirzaei and Wøhlk [147] conducted research on two variants of the multi-compartment

VRP (MCVRP), one concentrates on split deliveries for different commodities, and the

second focuses on delivering all commodities by a single vehicle. They proposed a branch-

and-price method and compared the optimal costs of the two variants. The computa-

tional results were presented for instances with up to 100 customers, and the algorithm

optimally solved instances with up to 50 customers and four commodities. Heuristic

51

Chapter 3. Methods for Solving VRPs 52

examples such as [25] proposed an iterated local search algorithm for solving the multi-

commodity multi-trip VRP with the objective of minimising the number of used vehicles.

In [148] the authors addressed the commodity constrained split delivery VRP, where mul-

tiple commodities can be mixed in a single vehicle while satisfying the capacity constraint

and each customer can be visited more than once, but a single commodity type should be

delivered in one delivery. They proposed a heuristic based on the adaptive large neigh-

bourhood search (ALNS) and tested their approach on benchmark instances. Among

the meta-heuristic methods applied to the MCVRP, genetic algorithms are the most

common so far. [149] worked on a VRP encountered in the cold supply chain logistics of

the frozen food delivery. In their model, they associated a penalty cost for late delivery

based on the types of products and proposed a GA for solving the model with real data.

In the Split Delivery VRP (SDVRP), the first heuristic approaches were introduced by

[23, 150]. After these studies, most of the subsequent work focused on meta-heuristics or

hybrid schemes. One example is the work of [151] who applied a tabu search algorithm,

and [152] used a genetic algorithm combined with a local search procedure. Hybrid

algorithms have then grown in popularity, examples are found in [140, 153]. Many exact

models have also been proposed on this problem, and one example is the study in [154].

For further literature on SDVRP we refer to [151].

Finally, we mention the Service Technician Routing and Scheduling Problem (STRSP),

which is the focus of the second part of the VeRoLog solver challenge. Cordeau et al.

[37] solved a real life technician scheduling problem for a large telecommunication com-

pany set as a competition by the French Operational Research Society in 2007. In this

paper an adaptive large neighbourhood search algorithm is implemented. In [155], the

authors concentrated on a field technician scheduling problem in the telecommunica-

tions industry, and their purpose was to maximise the number of served requests as

well as considering the request’s priority and the technician’s skill level. A local search

algorithm, a Greedy Randomised Adaptive Search Procedure (GRASP) and a greedy

heuristic algorithm were proposed to solve the problem. [156] studied the service techni-

cian routing and scheduling problem with the objective of minimising the total routing

and outsourcing costs. The authors used an adaptive large neighbourhood search algo-

rithm for solving the problem on artificial and real-world instances. [157] proposed a

parallel matheuristic approach for solving a variant of the TRSP in which a number of

technicians with a set of accompanying skills, tools and spare parts need to be scheduled

and routed within given time windows. The study dealt with the availability of tools

and spare parts for the technicians and routing them to the depot for the replenishment

52

Chapter 3. Methods for Solving VRPs 53

of tools. [158] used an iterated local search algorithm to solve the TRSP. They studied

a variant where it was given which technicians can serve which orders. The algorithm

was benchmarked on instances ranging from 25 to 100 orders and compared to an ALNS

algorithm, where it was found that it performs significantly better on large instances

with fast computational times.

3.4 Optimisation with Selection Hyper-heuristics

Research in computational intelligence and optimisation fields has a significant influence

on the design of bespoke heuristic algorithms for solving real-world complex optimisa-

tion problems. However, most of these methods require significant modification when

applied to different problem domains, making them highly specific to a single problem

domain or a specific class of problems or instances. This was the main inspiration for

the development of a general, problem-independent heuristic search methods, known as

hyper-heuristics.

Hyper-heuristics have emerged as solution methodologies that raise the level of generality

of search techniques for computational search problems. They can be defined as a high

level automated search methodology, that explores the space of low level heuristics,

or heuristic components while solving computationally difficult problems. Since their

development, they have received significant attention in the research community, and

competed against other known heuristics and meta-heuristics in solving different variants

of complex optimisation problems.

A study by Fisher [159] concluded that mixing and combining different low level heuristics

leads to better quality solutions than applying them separately, where the single heuristic

application can be effective at some stages of the search, and perform poorly at others.

This study was the earliest motivation for the design of the general purpose framework

of selection hyper-heuristics. Following this, Cowling et al. [160] was the first to use the

term hyper-heuristic and defined it as “a heuristic to choose a heuristic”, and mentioned

that hyper-heuristics work at a higher level of abstraction than other meta-heuristics.

In their study, they solved a personnel scheduling problem and introduced most of the

known basic selection and move acceptance components.

Hyper-heuristics have higher abstraction capabilities than other meta-heuristics, where

the search is conducted on the space of heuristics, controlling and perturbing a set of

low level heuristics which work directly on the solution space. Therefore hyper-heuristics

53

Chapter 3. Methods for Solving VRPs 54

are isolated from any specific problem domain information and only control the low level

heuristics as a set of black boxes. In this way, the search can be utilised to focus on other

qualities, such as changes in the objective and the execution time of the search process.

This concept is known as the domain barrier, which explicitly prevents any problem

specific information from passing to the higher level of hyper-heuristics. Burke et al.

[161] classified hyper-heuristics based on the nature of the heuristic search space into

selection hyper-heuristics that select from an existing set of heuristics, and generation

hyper-heuristics that generate new heuristics from the components of existing ones. The

former class, selection hyper-heuristics, is the focus of the work in this thesis.

Selection hyper-heuristics are based on an single-point based iterative framework which

repetitively applies a heuristic to a single solution at each step of the search. A low level

heuristic 1 is selected and applied to an initial created solution at each iteration, and a

decision is made if the new solution is accepted or not. A good selection hyper-heuristic

selects a suitable low level heuristic to diversify the search, if the search process stagnates

locally. This reflects the importance of the efficient design of a selection method that

can automatically lead the search.

The iterative framework of selection hyper-heuristics consists of two successive stages,

as has been identified by [10]: a heuristic selection to choose a low level heuristic and

generate a new solution, and move acceptance to decide the acceptability of the new

solution based on the fitness evaluation. The two processes iterate to improve an ini-

tially generated solution until meeting a termination condition as illustrated in figure 3.2.

The general framework of selection hyper-heuristics is also demonstrated by algorithm 3.

Most of the selection hyper-heuristics components are reusable, and can be applied in

several problem domains, or instances of the same domain without requiring any mod-

ifications. Another crucial feature of selection hyper-heuristics as described in [9], is

that the different components of selection and move acceptance methods deliver differ-

ent performances on the same instance or problem domain. This observation means that

different combinations of selection and move acceptance components can be applied, and

yet get varying performances depending on the problem nature.
1low level heuristics are operators that perform simple neighbourhood moves in the solution when

applied. They are designed according to the specifications of the problem domain and can be either
perturbative, or constructive heuristics.

54

Chapter 3. Methods for Solving VRPs 55

Generate Sinitial

Scurrent ← Sinitial
Sbest ← Sinitial

Select llh ∈
{llh0, llh1, .., llhn−1}

Apply llh to
Scurrent → Snew

Acceptance Method

Accept Snew?

Scurrent ← Snew

Maintain Sbest

Terminate?

Return Sbest

(Heuristic Selection) (Move Acceptance)

y

y

n

n

Figure 3.2: A generic selection hyper-heuristic framework. The green arrows represent
the acceptance component

3.4.1 Classification of Selection Hyper-heuristics

Hyper-heuristic algorithms have been classified into sub-categories based on a number

of criteria. Burke et al. [161] reviewed previous classifications and provided a general

classification based on two considerations: 1) the nature of the heuristic search space, 2)

source of feedback during learning. With the first consideration, hyper-heuristics are clas-

sified into selection and generation hyper-heuristics, where the former selects a heuristic

from pre-existing perturbation or constructive heuristics, and the latter generates new

heuristic methods from components of pre-existing perturbation or constructive heuris-

tics. According to the feedback mechanism, selection hyper-heuristics can be classified

into online learning, offline learning, or no learning mechanisms. The online learning

selection hyper-heuristic learns from feedback during the search to improve the process

of selecting low level heuristics, and the offline learning learns before the search starts

55

Chapter 3. Methods for Solving VRPs 56

Algorithm 3: Algorithm for the general single-point based selection hyper-heuristics
framework

1 Let S, S′, Sb be current, new, best solutions respectively;
2 Let LLH = [llh1, llh2, . . . , llh|LLH|] be the set of low level heuristics;
3 Sinitial ← InitialGeneration();
4 S ← Sinitial;
5 Sb ← S;
6 repeat
7 llh← Select(llhi, LLH);
8 S′ ← ApplyLLH(llhi, S) ;
9 if Accept(S′, S) then

10 S = S′;
11 end
12 if S isBetterThan Sb then
13 Sb ← S;
14 end
15 until timeLimit;
16 return Sb;

on a set of test instances. Selection hyper-heuristics with no learning select a heuristic

randomly, or from a fixed permutation without keeping a record of their previous perfor-

mance. Selection hyper-heuristics are also classified based on the nature of the low level

heuristics into two categories: selection perturbative hyper-heuristics, and selection con-

structive hyper-heuristics [2]. Perturbative hyper-heuristics work on complete solutions,

while the constructive process partially built solutions.

Drake et al. [162], in their most recent survey on the advances of selection hyper-heuristics

research have identified other classes of selection hyper-heuristics additional to the afore-

mentioned. They have also extended the above classifications to include the following

classes:

• Nature of the low level heuristics set: the selection hyper-heuristic can control the

whole, reduced, or increased set of low level heuristics.

• Parameter setting: static, dynamic, or adaptive parameter setting. In the static

setting, the parameters are set statically prior to the search process, and in the

adaptive and dynamic setting, the parameters are allowed to change reactively or

dynamically during the search.

• Nature of the move acceptance: either stochastic or non-stochastic based on whether

a probabilistic framework is used on the acceptance decision.

56

Chapter 3. Methods for Solving VRPs 57

3.4.2 Online Learning Selection Hyper-heuristics

In the above section, we have discussed how selection hyper-heuristics are classified based

on the feedback mechanism to online, offline, or no learning hyper-heuristics. Research

in hyper-heuristics has identified the importance of incorporating learning mechanisms

in order to raise the level of generality of the framework and to make it more adaptive

to the requirements of the search. The offline learning approach requires test instances

for training before the search starts, and this is usually a time consuming process, and

is not adaptive to the performance changes of the low level heuristics. Therefore, online

learning is a more practical option and has more potential than offline learning.

Several studies have identified the impact of the choice of the hyper-heuristic components

and the parameter settings in the overall performance across different problem domains

or even instances of the same domain [9]. Online learning methods therefore, contribute

to solving this issue by giving hyper-heuristics the ability to adapt, learn, and configure

themselves and accordingly optimise better [163].

Most of the existing online learning hyper-heuristics use reinforcement learning. Here,

the hyper-heuristic maintains a utility value for each low level heuristic which is updated

through a reward and penalty scheme. Some examples of selected studies that used

reinforcement learning are [164–166]. We will describe our online learning algorithm

which uses a reward and penalty model based on transitioning between several states of

the low level heuristics that simulates the states of the hidden markov model. Further

details are in section 3.5.1.

3.4.3 Population-based Selection hyper-heuristics

There are various criteria used to classify selection hyper-heuristics, and one of them is

the solution nature, where selection hyper-heuristics are classified based on this measure

into single point or multiple point. Most of the previous research focused on the selec-

tion hyper-heuristic as a single-point framework, where a single solution is iteratively

improved until a termination condition is met (figure 3.2). However, there are many

studies that have applied the framework as a population by utilising multiple current

solutions during the search, usually each of them is improved individually and a global

best solution is found after a specific amount of running time. One of the advantages

of using a population-based hyper-heuristic framework is to improve the diversity of the

search and the exploration of the search space, which can help to discover new regions

57

Chapter 3. Methods for Solving VRPs 58

that can improve the solution. However, one of the downsides is that the total run time

will be divided between the multiple solutions in the population, and therefore each

solution will be improved only during that specified amount of time.

The majority of the previous studies on selection hyper-heuristics present approaches

based on single-point-based search, and only a few used a population of solutions or a

mixed approach alternating between using single and multiple solutions for the search.

Moreover, those previously proposed population based approaches are mostly a hybrid

between a selection hyper-heuristic and an evolutionary algorithm framework.

Cowling et al. [167] investigated a genetic algorithm based on hyper-heuristics for the

personnel scheduling problem. A GA is implemented and applied as a high level selector,

and a set of low level heuristics are used at each generation to locally improve the

quality of each individual, where the low level heuristics are applied in any sequence.

[168] proposed a Monte-Carlo tree search hyper-heuristic framework that tries to identify

good sequences of heuristics using a Monte-Carlo search tree. A memory mechanism

containing a population of solutions is utilised, and at each iteration a solution from

the population is selected, and the population is subsequently updated using several

updating rules. [169] proposed a memetic algorithm based on hyper-heuristics to solve

an examination timetabling problem. Their approach constructs several heuristic lists

based on graph colouring heuristics and applies evolutionary operators to generate new

lists. A local search method is used to further optimise the solutions. [170] implemented

a hyper-heuristic based on variable neighbourhood search (VNS) iterating in two stages,

first using a population of solutions, and the second stage uses only a single solution.

Their approach consists of two main steps, shaking and local search. The shaking phase

improves the exploration of the search space, and the local search step looks for the local

optima. A population of solutions is used in the shaking stage, where the authors argued

that the diversity of solutions is important in the first stages of the search to explore

the right search path, and after a period of time the best solution is picked from the

population. Tournament selection is used to filter unfit solutions from the population.

[171] introduced a hyper-heuristic that alternates between working on a single solution

and a population of solutions. Their algorithm starts by scoring the available local

search heuristics, and a serial phase working with single solutions starts by applying

the heuristics sequentially according to their quality scores. A parallel phase uses a

population of solutions, and a heuristic is applied to each individual in the population.

The algorithm switches back to the serial phase whenever a global improvement is found

(i.e., better than the best found solution so far).

58

Chapter 3. Methods for Solving VRPs 59

3.5 Selection and Move Acceptance Methods

We will outline here the set of selection and move acceptance methods used in our study.

Most of the simple selection methods applied in this thesis were identified in [160]. These

simple selection methods do not incorporate a learning mechanism, but rather choose a

low level heuristic randomly from the set of low level heuristics or from a pre-determined

permutation of the low level heuristics. Simple Random (SR) uses a uniform probability

distribution to randomly select a low level heuristic at each step. Random Descent (RD)

selects a low level heuristic randomly, and repeatedly applies it as long as it is making

an improvement. Random Permutation (RP) forms an initial permutation of the low

level heuristics and selects one at a time at each step. Random Permutation Descent

(RPD) organises the low level heuristics in a similar way to RP but applies the selected

heuristic repeatedly similar to RD if an improvement is made. The Greedy selection

method (GR) applies all low level heuristics to a candidate solution, and chooses the

heuristic that generates the most improved solution.

Move acceptance methods can be categorised as either deterministic or non-deterministic.

Deterministic methods always return the same decision for any given set of input param-

eters, whilst non-deterministic methods (inspired by meta-heuristic methods) depend on

the current time or step in making their decision. The deterministic methods applied

throughout the thesis are: Only Improve (OI) which only accepts the improved solutions,

and Improve or Equal (IE) which accepts non-worsening solutions. The non-deterministic

move acceptance methods included are: Simulated Annealing (SA), Great Deluge (GD),

Late Acceptance (LA), Record to Record (RR), and Naïve acceptance (Naïve).

Simulated annealing (see section 3.1.3.3) has been applied as a move acceptance com-

ponent in selection hyper-heuristics by several studies [9, 172] and has proved to be

successful. In [9], simulated annealing was used with the probability of accepting wors-

ening moves given by the formula:

pt = e
− ∆f

∆F (1− t
T

) (3.1)

where ∆f is the change in the evaluation function at time t, T is the maximum time and

∆F is the range for the maximum change in the evaluation function.

The Great Deluge (GD) algorithm was first introduced by Dueck [173]. It is based on

a stochastic framework that accepts all improved solutions by default. Non-worsening

59

Chapter 3. Methods for Solving VRPs 60

solutions are accepted if their objective value is equal to or better than a specific cost

value called the ‘level’. Initially the level is equal to the cost of the initial solution, and

is updated afterwards at each step with the following formula:

τt = f0 + ∆F × (1− t

T
) (3.2)

where ∆F is the maximum change in the objective value, f0 is the final expected objective

value, T is the time limit, and t is the time at the current step.

Late acceptance was first introduced in [174]. It compares the quality of the current

solution with the solution generated L steps earlier during the search. This method

requires the implementation of a circular queue of size L to save the objective values of

L previously generated solutions. The performance of this method heavily depends on

the queue size as stated in [174]. Similar to SA, in Naïve acceptance worsening solutions

are accepted with a certain probability. The difference is that this probability is fixed

for Naïve and is predefined by the user, while in SA, the probability varies in time and

is calculated by the formula 3.2.

Record-to-Record (RR) is a variant of GD which accepts worsening solutions that are not

much worse than the best solution in hand to an extent based on the following formula:

obj(Snew) ≤ obj(sbest) + fr × obj(Sbest) (3.3)

Where fr is a factor that is updated during the search, starting with a large value and

gradually decreasing.

3.5.1 Sequence-based Selection Hyper-Heuristic

Generally, a selection method will choose a single heuristic and apply it to the current

solution to generate a new solution. In this thesis, as one of our selection methods, we

have utilised a scheme inspired by the hidden Markov model (HMM) [175] that applies

sequences of heuristics to a given solution, where the low level heuristics represent the

hidden states of the model. In this selection method each low level heuristic is associated

with two probabilities: a probability to move to another low level heuristic including

itself, and a probability to determine whether to terminate the sequence at this point.

An outline of Sequence-based Selection Hyper-Heuristic (SSHH) is given in Algorithm 4.

60

Chapter 3. Methods for Solving VRPs 61

Algorithm 4: Sequence-based selection hyper-heuristic

1 Let S, S′, Sb be candidate, new and best solutions, respectively;
2 Let Tran be the transition matrix;
3 Let Seq be the sequence construction matrix;
4 Let [lh0, llh1, llh2, . . . , llhn−1] be the low level heuristics set;
5 Let HeuristicsSequence be the application sequence of low level heuristics;
6 HeuristicsSequence← [];
7 curr ← SelectRandomly[0, 1, 2, . . . , n− 1];
8 HeuristicsSequence.add(llhcurr);
9 repeat

10 next← SelectNext(Tran, curr);
11 HeuristicsSequence.add(llhnext);
12 Status← ComputeStatus(Seq, next);
13 if Status = end then
14 S′ ← Apply(HeuristicsSequence, S);
15 if S′ isBetterThan Sb then
16 Sb ← S′;
17 Update(Tran, Seq);
18 end
19 S ← Accept(S, S′);
20 HeuristicsSequence.clear();
21 end
22 curr ← next;
23 until TimeLimit ;

If the low level heuristics set is [llh0, llh1, . . . , llhn−1], we define a transition matrix

(Tran = n× n) which specifies scores for each low level heuristic, from which we derive

the probabilities of moving from one heuristic to another. We also define a sequence

construction matrix (Seq = n×2) which stores scores for each of the n low level heuristics

in two columns: continue and end. Following the addition of each low level heuristic to

the sequence, the matrix Seq is used to compute the status of that sequence: either the

sequence will end at this point and the low level heuristics within it will be applied to

the current solution in the order in which they appear, or the sequence will continue, and

the next low level heuristic will be selected. Initially every element in the two matrices is

assigned the value ‘1’, but these values are incremented to reward sequences of low level

heuristics that are successful in improving the quality of the best solution so far.

At first, a random low level heuristic is selected (llhcurr) and added to the sequence (line

8). The next low level heuristic (llhnext) is chosen by selection procedure SelectNext

(line 10) based on the roulette wheel selection strategy with a probability equal to:

Tran[curr][next]/
∑
∀j Tran[curr][j]. The selected heuristic (llhnext) is then added to

61

Chapter 3. Methods for Solving VRPs 62

llh0llh1llh2llh3

llh0 1 1 1 1

llh1 1 1 1 1

llh2 1 1 1 1

llh3 1 1 1 1

conend

llh0 1 1

llh1 1 1

llh2 1 1

llh3 1 1

(a) Matrices initial values

llh0llh1llh2llh3

llh0 1 2 1 1

llh1 1 1 1 2

llh2 1 1 1 1

llh3 1 1 1 1

conend

llh0 2 1

llh1 2 1

llh2 1 1

llh3 1 2

(b) Matrices updated values

Figure 3.3: Example of updating the values in the transition and sequence construc-
tion matrices: We assume the application of the sequence [llh0, llh1, llh3] improved the
best solution. The scores of these low-level heuristics in the “Transition Matrix" and
the “Sequence Construction matrix" are updated. This update increases the probability

of selecting this sequence in later steps.

the growing sequence of low level heuristics (line 11) and the status for this low level

heuristic is computed with the procedure (ComputeStatus) (line 12) which determines

whether or not the sequence will terminate at this point. The choice made here is also

based on roulette wheel selection with the probability of continuing the sequence given

by: Seq[next][continue]/(Seq[next][continue] + Seq[next][end]). If Status = end, the

sequence is complete and will be applied to the current solution to generate a new solution

(line 14). If the new solution is accepted and improved over the best solution, the scores

in the matrices for the relevant low level heuristics are increased by one as a reward (line

17), increasing the chance of selecting the sequence that generates improved solutions.

In addition, Seq is also updated by incrementing the end column for the final low level

heuristic in the active sequence of low level heuristics and incrementing the continue

columns for the non-terminal low level heuristics. For a more in depth description of the

method with examples the reader can refer to [175, 176].

3.6 Hyper-heuristics in Routing Problems

Since the development of the hyper-heuristics framework, it has been utilised for solv-

ing various important combinatorial problems such as timetabling [9, 177], personnel

scheduling [178] routing [179–181], Bin Packing [182], and Constraint Satisfaction [183].

VRPs are area in which hyper-heuristics proved to be particularly successful, and have

been applied to solve different variants of VRPs (table 3.2). Pisinger and Ropke [179]

used adaptive large neighborhood search (ALNS) hyper-heuristic, and achieved the state

of the art results for multiple variants of the VRP. Garrido and Castro [184] presented

62

Chapter 3. Methods for Solving VRPs 63

Table 3.2: Some selected routing problems in which hyper-heuristics were used as
solution methodologies

Problem Domain Reference

Ready-mix concrete delivery [185]
Dynamic capacitated vehicle routing [180]
Capacitated vehicle routing [186]
Dial-a-ride with time window [187]
Periodic vehicle routing [188]
Vehicle routing with cross-docking [189]
Inventory routing problem [163]

a hill-climbing based hyper-heuristic to solve instances of the capacitated VRP, man-

aging a set of perturbative-constructive pairs of low level heuristics and applying them

sequentially. Their approach provided quality solutions compared to other methods in

the literature. In their follow up work [180] the authors presented a self-adaptive hyper-

heuristic capable of solving static and dynamic instances of the CVRP. They controlled

a generic set of perturbative and constructive low level heuristics and designed a sim-

ple strategy based on reinforcement learning ideas to assign reward and penalty values

and guide the operator’s selection. They tested their approach on several benchmark

instances and compared them to results obtained with previous hyper-heuristics and

other well-known methods in the literature, and found that their approach provides high

quality results with more adaptability to dynamic scenarios than other methods. Walker

et al. [181] presented the CVRP with time windows as one of the problem domains in

the HyFlex framework (Hyper-heuristic Flexible framework). They implemented data

structures, and objectives for the evaluation of the problem, as well as a set of state

of the art low level heuristics, and tested it using adaptive iterated local search hyper-

heuristic. Their results showed the success of the adaption mechanism in improving the

performance of hyper-heuristics.

The previous VeRoLog challenge 2016-2017 tackled a rich VRP problem related to a

cattle improvement company that regularly measures the milk quality at a number of

farms using specialised tools. These tools have to be delivered to a number of farms

(customers) on request and picked up again a few days after delivery. The key challenge

is how to schedule the deliveries to satisfy the requests, whilst at the same time design

efficient routes for the pick-ups and deliveries. The second place winner on this challenge

used a hyper-heuristic approach based on an online selection method [36].

63

Chapter 3. Methods for Solving VRPs 64

In the UTRP, to the best of the author’s knowledge, the use of hyper-heuristics is unex-

plored in the literature. Our reason for choosing it was driven by several motivations: (i)

Hyper-heuristics are reasonably generic and are easy to implement and maintain. Thus

we expect that our implementation can be applicable to other variants of the UTRP

with minimal adaptation. (ii) The success of hyper-heuristics in solving several NP-hard

optimisation problems generally and complex routing problems specifically (Table 3.2).

(iii) The use of a single solution based framework can help solving the run-time issues

of the problem. (iv) With the aid of appropriate low level heuristics, hyper-heuristics

can handle complex solution spaces and therefore help in solving complex versions of the

UTRP.

3.7 Methods for Solving Multi-objective Optimisation Prob-

lems

3.7.1 Evolutionary Algorithms

Evolutionary algorithms are a broad category of population-based meta-heuristics that

have been widely accepted as a solution method for solving Multi Objective Optimisation

Problems (MOOPs) because of their ability to produce multiple elements of the Pareto

front in a single run. One of the most well-known and vastly applied evolutionary optimi-

sation algorithms is Genetic Algorithms (GA) (section 3.1.3.1) which evolves through a

number of iterations called generations, a population of initial candidate solutions called

chromosomes each with a defined fitness value. As the search evolves, the population

becomes fitter and eventually converges.

A GA is well suited for solving MOOPs because of its population-based nature. The

generic single objective GA can be modified to produce multiple non-dominated solutions

in a single run. One of the most important components of a multi-objective genetic

algorithm is the ranking method. The ranking method uses the concepts of Pareto

dominance to rank the solutions, and according to the dominance rules, the population

is ranked and each solution is assigned a fitness value based on its rank in the population

[190]. Also, maintaining diversity is an important consideration to ensure solutions are

uniformly distributed over the Pareto front, and prevent the clustering of the solutions

in specific regions which limits the exploration of the Pareto front.

64

Chapter 3. Methods for Solving VRPs 65

There are various known multi-objective genetic algorithms implemented previously

which are currently used in many applications. They differ in their fitness evaluation

procedure, elitism, and diversification approaches. Some of these algorithms are: Multi

Objective Genetic Algorithm (MOGA) [191], Strength Pareto Evolutionary Algorithm

(SPEA) [192], and Fast Non-dominated Sorting Genetic Algorithm (NSGAI and NS-

GAII) [193].

3.7.2 The Weighted Sum Method

The weighted sum method casts the MOOP problem as a single objective optimisation

problem. This is achieved by summing all the objective functions fi, and weighting them

using weighting coefficients wi. Generally, the weighted sum approach can be described

with the formula:
k∑

i=1

wifi(x) (3.4)

Where wi ≥ 0, and
∑k

i=1wi = 1. Ideally, the weight values in equation 3.4 are set by

the decision maker based on their deep knowledge of the problem. However, as different

objectives can have different magnitudes, the normalisation of the weights becomes es-

sential in order to get a consistent Pareto optimal solution to the assigned weights [194].

In this case a single weight can be computed as Wi = wiθi where wi are the assigned

weights and θi are the normalisation factors. Possible ways for normalising the weights

can be:

• Normalise the weights using the initial value of the objective function such that:

Wi = wi
f(x0)

.

• Normalising using the minimum of the objective function: Wi = wi
f(xmin)

where

xmin gives the minimum solution to the objective function fi.

The weighted sum method is simple and straightforward to implement, with a key ad-

vantage of transforming an MOOP to a single solution optimisation problem, allowing

the application of single point based optimisation methods to multi-objective problems.

This approach is also computationally efficient. However, the application of this method

is very sensitive to the weight adjustments and requires precise tuning by the decision

maker and an intrinsic knowledge of the problem and its objectives in order to provide a

good balance between the objectives through the weight coefficients. Another drawback

65

Chapter 3. Methods for Solving VRPs 66

F2

F1

Feasible objective space

A

d

Pareto Optimal Front

w1

w2

(a) Weighted sum approach in a minimisation problem

F2

Pareto Optimal Front

Feasible objective space

Non-convex region

(b) Weighted sum in a non-convex Pareto front

Figure 3.4: Illustration of the weighted sum approach in a minimisation problem and
in non-convex Pareto front

is that it requires a number applications for the single point-based optimiser in order to

get a number of solutions, in contrast to evolutionary algorithms based methods which

produce a full set of Pareto optimal solutions in a single optimisation run. Addition-

ally, one of the identified problems in the weighted sum approach, is their inability to

find any solutions laying in a non-convex region within the feasible solutions space (fig-

ure 3.4). Therefore, multi-objective frameworks based on the weighted sum approach

have difficulties in finding solutions over a non-convex trade-off surface [190].

66

Chapter 3. Methods for Solving VRPs 67

3.7.3 The Applied Weighted Sum Method

Throughout this thesis, we have adopted the simple weighted sum approach in handling

the multi-objective nature of the problems tackled, and to create trade-off solutions as

a part of the Pareto front. In the UTRP, our method is based on normalising the two

objectives of the passenger and operator to ensure fairness and balance, as each objective

represents a different measure. Different weight values are then used to find a spread

of compromise solutions. These weight values were obtained by exhaustively trying

several weights combinations and choosing the most successful. This approach suited

the purpose of applying selection hyper-heuristics to solve the UTRP, as our objective

was to find an efficient single point based computational method that can provide high

quality route sets for a variety of instance sizes in a short computation time, and thus

overcome the run time issues of GA methods. In the VeRoLog solver challenge problem,

and according to the competition description and rules, a set of weights is provided with

each instance to determine which objective is more important in that instance. In this

case, the application of the approach was straightforward by using the supplied weights

and no further tuning was required. Detailed description of our applied approach and

its application will come in the following chapters.

3.8 Summary

This chapter covered the methods used for solving NP-hard COPs, classifying solution

approaches and explaining why mathematical approaches sometimes fail to solve such

computationally complex problems. It provides a comprehensive literature survey fo-

cused on meta-heuristic algorithms application to the UTRP and the success achieved

so far. The second part of the survey focused on the general VRP problem with em-

phasis on the variants related to the VeRoLog 2019 solver challenge. Later, we out-

lined a full description of the hyper-heuristic framework describing its components, pro-

cesses, and classification and showed its advantages over traditional heuristic methods

and other meta-heuristic algorithms by being general and separated from any domain

specific knowledge. We introduced the selection and move acceptance methods applied

in our hyper-heuristic framework throughout the thesis with a detailed description of

the SSHH online selection method. We also summarised the previous studies that ap-

plied selection hyper-heuristics in different complex routing problems. Finally, we briefly

outlined two approaches for solving Multi-objective Optimisation Problems (MOOPs):

67

Chapter 3. Methods for Solving VRPs 68

a mutli-objective approach based on evolutionary algorithms, and the weighted sum ap-

proach, and described our approach for handling the multi-objective problems addressed

in this thesis.

68

Chapter 4

Hyper-heuristics for Urban Transit

Route Design Problem

In this chapter, we demonstrate the application of the selection hyper-heuristics frame-

work to solve the UTRP problem. Our aim is to develop a computationally efficient

algorithm that works well on instances with different characteristics and sizes while pro-

viding high quality solutions from the perspective of passenger and operator in reasonable

run times. We demonstrate here that selection hyper-heuristics are the potential way

forward for solving the run time problems associated with the GA methods, and that the

iterative improvement of a single solution can yield to high quality results. We will de-

scribe the application of thirty different selection hyper-heuristics on Mandl’s benchmark

instance and Mumford’s dataset and compare between their performances. As stated in

Bilgin et al. [9], different combinations of selection and move acceptance components can

yield to different performances. We conduct these comparisons using statistical analysis

methods to find the best combination of selection and move acceptance components on

the UTRP. Moreover, we compare our results with the current state-of-the-art solutions

on the applied set of instances and show the superiority of our results.

4.1 Problem Model

In chapter 2 (section 2.4.3), we demonstrated a simplified model for the UTRP based on

a weighted undirected graph. The same model was adopted by other previous studies

69

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 70

[6, 82, 83]. We apply this model to test our selection hyper-heuristics using the objec-

tive functions described by equation 2.3, and equation 2.4 respectively to calculate the

passenger and operator objectives. The two objective functions are subject to a set of

constraints that defines the feasibility criteria of the route network. These constraints

were also listed in section 2.4.3. The calculation of the passenger cost objective is based

on expanding the route network into the transit network, and finding the shortest paths

between all origin-destination points in the transit network. For the operator cost, we

considered the costs of travelling all the routes in the route network in one direction.

The fleet size is also an important consideration for the operator. We will not include

it as an objective for this current study, but will describe a simple way to calculate the

total fleet size required to cover the entire network demand. This could be simply done

by dividing the total length of the routes (multiplied by 2 to represent travelling in the

opposite direction) by the route headway (equals 10 considering an average waiting time

of five minutes).

The calculation of the passenger objective is the most time consuming part of the algo-

rithm requiring the expansion of the route network into the transit network in which the

number of nodes increases by an order of magnitude to represent passengers transfers,

and then applying an all pairs shortest paths algorithm to each candidate route set.

We used an implementation of Dijkstra algorithm based on a priority queue [195] with

an associated run time complexity of O(n2), and compared its performance with the

Floyd Warshall algorithm [196] that has a run time complexity of O(n3). Through this

comparison, we found that the priority queue used in Dijkstra implementation reduces

the computational time required by the passenger cost. Floyd Warshall’s algorithm was

applied to calculate the passenger cost in [6, 83], and we believe it was a cause of the

long run times in the large instances as has been reported in these studies.

For the scope of this work, we will assume that there are sufficient vehicles traversing

each route, and with enough capacity to cover the demand between all the bus stops. The

frequency of the routes though can be calculated using a demand assignment procedure

[86] to determine high demand routes and transfer points and a simple heuristic procedure

[80] to redistribute the total available fleet (calculated as mentioned in this section)

between the routes, allowing larger number of buses to be assigned to busier routes.

We will also assume that the time cost of waiting at transfer points and the penalty of

making a transfer are combined in a single cost that equals 5 minutes (assumption in

line with previous studies [3, 6, 31, 75, 82]).

