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Synopsis 

 

In multi-contrast acquisitions, a critical concern is whether to distribute undersampling uniformly or 

unequally across contrasts, as scan times and SNR typically vary among sequences. This study 

investigates a compressive sensing framework in jointly reconstructing multi-contrast data with unequal 

acceleration rates. Using in-vivo and numerical datasets, the total scan time was fixed and acceleration 

factors were varied between protocols. The results suggest using lower acceleration rates for protocols 

with higher-SNR and shorter duration, and higher rates for protocols with lower-SNR and longer 

duration improves image quality, even in the highly accelerated contrast. The method was also 

compared to seven state-of-the-art methods from the literature.  

 

Introduction 

 

This study investigates a compressive sensing (CS) framework in jointly reconstructing multi-contrast 

MRI data with unequal acceleration rates.  

 

Multi-contrast images are commonly acquired to maximize complementary tissue information, albeit at 

the cost of longer scans. CS can be used to accelerate scans1, and image quality improvements have 

recently been demonstrated through joint reconstruction of multi-contrast images2-4. Because scan 

times and SNR typically vary among sequences in a multi-contrast protocol, a critical concern is whether 

to distribute undersampling uniformly or unequally across contrasts, which remains a topic 

understudied.  

 

Here, we investigate the effects of unequal acceleration among contrasts on reconstruction quality on 

in-vivo and numerical datasets consisting of three-contrasts (T1-, T2-, PD-weighted) by fixing the total 

scan time and varying acceleration factors between protocols. Then, we compare the efficacy of 

common reconstruction methods for multi-contrast CS-MRI, along with a joint reconstruction framework 

that we recently proposed5,6. We investigate the reliability of these methods against leakage of 

uncommon features across contrasts, a major concern for joint reconstruction7.  

 

Methods 

 

We recently proposed a joint reconstruction framework (SIMIT-CS5,6: Simultaneous use of Individual 

and Mutual Information Terms in Compressive Sensing) for CS that simultaneously uses individual and 

joint regularization terms across multiple contrasts. While joint terms (Group-L1-Sparsity2 and Color-

TV8) improve image quality by better utilizing shared information among contrasts, individual terms (L1-

sparsity and TV) increase sensitivity to unique information in each contrast to prevent leakage of 



features across contrasts. Here we used SIMIT-CS to jointly reconstruct multi-contrast datasets and 

compared SIMIT-CS with an implementation that only uses individual terms (Hybrid-IRWALM9), and six 

other state-of-the-art reconstructions methods (SparseMRI1, TVCMRI10, recPF11, GSMRI2, FCSA12, 

FCSA-MT4).  

 

Simulated Data: Simulations were performed using Matlab (Mathworks Inc.,Natick,MA) with a 

numerical-dataset generated from a segmented brain phantom13. Regularization parameters were 

optimized for each method (interval-search algorithm seeking maximum structural-similarity-index 

[SSIM] for 3-fold accelerated 5-contrast numerical-dataset [PD-T1-T2-FLAIR-STIR]), and used for all 

reconstructions hereafter. First, SIMIT-CS and Hybrid-IRWALM were compared in a 3-contrast/two-

protocol (PD/T2 acquired together as early/late echoes with TR=2750ms and T1 with TR=550ms) 

acquisition by fixing the total scan time TA=6:30minutes and varying acceleration factors among 

protocols. Then, artificial features were added to a subset of images to test methods against leakage-

of-features. Reconstructions are given for R_T1=6, R_PD=R_T2=1.9 (TA=6:30minutes). 

Reconstruction quality was assessed via SSIM, mmE (mean-magnitude error), and nRMSE (normalized 

root-mean-squared error). 

 

 
Figure 1: The total scan time was limited to TA=6:30 minutes (full-data acquisition: 14:05minutes) and 

the time allocated between the T1- and PD-/T2- (acquired in a single sequence as early/late-echoes) 

datasets was varied for the numerical-dataset. (a) Image nRMSE for individual reconstruction with 

Hybrid-IRWALM. (b) Image nRMSE for joint reconstruction with SIMIT-CS (dashed lines show curves 

for Hybrid-IRWALM. (c) Total image nRMSE across contrasts. All images had comparable SNR, and 

the minimum total nRMSE was obtained at equal acceleration factors of R=2.2 for all methods.  

 



In-vivo Data: Experiments were performed on a 3T scanner (Siemens Healthineers,Erlangen,Germany) 

using a 32-channel receiver (approval of local ethics committee and informed consent of the volunteer 

acquired). Data were undersampled retrospectively, reconstructed separately for each channel and 

then combined14. Two protocols were used: MP-RAGE (TR=2000ms) for T1-data, and spin-echo 

(TR=750ms) for PD-/T2-data (acquired together as early/late echoes), with a total scan time of 

8:38minutes (PHASExREAD resolution=192x256). SIMIT-CS and Hybrid-IRWALM were compared for 

various retrospective acceleration rates yielding TA=3:30minutes. In-vivo reconstructions are given for 

R_PD=R_T2=2, R_T1=4 for all methods. 

