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  7 

The discovery of slow earthquakes over 20 years ago transformed understanding of how 8 

plate motions are accommodated at major plate boundaries. Slow earthquakes, which slip 9 

more slowly than regular earthquakes but faster than plate motion velocities, occur in a 10 

range of tectonic and metamorphic settings. They exhibit spatial and temporal associations 11 

with large seismic events that indicate a causal relation between modes of slip at different 12 

slip rates. Defining the physical controls on slow earthquakes is therefore critical for 13 

understanding fault and shear zone mechanics. In this Review, we synthesize geological 14 

observations of a suite of ancient structures that were active in tectonic settings comparable 15 

to where slow earthquakes are observed today. The results indicate that a range of grain-16 

scale deformation mechanisms accommodate deformation at low effective stresses in 17 

regions generating slow earthquakes. Material heterogeneity and the geometry of 18 

structures that form at different inferred strain rates are common to faults and shear zones 19 

in multiple tectonic environments, and may represent key attributes that limit slow 20 

earthquake slip rates. Further work is needed to resolve how the spectrum of slow 21 

earthquake slip rates can arise from different grain-scale deformation mechanisms and 22 

whether there is one universal rate-limiting mechanism that defines slow earthquake slip. 23 
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 24 

[H1] Introduction 25 

Slow earthquakes are a category of slip events with longer durations than ‘regular’ earthquakes 26 

of comparable size1. The longest-duration events, referred to as slow slip events (SSEs), last for 27 

days to years and do not cause ground shaking (they are aseismic), but the permanent surface 28 

offsets they cause are observed geodetically. Shorter-duration events (up to hundreds of 29 

seconds) such as low and very low frequency earthquakes (LFEs) and tectonic tremor2 [G], 30 

which is inferred to represent bursts of LFEs3, are observed seismically. Geodetically and 31 

seismologically observed slow earthquakes typically occur in approximately the same fault areas 32 

and are sometimes temporally associated4. Consequently, seismologically observed slow 33 

earthquakes are generally thought to occur when there is an accompanying geodetically observed 34 

slow earthquake and they are considered different manifestations of the same deformation 35 

process1,5. Slow earthquake slip rates encompass a spectrum from ~10-7 - ~10-6 ms-1 for SSEs to 36 

~10-3 ms-1 for LFEs. They therefore represent transient increases in slip rate above the long-term 37 

average level (referred to as plate-rate or continuous aseismic creep, which is typically associated 38 

with slip rates of centimeters per year or ~10-10 ms-1) and below slip velocities of regular 39 

earthquakes (100 ms-1). Whether or not the spectrum of slip rates is continuous from SSE rates to 40 

seismic slip rates is still debated6,7.  41 

 42 

Seismological and geodetic data show the signatures of slow earthquakes are similar across 43 

settings1,8, implying slow earthquakes are a fundamental process within many faults. Slow 44 

earthquakes are observed near the plate interface in multiple subduction zones and transform 45 

margins. They are also located within accretionary wedges [G] at subduction zones9-16 and on a 46 
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variety of continental transform17-22 and extensional faults23. In some subduction zones, SSEs 47 

accommodate a substantial portion of the plate motion budget24, indicating that they load or 48 

unload the seismogenic zone defined by the nucleation of regular earthquakes25. Slow 49 

earthquakes have been observed to precede some large magnitude seismic events26 and are also 50 

co-located with regions that accommodate seismic slip27,28, indicating a causal relation between 51 

modes of slip at different slip rates. The recognition of slow earthquakes therefore provides 52 

important new constraints on the processes and mechanics of fault slip24,25,29,30.  53 

 54 

Geological observations of ancient, exhumed faults and shear zones that hosted slow earthquakes 55 

in the past are uniquely able to provide direct information on the physical mechanisms, fault 56 

properties, and deformation conditions that control slow slip31, which are beyond the resolution 57 

of geophysical and geodetic methods. However, there is no clear paleo-speedometer for creep 58 

transients and currently no widely accepted, unequivocal evidence for slow earthquakes in the 59 

geological record. Furthermore, recent laboratory experiments show that slow earthquakes can 60 

arise from a variety of mechanisms, including purely frictional grain boundary sliding32-34 and 61 

viscous deformation accompanied by fracture35. Recent studies have proposed potential 62 

structures that represent slow slip and highlighted processes or mechanisms relevant to 63 

individual settings36-44, but geological insights into the physical processes and material properties 64 

at the slow earthquake source are limited. 65 

 66 

In this Review, we synthesize observations of exhumed deformation structures that might be 67 

examples of geological records of slow earthquakes from a range of tectonic settings. We aim to 68 

establish the physical characteristics of potential slow earthquake sources and compare 69 
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geological evidence to the geophysical constraints on the structures that generate slow 70 

earthquakes. We focus this work on the environments of seismologically observed slow 71 

earthquakes, which we treat as representative of systems that can exhibit the full spectrum of 72 

slow earthquake slip rates. Our approach is based on recognizing that slow earthquakes are a 73 

general, commonly occurring manifestation of active faulting8, so ancient exhumed structures 74 

must contain a record of their occurrence, even if a specific signature of slow earthquakes has 75 

not been recognized. The results emphasize that  no single mineral assemblage, deformation 76 

structure, or deformation mechanism that controls slow earthquakes. This Review highlights the 77 

need for further geologically focused work to identify how the spectrum of slow slip rates can be 78 

generated across a diverse range of tectonic settings. 79 

 80 

[H1] Geophysical insights into slow earthquake geology 81 

In this section, we review geophysical and seismological data that facilitate predictions regarding 82 

the geological characteristics of slow earthquakes45-47. The goals are to (1) establish their tectonic 83 

contexts to facilitate selection of appropriate ancient exhumed systems for comparison; and (2) 84 

predict the geological characteristics of slow earthquake structures to constrain the potential 85 

signatures of slow slip in complexly deformed rocks (Table 1). 86 

 87 

[H2] Tectonic settings  88 

Seismologically observed slow earthquakes commonly occur on major plate boundaries3,48-51, 89 

though geophysical methods cannot establish whether they originate from a single fault interface 90 

or a distributed network of faults or shear zones. Slow earthquakes occur over a very large range 91 

of metamorphic conditions (FIG. 1). They are commonly25,52, but not exclusively14,53,54, located 92 
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in transitional regions at the edges of seismogenic zones55. However, globally, hypocentral 93 

depths range from ~2 to 45 km and hypocenters also span tens of kilometers along the downdip 94 

direction of some individual fault zones56,57. Observations of geodetically observed slow 95 

earthquakes are less numerous, but inversions of geodetic data show a similar range in depth of 96 

slip27,29,58. Slow earthquakes therefore occur at all temperatures from near surface to around 700 97 

°C, which implies that different grain-scale deformation mechanisms likely accommodate 98 

deformation at the sources of slow earthquakes because the typical constitutive relations for 99 

frictional sliding, diffusion creep [G], and crystal-plastic deformation [G] are pressure and 100 

temperature dependent59. 101 

 102 

Slow earthquakes occur frequently on some well-instrumented plate boundaries, indicating 103 

evidence for them should be common in the rock record. For example, around 105 slow 104 

earthquakes are detected seismically per year each on the San Andreas Fault60,61 and Nankai62 105 

and Cascadia63 subduction zones. Given the areas of the zones hosting slow earthquakes on these 106 

faults, 105 nucleation sites would, on average, result in millions or tens of millions of slow 107 

earthquake events per kilometer cubed per million years. All of these events would result in 108 

permanent deformation. However, the number of structures that record these events in an 109 

exhumed example will be variable as slow earthquakes are likely hosted on a mixture of new and 110 

reactivated structures, and not all structures are preserved in recognizable form. Because 111 

seismologically observed slow earthquakes are commonly spatially clustered49,61,64, some regions 112 

within the host deformation zones are expected to contain higher concentrations of related 113 

structures. Additionally, deformation that occurred at slow slip rates can be expected to 114 
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predominate if structures are exhumed from regions where SSEs account for a significant portion 115 

of the total relative plate motions. 116 

 117 

[H2] Kinematics and strain rates 118 

Structures recording slow earthquakes must exhibit dominantly shear offset to be consistent with 119 

geodetic observations and the double-couple source mechanisms [G] of LFEs3,48,50,65,66. Slip 120 

during a seismologically observed slow earthquake is estimated to be ~0.01–0.1 mm, and the 121 

radius of a rupture ranges from ~10 m up to around 200 to 600 m 49,65,67-69. Inferred stress drops 122 

are of the order of 10 – 100 kPa67, orders of magnitude smaller than the median observed value 123 

of approximately 4 MPa for regular earthquakes70.  124 

 125 

The strain rates associated with slow earthquakes depend on the thickness of the slip zone across 126 

which the slip is distributed. Assuming simple shear, strain rate can be approximated as the ratio 127 

of the slip rate to slip zone thickness. Slip rates of 10-3 ms-1 therefore imply strain rates of 10-5, 128 