70

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 71

For assessing the generated route sets, we use the average passenger and operator costs

as performance indicators. We also use transfer statistics for a more comprehensive

assessment of the route set (as described in section 2.4.3). These statistics calculate the

percentage of direct travellers, travellers that requires one, two transfers, and unsatisfied

demand (i.e. travellers requiring more than three transfers).

4.2 Hyper-heuristics Design and Solution Initialisation

4.2.1 Evaluation Method

The solution to our model is the route network, which consists of a number of fully con-

nected routes, that allows a passenger to travel between any source-destination pair. We

represent our solution S as a two dimensional vector. A candidate solution is evaluated

using the following equation:

f(S) = αF (S) + βCp(S) + γCo(S) (4.1)

α, β and γ are constants used to weight the three components of the objective function,

where β and γ are positive values between (0 − 1), and α is a positive value between

(0−∞). Cp(S) and Co(S) are the passenger and operator objectives of solution S calcu-

lated using Equations 2.3 and 2.4 respectively; and F (S) represents the feasibility of the

solution S and it computes to what extent this solution meets the problem constraints.

If any of these constraints is violated at any position in the route set, it is penalised

by increasing its value by one. For example for each missing node in the route set, the

constraint concerned with including all the vertices is increased by one. Similarly, for

the other constraints with each individual violation. F is then calculated as the sum

of these constraint violations. A route set is only accepted if this sum is zero (i.e. the

solution is feasible). Note that F , Cp and Co can be treated as separate objectives in a

multi-objective formulation or combined into a single objective as in Equation 4.1. In

the present work the objectives are considered separately in the main, simply to facilitate

comparisons with published results produced by other state-of-the-art methods. However

it is clear that compromise solutions between objectives will be required in practice, and

for this reason we include a brief illustration of how our hyper-heuristic approach can be

extended to produce such a set of solutions in Section 4.3.4.

71

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 72

4.2.2 Initial Solutions

Our implemented initial route set generation procedure focuses on the feasibility of the

solution. The aim is to construct a single initial solution that obeys all feasibility con-

straints. The process consists of two stages: construction and repair. In the construction

stage, a pool of candidate routes is generated by applying Dijkstra algorithm and find-

ing the shortest travel time path between every pair of nodes in the network. Only the

shortest paths that obey the user constraints for maximum and minimum route length

are included in the pool. The route set is then built by selecting one route at a time

from the pool, until the route set reaches the required size as pre-determined by the

user. The first route is selected by trying all of the routes from the pool in turn, and

choosing “the best" according to Equation 4.1, with parameters β, and γ set to zero,

and α is set to one. The initial generation procedure is focusing solely on building a

feasible route set, and not on its quality. Thus the candidate route that produces the

minimum number of feasibility violations is chosen as the first route. The second route

is then selected from the pool in a similar way, this time applying Equation 4.1 to the

growing route set consisting of the first route, and the candidates for the second route,

and once again the procedure makes “the best choice" for the route set according to

the equation. The selection procedure continues in a similar way for every route in the

route set, until the initial route set contains the required number of routes. Although

the construction stage reduces the feasibility constraint violations to a minimum, still

it does not guarantee a feasible route set is obtained. For this reason, a repair stage is

applied when needed. This stage consists of a simple hyper-heuristic combining simple

random selection and improve or equal acceptance. This hyper-heuristic evaluates the

route set with the same parameter settings as the construction stage and terminates

immediately after finding a feasible solution. The initial solution generation procedure

is demonstrated in algorithm 5.

4.2.3 Hyper-heuristics

The constructed initial solution is introduced as the current solution (S) to the hyper-

heuristic framework. The selection method applies a single heuristic, or a sequence of

heuristics (in the case of a sequence based selection method) to S, generating a new solu-

tion S′, which is evaluated using Equation 4.1 with the following parameters settings: α

is set to∞ to ensure non-feasible solutions are always rejected, β and γ are set based on

whether the solution is being evaluated from the passenger or the operator perspective.

72

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 73

Algorithm 5: Initial Solution Construction

1 Let Paths be the pool of shortest paths.;
2 Let routec,pathb be a route under construction, and the best path respectively.;
3 Let noRoutes,noPaths be the number of routes in the route set and the number of

paths in the pool of shortest paths respectively.;
4 Let S,S′,Sb represent the current, new, and best solution respectively.;
5 Let obj,obj′,Objb be the current, new and best objective respectively.;
6 Construction Stage;
7 Paths← CalculateDijkstra(n);
8 objb =∞;
9 for i← 1 to noRoutes do

10 for j ← 1 to noPaths do
11 routeci ← Pathsj ;
12 Obj ← EvaluateSolution(S);
13 if Obj isBetterThan Objb then
14 Objb ← Obj;
15 pathb ← Pathsj
16 end
17 end
18 routeci ← pathb ;
19 end
20 Repair Stage ;
21 Sb ← S;
22 repeat
23 llh← RandomlySelect(LLH);
24 S′ ← apply(llh, S) ;
25 if Accept(S, S′) then
26 S ← S′

27 end
28 Sb ← UpdateBestSolution(S)

29 until EvaluateSolution(Sb) = 0;
30 return Sb

β = 1 and γ = 10−10 for the passenger perspective, and vice versa for the operator. The

low level of 10−10 provides an effective tie-breaker. Following evaluation the acceptance

method is applied, which determines whether S′ will replace S or not. In this work we are

evaluating the performance of several selection hyper-heuristics made up by alternative

pairings between various selection and acceptance methods. More specifically we pair

the following selection methods: Simple Random (SR), Random Descent (RD), Ran-

dom Permutation (RP), Random Permutation Descent (RPD), Greedy Selection (GR),

Sequence-based Selection (SS); with the move acceptance methods: Only Improve (OI),

Improve or Equal (IE), Late Acceptance (LA), Great Deluge (GD), Simulated Annealing

73

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 74

(SA).

We conducted the parameter tuning manually by performing a series of quick experiments

on Mandl and Mumford3 instances (i.e. the smallest and the largest instance in our

tested dataset). We run each experiment for five minutes on the selected instances,

each experiment with different parameters values. From these series of experiments, the

parameter values that give the best result were selected. According to this, in Great

Deluge (GD) and Simulated Annealing (SA), the best known objective for calculating

the maximum change in the objective function was set to zero. In Late Acceptance

(LA), we tested different memory sizes for the circular queue L ranging between 10 to

100. Finally, we have set this value to 40 which provided the best passenger and operator

costs for both instances.

4.2.4 Low Level Heuristics

The hyper-heuristic controls a set of seven low level heuristics to improve the quality of

a given route set. All the low level heuristics are mutational, and they perform basic

operations to mutate a given route set.(see Figure 4.1).

• LLH0: Selects a random route and a random position in this route and adds a

random node into this position.

• LLH1: Selects a random route and a random node in this route and deletes this

node.

• LLH2: Selects a random route and two random nodes in this route and swaps the

two nodes.

• LLH3: Selects a random route a random node and a random position in this route.

The selected node is inserted into that position.

• LLH4: Selects a random route and a random node and replaces this node with

another random node.

• LLH5: Selects two random routes a random node and a random position. The

node on the first route is inserted into the second position on the second route.

• LLH6: Selects two random routes and a random node on each route and swaps

the two nodes.

74

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 75

(a) Add (LLH0) (b) Delete(LLH1)

(c) Swap inside route(LLH2) (d) Insert inside route(LLH3)

(e) Replace(LLH4) (f) Insert between routes(LLH5)

(g) Swap between routes(LLH6)

Figure 4.1: Low level heuristics set description. Straight arcs are edges in the route,
dashed arcs are edges removed after applying the low level heuristic, curved arcs are

edges added after applying the low level heuristic

4.2.5 Problem Instances

In this study, we have used Mandl’s benchmark instance [73], and the four benchmark in-

stances published in [6]. Mandl benchmark instance is considered the defacto benchmark

for solving the UTRP, despite its size and layout which does not represent a real world

transportation network. Mandl’s instance contains only 15 nodes, which is very small

compared to real-world networks that can contain hundreds or thousands of nodes. Un-

til recently, this was the only publicly available instance that comes with all the related

information of the network layout, demand data, and travel times.

In [6], a new data set of four instances was published to aid researchers to test their

methods on fairly large size instances. These instances were generated using user defined

parameters for determining the network vertices, edges, and the lower and upper bound

on the demand. The number of routes and the connectivity of Mumford data set is

loosely based on bus network maps of real cities: one in China (Yubei), and two in the

UK (Cardiff, and Brighton). This benchmark set provides a variety of network sizes

which is necessary to assess the scalability of an algorithm, and therefore it has been a

75

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 76

Table 4.1: Features of our dataset

Instance Number of
vertices, edges

Number
of routes

Vertices per route
(min, max)

Average transit
network size

Mandl4 15, 21 4 2, 8 4*(2+8)/2 = 20
Mandl6 15, 21 6 2, 8 30
Mandl7 15, 21 7 2, 8 35
Mandl8 15, 21 8 2, 8 40
Mumford0 30, 90 12 2, 15 102
Mumford1 70, 210 15 10, 30 300
Mumford2 110, 385 56 10, 22 896
Mumford3 127, 425 60 12, 25 1110

subject for application by many studies due to the practical size of its instances. Some

example studies that tested this data set can be found in [31, 83, 85, 87]. The details

of the generation procedure of Mumford data set are published in the doctoral thesis of

Fan [28].

The above described instances have symmetrical travel time and demand data, and

therefore fits our problem model and assumptions. The features of our data sets are

provided in Table 4.1. We have used Mandl’s benchmark with route set sizes 4, 6, 7,

and 8 considering each a separate problem. These variants are commonly used in the

literature [6, 82].

4.3 Experimental Results

We carried out our experiments in two phases. The first round of experiments evaluates

the solution from the passenger perspective. This phase focuses on generating route sets

that serve the passenger needs, by providing the best possible travel time from origin

to destination with the lowest number of transfers. In these experiments Equation 4.1

is used to evaluate the solution with the following parameter setting: α = ∞, β = 1

and γ = 10−10. In the second round of experiments the solution is evaluated from the

operator perspective to generate route sets focusing on the requirements of the operator

using the settings: α = ∞, β = 0 and γ = 1 for 80% of the run time, and for the rest

of the search time β is set to 10−10. The reason for this is to allow the hyper-heuristic

to focus on improving the routes based on the operator qualities, instead of wasting the

search time with the complex and time consuming operations related to the calculation

of the passenger objective.

76

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 77

The experiments were conducted on a device with the following specifications: Intel Core

i5 at 2.30GHz with memory of 8GB. Each selection hyper-heuristic is run for ten trials

on each instance and terminates after the run time elapses. The run time is set to vary

according to the instance size by adding thirty seconds for each node. According to these

settings, the largest instance in the set, Mumford3 will require one hour on average per

trial and ten hours for the ten trials per selection hyper-heuristic. Since we are testing

thirty selection hyper-heuristics, performing ten trials was reasonable giving the time

required for the single trial and the number of selection hyper-heuristics that we are

testing.

4.3.1 Passenger Perspective

Tables 4.2 and 4.3 show the results from the passenger prescriptive experiments in terms

of the average travel time for a single passenger (measured in minutes) for all the se-

lection hyper-heuristics averaged over the ten trials. The minimum and the maximum

values have also been recorded. The Kruskal-Wallis stastical test is performed with 95%

confidence level to compare the pairwise statistical variations in the performance be-

tween two algorithms. The following notations are used: Given two algorithms X versus

Y , > (<) denotes that X(Y) performs better than Y (X), and this variation is statis-

tically significant, ≥ (≤) denotes that X(Y) performs slightly better than Y (X), but

the performance is not statistically significant, and = denotes that X and Y perform

equally. The values associated with these notations in the tables represent the number of

times a particular hyper-heuristic is statistically significant, not statistically significant,

or equally performing against the other selection hyper-heuristics in the tested set. The

average number of iterations is also reported using the following notations: m refers to

the number of iterations in millions, and k refers to the number in thousands.

The success of the sequence-based selection method (SS) can be observed from the re-

sults, outperforming other selection methods regardless of the move acceptance. This

observation applies for all instances. Figure 4.2 shows the performance variation of our

applied selection methods when combined with GD acceptance giving an advantage for

SS. With regard to the move acceptances, the non-deterministic acceptance methods

were more successful. Simulated annealing achieved the best results in all Mandl vari-

ants, delivering an improved performance that is statistically significant. Great deluge

found the best minimum results in all Mandl instances. Note that there is no proof of

optimally for any of the recorded results in Mandl variants. The only observation is

77

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 78

T
a
bl

e
4.

2:
R
es
ul
ts

of
th
e
th
ir
ty

se
le
ct
io
n
hy

pe
r-
he
ur
is
ti
cs

fr
om

th
e
pa

ss
en
ge
r
pe

rs
pe

ct
iv
e
fo
r
M
an

dl
in
st
an

ce
s.

B
es
t
va
lu
es

pe
r
ea
ch

in
st
an

ce
ar
e
hi
gh

lig
ht
ed

in
bo

ld

M
A
N
D
L4

M
A
N
D
L6

M
A
N
D
L7

M
A
N
D
L8

M
A

SM
av
g

st
d

m
in

>
<
≥
≤

It
er

av
g

st
d

m
in

>
<
≥
≤

It
er

av
g

st
d

m
in

>
<
≥
≤

It
er

av
g

st
d

m
in

>
<
≥
≤

It
er

O
I

SR
10

.8
91

0.
27

3
10

.7
16

0
12

0
17

39
m

10
.5
10

0.
14

0
10

.3
09

0
6

5
18

17
m

10
.4
80

0.
11

3
10

.3
16

0
12

3
14

13
m

10
.3
60

0.
11

4
10

.1
90

0
7

5
17

10
m

R
D

10
.8
31

0.
27

0
10

.5
23

0
6

1
21

40
m

10
.5
55

0.
20

7
10

.3
22

0
7

2
20

18
m

10
.4
91

0.
10

6
10

.3
44

0
13

2
14

13
m

10
.4
07

0.
07

0
10

.3
25

0
16

2
11

11
m

R
P

10
.7
36

0.
24

7
10

.5
15

0
6

6
17

37
m

10
.4
57

0.
11

1
10

.2
94

0
6

9
14

16
m

10
.4
72

0.
10
7

10
.3
28

0
12

4
13

14
m

10
.4
57

0.
10

0
10

.2
72

0
13

0
16

11
m

R
P
D

10
.7
18

0.
15

2
10

.5
15

0
6

10
13

38
0m

10
.6
45

0.
26

0
10

.4
38

0
12

0
17

18
m

10
.5
00

0.
32

3
10

.2
78

0
9

1
19

13
m

10
.4
17

0.
11

8
10

.2
42

0
8

1
20

10
m

G
R

10
.7
78

0.
20

8
10

.6
11

0
7

5
17

5m
10

.5
13

0.
10

4
10

.3
69

0
11

4
14

2m
10

.5
04

0.
08

9
10

.3
46

0
13

0
16

1m
10

.3
83

0.
12

5
10

.2
27

0
8

3
18

1m
SS

10
.6
06

0.
06

5
10

.5
10

0
6

18
4

57
m

10
.3
46

0.
10

9
10

.1
90

0
0

15
14

28
m

10
.2
64

0.
07

4
10

.1
85

0
6

15
8

23
m

10
.1
94

0.
08

6
10

.0
94

0
0

15
14

16
m

IE

SR
10

.8
21

0.
23

1
10

.6
41

0
8

3
18

39
m

10
.5
58

0.
10

5
10

.3
83

0
11

1
17

17
m

10
.3
71

0.
12

1
10

.2
06

0
7

10
12

13
m

10
.2
78

0.
07

3
10

.1
66

0
7

9
13

11
m

R
D

10
.8
31

0.
27

0
10

.5
23

0
6

1
21

40
m

10
.5
01

0.
13

1
10

.3
36

0
9

6
14

17
m

10
.3
92

0.
12

7
10

.2
46

0
8

7
14

13
m

10
.2
78

0.
05

4
10

.1
57

0
7

8
14

10
m

R
P

10
.7
35

0.
24

7
10

.5
15

0
6

7
16

36
m

10
.4
73

0.
13

9
10

.3
12

0
6

7
16

18
m

10
.4
26

0.
11
6

10
.2
09

0
7

6
16

13
m

10
.2
78

0.
11

3
10

.1
67

0
7

7
15

10
m

R
P
D

10
.7
21

0.
15

8
10

.5
15

0
6

9
14

37
m

10
.4
17

0.
07

7
10

.3
27

0
8

12
9

16
m

10
.4
53

0.
11

2
10

.3
06

0
11

5
13

13
m

10
.3
63

0.
09
4

10
.1
94

0
7

4
18

11
m

G
R

10
.7
84

0.
20

8
10

.6
11

0
7

4
18

5m
10

.5
17

0.
11

0
10

.3
49

0
9

3
17

2m
10

.3
87

0.
09

4
10

.2
45

0
8

8
13

1m
10

.2
83

0.
10

1
10

.1
28

0
3

6
20

1m
SS

10
.6
06

0.
06

5
10

.5
10

0
6

18
4

58
m

10
.3
14

0.
05

5
10

.2
16

1
0

15
13

28
m

10
.2
34

0.
06

5
10

.1
68

2
3

15
9

22
m

10
.1
68

0.
06

4
10

.1
02

1
1

16
11

16
m

LA

SR
10

.6
65

0.
06

5
10

.5
23

0
6

14
9

38
m

10
.4
44

0.
14

8
10

.2
41

0
6

10
13

19
m

10
.2
81

0.
10

3
10

.1
30

0
0

13
16

13
m

10
.2
12

0.
09

5
10

.1
12

0
1

12
16

10
m

R
D

10
.7
25

0.
09

9
10

.6
19

0
7

8
14

39
m

10
.3
91

0.
10

6
10

.2
44

0
6

13
10

18
m

10
.3
52

0.
11

7
10

.2
29

0
7

11
11

14
m

10
.2
00

0.
07

4
10

.1
06

1
1

13
14

10
m

R
P

10
.7
08

0.
08

1
10

.6
17

0
7

11
11

40
m

10
.4
64

0.
10
0

10
.2
39

0
6

8
15

17
m

10
.2
91

0.
11

7
10

.1
77

0
5

12
12

14
m

10
.2
61

0.
08

9
10

.1
71

0
7

11
11

11
m

R
P
D

10
.6
83

0.
08

4
10

.6
08

0
6

12
11

39
m

10
.4
39

0.
13

7
10

.2
48

0
6

11
12

18
m

10
.3
76

0.
12
1

10
.1
37

0
0

9
20

14
m

10
.2
75

0.
12
7

10
.1
64

0
7

10
12

11
m

G
R

10
.6
72

0.
11

9
10

.5
72

0
6

13
10

5m
10

.3
47

0.
07

9
10

.2
40

0
6

14
9

2m
10

.2
65

0.
07

0
10

.1
95

0
7

14
8

2m
10

.2
04

0.
07

6
10

.1
09

1
1

12
15

2m
SS

10
.6
08

0.
07

1
10

.5
10

0
6

17
6

62
m

10
.2
72

0.
08

2
10

.1
84

0
0

20
9

27
m

10
.1
88

0.
04

8
10

.1
14

8
0

14
7

21
m

10
.1
55

0.
05

2
10

.0
90

2
0
20

7
19

m

G
D

SR
10

.6
04

0.
05

0
10

.5
33

1
6

19
3

46
m

10
.3
02

0.
10

3
10

.2
29

0
4

17
8

23
m

10
.1
91

0.
04

6
10

.1
27

6
0

15
8

17
m

10
.1
58

0.
04

5
10

.1
05

2
1

17
9

14
m

R
D

10
.5
97

0.
07

4
10

.5
00

1
6
20

2
45

m
10

.2
80

0.
06

4
10

.2
16

3
0

16
10

23
m

10
.2
27

0.
07

1
10

.1
46

0
1
19

9
17

m
10

.1
57

0.
04

1
10

.1
23

2
2

18
7

14
m

R
P

10
.5
87

0.
04

4
10

.4
89

2
1
20

6
46

m
10

.2
56

0.
04

3
10

.2
08

5
0

17
7

22
m

10
.2
35

0.
05

4
10

.1
37

4
0

12
13

18
m

10
.1
62

0.
04

9
10

.1
13

2
2

16
9

14
m

R
P
D

10
.6
27

0.
04

9
10

.5
60

1
6

14
8

47
m

10
.2
60

0.
04

2
10

.1
94

7
0

14
8

23
m

10
.2
27

0.
03

7
10

.1
82

5
6

15
3

17
m

10
.1
55

0.
03

3
10

.0
97

4
0

17
8

14
m

G
R

10
.6
23

0.
04

8
10

.5
18

1
6

15
7

6m
10

.2
91

0.
05

1
10

.2
11

3
0

15
11

3m
10

.2
28

0.
02

9
10

.1
92

5
7

13
4

2m
10

.1
74

0.
04

7
10

.1
14

2
2

14
11

1m
SS

10
.5
21

0.
05

0
10
.4
82

6
0

17
6

72
m

10
.2
12

0.
04

3
10
.1
80

6
0
21

2
33

m
10

.1
35

0.
03

4
10
.1
01

13
0

14
2

24
m

10
.0
98

0.
02

3
10
.0
69

11
0

17
1

19
m

SA

SR
10
.4
84

0.
00

5
10
.4
82

23
0

6
0

38
m

10
.2
22

0.
00

5
10

.2
13

16
0

7
6

18
m

10
.1
54

0.
01

3
10

.1
33

16
0

8
5

14
m

10
.1
13

0.
00

7
10

.0
99

12
0

14
3

11
m

R
D

10
.4
86

0.
00

5
10
.4
82

22
0

6
1

39
m

10
.2
20

0.
00

9
10

.2
00

15
0

9
5

18
m

10
.1
51

0.
01

6
10

.1
28

16
0

9
4

14
m

10
.1
21

0.
00

8
10

.1
06

11
1

12
5

11
m

R
P

10
.4
88

0.
00

7
10
.4
82

22
0

4
3

39
m

10
.2
18

0.
00

9
10

.1
96

16
0

9
4

18
m

10
.1
54

0.
01

4
10

.1
39

15
1

8
5

14
m

10
.1
18

0.
01

1
10

.1
03

11
1

13
4

11
m

R
P
D

10
.4
87

0.
00

6
10
.4
82

22
0

5
2

39
m

10
.2
16

0.
01

0
10

.1
96

15
0

11
3

18
m

10
.1
49

0.
01

0
10

.1
36

17
0

9
3

14
m

10
.1
17

0.
00

9
10

.1
06

11
1

14
3

11
m

G
R

10
.4
89

0.
00

6
10
.4
82

22
0

3
4

5m
10

.2
07

0.
00

8
10

.1
91

16
0

12
1

2m
10

.1
34

0.
01

1
10
.1
17

17
0

11
1

2m
10

.1
05

0.
00

6
10

.0
96

15
0

12
2

1m
SS

10
.4
89

0.
00

7
10
.4
82

22
0

2
5

67
m

10
.2
02

0.
00

9
10

.1
90

16
0

13
0

26
m

10
.1
22

0.
00

8
10

.1
10

19
0

10
0

21
m

10
.0
93

0.
00

5
10

.0
84

23
0

6
0

15
m

78

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 79

T
a
bl

e
4.

3:
R
es
ul
ts

of
th
e
th
ir
ty

se
le
ct
io
n
hy

pe
r-
he
ur
is
ti
cs

fr
om

th
e
pa

ss
en
ge
r
pe

rs
pe

ct
iv
e
fo
r
M
um

fo
rd

in
st
an

ce
s.

B
es
t
va
lu
es

pe
r
ea
ch

in
st
an

ce
ar
e
hi
gh

lig
ht
ed

in
bo

ld

M
U
M
FO

R
D
0

M
U
M
FO

R
D
1

M
U
M
FO

R
D
2

M
U
M
FO

R
D
3

M
A

SM
av
g

st
d

m
in

>
<
≥
≤

It
er

av
g

st
d

m
in

>
<
≥
≤

It
er

av
g

st
d

m
in

>
<
≥
≤

It
er

av
g

st
d

m
in

>
<
≥
≤

It
er

O
I

SR
14

.6
11

0.
08

7
14

.4
96

0
15

3
11

2m
22

.3
02

0.
16

0
22
.0
86

0
0

6
23

1m
27

.2
41

0.
10

1
27

.1
03

0
22

0
7

44
0k

30
.2
54

0.
11

5
30

.1
05

0
13

2
14

38
5k

R
D

14
.6
21

0.
08

0
14

.4
88

0
15

2
12

2m
22

.2
94

0.
11

6
22

.1
00

0
0

9
20

1m
27

.1
61

0.
10

0
26

.9
82

0
19

3
7

43
8k

30
.2
80

0.
07

1
30

.1
21

0
13

0
16

38
7k

R
P

14
.5
63

0.
11

3
14

.3
80

0
3

5
21

2m
22

.3
14

0.
15

3
22

.0
85

0
0

3
26

1m
27

.1
66

0.
11

3
26

.9
99

0
19

2
8

44
8k

30
.2
45

0.
09

1
30

.1
38

0
16

3
10

38
6k

R
P
D

14
.7
02

0.
14

5
14

.5
01

0
16

0
13

2m
22

.3
08

0.
16

4
22

.1
13

0
0

5
24

1m
27

.2
35

0.
11

2
27

.0
70

0
21

1
7

44
5k

30
.2
04

0.
05

3
30

.1
49

0
17

4
8

36
8k

G
R

14
.6
06

0.
13

7
14

.3
52

0
2

4
23

30
0k

22
.3
72

0.
08

6
22

.2
53

0
2

2
25

24
3k

27
.1
35

0.
19

9
26

.8
59

0
17

4
8

63
k

30
.1
97

0.
10

6
30

.0
53

0
10

6
13

55
k

SS
14

.6
69

0.
13

6
14

.4
67

0
14

1
14

2m
22

.5
80

0.
17

9
22

.2
80

0
3

0
26

2m
26

.9
15

0.
15

0
26

.7
05

0
9

8
12

25
4k

29
.7
32

0.
09

5
29

.6
09

8
2

15
4

24
2k

IE

SR
14

.4
09

0.
07

1
14

.2
87

0
0

7
22

2m
22

.2
41

0.
15

8
22

.0
21

0
0

15
14

1m
26

.6
54

0.
13

5
26

.4
73

4
3

11
11

52
2k

29
.9
63

0.
08

4
29

.8
36

2
5

14
8

47
0k

R
D

14
.4
49

0.
15

0
14

.3
22

0
0

6
23

2m
22

.2
07

0.
10

4
22

.0
97

0
0

19
10

1m
26

.6
92

0.
11

3
26

.4
88

5
3

9
12

51
9k

29
.9
64

0.
11

8
29

.8
34

0
5

14
10

47
5k

R
P

14
.4
03

0.
08

1
14

.3
10

0
0

9
20

2m
22

.2
82

0.
10

0
22

.1
69

0
0

10
19

1m
26

.7
05

0.
10

9
26

.5
46

4
4

7
14

51
4k

29
.9
45

0.
10

3
29

.8
48

2
5

17
5

47
4k

R
P
D

14
.3
62

0.
07

3
14

.2
75

0
0

12
17

2m
22

.2
24

0.
15

2
22

.0
51

0
0

17
12

1m
26

.6
95

0.
09

4
26

.5
60

5
4

7
13

52
0k

29
.9
82

0.
08

9
29

.8
03

5
4

7
13

46
6k

G
R

14
.4
07

0.
09

9
14

.2
81

0
0

8
21

31
0k

22
.2
34

0.
10
0

22
.1
18

0
0

16
13

25
0k

26
.6
94

0.
11

2
26

.5
32

5
4

8
12

3k
29

.9
64

0.
14

6
29

.7
30

1
4

14
10

3k
SS

14
.3
95

0.
11

9
14

.2
34

0
0

10
19

2m
22

.3
99

0.
13

8
22

.2
05

0
0

1
28

1m
26

.2
58

0.
13

4
26

.1
20

19
1

8
1

30
5k

29
.3
99

0.
16

5
29

.0
87

21
1

6
1

29
2k

LA

SR
14

.2
85

0.
11

0
14
.1
18

4
0

20
5

2m
22

.0
95

0.
07

1
22

.0
00

2
0

26
1

2m
26

.3
82

0.
08

9
26

.2
62

11
2

14
2

81
4k

29
.7
47

0.
07

8
29

.6
26

9
2

12
6

73
0k

R
D

14
.3
12

0.
08

8
14

.1
38

4
0

15
10

2m
22
.0
75

0.
09

6
21

.9
55

2
0
27

0
2m

26
.4
42

0.
09

1
26

.2
59

11
2

11
5

81
8k

29
.7
01

0.
10

0
29

.5
49

14
1

11
3

72
5k

R
P

14
.3
01

0.
10

6
14

.1
60

0
0

23
6

2m
22

.1
80

0.
10

2
22

.0
12

0
0

24
5

2m
26

.4
02

0.
06

5
26

.2
68

14
2

10
3

83
2k

29
.7
45

0.
10

7
29

.5
28

9
1

13
6

72
1k

R
P
D

14
.2
71

0.
06

1
14

.1
78

5
0

20
4

2m
22

.1
24

0.
09

5
22

.0
07

1
0

25
3

2m
26

.4
28

0.
09

0
26

.3
07

11
2

12
4

81
9k

29
.7
31

0.
08

3
29

.5
80

9
2

15
3

72
2k

G
R

14
.2
34

0.
06

6
14

.1
58

4
0
25

0
35

1k
22

.1
79

0.
09

3
22

.0
83

0
0

25
4

45
0k

26
.5
93

0.
08

8
26

.4
83

8
3

9
9

16
8k

29
.9
04

0.
07

9
29

.8
06

6
4

14
5

3k
SS

14
.3
46

0.
10

2
14

.1
98

1
0

15
13

2m
22

.1
20

0.
11

9
21
.9
06

0
0
27

2
2m

25
.6
61

0.
07

3
25
.5
23

29
0

0
0

58
9k

28
.8
11

0.
08

9
28
.7
10

29
0

0
0

59
8k

G
D

SR
14

.3
12

0.
10

0
14

.1
76

3
0

17
9

5m
22

.2
96

0.
15

1
22

.0
13

0
0

8
21

3m
26

.5
29

0.
12

6
26

.3
74

8
2

13
6

65
1k

29
.9
60

0.
09

0
29

.7
62

5
4

12
8

51
1k

R
D

14
.3
47

0.
09

6
14

.1
68

4
0

11
14

5m
22

.2
71

0.
11

7
22

.0
36

0
0

12
17

3m
26

.5
88

0.
07

2
26

.4
75

10
3

8
8

64
0k

29
.9
77

0.
08

3
29

.7
95

5
4

8
12

50
1k

R
P

14
.3
19

0.
09

0
14

.2
19

0
0

18
11

5m
22

.1
95

0.
12

6
22

.0
53

0
0

23
6

3m
26

.5
53

0.
12

9
26

.4
17

8
2

12
7

64
0k

29
.9
58

0.
13

7
29

.8
00

0
4
18

7
49

8k
R
P
D

14
.3
02

0.
08

4
14

.2
05

4
0

18
7

5m
22

.1
97

0.
09

2
22

.0
89

0
0

22
7

3m
26

.5
69

0.
14

0
26

.3
15

5
2

14
8

64
1k

29
.9
97

0.
09

2
29

.8
08

2
4

9
14

50
4k

G
R

14
.3
10

0.
07

0
14

.2
29

4
0

17
8

60
4k

22
.2
55

0.
08

9
22

.1
32

0
0

14
15

50
5k

26
.6
18

0.
12

5
26

.4
68

5
3

11
10

88
k

30
.0
19

0.
11

4
29

.8
48

0
5

10
14

72
k

SS
14

.2
70

0.
07

0
14

.1
23

6
0

20
3

5m
22

.2
16

0.
08

2
22

.0
76

0
0

18
11

3m
26

.0
67

0.
13

0
25

.8
88

26
1

2
0

52
4k

29
.3
30

0.
12

2
29

.1
17

24
1

4
0

36
5k

SA

SR
14

.3
52

0.
03

1
14

.3
00

4
0

10
15

2m
22

.3
11

0.
10

8
22

.1
76

0
0

4
25

2m
26

.9
38

0.
15

8
26

.7
03

0
9

5
15

62
7k

30
.2
72

0.
09

1
30

.1
09

0
13

1
15

57
6k

R
D

14
.3
73

0.
03

6
14

.3
19

4
0

7
18

2m
22

.2
65

0.
06

2
22

.1
57

0
0

13
16

2m
26

.9
10

0.
10

1
26

.7
73

2
12

7
8

62
5k

30
.2
02

0.
18

4
29

.9
88

0
9

5
15

56
5k

R
P

14
.3
55

0.
04

4
14

.2
99

4
0

9
16

2m
22

.2
76

0.
07

4
22

.1
87

0
0

11
18

2m
26

.8
97

0.
14

5
26

.5
90

1
8

9
11

64
8k

30
.0
83

0.
15

8
29

.8
32

0
5

9
15

57
5k

R
P
D

14
.3
45

0.
04

3
14

.2
91

4
0

13
12

2m
22

.2
98

0.
09

0
22

.1
88

0
0

7
22

2m
26

.9
31

0.
13

1
26

.7
77

0
12

7
10

63
6k

30
.1
85

0.
20

2
29

.9
10

0
8

7
14

55
7k

G
R

14
.2
57

0.
07

1
14

.1
39

4
0

23
2

36
1k

22
.2
01

0.
10

5
22

.0
26

0
0

21
8

34
8k

26
.9
37

0.
08

1
26

.7
93

2
12

4
11

85
k

30
.1
59

0.
11

1
29

.9
73

0
9

8
12

77
k

SS
14

.2
50

0.
05

2
14

.1
37

6
0

22
1

2m
22

.2
01

0.
08

4
22

.0
72

0
0

20
9

2m
26

.3
44

0.
11

2
26

.1
73

11
1
15

2
34

6k
29

.4
99

0.
14

8
29

.2
46

21
1

5
2

32
7k

79

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 80

SR RD RP RPD GR SS

10.2

10.3

10.4

10.5

10.6

(a)

SR RD RP RPD GR SS
29

29.2

29.4

29.6

29.8

30

30.2

(b)

Figure 4.2: Box plots from 10 runs for all selection methods combined with GD
acceptance method for (a) Mandl6 instance, and (b) Mumford3 instance. Values in
Y axis show the average travel time and the lower boxes represent the best selection

methods

MANDL4, where all the selection methods combined with SA found a best minimum

of 10.482, and the same value was the best minimum found by SS combined with GD.