 

Undersampling Masks: Two-dimensional masks were generated in two phase-encode dimensions.  

One-eighth of the k-space was fully-sampled. Variable-density random sampling was performed via an 

nth-order decay with k-space radius, where n=max(R-2,3) and R is the acceleration rate. Masks were 

different across contrasts, but the same among methods.  

 

 
 

Figure 2: The total scan time was limited to TA=3:30 minutes (full-data acquisition: 8:38minutes) and 

the retrospective acceleration rates were varied for the in-vivo dataset. Magnified difference images 

show the difference between the fully acquired and reconstructed images. The joint reconstruction 

method SIMIT-CS can exploit the surge of additional data with higher-SNR for higher acceleration rates 

for T1 (please refer to the text), and therefore, the difference images for T1 are only weakly affected by 

the amount of acquired T1-data. Lowest total image error across contrasts was obtained for unequal 

acceleration rates R_T1=2.8 and R_PD=R_T2=2. 

 

  



Results and Discussion 

 

Figure 1 shows that for a wide range of acceleration factors with TA=6:30minutes, SIMIT-CS yields 

lower nRMSE than Hybrid-IRWALM. With all contrasts having comparable SNR, the minimum total error 

was acquired at a uniform acceleration rate of 2.2 across contrasts.  

 

A similar analysis was made for the in-vivo data (TA=3:30minutes, R_PD=R_T2 varied between 1.8 

and 8) with much different results. Remarkably, the difference images for T1 (Fig. 2) were almost 

unaffected by R_T1 for SIMIT-CS. There are two reasons for this behavior, i) due to the difference in 

TR’s, a total of 16 datapoints were acquired for PD- and T2-data for each 3 datapoints skipped for T1-

data; ii) PD- and T2-data had much higher SNR (5-fold and 3.6-fold, respectively) compared to T1-data 

in our experiments. SIMIT-CS can utilize this surge of additional information with higher-SNR to make 

up for skipped T1-datapoints. These results suggest using higher acceleration rates for slower/lower-

SNR sequences and lower rates for faster/higher-SNR sequences improve image quality. Here, the 

total error across all contrasts was minimum for R_T1=2.8 and R_PD=R_T2=2. A similar trend towards 

unequal acceleration rates was observed in the numerical-dataset when the SNR level of the T1-

weighted image was relatively low compared to PD and T2 (not shown). 

 

 
Figure 3: Simulation results for the numerical phantom for R_PD=R_T2=1.9, R_T1=6 (TA=6:30min). 

Image metrics were averaged across all contrasts. All methods were run for 200 iterations. Horizontal 

axes show reconstruction time summed over all threads (i.e., excluding parallel computation 

capabilities), and were limited to 100s. SIMIT-CS improves image metrics compared to its individual 

counterparts Hybrid-IRWALM. Complex and noisy images (FoV: 256x256mm, image-size: 256x256) 

from the numerical brain phantom13 with artificial non-overlapping features (Fig. 4) were used.  



SIMIT-CS reconstructed higher quality images than reference methods for the numerical-dataset (Fig. 

3), and without any leakage-of-features across contrasts (Fig. 4). In-vivo scans also show benefits of 

joint reconstruction. SIMIT-CS yielded visually sharper images, with another joint method FCSA-MT 

having the closest performance (Fig. 5). 

 

 
Figure 4: Magnified reconstructed images are given for all algorithms for R_PD=R_T2=1.9, R_T1=6 

(TA=6:30min). All algorithms were tested against leakage of features across contrasts by introducing 

artificial features (non-overlapping elliptical regions, lower-intensity in PD-image and higher-intensity in 

T1-image) to the fully-sampled images. While individual reconstruction algorithms Hybrid-IRWALM and 

RecPF suffer from coarser reconstructions with staircase artifacts in the T1-images, the proposed joint 

reconstruction framework SIMIT-CS yields visually improved recovery of the features. Complex and 

noisy images (FoV: 256x256mm, image-size: 256x256) from the numerical brain phantom13 were used. 
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Figure 5: Methods were compared using experimental data. For each channel of the 32-channel array, 

the images were retrospectively undersampled (using different masks among contrasts, same set of 

masks for each method and channel), reconstructed and combined14 into respective contrast images. 

For example, for joint algorithms, PD-T1-T2 images of a given channel were jointly reconstructed to 

yield 32x3 images, to be combined into three images. PD/T2 and T1-images were acquired using TSE 

and MPGR sequences. Each method was run for 200 iterations. Joint methods SIMIT-CS and FCSA-

MT increase sharpness in highly undersampled T1-images compared to their individual counterparts 

(Hybrid-IRWALM, FCSA, respectively). 
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