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ABSTRACT 
The assessment of the impact of solar radiation on building 
envelopes has typically been achieved by using simulation 
software, which is time consuming and requires advanced 
computational knowledge. Given the increased complexity 
of large scale-projects and the demand for performative 
buildings, new innovative methods are required to assess the 
design efficiently. In this paper, we present an alternative and 
innovative approach to assessing solar radiation intensity on 
an office building envelope using two machine-learning 
(ML) models: Artificial Neural Network (ANN) and 
Decision Tree (DT). The experimental workflow of this 
paper consists of two stages. In the first stage, a generative 
parametric office tower and its urban context were designed 
and simulated using Grasshopper software to create a large 
synthetic dataset of the solar radiation that strikes the office 
room envelope with several types of analyses. In the second 
stage, the generated datasets were imported into two ML 
algorithms (ANN and DT) to create a model for training and 
testing. The comparison of these two ML models proved that 
input data types have a significant impact on the accuracy of 
the prediction and model selection. DT was found to be more 
accurate than ANN because the data is mostly categorical, 
which is the most suitable learning background for DT 
algorithms. 
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I.6.1 SIMULATION AND MODELING  
1 INTRODUCTION 
The challenge of creating a sustainable environment requires 
the incorporation of building performance evaluation in the 
early stages of the design process [12]. To support the 
decision-making process during the conceptual phase of the 
design, the initial concept of the design needs to be evaluated 
considering different analysis studies to achieve high-
performance buildings. Solar radiation is one of the main 
environmental studies that need to be investigated initially to 
decide on the form, orientation, and envelope of high-rise 
buildings [2]. In hot, arid climates, high-rise building 

surfaces are exposed to intense solar energy with direct and 
diffused radiation throughout the year. In addition, a large 
amount of solar radiation strikes these surfaces during the 
summer season [45]. If vertical services and glazed façades 
are not evaluated thoroughly in the first stage of the design, 
solar thermal energy will penetrate into the interior spaces, 
thus affecting both the human comfort level and energy 
consumption [31]. 

The machine learning (ML) approach promises greater 
efficiency in the evaluation of building performance than 
does conventional simulation [8]. Moreover, ML has major 
benefits including the reduction of computational time 
consumed by the simulation process in the early stages of the 
design and the simplification of the predictions [19]. Several 
studies in the architectural field have been conducted 
typically integrating Artificial Neural Network (ANN) 
techniques for the prediction of building performance and 
environmental analysis [19] [9] [4] [5] [25]. In this research, 
we present a workflow where ML was trained and validated 
to predict incident solar radiation on an office building 
envelope using two algorithms: ANN [14], and Decision 
Tree (DT) [13]. The goal of conducting the simulation is to 
create a trained surrogate model to accurately predict solar 
radiation in significantly less time than would otherwise be 
required. Such an approach is worthwhile only if the number 
of cases that require prediction significantly outnumbers the 
number of cases needed for training. 
2 RELATED WORK  
In recent years, several studies have been conducted 
integrating the ML approach for predicting building 
performance, which includes building energy performance, 
estimating heating and cooling loads, daylighting, and solar 
predictions. Zhao and Magoulès (2012) agreed that the ML 
approach has proven to be efficient in the prediction of 
building performance [46]. Unlike conventional modelling 
methods, supervised ML has major benefits in terms of 
requiring less computation time and less effort and of being 
computationally less expensive [16]. Additionally, the 
accuracy and simplification of predictions has attracted 
researchers to investigate this possible alternative method for 
predicting building performance and occupant behaviour 



[42], and to replace building performance simulations by 
using data analytics [12].  

A study by Paterson et al. (2013) created a design tool where 
ANN is integrated to predict energy consumption in real time 
[30]. The study focuses on school building design in England 
as a case study, and ANN was trained for prediction of the 
energy consumption of schools using the existing heating 
and electrical energy data of building stock to train the 
model. A more recent study by Asl et al. (2017) proposed a 
model called the Energy Model Machine (EMM) using ML 
algorithms, specifically ANN, to predict instant energy 
performance in the early stages of the design process [5]. The 
authors tested the EMM model in a medium-sized office 
building as a case study to demonstrate the usefulness of this 
method. The model generated 7,000 building design options 
with their energy performance, which helps designers make 
informed decisions during the conceptual design process. 
The researchers found that the use of ML to estimate energy 
performance during the process of design exploration and 
optimization is a feasible approach for achieving high-
performance buildings. 