This implies that it could possibly be an optimal solution. In the larger instances late

acceptance and great deluge were the most successful. However LA found slightly better

averages and minimum results compared to GD. Given these observations, we carried

out the next round of experiments from the operator perspective using three selection

hyper-heuristics (SS-SA, SS-GD, SS-LA) which combined the best selection method with

the most successful move acceptance methods.

4.3.2 Operator Perspective

Table 4.4 summarises the results of the experiments from the operator perspective using

the average objective function value over the ten trials, the minimum values, and the

pair-wise statistical performance. Comparing these results with the lower bounds for the

operator cost published in [6], all three selection hyper-heuristics succeeded in finding

the lower bound in the Mandl problem variants and the Mumford0 instance on each of

the ten trials. Referring to the table, GD is the most successful, scoring better averages

and minimum values with a statistically significant performance compared to SA and

LA.

Giving our previous observations from the passenger perspective trials, we notice that

GD performed consistently well in all the instances on the data set, in contrast to LA

80

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 81

Table 4.4: Results of the three best selection hyper-heuristics from the operator
perspective. Best averages and minimum values per instance are highlighted in bold

SS-SA SS-GD SS-LA

Instance avg std min Iter v.s avg std min Iter v.s avg std min Iter

Mandl(4,6,7,8) 63.0 0.00 63 350m = 63.0 0.00 63 350m = 63.0 0.00 63 350m
Mumford0 94.0 0.00 94 424m = 94.0 0.00 94 417m = 94.0 0.00 94 423m
Mumford1 423.9 3.75 419 485m < 414.1 4.90 406 467m > 434.8 6.08 427 488m
Mumford2 1761.1 26.96 1722 209m < 1438.2 39.25 1382 194m > 2007.0 36.51 1952 214m
Mumford3 1966.7 16.13 1944 182m ≤ 1935.4 45.71 1881 182m > 2607.3 16.78 2577 195m

that performed well only on the larger instances, and SA which achieved success on

Mandl problem variants. Combining this with the operator perspective results, it can be

concluded that GD combined with SS is the best approach in both perspectives. Having

discovered the best selection hyper-heuristics, we then extended the run times simply to

gauge whether further improvements are possible, rather than to make additional com-

parisons between the three methods. This way, we can also strengthen our assumption

for selecting SS-GD as our best selection hyper-heuristic.

4.3.3 Longer Runs

In this series of experiments we have given each of the three hyper-heuristics longer

running times to observe whether improved performance can be obtained if there is more

time to modify routes. We increased the running time by a factor of ten (i.e. the largest

instance in the set will run for ten hours and ten times the number of iterations), and

performed two runs on each instance: one from the passenger perspective, and one from

the operator perspective. According to Table 4.5 the results of these runs revealed the

success of GD from the operator perspective in all instances similar to the short run

time experiments, and from the passenger perspective GD performed the best in Mandl

problems, Mumford0 and Mumford1 instances. In Mumford2, and Mumford3 it was also

successful in scoring competitive results.

4.3.4 Obtaining Multiple Solutions

The previous experiments focused on finding the best possible route sets from passen-

ger or operator perspectives separately. For practical use on real world public transit

systems however, a compromise between the needs of the conflicting stakeholders will

be required. To demonstrate how this can be achieved, another round of experiments

81

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 82

Table 4.5: Results of the long runs experiments from passenger and operator perspec-
tives. Best values are highlighted in bold

Instance Cp Co Cp Co Cp Co

SS-SA SS-GD SS-LA

Passenger Perspective

Mandl4 10.482 148 10.482 148 10.576 140
Mandl6 10.187 216 10.179 212 10.321 186
Mandl7 10.119 214 10.103 250 10.150 232
Mandl8 10.086 251 10.080 272 10.095 260

Mumford0 14.157 725 14.093 722 14.218 734
Mumford1 21.961 2073 21.699 1956 22.096 2010
Mumford2 25.554 5276 25.196 5257 25.001 5480
Mumford3 28.261 5807 28.056 6119 27.894 6217

Operator Perspective

Mandl4 13.8754 63 14.6718 63 13.8754 63
Mandl6 13.4804 63 14.2832 63 14.3571 63
Mandl7 13.6763 63 14.4438 63 14.8645 63
Mandl8 14.2158 63 14.7938 63 15.0572 63

Mumford0 24.814 94 26.320 94 28.475 94
Mumford1 42.922 414 39.452 408 35.269 437
Mumford2 42.356 1436 46.865 1330 41.188 1508
Mumford3 44.771 1877 46.054 1746 42.569 1758

has been carried out using SS-GD (the best performing algorithm according to the ex-

periments results). To ensure balance and fairness between the two objectives, their

values have been normalised to 1 using the following parameters setting in Equation 4.1:

α = ∞, β = 1
CPinit

, γ = 1
Coinit

where CPinit, Coinit equals the passenger and operator

costs of the initial solution respectively. Several weight settings were then chosen to give

a spread of compromise solutions.

We have tested this approach on Mandl instance (with six routes) by running several

experiments each for a duration equal to the short run time with different weights com-

bination per run and the results are plotted in Figure 4.3 along with the best results

for the passenger and operator acquired previously. Clearly computing more compro-

mise solutions will increase the cumulative run time of the optimisation. On the other

hand, we do not require the vast populations generally needed to maintain diversity for

evolutionary algorithms.

82

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 83

10 11 12 13 14
50

100

150

200

Passenger Cost

O
pe

ra
to
r
C
os
t

Solution

Figure 4.3: A plot showing a number of solutions between the best passenger and
operator results in Mandl6 instance. Each point represents a different solution with

different weight values.

4.3.5 Analysis of SS-GD

Based on the extensive experiments carried out we have chosen SS-GD as our best

performing algorithm. The following analysis is performed on Mandl6 and Mumford3

instances, representing the smallest and largest networks in our dataset. We took Mandl6

further into analysis as its the most common variant of Mandl’s problem addressed in

the literature.

Figure 4.4 shows the change of the cost value over time for Mandl6 and Mumford3

instances after running each for a single short run. The cost has been recorded every

100 iterations from the passenger perspective and every 104 iterations from the operator

perspective. From the passenger perspective, we can observe the quick variation in

Mandl6 between worsening and improved solutions while the cost is dropping rapidly

at the first stage of the search. In less than half of the search time, we notice that the

variation stabilised indicating that the hyper-heuristic found the best solution quickly due

to the small size of the instance and the simpler calculations which allow more iterations

in short time. In Mumford3, similarly the cost value varies between worsening and

improved solutions while dropping linearly. It can be noticed that there is a continuous

improvement in the cost until the end of the search, indicating the ability to find better

solutions with longer run times.

From the operator perspective the two instances showed similar behaviour, this could

be referred to the simplicity of the operator calculations which can be performed easily

83

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 84

0 100 200 300 400 500

Time

P
as
se
ng

er
C
os
t
(C

p
)

0 100 200 300 400 500

Time

O
pe

ra
to
r
C
os
t
(C

o
)

(a) Mandl6

0 1,000 2,000 3,000 4,000

Time

P
as
se
ng

er
C
os
t
(C

p
)

0 750 1,500 2,250 3,000

Time

O
pe

ra
to
r
C
os
t
(C

o
)

(b) Mumford3

Figure 4.4: Operator and passenger costs change over time in (a) Mandl6 and (b)
Mumford3 instances

even if the instance size is large. In both instances the hyper-heuristic was able to find

the best possible solution in less than half of the search time. The threshold value at this

stage becomes less than the best solution making GD works similarly to only improve

acceptance method.

Figure 4.5 shows the average utilisation rate for each low level heuristic for Mandl6 and

Mumford3 instances after running each for a single run under SS-GD from both passenger

and operator perspectives, considering only the applications of the low level heuristics

that end the active sequence and improve over the best solution (i.e. Seq = end).

From the passenger perspective, the add low level heuristic (LLH0) was the most success-

ful in both instances, achieving the most contribution in the best solutions. Other low

level heuristics that were also successful are insert (LLH3), replace (LLH4) in Mandl6,

and delete (LLH1) in Mumford3. In contrast, the add low level heuristic was the least

successful from the operator perspective, and most of the contribution was achieved by

the delete (LLH1), swap (LLH2), and insert (LLH3) low level heuristics. One possible

explanation for this, is that the operator perspective focuses on building short routes that

reduces the overall travelled distance. The delete low level heuristic works on achieving

84

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 85

Mandl6 Mumford3

52%

9%

15%

15%

9%

68%

24%

8%

(a) Passenger perspective

Mandl6 Mumford3

LLH0
LLH1
LLH2
LLH3

LLH4
LLH5
LLH6

43%

15%

4%

24%

10%

4%

35%

57%

8%

(b) Operator perspective

Figure 4.5: Average utilisation rate for each low level heuristic considering the invo-
cations that generated improvements on the best solution in Mandl6 and Mumford3

instances

this, and the swap and insert low level heuristics improve these routes further by ran-

domly mutating the nodes on the routes. In contrast to the passenger perspective, where

adding more nodes to the routes increases the chances for direct trips.

Figure 4.6 shows the transition, and the sequence construction frequency matrices, again

for Mandl6 and Mumford3. A few interesting observations can be made. From the

passenger perspective, we note from the sequence construction matrix that on the whole,

the low level heuristics have a higher probability to end the sequence than continue

it, which indicates that low level heuristics that contribute effectively to producing the

best solutions, perform this success individually in sequences of length one. Specifically

the add low level heuristic (LLH0) in Mumford3 which is the most successful in the

set by referring to Figure 4.5, works almost independently. Yet from the transition

matrix, some good sequences with a longer length than one can be identified, such as the

combination of insert to different route (LLH5), and insert on the same route (LLH3) low

level heuristics with the add low level heuristic (LLH0) in Mandl6. From the operator

perspective, similarly the most successful low level heuristics (i.e. LLH1, LLH2, LLH3)

85

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 86

operate best individually in both instances. In Mandl6, and Mumford3 the add low

level heuristic tends to work better in sequences longer than one from the sequence

construction matrix, unlike its behaviour in the passenger perspective. One of these

sequences is the combination of add and delete low level heuristics in Mandl6. These

observations show the intelligence of the SS method in identifying good sequences and

understanding the relationships between low level heuristics in two different instances and

two different evaluation approaches. The SS method has the advantage of intelligently

revealing how the low level heuristics operate. Some low level heuristics may have a

high utilisation rate, yet they achieve this with the support of other low level heuristics

that might seem to have low contribution to the best solutions, but are necessary part

in making the success of the high utilisation low level heuristics.

4.3.6 Comparison with Other Approaches

We compared our results from the passenger and operator perspectives with the state-of-

the-art methods from the literature. We used the long run results of SS-GD representing

our best results. Referring to Tables 4.6 and 4.7 our method found the best average

travel times in all Mandl problem variants as well as the best d0, d1, d2 in all cases

except in Mandl4 instance, where Fan [28] found a better result for d0. In Mumford’s

instances, our approach outperformed the methods in [6, 31, 83] in terms of the average

travel time, and d0, d1, d2 values scoring zero percentage for unsatisfied demand in all

cases. From the operator perspective, we succeeded in finding the lower bound in Mandl’s

four problems and in Mumford0 instance. Our approach also found the best results in

Mumford1, Mumford2 and Mumford3 instances. This comparison proves the success of

hyper-heuristics on this problem, outperforming the previously reported results using GA

approaches. Cooper et al. [8] reported that the implementation of John et al. [83] required

44 hours to run Mumford3 instance, and to improve this, a parallel implementation of the

algorithm is required. Kılıç and Gök [31] required more than eight hours to initialise route

sets and run a simple hill climbing algorithm in Mumford3 instance. Hyper-heuristic was

able to find new best solutions after running Mumford3 for a single hour.

4.4 Summary

In this chapter we described our application of selection hyper-heuristics to the complex

problem of the urban transit network design (UTRP). Thirty selection hyper-heuristics

86

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 87

0 0.2 0.4 0.6 0.8 1

LLH0

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

Transition Probability

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

0 0.2 0.4 0.6 0.8 1

LLH0

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

Acceptance Strategy Probability

Seqcon

Seqend

(a) Mandl6 Passenger

0 0.2 0.4 0.6 0.8 1

LLH0

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

Transition Probability

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

0 0.2 0.4 0.6 0.8 1

LLH0

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

Acceptance Strategy Probability

Seqcon

Seqend

(b) Mumford3 Passenger

0 0.2 0.4 0.6 0.8 1

LLH0

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

Transition Probability

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

0 0.2 0.4 0.6 0.8 1

LLH0

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

Acceptance Strategy Probability

Seqcon

Seqend

(c) Mandl6 Operator

0 0.2 0.4 0.6 0.8 1

LLH0

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

Transition Probability

LLH0
LLH1
LLH2
LLH3
LLH4
LLH5
LLH6

0 0.2 0.4 0.6 0.8 1

LLH0

LLH1

LLH2

LLH3

LLH4

LLH5

LLH6

Acceptance Strategy Probability

Seqcon

Seqend

(d) Mumford3 Operator

Figure 4.6: Transition and sequence construction frequency matrices for Mandl6 and
Mumford3

87

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 88

Table 4.6: Passenger perspective results compared to other approaches

Instance Parameter Mandl [73]
Chakroborty
and Wivedi

[3]

Fan and
Mumford [5] Mumford [6] Chew et al.

[82]
John et al.

[83]
Kılıç and
Gök [31] SS-GD

Mandl4

Passenger 12.90 11.90 11.37 10.57 10.50 - 10.56 10.48
Operator - - 147 149 150 - 137 148

d0 69.49 86.86 93.26 90.43 91.84 - 91.33 91.84
d1 29.93 12.00 6.74 9.57 8.61 - 8.16 8.15
d2 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00
dun 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00

Mandl6

Passenger - 10.30 10.48 10.27 10.21 10.25 10.29 10.18
Operator - - 215 221 224 212 216 212

d0 - 86.04 91.52 95.38 96.79 - 95.5 97.17
d1 - 13.96 8.48 4.56 3.21 - 4.5 2.82
d2 - 0.00 0.00 0.06 0.00 - 0.00 0.00
dun - 0.00 0.00 0.00 0.00 - 0.00 0.00

Mandl7

Passenger - 10.15 10.42 10.22 10.16 - 10.23 10.10
Operator - - 231 264 239 - 274 250

d0 - 89.15 93.32 96.47 98.01 - 97.04 98.84
d1 - 10.85 6.36 3.34 1.99 - 2.83 1.15
d2 - 0.00 0.32 0.19 0.00 - 0.13 0.00
dun - 0.00 0.00 0.00 0.00 - 0.00 0.00

Mandl8

Passenger - 10.46 10.36 10.17 10.11 - 10.20 10.08
Operator - - 283 291 256 - 298 272

d0 - 90.38 94.54 97.56 99.04 - 97.37 99.16
d1 - 9.62 5.46 2.31 0.96 - 2.63 0.83
d2 - 0.00 0.00 0.13 0.00 - 0.00 0.00
dun - 0.00 0.00 0.00 0.00 - 0.00 0.00

Mumford0

Passenger - - - 16.05 - 15.40 14.99 14.09
Operator - - - 759 - 745 707 722

d0 - - - 63.20 - - 69.73 88.74
d1 - - - 35.82 - - 30.03 11.25
d2 - - - 0.98 - - 0.24 0.00
dun - - - 0.00 - - 0.00 0.00

Mumford1

Passenger - - - 24.79 - 23.91 23.25 21.69
Operator - - - 2038 - 1861 1956 1956

d0 - - - 36.60 - - 45.10 65.75
d1 - - - 52.42 - - 49.08 34.18
d2 - - - 10.71 - - 5.76 0.07
dun - - - 0.26 - - 0.06 0.00

Mumford2

Passenger - - - 28.65 - 27.02 26.82 25.19
Operator - - - 5632 - 5461 5027 5257

d0 - - - 30.92 - - 33.88 56.68
d1 - - - 51.29 - - 57.18 43.26
d2 - - - 16.36 - - 8.77 0.05
dun - - - 1.44 - - 0.17 0.00

Mumford3

Passenger - - - 31.44 - 29.50 30.41 28.05
Operator - - - 6665 - 6320 5834 6119

d0 - - - 27.46 - - 27.56 50.41
d1 - - - 50.97 - - 53.25 48.81
d2 - - - 18.79 - - 17.51 0.77
dun - - - 2.81 - - 1.68 0.00

combining several known selection and move acceptance methods were tested and ap-

plied on Mandl benchmark instance and Mumford data set and their performances were

compared statistically to determine the best algorithm. After a series of short and long

time experiments from the perspective of operator and passenger, the analysis showed

the success of the sequence-based selection method combined with Great Deluge (GD)

acceptance method, outperforming other selection hyper-heuristics in both passenger

and operator objectives. We showed That the hyper-heuristic approach which has been

applied for this particular problem for the first time was very successful, beating the

known state-of-the art results in very reasonable run times.

88

Chapter 4. Hyper-heuristics for Urban Transit Route Design Problem 89

Table 4.7: Operator perspective results compared to other approaches

Instance Parameter Mumford [6] Chew et al.
[82]

John et al.
[83] SS-GD

Mandl6

Operator 63 63 63 63
Passenger 15.13 13.88 13.48 14.28

d0 70.91 70.91 - 62.23
d1 25.5 25.50 - 27.16
d2 2.95 2.95 - 9.57
dun 0.64 0.64 - 1.028

Mumford0

Operator 111 - 95 94
Passenger 32.40 - 32.78 26.32

d0 18.42 - - 14.61
d1 23.40 - - 31.59
d2 20.78 - - 36.41
dun 37.40 - - 17.37

Mumford1

Operator 568 - 462 408
Passenger 34.69 - 39.98 39.45

d0 16.53 - - 18.02
d1 29.06 - - 29.88
d2 29.93 - - 31.90
dun 24.66 - - 20.19

Mumford2

Operator 2244 - 1875 1330
Passenger 36.54 - 32.33 46.86

d0 13.76 - - 13.63
d1 27.69 - - 23.58
d2 29.53 - - 23.94
dun 29.02 - - 38.82

Mumford3

Operator 2830 - 2301 1746
Passenger 36.92 - 36.12 46.05

d0 16.71 - - 16.28
d1 33.69 - - 24.87
d2 33.69 - - 26.34
dun 20.42 - - 32.44

89

Chapter 5

Hyper-heuristics for Solving

Real-world Applications of the

Urban Transit Routing Problem

In this chapter we describe the application of hyper-heuristics to two problems. The

first problem addresses the application of the SSHH algorithm combined with Great

Delluge acceptance (SS-GD) to a larger scale and more complex version of the route

design problem. In this version we tackle the presence of specific terminal nodes in the

transport network from which buses are restricted to start and end their journeys. We

design an initialisation procedure for the route network based on the passengers’ demand

information, and implement a set of low level heuristics to handle the terminal nodes at

routes ends. Furthermore, we apply our selection hyper-heuristic algorithm to a new set

of instances recently introduced in the work of Heyken Soares et al. [84] with real-world

characteristics and size. The instances were generated using a novel generation procedure

which aims to scale down a real world transportation network, yet preserves the vital

characteristics of the network layout. We test our selection hyper-heuristic algorithm

on this set of instances, and show that our results top the best results found by the

application of NSGAII and extracted real-world route sets.

The second part of this chapter discusses the application of the SSHH algorithm on a

real planning application that involves the optimisation of bus transport routes by the

commercial transport planning software “Visum”. The hyper-heuristic is integrated with

Visum software through interface procedures, and applied to two optimisation problems,

one of them being a city-size network. We demonstrate that hyper-heuristics are able to

90

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 91

effectively reduce the passenger and operator objectives on both benchmark and real-size

networks.

5.1 Optimising Bus Routes with Fixed Terminal Nodes: Com-

paring Hyper-heuristics with NSGAII on Realistic Trans-

portation Networks

5.1.1 The UTRP with Terminal Nodes

We have previously discussed a simplified model for the UTRP in chapter 2, which

was applied to test the selection hyper-heuristics for solving the UTRP in chapter 4.

Recalling, the model aims to a find a feasible route set from a predefined transport

network with known pick-up/drop-off locations in order to satisfy the entire network

demand and reduce passenger and operator expenditures. A feasible route set is defined

by feasibility criteria which must be satisfied in order to deem the solution feasible. The

feasibility conditions were defined in section 2.4.3 and were used to design the feasibility

test as described in section 4.2.1 of the previous chapter.

In this work we introduce an additional constraint into this network model, that restricts

the start and end points of bus journeys to specific points named terminals. Identifying

end points for bus journeys is essential when solving the routing design problem in an

urban context, to provide u-turn possibilities for buses. However, adding this condi-

tion creates extra complexity by making it more difficult to construct feasible solutions.

Figure 5.1 illustrates a “legal” connected network according to the feasible network defi-

nitions in chapters 2, and 4. The same network becomes infeasible when three terminal

points are introduced (green) making one of the routes invalid with an incorrect end

terminal (node 4). This effect becomes more profound with the increase in network size,

or the decrease in the number of valid terminals.

91

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 92

6

4
5

1

2
3

(a)

6

4
5

1

2
3

(b)

Route 1
Route 2
Route 3
Infeasible Route

Figure 5.1: Feasible route network (a) becomes infeasible (b) by introducing three
terminal points (green)

Very few models in the literature incorporate terminals, especially for large instances.

However, Pattnaik et al. [79] solved the network design problem for a small network

representing parts of Madras city in India, using genetic algorithms (GA) in two phases:

first a heuristic procedure is applied to generate a set of candidate routes and then

the GA is applied in the second phase. Their candidate route set generation procedure

is based on the demand matrix, route set constraints and designer’s knowledge. The

procedure involves finding the shortest path between every origin and destination pair

which are selected from a set of terminal points. The designer identifies the terminal

points by taking the network layout into consideration. Szeto and Wu [80] solved the

bus network design of the suburban area of Tin shui Wai in Hong Kong using a network

model of 28 nodes, where trips originate from specific terminal points and end at one

of five destination nodes. Seven terminal points are specified in their network model

and a GA incorporating a frequency setting heuristic is used to solve the route design

problem and determine bus frequencies. Amiripour et al. [108] tackled the bus network

design problem by considering seasonal variation in the demand to provide a convenient

bus service throughout the year. A GA has been applied to solve their model by testing

it on two small benchmark instances and a real case study in the city of Mashhad in

Iran. In the larger network of Mashahd, several terminal points have been identified

by testing their turning possibilities and performing K-shortest path between pairs of

terminal points to create feasible routes.

We will describe here our hyper-heuristic solution to design routes for a new published

92

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 93

data set of instances generated following the procedure described in [84], which scales

a real-world street network into a size manageable by optimisation algorithms while

preserving its vital characteristics. These instances include additional information which

indicates whether a node is a terminal or not. We will further describe our applied

procedures and the instances set in the following sections.

5.1.2 Problem Formulation

In this problem we adopted the UTRP model described in chapter 2, and also applied

in our methodology in chapter 4, with some minor variations due to the presence of new

information describing terminal nodes.

The road network comprises a set of stops connected by road segments. This can

be mapped into an undirected graph G = {V,E}, where the graph vertices V =

{v1, v2, . . . , vn} are access points (i.e. bus stops), and the graph edgesE = {e1, e2, . . . , em}
are direct transport links. Some of the vertices are identified as terminal points U =

{u1, u2, . . . , uk}, such that U ⊆ V . These terminal points allow u-turns to make the

reverse trip in the opposite direction. A public transport route ra, according to these

definitions, is a path in the graph that connects a set of vertices, and starts and finishes

at a terminal point ra = uj , vi2 , . . . , viq−1 , uk.

Similarly, the route network is the model solution, and its evaluation requires demand and

travel time information which are represented by symmetrical two dimensional matrices.

The terminal points are identified using one dimensional vector Un×1, where n is the

number of vertices in the road network and each entry ui has a value of one if vi is a valid

terminal, or zero otherwise. The feasibility of route set R is guided by the constraints

defined in section 2.4.3, in addition to the following constraint: ∀ra ∈ R : vi1 , viq ∈ U .

5.1.3 Optimisation Procedure

In this section we describe the methodology applied to optimise the route set in our

data set with terminal node information, starting with the creation of a high quality

(and feasible) initial route set, followed by the optimisation procedure using selection

hyper-heuristics.

93

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 94

5.1.3.1 Creating an Initial Route Set Using a Heuristic Construction Pro-

cedure

Heuristic construction procedures are widely used in previous research of the UTRP to

generate high quality initial route sets. Some approaches use shortest path algorithms to

generate candidate solutions, and improvement heuristics are applied in further step to

improve their quality. Examples of this approach are in [74, 75, 83]. Other approaches

use shortest path algorithms to create a pool of routes from which a set of routes is

constructed based on a defined set of rules. Examples of this method are given in

[79, 82]. The importance of an efficient route generation algorithm is significant and can

lead to high quality end results. Kılıç and Gök [31] argued that the initial generation

has a higher impact on the quality of the final route set than the local search procedures,

and they pointed out that using the edge usage statistics can provide excellent guidance

during the route set construction.

In our proposed initial route set generation procedure, we use the property of edge usage

statistics to find a palette of routes from which a single initial solution is constructed.

Our method utilises the edge usage which is defined by the total demand that use this

edge during their travel. We attempt to include the highest usage edges in the final route

set.

The initial generation procedure produces an initial route set based on the following

parameters: the demand matrix, the terminal points vector, the road network graph, the

predetermined number of routes in the route set, and the minimum and maximum length

of each route (in terms of the number of nodes). Using this information, an initial route

set is generated guided by the demand matrix to ensure that as much of the demand

as possible is routed along its shortest travel time path. The initialisation algorithm

involves the following steps:

• Produce an edge usage graph guided by demand and shortest travel time path

information.

• Create a pool of candidate routes.

• Construct a route set from the candidate route pool.

Assuming the passenger prefers to travel along his/her shortest travel time path, the

shortest path between every pair of nodes in the road network is calculated. It is then

94

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 95

(a) Usage map (b) Transformed usage map

Figure 5.2: The usage map and the transformed usage map: darker colour = high
demand edges, lighter colour = lower demand edges. Green vertices = terminal vertices,

red vertices = non-terminal vertices.

an easy matter to create a “shortest-path-usage map" by adding up the total demand

travelling along each edge in the network, assuming all travellers are able to traverse

their shortest paths1. An example of such a map is displayed in figure(5.2(a)), using the

Clifton instance (will be described in section). In the diagram the edge labels represent

the total demand along each link. A similar approach for calculating the edges usages

has been used in [31].

Next we perform a simple transformation on this map to convert the usages into distances

so that the largest usage becomes the shortest distance and vice-versa. This is done

by subtracting the usage on each edge from some arbitrary large number. We have

chosen to use the total demand for the whole network for this purpose. Figure (5.2(b))

demonstrates the transformed usage map using the upper bound of the demand for

Clifton (i.e equals 964). In this case the highest usage (i.e from node 3 to node 8)

becomes the shortest distance (964 - 932 = 32). Our approach here differs from [31]

where they calculate probabilities to select edges based on their usage value.

The transformed usage map is then used to generate routes for the routes pool, which

will later be used as a palette from which to select routes for the initial route set. The

algorithm will iterate through pairs of terminal nodes and create routes by performing

shortest path computations based only on the transformed usage map. In this way the

algorithm will generate routes that include the busiest edges, and each of these will

enter the pool as a candidate route, provided its route length lies between the minimum

and maximum allowed. However, to guarantee that the pool of routes covers all of the
1The demand of each edge is aggregated in the two directions of travelling.

95

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 96

nodes in the network, it is necessary to include some less busy links. To achieve this,

the shortest path algorithm iterates several times between all pairs of terminal nodes.

After each iteration, the weights of the transformed usage map are updated by slightly

increasing the ones that correspond to edges selected by the route generation procedure

and included in one of the routes in the routes pool. This encourages the shortest path

algorithm to look for alternative paths that may include undiscovered nodes. The weight

values are increased by multiplying them with a very small value which have been tuned

to 1.1 after a series of trials. The iterations terminate after the inclusion of all the

network nodes in the candidate pool.

The final step is to construct a legal route set from the route pool, by selecting them

one at a time, without replacement. The first route in the route set is randomly chosen

from the pool. Then the number of unseen nodes with respect to the route set under

construction (currently including one route) is calculated for every candidate route in

the pool. The candidate route that has the highest number of nodes that are not yet

included in the route set and has at least one node in common with the first route is

selected as the second route. The third route is chosen similarly while guaranteeing it

has at least one node in common with one of the first two routes to ensure connectivity of

the route set. If all the nodes have been included and the route set has not yet reached

the predetermined limit for the number of routes, the algorithm completes the route

set by selecting the first route in the pool. This process continues until |N | routes are

constructed and all the nodes are included in the route set.

5.1.3.2 Objectives and Evaluation

In this problem we tackled the same objectives described in chapter 2 and was applied

in our work on chapter 4. These objectives are the passenger (Cp) and the operator (Co)

objectives described respectively by the two formulae 2.3, 2.4. The assumption in the

passenger cost is that the passenger always chooses the shortest path for their journey,

and it incorporates the in-vehicle travel time, the waiting time, and the transfer time.

The waiting time and the penalty for making a transfer are combined as a single time

set to 5 minutes.

f(S) = α
Cp(S)

Cp(S0)
+ γ

Co(S)

Co(S0)
(5.1)

96

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 97

Equation 5.4 is used to evaluate a given solution, where Cp(S0) and Co(S0) are the initial

values for the passenger and operator objectives respectively, and α and γ are parameters

to determine how to direct the optimisation by either focusing on optimising one of the

objectives, or balancing them. For example setting γ to a very small value while α is

equal to 1 or larger will generate route sets biased towards the passenger perspective,

and vice versa. To find route sets balancing both objectives the difference between the

two parameters α γ, should be nearly zero.

To analyse candidate route sets more extensively, the following parameters are used to

calculate the percentages of demand satisfied by direct (i.e. zero transfers) and indirect

trips (i.e. one or two transfers): d0, d1, d2, dun. The demand that requires three transfers

or more is considered unsatisfied (dun). To calculate these parameters, it is assumed that

the passenger always prefer the route with the fewest transfers, if there exist more than

one shortest path between two points.

5.1.3.3 Optimising Route Sets Using Selection Hyper-heuristics

In this work We have applied the winning algorithm according to the results and anal-

ysis presented in chapter 4 which is the selection hyper-heuristic combining the SSHH

selection method and Great Deluge acceptance method. We will refer to this algorithm

by SS-GD.

At the start of the optimisation, the initial solution (Sinit) built using the initial route

generation method described in section 5.1.3.1, is introduced to the hyper-heuristics

as the current solution (Scurr) and the sequence of heuristics constructed by SSHH is

applied to Scurr to generate a new solution (Snew). The feasibility of Snew is tested, a

single violation in any of the problem constraints results in rejecting this solution (e.g.

if at least one of the terminals of any route in the route set is not valid). In this case a

new sequence of heuristics is constructed and applied to generate a new solution. If Snew
is feasible, it is evaluated using equation 5.4 and the parameters are set to determine

which objective the optimisation is focusing on. For example to optimise the route set

by balancing the two objectives, the parameters α and γ are both set to 1, or one of

them can be slightly increased to favour one of the objectives. To generate route sets

optimised from one of the perspectives of passenger or operator, one of the parameters

is set to 1 and the other to a very small value (e.g 10−4).

After evaluating Snew, and if it is better than the best known solution, the best solution

is updated and the sequence of heuristics is rewarded by increasing the probability of

97

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 98

selecting this sequence again. The Great Deluge (GD) move acceptance decides on the

acceptance of Snew by comparing it to Scurr. If Snew is accepted, the value of Scurr is

updated to the value of Snew. The optimisation terminates when the time set by the

user elapses.

5.1.3.4 Low Level Heuristics

The low level heuristics set has been carefully designed to to ensure setting the correct

route terminals. They also ensure that nodes are placed in the right positions where

they are directly connected with the neighbouring nodes according to the adjacency

relationships defined by the travel time matrix 2. Our complete list of low level heuristics

is presented below:

LLH0: Add. Selects a random route and a random position in the route. A node

is selected and added in this position.

LLH1: Delete. Selects a random route and a random position in the route. The

node in this position is deleted.

LLH2: Replace. Selects a random route and a random position. A node is

selected to replace the node in this position.

LLH3: Swap. Selects a random route and two random positions and swaps the

nodes in these positions.

LLH4: Shift. Selects a random route and two random positions. The node in the

first position is inserted into the second position.

LLH5: Add terminal. Selects a random route and a random terminal node and

inserts it into one of the route terminals by randomly selecting one of them.

LLH6: Reverse. Selects a random route and two random positions and reverses

the order of nodes between these positions.

LLH7: Crossover. Selects two random routes and a random position on each

route and splits the route in this position. Two different routes are created by

swapping the parts of the two routes.
2The adjacency relations (i.e. the presence of direct connection) between nodes in the transport

network can be derived easily from the travel time matrix as follows: the entries in the travel time
matrix has either two values, a positive value indicating the time required to travel between two nodes,
or ∞ indicating the absence of direct connection between two nodes

98

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 99

LLH8: Delete(Add) nodes. Selects a random route and adds a number of nodes

at the route terminal or deletes a number of nodes from the route until the route

reaches the maximum or minimum length.

LLH9: Replace route. Selects a random route and deletes it. A build procedure

is then applied to construct a new route by finding the shortest path between

two randomly selected terminal nodes. The deleted route is replaced by the new

constructed route.

5.1.4 Nottingham Data set

In this study we used a set of instances based on different parts of the urban area

of Nottingham city in the UK (figure 5.3). The instances vary in size: the largest

covering the entire study area and the smallest representing only the small Clifton area

in Nottingham. All instances are generated from official street and census data of the

year 2011. The procedure effectively reduces the street network to a graph size tractable

by optimisation algorithms while maintaining the characteristics of the street network

layout to ensure they are reflected sufficiently in the instances.

