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Accidental and symmetry-protected bound states in the continuum in a photonic-crystal slab: A
resonant-state expansion study

Sam Neale and Egor A. Muljarov
School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom

(Received 29 September 2020; revised 5 February 2021; accepted 8 March 2021; published 8 April 2021)

The resonant-state expansion (RSE) provides a precise and computationally cheap tool to find resonant states
in complex systems using the optical modes of a simpler system as a basis. We apply the RSE to a photonic
crystal slab in order to identify and analyze its bound states in the continuum (BICs). We show that the RSE is
a useful and reliable method for not only finding the BICs but also for differentiating between accidental and
symmetry-protected BICs, as well as for understanding their formation from the basis modes and evolution with
structural and material parameters of the system. The high efficiency of the RSE allows us to track the properties
of BICs and other high-quality optical modes, covering the full parameter space of the system in a reasonable
time frame.
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I. INTRODUCTION

Observable phenomena in optical spectra of an electromag-
netic system can be naturally described by using its resonant
states (RSs). Originally introduced in open quantum systems
[1], the RSs of an optical system are the discrete eigen-
solutions of Maxwell’s wave equation satisfying outgoing
boundary conditions [2]. The RSs can communicate with the
radiation continuum outside the system, and their electromag-
netic fields are traveling solutions, which radiate energy away.
The lifetime of a RS is given by the quality factor (Q factor),
which is half of the ratio of the real part to the imaginary
part of its frequency. In a planar optical system, such as a
dielectric slab, the spectrum of RSs can also include guided
modes, which have infinite Q factors and are formed through
total internal reflection. Guided modes have real frequencies
and form evanescent solutions outside the system, and thus are
analogous to bound states in quantum systems.

Photonic crystals (PCs) [3,4] exhibit optical phenomena
such as strong confinement and Bragg scattering of light due
to their spatial periodicity, which can be useful in applications,
such as in grating couplers [5], photonic integrated circuits
[6,7], and beam splitters [8]. Planar PC systems provide an
opportunity for the light trapped within an optical waveguide
(WG) to couple to the photonic continuum outside the sys-
tem [4,9–11], which intuitively would lead to the conclusion
that guided modes cannot exist in a photonic crystal since
all modes have some pathway to the outside, but in reality,
modes can remain localized within the system despite their
frequencies lying in the continuum. These are known in the lit-
erature as bound states in the continuum (BICs), first proposed
by von Neumann and Wigner [12] in quantum systems and
then studied extensively in optical systems [10,13–17], where
they have been experimentally observed [18,19]. Ideally, BICs
have an infinite Q factor, corresponding to δ-like features in
optical spectra and infinitely long lifetimes, and therefore have

found applications in lasers [20,21], sensing [22], and filtering
[23]. In periodic optical systems and in particular PC slabs,
BICs have become the subject of growing theoretical interest
in recent years [24–28], including development of various per-
turbative approaches [29–36] and other approximate methods
[37,38].

The BICs have been observed experimentally in an array
of waveguides [18] and in a two-dimensional photonic crystal
[19]. In the array of waveguides, the BIC is determined to
be formed by virtue of the symmetry of the system. In fact,
when the symmetry is broken, the mode couples to the radi-
ation continuum thus proving that it is indeed immersed in
the continuum. In the photonic crystal example, a BIC was
identified as one not formed by symmetry and at the same
time sensitive to structural parameter changes.

There are two main mechanisms by which BICs are discon-
nected from the radiation continuum: by virtue of symmetry
and by the tuning of parameters such that the radiation
from all open channels is suppressed. These are known as
symmetry-protected (S-BICs) and accidental BICs (A-BICs),
respectively [39–41]. In a system that exhibits one or more
symmetries, the modes of different symmetry classes com-
pletely decouple. This causes the two symmetry classes to
have different radiative threshold frequencies so that a mode
from one symmetry class remains as a guided mode while
lying within the continuum of the other symmetry class and
in this way forms an S-BIC. Although these are called BICs
in the literature, they are akin to the guided modes in a homo-
geneous system, since they are separated in frequency from
the radiation continuum onset.

A-BICs, however, are not dependent on the symmetry of
the system but are instead sensitive to its spatial and geometric
parameters. Unlike S-BICs, these modes are decoupled from
the continuum by destructive interference occurring at the
edges of the system, which cancel any outgoing, traveling
solutions. In PC systems, in particular, it is only necessary
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for the influence of radiating Bragg channels to be canceled
in this way for an A-BIC to form. This cancellation of electric
fields at the edges of the system is similar to that observed for
BICs in an open Sinai billiard [42,43], a nonperiodic system,
which nevertheless shares some physical properties with a PC
slab, see a more detailed discussion at the end of Sec. II below.

To distinguish between A-BICs and S-BICs in practice, a
standard approach in the literature is by breaking the sym-
metry of the system, which ensures that all S-BICs disappear
from the spectrum of the RSs. In PC systems this is done
by simply allowing a nonvanishing in-plane component of
the wave number, equivalent to non-normal incidence of light
[39,41]. We propose in this paper a different approach, based
on the resonant-state expansion (RSE), which allows us not
only to distinguish between A-BICs and S-BICs without
breaking the symmetry, but also to formulate mathematical
criteria for the different types of BICs.