A few studies have implemented neural networks (NN) to 
predict daylighting and illuminance. A study by Lee and 
Boubekri proposed a new method based on their exploration 
of the relationship between existing daylighting metrics and 
building design attributes [24]. Another study by Lopez and 
Gueymard (2007) used the NN approach for the prediction 
of luminous efficacy under cloudless conditions, which 
indicated the possibility of predicting the illuminances on 
surfaces based on solar irradiance measurements [26]. 
Additionally, in a study by Kazanasmaz et al. (2009), the 
authors applied NN-based modelling successfully to predict 
the horizontal illuminance in office buildings [19]. The study 
resulted in a low average error of 3% once it was compared 
to measured illuminances. A more recent study by Lorenz 
and Jabi (2017) analysed the efficiency of integrating 
supervised ML through using ANN to predict daylight 
autonomy levels for a typical office room [10]. The study 
found that more accurate results can be achieved when a 
large set of data is sufficiently trained. 
3 MACHINE LEARNING (ML) 
Machine learning (ML) is a branch of artificial intelligence 
(AI) that allows the software to learn without being explicitly 
programmed [8]. Mitchell (1997) defined it as a system that 
learns from past experience (i.e., data) to predict future 
performance [38]. In other words, ML could use existing 
data to predict or to respond to future data [15]. After training 
and learning, it is expected that the system should obtain a 
better predictive performance on the same trained task or 
related ones. In addition to the idea of self-improving 
automatically, ML also offers other advantages, such as 
collecting and clustering useful information from a large and 
complex set of data [23]. 

Recently, in the architecture field, ML has been proposed in 
several studies to estimate heating and cooling loads, 

building performance, energy consumption predictions, and 
architectural image recognition [34]. Nevertheless, the 
architecture field is considered one of the slowest industries 
to integrate ML, and it has resisted adopting it compared to 
other fields [21]. Carpo (2017) argued that architecture 
seems to be disregarding the potential of ML and its ability 
to predict performance, categorise large sets of data, and 
form optimization and advanced form findings [7]. 
4 ARTIFICIAL NEURAL NETWORK (ANN) 
The artificial neural network (ANN) model has been widely 
utilized as a predictive tool in many fields [9]. The model 
was introduced by Mclloach-Hopfield in the early 1960s, but 
it started to develop more fully after 1985 [35]. The ANN 
model has the ability to deal with complex systems and 
nonlinear problems and is loosely inspired by the human 
brain [14]. The classic ANN model comprises units called 
neuros and is constructed in three parts, namely, the input 
layer, the output layer, and one or more hidden layers in 
between, and each of these hidden layers is composed of 
several neurons. Several researchers have applied the ANN 
method to predict and evaluate energy in buildings [43]. 
Some of these studies collected the dataset based on 
synthetic data simulation or based on real data. 
Keshtkarbanaeemoghadam et al. (2018) used a simulation-
based approach to develop an ANN model, trained by a back-
propagation algorithm (BP), for estimating the total heating 
energy demand of a shelter located in Iran. The study 
obtained the data by conducting 328 computer simulations 
using a Grasshopper plugin linked to the EnergyPlus engine. 
Different ANN models were examined with one or two 
hidden layers to select the most suitable architecture 
network. According to the results, the best ANN model had 
an MSE of 0.73, which indicates that the ANN model is a 
promising approach and can substitute other methods to 
predict the heating energy demand in  buildings [20]. 
5 DECISION TREE (DT)  
Decision tree (DT) is a method that has been commonly used 
for classification and prediction in many fields [41]. DT 
"uses a flowchart-like tree structure to segregate a set of data 
into various predefined classes, thereby providing the 
description, categorization, and generalization of given 
datasets" [44]. The DT model has advantages over other 
models because of its ease of use and the ability to predict 
accurately without requiring much computation time. While 
this method has the ability to process both numerical and 
categorical data, DT usually performs better with categorical 
than with numerical data [44]. A few applications have 
implemented DT techniques in relation to building studies 
[3]. Tso and Yau (2006) presented a comparison study 
between three modelling techniques to estimate average 
weekly electricity energy consumption in Hong Kong [40]. 
They found that both DT and ANN are applicable models 
compared to a regression model because of their 
understanding of energy consumption patterns and the 
prediction of energy usage. In another study by Haghighat et 
al. (2010), the researchers developed a predictive model to 