This novel instances generation procedure was presented in the work of [84], where they

applied it to generate the largest instance in the set, the Nottingham instance. The

other smaller instances in the data set were generated using the same procedure and

were presented in our work [122] to test the selection hyper-heuristic algorithm against

NSGAII performance on a varying size of instances. Since this procedure is not an

essential part of our work, we will summarise its steps very briefly, and for the complete

description the reader can refer to [84].

The first step in the generation procedure is to select the streets available for bus travel

in the study area and construct a street map. This is done based on official street

classifications and the positions of existing bus stops. After that, the positions of the

nodes are determined by placing initial nodes at all junctions and intersections of the

street map. In cases where initial nodes are closer to each other than a defined distance,

they are replaced by a new node half way between the positions of the original nodes.

The resulting set of nodes do not represent concrete stop locations, but more precisely

routing points which define the course of the bus route. It is assumed that vehicles travel

on a path defined by these nodes, and stop at defined locations along the way.

99

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 100

Figure 5.3: Map of the study area together with nodes and network edges generated
with the method described in this section. The colours and numbers indicate the areas
of the instances: 1: Clifton (red), 2: Hucknall (blue), 3: South of Trent (brown) and
4: Nottingham (green). The instances Hucknall and South of Trent are subsets of the

Nottingham instance and Clifton is a subset of South of Trent.

In order to ensure that the results of the optimisation are directly comparable with the

performance achieved by the real world bus routes, the instance should only include the

nodes that are present in the paths of the real routes. The real bus routes are extracted

from UK 2011 National Transport Data Repository (NPTDR) where bus journeys are

stored in the form of journey patterns. Therefore the initial nodes determined by the

previous step are filtered out to exclude the nodes that are not present in the real bus

routes.

A number of nodes need to be designated as terminals representing potential start and

end points of routes where buses can turn around. These nodes are identified by project-

ing the real world journey patterns on the generated street map to determine at which

100

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 101
Table 5.1: Features of the data set

Instance No. of ver-
tices/edges

No. of
routes

No.of vertices per
route (min/max)

No.of terminal
nodes

Clifton 10, 15 4 2, 8 7
Hucknall 17, 28 5 2, 9 10
South of Trent 54, 86 18 2, 13 25
Nottingham 376, 656 69 3, 45 159

locations the actual bus journeys begin and end, and specify the nodes at these locations

as terminal nodes.

The travel times associated with the network edges are defined by calculating the short-

est paths between pairs of nodes and the demand between pairs of nodes was extracted

from travel to work data from 2011 UK census. It gives the number of commuters be-

tween different census zones, and can be converted into a matrix of passengers travelling

between different nodes by assigning zones demand to the network nodes.

Table 5.1 summarises the features of the data set. Note that the instances generation

procedure ensures the production symmetrical demand and travel time matrices matching

the problem description (section 5.1.2). The Journey patterns used in generating the real

route sets are also modified to satisfy the problem constraints, in order to ensure fair

comparison to the optimisation results.

The problem objectives are highly sensitive to the route set parameters, therefore they

should be carefully set to ensure route set feasibility while considering the stakeholders

needs. For example having a large number of particularly long routes is not beneficial

to operators because longer travel distances require more vehicles and staff. On the

other hand short routes increase the numbers of vehicle transfers for passengers. Suffi-

cient routes should be present to cover the entire network nodes while maintaining the

connectivity of the routes.

For the larger instances Nottingham and South of Trent, the route set parameters are

determined from the real route sets, to ensure the optimisation results are fairly compared

against them. The number of routes is the same as the extracted real world route set,

while the maximum number of nodes is 10% longer than the longest real world route

to give the optimisation algorithm freedom to slightly extend the existing routes. The

minimum length is one node less than the shortest real world route. The parameters

of the two smaller instances, Hucknall and Clifton, have been tuned to ensure route

set coverage and connectivity while giving good initial results for both objectives. The

tuning has been performed by testing different combinations of the following parameters:

101

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 102

the maximum route length, the minimum route length, and the number of routes in the

route set. The combination that found a feasible solution with the best passenger and

operator objectives was selected as parameters for these instances. For Example, we

found that two routes were not sufficient in Clifton instance to find a feasible route set

that covers the entire network nodes. Also choosing four routes resulted in a better

passenger cost than three routes without significant impact on the operator cost.

5.1.5 NSGAII Optimisation

NSGAII is an elitist non-dominated sorting MOEA algorithm used very widely in solv-

ing multi-objective optimisation problems. It has been shown that this algorithm is

successful in converging to near optimal Pareto-front compared with other Pareto-based

methods [193]. The idea is to generate a parent population of size Npop and use it to

generate an offspring population of size Npop through crossover and mutation operations.

The parent and the offspring populations are combined to produce a population of size

2 ·Npop from which the population for the next generation is selected by applying non-

dominated sorting algorithm and crowding distance and choosing the first Npop solutions

of the sorted population. The NSGAII was applied in [83] to solve the UTRP problem in

Mandl’s benchamrk and Mumford data set, where they developed a specific set of muta-

tion operators which proved its success by finding new best results in some of the tested

instances. Heyken Soares et al. [84] based their NSGAII algorithm implementation on

[83] and made some changes to adapt to the use of terminal nodes .

We will compare the set of solutions generated by our hyper-heuristic algorithm with the

NSGAII Pareto-front constructed by the algorithm in [84]. To summarise this algorithm,

a crossover operator generates an offspring route set from pairs of parent route sets, where

the routes from the two parents are selected alternately such that the proportion of unseen

vertices in the offspring is maximised. The generated offspring route set has then a certain

chance to undergo mutation. For the mutation, one of the following mutation operators

is selected randomly: delete nodes, add nodes, exchange two routes, replace route, merge

two routes. These mutation operations are similar to the ones implemented in [83], but

have been adapted to the presence of terminal vertices. The NSGAII algorithm minimises

the same objectives as the hyper-heuristics (i.e. passenger and operator costs), and is also

subject to the same set of constraints described in section 5.1.2. In the following sections,

we will be demonstrating the results of the hyper-heuristic, and further compare it to

102

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 103

the NSGAII performance and to the real-world route sets of the instances Nottingham

and south of Trent.

5.1.6 Experimental Results

The experiments were conducted by applying SS-GD to each instance of the data set

following three scenarios: 1) from the perspective of passenger 2) from the perspective

of operator 3) balancing the two objectives. This is achieved by setting the parameters

in equation 5.4 as follows: to generate route sets biased toward the passenger (operator)

objective α (γ) is set to 10−4 while the other parameter is set to 1. Whilst for balancing

the two objectives α is set to 2 and γ to 1. The three scenarios are applied to each

instance, and for each scenario the hyper-heuristic is run for 10 trials, each terminating

after a specific time period. The running length of each trial increases with the instance

size by adding thirty seconds to each node, thus the smallest instance run for five minutes

and the largest for three hours.

5.1.6.1 SS-GD Results

Table 5.2 summarises the results of SS-GD in all the instances from the perspective

of passenger, operator, and balancing the two objectives measured in minutes for the

average passenger travel time and the routes length. The results are reported using the

average of the ten trials, the minimum and maximum results in the ten trials, and the

standard deviation. The average number of iterations of SS-GD is also reported in the

table.

From these results, we can observe the variation between the two objectives in the pas-

senger and operator perspective trials. While one of the objectives significantly improves,

the other drastically worsen, and this observation applies in all instances. The balanced

trials make a notable improvement in both objectives simultaneously in all instances,

providing route sets that are more suitable for a real-world problem. The passenger and

the operator perspective trials attempt to find the best possible solution for each of the

objectives, making these solutions far from representing a real-world solution, and more

suitable for finding lower bounds for the passenger and operator costs. We also notice

that SS-GD performed equally well in all instances despite their varying sizes, and suc-

ceeded in decreasing the passenger and the operator objectives significantly from their

initial values.

103

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 104

T
a
bl

e
5.

2:
R
es
ul
ts

of
SS

-G
D

in
al
li
ns
ta
nc
es

fr
om

th
e
pa

ss
en
ge
r,
op

er
at
or
,a

nd
ba

la
nc

ed
pe

rs
pe

ct
iv
e.

T
he

re
su
lt
s
ar
e
re
po

rt
ed

us
in
g
th
e

av
er
ag
e
of

th
e
te
n
tr
ia
ls
,t
he

m
ax

im
um

an
d
m
in
im

um
ob

je
ct
iv
e
va
lu
es
,a

nd
th
e
nu

m
be

r
of

it
er
at
io
ns
.

P
as
se
ng

er
P
er
sp
ec
ti
ve

O
pe

ra
to
r
P
er
sp
ec
ti
ve

B
al
an

ce
d
P
er
sp
ec
ti
ve

In
st
an

ce
m
in

m
ax

av
g

st
d

It
er

m
in

m
ax

av
g

st
d

It
er

m
in

m
ax

av
g

st
d

It
er

C
lif
to
n

C
p

3.
11

3.
22

3.
14

0.
03
4

60
83
36
7

7.
69

7.
69

7.
69

0.
00
0

14
95
51
30

3.
89

4.
31

4.
26

0.
13
1

85
64
06
9

C
o

40
.3
1

50
.6
8

45
.3
1

3.
71
1

60
83
36
7

14
.9
1

14
.9
1

14
.9
1

0.
00
0

14
95
51
23
0

20
.6
4

24
.7
7

21
.1
0

1.
29
9

85
64
06
9

H
uc
na

ll
C
p

4.
43

5.
19

4.
80

0.
23
3

90
64
53
8

12
.3
7

13
.9
1

13
.3
5

0.
58
7

18
38
27
57

5.
37

6.
49

5.
71

0.
43
1

17
36
05
16

C
o

59
.0
3

71
.7
4

65
.9
1

3.
96
3

90
64
53
8

26
.2
5

26
.2
5

26
.2
5

0.
00
0

18
38
27
57

29
.9
9

38
.6
5

35
.1
2

2.
85
7

17
36
05
16

So
ut
h
O
f
T
re
nt
C
p

6.
94

7.
51

7.
07

0.
16
4

64
11
58

20
.6
1

25
.6
8

23
.0
0

1.
54
1

55
24
75
9

8.
06

8.
71

8.
43

0.
21
2

27
15
84
5

C
o

27
7.
40

30
9.
33

28
6.
49

8.
81
3

64
11
58

80
.0
5

85
.8
5

82
.1
8

1.
91
2

55
24
75
9

11
0.
99

14
1.
78

12
1.
79

9.
59
0

27
15
84
5

N
ot
ti
ng

ha
m

C
p

11
.0
0

11
.2
3

11
.1
2

0.
07
2

44
19
1

28
.1
7

43
.7
4

35
.3
7

5.
41
7

15
05
48
3

12
.4
7

12
.7
2

12
.6
0

0.
08
6

16
04
02

C
o

19
60
.2
9

21
55
.3
2

20
60
.1
8

56
.9
76

44
19
1

56
4.
23

67
3.
29

61
9.
88

29
.4
83

15
05
48
3

97
4.
95

11
03
.2
7

10
30
.0
9

40
.3
22

16
04
02

104

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 105

We can see that the standard deviation was insignificant in most of the cases, reflecting

the consistency of the results found by the ten trials. In the two smaller instances

Clifton, and Hucknall, the same operator cost was recorded by the ten trials in the

operator perspective. This implies that it can possibly be an optimal solution for the

operator cost of these instances. However, since we do not have an exact lower bounds

or optimal solutions for any of the instances in this data set, we cannot guarantee this

proposition.

5.1.6.2 Comparison of SS-GD and NSGAII

Table 5.3 summarises and compares the results of SS-GD against NSGAII from the

perspective of passenger and operator measured in minutes for the average passenger

travel time and the total routes length. The minimum result in the 10 trials is compared

to the best result found by NSGAII from the perspective of passenger and operator.

The average of the 10 trials is also recorded. Figure 5.4 plots the results of SS-GD with

the evaluation results of the final population which forms a clear Pareto front. SS-GD

results are taken from four key positions: the best result from the passenger perspective,

the best result from the operator perspective, the most passenger friendly and the most

operator friendly route sets in the 10 trials that balance the two objectives.

From results in table 5.3 and the plots, it can be clearly seen that SS-GD outperforms

NSGAII from the passenger and operator perspectives in all instances. In fact, the

best passenger results for SS-GD in all instances not only succeeded in improving the

passenger average travel time, but also the operator cost has improved. The best operator

results for SS-GD also improve significantly over NSGAII in all instances, especially the

largest instance Nottingham, although NSGAII could find better average travel times for

passengers in this case. The compromise solutions (i.e. balanced perspective) of SS-GD

are also very successful. Comparing these solutions to the solutions of NSGAII with the

same passenger objective, SS-GD is successful in finding much improved costs for the

operator, and this observation applies for all instances. The greatest success is witnessed

in the largest instance of Nottingham, where the most passenger friendly route set in the

compromise solutions is better than the best passenger result found by NSGAII, while

the operator cost is improved by more than 50%. Also comparing the run time of these

algorithms for the largest instance Nottingham, NSGAII requires more than a week to

generate a final population of Pareto solutions. SS-GD is much faster in producing a

single solution of high quality compared to NSGAII in a single run, which takes only

105

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 106

Table 5.3: Comparison between the best results from the perspectives of passenger
and operator between SS-GD and NSGAII for each instance.

Instance Objective SS-GD NSGAII

Passenger Perspective

min avg

Clifton Cp 3.11 3.14 3.30
Co 50.67 45.31 54.65

Hucknall Cp 4.42 4.80 4.56
Co 65.40 65.91 58.64

South of Trent Cp 7.07 7.20 7.31
Co 278.17 275.35 303.75

Nottingham Cp 11.00 11.11 12.44
Co 2105.06 2060.18 2325.87

Operator Perspective

Clifton Cp 7.69 7.69 8.61
Co 14.91 14.91 17.01

Hucknall Cp 12.36 13.34 8.43
Co 26.24 26.24 26.96

South of Trent Cp 22.00 23.43 18.55
Co 82.32 84.30 99.83

Nottingham Cp 43.74 35.36 19.77
Co 564.23 619.88 741.83

three hours as mentioned previously. This can be clearly seen in the best passenger

results of Nottingham instance where SS-GD was able to reduce the passenger travel

time by 1 minute and offer better operator costs compared to NSGAII in an individual

run of three hours. In the smaller instances, SS-GD run time was also better requiring

only few minutes to find solutions that improve over the best passenger and operator

solutions found by NSGAII.

5.1.6.3 Comparison with Real World Route Sets

In this section we compare the optimisation results with the real world routes for the

two largest instances: Nottingham and South of Trent. Extracting real bus routes (i.e.

journeys) is important to compare to the optimisation results and validating the efficiency

of the optimisation algorithm. The real world bus routes are the operating routes in the

city of Nottingham from the year 2011 extracted from the National Public Transport

Data Repository (NPTDR). The journey patterns from the NPTDR were utilised to

construct the real world route sets by applying a set of filtering criteria in order to

106

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 107

4 6 8

20

30

40

50

passenger cost (minutes)

op
er
at
or

co
st

(m
in
ut
es
)

Clifton

SS-GD
NSGAII

4 6 8 10 12

30

40

50

60

passenger cost (minutes)

op
er
at
or

co
st

(m
in
ut
es
)

Hucknall

SS-GD
NSGAII

10 15 20

100

150

200

250

300

passenger cost (minutes)

op
er
at
or

co
st

(m
in
ut
es
)

South of Trent

SS-GD
NSGAII

Real Routes

10 20 30 40

500

1,000

1,500

2,000

2,500

passenger cost (minutes)

op
er
at
or

co
st

(m
in
ut
es
)

Nottingham

SS-GD
NSGAII

Real Routes

Figure 5.4: SS-GD results plotted against the evaluation results of the final popula-
tion. The blue dots are the results of the population evaluation and the red dots are

SS-GD results.

make these routes directly comparable to the results of our optimisation algorithm (i.e.

more details in [84]). Table 5.4 summarises the results of this comparison. For this

comparison we have selected the best results of SS-GD from the passenger and operator

perspectives, and the most passenger friendly, and the most operator friendly route sets

from the balanced trials. The percentages demonstrate the increase (positive sign), or

the decrease (negative sign) made by SS-GD on the metrics of the passenger and operator

costs and the statistics of the demand over the real world routes.

The results of Nottingham instance from the table shows a clear success of the balanced

perspective results. In the most passenger and most operator friendly route sets, a high

improvement rate was found in both objectives. The demand statistics show improve-

ment in the directness of trips and the unsatisfied demand percentage has also decreased.

107

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 108

The plots in figure 5.4 indicate that SS-GD is able to provide improved solutions over the

real routes, given that there are Pareto points (red) that clearly dominate the real route

positions (green). Taking the Nottingham instance as an example, the real routes offer a

single passenger an average travel time of 14.3 minutes and the summed route length for

the entire route set in minutes is 1369. The best result from the passenger perspective

found by SS-GD (11.00) decreased the average travel time by 3 minutes, while the aver-

age routes length increased by almost 50% (2105). On the other hand the most passenger

friendly route set in the compromise route sets (12.46) improved the average travel time

of the real routes by 2 minutes, and the routes length improved by almost 25% (1029).

Also trip directness is enhanced by decreasing the percentage of passengers needing two

transfers from 14% to 10% while increasing the percentage of direct travellers from 30%

to 33%.

In South of Trent instance, the same success is noticed. The best passenger results

improved the passenger cost by almost two minutes, and the most passenger friendly

route set improved the passenger cost, and at the same time the operator cost was

improved by 40%. The percentage of direct trips also improved by 3%.

5.2 Public Transport Network Optimisation in PTV Visum

Using Selection Hyper-heuristics

Despite the success in the field of automatic public transport routes optimisation, there

is a vast gap between the often purely academic studies and the application of their

findings in real world planning processes. One reason for this might be the differences in

data requirements between the algorithms used in the UTRP research and the commonly

used planning tools. Researchers working on the UTRP apply their design algorithms

to abstract models that simplify many aspects of real world transport networks, while

models built with professional transport modelling software packages such as PTV’s

Visum [197] or INRO’s Emme [198] have a high degree of detail in terms of the street

network layout and infrastructure, and the travel demand data.

In this work, we bridge the gap between the two worlds of theoretical research on the

UTRP and the real-world transportation planning, focusing specifically on Visum trans-

portation modelling software. We apply selection hyper-heuristics to optimise the public

transport routes in Visum, utilising interface procedures which have been implemented

108

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 109

Table 5.4: Comparison between the real world route sets and SS-GD best results from
passenger and operator and balanced perspectives for Nottingham and South of Trent

instances

metric Real routes SS-GD best SS-GD balanced

Nottingham

CP 14.3 11.00 −23.1% 12.46 −12.8%
CO 1369 2105.1 +53.7% 1029.2 −24.8%
d0 30.6% 46.6% +16.0% 33.3% +2.7%
d1 54.1% 51.0% −3.1% 55.4% +1.3%
d2 13.9% 2.3% −11.6% 10.7% −3.2%
dun 1.4% 0.001% −1.4% 0.53% −0.87%

CP 14.3 41.4 189% 12.71 −11.1%
CO 1369 583.8 −57.4% 974.9 −28.8%
d0 30.6% 11.5% −19.1% 31.7% +1.1%
d1 54.1% 14.6% −39.5% 54.8% +0.7%
d2 13.9% 15.1% +1.2% 12.6% −1.3%
dun 1.4% 58.6% +57.2% 0.77% −0.63%

South of Trent

CP 8.89 7.07 −20.4% 8.23 −7.4%
CO 220.9 286.1 +29.5% 134.1 −39.2%
d0 50.8% 69.1% +18.3% 53.5% +2.7%
d1 46.6% 30.2% −16.4% 41.6% −5.0%
d2 2.5% 0.62% −1.8% 4.8% +2.5%
dun 0.0% 0.0% 0.0% 0.02% +0.02%

CP 8.89 22.0 +147.4% 8.57 −3.6%
CO 220.9 82.3 −62.74% 122.3 −44.6%
d0 50.8% 27.6% −23.2% 51.8% +1.0%
d1 46.6% 21.1% −25.5% 42.4% −4.2%
d2 2.5% 18.0% +15.5% 5.6% +3.2%
dun 0.0% 33.1% +33.1% 0.07% +0.07%

based on an extensive study on the UTRP and Visum network structures and their dif-

ferences. The interface procedures aim to properly translate the network components

between the two models, and hyper-heuristics are used as an optimisation tool to opti-

mise Visum public transport routes through the interface model while taking advantage

of Visum analysis tools to evaluate a given candidate solution.

In the following sections, we will briefly summarise the features of Visum transporta-

tion modelling software and the key differences between its network model, and the

UTRP model explained in the previous chapters. We focus on the description of the

hyper-heuristics implementation to optimise Visum public transport routes through the

interface procedures. The details of the interface procedures can be found in our work

[199].

109

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 110

5.2.1 Visum Transportation Modelling Software

5.2.1.1 History and Features

Visum is a macroscopic transport modelling software package that allows planners to

analyse and plan robust models for transportation systems and to develop advanced

transport strategies and solutions. It is currently used world-wide by traffic analysts

with a set of powerful analysis tools, a smart and simple graphical user interface, and a

set of complex built-in demand assignment procedures. Additionally, Visum provides a

specific functionality for public transport to help analyse and evaluate an existing or a

proposed public transport service from the passenger or operator perspectives. Visum

is a product of PTV company based in Karlsruhe, Germany, and has been available

for commercial use since the late 90’s. The software helps in determining the impacts of

existing or planned transport system, which can include both private and public transport

lines. According to [200], the following transit features are supported by Visum:

• Visum offers a network model compatible with the Geographic Information System

(GIS) as well as passengers information systems, and vehicle and crew scheduling

systems. This made it possible to combine between geographical link network data,

and timetable data in an integrated network model.

• Visum provides a fare model to estimate revenues from tickets sales. This model

includes both zone-based and distance-based fares.

• Visum include many features that aids the design process, and help planners to

test different scenarios (e.g., drawing line routes on the screen).

• Visum includes a set of assignment procedures which use search algorithms. This

helps the planner to find the impacts on passengers by calculating essential perfor-

mance indicators (e.g. journey time, waiting time, number of transfers, frequency

of vehicles arrival) and travel costs for each origin-destination pair.

• Visum offers a unique feature of storing all passengers routes during the assign-

ment. This feature helps in analysing and predicting passengers behaviours, and

accordingly the estimations of fares and ticket sales.

• Visum supports both private and public transport, and can help in the design of

public transport networks of several modes including train, bus, and tram networks.

110

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 111

In addition to the variety of analysis tools, one important feature that facilitated the

use of Visum in this work, is the possibility to control it via python scripts over Visum

COM-API. The Visum COM-API library provides a number of interface functions that

allow controlling Visum via scripts and extract any required information. These scripts

formed the basis for implementing the interface procedures.

5.2.1.2 Differences between Visum and the UTRP Network Models

As described in chapter 2, almost all previous approaches to the UTRP choose to rep-

resent the available street (or rail) network as undirected graph G = {V,E}, with the

vertices V of the graph representing access and interchange points, and the edges E

representing the direct connections between them. A public transport line (route) is rep-

resented by a set of directly connected vertices and is assumed bi-directional. The main

advantage of such graphs for solving the UTRP, is that it allow us to limit the possible

solutions to those with routes made up of directly connected vertices. This excludes

many possible flawed solutions and thereby drastically reduces the search space.

The Visum network model is also based on a graph structure however, more detailed

compared to the simple UTRP graph. The graph in a Visum network model is composed

of a set of links connected through nodes. Links in Visum represent street, or rail

segments and are usable by certain transportation modes. Each link is composed of two

network objects for each direction of travelling. Nodes at the beginning and end of each

link represent the positions of intersections and junctions in the network.

The PuT (i.e. public transport) interchange points in Visum which correspond to vertices

in the UTRP model are defined in three layers: the level of stop points, stop areas, and

stops. The highest level is the stops which incorporate several stop areas, and the middle

layer are the stop areas which include several stop points. Similarly, PuT lines in Visum

are also defined in a hierarchical fashion. At the top reside the line which represent a

single PuT line belonging to one transportation system. The lowest layer is the line

route, where each line aggregates two line routes for each direction of travelling.

From the above description, the key differences between the Visum and the UTRP net-

work models, is that Visum PuT lines (i.e. routes) are directed, unlike in the simple

UTRP model in which routes are assumed bi-directional. The second key difference is

the representation of the interchange points in Visum as several layers of directed stop

points and stops. This has made interfacing between UTRP algorithms and a macro-

scopic transport modelling software like Visum, a real challenge.

111

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 112

Our work in [199] handles these structural differences by implementing interface proce-

dures that translate Visum directed line routes into undirected routes as in the UTRP

model, and translating these routes back into Visum as line routes. Hyper-heuristics are

then applied to optimise the translated bi-directional routes, and the interface is used

to implement the changed routes into Visum for evaluation. There are two main inter-

face procedures implemented in [199]: the first extracts a UTRP graph from a Visum

network model by finding the adjacency relations between the vertices. This graph will

be the basis for routes alteration during the optimisation. The second interface proce-

dure translates lists of vertices into directed lists of stop points, one for each direction

of travelling. This procedure is applied at each iteration of the optimisation algorithm

to implement the changed routes in Visum for evaluation. Further detail of how the

interface procedures work on the transformation between the two network models are in

[199].

5.2.2 Selection hyper-heuristics for Optimising Visum Public Trans-
port Lines

The motivation of this work is to use interface procedures integrated with hyper-heuristic

as an optimisation tool to optimise Visum public transport routes, and use Visum capa-

bilities and tools for conducting the evaluation.

There are many advantages of the selection hyper-heuristic framework that makes it a

good candidate for application to this work. First, it is a single point based framework,

meaning it only requires a single initial solution. This allows us to extract the existing

public transport network from a given Visum network model and use it as the initial

solution. Second, maintaining a single solution while improving it iteratively during the

search, makes the the interaction with Visum through the interface procedures straight-

forward. Also the relatively short run time of hyper-heuristic methods significantly adds

to their attractiveness.

Before integrating the optimisation process, there are vital questions that need to be

answered: is the optimisation going to be accomplished on the level of lines or line

routes in Visum? Which level of interchange points in Visum is going to represent the

vertices in the UTRP network? Optimising the line routes individually can lead to

significant deviations between the line routes that belong to the same line. This would

not be desirable in practice. Therefore, we have chosen to perform the optimisation at

the level of lines. We have also chosen the stops in Visum to represent the vertices of

112

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 113

the UTRP, since they are undirected network elements, and therefore they better suit

the bi-directional assumption of the routes in the UTRP model.

In this work, we have tested two selection methods: simple random (SR), and sequence

based selection hyper-heuristic (SSHH). Both selection methods were combined with im-

prove or equal (IE) acceptance method. The reason for applying these selection and

move acceptance components, is that we wanted to test a relatively simple selection

hyper-heuristics in this study to facilitate the interaction with Visum and to reduce the

total time for running and testing multiple selection hyper-heuristics due to the complex

objective evaluation procedures performed by Visum which require a significant compu-

tation time for each iteration compared to the evaluation performed in our previously

described UTRP models. We have selected SR selection method because it provides a

reference for comparison with other more complex selection methods. Furthermore, the

SSHH method has proved its success on the UTRP over other simple selection methods

as outlined in chapter 4, and therefore it was worth investigating in this study.

The optimisation process begins with initialising a set of routes from the Visum net-

work model. This is done through the interface procedure which transforms Visum line

routes into lists of stops (vertices) to construct an initial solution (Sinit). The initial

solution (Sinit) is introduced to the hyper-heuristic as the current solution (Scurr), and

the iterative optimisation of the single initial solution begins. One iteration of the SSHH

algorithm is depicted in figure 5.5. Depending on the selection mechanism, either a single

heuristic is selected, or a sequence of heuristics is selected and applied to Scurr to create

the new solution Snew which is tested for its feasibility. If Snew is not feasible, it is re-

jected and a new heuristic/heuristics sequence is selected. Otherwise, Snew is converted

into lists of stop points through the interface procedures and implemented in the Visum

network model for evaluation.

With the necessary information generated in Visum, the objective function f(Snew) is

calculated. If f(Snew) ≤ f(Scurr), Snew replaces Scurr and becomes the new basis for

finding new solutions. In case of the SSHH, the relevant values in the transition and the

sequence construction matrices are updated. The hyper-heuristic iterates in generating

new solutions, building them into Visum and evaluating them until a predetermined

termination condition is met (will described in section 5.2.3).

113

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 114

Convert
changed routes

to
stop point lists

Replace best route set
with the new route set

Apply
sequence to

route set

Best
route set

Yes

No

Extract length of
line routes

Build changed
routes into Visum

Run PuT
assignment

(calculate PuT
travel time matrix)

Is new
route set
feasible?

Add to
heuristic
sequence

Calculate
operator cost

End
sequence

?

Select
heuristic

Combine
Objectives

Calculate
passenger cost

A) Generate heuristic sequence
C) Implement in Visum

New
route set

No

Yes

Yes

No

D) Evaluate

Is new
route set
better?

Update Transition and
sequence construction

matrices

B) Interface Procedure

Figure 5.5: Description of one iteration of the SSHH algorithm application in the
global optimisation. Each iteration begins with box A: The generation of sequence of
heuristics and applying it to the current route set to create a new route set. The new
route set is tested for its feasibility. If the new route set is feasible it is converted to stop
point lists (Box B). The stop point lists are implemented in Visum as line routes and
other necessary information for the evaluation are extracted (Box C). The evaluation

includes combining the objectives of passenger and operator costs (Box D).

5.2.2.1 Low Level Heuristics

All the low level heuristics have been designed to follow the adjacency relations when

performing operations. If applying the operation on the selected routes and positions

would create invalid connections, new routes and positions are selected instead. This

increases the chance of generating feasible solutions. The list of the applied low level

heuristics is given below, it is also demonstrated by figure 5.6:

• LLH0 (Add): Selects a random route and a random position in this route. A new

vertex is selected and added in this position.

• LLH1 (Delete): Selects a random route and random position and deletes the

vertex in this position.

• LLH2 (Swap Inside Route): Selects a random route and two random positions.

The two vertices in these positions swap with each other.

• LLH3 (Insert Inside Route): Selects a random route and two random positions.

The vertex in the first position is inserted in the second position.

• LLH4 (Swap Between Routes): Selects two random routes and two random

positions on each of them. The vertices in these positions swap with each other.

114

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 115

• LLH5 (Insert Between Routes): Selects two random routes and two random

positions on each of them. The vertex in the first position of the first route is

inserted in the second position of the second route.

• LLH6 (Replace): Selects a random route and a random position. The vertex in

this position is replaced by another selected vertex.

• LLH7 (Exchange): Selects two random routes and splits them at a common

vertex. The parts of the two routes are exchanged to create two new routes. If the

selected routes do not have a common vertex, a new pair of routes is selected.

• LLH8 (Extend Route): Selects a random route and adds vertices to the end of

the route until reaching another terminal.

• LLH9 (Reduce Route): Selects a random route and deletes vertices starting

from the last vertex in the route until reaching another terminal node.

5.2.2.2 Feasibility and Evaluation

In section 5.2.2, we have demonstrated in the optimisation process that the solution must

be feasible to be evaluated, otherwise the solution will be rejected. The feasibility con-

straints are defined here with respect to Visum network model. For instance, backtracks

and cycles are tolerated in Visum, while they are considered a common violation in most

of the UTRP models. Other constraints are similar to the common UTRP model, such

as the start and end of each route at a terminal, following the adjacency relations in the

ordering of vertices on the routes, and restricting the routes length within defined limits.

Two evaluation methods were used in our optimisation model: the global optimisation

and the local optimisation. The former uses a travel time matrix generated from the

perceived journey time 3. The latter accesses the vehicle loads on selected links.

Global Optimisation

Global optimisation is the method used by the vast majority of the UTRP studies: an

objective function that aggregates information from the entirety of the system. We have

chosen to use the sum of two relatively simple components for our objective function.
3The perceived journey time defines all the time costs associated with a certain path. Such time costs

include: in-vehicle travel time, transfers time between stop points, and transfers penalties.

115

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 116

(a) Add (LLH0) (b) Delete (LLH1)

(c) Swap Inside Route (LLH2) (d) Insert Inside Route (LLH3)

(e) Swap Between Routes (LLH4) (f) Insert Between Routes (LLH5)

(g) Replace (LLH6) (h) Exchange Routes (LLH7)

(i) Extend Route (LLH8) (j) Reduce Route (LLH9)

Figure 5.6: Low-level heuristics set description. Straight arcs are edges in the route
or added after applying the heuristic, dashed arcs are edges removed after applying the

heuristic, red nodes are nodes added after applying the heuristic.

The first objective is to reduce the passenger cost (i.e. the average perceived journey

time of passengers). It is given by the following equation:

CP (S) =

∑|Z|
i,j=1Di,j ·Θi,j(S)∑|Z|

i,j=1Di,j

(5.2)

where Di,j is the PuT travel demand from a zone i to a zone j, and |Z| is the total

number of zones 4. Θi,j is the shortest perceived journey time from zone i to zone j

using the PuT network defined by the solution S.

The second objective is the reduction of the operator costs. We have used a simple

approximation for the operators expenditures given by the total sum of travel times for
4A standard practice is macroscopic simulation softwares is to aggregate the demand at the level of

zones.

116

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 117

travelling all the line routes in the PuT network:

CO(S) =

|lr|∑
i=1

τi(S) (5.3)

where τi is the total travel time of line route i and |lr| is the total number of line routes.

The two objectives are combined into a single objective function in the form of a weighted

normalised sum given by the following formula:

fglobal(S) = α
CP (S)

CP (S0)
+ β

CO(S)

CO(S0)
(5.4)

where S0 is the initial solution. The two weighting factors α and β can be adjusted in

relation to one another to generate solutions that are more favourable for either operators

or passengers and can take values in the range [0− 1].

Local Optimisation

The local optimisation represents a special optimisation experiment that takes advantage

of Visum tools and capabilities to access results at a very localised level. The objective

is to minimise the load of private cars on the selected links given by:

CL(S) =

|L|∑
i=1

νi(S) (5.5)

νi(S) is the load of private cars on link i ∈ L while the travellers in the network can

choose between travelling via the public transport network defined by solution S, or by

private cars.

