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Synopsis 

 

Multi-contrast images of the same anatomy are commonly acquired together to maximize diagnostic 

information. We demonstrate a multi-channel multi-contrast compressed sensing – parallel imaging 

(CS-PI) technique that simultaneously uses joint and individual regularization terms to exploit 

anatomical similarities across contrasts without leakage of distinct features across contrasts and that 

incorporates coil sensitivities to further improve image quality. The method is compared in-vivo to the 

single-contrast multi-channel CS-PI method ESPIRiT for PD-/T1-/T2-weighted images of N=11 

participants using signal-to-noise ratio calculations as well as neuroradiologist reader studies. The 

proposed method yields superior performance than ESPIRiT both quantitatively and qualitatively. 

 

Introduction 

 

In many clinical protocols, multi-contrast images of the same anatomy are collected to maximize 

diagnostic information, resulting in prolonged scan times. Joint compressive sensing (CS) – parallel 

imaging (PI) reconstructions have been proposed to accelerate these acquisitions 1-12. When a 

contrast is reconstructed individually, it is common to use regularization terms such as l1-sparsity  and 

total variation (TV) 13-15. Yet, when multiple contrasts are reconstructed jointly, group-l1-sparsity 16 and 

Color-TV 17 (CTV) are leveraged to enhance performance 1-3.  

 

Previous studies have predominantly exclusively considered either individual regularization terms that 

are suboptimal in joint reconstruction or joint regularization terms that can lead to leakage of distinct 

features across contrasts. To address these limitations, we recently proposed a joint reconstruction 

that uses individual and joint terms simultaneously to improve reconstruction quality while preventing 

leakage of distinct features across contrasts 18. Here, we introduce a generalized version of the 

technique that leverages not only multiple-acquisitions but also coil sensitivities to further improve 

image quality. The multi-channel multi-contrast method, named SIMIT-CS, is compared against a 

state-of-the-art CS-PI method ESPIRiT 19.  

 

Methods 

 

The proposed CS-PI reconstruction method solves the following problem: 
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where  

 
𝐶𝑇𝑉(|𝒙|) =  ∑ √∑ ((∇1|𝒙(𝑖)[𝑛]|)2 +  (∇2|𝒙(𝑖)[𝑛]|)2)𝑘

𝑖=1𝑛 , 

‖𝒙‖2,1 =  ∑ √∑ |𝒙(𝑖)[𝑛]|2𝑘
𝑖=1𝑛 , 

𝑇𝑉(|𝒙(𝑖)|) =  ∑ √(∇1|𝒙(𝑖)[𝑛]|)2 + (∇2|𝒙(𝑖)[𝑛]|)2
𝑛 , 

‖𝒙(𝑖)‖
1

=  ∑ |𝒙(𝑖)[𝑛]|𝑛 , 

[3] 

are the regularization terms, 𝒙 is a concatenation of all individual contrasts 𝒙(𝑖),  𝑘 is number of contrasts, 

𝑁𝑐 is number of coils, 𝛼𝐶𝑇𝑉 , 𝛽𝑔𝐿1, 𝛾𝑖𝑇𝑉 , 𝜃𝑖𝐿1 denote regularization weight parameters and (𝜖(𝑗,𝑖))2 (noise 

energy for contrast 𝑖) is calculated from the acquired data. The imaging matrices 𝑨(𝑗,𝑖) is the 

undersampled Fourier transform matrix for contrast 𝑖 that also includes the coil sensitivity map for 

channel 𝑗. 

 

 
Figure 1: Details on data acquisition parameters and the SIMIT-CS reconstruction workflow are given. 

The same undersampling masks were used for ESPIRiT and SIMIT-CS. For both methods, the coil 

sensitivities estimated via the ESPIRiT toolbox were used.  



Eq. [1] imposes joint and individual regularization terms (Eq. [3]) on each contrast. Eq. [2] incorporates 

parallel imaging by ensuring that for each contrast and channel, the projection of contrast 𝒙(𝑖) onto 

channel "𝑗" closely represents the acquired data (𝑦(𝑗,𝑖)). Eqs. [1-3] are solved iteratively using an 

Alternating-Direction Method-of-Multipliers 18 algorithm. The reconstruction workflow for SIMIT-CS is 

summarized in Figure 1. 

 

In-vivo multi-contrast images were acquired from N=11 participants using a 3T scanner (Siemens 

Healthcare, Erlangen, Germany) with a 32-channel receiver-only head coil. Sequence parameters are 

listed in Figure 1. All reconstructions were performed on Matlab (The Mathworks Inc., Natick, MA, USA). 

k-Space data were retrospectively undersampled in two phase-encode directions (readout: superior-

inferior). All contrasts were jointly reconstructed for SIMIT-CS. Regularization parameters that were 

optimized on a numerical phantom for channel-by-channel reconstruction (𝛼𝐶𝑇𝑉/𝛽𝑔𝐿1/𝛾𝑖𝑇𝑉/𝜃𝑖𝐿1 =

 0.11/0.3/0.037/3.0) were used 18 for SIMIT-CS without further optimization. While this is sub-optimal, 

fully-sampled data is not available in practice to optimize parameters on a patient-by-patient basis. 

