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Synopsis 

 

In many clinical settings, multi-contrast images of a patient are acquired to maximize complementary 

information. With the underlying anatomy being the same, the mutual information in multi-contrast data 

can be exploited to improve image reconstruction, especially in accelerated acquisition schemes such 

as Compressive Sensing (CS). This study proposes a CS-reconstruction algorithm that uses four 

regularization functions; joint L1-sparsity and TV-regularization terms to exploit the mutual information, 

and individual L1-sparsity and TV-regularization terms to recover unique features in each image. The 

proposed method is shown to be robust against leakage-of-features across contrasts, and is 

demonstrated using simulations and in-vivo experiments. 

 

Introduction 

 

Compressive Sensing (CS) uses randomly undersampled acquisitions to yield incoherent aliasing 

artifacts, and a nonlinear reconstruction to suppress these artifacts1-7. In many MRI applications, multi-

contrast images are acquired together to maximize diagnostic information, since different contrast 

mechanisms provide complementary information. With the underlying anatomy being the same, 

previous studies have demonstrated advantages of joint reconstruction of these multi-contrast images5-

7. While earlier methods enforced sparsity individually on each acquisition, recent reconstruction have 

leveraged joint-sparsity terms across acquisitions to improve image quality5-7.  

 

In this study, we present an adaptation of the Alternating Direction Method of Multipliers (ADMM8) for 

joint reconstruction of multi-contrast MR images. As opposed to previous CS reconstruction algorithms, 

the proposed method uses four different regularization functions; L1-sparsity and TV-regularization for 

each individual contrast, and Color-TV9 and Group-L1-sparsity5 imposed on all contrasts 

simultaneously. Joint sparsity/TV terms recover information shared across acquisitions while individual 

terms recover features unique to each contrast.  

 

Methods 

 

The proposed method uses Color-TV9 and Group-L1-sparsity5 (Eqs. [3]-[4]) to enhance correlated 

features and individual TV and L1 functions (Eqs. [5]-[6]) to facilitate recovery of individual features via 

the following optimization framework. 

 

Solve: 

 min
𝑥

𝛼 𝐶𝑇𝑉(𝑥) + 𝛽 𝐺𝑆𝑝(𝑥) + ∑ 𝛾 𝑇𝑉(𝑥(𝑖))

𝑖

+ ∑ 𝜃 𝑆𝑝(𝑥(𝑖))

𝑖

 [1] 

subject to: 

 ‖𝐴 ⋅ 𝑥𝑖 − 𝑦‖ < 𝜖𝑖 [2] 

where  



 

𝐶𝑇𝑉(𝑥) = ∑ √∑ ((𝛻1|𝑥(𝑖)[𝑛]|)2 +  (𝛻2|𝑥(𝑖)[𝑛]|)2)
𝑘

𝑖=1𝑛
 [3] 

 

𝐺𝑆𝑝(𝑥) = ∑ √(∑ (𝑥(𝑖)[𝑛])2
𝑘

𝑖=1
)

𝑛
 [4] 

 
𝑇𝑉(𝑥(𝑖)) = ∑ √((∇1|𝑥(𝑖)[𝑛]|)2 +  (∇2|𝑥(𝑖)[𝑛]|)2)

𝑛
 [5] 

 𝑆𝑝(𝑥(𝑖)) = ∑ |𝑥(𝑖)[𝑛]|
𝑛

 [6] 

where 𝛼, 𝛽, 𝛾, 𝜃 denote regularization weight parameters. εi
2 (noise energy for contrast 𝑖) can be 

calculated in practice from data acquired via a rapid excitation-less acquisition.  

 

 
Figure 1: Methods were compared using PD, T1 and T2 images from the SRI24 atlas for 4-fold 2D-

acceleration. The same settings were used for all methods as in Ref7: images were real and noiseless, 

FoV: 240x240mm, image size: 256x256, all images were normalized to the range [0,255], 100 iterations 

were used for each method. In contrast to Ref7, pixel values were not enforced to integer values here. 

For the proposed method, individual sparsity functions were not used. Lower-intensity difference images 

demonstrate improved reconstruction performance for the proposed joint reconstruction algorithm 

ASEL-CS-j. 



Two different versions of the above framework were implemented for individual (ASEL-CS-indiv) and 

joint (ASEL-CS-j) reconstruction of multi-contrast images. Both versions were compared to the following 

state-of-the-art CS reconstructions: SparseMRI1, recPF3, TVCMRI2, GSMRI5, FCSA4, FCSA-MT7. The 

undersampling masks were generated using probability-density functions that decay with the third-order 

of the linear-distance/radius (for one-/two-dimensional undersampling) in k-space. One-eighth of the 

central k-space was fully-sampled. The same set of masks were used in all methods, but different 

random masks were selected for each contrast. The following image-quality metrics were used: 

structural-similarity-index (SSIM), peak signal-to-noise ratio (pSNR), normalized-root-mean-squared 

error (nRMSE), mean-magnitude error (mmE). 