5.2.3 Empirical Results

5.2.3.1 Test on Small Instance

For this set of experiments, we used a transport model from Viusm quick start tutorial

which is loosely based on the small town of Pfullingen, Germany. The network model is

relatively small, containing 652 nodes and 1782 links, 81 zones, 35 stops and stop points,

and only five bus lines. The optimisation in these experiments is based on the global

evaluation method described in the above section. The termination condition is defined

117

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 118

by the number of successful iterations. A successful iteration consists of generating a new

feasible solution, implementing it in Visum and evaluating it. The number of successful

iterations before the hyper-heuristic terminates is set to 20000 iterations. In these set

of experiments, we tested the two selection methods SR and SSHH in three distinctive

scenarios: the passenger perspective, the operator perspective, and the balanced per-

spective. Each of these scenarios is defined by a different set of parameters in equation

5.4: For the operator perspective, effectively only the operator cost was considered as we

set α = 10−6 and β = 1 − 10−6. The opposite in the passenger perspective, where the

focus is set on the passenger cost by setting α = 1−10−6 and β = 10−6. In the balanced

perspective, we create a balance between the two objectives by setting both parameters

to α = β = 0.5.

Figure 5.8 displays the change of the average passenger cost Cp(green line), average

operator cost CO (blue line), and the combined objective fglobal (black line) calculated

by equation 5.4. For each of the three scenarios the passenger and operator costs have

been normalised using their initial values for better interpretation of their performance.

The averages are calculated from the ten runs for each successful iteration.

From the figures, it is clear that from either the passenger or the operator perspective,

the objective that the optimisation is focusing on decreases rapidly from its initial value,

while the other objective increases. This improvement starts to slow down at the 2000

iterations stage. In the case of balancing the two objectives, both the passenger and

operator costs show similar behaviour by dropping quickly at the beginning of the search

and slowing down after 2000 iterations. This can be referred to how IE works. At the start

of the search improvements can easily be found over the initial solution, but as the search

progresses we require more diversification by accepting some of the worsening solutions

which the IE functionality lacks. The SSHH selection method was more successful in

improving the operator cost, while both selection methods reduced the passenger cost at

a similar rate.

Table 5.5 summarises the results of the passenger and operator costs for the ten runs

normalised and averaged. The best results and the standard deviation are also recorded.

From this table, the most notable improvement is in the passenger perspective with a

reduction of 20% in the passenger cost from the initial values, although this was at the

expense of significantly increasing the operator costs. The operator perspective runs

reduced the operator cost on average by almost 7%, and the balanced runs recorded an

improvement of nearly 5% on the operator cost while the passenger cost is also improved

by 3%. This implies that the approach of balancing the two objectives in this instance,

118

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 119

Table 5.5: Results from passenger, operator, and balanced configurations for the two
selection hyper-heuristics. The results are normalised and averaged over the ten runs.

The standard deviation and the best results are also recorded.

SR-IE SSHH-IE

Scenario Obj avg std min avg std min

Passenger Cp 0.81 0.005 0.80 0.81 0.006 0.80
Co 6.96 1.07 5.12 7.49 1.55 6.46

Operator Cp 1.03 0.004 1.02 1.03 0.004 1.02
Co 0.96 0.014 0.93 0.96 0.014 0.93

Balanced Cp 0.98 0.003 0.97 0.96 0.008 0.96
Co 0.98 0.014 0.96 0.96 0.008 0.96

SR SSHH

0.81

0.82

0.83

(a) Passenger perspective

SR SSHH
0.93

0.94

0.95

0.96

0.97

(b) Operator Perspective

Figure 5.7: Box plots from 10 runs for the SSHH and SR selections combined with IE
acceptance for the small network test case from the passenger and operator perspectives.

Values in Y axis are the normalised passenger and operator costs.

is more successful than the operator perspective, with the operator cost decreasing at a

similar rate, while the passenger cost has also improved.

The performance difference between the two selection hyper-heuristics is very small as

can be seen from the table. Figure 5.7 shows the performance variation between the

two selection methods. SR was more successful in the passenger perspective scoring

better average, while the SSHH found the best minimum result. The SSHH was clearly

dominating in the operator perspective with better average and minimum values. The

results from the table and figure 5.7 do not give a clear advantage for either of the

selection methods. However, there were two observations made during the experiments:

the SSHH selection method was able to improve more in fewer iterations compared

to SR, and this fact is critical in working with larger networks. Second, the SSHH

recorded better individual results for the runs in many cases, especially from the operator

perspective and found the best minimum in the passenger perspective. Based on these

119

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 120

0 2500 5000 10000 15000 20000
Successful Iterations

1
2
3
4
5
6
7
8

O
bj

ec
ti

ve
s

(a) SR passenger perspective

0 2500 5000 10000 15000 20000
Successful Iterations

1
2
3
4
5
6
7
8

O
bj

ec
ti

ve
s

(b) SSHH passenger perspective

0 2500 5000 10000 15000 20000
Successful Iterations

0.94

0.96

0.98

1.00

1.02

O
bj

ec
ti

ve
s

(c) SR operator perspective

0 2500 5000 10000 15000 20000
Successful Iterations

0.94

0.96

0.98

1.00

1.02

O
bj

ec
ti

ve
s

(d) SSHH operator perspective

0 2500 5000 10000 15000 20000
Successful Iterations

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

O
bj

ec
ti

ve
s

(e) SR balanced perspective

0 2500 5000 10000 15000 20000
Successful Iterations

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

O
bj

ec
ti

ve
s

(f) SSHH balanced perspective

Figure 5.8: Results of the global optimisation on a small network model for three sce-
narios: passenger perspective, operator perspective, and balancing the two objectives
using two selection hyper-heuristics (SR and SSHH). Each figure displays the devel-
opment of the normalised passenger objective CP averaged for ten runs (green with
rectangles) the normalised averaged operator objective CO (blue with pentagons) and
the averaged combined optimisation function fglobal (black with circles). The averages
were calculated for every successful iteration from ten independent runs. The bars in

the middle represent the standard deviation between the runs.

facts we have selected the SSHH to be applied in the next set of experiments on a larger

network model.

5.2.3.2 Application on City Size Network and Local Optimisation

In order to show the validity of the proposed concepts in a larger scale, another set

of experiments has been performed on a network model originating from a real-world

120

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 121

0 2 4 6 8 10 12 14 16
Runtime (h)

0.875

0.900

0.925

0.950

0.975

1.000

1.025

O
bj

ec
ti

ve
s

(a) Global Optimisation Halle

0 2 4 6 8 10 12 14 16
Runtime (h)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
bj

ec
ti

ve
s

(b) Local Optimisation Halle

Figure 5.9: Results for PuT line global (a) and local (b) optimisation with SSHH on
a city-sized network. Displayed is the development of the normalised average passenger
objective CP (green with rectangles), the operator objective CO (blue with pentagons),
the combined optimisation function fglobal (a), and the average reduction in the local
objective CL (b)(black with circles). The averages were calculated in steps of one
minute from ten independent runs. The bars show the standard deviation between
the runs. The markers at the right side bar show the distribution of the final values
of the individual runs after 16 hours of run time (also shown in table 5.6). Each
marker represents the final value of either fglobal (CL) (circles), CP (rectangles), or CO

(pentagons) for each run. Each colour uniquely identifies one of the ten experiments.

planning process. The model was generated in the 1990s for the city of Halle, Germany.

It is made up of 1934 nodes, 4832 links, 81 zones, 288 stops and 313 stop points, and

in total 41 PuT lines of which 18 are bus lines. Although this model has been modified

over time, its size and layout are still sufficient to represent a real-world network model.

The optimisation in this model is only conducted on bus lines, and the termination

condition is set to run time rather than successful iterations, where each experiment is

run for 16 hours before it terminates. This was done for practical reasons, and resulted

in an average of 8919 successful iterations (i.e. on average 6.6 seconds per successful

iteration). For the local optimisation, the same network model of Halle is used, and the

links of an important connector street in the city were selected for the purpose of reducing

the load of private cars. The termination criterion is also set to time, and each experiment

is run for 16 hours. However, due to the more complex sequence of procedures required

for the evaluation, the average length of a successful iteration during the experiments

was 83.8 seconds, leading to an average number of successful iterations of 765. The

experiments were performed on a device with the following specifications: Intel i3-4150

3.50GHz Dual Core CPU and 16GB RAM.

For the global optimisation experiments on this transport network, Ten runs were applied

using the SSHH with the balanced configuration. This configuration was chosen as an

example of a planning process which requires a compromise between passengers and

121

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 122

Table 5.6: Final values of ten runs with global and local SSHH optimisation on Halle
network. Values normalised on initial values and minimal values are highlighted in

bold.

1 2 3 4 5 6 7 8 9 10 Avg
Global Optimisation

fglobal 0.912 0.917 0.914 0.911 0.919 0.914 0.909 0.908 0.921 0.920 0.915
CP 0.882 0.875 0.868 0.874 0.868 0.882 0.882 0.862 0.894 0.884 0.877
CO 0.942 0.959 0.961 0.949 0.969 0.945 0.936 0.955 0.948 0.956 0.952

Local Optimisation
CL 0.292 0.426 0.315 0.528 0.461 0.573 0.596 0.539 0.697 0.596 0.502
CP 0.998 0.860 0.936 0.847 1.049 0.836 0.837 0.848 0.839 0.833 0.888
CO 1.001 1.00 1.005 1.005 1.006 1.008 1.01 1.009 1.009 1.008 1.006

operators. Figure 5.9(a) shows the development of the average normalised passenger CP

objective (green with rectangles), the operator objective CO (blue with pentagons), and

the combined optimisation function fglobal (black with circles). It can be observed that

at the early stages of the search, the passenger objective steadily decreases, while the

very early solutions show an increase in the operator cost. However, over the search

time, the operator cost drops below its initial values but hovers around a value of 0.95,

unlike the passenger cost which continues to drop until the end time of the search for

most runs. After 16 hours, the passenger cost reaches on average a value of 0.877.

Table 5.6 displays the passenger objective CP , operator objective CO, and the global

optimisation function fglobal results for each individual run. The average of the runs is

also recorded. The right side bar in figure 5.9 shows the distribution of this results, with

different marker colours for each objective. We see that while for the operator cost CO,

the reduction is between 3.1% and 6.4%, for the passenger cost CP larger reductions

between 10.6% and 13.8% are achieved. Interestingly, the two runs with the highest

reduction in CO and CP , respectively, are also the two best runs in terms of combined

reduction of both objectives. The run reducing CO by 6.4% reduced CP by 11.8%,

and the run which reduced CP by 13.8%, also reduced CO by 4.5%. This shows that

improvements in both objectives are not mutually exclusive. It should be noted, that

no global optimum could be found. The fact that the standard deviation between the

runs does not change much over the latter half of the search indicates that this will not

change much more even if the run time is increased.

In the local optimisation, ten independent runs were performed and the results are dis-

played in figure 5.9. The data lines show the time development of the average of the

global passenger objective CP (green with rectangles), and the operator objective CO

(blue with pentagons), respectively. The black line with circles shows the average of the

122

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 123

local objective CL. The bars show the standard deviation between the different runs.

It can be seen from the figure that the main objective of these experiments, which is

reducing the load of private cars on the selected links has been successfully achieved

with an average reduction of CL to 50.7% from its initial value. We also see a broad

spread of solutions as the standard deviation between the results starts to increase with

the progression of search time. For the least successful run, CL was reduced by 30.3%

while for the most successful one, the car load on the selected links is reduced by 70.8%,

more than two thirds of the initial value. Further, we see that the average value of CP

drops at the beginning of the search, even more than that which occurred in the global

optimisation in some cases. This suggests that the initial reductions of CL are the result

of decreasing the average travel time in general for all passengers and in turn increasing

the attractiveness of public transport, causing a reduction in the use of private cars. The

values of CO are very similar in all the runs without any significant development. All

runs end up with an increase in CO between a minimum of 0.003% and a maximum of

0.96%.

In the experiments described above, the number of iterations before the SSHH terminates

was limited by the time factor. In the global optimisation, the iterations were up to 9000

and in the local optimisation and due to the complex evaluation functions involved, the

iterations were limited to around 900. We still see from the results and despite the short

run times that the SSHH algorithm performed well on this problem. This reflects the

efficiency and robustness of the involved online learning mechanisms, and the ability of

this algorithm to learn in short duration to optimise a highly complex and large networks.

5.2.4 Summary

In this chapter, we proposed two problems to which the SSHH algorithm was applied.

The first problem involved solving a version of the UTRP with terminal nodes information

on a newly published set of instances with real world characteristics and size. An initial

heuristic generation algorithm guided by demand information was implemented to ensure

generating high quality route sets that obey the problem constraints. The SS-GD hyper-

heuristic is tested on the new data set with specific implementation tailored to the

presence of terminal points and compared to the solutions generated by NSGAII genetic

algorithm and to the real bus routes used by local bus companies. Comparisons show

the success of SS-GD in finding solutions better than NSGAII in all the instances from

the perspective of passenger and operator. Also SS-GD was able to improve the existing

123

Chapter 5. Hyper-heuristics for Solving Real-world Applications of the UTRP 124

routes service for both passengers and operators, showing a great potential for handling

complicated and real world versions of the UTRP in very short run times compared to

genetic algorithms.

The second application of the SSHH algorithm was the optimisation of the public trans-

port routes in the transport modelling software package “Visum”. The optimisation

algorithm was integrated with a set of interface procedures that translate the network

components between the UTRP network model and the Visum network model. Visum

tools and capabilities were also utilised to conduct the evaluation during the optimisation.

The SSHH algorithm and the simple random selection were applied and tested using two

different optimisation modes: the global optimisation and the local optimisation. The

results of the global and local optimisation showed the validity of hyper-heuristics in

a small as well as a city-sized example network. In both cases high reduction rates in

the passenger and operator costs are achieved simultaneously. Additionally, the local

optimisation was tested on the city size network, reducing the rate of private car users

on the targeted streets by up to 70%. This work opens a wide range of opportunities in

real world transportation planning by integrating efficient optimisation algorithms such

as selection hyper-heuristics with the capabilities of a transport modelling software such

as Visum, therefore allow us to solve versions of the UTRP that are more useful and

applicable to real world transportation systems planners.

124

Chapter 6

Population-Based Hyper-heurstic

for the Delivery and Installation of

Equipment

In this chapter we tackle a rich VRP problem integrating a capacitated vehicle routing

problem with time windows (CVRPTW), and a service technician routing and scheduling

problem (STRSP) for delivering various equipment based on customers’ requests, and the

subsequent installation by a number of technicians (Previously described in chapter 2

(section 2.5)). The main objective is to reduce the overall costs of hired resources,

and the total transportation costs of trucks/technicians. The problem was the topic of

the fourth edition of the VeRoLog Solver Challenge in cooperation with the ORTEC

company. Our contribution to this research is the development of a novel hyper-heuristic

algorithm to solve the problem based on a population of solutions. Experimental results

on two datasets of small and real-world size revealed the success of the hyper-heuristic

approach in finding optimal solutions in a shorter computational time, when compared

to the results of an exact model specifically developed for this problem. The results

of the large size dataset were also compared to the results of the eight finalists in the

competition and were found to be competitive proving the potential of our developed

hyper-heuristic framework. In this chapter we will provide the problem description and

the data sets used, our hyper-heuristic methodology, and our full results, analysis, and

the comparisons with the results of the developed mathematical model.

125

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 126

6.1 Description of the Problem

The real-world problem from VeRoLog Solver Challenge 2019 can formally be stated

as follows. There are a number of locations L = {l1, l2, . . . lL} distributed at different

geographical coordinates, each representing the home location of a customer, technician,

and a depot 1. The distance between any two locations (i.e., customer/technician/depot)

li and lj is given by dli,lj . A depot is located at l1 ∈ L where all trucks journeys start

and end and all the machines to be delivered are located at the start of the planning

horizon. A number of customers Cr = {cr1, cr2, . . . cr|Cr|} spread at different locations,

each customer cri ∈ Cr is located at a certain home location lcri ∈ L and has a request

or a number of requests to be satisfied. The purpose is to respond to customers’ requests

by delivering machines and getting them installed by a technician within a defined time

horizon T = {1, . . . A} of A consecutive days.

An unlimited number of identical trucks (i.e. vehicles) K = {k1, k2, . . . } can be hired

to transport the machines to the customers. They are located at the depot each with a

maximum capacity C. Also, a number of machines M = {m1,m2 . . .m|M |} are available

to be delivered to the customers at their request, and there are different types of machines

each identified by its size expressed in the same size unit as the truck capacity and a

penalty value. The machines are all located in the depot, with enough machines to

satisfy all the demand. A set of customers requests R = {r1, r2 . . . r|R|} should be

satisfied. The requests are known at the start of the planning period. A single request

rj = {lcri , wj ,mk, nk} asks for one machine typemk ∈M , of quantity nk ∈ N, for exactly
one customer at location li, and wj is the associated time window of request rj . wj is

specified by the earliest and the latest day [ej , lj] ⊆ T to deliver request rj . A request of

the same type of machines cannot be split and should be delivered by the same truck,

and if a customer requires another machine type, a separate request is made. Each truck

journey on a day should start and end at the depot location l1 and can carry different

types of machines to satisfy several customers’ requests, where request rj occupies cj of

the truck capacity, and a single request should not exceed its maximum capacity C. The

truck can return back to the depot location multiple times during the day to pick up

more machines. Also, there is a limit D on the maximum distance a single truck can

travel per day. It does not take any time to load a machine at the depot or to unload a

machine at a customer.
1According to the description provided by the competition, each location has a unique identified ID,

and the depot is always located at ID=1. A technician home location can be based at the depot, also a
customer and a technician can share the same home location.

126

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 127

C1

C2D

T1

T2

C3

C4 C5

C6

C7

C customer requiring installation C delivery and installation complete

C customer requiring delivery and installation technician route

truck route D depot T technician

Figure 6.1: Description of the customers states during the planning horizon. Dashed
arrows display technician routes and solid arrows display truck routes

There is a fixed number of technicians S = {s1, s2 . . . s|S|} who are responsible for in-

stalling the delivered machines at the customer location the day after the delivery. Each

technician sn ∈ S is located at a certain home location lsn ∈ L. A technician’s daily

route starts and ends at his/her home location, and like trucks, there is a maximum

distance Dsn that technician sn can travel per day. In addition, there is a maximum

limit Nsn on the number of requests technician sn can carry each day, where carrying

out a request means installing all the machines for that request. The technician can

maximally work for 5 consecutive days, and must have two days off if he/she has worked

for 5 consecutive days.

Each technician has a skill set for installing certain types of machines. asn,mj refers to

technician sn ∈ S installing machine mj ∈M , and is equal 1 if the technician is eligible

to install this machine, and zero otherwise. Installing a machine does not take any time.

A technician is described with the following entry:

sn = {Hsn , Dsn , Nsn , {asnm1 , asnm2 . . . asnm|M|}} referring respectively to the technician

home location, maximum travel distance per day, maximum number of installations per

day, and which machines they have the skill to install.

The last point to mention, is that the technician should install a delivered machine as

soon as possible after the delivery, and for each delayed installation of request rj , a

127

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 128

penalty CLj is added to the cost, where each machine type has a different penalty value.

The main objective is to reduce the overall costs associated with trucks, technicians and

idle machines costs. The trucks/technicians total cost is constituted of the following

parts: the cost of hiring a truck/technician per day, the cost of hiring a truck/technician

within the planning horizon T , and the cost per unit of distance for the travelling of

truck/technician. The distance between coordinates (x1, y1) and (x2, y2) is defined as

the ceiling of the Euclidean distance, d
√

(x1 − x2)2 + (y1 − y2)2e. In addition, there is

the cost for penalising idle machines that remain without installation for more than one

day. This penalty cost is dependant on which machine it is and the number of days it

was idle. The objective function is described by the following equation:

min
K∑
k=1

CVk +

T∑
t=1

K∑
k=1

CV Ukt +

T∑
t=1

K∑
k=1

CV Tdliljtk

+
S∑

s=1

CTs +
T∑
t=1

S∑
s=1

CTUst +
T∑
t=1

S∑
s=1

CTTdliljts +
∑
i∈R

Clibi

Where

CVk: the cost of using truck (vehicle) k ∈ K in the planning horizon. This cost is

equal zero for truck k if not hired during the planning horizon.

CV Ukt: the cost of using truck k on day t in the planning horizon. This cost is

equal to zero for truck k if its not hired on day t.

CV Tdliljtk: the cost of travelling unit distance by truck k on day t from location li
to request lj . This cost is equal zero for truck k if it has not travelled from location

li to location lj .

CTs: the cost of hiring technician s ∈ S during the planning horizon. This cost is

equal zero for technician s if not hired during the planning horizon.

CTUst: the cost of hiring technician s on day t in the planning horizon. This cost

is equal zero for technician s if not hired on day t.

CTTdijts: the cost of travelling unit distance by technician s on day t from location

li to location lj . This cost is equal zero for technician s if he/she has not travelled

from location li to location lj .

CLibi: the penalty of request i remaining without installation. bi is the number of

days request i remained without installation.

128

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 129

0 6 7 1 2 0

T1 6 7 1 T1

(a)

Day = 1
Number of Trucks = 2
1 6 7 0 1 2
2 3 4 5
Number of Technicians = 0

Day = 2
Number of Trucks = 1
1 8 10 0 9
Number of Technicians = 1
1 6 7 1

(b)

Figure 6.2: Solution example, and the routes of truck 1 in day 1, and technician 1 in
day 2. The red and blue arcs represent two different tours. The pink and grey coloured

boxes represent the depot and technician Ti respectively

The total cost is calculated as the weighted sum of the costs of travelling/hiring

of the trucks and technicians during the planning horizon. The weights of the

objective function components are defined with each instance, and their values

vary depending on which cost the optimisation should be focusing to minimise.

6.2 Solution Format

A solution gives, for each day in the planning horizon, the routes followed by each

truck/technician. Assuming that {1, 6, 7, 0, 1, 2} is the route of a single truck in one

of the planning days. The first element in the route ‘1’ is the truck ID, followed by

the requests ID’s that this truck served. The ID ‘0’ refers to the depot, and it means

that truck 1 visited the depot after serving requests ‘6’ and ‘7’ and was loaded to serve

requests ‘1’ and ‘2’. Each series of requests before the truck goes back to the depot is

named “tour". In this route, there are two tours given as {6, 7} and {1, 2}. The start

and end of the truck journey at the depot is not explicitly written in this route format.

The technician routes follow a similar pattern to the trucks routes, starting with the

technician ID, followed by the ID’s of the requests that this technician served. Also, the

start and end of the technician journey at their home location is not explicitly mentioned

in the solution.

129

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 130

6.3 Problem Instances

We have used two datasets of instances, the small dataset has been developed for this

work, and the hidden dataset, was used in the competition to evaluate the participants’

algorithms in the VeRoLog Solver Challenge. Each of the instances provides different

types of information such as the weights of the objective function components, the max-

imum truck capacity, the number of days in the planning horizon, and the maximum

travel distance allowed by each truck. The details of the requests, locations given as x, y

coordinates (i.e. depot, technicians homes, customers) and technicians are also given.

The characteristics of these datasets are provided in Table 6.1. The small dataset, which

includes instances of sizes varying between 6 to 16 requests, is developed specifically for

this work 2. It is essential to test our developed hyper-heuristic approach on instances

with different characteristics and ensure that it scales. It is also important to compare

its performance to the exact model by its ability of finding optimal solutions in a short

duration of time.

The hidden dataset was used to assess the performance of the competitors algorithms and

rank the finalists in the restricted resource challenge3. This dataset contains instances of

large sizes up to 900 requests. The number of different types of machines vary between 3

and 7 in each instance, and the number of technicians range from 25 to 125. The highest

variation can be found in the costs of using trucks and technicians, distance costs, and

the costs per day for using trucks and technicians. These values range from 10 to 100,000.

We refer to [32] for a comprehensive description of the problem and the formal challenge

rules4.

6.4 Hyper-heuristics Methodology of CVRP for Delivery

and Installation of Machines

In this section we describe the hyper-heuristic framework applied to this problem and

discuss solution initialisation and representation and the low level heuristics set.
2A mathematical model has been developed for this problem and the small instances dataset was

essential to test this model which only works on instances of such sizes.
3The solvers of the finalists were run on the hidden dataset for a limited computational times deter-

mined by the challenge rules.
4A detailed description of the challenge and the datasets is also provided here:

https://verolog2019.ortec.com/

130

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 131

Table 6.1: Characteristics of the small and hidden instances

Instance Days
Truck

Capacity

Truck
Max

Distance

Truck
Distance
Cost

Truck
Day
Cost

Truck
Cost

Techni-
cian
Dis-
tance
Cost

Techni-
cian
Day
Cost

Techni-
cian
Cost

Ma-
chines

Loca-
tions

Re-
quests

Techni-
cians

Small_01 4 18 1090 10000 1000 1000 10000 10000 10 3 5 6 5
Small_02 5 18 905 100 10000 10 1000 100 100 4 8 8 10
Small_03 6 18 2000 10000 100 100 100 1000 1000 5 10 10 15
Small_04 7 18 2000 10000 10 1000 10000 10000 10000 6 9 12 20
Small_05 4 18 2000 1000 10000 10000 100000 100 100000 7 10 14 25

Small_06 5 18 2000 10 1000 100000 10 1000 10 3 10 16 5

Small_07 6 18 2000 100000 100 10000 10000 100 100 4 6 6 10
Small_08 7 18 1045 1000 10 1000 100000 10 1000 5 8 8 15

Small_09 4 18 970 10 100 100000 1000 100 10000 6 8 10 20

Small_10 5 18 2000 100 100000 10 100000 10 100000 7 10 12 25

Small_11 6 18 1195 100000 1000 100000 100000 100000 10 3 9 14 5

Small_12 7 18 980 1000 10000 1000 10000 1000 100 4 9 16 10
Small_13 4 18 2000 100000 10000 10000 100 10 1000 5 4 6 15
Small_14 5 18 465 100 1000 100 10 10 10000 6 8 8 20
Small_15 6 18 620 10 1000 10 1000 100000 100000 7 8 10 25

Small_16 7 18 775 100000 100000 100 10 100000 10 3 7 12 5

Small_17 4 18 2000 10 10000 10 1000 100000 100 4 9 14 10

Small_18 5 18 1135 100000 100000 100000 100 1000 1000 5 13 16 15

Small_19 6 18 830 100 100000 100000 100 1000 10000 6 8 6 20

Small_20 7 18 2000 1000 100 10000 100 10000 100000 7 9 8 25

Small_21 4 18 2000 100 100000 10000 10 100000 10 3 8 10 5

Small_22 5 18 980 1000 10 100 1000 10000 100 4 11 12 10
Small_23 6 18 2000 10000 10 100 10 100 1000 5 10 14 15
Small_24 7 18 960 10000 10 1000 100000 10000 10000 6 12 16 20
Small_25 4 18 2000 10 100 10 10000 10 100000 7 10 6 25

Hidden_01 15 18 1620 1000 1000 100 100 10 10 3 54 150 25

Hidden_02 25 18 1350 10 100000 1000 100000 1000 100 4 112 300 50

Hidden_03 35 18 1060 10000 1000 100000 100 1000 1000 5 163 450 75

Hidden_04 45 18 1040 10 10000 100 10 10000 10000 6 217 600 100

Hidden_05 55 18 2000 1000 100000 10000 100000 100000 100000 7 270 750 125

Hidden_06 15 18 1205 100 10 10 10 10 10 3 306 900 25

Hidden_07 25 18 980 1000 100000 1000 10000 1000 100 4 59 150 50

Hidden_08 35 18 1030 10000 100 100000 1000 100 1000 5 116 300 75

Hidden_09 45 18 2000 1000 100 1000 100000 100 10000 6 167 450 100

Hidden_10 55 18 950 10 10000 100000 1000 10000 100000 7 220 600 125

Hidden_11 15 18 2000 10000 10000 10 100000 100 10 3 254 750 25
Hidden_12 25 18 1405 10000 100 10000 1000 100000 100 4 310 900 50
Hidden_13 35 18 2000 100000 100 1000 10000 100000 1000 5 68 150 75

Hidden_14 45 18 1430 10000 1000 100000 100 100000 10000 6 117 300 100

Hidden_15 55 18 1350 1000 100 10 10 10 100000 7 173 450 125

Hidden_16 15 18 1170 100 100000 100 1000 10000 10 3 205 600 25

Hidden_17 25 18 2000 100000 10000 100 10000 100 100 4 260 750 50

Hidden_18 35 18 1435 100 100000 1000 10 10 1000 5 313 900 75

Hidden_19 45 18 1010 100000 10 10 10000 100000 10000 6 60 150 100
Hidden_20 55 18 1205 10 10 100 10000 1000 100000 7 125 300 125
Hidden_21 15 18 1230 100 1000 10000 1000 100 10 3 154 450 25
Hidden_22 25 18 1500 10 10 10000 100 1000 100 4 206 600 50

Hidden_23 35 18 1100 100000 1000 100000 100 10000 1000 5 266 750 75

Hidden_24 45 18 1290 100000 10 10 10 10 10000 6 317 900 100
Hidden_25 55 18 1160 100 10000 10000 100000 10000 100000 7 68 150 125

131

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 132

6.4.1 Population-based Hyper-heuristic Framework (POHH)

Following the description of the selection hyper-heuristic framework in chapter 3, most

of the previously proposed solution methodologies in selection hyper-heuristics utilise a

single solution during the search process and iteratively improve it, while some other

methodologies adopt the idea of using a population of solutions during the search as a

whole, or during some part of it. Our proposed framework is based on a population

of solutions from which one of them will be selected and applied to a selection hyper-

heuristic at each step in the search. We are motivated in this work to use a population

of solutions as we believe that this provides diversity in the search and allows better

exploration of new areas in the search space. Unlike the UTRP in which the population-

based algorithms add a significant computational time with large instances due to the

complex and costly operations involved in the evaluation. The evaluation step in this

problem is relatively fast, thus applying selection hyper-heuristics on a multiple solutions

setting does not necessarily mean that it will have the same impact as in the UTRP. For

instance, we observed that on the large instances in the hidden dataset with more than

300 locations, an average of five million iterations were achieved on a single minute of

run time, while on Mumford3 instance, less than one million iterations were achieved in

one hour run time.

The process starts by initialising a number of solutions using a generation method to

create an initial population pop = {sol1, sol2, . . . solpopsize}. A number of selection hyper-

heuristics HH = {hh1, hh2, . . . hhn} combining different selection and move acceptance

methods are implemented.

A solution soli and a selection hyper-heuristic hhj are randomly selected from pop and

HH respectively, where soli will serve as Scurrent to hhj . The selection hyper-heuristic

hhj selects a heuristic (or sequence of heuristics) and applies it to Scurrent to create

new solution Snew, which is checked for feasibility, and rejected if it is not feasible (i.e.

violates at least one of the problem constraints listed in section 6.1). If Snew is feasible

it will be evaluated and the decision of its acceptance is made by the move acceptance

component of hhj . The best found solution Sbest is replaced by Snew if it is better. The

iteration between the selection and acceptance components continues until the termina-

tion criteria are satisfied, that is until the global time limit is exceeded or when there is

no improvement on the best obtained solution for a certain number of iterations.

After hhj terminates, Sbest is checked against the best found global solution Sglobal and

replaces it if it is better. Afterwards, Sbest is shuffled by randomly selecting and applying

132

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 133

Algorithm 6: Algorithm of the population based hyper-heuristic

1 Let Scurrent, Snew, Sbest, Sglobal be current, new, best and global solutions respectively;
2 Let HH = [hh1, hh2, . . . , hhn] be the combinations of selection hyper-heuristics;
3 Let pop = [sol1, sol2, . . . , solpopsize] be the solutions in the population;
4 Let LLH = [llh1, llh2, . . . , llh|LLH|] be the set of low level heuristics;
5 pop← InitialGeneration();
6 repeat
7 soli ← SelectRandomly(pop);
8 Scurrent ← soli;
9 Sbest ← Scurrent;

10 hhj ← SelectRandomly(HH);
11 repeat
12 llh← Select(hhj , LLH);
13 Snew ← ApplyLLH(llh, Scurrent) ;
14 if Accept(hhj , Snew, Scurrent) then
15 Scurrent = Snew;
16 end
17 if Scurrent isBetterThan Sbest then
18 Sbest ← Scurrent;
19 end
20 until TerminationCriteria;
21 if Sbest isBetterThan Sglobal then
22 Sglobal ← Sbest;
23 end
24 soli ← Sbest;
25 Shuffle(soli);
26 until timeLimit;
27 return Sglobal;

a series of low level heuristics. The number of steps to shuffle a solution is tuned by the

user, and is constant during the search. This shuffling is necessary in order to avoid

the possibility of early convergence and to refresh the population. Next, a solution from

the population and a selection hyper-heuristic are randomly selected and the same steps

mentioned above are repeated. This iterates until the specified time for running an

instance passes. Algorithm 6 outlines the applied framework.

For this framework we have tested a total of eight selection hyper-heuristics combining

the selection methods: Simple Random (SR), Sequence-based Selection Hyper-heuristic

(SS), and the move acceptance methods: Record-to-Record (RR), Naïve acceptance

(Naïve), Great Deluge (GD), and Simulated Annealing (SA). We have chosen to apply

two different selection methods for testing our approach, one represents the simplest

form of selection, and the other is based on the concepts of online learning and selecting

133

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 134

sequences of heuristics. On the other hand, all the move acceptance methods are non

deterministic and accept moves that worsen solutions to help in escaping local optima.

6.4.2 Solution Representation and Feasibility

The described hyper-heuristic framework requires initialising a number of solutions to

build a population, and this is achieved using an initial generation method. Each solution

is composed of two main components: truck visits, and technician visits. The truck visits

component corresponds to the schedule of trucks during the planning horizon which can

be modelled as four levels: days, trucks dispatched on each day, tours performed by each

truck, and the requests to deliver on each tour. Similarly, the technician visits correspond

to the technicians’ schedule composed of three levels: days, technicians scheduled on each

day, and visits performed by each technician. The initial generation method randomly

generates these schedules, while ensuring the final constructed solution is feasible. The

main focus of the initial generation method is the feasibility of the solution and not its

quality.

The feasibility of the solution must also be maintained during the hyper-heuristic oper-

ation. A feasibility test is implemented to ensure that the problem constraints still hold

after each application of low level heuristic(s). A single violation of any of these con-

straints results in rejecting the solution. This test prevents the evaluation of too many

infeasible solutions which can consume valuable search time.