The RSE is a rigorous method for calculating the RSs
of photonic systems [44]. Using as basis a complete set of
the RSs of a simpler system, the RSE makes a mapping
of Maxwell’s equations onto a linear eigenvalues problem,
determining the full set of the RSs of the target system. In
addition to higher numerical efficiency [45,46], compared to
other computational methods, the RSE provides an intuitive
physical picture of resonant phenomena, capable of explain-
ing features observed in optical spectra. So far, the RSE
has been applied to finite open optical systems of different
geometry and dimensionality [45,47–49], as well as to homo-
geneous and inhomogeneous planar waveguides [46,50,51]. It
was generalized to magnetic, chiral, and bianisotropic optical
systems [52], enabling its further application to metamateri-
als. The RSE has also been used in first perturbation order for
PC systems to describe sensing of the refractive index by a
periodic array of plasmonic nanoantennas [53]. Very recently,
we have developed a full version of the RSE for planar PC
systems [54], using as basis system a homogeneous dielectric
slab and treating the PC structure as a periodic modulation
on top of the slab. Comparing results with the asymptotically
exact scattering-matrix method [9,10] (also known as Fourier-
modal method), we have demonstrated in Ref. [54] a high
level of accuracy and efficiency of the RSE for finding the
RSs in PC systems.

In this paper, we use these advantages of the RSE, as well
as the analytical form of the eigenmode expansion, for study-
ing the origin of BICs in planar PC systems and their evolution
with structural and material parameters, such as the thickness
of the periodic layer and its permittivity contrast. This allows
us to reveal the role of different basis states of the homogenous
dielectric slab in the formation of the eigenmodes of the PC
slab and to demonstrate the importance of the basis guided
modes in the formation of BICs.

Interestingly, the role of different basis states of a homoge-
neous slab in the formation of BICs in PC structures has been
very recently studied within a simple coupled-wave model
[37], reducing the basis to only a few propagating waveguide
modes, coupled via diffraction grating, and neglecting any
evanescent channels. Compared to this model, the RSE takes
into account all possible channels and basis modes within
each channel, striving towards the exact solution. Another
recent paper [38] studying BICs in PC slabs uses instead the

modes of an infinite PC as basis for treating a finite PC slab.
The semianalytic model developed in that paper also neglects
any evanescent solutions and in practice presents a reduced
version of the rigourous scattering-matrix method [9,10].

II. METHOD

In this section, we summarize for the reader’s convenience
the formalism of the RSE applied to planar photonic-crystal
(PC) structures [54], outlining the most important results.
We start from the matrix eigenvalue problem of the RSE
in PC systems, providing in Sec. II A details of separation
of the target system into a basis system and a perturbation
and introducing the matrix elements of the perturbation for
a one-dimensional spatial periodicity. In Sec. II B we present
the main equations for the RSs and cut modes of the basis
system, discussing the origin and importance of the branch
cuts. We furthermore provide in Sec. II C explicit expressions
for the RS fields, both within and outside the PC slab, which
is of crucial importance for understanding and analyzing the
phenomenon of BICs, which is done in Secs. II D and III. This
is an essential element of the RSE formalism, which is neither
included nor discussed in Ref. [54]. Also, in our previous
publication [54], we only mentioned BICs, not providing any
examples of A-BICs or a comparative analysis of different
types of BICs, which is now done in Secs. II D and III of this
paper.

A. RSE for planar photonic-crystal structures

The RSE maps Maxwell’s equations onto a linear matrix
eigenvalue problem, for planar PC structures taking the fol-
lowing form [54]:

ω
∑
g′n′

(
δgg′δnn′ + V gg′

nn′
)
cg′

n′ = ωg
ncg

n, (1)

where δnn′ is the Kronecker delta. The eigenfrequency ω of
each RS of the PC system is the eigenvalue of Eq. (1) cor-
responding to an eigenvector with components cg

n, which play
the role of expansion coefficients of the RS wave function into
the modes of an unperturbed system having the eigenfrequen-
cies ω

g
n. Indices g and n label, respectively, the Bragg channels

and the basis states within each channel. The full set of basis
states consists of subsets of modes corresponding to different
Bragg channels. Each subset includes, for the same g, both the
RSs and cut modes of the basis system, see Secs. II B and II C
for more details.

Equation (1) is valid for any nondispersive planar PC struc-
ture, finite in one direction and infinitely extended in the
other two directions, with one- or two-dimensional period-
icity. Also, Eq. (1) is valid for any polarization of light and
for a rather wide choice the basis system. The limitations
for the basis system are such that it has to be uniform in
the periodic directions of the PC slab, and that the periodic
modulation of the permittivity and/or permeability is included
within the volume of the basis system. The target PC system
thus differs from the basis system by a perturbation which
contains the periodic modulation of the permittivity and/or
permeability. This perturbation contributes to Eq. (1) in a form
of the overlap matrix elements V gg′

nn′ between normalized basis
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states. Note that both the target and the basis system can
be dielectric and/or magnetic, however, with no frequency
dispersion. A version of the RSE developed for PC systems
with frequency dispersion of the permittivity, such as a PC
slab with a periodic array of plasmonic nanoparticles, has
been considered in Refs. [53,55], with the basis limited to only
one or two RSs.