Furthermore, this facilitated comparison between multi-channel and channel-by-channel reconstruction. 

ESPIRiT was used as distributed in the BART toolbox, also without patient-specific optimization.  

 

SIMIT-CS was compared to ESPIRiT 19 via neuroradiologist reader studies for 8-fold 2D-undersampling 

and in terms of peak signal-to-noise-ratio (pSNR) for R=8, R=10, R=12 and R=16. SIMIT-CS was also 

compared to the channel-by-channel multi-contrast reconstruction that we previously proposed 18. The 

results were evaluated by an experienced neuroradiologist (18 years), while methods were randomized 

and blindly presented. Wilcoxon signed-rank test was performed on the reader scores for anatomy and 

artefacts. Fully-sampled data, also reconstructed with ESPIRiT, were used as reference for calculating 

pSNR. Coil sensitivities for SIMIT-CS were estimated using the same approach as in ESPIRiT 19.  

 

 

 

 
Figure 2: SIMIT-CS and ESPIRiT are compared in terms of reconstruction artefacts and magnified 

reconstructed images for different acceleration factors. Comparisons are made on PD- and T1-

images, which had the highest and the lowest overall SNR across contrasts, respectively. Top row: 

Because SIMIT-CS uses information from all contrasts via joint reconstruction, the reconstructed 

images (shown: PD-images) demonstrated less blurring compared to the individually reconstructed 

images. Middle and bottom rows: SIMIT-CS yielded visually less intense reconstruction artefacts at 

all acceleration factors, compared to ESPIRiT for both the higher-SNR PD-images and the lower-SNR 

T1-images. T2-images had similar SNR and artefacts to PD, and hence, were omitted here. 

 



 
Figure 3: SIMIT-CS and ESPIRiT are compared in terms of reconstruction artefacts in PD-images for 

R=12. All difference images are shown in the same intensity scale. SIMIT-CS provided visually less 

intense artefacts for all N=11 participants. 

 

Results and Discussion 

 

SIMIT-CS reconstructed visually sharper images with less noticeable artefacts consistently across all 

examined acceleration factors (Figure 2). While both SIMIT-CS and ESPIRiT depict some residual 

artefacts in lower-SNR T1-weighted images, the intensity of noise-like artefacts is alleviated in SIMIT-

CS. Figure 3 clearly demonstrates that SIMIT-CS yields consistently lower artefact levels compared to 

ESPIRiT across subjects.  

 

 

 
Figure 4: SIMIT-CS is compared to ESPIRiT and channel-by-channel multi-contrast reconstruction in 

terms of pSNR for N=11 participants and three contrasts at four different 2D-acceleration factors. 

SIMIT-CS pools information from both multiple coils and multiple contrasts, yielding 3.0, 4.2, 5.1 and 

5.5dB higher pSNR (averaged across participants and contrasts) than ESPIRiT for R=8, 10, 12 and 

16, respectively. The multi-channel CS-PI reconstruction method SIMIT-CS improved pSNR over the 

CS-only channel-by-channel reconstruction by 6.2, 6.4, 6.5, 6.0dB for R=8, 10, 12 and 16, 

respectively. 

 

Averaged over contrasts and participants, SIMIT-CS improves pSNR over ESPIRiT by 3.0, 4.2, 5.1 and 

5.5dB for R=8,10,12,16, respectively (Figure 4). Note that the benefit of SIMIT-CS reconstruction 

becomes more apparent towards higher acceleration factors. Meanwhile, compared to a channel-by-

channel reconstruction, multi-channel SIMIT-CS improves pSNR by 6.2, 6.4, 6.5, 6.0dB.  

 

Because the pSNR improvement is lowest at the lowest factor examined, R=8, the methods were further 

compared via neuroradiologist reader studies at this factor (Figure 5). Overall, SIMIT-CS yields superior 



performance in 97% of the anatomy scores and 76% of the artefact scores. For all contrasts, SIMIT-CS 

scores significantly higher in anatomy (p<0.01). It also scores significantly higher in artefact level for all 

contrasts (p<0.01), except PD-weighted images where the two techniques perform similarly.  

 

 
Figure 5: Neuroradiologist reader scores are compared for SIMIT-CS and ESPIRiT. The reader was 

blinded to method names, and methods were presented in randomized order. Top panels: SIMIT-CS 

yielded significantly better results for anatomical comparisons on all contrasts and for artefactual 

comparisons in T1- and T2-images. For artefacts in PD-images, SIMIT-CS and ESPIRiT performed 

comparably. Bottom panels: SIMIT-CS yielded higher scores in 97% of the cases for anatomical and 

76% of the cases for artefactual comparisons. Anatomy scores: 1:low, 2:fair, 3:good/acceptable for 

clinical use, 4:very good, 5:excellent. Artefact scores: 1:intolerable, 2:too much, 3:acceptable/not 

degrading the image, 4:very little, 5:none. 

 

Conclusion 

 

Comparisons on in-vivo datasets clearly demonstrate the benefits of multi-channel multi-contrast 

reconstruction via SIMIT-CS as it improves image quality compared to ESPIRiT, qualitatively and 

quantitatively. 
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