6.4.3 Low Level Heuristics

The hyper-heuristic controls a total of twenty five low level heuristics to improve the

quality of a given initial solution. These low level heuristics perform swap and insert

operations for requests in truck and technician routes. Low level heuristics are restricted,

as needed, to only produce routes that respect some of the constraints. For example, some

low level heuristics perform operations between different days in the planning period; in

this case if the operation involves delivery requests, the time windows of these requests

must be respected and any installations that as a consequence violate the time windows

constraints must be rescheduled. If it involves installation requests, the delivery of these

requests must be ensured at least the day before.

134

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 135

• LLH0: selects a random day, a random truck route and a random tour, and swaps

any two randomly selected requests on this tour.

• LLH1: selects a random day, a random truck route, and two different random

tours, and swaps any two randomly selected requests on each tour.

• LLH2: selects a random day, two different random truck routes, two random tours

from each route, and swaps two randomly selected requests from each tour.

• LLH3: selects two different random days, two random truck routes from each day,

and two random tours from each route, and swaps two randomly selected requests

from each tour.

• LLH4: selects a random day, a random technician scheduled on this day, and

swaps two randomly selected requests of this technician.

• LLH5: selects a random day, two different random technicians scheduled on this

day, and swaps two randomly selected requests of these technicians.

• LLH6: selects two different random days, and two random technicians, and swaps

two randomly selected requests of these technicians.

• LLH7: selects a random day, a random truck route, a random tour, and two

random positions on this tour. The request on the first position is inserted into

the second position.

• LLH8: selects a random day, a random truck route, two different random tours on

the selected route, and a random position on each tour. The request on the first

position of the first tour, is inserted into the second position of the second tour.

• LLH9: selects a random day, two different random truck routes, a random tour on

each route, and a random position on each tour. The request on the first position

is inserted into the second position.

• LLH10: selects two different random days, a random truck route on each day, a

random tour on each route, and a random position on each tour. The request on

the first position is inserted into the second position.

• LLH11: selects a random day, a random technician scheduled on this day, and

two random positions on the technician route. The request on the first position is

inserted into the second position.

135

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 136

• LLH12: selects a random day, two different random technicians, and a random

position on each technician route, and inserts the request on the first position into

the second position.

• LLH13: selects two different random days, a random technician on each day, and

a random position on each technician route. The request on the first position is

inserted into the second position.

• LLH14: selects a random day, two different random truck routes, and a random

tour on each route, and swaps the two selected tours.

• LLH15: selects two different random days, a random truck route on each day, and

a random tour on each route, and swaps the two selected tours.

• LLH16: selects a random day, two different random truck routes, and a random

position on each route. The tour on the first position is inserted into the second

position.

• LLH17: selects two different random days, a random truck route on each day, and

a random position on each route. The tour on the first position is inserted into the

second position.

• LLH18: selects a random day, two different random truck routes, and two random

positions. A block of consecutive requests starting at the first position is swapped

with another block of requests starting at the second position. The size of the block

is randomly selected.

• LLH19: selects two different random days, a random truck route on each day,

and two random positions on each route. A block of visits starting at each of the

positions are swapped with each other.

• LLH20: selects a random day and two different random technicians, and swaps

two blocks of requests for these technicians.

• LLH21: selects two random different days and two random technicians from each

day, and swaps two blocks of requests of these technicians.

• LLH22: selects a random day, and two different random truck routes. A block

of requests is moved from the first route to the second route at randomly selected

positions.

136

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 137

• LLH23: selects two different random days and two random truck routes. A block

of requests is moved from the first route to the second route at a randomly selected

positions.

• LLH24: selects a random day and two different random technicians, and moves a

block of requests from the first technician to the second technician.

• LLH25: selects two different random days and two random technicians, and moves

a block of requests from the first technician to the second technician.

6.5 Experimental Results

The experiments for the heuristic method on the hidden dataset were performed on

a device with the specifications: Intel Core i5 at 2.3GHz with memory of 8GB. On

both datasets, the experiments were designed according to the competition rules, which

required nine runs per instance with nine different random seeds also determined by the

competition rules. The run time for each instance in both datasets was also calculated

according to the competition rules, where it has been specified that each instance is run

for a limited time on the user machine calculated with the formula: Tlimit = fb× (10 +

|R|), where Tlimit is the time limit for running an instance according to the user local

machine, fb is a factor calculated by a benchmark tool provided by the competition to

estimate the equivalent time on any machine compared to the organisers core machine,

and |R| is the number of delivery requests in the instance. The POHH algorithm involves

several design parameters that are set the by the user. To tune these parameters, a

manual approach is followed, where a series of extensive experiments were performed to

fine tune the design parameters. We arrived at a combination of parameter values that

resulted in a relatively better performance across a subset of public instances 5. The

values of these parameters are shown in table 6.2.

6.5.1 Results on the Small Dataset

The small dataset was tested on an exact mathematical model, specifically formulated

for this problem, and on our hyper-heuristic method. The details of the mathematical
5The parameters tuning was tested on another set of instances provided by the competition named

"Late dataset”. This set was published by the challenge organisers to help competitors test their solvers
before submitting them. The characteristics of this dataset are similar to the hidden dataset.

137

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 138

1 2 3 0 4 5

(a) Swap same tour

1 2 3 0 4 5

(b) Swap different tour

1 2 0 3 4

5 6 0 7 8

(c) Swap two trucks same day

1 2 3 0 4 5

(d) Insert same tour

1 2 3 0 4 5

(e) Insert different tour

1 2 0 3 4

5 6 0 7 8

(f) Insert different trucks, same day

T1 1 2 3 4 T2

(g) Swap same technician

T1 1 2 3 T2

T2 4 5 6 T2

(h) Swap two technicians same day

T1 1 2 3 4 T1

(i) Insert same technician

T1 1 2 3 T2

T2 4 5 6 T2

(j) Swap two technicians same day

1 2 0 3 4

5 6 0 7 8

(k) Swap tours same day

1 2 0 3 4

5 6 0 7 8

(l) Insert tour same day

Figure 6.3: Some selected low level heuristic descriptions. Blue and red arrows rep-
resent two different tours. Dashed arrows are edges removed by the application of the

low level heuristic

138

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 139

Table 6.2: The algorithm parameters and the chosen values

Parameter Tuning

Population size (popsize) 2-5
Limit on iterations without improvement 105

Naïve acceptance probability 0.1
RR factor (fr) starting value 10
Number of iterations to shuffle solutions 10

model are found in our work [201]. Table 6.3 provides the results of the small instances

dataset for the exact and the hyper-heuristic method. For the exact model, the upper and

lower bounds are provided for each instance. The lower bound indicates that an optimal

solution was not found for a particular instance. The results of the hyper-heuristic ex-

periments are reported in terms of the minimum and maximum objective values achieved

in the nine runs, the average of the nine runs and the standard deviation. The time in

seconds is the time that was required to find the reported results by the exact model,

and the time limit for each run of POHH. The time was normalised to its equivalent in

the standard machine using the calibration tool provided by the competition.

From Table 6.3 we can directly compare the performance of our algorithm to the results

of the exact model in terms of finding optimal solutions and the time required to find

them. By comparing the results of the exact model to the minimum value in the nine

runs, POHH was able to find the optimal solutions in twelve instances. These are the

same set of instances where the exact model successfully found an optimal solution . In

the other cases where no optimal solution was proved by the exact model, the POHH

algorithm either found the same upper bound or better than this upper bound in seven

instances cases. A feasible solution for Small_09 was found, while the exact model failed

to find any feasible solution for this instance. Although the POHH algorithm was able

to find the exact upper bound found by the exact model in many instances cases, we

cannot argue with certainty that this solution is the optimal solution of these instances.

In terms of run time, POHH achieved improved run times in most of the cases. The exact

model in many instances required more than 3000 seconds to find a solution, while POHH

required less than 30 seconds on these instances. The run time for the small instances

was calculated using the competition rules and ranged between 16 to 26 seconds. The

POHH algorithm was able to find better results in some instances than the lower bound

found by the exact model in this short duration of time.

139

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 140

T
a
bl

e
6.

3:
Su

m
m
ar
y
of

th
e
re
su
lt
s.

T
he

ta
bl
e
sh
ow

s
up

pe
r
bo

un
d
(o
r
op

ti
m
um

),
lo
w
er

bo
un

d
(i
f
no

t
op

ti
m
um

),
pe

rc
en
tu
al

de
vi
at
io
n,

so
lu
ti
on

ti
m
e
(i
n
se
co
nd

)

C
P
LE

X
G
ur
ob

i
P
O
H
H

In
st
an

ce
U
pp

er
B
ou

nd
Lo

w
er

B
ou

nd
D
ev
ia
ti
on

T
im

e
U
pp

er
B
ou

nd
Lo

w
er

B
ou

nd
D
ev
ia
ti
on

T
im

e
M
in

M
ax

A
vg

St
d

T
im

e

Sm
al
l_

01
36

,0
16

,0
20

5
36

,0
16

,0
20

0
36

,0
16
,0
20

36
,0
16

,0
20

36
,0
16

,0
20

0
16

Sm
al
l_

02
1,
78

6,
43

0
10

1,
78

6,
43

0
2

1,
78

6,
43

0
1,
78

6,
52

0
1,
78

6,
44
0

30
18

Sm
al
l_

03
32

,0
85

,9
00

14
,4
42

,7
00

55
1,
80

0
32

,0
85

,8
00

21
,4
61

,1
79

33
1,
80

0
32

,0
85

,8
00

32
,0
86

,0
00

32
,0
85

,9
22

83
20

Sm
al
l_

04
18

,8
16

,3
47

14
,8
25

,6
29

21
1,
80

7
18

,8
16

,3
47

1,
79

7
18

,8
16

,3
47

18
,8
16

,5
55

18
,8
16

,3
93

92
22

Sm
al
l_

05
12

8,
02

5,
35

6
11

2,
61
3,
26

4
12

1,
80

0
12

8,
12

4,
70

0
11

2,
49

0,
05

6
12

1,
80

0
12

8,
01

4,
70

0
12

8,
01

5,
35

6
12

8,
01

5,
03

4
23

7
24

Sm
al
l_

06
18

0,
52

4
15
4,
91

0
14

1,
80

5
18

0,
52

4
17

1,
93

1
5

1,
80

0
18

0,
52

4
18

0,
52

4
18

0,
52

4
0

26
Sm

al
l_

07
23

9,
35

0,
70

0
92

23
9,
35

0,
70

0
27

23
9,
35
0,
70

0
23

9,
35

0,
70

0
23

9,
35

0,
70

0
0

16
Sm

al
l_

08
66

,8
77

,0
75

34
,3
78

,1
56

49
1,
80

0
66

,8
77

,0
75

40
8

66
,8
77

,0
75

66
,8
78

,0
40

66
,8
77

,8
26

42
6

18
Sm

al
l_

09
In
fe
as
ib
le

So
lu
ti
on

1,
80

0
In
fe
as
ib
le

So
lu
ti
on

1,
80

0
1,
07

3,
41

0
1,
07

3,
51

0
1,
07

3,
42

1
33

20
Sm

al
l_

10
13

3,
88

7,
78

0
13

3,
87
3,
62

7
0

1,
80

0
13

3,
88

7,
78

0
27

0
13

3,
88

7,
78

0
13

3,
88

7,
79

0
13

3,
88

7,
78
9

3
22

Sm
al
l_

11
53

7,
21

2,
50

5
34

1,
63
2,
54

0
36

1,
80

0
53

7,
61

3,
73

0
36

3,
03

7,
03

0
32

1,
80

0
53

7,
21

2,
50

5
53

7,
21

3,
82

0
53

7,
21

2,
86

6
57

7
24

Sm
al
l_

12
16

,2
09

,0
60

6,
57

0,
85

4
59

1,
80

0
16

,2
05

,4
55

6,
52

8,
67

6
60

1,
80

0
16

,2
03

,4
35

16
,2
05

,3
95

16
,2
04

,9
49

58
1

26
Sm

al
l_

13
22

1,
51

4,
23

0
20

2
22

1,
51

4,
23

0
36

7
22

1,
51

4,
23

0
22

1,
51

4,
23

0
22

1,
51

4,
23

0
0

16
Sm

al
l_

14
21

1,
98

0
10
1,
86

6
52

1,
80

2
21

2,
00

5
11

3,
93

0
46

1,
80

0
21

1,
98

0
21

2,
08

0
21

2,
00

3
35

18
Sm

al
l_

15
2,
14

8,
16

5
12

2
2,
14

8,
16

5
33

2,
14
8,
16

5
2,
15

1,
98

0
2,
14

9,
31

2
1,
44

2
20

Sm
al
l_

16
33

3,
41

6,
76

0
13

8,
66
1,
46

7
58

1,
80

0
33

3,
41

6,
76

0
15

8,
24

1,
50

3
53

1,
80

0
33

3,
41

6,
76

0
33

3,
42

2,
70

0
33

3,
41

8,
47

3
2,
20

3
22

Sm
al
l_

17
75

8,
62

0
61
5,
96

1
19

1,
81

0
75

8,
62

0
66

0,
24

5
13

1,
80

0
75

8,
62

0
75

8,
62

0
75

8,
62

0
0

24
Sm

al
l_

18
48

0,
11

8,
51

0
19

4,
47
0,
46

7
59

1,
84

2
47

9,
81

8,
89

0
21

9,
95

8,
62

5
54

1,
80

0
47

9,
81

7,
74

0
47

9,
82

1,
39

0
47

9,
81

9,
45

3
96

9
26

Sm
al
l_

19
87

7,
96

0
7

87
7,
96

0
0

87
7,
96

0
87

8,
32

0
87

8,
08

0
18

0
16

Sm
al
l_

20
1,
76

3,
63

0
1,
41

3,
94

9
20

1,
80

2
1,
76

3,
63

0
52

8
1,
76

3,
63

0
1,
76

6,
94

5
1,
76

4,
36

7
1,
46

2
18

Sm
al
l_

21
1,
07

4,
74

8
89

3,
16

1
17

1,
80

2
1,
07

4,
74

8
1,
25

5
1,
07

4,
74

8
1,
07

4,
74

8
1,
07

4,
74

8
0

20
Sm

al
l_

22
8,
32

6,
84

0
6,
88

0,
39

9
17

1,
80

2
8,
32

6,
84

0
7,
54

2,
24

5
9

1,
80

0
8,
32

6,
84

0
8,
32

6,
84

0
8,
32

6,
84

0
0

22
Sm

al
l_

23
35

,4
99

,5
70

23
,5
17

,4
76

34
1,
80

2
35

,4
99

,5
70

27
,9
66

,6
20

21
1,
80

0
35

,4
99

,5
39

35
,4
99

,5
80

35
,4
99

,5
63

19
24

Sm
al
l_

24
18

2,
07

3,
28

0
13

0,
14
2,
46

9
29

1,
80

5
18

2,
07

3,
28

0
13

2,
73

8,
15

6
27

1,
80

0
18

2,
07

2,
65

0
18

2,
09

9,
93

0
18

2,
07

6,
69

7
8,
77

8
26

Sm
al
l_

25
3,
49

9,
19

0
78

5
3,
49

9,
19

0
10

3,
49
9,
19

0
3,
49

9,
19

0
3,
49

9,
19

0
0

16

140

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 141

6.5.2 Results on Hidden Dataset

As mentioned previously, the hidden dataset was used to assess the competitors’ algo-

rithms in the restricted resources challenge, and according to the results of this challenge,

eight teams were selected as finalists. We have followed the same competition rules as

the other teams who were qualified as finalists with this set of experiments, to fairly

compare and justify our results to the finalists of the competition.

Table 6.4 summarises the results of the top six teams, including our hyper-heuristic

approach, for each instance ranked based on their best found solution from best to

worst. For each instance, the results are reported for the best six teams out of nine using

the average of the nine runs and the minimum objective value.

Considering the minimum and average objective values obtained over nine runs for each

hidden instance, POHH is relatively competitive between the finalists. The POHH

achieved a position in the top six in 15 instances out of 25. For 11 out of 25 instances,

including: Hidden_02, Hidden_07, Hidden_09, Hidden_11, Hidden_13, Hidden_16,

Hidden_17, Hidden_19, Hidden_21, Hidden_22, Hidden_25, POHH performs better

than at least half of the finalist approaches in terms of average objective value. Except

the instances Hidden_13 and Hidden_17, the same phenomena is observed with those

instances with respect to the minimum objective values. The best achieved results are

found on instances Hidden_07, Hidden_11, Hidden_16, and Hidden_21, where POHH

is ranked the fourth based on both the average and the minimum objective values. These

instances are all of different sizes: 150, 450, 600, and 750 requests, reflecting the ability

of POHH to perform well on instances with varying characteristics and complexities.

We have also ranked our approach amongst the eight finalists using the same method

used in the competition. A ranking score is calculated per instance for each submitted

solver by removing the two best and worst solutions found by this solver. We then take

the average objective value of these five solutions as score for the algorithm, and rank

all methods accordingly. The average of all ranking scores for the instances represents

the final mean rank of the solver, which was used to order the competitors from the first

to the last. Figure 6.4 displays the ranking of the POHH algorithm among the eights

finalists based on this method. It is clearly seen that our method was able to produce

results competitive with the finalists by achieving a better final mean rank than three

teams, and an insignificant difference from the ranks of the third team [39], fourth, and

fifth teams.

141

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 142

UO
S

M
JG

Co
ka
Co
de
rs

or
lab

TC
SE
xp
lor
er

PO
HH

AA
VK

wa
nd
ere
r

jus
tF
all

2.0

4.0

6.0

Figure 6.4: Mean ranks of the finalists teams and the POHH algorithm computed
according to the competition rules

Although the proposed algorithm did not succeed in improving any current best known

solutions on hidden instances, it performed well (see Section 6.5.1) on small instances

with few requests, and the results on the hidden instances are considered reasonably

good.

6.5.3 Performance Analysis of POHH

Figure 6.5 visualises the six sample instances, including Small_01, 03, 06 and Hidden_01,

03, 06 that we used for the analysis purposes, reflecting the varying characteristics of each

instance. These instances were arbitrarily chosen to represent varying sizes from each

of the data sets. Yellow locations indicated by small circles have technicians, and they

might or might not have requests. Green locations have requests, but no technicians.

The location of the depot is coloured in light blue, which might have technicians. Each

location is shown with different sizes (diameters). The large diameter is used when the

location is open. The depot is open throughout the planning horizon and each request

location is open on the days specified. The figure shows only the beginning of day 1 of

each instance. Figure 6.5 also shows semi-transparent green circles around the locations

with technicians. The radius of these circles is equal to the half of the maximum daily

distance of the corresponding technician. Because these circles are semitransparent,

overlap leads to a darker colour, making visually clear which customer locations are

within reach of few or many technicians. One may notice from the clustering, for example,

as for Hidden_06, that the locations are making the shape of the Netherlands. This

implies that these are indeed based on real-world data of locations offered by ORTEC.

142

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 143

T
a
bl

e
6.

4:
T
he

pe
rf
or
m
an

ce
co
m
pa

ri
so
n
of

th
e
fin

al
is
ts

an
d
P
O
H
H
,
ba

se
d
on

th
e
av
er
ag
e,

an
d
m
in
im

um
of

th
e
ob

je
ct
iv
e
va
lu
es

ov
er

9
ru
ns

fo
r
ea
ch

in
st
an

ce
.
T
he

to
p
si
x
m
et
ho

ds
pe

r
ea
ch

in
st
an

ce
ar
e
re
po

rt
ed

an
d
be

st
va
lu
es

ar
e
hi
gh

lig
ht
ed

in
bo

ld

In
st
an

ce
T
ea
m

M
in

A
vg

In
st
an

ce
T
ea
m

M
in

A
vg

In
st
an

ce
T
ea
m

M
in

A
vg

H
id
de
n_

01

U
O
S

67
30
30
70

67
34
75
10
.0

H
id
de
n_

10

U
O
S

31
42
54
20

31
61
51
72
.8

H
id
de
n_

19

U
O
S

43
79
06
22
60

43
79
50
32
11
.1

M
JG

67
53
91
60

67
76
88
41
.7

M
JG

32
13
49
70

32
40
60
70

M
JG

43
79
59
96
20

43
84
26
51
71

C
ok
aC

od
er
s

67
93
64
10

68
23
91
28
.3

T
C
SE

xp
lo
re
r

35
60
23
50

36
29
68
00

C
ok
aC

od
er
s

43
85
51
47
20

44
16
09
41
13

A
A
V
K

68
04
92
30

68
49
74
76
.7

C
ok
aC

od
er
s

41
95
11
25

44
03
74
71
.7

or
la
b

43
90
90
85
75

43
97
11
62
98

or
la
b

68
05
93
55

68
53
10
90
.6

or
la
b

42
55
75
50

43
11
09
00
.6

P
O
H
H

44
00
63
34
65

44
33
56
27
86

T
C
SE

xp
lo
re
r

68
06
77
05

68
66
92
80

P
O
H
H

44
75
73
90

46
97
11
26
.1

ju
st
Fa

ll
44
15
78
77
35

44
60
77
55
75

H
id
de
n_

02

U
O
S

86
67
80
48
5

88
43
28
83
8.
3

H
id
de
n_

11

U
O
S

40
52
06
36
33

41
43
46
47
03

.2

H
id
de
n_

20

U
O
S

12
60
20
89
0

12
71
17
75
8.
9

M
JG

87
86
98
33
5

88
75
83
73
0

M
JG

41
04
06
57
29

41
50
82
55
22

M
JG

12
82
20
28
5

13
00
04
86
1.
7

T
C
SE

xp
lo
re
r

94
07
55
82
0

96
66
44
28
3.
9

T
C
SE

xp
lo
re
r

44
90
01
05
35

45
73
69
20
86

T
C
SE

xp
lo
re
r

13
87
50
81
5

14
14
89
97
1.
1

C
ok
aC

od
er
s

97
88
77
27
0

99
29
70
72
9.
3

P
O
H
H

47
92
05
12
26

49
47
60
33
79

C
ok
aC

od
er
s

14
31
90
18
0

14
60
78
60
6.
1

P
O
H
H

99
97
03
12
5

10
70
46
55
86

ju
st
Fa

ll
49
33
45
40
22

51
24
24
06
33

or
la
b

16
45
37
16
0

16
77
08
53
2.
2

ju
st
Fa

ll
11
78
70
97
70

12
89
90
55
08

A
A
V
K

50
50
88
06
06

51
76
96
34
02

P
O
H
H

17
15
03
82
0

17
75
38
15
1.
1

H
id
de
n_

03

U
O
S

13
53
07
06
85

13
56
20
66
83
.3

H
id
de
n_

12

U
O
S

29
85
07
98
95

29
88
91
93
25

.0

H
id
de
n_

21

U
O
S

33
04
12
55

33
21
72
40
.6

M
JG

13
58
87
59
10

13
63
98
93
63

M
JG

29
85
60
83
15

29
89
29
97
54

M
JG

33
31
34
60

33
87
10
58
.9

C
ok
aC

od
er
s

13
62
27
37
45

13
74
38
39
89

C
ok
aC

od
er
s

29
98
13
77
85

30
62
70
95
53

T
C
SE

xp
lo
re
r

35
52
59
50

36
04
80
57
.8

or
la
b

13
65
24
34
50

13
73
09
23
83

or
la
b

30
20
44
17
65

30
30
70
31
93

A
A
V
K

38
11
96
85

38
84
54
31
.7

A
A
V
K

13
88
16
22
20

13
94
94
79
55

w
an

de
re
r

30
56
71
13
65

30
59
28
15
02

P
O
H
H

38
34
72
05

38
83
96
38
.3

ju
st
Fa

ll
13
89
70
03
90

14
07
15
69
49

ju
st
Fa

ll
30
72
29
98
75

30
86
84
69
59

ju
st
Fa

ll
40
03
67
85

41
36
69
46
.1

H
id
de
n_

04

M
JG

53
54
04
5

53
82
92
8.
3

H
id
de
n_

13

U
O
S

52
37
95
52
46

52
39
09
02
35

.3

H
id
de
n_

22

M
JG

66
42
53
5

66
77
29
8.
3

U
O
S

54
07
02
0

54
70
82
3.
3

M
JG

52
43
44
41
73

52
70
92
47
84

U
O
S

67
00
25
0

67
50
35
4.
4

T
C
SE

xp
lo
re
r

57
82
48
0

59
73
58
1.
1

C
ok
aC

od
er
s

52
51
32
25
98

52
67
09
74
65

T
C
SE

xp
lo
re
r

69
86
00
0

70
20
10
8.
9

A
A
V
K

60
53
94
5

61
22
06
0

or
la
b

52
73
03
23
83

53
00
09
52
33

A
A
V
K

74
73
11
5

75
75
48
7.
8

or
la
b

62
58
02
0

64
09
90
8.
3

ju
st
Fa

ll
52
84
25
11
62

53
22
43
09
64

P
O
H
H

76
71
39
0

78
31
16
2.
8

P
O
H
H

67
50
24
5

68
12
89
7.
2

P
O
H
H

52
89
27
15
53

53
12
24
07
54

or
la
b

77
77
35
0

78
96
45
0.
6

H
id
de
n_

05

U
O
S

24
20
66
82
37

24
38
94
38
61
.4

H
id
de
n_

14

U
O
S

13
78
86
30
50

13
80
53
10
68

.9

H
id
de
n_

23

C
ok
aC

od
er
s

22
34
16
96
59
0

22
37
44
78
80
3

M
JG

24
61
21
97
26

24
72
45
27
59

or
la
b

13
85
37
07
25

13
92
17
20
54

U
O
S

22
34
22
74
61
5

22
36
85
03
38
0.
6

C
ok
aC

od
er
s

27
93
12
65
94

28
24
64
19
10

C
ok
aC

od
er
s

13
85
51
43
90

13
87
32
32
13

M
JG

22
47
31
52
46
0

22
48
91
58
01
8

T
C
SE

xp
lo
re
r

28
73
81
10
43

29
00
84
97
94

M
JG

13
86
07
19
05

13
89
98
71
12

or
la
b

22
56
47
06
60
5

22
64
43
43
33
4

w
an

de
re
r

34
63
49
60
82

34
63
49
60
82

A
A
V
K

13
94
88
48
65

14
03
51
16
03

ju
st
Fa

ll
22
80
36
50
61
5

22
94
63
41
90
3

or
la
b

34
89
05
01
12

35
82
19
52
47

ju
st
Fa

ll
13
99
90
87
10

14
14
35
89
00

A
A
V
K

22
94
67
75
35
5

23
02
18
77
31
1

H
id
de
n_

06

M
JG

32
91
95
90

32
95
05
87
.2

H
id
de
n_

15

U
O
S

16
36
46
89
0

16
38
61
01
5.
0

H
id
de
n_

24

U
O
S

31
35
04
67
42
5

31
37
37
81
56
6.
1

U
O
S

33
03
52
55

33
12
29
41
.7

or
la
b

16
49
86
37
0

16
55
39
96
5.
6

C
ok
aC

od
er
s

31
38
61
37
72
5

31
44
19
05
91
8

or
la
b

33
24
31
00

33
31
01
87
.2

M
JG

16
54
42
97
0

16
57
46
73
2.
2

or
la
b

31
45
74
61
92
5

31
55
48
67
01
4

A
A
V
K

33
53
74
75

33
64
26
95

A
A
V
K

16
65
59
14
0

16
71
09
47
3.
3

M
JG

31
50
25
15
08
0

31
57
95
29
47
2

T
C
SE

xp
lo
re
r

33
73
04
30

33
79
88
83
.1

w
an

de
re
r

16
72
71
78
5

16
72
71
78
5

ju
st
Fa

ll
31
91
52
58
83
0

32
10
20
01
06
6

w
an

de
re
r

33
79
91
40

33
79
91
40

T
C
SE

xp
lo
re
r

16
85
23
76
5

16
88
89
35
4.
4

w
an

de
re
r

31
94
57
01
19
5

31
94
75
45
55
3

H
id
de
n_

07

U
O
S

10
20
98
25
0

10
22
89
61
4.
4

H
id
de
n_

16

M
JG

52
73
00
75

52
86
05
56
.7

H
id
de
n_

25

U
O
S

54
95
05
25
5

54
98
54
75
6.
1

M
JG

10
23
75
74
5

10
30
05
78
0.
6

U
O
S

53
23
26
15

53
56
14
70
.6

M
JG

55
27
35
11
0

56
30
54
91
4.
4

C
ok
aC

od
er
s

10
75
48
42
0

11
08
18
25
8.
9

T
C
SE

xp
lo
re
r

58
75
04
40

59
28
63
28
.3

C
ok
aC

od
er
s

58
67
71
94
0

60
58
19
27
3.
9

P
O
H
H

10
81
98
34
0

10
96
34
30
4.
4

P
O
H
H

59
86
16
45

60
49
98
87
.8

T
C
SE

xp
lo
re
r

61
11
02
85
5

62
14
90
48
8.
9

T
C
SE

xp
lo
re
r

10
83
08
89
5

11
03
59
08
4.
4

ju
st
Fa

ll
61
17
65
75

63
03
61
33
.3

P
O
H
H

62
52
93
11
0

65
23
32
91
6.
1

ju
st
Fa

ll
12
14
95
53
5

13
28
36
49
8.
3

A
A
V
K

61
62
60
85

63
62
49
53
.9

or
la
b

65
94
88
50
0

67
88
96
69
3.
9

H
id
de
n_

08

U
O
S

72
87
84
05
5

72
94
62
82
0.
6

H
id
de
n_

17

U
O
S

27
30
10
86
59
2

27
32
20
51
46
3.
0

M
JG

72
95
88
32
5

73
27
33
35
7.
2

M
JG

27
38
71
59
37
6

27
42
63
39
74
3

C
ok
aC

od
er
s

73
49
07
04
0

73
77
40
39
5

C
ok
aC

od
er
s

27
39
62
84
27
3

27
99
69
89
61
1

or
la
b

73
52
03
67
5

73
70
68
94
8.
3

or
la
b

27
48
61
27
71
3

27
52
52
38
09
7

A
A
V
K

74
30
77
79
0

75
03
19
37
0.
6

ju
st
Fa

ll
27
71
78
56
05
2

27
82
25
17
27
7

ju
st
Fa

ll
74
66
51
03
0

75
73
87
19
2.
2

P
O
H
H

27
86
73
05
05
0

27
91
47
47
56
0

H
id
de
n_

09

U
O
S

16
92
62
75
37

17
13
90
96
34
.1

H
id
de
n_

18

M
JG

52
60
24
50

52
65
80
13
.3

M
JG

17
32
57
07
44

17
46
68
31
52

U
O
S

52
92
19
95

53
04
06
23
.3

C
ok
aC

od
er
s

18
84
28
28
90

19
39
89
77
18

A
A
V
K

54
77
81
15

55
31
34
27
.2

T
C
SE

xp
lo
re
r

19
64
62
13
85

20
33
48
53
72

T
C
SE

xp
lo
re
r

54
90
66
55

55
13
64
75

P
O
H
H

23
75
66
65
12

24
39
42
72
49

ju
st
Fa

ll
55
10
89
40

58
26
86
98
.3

ju
st
Fa

ll
25
09
94
46
03

26
39
80
89
47

P
O
H
H

55
58
51
00

56
05
26
86
.1

143

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 144

Small_01 Small_03

0 200 400 600 800

200

300

400

500

600
 0@1

200 300 400 500 600 700 800

250

300

350

400

450

500

550

600

650

 0@6

Small_06 Hidden_01

200 0 200 400 600 800

200

300

400

500

600

700 0@1

0 200 400 600 800

200

300

400

500

600

700 0@4

Hidden_03 Hidden_06

200 0 200 400 600 800 1000

100

200

300

400

500

600

700 0@18

200 0 200 400 600 800 1000

100

200

300

400

500

600

700 0@7

Figure 6.5: Visualisation of sample instances

Although Figure 6 gives a rough picture of those instances (e.g. some instances are more

limiting in terms of number and action radius of technicians), we must emphasise that

it does not describe a given problem instance fully. For example, the importance of

violating a given constraint is not depicted and, as we mentioned before, penalties for

violating the different constraints can differ substantially as a part of the cost function.

The pie charts in Figure 6.6 depict the utilisation rates of the different selection hyper-

heuristics applied in our framework. The utilisation is calculated in terms of the ratio

between the number of times a selection hyper-heuristic was successful in finding an

improved solution over the best global solution to the total number of improvements

made by all the selection hyper-heuristics in the duration of run time.

144

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 145

There are particular selection hyper-heuristic methods that clearly performed better

than the rest in making improvements to the solutions during the search process. The

incorporation of the RR-based selection hyper-heuristics in the POHH appears to play a

key role of solving the problem in a relatively effective manner, in particular SS-RR which

performed equally well in the small and hidden datasets. SR-GD was very successful in

the larger size instances, where 50% of the improvement rate was achieved by SR-GD in

Hidden_06 that has 900 requests. The least successful selection hyper-heuristics are the

ones combined with the simulated annealing acceptance. The utilisation of SR-SA was

very insignificant (' 0%) in all instances, except for a small improvement rate of 5% in

Small_03. Also, SS-SA did not make much contribution in terms of improvement for

the hidden set. The naïve acceptance is more successful for the small instances than the

larger ones, but only when it is combined with the sequence based selection method.

There seems to be a variation in the performance between the selection hyper-heuristics

in instances with different complexities, and we cannot generalise that a certain combi-

nation of a selection and move acceptance methods would be successful in every instance

in this problem. An interesting idea would be to embed a high-level intelligent control

mechanism that can observe these variations, and apply the components of selection

hyper-heuristics accordingly during the search time, similar to the online selection meth-

ods. The random selection criteria that we apply currently in our framework was able

to find ‘reasonable’ results as reported, and we expect that the suggested improvements

in the selection mechanism could yield even better results.

6.5.4 Performance Comparison to the Constituent Hyper-heuristics

Another round of experiments have been conducted by applying the eight selection hyper-

heuristics employed in our framework independently on the instances displayed in Fig-

ure 6.5. Each selection hyper-heuristic was run for nine times using the same rules to

calculate the run time of an instance set by the competition and described in section 6.5.

The results are displayed in table 6.5 using the best and average objective values from the

nine runs of each individual selection hyper-heuristic, along with the associated standard

deviation. The best minimum and average objectives on each instance is highlighted in

bold. The Mann–Whitney–Wilcoxon test is performed with a 95% confidence level in

order to compare pairwise performance variations of two given algorithms statistically.