100, or 103 s-1 for representative slip zone thicknesses of 100 m, 1 mm, and 1 µm, respectively. 129 

SSE average slip rates of ~10-7 ms-1, give strain rates of 10-9, 10-4, or 10-1 s-1 for thicknesses of 130 

100 m, 1 mm, and 1 µm, respectively. These average rates can, however, also be achieved by 131 

multiple, faster slip increments, too small to be distinguished geodetically and spaced out over 132 

the duration of a single recorded slip episode71. Because slip at rates spanning the spectrum of 133 

slow earthquakes are often detected in the same place, the structures resulting from these 134 

different strain rates could be mutually crosscutting, or overprinting, unless they are spatially 135 

separated and subparallel.  136 

 137 
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[H2] Deformation conditions 138 

Substantial geophysical evidence indicates that source regions of slow earthquakes experience 139 

high pore fluid pressure and low effective stress46,72,73. The evidence includes seismic wave 140 

velocities that imply low Poisson’s ratio74-76 and the sensitivity of small earthquakes to small 141 

perturbations in stress from tidal loading or teleseismic waves77,78. Together, these observations 142 

indicate that structures hosting slow earthquakes are critically stressed [G]47,79,80. In some cases, 143 

tremor migrates at rates of ~1 – 100 km/hr81,82, suggesting mechanical connection or similar 144 

proximity to failure across source regions up to around 100 km apart61,80.  145 

 146 

We have summarized the key attributes of slow earthquakes derived from seismological and 147 

geodetic and constructed a list of predicted geological characteristics that are developed from 148 

these data as a guide for identifying the signatures of slow earthquake deformation in ancient 149 

rocks for future geological investigations (Table 1).  150 

 151 

[H1] Potential slow earthquake structures 152 

 153 

In this section, we summarize observations of a selection of ancient, exhumed structures, which 154 

address some of the critical properties of slow earthquake sources that geological observations 155 

are well placed to help elucidate: the physical characteristics of potential slow earthquake 156 

structures (thickness, mechanical composition), the deformation mechanisms at the locus of slip, 157 

and the in situ effective stress conditions. To ensure the information is relevant to slow 158 

earthquakes generally, we synthesize observations from systems that were active across the 159 

range of tectonic settings shown in Figure 1 (locations shown in Figure 1, for details see 160 
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Supplementary Table 1). They include subduction plate boundary faults, upper plate faults at 161 

subduction zones, and transform faults.  Throughout, we have attempted to identify only the 162 

features that formed at metamorphic conditions relevant to slow earthquakes, particularly where 163 

subsequent deformation or retrograde metamorphism occurred during exhumation83. We focus 164 

on structures that exhibit shear offset, consistent with geodetic and seismological observations. 165 

However, we have not precluded any features from within these systems in order to encompass 166 

as full a range of deformation structures as possible. For simplicity, we use the term ‘plastic’ to 167 

encompass grain-scale deformation by dislocation motion [G], diffusion creep [G], or 168 

dissolution-precipitation creep unless otherwise stated. 169 

 170 

[H2] Thickness of deformation zones 171 

 172 

The maximum thickness of the exhumed structures is a constraint on the total thickness of zones 173 

that host slow earthquakes in modern systems. Geologically, the maximum thickness is 174 

approximated by zones of distributed shear deformation in which finite strain [G] is inferred to 175 

be higher than in the surrounding (background) rocks. These high strain zones have total 176 

observed thicknesses from tens of meters to as much as a few kilometers, lengths of kilometers 177 

to hundreds of kilometers, and contain brittle (FIG. 2A) or plastic (FIG. 2D) structures or both. 178 

Brittle elements that define distributed high strain zones include particulate or cataclastic flow 179 

[G], zones of high vein density, anastomosing shear band networks (FIG. 2C), and mixing 180 

resulting in stratal disruption (FIG. 2A). Distributed shear deformation accommodated by plastic 181 

mechanisms is indicated by pervasive foliations [G] (FIG. 2D, F), folds, and associated 182 

kinematic indicators (FIG. 2F). Finite strain and inferred strain rates within high strain zones are 183 
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spatially variable, and presumably strain and strain rate patterns also varied over time during 184 

progressive deformation. Observed high strain zone thicknesses are upper bounds on active 185 

thicknesses as migration of deformation with time can result in total thicknesses greater than the 186 

zone that is deforming at any one time84.  187 

 188 

Relatively localized faults and shear bands with thicknesses ranging from sub millimeter to 189 

meters are ubiquitous within or at the edges of high strain zones85 (FIG. 2C-F), suggesting strain 190 

is localized to varying degrees within individual deformation environments. The degree of 191 

localization varies within individual deformation environments such that there may be a 192 

continuum of structures with different thickness86. Although finite strain can rarely be measured, 193 

localized structures are generally inferred to have accommodated a greater component of shear 194 

displacement than their surroundings87,88. Relatively localized structures at the edges of high 195 

strain zones include out of sequence thrusts or thrusts at the base of nappes (FIG. 2C), which are 196 

typically continuous for kilometers along strike and accommodate the majority of offset across a 197 

system in a particular phase of deformation43,89,90.  198 

 199 

Within high strain zones, discrete, localized shear bands are common at all metamorphic grades 200 

and across a wide range of rock types (FIG. 2E, F). Individual bands are locally discordant to and 201 

deflect the surrounding foliations, though meters-long, submillimeter-thick, foliation-parallel 202 

bands are also observed91. Shear bands typically form anastomosing [G] networks, where both 203 

the width of the networks and the length of individual shear bands is at least meters to tens of 204 

meters, although the size of exposure limits observation beyond this minimum length scale92 (an 205 

example network is shown in FIG. 3C). In predominantly plastic high strain zones, some shear 206 
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bands containing ultramylonite may be traced for kilometers93,94. Shear bands also define S-C-C’ 207 

composite fabrics [G] in predominantly plastic shear zones, which are typically finer grained 208 

than the surrounding rock, suggesting they were relatively weak86 and/or may represent 209 

deformation at higher strain rates95-97. Shear bands in composite fabrics tend to be centimeters to 210 

tens of centimeters long. Lengths of localized structures therefore range from 10-3 – 10-2 m (C-C’ 211 

bands) to 100 –103 m (shear bands) or more if linkage of ultramylonite bands, faults, and shear 212 

zones occurs within structural complexes and nappe stacks. As strain rates were likely elevated 213 

in these shear bands compared to the surrounding rock, they may be candidate host structures of 214 

the transient increases in strain rate associated with slow earthquakes.     215 

 216 

[H2] Heterogeneous mechanical components 217 

 218 

Mechanical heterogeneity is thought to limit slow earthquake slip rates and potentially cause 219 

local variations in slip rate that result in LFEs45,98. Heterogeneity is inherent to all of the 220 

structures we reviewed, which contain assemblages of different rock types or components with 221 

different grain size, with, on average, aligned structural components. Field observations of 222 

boudinage or buckle folding [G] of relatively more competent units are common to all 223 

metamorphic environments, which demonstrate the different components had different effective 224 

viscosity under in situ conditions. Veins are also commonly boudinaged and folded.  225 

 226 

High strain zones containing heterogeneous mechanical components are common in subduction 227 

zones. Mélange [G] zones developed at subduction zone plate boundaries at temperatures less 228 

than around 350 °C contain block-in-matrix fabric where blocks of relatively coarse grained 229 
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siliciclastic and mafic volcanic rocks are interspersed in a matrix of pelitic rock [G] (FIG. 3A). 230 

Similar assemblages are developed in faults cutting off-scraped units that were never buried 231 

deeply. These faults are defined by zones of stratal disruption in which coarser-grained layers are 232 

broken up and boudinaged within a pelitic matrix99-102. Rocks that were buried to greater depths 233 

in subduction systems experience additional disruption103. Deformation to greater strains at 234 

increasing temperatures involves additional folding and transposition [G] of layering, boudinage 235 