improve building energy performance based on the use of 
DT [44]. They applied the use of DT on a residential building 
to predict the energy use intensity (EUI) level. They 
concluded that the use of the DT method makes it possible to 
classify and predict the energy usage of the building 
accurately, which would lead to a high energy performance 
building. 
6. METHODOLOGY 
The methodological framework of this research is divided 
into two main steps: (1) simulation, and (2) machine learning 
(ML) prediction (Figure 1). In the first step, a generative 
parametric office tower and its urban context were designed 
and simulated using Ladybug, which is a plug-in tool for the 
Grasshopper software [32]. Moreover, in this step, the model 
settings were defined; these include setting up the parameters 
of the office tower, determining the design variables, and 
establishing the objective of the simulation, which is the 
solar radiation output. The ultimate goal of this phase was to 
create a large synthetic database of hourly solar radiation 
(KWh/m2) data for training the model. The study selected the 
synthetic database approach because real data was not 
available. In the second step, NN and DT models were 
developed and evaluated for predicting the hourly solar 
radiation for a single closed office space within the office 
tower.  

 
Figure 1. Framework of the study. 

6.1 Establishing the Hypothetical Building 
In this research, a generic mid-rise office building was 
developed as a case study in a hypothetical urban context 
located in the centre of Riyadh, Saudi Arabia. The office 
building has a height of 104 m, which is the median height 
found in the centre of the King Abdullah Financial District. 
This office building was located in a theoretical site and was 
assumed to be surrounded by several mid-rise office 
buildings, which created direct, diffuse, and reflected solar 
gains on the building surface (Figure 2) [39]. These solar 
gains would affect the annual energy demand of each office 
room of the building. The model was tested examining a hot-
arid climate such as Riyadh city, where overheating is a 
crucial factor. The analysed office building has twenty floor 
levels with a fixed floor height of 4 m; this is representative 
of the common heights of offices found in the region. The 
dimensions of the layout and core area are fixed in all floors 
of the building as follows: (23.2 m * 23.2 m), with a total 
area of 538.20 m2, the area of core services is 125.40 m2 
(11.20 m * 11.20 m), and the total gross area (GIA) of the 
office zones is 412.80 m2. 

 

 
Figure 2. The 3D parametric urban context, that vary in each 

simulation.   

 

6.2 Establishing the Typical Office  
The research examined only a typical side-lit office room 
facing the main orientations (north, south, east, and west) 
with different floor levels that varied based on the 
surrounding contexts (Figure 3). This closed office room was 
designed with a fully glazed working environment, giving a 
window-wall ratio (WWR) of 80%.  The spatial dimensions 
of the office room are 4 m wide by 6 m deep, making a 
rectangular zone with a floor to ceiling height of 4 m. The 
model incorporated most of the design conditions of a mid-
rise office building.  
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Figure 3. A single closed office space within the office tower 

facing main orientations. 
6.3 Setting Up Solar Radiation Simulation 

Computational tools can be applied effectively to gather 
quantitative information about both the building’s 
performance and its design in the schematic design stage. 
Sadeghipour and Pak (2013) developed Ladybug and 
Honeybee, which are plug-in simulation tools for the 
Grasshopper platform [32]. These tools perform hourly 
calculations of different analyses, such as the total energy 
demand. In addition, Ladybug provides solar radiation 
analysis for calculating the energy collected on the building 
surface [22]. These plug-in tools are linked to different 
simulation engines, such as Daysim, Radiance, and 
EnergyPlus. In this experiment, simulation was conducted 
using the data from the weather file of Riyadh city, which 
were imported via the Ladybug plug-in tool [32]. The solar 
radiation that strikes the window surface of each office room 
was calculated considering the urban context variation. Since 
solar radiation differs based on different parameters, such as 
surrounding context, orientation, hour of the day, month, 
etc., a generative design process was conducted 
parametrically with varied parameters to simulate most of the 
design settings. 