The following notations are used: (i) ‘+’ denotes that our algorithm (POHH) is better

145

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 146

Small_01 Small_03 Small_06

Hidden_01 Hidden_03 Hidden_06

SS-RR
SS-GD
SS-SA
SS-Naïve
SR-RR
SR-GD
SR-SA
SR-Naïve

29%

11%

4%

23%

11%

11%

11%
21%

12%

19% 19%

19%

5%5%

21%

13%

3% 11%
26%

13%

13%

39%

9%

37%

15% 22%

21%
22%

26%

9%

35%

11%

50%

4%

Figure 6.6: Average utilisation rate

and this performance variance is statistically significant, (ii) ‘-’ denotes that the perfor-

mance of POHH is worse and this performance variance is statistically significant, (iii)

‘=’ indicates that there is no statistical significant between the two methods.

The POHH algorithm performed statistically better than each of the individual selection

hyper-heuristics used in our framework for all instances, except Hidden_03, where the

two methods SR-RR and SS-RR found slightly better averages and performed statisti-

cally better. Other than those two cases, the POHH algorithm found the best averages

and minimum values in all instances, performing exceptionally better in particular on the

largest instance of Hidden_06. This provides evidence for the success of two proposals:

1) utilising multiple solutions allows better exploration of the search space and therefore

more possibilities for further improvement in new areas in the search space, instead of fo-

cusing on a single solution which means that the improvement will intensify for a specific

area of the search space; 2) applying a sequence of selection hyper-heuristics to a solution

might be useful in utilising the varying performances of these selection hyper-heuristics

and their characteristics. For instance switching from simple selection to online learning

by sequences might potentially improve the solution by randomly selecting and applying

a heuristic that can find an improvement, and was rather applied as part of a sequence.

The opposite is also true in finding the strength of some heuristics that can perform

better by being part of a sequence instead of applying them individually. The combined

application of these varying characteristics can lead the search into different directions

146

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 147

that can yield further improvement. An important future direction to this algorithm

would be how to intelligently apply these hyper-heuristic components, to understand the

combinations and the sequence of their application that can find the best improvement.

6.6 Summary

In this chapter, we tackled a complex VRP problem which was the subject of the fourth

edition of the VeRoLog solver challenge (2019). The challenge consisted of a novel VRP

problem comprising two interdependent stages: a capacitated VRP problem with time

windows (CVRPTW) for delivering various equipment to customers on their requests,

and a service technician routing and scheduling problem (STRSP) for the installation

of the delivered equipment. We propose a hyper-heuristic approach and apply it to

the set of instances supplied by the competition organisers, and also to another small

set of generated test instances. We introduce a novel population-based hyper-heuristic

algorithm (POHH) to solve the problem, which was proved to be successful compared to

the results of an exact model specifically formulated for this problem, insofar as optimal

solutions where found in shorter computational times. Additionally, the POHH algorithm

results were compared to the results of the eight finalists of the competition. Our analysis

showed that the proposed POHH algorithm performs better than the constituent hyper-

heuristics when tested individually for most of the instances.

147

Chapter 6. Population-Based Hyper-heurstic for the Delivery and Installation of
Equipment 148

T
a
bl

e
6.

5:
T
he

pe
rf
or
m
an

ce
co
m
pa

ri
so
n
of

P
O
H
H
,
SS

-R
R
,
SS

-G
D
,
SS

-S
A
,
SS

-N
aï
ve
,
SR

-R
R
,
SR

-G
D
,
SR

-S
A

an
d
SR

-N
aï
ve

ba
se
d
on

th
e
av
er
ag
e
(A

vg
),

as
so
ci
at
ed

st
an

da
rd

de
vi
at
io
n
(S
td
),

m
in
im

um
(M

in
)
of

th
e
ob

je
ct
iv
e
va
lu
es

ov
er

9
tr
ia
ls

an
d
th
e
pa

ir
w
is
e
av
er
ag
e

pe
rf
or
m
an

ce
co
m
pa

ri
so
n
of

P
O
H
H

vs
(S
S-
R
R
,S

S-
G
D
,S

S-
SA

,S
S-
N
aï
ve
,S

R
-R

R
,S

R
-G

D
,S

R
-S
A

an
d
SR

-N
aï
ve
)
ba

se
d
on

M
an

n-
W

hi
tn
ey
-

W
ilc
ox
on

fo
r
ea
ch

in
st
an

ce
pr
od

uc
ed

by
ea
ch

ap
pr
oa
ch
.
T
he

hy
pe

r-
he
ur
is
ti
c
pr
od

uc
in
g
th
e
be

st
va
lu
e
fo
r
A
vg

an
d
M
in

pe
r
ea
ch

in
st
an

ce
ar
e
hi
gh

lig
ht
ed

in
bo

ld

Sm
al
l_

01
Sm

al
l_

03
Sm

al
l_

06

M
et
ho

d
vs

A
vg

St
d

M
in

vs
A
vg

St
d

M
in

vs
A
vg

St
d

M
in

P
O
H
H

=
36

01
60

20
0

36
01

60
20

=
32

08
59

22
83

32
08

58
00

=
18

05
24

0
18

05
24

SS
-R

R
=

36
01

60
20

0
36

01
60

20
+

32
08

72
51

85
8

32
08

58
00

+
24

72
13

49
51

3
18

05
24

SS
-G

D
=

36
01

60
20

0
36

01
60

20
+

32
09

41
42

30
88

32
08

90
68

+
20
09

11
20

55
19

85
15

SS
-S
A

=
36

01
64

33
62

0
36

01
60

20
+

32
11

44
32

92
90

32
09

82
39

+
21
12

80
33

17
20

69
96

SS
-N

aï
ve

=
36

01
60

20
0

36
01

60
20

+
32

08
78

68
11

10
32

08
66

96
+

18
39

22
64

9
18

28
88

SR
-R

R
+

36
01

68
47

62
0

36
01

60
20

+
32

08
65

00
53
3

32
08

58
00

+
28

02
21

0
28

02
21

SR
-G

D
=

36
01

62
19

39
5

36
01

60
20

+
32

09
22

12
10

04
32

09
07

60
+

19
94

64
24

66
19

66
66

SR
-S
A

+
36

01
67

32
55

4
36

01
60

20
+

32
10

98
15

56
90

32
10

48
80

+
21
00

99
28

83
20

58
00

SR
-N

aï
ve

=
36

01
60

20
0

36
01

60
20

+
32

08
64

80
46
2

32
08

59
00

+
18

30
29

10
56

18
21
61

H
id
de

n_
01

H
id
de

n_
03

H
id
de

n_
06

M
et
ho

d
vs

A
vg

St
d

M
in

vs
A
vg

St
d

M
in

vs
A
vg

St
d

M
in

P
O
H
H

=
68

68
33

39
29

05
45

68
15

12
65

=
14

10
41

17
98

53
53

65
9

13
99

41
88

90
=

34
15

72
64

10
66

66
34

00
87

05
SS

-R
R

+
69

19
70

55
31

12
73

68
91

76
15

-
13

89
61

70
07

34
67

53
9
13

81
43

11
85

+
36

40
94
77

75
94

1
36

31
34

20
SS

-G
D

+
85

78
26

96
77

88
92

84
21

88
65

+
18

15
33

99
12

13
78

34
73

17
91

02
66

50
+

41
74

26
50

25
14

35
41

23
51

55
SS

-S
A

+
86

55
44

67
65

74
40

85
33

32
50

+
18

02
31

09
46

18
41

75
76

17
73

26
42

80
+

42
00

34
34

15
88

75
41

69
77

85
SS

-N
aï
ve

+
73

79
32

82
56
55

31
72

76
73

95
+

15
37

79
72

89
64

27
02

4
15

29
12

40
90

+
36

52
66

47
15

41
46

36
31

59
60

SR
-R

R
+

69
20

96
84

15
30

49
69

06
01

00
-
13

87
76

79
27

20
77

52
7

13
85

11
52

95
+

36
29

18
40

47
26

6
36

22
44

95
SR

-G
D

+
86
00

40
59

46
67

46
85

46
23

65
+

18
11

40
30

39
83

42
22

6
18

00
38

55
50

+
41

96
34

13
19

79
81

41
51

89
20

SR
-S
A

+
86

55
23

97
46
20

97
85

48
37

75
+

18
12

70
59

73
49

11
48

2
18

05
21

37
85

+
42

04
44

08
13

90
89

41
79

63
40

SR
-N

aï
ve

+
74

07
69

52
43

79
30

73
14

49
95

+
15

27
44

50
28

53
56

63
0

15
15

51
79

20
+

36
71

98
75

63
68

2
36

62
66

75

148

Chapter 7

Conclusion

7.1 Summary of Work

The goal of hyper-heuristics is to raise the level of generality by using methods that

are easy-to-implement, cheap-to-maintain, yet deliver excellent performance in different

problem domains. In this thesis, we explored a selection hyper-heuristic framework on

two versions of complex routing problems: the Urban Transit Route Design Problem

(UTRP), and the VeRoLog challenge 2019 vehicle routing problem for the delivery and

installation of equipment. We focused on specific concepts of the hyper-heuristic frame-

work and their contribution in improving solution quality and run time. Some of these

concepts include: online learning during selection, the selection of sequences of heuristics

rather than individual heuristics, the role of single-point based optimisation in improving

run times, and optimising multiple solutions during the search. These concepts have been

extensively tested and analysed in the two routing problems using benchmark instances

as well as larger instances with many real-world features.

In chapter 2 and 3, we introduced the basic concepts of the optimisation of difficult

combinatorial problems such as VRPs and defined the two routing applications that are

the core of the thesis. A comprehensive survey of the previous research of the UTRP

revealed some drawbacks in the commonly applied meta-heuristic methods, these are

the long run times associated with large instances, the lack of general methodologies for

solving instances of real world size, and the rare of studies that applied their algorithms

on real planning processes. We also introduced our selection hyper-heuristic framework,

explaining its features and its differences from other meta-heuristic algorithms such as its

general applicability to several problems and instances with minimal adaption, and the

149

Chapter 7. Conclusion 150

separation from any problem specific information by the domain barrier. We explained

online learning in hyper-heuristics selection using our proposed sequence based method

inspired by the transition between different states in the Hidden Markov Model. We

also outlined hyper-heuristics contribution in the domain of optimisation of complex

routing problems which is a field where hyper-heuristics proved its success and has been

widely applied. We also demonstrate that the implementation of hyper-heuristics on

the UTNDP is not yet investigated in the literature, and therefore the studies proposed

in this thesis provide the foundation for applying this framework on the UTNDP. In

the next paragraphs, we will provide a summary of how we have addressed the research

questions listed in chapter 1.

RQ1: How can a selection hyper-heuristic being a single-point based
framework succeed in overcoming the run time issues in population-
based methods while delivering high quality solutions in small as well
as large size instances

In chapter 4, we introduced our novel implementation of a selection hyper-heuristic al-

gorithm to solve the complex Urban Transit Route Design Problem (UTRP). Thirty

selection hyper-heuristics combining several known selection and move acceptance meth-

ods were tested and applied on a set of benchmark instances and their performances

were compared statistically to determine the best algorithm. After a series of experi-

ments from the perspective of passenger and operator and the statistical comparisons, the

sequence-based selection method combined with the great deluge acceptance method was

the most successful, outperforming other selection hyper-heuristics in both passenger and

operator objectives and proving the effectiveness of our applied online selection method.

The hyper-heuristic approach which has been applied to this particular problem for the

first time was very successful, beating the current known state-of-the art results in a very

reasonable run times. We have also shown that the run times of hyper-heuristics in the

larger instances were very short compared to other population-based meta-heuristics,

where we compared our results against key studies that applied population-based ap-

proaches and found that hyper-heuristics can perform in significantly less run time to

provide a single solution of high quality to large size instances.

150

Chapter 7. Conclusion 151

RQ2: How can we extend our implementation of the hyper-heuristic
framework to be applied on more complex versions of the UTRP and
on instances with real-world size and characteristics

In chapter 5, the developed selection hyper-heuristic algorithm described in chapter 4

was modified and adopted in two applications. The first is the application of the best

hyper-heuristic algorithm combining sequence based selection and the Great Deluge ac-

ceptance (SS-GD) to a more complex version of the UTRP that restricts the the start and

end of the routes to specific nodes (i.e., terminals) in the road network. We illustrated

the complexity of this version and the difficulty of finding feasible solutions compared to

the version described in chapter 4. Therefore careful design of the algorithm is required

to avoid generating too many infeasible solutions and to handle the presence of U-turn

points. An initialisation method based on the demand information is also proposed.

This method aims to include the edges with highest demand in the routes of the initial

solution, therefore improving its quality. Moreover, a specific set of low level heuristics

is implemented to preform operations while preserving the correct terminal constraints.

The algorithm was tested on a new set of instances representing the extended urban area

of Nottingham city. These instances were generated using the procedure described in

[84], and have real world size and characteristics, thus were ideal to test our methods.

The SS-GD algorithm was tested using several scenarios to find the best solutions from

the passenger and operator perspectives, and a set of solutions effectively balancing the

two objectives. A comparison of the SS-GD results using the three scenarios with the

Pareto front generated using a NSGAII framework revealed that our algorithm was suc-

cessful in finding solutions that clearly dominate the Pareto solutions generated by the

NSGAII. Furthermore, a comparison of the route sets generated by our algorithm was

conducted against real world route sets extracted from the operating bus routes in Not-

tingham city. We showed that our algorithm was also successful in improving the existing

real routes, where high reductions were observed in the average passenger travel time

and the percentage of direct travellers also improved. The findings of this study prove

that the hyper-heuristic approach which was tested as a proof of concept on benchmark

instances and succeeded in beating well known population-based meta-heuristics, can

also be modified and implemented on instances of real-world size and complexity while

continuing its success in generating high quality solutions from passengers and operators

perspective.

151

Chapter 7. Conclusion 152

RQ3: How can we bridge the gap between academic versions of the
UTRP and real-world transportation systems planning by integrating
the algorithms used to solve the UTRP theoretically with a commercial
software package used by transportation systems planners

In the second part of chapter 5, we tested hyper-heuristic on the optimisation of public

transport routes in the transport modelling software Visum. Visum software functions

were utilised to implement interface procedures that translate the differences between its

network model and the commonly applied UTRP model, and to design the evaluation

functions. Selection hyper-heuristics were tested using the simple random selection and

the sequence-based selection combined with Improve or Equal (IE) acceptance. Our al-

gorithms were integrated with the interface functions to translate Visum directed routes

into undirected routes suitable for applying our algorithm, and to implement the opti-

mised routes in a suitable format in the Visum network for evaluation. The objectives

were to minimise the passenger and the operator costs, where three optimisation sce-

narios were applied by normalising the objectives and adjusting their weight values: the

passenger, the operator, and the balanced perspectives. Two optimisation experiments

were conducted on two networks from Visum training examples, one of them represents

a real city: the global optimisation and the local optimisation. In the global optimi-

sation experiments, the three optimisation scenarios were tested on a small network

using the simple random and the sequence based selection methods. The experiments

showed the success of hyper-heuristics in achieving high reduction rates in both passenger

and operator costs. The performance difference between the two selection methods was

insignificant, although we preferred to apply the sequence based selection in the larger

network experiments as we observed that SSHH was able to find better solutions in fewer

iterations, which is crucial for testing larger size networks. In the global optimisation

experiments on a city-size network, hyper-heuristics continued the success with reduc-

tions in the operator cost up to 6%, and in the passenger up to 13%. In this network,

we applied only the balanced optimisation configuration, which is more suitable for a

real world planning process to generate route sets balancing the two costs. Additionally,

the local optimisation was tested on the city-size network, reducing the rate of private

car users on the targeted streets by up to 70%. This work shows the possibility to use

UTRP algorithms in real planning operations that are of practical use to transportation

systems planners, opening a wide range of opportunities to future research towards real-

world transportation systems planning using the algorithms that were exclusively used

in pure academic versions.

152

Chapter 7. Conclusion 153

RQ4: How can we generalise the application of hyper-heuristics on dif-
ferent domains of complex routing problems and prove its effectiveness
and computational efficiency

The final chapter discussed our solution methodology using a population-based hyper-

heuristic algorithm (POHH) which was deployed to solve the VeRoLog solver challenge

2019 problem. The challenge consisted of a novel VRP comprising two interdependent

stages: a Capacitated VRP with TimeWindows (CVRPTW) for delivering various equip-

ment to customers on their request, and a Service Technician Routing and Scheduling

Problem (STRSP) for the installation of the delivered equipment. We described the

problem and its constraints as proposed in the official challenge, and demonstrated the

complexity that lays in the interconnection between the two routing stages. The objec-

tives to be minimised are the total costs of the hiring and travelling of the trucks/tech-

nicians in a single day and during the planning period. Several data sets of varying

sizes and complexities were tested, which was essential to show the scalablity of our ap-

proach. The small size data set was designed specifically for the proposed work, while

the large data set named “Hidden data set” was supplied by the competition organisers

to test and rank the competitors algorithms. We proposed a novel problem-independent

population-based hyper-heuristic algorithm (POHH). The algorithm maintains a number

of solutions during the search, and a sequence of constituent selection hyper-heuristics

together with a large set of low level heuristics which are applied to one solution at

a time. The constituent hyper-heuristics have been proven to tackle a wide range of

problem domains [9, 202, 203].

The experiments were designed according to the competition rules in order to ensure

fairness when comparing our results with the results of the competition finalists. The

results from the first set of experiments on the small data set were compared with the

results of a mathematical model developed specifically for the problem. The results

showed that the POHH algorithm was able to find an optimal solution in all the instances

where an optimal solution was actually found by the exact model. Furthermore, the

POHH was able to find feasible solutions when the exact model failed to do so. These

results were achieved in notably less computational time compared to the exact model.

The comparison with the finalists results in the Hidden data set also showed that our

algorithm is competitive. The POHH achieved a position in the top six in 15 instances

out of 25 and found a mean rank that is better than three of the eight finalists. Finally, a

statistical comparison between the results of the POHH on a selected set of instances and

the results of the constituent selection hyper-heuristics each run individually has shown

153

Chapter 7. Conclusion 154

that the POHH results were statistically better in most of the instances. This proves that

the approach of utilising multiple solutions during the search, and applying a sequence of

selection hyper-heuristics to a single solution is successful and helps in better exploration

of the search space. In this work we showed that the hyper-heuristic framework succeeds

in finding improved results in short running times to such complex routing problem and

that the success of the framework continues to other routing problems in addition the

UTRP, which proves its general applicability to various complex routing applications.

7.2 Future Work

There are many future directions by which the work proposed in this thesis can be ex-

tended and improved, and here we discuss some of them. The application of the selection

hyper-heuristic framework on the UTRP was based on a simplified model assuming bi-

directional routes and symmetrical travel times and demand. The inital purpose was to

use a simplified and a commonly applied model from the literature to prove that our

approach, which was applied for the first time in the UTRP, is successful, and to allow

other researchers to directly compare to our results. Now that we have proved that our

algorithm is successful with efficient computational times in large scale instances, more

realistic features and assumptions can be added to this model. In terms of the objec-

tives, we can utilise more complex and effective functions in the calculations. In the

operator cost for example, we used a simple formula in all the UTRP versions handled

in the thesis. There are ways to represent this cost more realistically which will require

information about the fleet size and the capacity of each vehicle. Furthermore, we have

put some simplified assumptions for the waiting times by merging the waiting and the

transfer time in a single cost equal to 5 minutes. The waiting times are associated with

the routes’ headways and the frequency of vehicle arrivals which were not incorporated

in the design of our model, although we put forward some basic proposals for how we

can achieve this. Our model can be extended to optimise the frequencies simultaneously

with the routes, and accordingly calculate the waiting times in a more realistic way.

This will require the implementation of a demand assignment model to determine the

passengers flow in the network similar to the studies [86, 91, 94, 112]. Currently, our

assumption that the demand between any origin-destination points is static and does not

change throughout the day, and that the demand is symmetric. For future research, the

variations of the demand throughout the day or in different seasons [108] can be further

investigated and modelled as well as considering asymmetric demand. Additionally, the

154

Chapter 7. Conclusion 155

passenger route choice is based solely on the assumption that the passenger always se-

lects the shortest travel path. Improving the simulation of the passenger route choices

is an interesting future direction to add more realism in our model. It is also essential

to propose our methods to transport planners, and real operating bus companies in the

city of Nottingham to prove that our algorithm works competitively on more recent data

of bus routes.

We pointed out previously that the passenger cost is the most expensive function in

the evaluation, as it includes complicated and computationally expensive operations

such as the graph expansion and performing an all-pairs shortest path algorithm on the

expanded graph. We found out that using Dijkstra shortest path algorithm with priority

queue implementation saves a significant computational time compared to applying Floyd

Warshall algorithm. Recently, Lewis [204] investigated the implementation of shortest

path algorithms, focusing on graphs where penalties are incurred at the vertices. Two

versions of Dijkstra algorithm were introduced that operate on the original unexpanded

graph. These methods can be tested in the future in the evaluation of the passenger

objective, as it might have a significant impact in time saving during the evaluation.

Our work on the integration of hyper-heuristics and Visum transport modelling software

is a promising direction in real transportation systems planning. We used a relatively

simple set of low level heuristics to prove the concepts proposed in this work. More

complex operations to mutate the routes can be implemented and we can observe whether

any improvement in the results can be achieved. Especially interesting would be to

include heuristics which add and delete routes to make it possible to vary the number of

routes. Moreover, the SS selection can be tested with threshold acceptance methods to

see if this can lead to any improvements. Also, it would be worthwhile to explore and

improve the process of optimising routes of multiple transport modes.

The VeroLog solver challenge problem is a real life routing application based on real data

of ORTEC company based on the Netherlands. Our algorithm may have potential for

use on real data for other delivery and installation companies based in the UK, following

adjustments according to the nature of their application and constraints.

With regard to the selection hyper-heuristic algorithms proposed, the SSHH algorithm

has proven its success in more than one problem domain and was more competitive than

other simple selection methods. There are some design aspects that can be looked into to

improve this algorithm. For instance, the history of the sequences performance given by

155

Chapter 7. Conclusion 156

the matrices can be saved globally, instead of re-initialising the matrices on each appli-

cation on a new instance. This way, the successful sequences will be identified and used

instantly on hidden domains. There is scope for further research into several aspects of

the POHH algorithm proposed in chapter 6. One example is how to decide on which

hyper-heuristic strategies to include into our population-based algorithm. We observed

in the analysis of the POHH that different combinations of selection and move acceptance

methods had varying performances on instances with different sizes and complexities. An

interesting modification of the algorithm is to embed an online learning mechanism to

capture these variations, and to decide which components of selection and move accep-

tance will perform better on a particular instance. The random selection criteria that we

apply currently gives fairly good results as reported in chapter 6, and we expect that a

more intelligent mechanism that controls the selection of the hyper-heuristic components

during the search will improve the algorithm performance.

Additionally, the algorithm does not have the ability to learn from history which strategy

performs well. Thus, it may be beneficial to exclude certain strategies altogether to

speed-up the algorithm.

156

Bibliography

[1] Gilbert Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):

408–416, 2009.

[2] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the

art. Journal of the Operational Research Society, 64(12):1695–1724, 2013.

[3] Partha Chakroborty and Tathagat Wivedi. Optimal route network design for

transit systems using genetic algorithms. Engineering Optimization, 34(1):83–100,

2002.

[4] Wei Fan and Randy B Machemehl. Optimal transit route network design problem

with variable transit demand: genetic algorithm approach. Journal of Transporta-

tion Engineering, 132(1):40–51, 2006.

[5] Lang Fan and Christine L Mumford. A metaheuristic approach to the urban transit

routing problem. Journal of Heuristics, 16(3):353–372, 2010.

[6] Christine L Mumford. New heuristic and evolutionary operators for the multi-

objective urban transit routing problem. In IEEE Congress on Evolutionary Com-

putation (CEC), 2013, pages 939–946. IEEE, 2013.

[7] Matthew P John. Metaheuristics for designing efficient routes & schedules for

urban transportation networks. PhD thesis, Cardiff University, 2016.

[8] Ian M Cooper, Matthew P John, Rhydian Lewis, Christine L Mumford, and An-

drew Olden. Optimising large scale public transport network design problems using

mixed-mode parallel multi-objective evolutionary algorithms. In IEEE Congress

on Evolutionary Computation (CEC),, pages 2841–2848. IEEE, 2014.

157

Bibliography 158

[9] Burak Bilgin, Ender Özcan, and Emin Erkan Korkmaz. An experimental study on

hyper-heuristics and exam timetabling. In International Conference on the Practice

and Theory of Automated Timetabling, pages 394–412, 2006.

[10] Ender Özcan, Burak Bilgin, and Emin Erkan Korkmaz. A comprehensive analysis

of hyper-heuristics. Intelligent Data Analysis, 12(1):3–23, 2008.

[11] Leena Ahmed, Christine Mumford, and Ahmed Kheiri. Solving urban transit route

design problem using selection hyper-heuristics. European Journal of Operational

Research, 274(2):545–559, 2019.

[12] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: al-

gorithms and complexity. Courier Corporation, 1998.

[13] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM computing surveys (CSUR), 35(3):

268–308, 2003.

[14] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of computing, pages 151–158, 1971.

[15] Richard M Karp. Reducibility among combinatorial problems. In Complexity of

computer computations, pages 85–103. Springer, 1972.

[16] George B Dantzig and John H Ramser. The truck dispatching problem. Manage-

ment science, 6(1):80–91, 1959.

[17] Gilbert Laporte. The traveling salesman problem: An overview of exact and ap-

proximate algorithms. European Journal of Operational Research, 59(2):231–247,

1992.

[18] Robert A Russell and Timothy L Urban. Vehicle routing with soft time windows

and erlang travel times. Journal of the Operational Research Society, 59(9):1220–

1228, 2008.

[19] Douglas Moura Miranda and Samuel Vieira Conceição. The vehicle routing problem

with hard time windows and stochastic travel and service time. Expert Systems

with Applications, 64:104–116, 2016.

[20] Ann Melissa Campbell and Jill Hardin Wilson. Forty years of periodic vehicle

routing. Networks, 63(1):2–15, 2014.

158

Bibliography 159

[21] Gerardo Berbeglia, Jean-François Cordeau, Irina Gribkovskaia, and Gilbert La-

porte. Static pickup and delivery problems: a classification scheme and survey.

Top, 15(1):1–31, 2007.

[22] Sophie N Parragh, Karl F Doerner, and Richard F Hartl. A survey on pickup and

delivery problems. Journal für Betriebswirtschaft, 58(1):21–51, 2008.

[23] Moshe Dror and Pierre Trudeau. Savings by split delivery routing. Transportation

Science, 23(2):141–145, 1989.

[24] Jairo R Montoya-Torres, Julián López Franco, Santiago Nieto Isaza, Heriberto Fe-

lizzola Jiménez, and Nilson Herazo-Padilla. A literature review on the vehicle

routing problem with multiple depots. Computers & Industrial Engineering, 79:

115–129, 2015.

[25] Diego Cattaruzza, Nabil Absi, Dominique Feillet, and Daniele Vigo. An iterated

local search for the multi-commodity multi-trip vehicle routing problem with time

windows. Computers & Operations Research, 51:257–267, 2014.

[26] Avishai Ceder and Nigel H.M. Wilson. Bus network design. Transportation

Research Part B: Methodological, 20(4):331–344, 1986. ISSN 0191-2615. doi:

http://dx.doi.org/10.1016/0191-2615(86)90047-0.

[27] Reza Zanjirani Farahani, Elnaz Miandoabchi, Wai Yuen Szeto, and Hannaneh

Rashidi. A review of urban transportation network design problems. European

Journal of Operational Research, 229(2):281–302, 2013.

[28] Lang Fan. Metaheuristic methods for the urban transit routing problem. PhD thesis,

Cardiff University, 2009.

[29] Joaquín de Cea Ch, R Henry Malbran, et al. Demand responsive urban public

transport system design: Methodology and application. Transportation Research

Part A: Policy and Practice, 42(7):951–972, 2008.

[30] Bin Yu, Zhongzhen Yang, Chuntian Cheng, and Chong Liu. Optimizing bus transit

network with parallel ant colony algorithm. In Proceedings of the Eastern Asia

Society for Transportation Studies, volume 5, pages 374–389, 2005.

[31] Fatih Kılıç and Mustafa Gök. A demand based route generation algorithm for

public transit network design. Computers & Operations Research, 51:21–29, 2014.

159

Bibliography 160

[32] Joaquim Gromicho, Pim van’t Hof, and Daniele Vigo. The verolog solver challenge

2019. Journal on Vehicle Routing Algorithms, pages 1–3, 2019.

[33] TonyWauters, Túlio Toffolo, Jan Christiaens, and Sam Van Malderen. The winning

approach for the verolog solver challenge 2014: the swap-body vehicle routing

problem. Proceedings of ORBEL29, 2015.

[34] Martin Josef Geiger. On an effective approach for the coach trip with shuttle service

problem of the verolog solver challenge 2015. Networks, 69(3):329–345, 2017.

[35] Wout Dullaert, Joaquim Gromicho, Jelke van Hoorn, Gerhard Post, and Daniele

Vigo. The verolog solver challenge 2016–2017. Journal on Vehicle Routing Algo-

rithms, 1(1):69–71, 2018.

[36] Ahmed Kheiri, Alina G Dragomir, David Mueller, Joaquim Gromicho, Caroline

Jagtenberg, and Jelke J van Hoorn. Tackling a vrp challenge to redistribute scarce

equipment within time windows using metaheuristic algorithms. EURO Journal

on Transportation and Logistics, pages 1–35, 2019.

[37] Jean-François Cordeau, Gilbert Laporte, Federico Pasin, and Stefan Ropke.

Scheduling technicians and tasks in a telecommunications company. Journal of

Scheduling, 13(4):393–409, 2010.

[38] Heechul Bae and Ilkyeong Moon. Multi-depot vehicle routing problem with time

windows considering delivery and installation vehicles. Applied Mathematical Mod-

elling, 40(13-14):6536–6549, 2016.

[39] Caroline J Jagtenberg, Oliver J Maclaren, Andrew J Mason, Andrea Raith, Kevin

Shen, and Michael Sundvick. Columnwise neighborhood search: A novel set par-

titioning matheuristic and its application to the verolog solver challenge 2019.

Networks, 76(2):273–293, 2020.

[40] Benjamin Graf. Adaptive large variable neighborhood search for a multiperiod

vehicle and technician routing problem. Networks, 76(2):256–272, 2020.

[41] Richard Bellman. On the theory of dynamic programming. Proceedings of the

National Academy of Sciences of the United States of America, 38(8):716, 1952.

[42] Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.

Operations research, 14(4):699–719, 1966.

160

Bibliography 161

[43] Partha Chakroborty. Genetic algorithms for optimal urban transit network design.

Computer-Aided Civil and Infrastructure Engineering, 18(3):184–200, 2003.

[44] Judea Pearl. Intelligent search strategies for computer problem solving. Addision

Wesley, 1984.

[45] Kenneth Sörensen and Fred Glover. Metaheuristics. Encyclopedia of operations

research and management science, 62:960–970, 2013.

[46] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. A survey on optimization

metaheuristics. Information sciences, 237:82–117, 2013.

[47] David Beasley, David R Bull, and Ralph Robert Martin. An overview of genetic

algorithms: Part 1, fundamentals. University computing, 15(2):56–69, 1993.

[48] Christian Blum and Daniel Merkle. Swarm intelligence. Swarm Intelligence in

Optimization; Blum, C., Merkle, D., Eds, pages 43–85, 2008.

[49] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimization

by a colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 26(1):29–41, 1996.

[50] Panta Lucic and Dusan Teodorovic. Bee system: modeling combinatorial optimiza-

tion transportation engineering problems by swarm intelligence. In Preprints of the

TRISTAN IV triennial symposium on transportation analysis, pages 441–445, 2001.

[51] Emile Aarts and Jan Karel Lenstra. Local search in combinatorial optimization.

Princeton University Press, 2003.

[52] Helena Ramalhinho Lourenço, Olivier C Martin, and Thomas Stützle. Iterated

local search: Framework and applications. In Handbook of metaheuristics, pages

129–168. Springer, 2019.

[53] Fred Glover. Future paths for integer programming and links to ar tifi cial intelli

g en ce. Computers operations research, 13(5):533–549, 1986.

[54] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search

procedures. Journal of global optimization, 6(2):109–133, 1995.

[55] Avishai Ceder. Public transit planning and operation: Modeling, practice and be-

havior. CRC press, 2016.

161

Bibliography 162

[56] VM Tom and S Mohan. Transit route network design using frequency coded genetic

algorithm. Journal of Transportation Engineering, 129(2):186–195, 2003.

[57] EM Holroyd. The optimum bus service: a theoretical model for a large uniform

urban area. In Proceedings of the Third International Symposium on the Theory of

Traffic FlowOperations Research Society of America, 1967.

[58] Bernard F Byrne. Public transportation line positions and headways for minimum

user and system cost in a radial case. Transportation Research, 9(2-3):97–102, 1975.

[59] Bernard F Byrne. Cost minimizing positions, lengths and headways for parallel

public transit lines having different speeds. Transportation Research, 10(3):209–

214, 1976.

[60] Shyue Koong Chang and Paul M Schonfeld. Multiple period optimization of bus

transit systems. Transportation Research Part B: Methodological, 25(6):453–478,

1991.

[61] Seong Kyu Chang and Paul M Schonfeld. Welfare maximization with financial

constraints for bus transit systems. Transportation Research Record, (1395), 1993.

[62] Steven Chien and Paul Schonfeld. Optimization of grid transit system in hetero-

geneous urban environment. Journal of Transportation Engineering, 123(1):28–35,

1997.

[63] DL Van Oudheusden, S Ranjithan, and KN Singh. The design of bus route sys-

tems—an interactive location-allocation approach. Transportation, 14(3):253–270,

1987.

[64] Rob van Nes, Rudi Hamerslag, and LH Immers. The design of public transport net-

works, volume 1202. National Research Council, Transportation Research Board,

1988.

[65] Michael Bussieck. Optimal lines in public rail transport. PhD thesis, Citeseer, 1998.