[G], and imbrication [G], which all further mix lithologies39,104,105. Lithologic heterogeneity is 236 

also characteristic of serpentinite-bearing shear zones on prograde deformation [G] paths or at 237 

peak conditions, where the degree of serpentinization may be spatially variable and in some 238 

cases serpentinite shear zones contain exotic blocks40,106,107.  239 

 240 

Exhumed continental transform faults also contain mixtures of lithologies due to transposition 241 

and boudinage, predominantly of more and less phyllosilicate-rich units93,108,109. Heterogeneous 242 

fault rocks also develop in single lithologic units due to variations in finite strain where blocks of 243 

relatively coarse grained protomylonite and weakly deformed protolith are surrounded by finer-244 

grained mylonite or ultramylonite zones86,93.  245 

 246 

We compiled field data describing the characteristics of competent block in various high strain 247 

zones to determine if the populations of blocks are similar (FIG. 3).  All block populations 248 

exhibit an apparent power-law distribution of sizes110,111 (FIG. 3B). In addition, a power-law 249 

model is a plausible fit112 for datasets with ~1000 measurements, though this cannot be evaluated 250 

for smaller datasets. Substantial variation is observed in the power law scaling exponent when 251 

exposure-scale measurements (10-2 – 101 m, maximum observed dimension limited by exposure 252 
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size) are compared, reflecting heterogeneity within and between systems110. The largest-scale 253 

relatively competent lenses within mélange zones can be mapped for over 1 km (e.g. basaltic 254 

rocks at the base of a unit of mélange), representing a potential upper bound on block size.  255 

Block long axes have a preferred orientation clustered around the high strain zone boundaries 256 

(±15 °) (FIG. 3C). More elongate, higher aspect ratio blocks are less common than more equant 257 

blocks (FIG. 3D) so that the populations have log-normal axial ratio distributions111. Comparison 258 

of mélanges that formed at different temperatures (Lower and Upper Mugi and Makimine 259 

mélanges, Cycladic Blueschist Unit) suggests the blocks may be progressively broken down into 260 

smaller units during underthrusting, though the range of aspect ratios is similar39,111. 261 

Lithologically distinct or low strain blocks within the Kuckaus continental transform zone93, 262 

show a similar distribution of aspect ratios, range of block dimensions (with the largest over 2 263 

km), and clustering of long axis orientations (±16 °) as the subduction mélange examples. 264 

 265 

[H2] Deformation mechanisms  266 

 267 

Analysis of ancient structures is the only way to directly evaluate the grain-scale deformation 268 

mechanisms that are important in environments that host slow earthquakes. A variety of grain-269 

scale deformation mechanisms were active in the exhumed structures, but they all have one thing 270 

in common: deformation was accommodated by a combination of syn-tectonic plastic and brittle 271 

mechanisms (FIG. 4). In subduction zone faults and accretionary wedge thrusts at temperatures 272 

less than ~350 °C, the predominant plastic deformation mechanism is dissolution-precipitation 273 

creep in rocks containing quartz and clay minerals111,113,114 (FIG. 4A, B). Higher-temperature 274 

subduction and transform structures exhibit evidence for a range of plastic deformation 275 
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mechanisms, including both dislocation creep39,115 [G] and diffusion creep86 [G]) in foliation-276 

defining phases such as quartz and calcite, or amphiboles in some mafic rocks (FIG. 4C). Plastic 277 

deformation mechanisms result in the penetrative foliations (FIG. 4A-D) and grain shape 278 

preferred orientations (FIG. 4 C) that define both the maximum widths of the high strain zones 279 

and localized shear bands (FIG. 4 D).  280 

 281 

Structures that form by fracture and frictional sliding contemporaneously with plastic 282 

deformation occur at a range of scales. The discrete, localized structures at the boundaries of 283 

high strain zones are typically brittle structures89,90. High strain zones representative of both low 284 

and high temperature systems contain localized shear bands (FIG. 2B), cataclasitic bands [G] 285 

(FIG. 4A), breccias (FIG. 4E) and, in some cases, pseudotachylytes [G]. Where present, these 286 

localized structures commonly form at the interfaces between units of different 287 

competence108,116,117 and along foliations116,118,119. Veins are common to most of the exhumed 288 

high strain zones, typically occurring in discrete sets either parallel or discordant to penetrative 289 

foliations (FIG. 4F, G). Grain-scale brittle deformation is a fundamental mechanism in 290 

phyllosilicates, which are foliation-defining phases in many cases (FIG. 4A, B, D). 291 

Microcracking (and/or veining) of the crystal lattice is accompanied by kinking, dislocation glide 292 

along basal planes95,120, and recrystallization by a dissolution-precipitation mechanism, resulting 293 

in a penetrative semibrittle behavior40,41,95,120-122. Grain-scale brittle deformation in phyllosilicate 294 

rich rocks, along with the zones of stratal disruption in shallow subduction zone or accretionary 295 

wedge faults where particulate flow may have predominated99, can result in meters or tens of 296 

meters-wide deformation zones. However, discrete brittle structures (with thicknesses of the 297 

order of millimeters or centimeters) are generally relatively localized while structures resulting 298 

from crystal-plastic deformation are always more distributed. 299 
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 300 

Mutually crosscutting relations between fractures, best recorded by veins, and surrounding 301 

foliations are the primary evidence for fracture and plastic deformation occurring 302 

contemporaneously123 (FIG. 4F). Veins that were boudinaged, folded and/or exhibit evidence for 303 

plastic grain-scale mechanisms37,40,124 underwent some plastic deformation after formation. 304 

Repetition of this pattern, indicated by crosscutting veins, foliation wrapping around boudinaged 305 

veins while other veins crosscut the foliation, and veins that record different finite strain 306 

subsequent to formation indicate fracture and viscous deformation occurred cyclically123,125,126. 307 

In the structures we reviewed, veins are far less common in transform faults than in subduction 308 

systems. However, some transform faults preserve brittle deformation in the form of 309 

pseudotachylyte slip surfaces119,127 and associated breccias128 (FIG. 4E), which are subsequently 310 

folded or show evidence of grain-scale plasticity. The inferred cyclicity between localized 311 

fracture and distributed plastic deformation is consistent with the seismological and geodetic 312 

observations of slip at different slip rates at the same place on active structures hosting slow 313 

earthquakes. 314 

 315 

[H2] Fluid pressure and effective stress  316 

 317 

Tomographic images of seismic velocity in systems such as the Cascadia76,129, Mexico73, and 318 

Nankai75 subduction zones, among others, indicate that slow earthquakes occur at high pore fluid 319 

pressure and low effective stress. Geological constraints on effective stresses could verify these 320 

observations and test if they are generally applicable. However, field-based estimates of effective 321 

stresses are available for only a few exceptional systems, such as the Makimine mélange (Japan) 322 
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and Chrystalls Beach mélange (New Zealand), which exhibit well-defined vein geometrical 323 

relations and kinematics that constrain the effective stress for frictional slip. Elsewhere, stress 324 

conditions can only be inferred by comparison to lab-derived flow laws through empirical 325 

relations between steady-state flow stress and grain size during dislocation creep 326 

(paleopiezometry)130. The available data suggest shear offset does occur under elevated pore 327 

fluid pressure (greater than hydrostatic, approaching lithostatic) and low effective normal stress 328 

conditions (differential stress of the order of 1 to 10 MPa)37,131. Though absolute measures of 329 

effective stress are rare, similarities in vein network characteristics in multiple systems suggests 330 

a similar conclusion is appropriate for many of the exhumed structures39,125,130.  331 

 332 

Field- and micro-scale constraints on vein opening vectors demand the occurrence of tensile 333 

failure at the depths and conditions of slow earthquakes37,40,131. These veins are interpreted to 334 

form as opening-mode extensional hydrofractures. Extensional fractures can accommodate shear 335 

offsets when arranged in an en echelon [G] geometry, which are documented in some 336 

serpentinite shear zones106 and high temperature subduction shear zones36,37,125. Such en echelon 337 

shear zones are generally up to a few meters wide and traceable for meters to tens of meters, 338 

generally constrained by outcrop continuity. 339 

 340 

Veins or mineralized faults with confirmed shear offsets, which indicate shear failure under 341 

elevated pore fluid pressure conditions, are observed in some high strain zones. In subduction 342 

mélanges, shear-offset veins occur along shear bands and parallel to solution cleavages 343 

throughout the matrix, while extensional veins form discordant to the cleavages36,37,92. The 344 

kinematics and attitudes of the two vein sets combined with failure criteria for the anisotropic 345 
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rocks133 suggest slip at differential stress of ~1 MPa and elevated pore fluid pressure 346 