To that end, solar radiation analysis was performed 
considering the following main parameters: (1) Office 
operational time, which was considered to be from 8:00 am 
to 6:00 pm, (2) Day (21st of each month), which was constant 
in all the simulations, and (3) Month, which was selected 
seasonally (March, June, September, and December) 
throughout all the simulations [37]. (4) The building context 
varied in each simulation (low, medium, and high) to test 
solar radiation on all the levels and in all the main 
orientations (north, south, east, and west). The variation of 
heights of the surrounding contexts acted as one of the main 
features of geometrical variation in the study. In addition, the 
average height of the surrounding buildings was used 
parametrically to control the vertical location of the office 
room in each orientation in accordance with a lower than 
average, average, and higher than average height setting. 
This was meant to simulate the varying amounts of sunlight 
and daylight that the offices in a building receive. The 
vertical location of the office is calculated using the 
following formula. 

𝑎	 = 	∑	B00	+B01+B02+B03/n	

𝑙	 = (𝑎) ∗ 0.50 

ℎ	 = (𝑎) ∗ 1.50 

Where	a=	Average,	l=	Lower	than	average,	h=	Higher	than	
average		

B=	Building	Context,	n=	number	of	variables	

In total, 324 different urban configurations were generated 
varying in height (low=12 m, medium=28 m, high=44 m). 
These are multiplied with 4 orientations, 13-day time hours, 
and 4 months. Figure (4) lists in detail these dynamic input 
parameters together with the fixed inputs used in this study 
to calculate the solar radiation collected on the building 
envelope. 

The Colibri plug-in tool in Grasshopper was applied within 
the simulation workflow to step through all design variations 
automatically to create the dataset (Figure 5). Then, Colibri 
stored the result of the solar radiation data and its coordinates 
in an Excel spreadsheet [28]. 

 
Figure 4. Fixed and dynamic model parameters. 



 
Figure 5. Sample of the solar radiation data generated automatically in the simulation process.  

As stated in the literature, employing sufficient data is 
essential to achieving a high accurate predictive model that 
can predict the hourly solar radiation of the surface of the 
office room [17]. For this purpose, a total of 50,545 solar 
radiation iterations were generated in the simulation process 
examining different orientations. Figure 6 shows an example 
of some samples of the conducted simulation for solar 
radiation results in two different orientations, and two 
different hours of the day. 

 
Figure 6. An example of two different cases of solar radiation. 

The output of each iteration consists of a number of test 
points that fall on the tested surface with X, Y, and Z 
coordinates to perform the radiation analysis, and these 
values are measured in KWh/m2 (Figure 7). The total number 
of test points is 1,263,600 (25 test points of each surface * 
50,545 total number of iterations). The total radiation results 
in KWh/m2 are calculated through the mass addition of 
results at each of the test points multiplied by the area of the 
face that the test point is representing. 

 
Figure 7. (A) Test points coordinates, (B) Radiation results based 

on each test point. 
7 MODEL TRAINING AND TESTING  
In this section, we discuss the data used for the modelling 
and the machine learning (ML) algorithms used. 

7.1 Generated Data  
The data generated in the simulation stage were imported 
into two ML algorithms (ANN) and (DT) to create a model 
for training and testing the simulation results. A total of 
twelve variables were used as input parameters to train the 
two models. The output of the data is the solar radiation of 
the corresponding coordinates. 
7.2 Data Pre-Processing  
Among the input data features used for the modelling, Hour, 
Month, Building contexts (B00, B01, B02, B03), Façade 
floor level, Orientation, and Façade level height are 
considered categorical features, and they are one hot encoded 
which is a common way of converting categorical inputs into 
a suitable format for ML models [33]. The remaining input 
features are x/y/z coordinates of the test points. They are 
treated as continuous inputs and pre-processing is not applied 
to them. The output is the solar radiation of the 
corresponding location. The input data feature, and ranges of 
each input are illustrated in Table (1). 

 



Input Input Neuron Type Data Range 

Hour  Discrete 6 to 18 in steps of 1  

Month Discrete 0,1,2,3  

B00 Discrete 0,1,2 

B01 Discrete 0,1,2 

B02 Discrete 0,1,2 

B03 Discrete 0,1,2 

Facade Floor Level Discrete 0,1,2 
Orientation Discrete 0,1,2,3 

Façade Height Discrete 6 to 66  

x-coordinate Continuous [-11.08, 12.28]  
y-coordinate Continuous [-13.06, 10.26] 

z-coordinate Continuous [6.40, 69.60] 

Table 1: The input data used for the machine learning modeling. 