[66] Quentin K Wan and Hong K Lo. A mixed integer formulation for multiple-route

transit network design. Journal of Mathematical Modelling and Algorithms, 2(4):

299–308, 2003.

[67] JF Guan, Hai Yang, and Sumedha Chandana Wirasinghe. Simultaneous optimiza-

tion of transit line configuration and passenger line assignment. Transportation

Research Part B: Methodological, 40(10):885–902, 2006.

162

Bibliography 163

[68] Alexandre Barra, Luis Carvalho, Nicolas Teypaz, Van-Dat Cung, and Ronaldo Bal-

assiano. Solving the transit network design problem with constraint programming.

2007.

[69] A Patz. Die richtige auswahl von verkehrslinien bei großen strassenbahnnetzen.

Verkehrstechnik, 50:51, 1925.

[70] W Lampkin and PD Saalmans. The design of routes, service frequencies, and

schedules for a municipal bus undertaking: A case study. Journal of the Operational

Research Society, 18(4):375–397, 1967.

[71] D Dubois, G Bel, and M Llibre. A set of methods in transportation network

synthesis and analysis. Journal of the Operational Research Society, 30(9):797–

808, 1979.

[72] Herbert Sonntag. Linienplanung im öffentlichen Personennahverkehr. PhD thesis,

Technical University Berlin., 1977.

[73] C.E. Mandl. Applied network optimization. Operations Research and Industrial

Engineering. Academic Press, 1979. ISBN 9780124683501.

[74] Christoph E Mandl. Evaluation and optimization of urban public transportation

networks. European Journal of Operational Research, 5(6):396–404, 1980.

[75] M Hadi Baaj and Hani S Mahmassani. An AI-based approach for transit route

system planning and design. Journal of Advanced Transportation, 25(2):187–209,

1991.

[76] M Hadi Baaj and Hani S Mahmassani. Hybrid route generation heuristic algorithm

for the design of transit networks. Transportation Research Part C: Emerging

Technologies, 3(1):31–50, 1995.

[77] Young-Jae Lee and Vukan R Vuchic. Transit network design with variable demand.

Journal of Transportation Engineering, 131(1):1–10, 2005.

[78] Carsten Simonis. Optimierung von Omnibuslinien. Berichte des Instituts für Stadt-

bauwesen, (26), 1981.

[79] SB Pattnaik, S Mohan, and VM Tom. Urban bus transit route network design

using genetic algorithm. Journal of Transportation Engineering, 124(4):368–375,

1998.

163

Bibliography 164

[80] Wai Yuen Szeto and Yongzhong Wu. A simultaneous bus route design and fre-

quency setting problem for Tin Shui Wai, Hong Kong. European Journal of Oper-

ational Research, 209(2):141–155, 2011.

[81] Ernesto Cipriani, Stefano Gori, and Marco Petrelli. Transit network design: A

procedure and an application to a large urban area. Transportation Research Part

C: Emerging Technologies, 20(1):3–14, 2012. ISSN 0968090X. doi: 10.1016/j.trc.

2010.09.003. URL http://dx.doi.org/10.1016/j.trc.2010.09.003.

[82] Joanne Suk Chun Chew, Lai Soon Lee, and Hsin Vonn Seow. Genetic algorithm

for biobjective urban transit routing problem. Journal of Applied Mathematics,

2013.

[83] Matthew P John, Christine L Mumford, and Rhyd Lewis. An improved multi-

objective algorithm for the urban transit routing problem. In European Confer-

ence on Evolutionary Computation in Combinatorial Optimization, pages 49–60.

Springer, 2014.

[84] Philipp Heyken Soares, Christine L Mumford, Kwabena Amponsah, and Yong

Mao. An adaptive scaled network for public transport route optimisation. Public

Transport, 11(2):379–412, 2019.

[85] Muhammad Ali Nayeem, Md Khaledur Rahman, and M Sohel Rahman. Transit

network design by genetic algorithm with elitism. Transportation Research Part

C: Emerging Technologies, 46:30–45, 2014.

[86] Renato Oliveira Arbex and Claudio Barbieri da Cunha. Efficient transit network

design and frequencies setting multi-objective optimization by alternating objective

genetic algorithm. Transportation Research Part B: Methodological, 81:355–376,

2015.

[87] Jie Yang and Yangsheng Jiang. Application of modified nsga-ii to the transit

network design problem. Journal of Advanced Transportation, 2020, 2020.

[88] Leena Ahmed, Christine Mumford, and Ahmed Kheiri. Solving urban transit route

design problem using selection hyper-heuristics. European Journal of Operational

Research, 274(2):545–559, 2019. doi: https://doi.org/10.1016/j.ejor.2018.10.022.

[89] Bin Yu, Zhong-zhen Yang, Peng-huan Jin, Shan-hua Wu, and Bao-zhen Yao. Tran-

sit route network design-maximizing direct and transfer demand density. Trans-

portation Research Part C, 22:58–75, 2012. ISSN 0968-090X. doi: 10.1016/j.trc.

2011.12.003. URL http://dx.doi.org/10.1016/j.trc.2011.12.003.

164

http://dx.doi.org/10.1016/j.trc.2010.09.003
http://dx.doi.org/10.1016/j.trc.2011.12.003

Bibliography 165

[90] Hossain Poorzahedy and Omid M Rouhani. Hybrid meta-heuristic algorithms for

solving network design problem. European Journal of Operational Research, 182

(2):578–596, 2007.

[91] Miloš Nikolić and DušAn Teodorović. Transit network design by bee colony opti-

mization. Expert Systems with Applications, 40(15):5945–5955, 2013.

[92] Miloš Nikolić and Dušan Teodorović. A simultaneous transit network design and

frequency setting: Computing with bees. Expert Systems with Applications, 41

(16):7200–7209, 2014.

[93] Panagiotis N Kechagiopoulos and Grigorios N Beligiannis. Solving the urban tran-

sit routing problem using a particle swarm optimization based algorithm. Applied

Soft Computing, 21:654–676, 2014.

[94] Shashi Bhushan Jha, Jitendra Kumar Jha, and Manoj Kumar Tiwari. A multi-

objective meta-heuristic approach for transit network design and frequency setting

problem in a bus transit system. Computers & Industrial Engineering, 130:166–186,

2019.

[95] Ahmed Tarajo Buba and Lai Soon Lee. Hybrid differential evolution-particle swarm

optimization algorithm for multiobjective urban transit network design problem

with homogeneous buses. Mathematical Problems in Engineering, 2019, 2019.

[96] Wei Fan and Randy B Machemehl. Using a Simulated Annealing Algorithm to

Solve the Transit Route Network Design Problem. Journal of Transportation En-

gineering, 132(2), 2006.

[97] Wei Fan and Randy B Machemehl. A tabu search based heuristic method for

the transit route network design problem. In Computer-aided Systems in Public

Transport, pages 387–408. Springer, 2008.

[98] Antonio Mauttone and Maria E. Urquhart. A route set construction algorithm for

the transit network design problem. Computers and Operations Research, 36(8):

2440–2449, 2009. ISSN 03050548. doi: 10.1016/j.cor.2008.09.014.

[99] S. B. Pattnaik, S. Mohan, and V.M. Tom. Urban bus route network design using

genetic algorithm. Reviewed by the Urban Transportation Division, 37(3):24, 1998.

[100] Maurizio Bielli, Massimiliano Caramia, and Pasquale Carotenuto. Genetic algo-

rithms in bus network optimization. Transportation Research Part C: Emerging

165

Bibliography 166

Technologies, 10(1):19–34, 2002. ISSN 0968090X. doi: 10.1016/S0968-090X(00)

00048-6.

[101] Somnuk Ngamchai and David J Lovell. Optimal time transfer in bus transit route

network design using a genetic algorithm. Journal of Transportation Engineering,

129(5):510–521, 2003.

[102] Jitendra Agrawal and Tom V Mathew. Transit route network design using parallel

genetic algorithm. Journal of Computing in Civil Engineering, 18(3):248–256, 2004.

[103] Zhongzhen Yang, Bin Yu, and Chuntian Cheng. A parallel ant colony algorithm for

bus network optimization. Computer-Aided Civil and Infrastructure Engineering,

22(1):44–55, 2007.

[104] Bin Yu, Zhongzhen Yang, and Jinbao Yao. Genetic algorithm for bus frequency

optimization. Journal of Transportation Engineering, 136(6):576–583, 2010.

[105] Saeed Asadi Bagloee and Avishai Avi Ceder. Transit-network design methodology

for actual-size road networks. Transportation Research Part B: Methodological,

45(10):1787–1804, 2011. ISSN 01912615. doi: 10.1016/j.trb.2011.07.005. URL

http://dx.doi.org/10.1016/j.trb.2011.07.005.

[106] Joanne Suk Chun Chew and Lai Soon Lee. A genetic algorithm for urban transit

routing problem. In International Journal of Modern Physics: Conference Series,

volume 9, pages 411–421. World Scientific, 2012.

[107] Sh Afandizadeh, H Khaksar, and N Kalantari. Bus fleet optimization using genetic

algorithm a case study of mashhad. International Journal of Civil Engineering, 11

(1):43–52, 2013.

[108] SM Mahdi Amiripour, Avishai Avi Ceder, and Afshin Shariat Mohaymany. De-

signing large-scale bus network with seasonal variations of demand. Transportation

Research Part C: Emerging Technologies, 48:322–338, 2014.

[109] Hang Zhao, Rong Jiang, et al. The memetic algorithm for the optimization of

urban transit network. Expert Systems with Applications, 42(7):3760–3773, 2015.

[110] Mahmoud Owais, Mostafa K Osman, and Ghada Moussa. Multi-objective transit

route network design as set covering problem. IEEE Transactions on Intelligent

Transportation Systems, 17(3):670–679, 2015.

166

http://dx.doi.org/10.1016/j.trb.2011.07.005

Bibliography 167

[111] Muhammad Ali Nayeem, Md Monirul Islam, and Xin Yao. Solving transit network

design problem using many-objective evolutionary approach. IEEE Transactions

on Intelligent Transportation Systems, 20(10):3952–3963, 2018.

[112] Ahmed Tarajo Buba and Lai Soon Lee. A differential evolution for simultane-

ous transit network design and frequency setting problem. Expert Systems with

Applications, 106:277–289, 2018.

[113] Kazi Ashik Islam, Ibraheem Muhammad Moosa, Jaiaid Mobin, Muhammad Ali

Nayeem, and M Sohel Rahman. A heuristic aided stochastic beam search algo-

rithm for solving the transit network design problem. Swarm and Evolutionary

Computation, 46:154–170, 2019.

[114] Lang Fan, Hui Chen, and Ying Gao. An improved flower pollination algorithm to

the urban transit routing problem. Soft Computing, pages 1–10, 2019.

[115] Javier Duran, Lorena Pradenas, and Victor Parada. Transit network design with

pollution minimization. Public Transport, 11(1):189–210, 2019.

[116] SM Hassan Mahdavi Moghaddam, K Ramachandra Rao, G Tiwari, and Pravesh

Biyani. Simultaneous bus transit route network and frequency setting search algo-

rithm. Journal of Transportation Engineering, Part A: Systems, 145(4):04019011,

2019.

[117] Javier Duran-Micco, Evert Vermeir, and Pieter Vansteenwegen. Considering emis-

sions in the transit network design and frequency setting problem with a hetero-

geneous fleet. European Journal of Operational Research, 282(2):580–592, 2020.

[118] Shushan Chai and Qinghuai Liang. An improved nsga-ii algorithm for transit net-

work design and frequency setting problem. Journal of Advanced Transportation,

2020, 2020.

[119] Mingzhang Liang, Wei Wang, Changyin Dong, and De Zhao. A cooperative coevo-

lutionary optimization design of urban transit network and operating frequencies.

Expert Systems with Applications, 160:113736, 2020.

[120] Stefan Walter. Nachfrageorientierte liniennetzoptimierung am beispiel graz (de-

mand orientated line optimisation at the example of graz). Master’s thesis, Graz

University of Technologie, 2010.

167

Bibliography 168

[121] Joaquín Pacheco, Ada Alvarez, Silvia Casado, and José Luis González-Velarde. A

tabu search approach to an urban transport problem in northern spain. Computers

& Operations Research, 36(3):967–979, 2009.

[122] Leena Ahmed, Philipp Heyken Soares, Christine Mumford, and Yong Mao. Op-

timising bus routes with fixed terminal nodes: comparing hyper-heuristics with

nsgaii on realistic transportation networks. In Proceedings of the Genetic and Evo-

lutionary Computation Conference, pages 1102–1110. ACM, 2019.

[123] Geoff Clarke and John W Wright. Scheduling of vehicles from a central depot to

a number of delivery points. Operations research, 12(4):568–581, 1964.

[124] Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

[125] Ph Augerat, Jose Manuel Belenguer, Enrique Benavent, A Corberán, D Naddef,

and G Rinaldi. Computational results with a branch and cut code for the capacitated

vehicle routing problem. IMAG, 1995.

[126] Jens Lysgaard, Adam N Letchford, and Richard W Eglese. A new branch-and-cut

algorithm for the capacitated vehicle routing problem. Mathematical Programming,

100(2):423–445, 2004.

[127] Michel L Balinski and Richard E Quandt. On an integer program for a delivery

problem. Operations research, 12(2):300–304, 1964.

[128] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão,

Marcelo Reis, Eduardo Uchoa, and Renato F Werneck. Robust branch-and-cut-

and-price for the capacitated vehicle routing problem. Mathematical programming,

106(3):491–511, 2006.

[129] Marshall L Fisher and Ramchandran Jaikumar. A generalized assignment heuristic

for vehicle routing. Networks, 11(2):109–124, 1981.

[130] Matthew JW Morgan and Christine L Mumford. Capacitated vehicle routing: per-

turbing the landscape to fool an algorithm. In 2005 IEEE Congress on Evolutionary

Computation, volume 3, pages 2271–2277. IEEE, 2005.

[131] Christian Prins. A simple and effective evolutionary algorithm for the vehicle

routing problem. Computers & Operations Research, 31(12):1985–2002, 2004.

[132] David Mester and Olli Bräysy. Active-guided evolution strategies for large-scale

capacitated vehicle routing problems. Computers & Operations Research, 34(10):

2964–2975, 2007.

168

Bibliography 169

[133] Yuichi Nagata. Edge assembly crossover for the capacitated vehicle routing prob-

lem. In European Conference on Evolutionary Computation in Combinatorial Op-

timization, pages 142–153. Springer, 2007.

[134] Yuichi Nagata and Olli Bräysy. Edge assembly-based memetic algorithm for the

capacitated vehicle routing problem. Networks: An International Journal, 54(4):

205–215, 2009.

[135] Antoon WJ Kolen, AHG Rinnooy Kan, and Harry WJM Trienekens. Vehicle

routing with time windows. Operations Research, 35(2):266–273, 1987.

[136] Marius M Solomon. Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations research, 35(2):254–265, 1987.

[137] Jean-Yves Potvin and Jean-Marc Rousseau. A parallel route building algorithm for

the vehicle routing and scheduling problem with time windows. European Journal

of Operational Research, 66(3):331–340, 1993.

[138] Robert A Russell. Hybrid heuristics for the vehicle routing problem with time

windows. Transportation science, 29(2):156–166, 1995.

[139] Slim Belhaiza, Pierre Hansen, and Gilbert Laporte. A hybrid variable neighborhood

tabu search heuristic for the vehicle routing problem with multiple time windows.

Computers & Operations Research, 52:269–281, 2014.

[140] Chi-Bin Cheng and Keng-Pin Wang. Solving a vehicle routing problem with time

windows by a decomposition technique and a genetic algorithm. Expert Systems

with Applications, 36(4):7758–7763, 2009.

[141] Qiulei Ding, Xiangpei Hu, Lijun Sun, and Yunzeng Wang. An improved ant colony

optimization and its application to vehicle routing problem with time windows.

Neurocomputing, 98:101–107, 2012.

[142] R Tavakkoli-Moghaddam, M Gazanfari, M Alinaghian, A Salamatbakhsh, and

N Norouzi. A new mathematical model for a competitive vehicle routing prob-

lem with time windows solved by simulated annealing. Journal of manufacturing

systems, 30(2):83–92, 2011.

[143] Edward J Beltrami and Lawrence D Bodin. Networks and vehicle routing for

municipal waste collection. Networks, 4(1):65–94, 1974.

169

Bibliography 170

[144] Alireza Rahimi-Vahed, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei.

A path relinking algorithm for a multi-depot periodic vehicle routing problem.

Journal of heuristics, 19(3):497–524, 2013.

[145] Claudia Archetti, Ola Jabali, and M Grazia Speranza. Multi-period vehicle routing

problem with due dates. Computers & Operations Research, 61:122–134, 2015.

[146] Federico Alonso, M Jesús Alvarez, and John E Beasley. A tabu search algorithm

for the periodic vehicle routing problem with multiple vehicle trips and accessibility

restrictions. Journal of the Operational Research Society, 59(7):963–976, 2008.

[147] Samira Mirzaei and Sanne Wøhlk. Erratum to: A branch-and-price algorithm for

two multi-compartment vehicle routing problems. EURO Journal on Transporta-

tion and Logistics, 6(2):185–218, 2017.

[148] Wenjuan Gu, Diego Cattaruzza, Maxime Ogier, and Frédéric Semet. Adaptive large

neighborhood search for the commodity constrained split delivery vrp. Computers

& Operations Research, 112:104761, 2019.

[149] Y Zhang and XD Chen. An optimization model for the vehicle routing problem in

multi-product frozen food delivery. Journal of applied research and technology, 12

(2):239–250, 2014.

[150] Moshe Dror and Pierre Trudeau. Split delivery routing. Naval Research Logistics

(NRL), 37(3):383–402, 1990.

[151] Claudia Archetti and Maria Grazia Speranza. Vehicle routing problems with split

deliveries. International transactions in operational research, 19(1-2):3–22, 2012.

[152] Mourad Boudia, Christian Prins, and Mohamed Reghioui. An effective memetic

algorithm with population management for the split delivery vehicle routing prob-

lem. In International Workshop on Hybrid Metaheuristics, pages 16–30. Springer,

2007.

[153] Claudia Archetti, M Grazia Speranza, and Martin WP Savelsbergh. An

optimization-based heuristic for the split delivery vehicle routing problem. Trans-

portation Science, 42(1):22–31, 2008.

[154] Claudia Archetti, Nicola Bianchessi, and Maria Grazia Speranza. A column gen-

eration approach for the split delivery vehicle routing problem. Networks, 58(4):

241–254, 2011.

170

Bibliography 171

[155] Jiyang Xu and Steve Y Chiu. Effective heuristic procedures for a field technician

scheduling problem. Journal of Heuristics, 7(5):495–509, 2001.

[156] Attila A Kovacs, Sophie N Parragh, Karl F Doerner, and Richard F Hartl. Adaptive

large neighborhood search for service technician routing and scheduling problems.

Journal of scheduling, 15(5):579–600, 2012.

[157] Victor Pillac, Christelle Gueret, and Andrés L Medaglia. A parallel matheuristic

for the technician routing and scheduling problem. Optimization Letters, 7(7):

1525–1535, 2013.

[158] Fulin Xie, Chris N Potts, and Tolga Bektaş. Iterated local search for workforce

scheduling and routing problems. Journal of Heuristics, 23(6):471–500, 2017.

[159] Henry Fisher. Probabilistic learning combinations of local job-shop scheduling

rules. Industrial scheduling, pages 225–251, 1963.

[160] Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach to

scheduling a sales summit. In International Conference on the Practice and Theory

of Automated Timetabling, pages 176–190. Springer, 2000.

[161] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan,

and John RWoodward. A classification of hyper-heuristic approaches. In Handbook

of Metaheuristics, pages 449–468. Springer, 2010.

[162] John H. Drake, Ahmed Kheiri, Ender Özcan, and Edmund K. Burke. Recent

advances in selection hyper-heuristics. European Journal of Operational Research,

2019. ISSN 0377-2217.

[163] Ahmed Kheiri. Heuristic sequence selection for inventory routing problem. Trans-

portation Science, 54(2):302–312, 2020.

[164] Ender Özcan, Mustafa Misir, Gabriela Ochoa, and Edmund K Burke. A rein-

forcement learning: great-deluge hyper-heuristic for examination timetabling. In

Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements

and Trends, pages 34–55. IGI Global, 2012.

[165] Alexander Nareyek. Choosing search heuristics by non-stationary reinforcement

learning. In Metaheuristics: Computer decision-making, pages 523–544. Springer,

2003.

171

Bibliography 172

[166] Edmund K Burke, Graham Kendall, and Eric Soubeiga. A tabu-search hyper-

heuristic for timetabling and rostering. Journal of heuristics, 9(6):451–470, 2003.

[167] Peter Cowling, Graham Kendall, and Limin Han. An investigation of a hyper-

heuristic genetic algorithm applied to a trainer scheduling problem. In Proceedings

of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600),

volume 2, pages 1185–1190. IEEE, 2002.

[168] Nasser R Sabar and Graham Kendall. Population based monte carlo tree search

hyper-heuristic for combinatorial optimization problems. Information Sciences,

314:225–239, 2015.

[169] Yu Lei, Maoguo Gong, Licheng Jiao, and Yi Zuo. A memetic algorithm based on

hyper-heuristics for examination timetabling problems. International Journal of

Intelligent Computing and Cybernetics, 8(2):139–151, 2015.

[170] Ping-Che Hsiao, Tsung-Che Chiang, and Li-Chen Fu. A vns-based hyper-heuristic

with adaptive computational budget of local search. In 2012 IEEE Congress on

Evolutionary Computation, pages 1–8. IEEE, 2012.

[171] Andreas Lehrbaum and Nysret Musliu. A new hyperheuristic algorithm for cross-

domain search problems. In International Conference on Learning and Intelligent

Optimization, pages 437–442. Springer, 2012.

[172] Murat Kalender, Ahmed Kheiri, Ender Özcan, and Edmund K Burke. A greedy

gradient-simulated annealing selection hyper-heuristic. Soft Computing, 17(12):

2279–2292, 2013.

[173] Gunter Dueck. New optimization heuristics: The great deluge algorithm and the

record-to-record travel. Journal of Computational Physics, 104(1):86–92, 1993.

[174] Edmund K Burke and Yuri Bykov. A late acceptance strategy in hill-climbing for

exam timetabling problems. In PATAT 2008 Conference, Canada, 2008.

[175] Ahmed Kheiri and Ed Keedwell. A hidden Markov model approach to the problem

of heuristic selection in hyper-heuristics with a case study in high school timetabling

problems. Evolutionary Computation, 25(3):473–501, 2017.

[176] Ahmed Kheiri and Ed Keedwell. A sequence-based selection hyper-heuristic util-

ising a hidden Markov model. In Proceedings of the 2015 Annual Conference on

Genetic and Evolutionary Computation, pages 417–424. ACM, 2015.

172

Bibliography 173

[177] Leena N Ahmed, Ender Özcan, and Ahmed Kheiri. Solving high school timetabling

problems worldwide using selection hyper-heuristics. Expert Systems with Applica-

tions, 42(13):5463–5471, 2015.

[178] Peter Cowling and Konstantin Chakhlevitch. Hyperheuristics for managing a large

collection of low level heuristics to schedule personnel. In Evolutionary Compu-

tation, 2003. CEC’03. The 2003 Congress on, volume 2, pages 1214–1221. IEEE,

2003.

[179] David Pisinger and Stefan Ropke. A general heuristic for vehicle routing problems.

Computers & operations research, 34(8):2403–2435, 2007.

[180] Pablo Garrido and Carlos Castro. A flexible and adaptive hyper-heuristic approach

for (dynamic) capacitated vehicle routing problems. Fundamenta Informaticae, 119

(1):29–60, 2012.

[181] James D Walker, Gabriela Ochoa, Michel Gendreau, and Edmund K Burke. Ve-

hicle routing and adaptive iterated local search within the hyflex hyper-heuristic

framework. In International conference on learning and intelligent optimization,

pages 265–276. Springer, 2012.

[182] Peter Ross, Sonia Schulenburg, Javier G Marín-Bläzquez, and Emma Hart. Hyper-

heuristics: learning to combine simple heuristics in bin-packing problems. In Pro-

ceedings of the 4th Annual Conference on Genetic and Evolutionary Computation,

pages 942–948, 2002.

[183] Hugo Terashima-Marín, José Carlos Ortiz-Bayliss, Peter Ross, and Manuel

Valenzuela-Rendón. Hyper-heuristics for the dynamic variable ordering in con-

straint satisfaction problems. In Proceedings of the 10th annual conference on

Genetic and evolutionary computation, pages 571–578, 2008.

[184] Pablo Garrido and Carlos Castro. Stable solving of cvrps using hyperheuristics. In

Proceedings of the 11th Annual conference on Genetic and evolutionary computa-

tion, pages 255–262, 2009.

[185] Mustafa Misir, Wim Vancroonenburg, Katja Verbeeck, and Greet Vanden Berghe.

A selection hyper-heuristic for scheduling deliveries of ready-mixed concrete. In

Proceedings of the Metaheuristics International Conference, pages 289–298, 2011.

[186] Richard J Marshall, Mark Johnston, and Mengjie Zhang. Hyper-heuristic oper-

ator selection and acceptance criteria. In European Conference on Evolutionary

Computation in Combinatorial Optimization, pages 99–113. Springer, 2015.

173

Bibliography 174

[187] Enrique Urra, Claudio Cubillos, and Daniel Cabrera-Paniagua. A hyperheuristic for

the dial-a-ride problem with time windows. Mathematical Problems in Engineering,

2015, 2015.

[188] Yujie Chen, Philip Mourdjis, Fiona Polack, Peter Cowling, and Stephen Remde.

Evaluating hyperheuristics and local search operators for periodic routing prob-

lems. In European Conference on Evolutionary Computation in Combinatorial

Optimization, pages 104–120. Springer, 2016.

[189] Peng-Yeng Yin, Sin-Ru Lyu, and Ya-Lan Chuang. Cooperative coevolutionary

approach for integrated vehicle routing and scheduling using cross-dock buffering.

Engineering Applications of Artificial Intelligence, 52:40–53, 2016.

[190] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective optimization

using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91

(9):992–1007, 2006.

[191] Carlos M Fonseca, Peter J Fleming, et al. Genetic algorithms for multiobjective

optimization: Formulationdiscussion and generalization. In Icga, volume 93, pages

416–423. Citeseer, 1993.

[192] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a com-

parative case study and the strength pareto approach. IEEE transactions on Evo-

lutionary Computation, 3(4):257–271, 1999.

[193] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast

and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolu-

tionary computation, 6(2):182–197, 2002.

[194] Oleg Grodzevich and Oleksandr Romanko. Normalization and other topics in multi-

objective optimization. 2006.

[195] Michael Barbehenn. A note on the complexity of Dijkstra’s algorithm for graphs

with weighted vertices. IEEE Transactions on computers, 47(2):263, 1998.

[196] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5

(6):345, 1962.

[197] PTV Visum 17 User Manual. PTV AG, Karlsruhe, Germany, 2018.

[198] Emme 4 User Manual. INRO, Montreal, Canada, 2018.

174

Bibliography 175

[199] Philipp Heyken Soares, Leena Ahmed, Yong Mao, and Christine Mumford. Pub-

lic transport network optimisation in ptv visum using selection hyper-heuristics.

Under Review, 2020.

[200] Markus Friedrich, Thomas Haupt, and Klaus Noekel. Planning and Analyzing

Transit Networks: An Integrated Approach Regarding Requirements of Passengers

and Operators. Journal of Public Transportation, 2(4):19–39, 1999. ISSN 1077-

291X. doi: 10.5038/2375-0901.2.4.2.

[201] Ahmed Kheiri, Leena Ahmed, Burak k Boyacı, Joaquim Gromicho, Christine Mum-

ford, Ender Özcan, and Ali Selim Dirikoç. Exact and hyper-heuristic solutions for

the distribution-installation problem from the verolog 2019 challenge. Networks,

pages 1–35, 2020.

[202] Dennis Wilson, Silvio Rodrigues, Carlos Segura, Ilya Loshchilov, Frank Hutter,

Guillermo López Buenfil, Ahmed Kheiri, Ed Keedwell, Mario Ocampo-Pineda,

Ender Özcan, Sergio Ivvan Valdez Peña, Brian Goldman, Salvador Botello Rionda,

Arturo Hernández-Aguirre, Kalyan Veeramachaneni, and Sylvain Cussat-Blanc.

Evolutionary computation for wind farm layout optimization. Renewable Energy,

126:681–691, 2018.

[203] Ahmed Kheiri, Edward Keedwell, Michael J. Gibson, and Dragan Savic. Sequence

analysis-based hyper-heuristics for water distribution network optimisation. Pro-

cedia Engineering, 119:1269–1277, 2015. Computing and Control for the Water

Industry (CCWI2015) Sharing the best practice in water management.

[204] Rhyd Lewis. A shortest path algorithm for graphs featuring transfer costs at their

vertices. In International Conference on Computational Logistics, pages 539–552.

Springer, 2020.

175

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Research Motivation and Contributions
	1.2 Structure of Thesis
	1.3 Academic Publications Produced

	2 Vehicle Routing Problems and the Variants Solved
	2.1 The Concept of Optimisation
	2.1.1 Optimisation of Combinatorial Problems
	2.1.2 NP-Hard and NP-Complete Problems
	2.1.3 Single and Multi-Objective Optimisation

	2.2 Graph Structure
	2.3 The Vehicle Routing Problem
	2.3.1 The Travelling Salesman Problem
	2.3.2 Overview of VRP Variants

	2.4 The Urban Transit Network Design Problem (UTNDP)
	2.4.1 Difficulties of the UTNDP
	2.4.2 UTNDP and VRP
	2.4.3 The Urban Transit Routing Problem (UTRP): Problem Description

	2.5 The VeRoLog 2019 Solver Challenge
	2.6 Summary

	3 Methods for Solving VRP Problems
	3.1 Methods for Solving Combinatorial Optimisation Problems
	3.1.1 Exact Mathematical Approaches
	3.1.2 Heuristic Methods
	3.1.3 Meta-heuristics
	3.1.3.1 Evolutionary Algorithms
	3.1.3.2 Swarm Intelligence
	3.1.3.3 Single Solution Based Meta-heuristics

	3.2 Solving the Urban Transit Routing Problem
	3.2.1 Analytical and Exact Mathematical Approaches
	3.2.2 Heuristic Methods
	3.2.3 Meta-heuristic Approaches
	3.2.3.1 Genetic Algorithms
	3.2.3.2 Swarm Intelligence
	3.2.3.3 Single Solution based Meta-heuristics

	3.2.4 UTRP Algorithms in Real-world Planning
	3.2.5 Limitations of Previous Research in the UTRP

	3.3 Solution Methods for VRP Delivery Problems
	3.4 Optimisation with Selection Hyper-heuristics
	3.4.1 Classification of Selection Hyper-heuristics
	3.4.2 Online Learning Selection Hyper-heuristics
	3.4.3 Population-based Selection hyper-heuristics

	3.5 Selection and Move Acceptance Methods
	3.5.1 Sequence-based Selection Hyper-Heuristic

	3.6 Hyper-heuristics in Routing Problems
	3.7 Methods for Solving Multi-objective Optimisation Problems
	3.7.1 Evolutionary Algorithms
	3.7.2 The Weighted Sum Method
	3.7.3 The Applied Weighted Sum Method

	3.8 Summary

	4 Hyper-heuristics for Urban Transit Route Design Problem
	4.1 Problem Model
	4.2 Hyper-heuristics Design and Solution Initialisation
	4.2.1 Evaluation Method
	4.2.2 Initial Solutions
	4.2.3 Hyper-heuristics
	4.2.4 Low Level Heuristics
	4.2.5 Problem Instances

	4.3 Experimental Results
	4.3.1 Passenger Perspective
	4.3.2 Operator Perspective
	4.3.3 Longer Runs
	4.3.4 Obtaining Multiple Solutions
	4.3.5 Analysis of SS-GD
	4.3.6 Comparison with Other Approaches

	4.4 Summary

	5 Hyper-heuristics for Solving Real-world Applications of the Urban Transit Routing Problem
	5.1 Optimising Bus Routes with Fixed Terminal Nodes: Comparing Hyper-heuristics with NSGAII on Realistic Transportation Networks
	5.1.1 The UTRP with Terminal Nodes
	5.1.2 Problem Formulation
	5.1.3 Optimisation Procedure
	5.1.3.1 Creating an Initial Route Set Using a Heuristic Construction Procedure
	5.1.3.2 Objectives and Evaluation
	5.1.3.3 Optimising Route Sets Using Selection Hyper-heuristics
	5.1.3.4 Low Level Heuristics

	5.1.4 Nottingham Data set
	5.1.5 NSGAII Optimisation
	5.1.6 Experimental Results
	5.1.6.1 SS-GD Results
	5.1.6.2 Comparison of SS-GD and NSGAII
	5.1.6.3 Comparison with Real World Route Sets

	5.2 Public Transport Network Optimisation in PTV Visum Using Selection Hyper-heuristics
	5.2.1 Visum Transportation Modelling Software
	5.2.1.1 History and Features
	5.2.1.2 Differences between Visum and the UTRP Network Models

	5.2.2 Selection hyper-heuristics for Optimising Visum Public Transport Lines
	5.2.2.1 Low Level Heuristics
	5.2.2.2 Feasibility and Evaluation

	5.2.3 Empirical Results
	5.2.3.1 Test on Small Instance
	5.2.3.2 Application on City Size Network and Local Optimisation

	5.2.4 Summary

	6 Population-Based Hyper-heurstic for the Delivery and Installation of Equipment
	6.1 Description of the Problem
	6.2 Solution Format
	6.3 Problem Instances
	6.4 Hyper-heuristics Methodology of CVRP for Delivery and Installation of Machines
	6.4.1 Population-based Hyper-heuristic Framework (POHH)
	6.4.2 Solution Representation and Feasibility
	6.4.3 Low Level Heuristics

	6.5 Experimental Results
	6.5.1 Results on the Small Dataset
	6.5.2 Results on Hidden Dataset
	6.5.3 Performance Analysis of POHH
	6.5.4 Performance Comparison to the Constituent Hyper-heuristics

	6.6 Summary

	7 Conclusion
	7.1 Summary of Work
	7.2 Future Work

	Bibliography