(approaching lithostatic values)37,131. The low differential stress reflects the preference of tensile 347 

over shear failure. However, tensile veins are typically filled by a relatively competent quartz 348 

precipitate, which is easily preserved and recognized, whereas discrete shear surfaces can easily 349 

be overprinted in environments of efficient plastic deformation. Therefore, it is possible that the 350 

dominantly extensional vein systems were accompanied by substantial but undocumented shear 351 

failure. Similar vein sets, vein attitudes with respect to foliation, shear offsets across foliation-352 

parallel veins, and inferences regarding rock mechanical anisotropy are documented in a variety 353 

of subduction mélanges92,125 and accretionary wedge thrusts134, suggesting that these low 354 

effective stress conditions may be commonly achieved.  355 

 356 

Small differential stresses are also inferred from structures in which plastic deformation was 357 

predominant by extrapolating flow laws and stress-grain size relationships to in situ 358 

conditions130. Downdip of the seismogenic zone in subduction zones, deformation at ~500-600 359 

°C partitioned into biotite-rich layers at plate rates to SSE slip rates requires shear stresses of the 360 

order of 1-10 MPa125. In quartzofeldspathic rocks typical of continental transform faults, flow 361 

stresses within high strain zones at 450-480 °C are on the order of 30 MPa or less, as calculated 362 

from quartz piezometry and corrected for bulk rock composition86. Flow laws are not well 363 

defined for some mineral phases (e.g. amphiboles), but strain is distributed across both mafic and 364 

silicic or calcic rocks in high strain zones at blueschist to eclogite conditions, indicating all 365 

lithologies were relatively weak39. Vein formation during predominantly plastic deformation at 366 

higher temperature also indicates near-lithostatic pore fluid pressures39,43,135. Overall, the 367 

geological observations suggest slow earthquake deformation in the deep extents of active 368 
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systems occurs at differential stress that is a small fraction of the lithostatic load, potentially 369 

accompanied by large pore fluid pressure. 370 

 371 

Cycling of stress magnitudes, orientations and/or pore pressures is inferred from repetitive 372 

fracture during contemporaneous fracture and crystal-plastic deformation37,40,43,90,123. Incremental 373 

shear offsets of around 10-100 µm across foliation-parallel veins (FIG. 4G) combined with vein 374 

lengths of the order of 1-10 m, have been used to infer stress drops of tens of kPa, comparable to 375 

those determined seismologically for individual LFEs, accompanied by pore pressure drops36,123. 376 

Plastic deformation in the rock surrounding these veins accommodated some strain in the times 377 

between slip increments. Foliation-parallel shear veins in the same exposures as foliation-parallel 378 

extensional fractures indicate cyclical switching between the maximum and minimum 379 

compressive principal stresses, consistent with small differential stresses and pore pressure 380 

cycling37,124. Repetitive fracture, stress field rotations, and alternating brittle and plastic 381 

deformation are also evidenced by veins in mutually crosscutting sets parallel and discordant to 382 

the foliation, within which older veins are folded and/or boudinaged39,123.  383 

 384 

[H 1] Picture of a slow earthquake source 385 

 386 

The large range of conditions and locations in which slow earthquakes are observed 387 

seismologically (FIG. 1A) requires that no single mineral phase, lithology, or metamorphic 388 

reaction controls slow earthquake slip. This observation implies that slow earthquake phenomena 389 

arise from some combination of loading and in situ conditions42, which can develop and generate 390 

similar seismological signals in a large variety of settings.  391 
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 392 

Some features are common to all of the apparently diverse structures reviewed in the previous 393 

section, which we suggest can be used to develop a general picture of a slow earthquake source 394 

in any tectonic environment. Our review suggests the host structure comprises a high strain zone 395 

from at least tens of meters to kilometers in total thickness that accommodates shear 396 

displacement, but which also contains more localized, typically anastomosing, millimeter- to 397 

centimeter-thick shear-offset structures. Within the high strain zone, coeval plastic 398 

(intracrystalline and/or diffusive mass transfer) and brittle (fracture, frictional sliding 399 

granular/cataclastic flow) deformation mechanisms result in mutually crosscutting continuous 400 

and discontinuous structures. The high strain zone contains a heterogeneous assemblage of 401 

lithologies and/or components with length scales from centimeter to kilometer that have variable 402 

competency under in-situ conditions. A well-defined foliation is present throughout the high 403 

strain zone defined by compositional layering and/or mineral grains with shape-preferred 404 

orientations, which result in mechanical anisotropy facilitating frictional failure along weak 405 

planes. The foliation contains aligned grains of mineral phases that are intrinsically weak or 406 

promote deformation at low differential stress under in situ conditions, regardless of the 407 

deformation mechanism. Deformation resulting in slow earthquakes is fluid assisted and likely 408 

occurs at high pore fluid pressures. 409 

 410 

Considered individually, each of the characteristics listed above could apply to many ancient 411 

faults and shear zones and none of them require deformation at slip rates corresponding to slow 412 

earthquakes. Therefore, none of these common characteristics can be considered a definitive 413 

indicator of slow earthquakes in the rock record. As the grain-scale deformation mechanisms 414 
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must be variable throughout the crust, a wide variety of structures might have accommodated 415 

slow earthquakes, and structures that were active in different tectonic settings may have different 416 

characteristics in exposure.  417 

  418 

[H21] Unravelling slip rates  419 

 420 

In the absence of a single, universal deformation structure or mechanism diagnostic of slow 421 

earthquake slip rates, how can the fingerprint of slow earthquakes be recognized in the rock 422 

record? One approach is to distinguish the relative slip or strain rates associated with categories 423 

of structures within exhumed high strain zones that contain multiple styles of deformation (e.g. 424 

distributed and localized), but which developed in the same phase of deformation. If the 425 

structural elements that require aseismic (plate motion, i.e. ≤ 10-9 ms-1) or regular seismic rates 426 

(~100 ms-1) can be identified, then any other structures may have formed at intermediate rates 427 

and be candidates for accommodating slow earthquakes136.  428 

 429 

For example, in the lower Mugi mélange in the Shimanto Belt, Japan, pseudotachylytes and 430 

fluidized cataclasites in the unit-bounding thrusts record seismic slip rates and potentially large-431 

magnitude earthquakes89,113. The pervasive cleavage distributed throughout the pelitic matrix of 432 

the mélange formed by dissolution-precipitation creep in quartz, which is rate limited by the 433 

slowest of dissolution, diffusion, or precipitation of silica. The constitutive relations for 434 

dissolution-precipitation creep137 (FIG. 5) suggest that for a grain size of around 10 µm, 435 

representative of the pelitic matrix, slip rates characteristic of both plate motions and SSEs can 436 

be accommodated by dissolution-precipitation creep within shear zones of the order of 10 cm 437 
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thick if the mechanism is dissolution limited and millimeters thick if the mechanism is diffusion 438 

limited138. Zones at least a few centimeters-thick of higher shear strain with mutually 439 

crosscutting relations with the surrounding solution cleavage may therefore be a potential record 440 

of geodetically observed slow slip37. However, seismologically observed slow earthquakes with 441 

slip rates of millimeters per second cannot be accommodated by dissolution-precipitation creep 442 

under these conditions unless the thickness of a continuous shear zone is tens of meters or more, 443 

suggesting they require an alternative process138. 444 

 445 

The remaining structures within the mélange, which might have hosted ancient seismologically 446 

observed slow earthquakes, are the phyllosilicate-rich shear band-vein networks distributed 447 

throughout the pelitic matrix and cataclastic bands identified at matrix-block margins. There are 448 

no lower or upper bounds on slip rate for these two features so they may have accommodated the 449 

whole range of tectonic slip rates139. It is also possible that the full range of tectonic slip rates 450 

could have been hosted by the through-going, bounding thrusts136, and the evidence for slow 451 

earthquake slip rates was either overprinted, unrecognized, or is indistinguishable. However, this 452 

analysis suggests mutually crosscutting structures with a range of inferred slip rates within one 453 

system may be the nearest thing to a signature for slow earthquakes136,140,141. 454 