7.3 Neural Network Modeling  
Artificial Neural Network (ANN) are used for the modeling 
problem in the form of a regression learning. The 
performance of the network is evaluated with the root mean 
square error (RMSE), mean absolute error (MAE) and R2-
score (R2) which are calculated using the following 

formulae.     RMSE	=	8!
"
∑ 	"
#$! (𝑦# − 𝑓(𝑥#))%

! ,	 

MAE =	 !|"|	∑ |𝑦(𝑖) − 	𝑓(𝑥#)|	
|"|
#$! ,  𝑅% = 1 - 

∑ (*(#),	-(."))!
|$|
"%&
∑ (*(#),	*/)!|$|
"%&

 

In the above equations, we assume there are n number of 
testing data points, 𝑦# is the output of the i-th data point 
corresponding to the input 𝑥#, f(𝑥#) is the predicted value of 
the i-th data point where f(x) is the function approximated by 
the neural network and 𝑦" = 	 !|#|	 	∑ 𝑓(𝑥𝑖)		

|#|
%&! . In an ideal 

modeling case, we expect the RMSE and MAE values to be 
zero and the R2score to be 1. The one hot encoded categorical 
features are fed into an embedding layer. The purpose of this 
layer is to give a vector embedding to the one hot encoded 
input rather than using them as such. This approach is found 
to give more representational power for the categorical 
inputs. Similarly, the continuous features are fed into the 
batch normalizing layer [18]. Its purpose is to make the 
continuous data follow the same probability distribution so 
that the learning of the network is optimized. For the non-
linear activation of the inputs in the neurons, the 
RectifiedLinear Unit (ReLU) function defined as f(x) = 
max(0, x) is used [27]. The output of the ReLU is batch 
normalized, and then the dropout regularization is applied. 
Dropout is a mechanism to ensure the generalization 
capability of the network by avoiding overfitting [36]. For 
each layer of the network, the data are processed as – linear 
layer à ReLu activation à batch normalization à dropout. The 
output neuron of the network is a trivial neuron where no 
activations are applied, and the output is taken from the 
previous layer (Figure 8). Implementation of the network 

was done using the Pytorch framework [29]. The dropout 
rate used for the experiment was 0.2.  

 
 
7.4 Random Forest Modeling 
Random forest (RF) for regression is used for modelling the 
data. The inputs to the RF model are the one hot encoded 
categorical features and x/y/z coordinates of a location. The 
output is the solar radiation of the corresponding location. 
The performance of the network is evaluated with the RMSE, 
MAE, and R2-score. 
8 OPTIMIZATION OF ANN - RESULTS 
For the ANN modeling, a suitable architecture has to be 
selected. Along with this, there are hyper-parameters such as 
learning rate, batch-size etc that require fine-tuning. For 
choosing the right architecture for ANN an experiment is 
designed based on k-fold cross validation; the description is 
given below. 

8.1 K-fold Cross Validation 
The purpose of the k-fold cross validation is to choose the 
right architecture for the ANN in terms of the number of 
layers required and the number of neurons in each layer. The 
architectures used for the experiment are 1 ,2, 3 and 4 hidden 
layer networks. Each network was tested with 64, 128, 256, 
512, and 1024 neurons in each layer. For this experiment, the 
data is split into training, validation and test sets. The models 
are tested using the training and validation data splits and the 
model finally chosen is tested with the test data. It has to be 
noted that the test data is treated as unseen data and it was 
not used for selecting the right architecture for ANN. The 
details of the cross-validation experiment are given below. 
8.1.1 Data Split  
Initially, the whole dataset is split into training, validation, 
and testing sets: 80% of the data is assigned to the training 
set, 6.67% to the validation set, and the remaining 13.37% to 
the testing set. The k-fold cross validation is then conducted 
on the training fold. The value of k chosen is 5. Note that 
while doing k-fold cross validation, one among the fold 
becomes the testing set and the remaining become the 
training set. In this case, one-third of the testing case will be 
reserved as a validation set for that particular instance of the 
validationprocedure. For cross-validation experiments, the 
learning rate is fixed at 0.01, the dropout rate at 0.2, and the 
batch size at 16,000. The batch size has taken this value as it 
optimizes the hardware utilization. The experiments are run 
for 100 epochs with an early stopping criterion of 10 epochs.  