 

 
Figure 2: Methods were compared using complex and noisy images (image size: 256x256, FoV: 

256x256mm) and 3-fold 1D-acceleration. Regularization function weights were optimized using an 

automated interval search algorithm for all methods. Noise was generated using a normal distribution 

and a standard deviation equal to 10% of the mean k-space intensity across all contrasts. 250 iterations 

were used for each method. Magnified PD-images demonstrate improved artifact suppression for ASEL-

CS-j. 



Simulation 1: Same settings as Ref7; real and noiseless images (SRI-24 atlas10), 100 iterations, α=0.01, 

β=0.035 for all methods, γ=θ=0 (no individual terms for ASEL-CS-j11).  

 

Simulation 2: Complex and noisy images (Ref12: segmented brain, 11 tissues), 250 iterations. 

Regularization parameters were optimized for each method (interval-search algorithm seeking 

maximum SSIM). For ASEL-CS-j, α,β were optimized as above for γ=θ=0, and γ,θ were manually tuned 

afterwards.  

 

Simulation 3: A potential pitfall in joint reconstruction is leakage of distinct features among images. 

ASEL-CS-j was tested against this pitfall by introducing distinct artificial tissues to the images.  

 

In-vivo experiment: Experiments were conducted on a 3T scanner (Siemens Healthcare, Erlangen). 

Full k-space data (32-channel receiver) were acquired, subsampled retrospectively, reconstructed 

separately for each channel for each method using optimized parameters, and combined using the 

algorithm given in Ref13. The images were normalized to the range [0, 255] for each channel and each 

contrast to avoid parameter mismatch. The channel-combination algorithm13 automatically handled the 

amplification of signals from farther channels due to this normalization.  

 

 
 

Figure 3: Image metrics plotted with respect to computation time for the SRI-24 atlas (Fig. 1) and the 

numerical brain phantom (Fig. 2). Runtime measurements were taken from Matlab for each method 

using cputime and summed through iterations, averaged over different contrasts. Computation times 

indicate the cumulative runtime of the reconstruction algorithms, excluding data preparation, since data 

were pre-processed for all methods. All metrics were averaged across contrasts. 100 iterations were 

used for panel-a and 250 iterations for panel-b. 



 
Figure 4: The proposed method was tested against undesired feature leakage during joint 

reconstruction. For this purpose, distinct artificial features were introduced to the initial images in the 

shape of elliptical low-intensity and high-intensity regions in PD- and T1-images, respectively. The 

reconstructed images show no visible artifacts in and around the region of the artificially introduced 

tissues, demonstrating the robustness of the method.  

 

Results 

 

ASEL-CS-j achieves visibly reduced reconstruction errors (Figure 1) and improved artifact suppression 

(Figure 2) compared to alternative methods on simulated brain images. Furthermore, ASEL-CS-j has 

the highest convergence speed to its optimal performance in the SRI24-phantom (Figure 3a). While 

RecPF has a better initial convergence rate in the numerical brain phantom, ASEL-CS-j surpasses 

RecPF within 10-20 seconds of computation time, and yields higher image quality after convergence 

(Figure 3b). Figure 4 shows that ASEL-CS-j has no visible artifacts due to undesired feature leakage 

across different contrast images. Similarly, for in vivo reconstructions, ASEL-CS-j yields higher-quality 

images with detailed tissue depiction compared to all remaining methods, including its closest competitor 

FCSA-MT (Figure 5).  

  

Discussion 

 

The proposed method uses four distinct regularization functions: individual L1-sparsity and TV-

regularization, and joint L1-sparsity and TV-regularization. In contrast, GSMRI uses only group L1-

sparsity and FCSA-MT uses only the joint terms. In ASEL-CS-j, joint penalty terms exploit the correlated 

features across images, while individual penalty terms enable recovery of distinct features in each 

image.  



Figure 5: In-vivo results. Arrows indicate sharper recovery of features with the proposed joint 

reconstruction algorithm, ASEL-CS-j. Fully sampled data were acquired using a 32-channel receive 

array, and undersampled retrospectively using different masks for each contrast but the same set of 

masks for each method and channel. Reconstructions were performed separately for each channel, i.e., 

joint reconstruction methods jointly reconstructed PD, T1, T2 data for each channel, and then those 32 

images were combined for each method and each contrast. 2.5-fold two-dimensional undersampling 

masks were used. Phase x Readout x Slice FoV = 192x256x176mm, resolution:1x1x2mm. The 

optimized regularization parameters were used in reconstruction. 

 

 



 

The proposed method outperformed state-of-the-art CS reconstructions in all datasets reported here. In 

addition, our results indicate that ASEL-CS-j is robust against leakage of features between images. We 

observed that omission of individual penalty terms in the reconstruction led to feature-leakage across 

different images, minor albeit visible. Yet, the simultaneous use of both individual and joint penalty terms 

suppressed these artifacts effectively.  

 

To ensure that similar penalty weights and reconstruction parameters work well in different datasets, all 

data were normalized to the same intensity range in the image domain. This normalization led to different 

noise floors in each contrast image in the experiments. Nonetheless, it was observed that this 

normalization is critical to enable improved convergence behavior across the reconstructions 

implemented here. 
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