 455 

[H2] Geometry of slow earthquake sources 456 

 457 

We present a conceptual model of a slow earthquake source structure in Figure 6, which 458 

illustrates the geometry and spatial relations of shear-offset structures that slip at different rates 459 

within a single system. Figure 6 depicts the cross-sectional area of a high strain zone roughly 460 
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comparable to the source region of an LFE family49. Drawing on the inferences made previously 461 

for the Mugi mélange, as representative of the subduction mélanges we reviewed, this model 462 

suggests slow slip events (SSE) might be accommodated by zones of matrix a few to tens of 463 

centimeters thick between blocks, which are common within the mélange, or across thicker shear 464 

zones containing both matrix and blocks142. Shear band-vein networks and cataclastic bands exist 465 

in interconnected networks that are continuous for at least tens of meters, and must extend farther 466 

than this lower bound92. A moderately large LFE source may therefore consist of an 467 

anastomosing fault, shear band and/or vein network rather than a single planar fault surface. 468 

Non-coplanar shear structures are prevalent, raising the possibility of synchronous slip across 469 

multiple subparallel surfaces. Competent block margins are commonly aligned with the shear 470 

bands, supporting the inference that the mechanical contrast at the interfaces between relatively 471 

competent bodies in a weak matrix, where stress is amplified and/or frictional stability or rock 472 

permeability vary, are central to strain localization143,144. Due to their non-planar geometry, any 473 

slip across a single band or network of bands would cause heterogeneous loading of the 474 

surrounding rock volume.  475 

 476 

We suggest the model shown in Figure 6 is representative of slow earthquake source structures 477 

across the metamorphic environments of slow earthquakes (FIG. 1). Though the lithologies and 478 

active deformation mechanisms differ, the mechanical heterogeneity, thicknesses, and 479 

geometries of structures associated with different strain rates, and the inferences regarding 480 

effective stress conditions are similar for all the structures we reviewed. A key insight is that 481 

available mineral flow laws suggest that geodetically observed slow earthquakes may be 482 

accommodated by commonly identified ductile shear zones in many exhumed structures at low 483 
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differential stress (~1-10 MPa) under the in situ conditions of deformation39,125,130. Rather than 484 

representing steady-state creep, slow earthquake slip would then occur through episodic 485 

increases in stress or decreases in strength145. This is permissible, but not required by, the 486 

geological observations. For example, geodetically observed slow earthquakes could also be 487 

accommodated by small increments of slip across isolated structures or through linkage of 488 

parallel but non-coplanar segments of shear-vein networks. 489 

 490 

Within high temperature, predominantly plastic high strain zones, relatively localized shear-491 

offset structures, which might be candidate LFE hosts, fall into two broad categories: vein 492 

networks and shear bands. The rates at which veins form are not well constrained, but the 493 

kinematics of vein-filled fractures and the association with rigid blocks are consistent with 494 

seismologically observed slow earthquake occurrence39,135. Ultramylonite [G] shear bands are 495 

displacement discontinuities within predominantly plastic high strain zones87. Available flow 496 

laws suggest millimeter-thick ultramylonite shear bands are too thin to accommodate slow 497 

earthquakes. However, thicker ultramylonite bands are documented93,108 and overall have similar 498 

geometries to shear band networks in low temperature mélanges93. Further investigation is 499 

necessary to establish the deformation mechanisms active within plastic shear bands and to 500 

investigate whether those mechanisms can accommodate strain at low flow stress compared to 501 

the remotely applied stress146, can accommodate strain rates high enough to result in geodetically 502 

detectable strain rate transients or radiated seismic energy.  503 

 504 

[H1] Mechanisms of slow earthquakes  505 
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A variety of modeling studies have proposed mechanisms that explain how slip on a fault might 506 

occur relatively slowly rather than manifesting as seismic slip. Several of the mechanisms rely 507 

on specific frictional behavior of the materials at the sliding interface147. In the framework of rate 508 

and state friction, slow slip is predicted when the fault system stiffness approaches the critical 509 

stiffness for instability148,149, which is promoted by low effective normal stress and near velocity-510 

neutral frictional stability149. Slow slip is also possible when a fault exhibits a transition from 511 

velocity-weakening to velocity-strengthening at a slip speed larger than the plate convergence 512 

rate150-152. Dilatant strengthening, where dilatancy during slip reduces pore pressure and prohibits 513 

a transition to full instability, has been proposed as a potential mechanism that limits the slip 514 

rate153,154. Geometric complexity on a fault with uniform velocity-weakening behavior has also 515 

been shown to result in slow slip155.   516 

 517 

Geological observations can determine which of these mechanisms may be important in specific 518 

settings. For example, pelitic rocks are likely present in high strain zones that host slow 519 

earthquakes in the shallow portions of subduction zones. Lab experiments show pelitic rocks 520 

have near velocity-neutral frictional stability and exhibit a transition from velocity-weakening to 521 

velocity-strengthening behavior with increased velocity32,156,157. Serpentinite, inferred to be 522 

common near the mantle wedge corner coincident with the locus of slow earthquakes in some 523 

subduction zones73, also shows a change from velocity-weakening to –strengthening at 524 

increasing velocity158. Competent blocks of basalt in mélanges have been shown to be velocity-525 

weakening117 suggesting that slip zones that mix clay and altered basalts might favor slow 526 

slip117,145,159. Furthermore, the anastomosing geometry of shear band-vein networks and 527 

cataclastic bands might be fundamental to generating slow slip across many environments107,155.  528 
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These observations therefore suggest that the frictional behavior of the materials in the high 529 

strain zones, the intrinsic heterogeneity of the high strain lithologic components, and the 530 

geometry of potential slow earthquake structures all contribute to generating the spectrum of 531 

slow slip rates.  532 

 533 

Our review suggests that in all metamorphic environments, the combination of frictional sliding 534 

and plastic grain-scale deformation mechanisms is essential to slow earthquake deformation. 535 

Systems characterized by coupled frictional and plastic mechanisms are expected to exhibit 536 

spatially continuous and strain-rate dependent, temporally transient deformation121,137. The 537 

emergence of transients comparable to slow slip events in dry rock friction experiments at room 538 

temperature32-34,148 indicates that phenomena similar to slow earthquakes can result from purely 539 

frictional processes. In the structures we reviewed, frictional sliding at temperatures less than 540 

~350 °C was accompanied by dissolution-precipitation creep (FIG. 4A), which forms solution 541 

cleavages perpendicular to the shortening direction during deformation. This plastic component 542 

of the deformation may therefore enhance the tendency for slow slip by accommodating 543 

compaction, leading to reduced porosity and elevated pore pressure with time. Dissolution-544 

precipitation creep may also increase the real area of frictional contacts, causing the state 545 

variable to evolve with time160 and potentially acting as an advanced healing mechanism to 546 

promote stable accelerating slip32.  547 

 548 

The controls on slow slip in higher-temperature systems, where plasticity rather than frictional 549 

sliding is predominant, are less clear. During deformation accommodated by plastic grain-scale 550 

mechanisms, instability and a transition to high strain rate transients or frictional sliding can 551 
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occur in a phenomenologically similar way to rate and state frictional behavior161. The transition 552 

is generally promoted by stress heterogeneity162, strain hardening, and/or pore pressure 553 

cycling163. Strain hardening is inherent to foliation-defining phases such as phyllosilicates (FIG. 554 

4D, E), in which recovery is limited under in-situ conditions, as evidenced by kinking at grain to 555 

exposure scales41,95. Rocks dominated by phyllosilicates are also considered to be low 556 

permeability164-167, so likely important to maintaining high pore fluid pressures, and can cause 557 

pore pressure changes by dehydration and/or metamorphic reactions40,168. The onset of instability 558 

may therefore be controlled by the balance between strain hardening and the efficacy of recovery 559 

mechanisms during a perturbation to steady state conditions162,169. Further work is needed to 560 

examine predominantly plastic systems to determine whether there is a condition for stable 561 

accelerating slip for plastic deformation.  562 

 563 

Future Perspectives 564 

 565 

In this Review, we selected ancient structures exhumed from the range of tectonic settings and P-566 

T conditions illustrated in Figure 1 as possible examples of those hosting active slow 567 

earthquakes. We focused our selection by noting that shear offset is required at the slow 568 

earthquake source, which must be recorded in the deformation structures. The characteristics 569 

identified as common to slow earthquakes (FIG. 6) are common in exhumed crustal faults, so 570 

could be considered too generalized to be useful, though this may also simply reflect that slow 571 

earthquakes are a common phenomenon. Observations of slow earthquakes increase continually. 572 