Figure 8. ANN Components. 

 



8.1.2 Results  
As we increased the number of layers, the RMSE decreased. 
This was expected since the representation capabilities of the 
NN were also increasing as we increased the number of 
layers. However, there was a slight increase of RMSE for 4-
layer networks. A similar trend could be observed with the 
MAE and R2 scores as well. The architecture selected after 
the 5-fold cross validation experiment is a 3-layer network 
with 256 neurons in each layer. The result of the k-fold cross 
validation is given in Table 2. 

No: of layers No: of neurons RMSE MAE R2 
1 512 0.01842 0.07976 0.7334 

2 256 0.01524 0.06716 0.7794 

3 256 0.01509 0.06596 0.7832 

4 128 0.01539 0.06675 0.7789 

Table 2: Summarized architecture optimization of ANN.  

8.2 Testing the architecture 
The 3-layer network with 256 neurons in each layer which 
was selected through k-fold cross validation was applied 
with the validation set and test set. For this purpose, a new 
model was built using the entire training set. This model was 
tested with the test set. The results obtained are as follows: 
RMSE=0.011415, MAE=0.052188, and R2-score=0.831315. 
For the experiment, the learning rate used was 0.02, the 
dropout rate was 0.2, the number of epochs was 100, and the 
batch size was 16,000. Figure 9 shows a sample prediction 
heatmap made by ANN for a set of 25 coordinates to test the 
model. 

 
Figure 9. The actual and predicted solar radiation values by ANN.  

9 OPTIMIZATION OF RANDOM FOREST - RESULTS 
For random forest modelling there are several hyper-
parameters involved as follows: (1) Number of trees: The 
number of trees indicates the number of individual decision 
tree estimators. Its value  is tuned from the set {10, 20, 30, 
40, 50, 60, 70, 80, 90, 100}. (2) Bootstrap: Bootstrap is a 
process of random sampling from the training data with 
replacement. This procedure helps reduce the high variance 
of the random forest models and prevents them from over-
fitting [6]. If the bootstrap option is not enabled, the random 
forest is learned using the whole data. (3) Minimal Cost-
Complexity Pruning parameter: Tree pruning is a procedure 
to avoid over-fitting in random forest models [11]. An 
experiment was done by varying the pruning hyper-
parameter ccp-alpha in the set [0, 0.001, 0.002, 0.003, 0.004, 
0.005]. 

9.1 K-fold Cross Validation  
To find the proper values for the hyper-parameters, an 
experiment was conducted similar to the one described in 
Section 8. The dataset was split into 80% for training and 
20% for testing. Then, 5-fold cross validation was applied on 
the training set alone to fix the hyper-parameters. To test the 
model in the testing set, a model was built using the entire 
training set whose hyper-parameters were those fixed by the 
k-fold cross validation. 
9. 2 Results 
The results of the k-fold cross validation are given in Table 
3. The results in the table are given in a summarized form, 
that is, only the best result obtained for each of the options 
of number of trees is given.  