Combined with the recognition of pre- and afterslip associated with many earthquakes and long-573 

term, low strain rate transients in some systems8, we suggest slip rates (10-10 – 10-3 ms-1) and 574 
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strain rates (10-10 – 100 s-1) intermediate between seismic (>10-0 s-1)  and plate-rate creep (10-14 – 575 

1012 s-1)  should be common to many fault zones, even if they appear to lack conspicuous 576 

evidence for slow slip.  577 

 578 

We have not found a conclusive indicator of slow earthquake slip rates in the exhumed systems 579 

we reviewed so we cannot independently confirm if these systems actually hosted slow 580 

earthquakes.  Additionally, there may be other structures that we have not considered here that 581 

could host slow earthquakes, so the list of slow earthquake characteristics should not be 582 

considered exhaustive. For example, centimeter-thick layers of foliated cataclastic rocks in 583 

localized structures that exhibit evidence for seismic slip have been inferred to record slow slip 584 

rates136. However, this association was inferred following a similar approach outlined here for 585 

the Mugi mélange, by identifying different structures that might correspond to distinct strain and 586 

slip rates within a system that deformed in an equivalent setting to where slow earthquakes are 587 

observed. More work is needed to determine the scales of observation at which the variations in 588 

slip rate can be inferred in a broad range of systems. 589 

 590 

Overall, good agreement between the slow earthquake characteristics predicted from geophysical 591 

observables (Table 1) and the systems we reviewed indicates the structures we reviewed are 592 

good candidates as hosts of slow earthquakes. In particular, the thickness of the high strain zones 593 

(of the order of 101 to 103 m), and maximum dimension (~102 to 103 m) and apparent power law 594 

distribution of sizes of rheological heterogeneities limited by the shear zone thickness, are 595 

comparable to LFE size distributions48,170,171. Geological evidence supports deformation at low 596 

differential stress, generally <10% of the lithostatic load, and high pore pressure, in some cases 597 
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approaching lithostatic37,131. A major limitation to these stress estimates is the limited availability 598 

of flow laws for the relatively incompetent, foliation-defining phases that are generally accepted 599 

as important in accommodating simple shear (e.g. phyllosilicates and amphiboles).  600 

 601 

Further investigations of the possible geological structures that host slow earthquakes, within and 602 

across their tectonic and metamorphic settings, are essential to the future of slow earthquake 603 

science. The defining characteristic of slow earthquakes is that they are slow. Field and 604 

microstructural observations are uniquely able to identify the controls on slow earthquake slip 605 

rates, slip amounts, and spatial relations between slip at different rates, and therefore explain 606 

why slow earthquakes are distinct from regular earthquakes. If a slip rate-limiting mechanism 607 

could be identified, the deformation structures or textures it produces may be diagnostic of slow 608 

earthquakes in the rock record. Increases in porosity due to dilatant strengthening153,154, which is 609 

one candidate limiting mechanism, may cause fluctuations in pore fluid pressure within a slow 610 

earthquake slip zone and could result in mineral precipitation that is preserved as veins. 611 

Enhanced porosity is a potentially generic process to all slow earthquakes, so mapping veins or 612 

grain-scale mineralization to evaluate this model is an important avenue for future research. Even 613 

if a universal rate-limiting mechanism can be established, geological observations emphasize that 614 

experimental and theoretical studies are needed to resolve how the spectrum of slow earthquake 615 

slip rates can arise from different grain-scale deformation mechanisms.  616 

 617 

One challenge for geologically-focused work is to extrapolate exposure- or micro-scale 618 

observations to length scales relevant to slow earthquake processes. In particular, a major 619 

outstanding issue is the cause of observed rates of tremor migration and reversals82. Geological 620 
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observations need to reconcile the length scales over which these migration patterns develop 621 

with the variability in rock type and structural assemblage observed in typical outcrops. Current 622 

and future geological interpretations could be tested by better source time functions for LFEs, 623 

improved hypocentral locations of LFEs and detailed evaluation of focal mechanism variability 624 

to compare to the geometry of anastomosing networks of shear bands. 625 

 626 

Slow earthquake geology is a new frontier in studies of fault and shear zone rocks. 627 

Reinterpretation of deformation structures is necessary in light of the geophysical documentation 628 

of transient increases in slip and strain rates associated with slow earthquakes in a wide range of 629 

tectonic settings. With this perspective, studies of exhumed analog structures from across the 630 

range of metamorphic and tectonic settings of slow earthquakes can inform the physical controls 631 

on slow earthquakes, which is central to understanding of plate boundary fault and shear zone 632 

mechanics. 633 
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Key points (30 words) 653 

 The global distribution and pressure-temperature range of seismologically observed slow 654 

earthquake hypocenters implies no single mineral phase, lithology, or metamorphic 655 

reaction controls slow earthquake slip. 656 

 No single, universal deformation structure or deformation mechanism is a clear indicator 657 

of slow earthquakes in the rock record. Multiple different mechanisms or combinations of 658 

mechanisms can produce the same macroscopic behaviors. 659 

 A seismologically observed slow earthquake source may consist of an anastomosing 660 

fault, shear band, and/or vein network (potentially including synchronous slip across 661 

multiple sub-parallel surfaces) rather than a single planar fault surface.  662 

 Geodetically observed slow earthquakes may be accommodated by commonly identified 663 

ductile shear zones in many exhumed structures 664 

 Overall, the geological evidence suggests material heterogeneity, geometric complexity, 665 

and deformation at low differential stress are common to slow earthquake sources. 666 
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 667 

Glossary 668 

Accretionary wedge: the accumulated rock scraped off the oceanic plate and transferred to the 669 

upper plate at subduction margins. These accumulations form a wedge shape in cross section. 670 

Anastomosing: term used to describe a geometry in which surfaces or strands diverge and re-671 

join, braided 672 

Boudinage: process by which relatively competent layers split apart into smaller sections when 673 

stretched during extension. The surrounding relatively incompetent material deforms to 674 

accommodate the change in shape of the competent layer. 675 

Buckle folding: folding that is inferred to form by layer-parallel shortening when relatively 676 

competent, or viscous, layers or features are surrounded by less competent rock. 677 

Cataclastic flow: a brittle process in which a volume of rock deforms by frictional sliding and 678 

grain rolling combined with fracture, causing an overall change in shape. 679 

Cataclastic band: Layer of fault rock in which the grain size is reduced due to cataclastic 680 

processes when the laeyr accommodated shear displacement  681 

Composite fabric: foliation that is defined by more than one set of oriented fabrics in the rock, 682 

which form discrete sets. 683 

Critically stressed fault: when the shear stress resolved on a fault is just below the frictional 684 

strength of the fault. The fault is then sensitive to small perturbations to the stress field as a small 685 

increase in shear stress can cause failure. 686 

Crystal-plastic deformation: term referring to the intragranular deformation mechanisms that 687 

involve mechanisms that cause individual grains to change shape by dislocation-based 688 

mechanisms. 689 
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Décollement: the thrust fault that separates rocks transported in opposite directions. 690 

Décollements are typically the most laterally continuous and the structurally lowest faults in a 691 

system. Synonyms include detachment, basal fault.  692 

Diffusion creep: a grain-scale deformation mechanism in which grains accommodate strain by 693 

the diffusion of point defects through their crystal lattice. 694 

Dislocation creep: intra-crystalline deformation mechanism in which strain is accommodated by 695 

migration of dislocations, linear imperfections in the crystal lattice of grains, accompanied by 696 

dislocation climb, a mechanism by which dislocations can move out of plane. 697 

Dislocation motion: used here to refer to deformation mechanisms that involve movement of 698 

dislocations, linear imperfections in the crystal lattice of grains, to accommodate strain. 699 

Double couple source mechanism: The idealized fault plane model for an earthquake whose 700 

displacement is within the plane of the fault, with both sides moving equal, opposite distances.  701 

En echelon: describes the geometry of parallel or subparallel overlapping structures (usually 702 

opening mode veins or faults) that are offset from one another in the direction perpendicular to 703 

their long axes, and are oblique to the overall structural trend.  704 

Extensional hydrofracture: opening mode cracks, formed when pore fluid pressure exceeds the 705 

minimum compressive principal stress and the differential stress is less than twice the cohesion 706 

of the rock. 707 

Foliation: A rock fabric that can be approximated as a plane, often defined by the preferred 708 

orientation of mineral grains and/or by compositional banding. 709 

Finite strain: the total strain, or change in shape, that has affected a rock. 710 

Frictional sliding: Displacement between two surfaces in contact, which is resisted by a shear 711 

force proportional to the normal stress on the surface.  712 
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Hypocenter: the point on a fault where an earthquake rupture starts. 713 