Sl No Trees RMSE MAE R2-score 
1 10 3.52E-04 4.42E-03 9.92E-01 

2 20  3.48E-04 4.41E-03 9.93E-01 

3 30 3.48E-04 4.40E-03 9.95E-01 

4 40 3.48E-04 4.39E-03 9.95E-01 

5 50 3.45E-04 4.40E-03 9.95E-01 

5 60 3.52E-04 4.48E-03 9.94E-01 

7 70 3.45E-04 4.39E-03 9.92E-01 

8 80 3.54E-04 4.57E-03 9.93E-01 

9 90 3.41E-04 4.38E-03 9.95E-01 

10 100 3.50E-04 4.40E-03 9.95E-01 

Table 3: The k-fold cross validation results for DT 

From the results, there is no significant variation in the 
RMSE value as the number of trees increases. In addition, 
the observation is true for other metrics. The best 
performance is observed when the ccp-alpha value is 0.0 
irrespective of the number of trees and the Bootstrap option. 
When a non-zero value is specified, there is a greater drop in 
the performance. This is very evident, as the R2-score is 0. 
The performance when the bootstrap option is enabled is 
better than with the models where it is disabled. The best 
result is observed when the number of trees is 80, the ccp-
alpha value is 0, and the Bootstrap option is enabled. In this 
setting, the RMSE value is 0.000354, the MAE is 0.00457, 
and the R2-score is 0.993.  The final test results are as 
follows. The RMSE is 0.000514, the MAE is 0.00661, and 
the R2-score is 0.99228. Figure 10 shows a sample prediction 
heatmap made by DT for a set of 25 coordinates to test the 
model.  

Figure 10. The actual and predicted solar radiation values by DT.  

 



10 DECISION TREE SURROGATE MODEL TESTING 
WITH NEW SCENARIO 

After the training and validation had been conducted with 
ANN and DT, the trained DT surrogate model was imported 
into the Grasshopper interface using GH CPython to predict 
solar radiation for a new scenario. GH CPython was 
developed by Mahmoud M. Abdelrahman for the integration 
of the Grasshopper and CPython languages [1]. This plug-in 
tool allows users to import Python libraries such as NumPy, 
SciPy, Matplotlib, pandas, Scikit-learn, Pytorch, etc. into 
Grasshopper and link the trained model to predict for a new 
scenario. We created a set of new test scenarios that is not 
part of the data used to build machine learning models. The 
new design considers several office towers with new urban 
contexts as shown in Figure 11. The output results of solar 
radiation with the DT surrogate model are very close to the 
simulation prediction results shown in Figure 12. To that 
end, our approach will be a cost-effective solution for the 
cases that require large scale generation of simulation data. 
The implementation codes and files are available in this link: 
https://github.com/archammar/Solar-radiation-prediction-
for-office-tower-using-machine-learning       

 
Figure 11. New scenario with several office towers. 

 
Figure 12. Comparison between simulated solar radiation results 
using Ladybug and predicted results using DT surrogate model. 

11 CONCLUSION AND RECOMMENDATIONS 
This paper aimed to find an alternative approach for solar 
analysis studies using a machine-learning (ML) method. This 
technique is beneficial for saving time that is mostly 
consumed during the simulation process to inform the design 
decision of related building envelope studies, such as the 
design of the shading system, glazing ratio, and PV envelope 
solar systems, etc. Initially, we created a large synthetic data 
through model - simulation approach of solar radiation 
analysis. Then, we fed these datasets into two ML algorithms 
to train and test the model. To accomplish the best prediction 
result, sensitivity analysis tests were performed using 
different parameters. 

After the experiment with these different parameters, the best 
result achieved for the neural network in terms of RMSE is 
0.011415 and for the random forest is 0.000514. While both 
methods provided an acceptable level of accuracy, the 
performance by DT is significantly higher than that of ANN 
as given in Table 4. This is due to the following reasons: 

• Most of the inputs are categorical. This is a perfect 
learning scenario for the random forest. Since the decision 
trees are highly suitable for categorical inputs in the 
learning setting, random forest modelling has a significant 
advantage over neural network modelling. 

• A random forest is an ensemble algorithm. Ensemble 
algorithms are a class of ML algorithms where a set of 
learning programs are combined together to give accurate 
predictions [11]. Hence its performance was significantly 
better than that of neural networks. 

The generalizability of either DT or NN to a new modelling 
problem is dependent on the nature of the inputs and the 
modelling tasks. However, based on our studies, we observe 
that if the input data is mostly categorical, the DT algorithm 
could perform better than ANN. 

Performance metric Neural Network Decision Tree 

RMSE 0.011415 0.000514 

MAE 0.052188   0.00661 

R2-score 0.831315 0.99228 

Table 4: Performance comparison of NN and DT.  

One of the main limitations of this study is the unavailability 
of real-life data, so a simulation was performed to produce 
data. Additionally, the case study focused only on a hot 
climate region and tall office towers within an urban context, 
so the findings of this study cannot be generalised to other 
climates. Although we were able to predict solar radiation on 
a vertical façade based on the variation in the urban context, 
façade level heights, orientations, and different hours, further 
research is needed to examine other parameters, such as the 
materials of the urban context to predict a more accurate 
result. 
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