Imbrication: process of thrust faulting that causes multiple approximately parallel slices of rock 714 

to be thrust on top of one another. 715 

Isoclinal folding: when a layer or planar feature is folded such that the fold limbs are close to 716 

parallel so that the layer seems to have been completely bent back on itself. 717 

Mélange: mixtures of rock types that are characterized by a block in matrix fabric. Here used to 718 

refer to rock units that formed and deformed due to tectonic shearing. 719 

Pelitic rocks: rocks that have a high clay content, and their metamorphic equivalents. 720 

Phyllosilicates: minerals that are made up of stacks of parallel sheets of silicate tetrahedra, 721 

which are weakly bonded together. The phyllosilicates include clays and micas. 722 

Pseudotachylyte: the quenched remnants of a molten rock that formed by frictional heating on a 723 

fault surface during earthquake slip. Used elsewhere to include impact-related melts.  724 

Prograde deformation: Deformation that occurs while the rocks experience an increase in 725 

temperature and/or pressure, typically during burial (including subduction-related burial). 726 

Protolith: the pre-deformation  or pre-metamorphic equivalent of a deformed or metamorphosed 727 

rock. 728 

S-C-C’ composite fabric: a composite fabric consisting of more than one foliation that forms 729 

inside shear zones that deformed predominantly by plastic deformation mechanisms. The S-730 

foliation represents deformation due to local shortening in the rock. C and C’ foliations are 731 

small-scale shear bands within a larger shear zone. The angles between the foliations decrease 732 

with strain and the foliations can be difficult to distinguish. 733 
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Transposition: process by which rotation of layers during isoclinal folding or shearing causes 734 

the original orientation, angular relationships, and distinct features of the layers in the rock to be 735 

almost completely obliterated. 736 

Tectonic tremor: low amplitude seismic signals defined by non-impulsive arrivals, similar to 737 

noise but distinguished by coherence over large geographic areas.  738 

Ultramylonite: very fine-grained fault rock that deformed predominantly by plastic 739 

mechanisms. 740 

 741 
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Figures 1349 

 1350 

Figure 1. Metamorphic conditions of representative seismologically observed slow earthquakes and ancient, 1351 

exhumed structures selected for comparison. Depths of low frequency earthquakes and tremor highlight the wide 1352 

range of tectonic and metamorphic settings that exhibit the spectrum of slow slip. a. Approximate pressure and 1353 

temperature range at the source of slow earthquakes based on published thermal models and hypocentral depth 1354 

distributions/relocations of seismologically observed slow earthquakes in some representative tectonic settings. 1355 

Conditions for Costa Rica, Central Ryukyu, and Hikurangi subduction zones are based on epicentral locations and 1356 

assume slow earthquakes occur on the plate interface. Hypocentral depths are converted to pressure assuming a 1357 

linear lithostatic load and rock density of 2750 kg/m3 for depth ≤ 30 km and 3300 kg/m3 for depth > 30 km for 1358 

comparison. Metamorphic facies for basaltic rocks shown for reference172 (A, amphibolite; eA, epidote amphibolite; 1359 

eB, epidote blueschist; egA, epidote-garnet amphibolite; G, greenschist; gA, garnet-amphibolite; jeB, jadeite-epidote 1360 
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blueschist; jlB, jadeite-lawsonite blueschist; lB, lawsonite blueschist; PA, prehnite-actinolite; PP, prehnite-1361 

pumpellyite; Z, zeolite; zaE, zoisite amphibole eclogite facies). b. Sources of thermal models and slow earthquake 1362 

locations used to construct part a. c. Pressure and temperature conditions of deformation of ancient examples 1363 

selected as representative of the range of conditions of slow earthquakes shown in a. Abbreviations in grey as in a. c. 1364 

Locations of exhumed deformation structures used in this review as potential hosts of ancient slow earthquakes. 1365 
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 1367 

Figure 2. Photographs illustrating different types of structures associated with high strain zones. High strain 1368 

zones in all tectonic settings exhibit structures with a range of thicknesses. a. Photograph of the Chrystalls Beach 1369 

accretionary mélange, New Zealand, showing deformation distributed over several meters within the high strain 1370 

zone. Boudinage of light grey blocks of sandstone shows they were relatively rigid during deformation. b. 1371 
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Ultracataclasite layer from a seismogenic thrust fault that developed at the margin of the Mugi mélange, Japan. 1372 

Injection veins contain fluidized gouge that was deformed at seismic slip rates. c. Detail of a localized shear band 1373 

network within the Chrystalls Beach mélange cutting the matrix between competent blocks. Note the matrix in a. is 1374 

a mixture of phyllosilicate-rich pelitic rock and small blocks of sandstone. Blocks of all sizes locally have parallel 1375 

long axes. d. Aerial photo of the Pofadder shear zone, Namibia, showing deformation distributed over tens of 1376 

meters. Variations in colour within the high strain zone correspond to mylonites and ultramylonites developed from 1377 

different lithologies. e. Approximately 10-20 cm-thick mylonite bands developed within the Pofadder Shear Zone, 1378 

Namibia. f. Example of a foliated mylonite and localized (~cm-thick) ultramylonite band from the Kuckaus 1379 

mylonite zone, Namibia. The mylonite contains mm-thick shear bands that define a S-C composite fabric. 1380 
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 1382 

Figure 3. Comparison of block populations from different tectonic settings, which show similar 1383 

characteristics a. Outcrop map of an exposure of the Mugi mélange showing the distribution of blocks in a pelitic 1384 

matrix (scaly shale), locations of shear bands and veins, and attitudes of solution cleavages (adapted with permission 1385 

from REF92). b. Histogram showing distribution of angle between block long axes and the shear plane orientation for 1386 

the Mugi mélange (shown in a.) and the Kuckaus mylonite zone93, a continental transform. c. Probability density 1387 

functions of block long axis distributions for various high strain zones. Data from: Chrystalls Beach110; Upper 1388 

Mugi111; Lower Mugi92; Makimine111; Kini39; Kuckaus93 high strain zones. Dashed lines show range over which a 1389 

power law was fit. Table legend beneath shows n, number of blocks in each dataset, α, power-law scaling exponent 1390 

fitted using maximum likelihood fitting methods112, and p, the result of a goodness of fit test to establish whether a 1391 

Scaly shale: Illite, kaolinite, and chlorite
Sandstone  Tuff

Foliation: aligned clays or solution cleavage
Mineral vein  Shear crack

1 m

N

0.3

0.25

0.2

0.15

0.1

0.05

0
-80 0-40 40 80

Angle of block long axis to shear plane (°)

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

L. Mugi

0 5 10 15 20
Aspect ratio

25

0.6

0.5

0.4

0.3

0.2

0.1

0

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

L. Mugi

10-2

10-2

100

Pr
(X

 ≥
 x)

10-3

10-3 10-2 10-1 10-0 101 102 103

x (m)

1
2

3

4

5

6

7

8 9

Crystalls (CB1)
Crystalls (CB12XZ)
Crystalls (CB14)
Crystalls (CB15XZ)

Kuckaus

U. Mugi

Makimine

Kini

L. Mugi

n 

863

574

125

1487

114

100

100

24

495

α
2.47

2.32

1.87

3.52

2.28

3.77

3.75

4.23

3.02

p

0.81

0.0026

0.044

0.52

0.017

0.096

0.72

0.74

0.068

1.

2.

3.

4.

5.

6.

7.

8.

9.

a

b c

d



 52 

power law is a plausible fit to the data (following REF112, power law is ruled out if p ≤ 0.1, though p is only reliable 1392 

for datasets with n >> 100). d. Histogram of block aspect ratios in the Mugi mélange (shown in a.) and the Kuckaus 1393 

mylonite zone. 1394 
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 1396 

Figure 4. Examples of micro-scale structures in ancient equivalents of active slow earthquake source regions. 1397 

These images show the variety of deformation mechanisms that accommodate strain across the wide range of 1398 

tectonic and metamorphic environments of slow earthquakes. a. Cataclastic band developed along the margin of a 1399 

basaltic block from the Mugi mélange, Japan, courtesy of Noah Phillips. b. Shear band cutting the pelitic matrix of 1400 

the Makimine mélange, Japan. Phyllosilicates within the shear band exhibit a grain shape preferred orientation 1401 

(GSPO) parallel to shear band margins. Pelitic matrix contains a composite S-C fabric. S-foliation resulted from 1402 

dissolution-precipitation creep in quartz. c. Mafic mylonite that developed at blueschist-eclogite conditions in the 1403 
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Cycladic Blueschist Unit, Greece. Grain shape preferred orientation (GSPO) in glaucophane (glauc) defines a C-C’ 1404 

foliation, the tails of quartz (qtz) are aligned with the S-foliation (image courtesy of Alissa Kotowski. Other mineral 1405 

abbreviations are: gt = garnet; zo = zoisite). d. Antigorite mylonite from the Mie mélange, Japan in which a shear 1406 

band contains antigorite with grain shape preferred orientation. Antigorite grains contain kink bands (kinks) at high 1407 

angle to shear band margin. e. Strands of cataclasite and breccia developed parallel to mylonitic foliation, some of 1408 

which were subsequently plastically deformed, Pofadder Shear Zone, Namibia (image courtesy of Christie Rowe). f. 1409 

Extensional quartz vein that formed discordant to foliation in the Makimine mélange (white arrow with black outline 1410 

shows opening vector), which was subsequently offset by shear along the C-foliation and plastically deformed. Note 1411 

thinner quartz veins at high angle to C-foliation are not folded, indicating cyclical fracture and plastic deformation. 1412 

g. Fluid inclusion trails (indicated by dashed white lines), which represent increments of extensional opening within 1413 

a quartz vein from the Makimine mélange, Japan. The thickness of quartz between the white arrows is the 1414 

interpreted opening amount in one increment. 1415 

 1416 

  1417 
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 1418 

Figure 5. Upper bounds on the slip rate at a shear zone boundary that can be accommodated by dissolution-1419 

precipitation creep in the matrix of the Mugi mélange given a range of possible shear zone thicknesses. 1420 

Calculations were performed assuming the shear stress driving dissolution-precipitation creep was limited by the 1421 

shear stress to initiate frictional sliding (i.e. the effective shear stress was limited to 1 MPa as suggested by field 1422 

observations37,131), for the range of grain sizes (Φ) shown, temperature of 135 °C and grain aspect ratio of 3. 1423 
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 1425 

Figure 6. Schematic diagram showing the general characteristics of a slow earthquake structure. 1426 

Potential shear zone that might accommodate a geodetically observed earthquake shown with shaded 1427 

orange region. Networks of localized shear bands that could host seismologically observed earthquakes 1428 

are shown in black. Examples of possible individual LFE rupture geometries are shown in red. Structures 1429 

that might host large seismic slip shown in crimson. Magenta lines indicate opening-mode veins and portions 1430 

of localized shear structures that may be mineralized and preserved as veins. The high strain zone contains units 1431 

of different viscosity (blue shades), which are boudinaged, folded, and disrupted into blocks. The least 1432 

viscous component indicated may be composed of a distinct lithology or a combination of lithologies (i.e. 1433 

a mixture of matrix and small blocks as shown in FIG. 2E). 1434 
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TABLE 1. Geology from Geophysics 1436 

Seismological, geodetic, and geophysical data are the primary sources of information describing 1437 

the sources of slow earthquakes45-47. The table below summarizes some predictions regarding the 1438 

geological characteristics of the deformation structures that form or are reactivated during slip at 1439 

slow to intermediate velocities based on these primary sources. Expected geological 1440 

characteristics in italics are speculative. We note that the observations and interpretations 1441 

outlined in the table should not be considered limiting, especially as new geophysical 1442 

observations will cause the corresponding interpretations to evolve. 1443 

 1444 

Box 1 Table. Geophysical constrain some of the environmental conditions at slow 1445 

earthquake sources, 1446 

 1447 

Geophysical observation Interpretation Expected Geological/Structural 

characteristic 

Waveforms of seismologically observed slow earthquakes  

Radiated seismic energy2,74 Dynamic fracture, slip at 

seismic slip rates 

(>1mm/s)173,174 

Fracture, frictional sliding 

potentially including evidence for 

dynamic weakening mechanisms 

LFE waveforms48,50 Modeling suggests a double-

couple mechanism, which 

implies dominantly shear 

Apparent shear offset on a single 

structure or accommodated 
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failure at source consistent 

with local active faults48,50 

across a network of subparallel 

structures 
 

Depletion in high-

frequency radiated energy 

(low corner 

frequency)67,175,176 

Low rupture velocity 

(potentially emphasized by a 

nearfield path with high 

preferential attenuation at 

high frequencies) 

Unusually smooth fault surfaces? 

Dilation during shear lowering 

pore pressure and increasing 

fault strength (dilatant 

strengthening)? 

Low stress drops for 

LFEs67 

Low displacement/length 

ratio for slip events, slip 

under low friction and/or 

high fluid pressure67 

Slip/length ratios of 10-6 – 10-5 

for individual slip increments 

Hypocentral locations 

distributed across zones 

100s to 1000s m thick 

(note, however, thickness 

of the zone of hypocenter 

locations in most cases is 

similar to location 

uncertainty)51,177 

Broad shear zone containing 

shear failure or multiple 

closely spaced structures is 

allowed, but not determined 

by the geophysical (seismic) 

data 

Fault rock or other high strain 

feature of the order of 100s m 

thick containing evidence for 

numerous structures hosting 

intermediate slip rates 
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Tremor migration patterns 

(propagation rates of <1 to 

100 km/hr)82,178 

Large regions of host 

structures are critically 

stressed82 

Prevalence of critically stressed 

structures with respect to ambient 

stress field 

Tremor bursts Multiple LFEs in a short 

period of time, potentially 

with each LFE limited in 

extent by some regulating 

mechanism3 

Incremental offsets across a 

single structure and/or multiple, 

closely spaced structures that slip 

in same phase of deformation 

Tremor recurrence interval 

decreases downdip24,179,180 

Decrease in fault strength 

and/or tendency toward more 

stable or continuous slip 

downdip24,62. Possible silica 

redistribution and 

permeability decrease in 

downdip direction179. 

Temperature-sensitive 

deformation mechanisms. Veins, 

silicified fault rocks 

systematically changing in 

abundance with P-T conditions 

Estimated magnitude range 

(≤M2?)65,181 

Dimensions of up to 

hundreds of meters175  

Continuous structure or network 

of structures corresponding to the 

dimension of the rupture 

Other geophysical observables 



 60 

Spatial and temporal 

correspondence of tremor 

and SSE or afterslip71,182,183 

Fracture and slip associated 

with strain rate perturbations 

Structures representing low to 

intermediate strain rate coeval 

with fracture, mutually 

overprinting for repeated events, 

cyclical deformation 

Modulation of low 

frequency events by tidal 

or teleseismic stress 

changes78,184,185 

Small stress perturbations 

required to transition to 

fracture 

Critically stressed structures with 

respect to ambient stress field 

possible, fluid-rich and high pore 

pressure environment recorded 

by veins, syn-kinematic 

mineralization 

High Vp/Vs, high 

attenuation in slow 

earthquake source region73-

76 

High pore fluid pressure  Rock alteration/metamorphism, 

vein formation. Faults sealed by 

phyllosilicates(?) or mineralized 

by, e.g., quartz 

Anisotropy of seismic 

velocity leading to shear 

wave splitting186,187  

Aligned grains, mechanical 

anisotropy 

Grain shape preferred orientation 

(and/or crystallographic preferred 

orientation), aligned meso-scale 

structures 

 1448 

References for figures  1449 
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 Thermal Model Seismological observations 
1 Japan Trench/Kurile188 Tremor, LFEs, VLFEs189-191 
2 Nankai, Kii (updip)172 Tremor, VLFEs192-194 
3 Nankai, Kii (downdip)172 Tremor, LFEs, VLFEs5,74,195 
4 Nankai, Shikoku (downdip)172 Tremor, LFEs, VLFEs5,30,195 
5 Costa Rica196 Tremor, LFEs51,53,197 
6  Central Ryukyu198 LFEs, VLFEs199-201 
   
7 Hikurangi202 Tremor14,203 
8 Mexico204 Tremor, LFEs66,205,206 
   
9 Cascadia172 Tremor, LFEs, VLFEs48,207,208 
10 Alpine Fault, New Zealand209 Tremor, LFEs56,57,210 
11 Lishan Fault, Taiwan211 Tremor, LFEs212-214 
12 San Jacinto Fault, USA215 Tremor20,22,216 
13 San Andreas Fault, USA217 Tremor, LFEs52,61,69 
14 Nankai Prism218 Tremor, VLFEs11,15,16 
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