In this paper, we apply the RSE equation (1) to a dielectric
PC slab with one-dimensional periodicity and transverse-
electric (TE) polarization of light (in the y direction). The
permittivity of the PC slab is described by

ε(x, z) = ε(z) + �ε(x, z), (2)

where ε(z) is uniform and �ε(x, z) is periodic in the x direc-
tion with period d , i.e., �ε(x + d, z) = �ε(x, z). Choosing,
without loss of generality, the basis system to be a slab of
thickness 2a occupying the region |z| � a and described by
the permittivity profile ε(z), which can be homogeneous or
inhomogeneous in the z direction, the matrix elements V gg′

nn′ in
Eq. (1) take the following explicit form:

V gg′
nn′ =

∫ a

−a
Eg

n (z)�εg−g′ (z)Eg′
n′ (z)dz, (3)

where Eg
n (z) is the electric field of state n of the basis system

for a given Bragg channel

g = 2πm

d
, m = 0, ±1,±2, . . . , (4)

and

�εg(z) = 1

d

∫ d

0
�ε(x, z)e−igxdx (5)

is the gth Fourier coefficient of the periodic perturbation.
The split of the full periodic permittivity ε(x, z) into the

uniform ε(z) and periodic part �ε(x, z) is arbitrary. However,
it is beneficial to choose the periodic perturbation �ε(x, z) in
such a way that its integral over the period d is zero, i.e.,

�ε0(z) = 0. (6)

In this case, V gg
nn′ = 0 for all n and n′, and importantly, all the

diagonal elements V gg
nn vanish. Then solving Eq. (1) to first

perturbation order,

ω ≈ ωg
n

(
1 + V gg

nn

)−1 = ωg
n, (7)

shows that there is no effect of the perturbation on the
eigenfrequency in that order, so that the periodic modulation
contributes only in the second and higher orders, making
the matrix problem Eq. (1) quickly converging to the exact
solution, as it has been demonstrated numerically in Ref. [54].
Clearly, this approach is ideal for weak periodic modulations
of a homogeneous system, but it also remains efficient for
stronger perturbations, like those treated in this work, for
which the periodic contrast of the permittivity is of the same
order as the permittivity contrast in the basis system (com-
pared to the surrounding medium).

Note that Eq. (1) is a generalized eigenvalue prob-
lem, which can, however, be reduced [44] to the standard

eigenvalue problem,

∑
g′n′

⎛
⎝δgg′δnn′

ω
g
n

+ V gg′
nn′√

ω
g
n

√
ω

g′
n′

⎞
⎠bg′

n′ = 1

ω
bg

n, (8)

by redefining the eigenvector components as bg
n = cg

n

√
ω

g
n/ω.

Solving Eq. (8) requires only diagonalization of a complex
symmetric matrix having the eigenvalues 1/ω. While this
transformation is unnecessary, it allows one to use a few
times more efficient numerical algorithms than those suited
for solving generalized eigenvalue problems, such as Eq. (1).

From Eq. (8) follows the orthogonality of the eigenvectors
bg

n between different perturbed states, which is standard for
any symmetric complex matrix. Requiring also their standard
normalization (without complex conjugation),

∑
gn(bg

n)2 = 1,
results in the following normalization of the expansion coeffi-
cients: ∑

gn

ωg
n

(
cg

n

)2 = ω. (9)

A similar normalization of the expansion coefficients in finite
optical systems has been considered in Ref. [56], showing that
this normalization is equivalent to the proper normalization of
the perturbed wave functions in real space [44,52]. We expect
(although leaving it without proof as this is not crucial for the
results presented in this work) that the same is true also for
the RSs in photonic crystal structures, for which the correct
normalization was introduced in Refs. [53,55]. We therefore
use the normalization Eq. (9) for the perturbed electric field
illustrated in Sec. III below.

B. Basis system of the RSE: Homogeneous dielectric slab

As already mentioned above, the RSE requires a basis sys-
tem to which a periodic perturbation will be added. According
to Eq. (2), the basis system is described by the permittivity
profile ε(z), which is uniform in the x direction (along which
the PC slab is periodic). The basis system determines the
basis states, which are used in the RSE for expansion of the
RS fields of the PC slab. The basis states normally consist
of the RSs and cut modes, both specific to the form of ε(z).
The basis RSs in turn consist of the waveguide (WG) modes,
which are optical bound states with real eigenfrequencies and
Fabry-Pérot (FP) modes, which are leaky modes with complex
eigenfrequencies. Both types of modes are the eigensolutions
of Maxwell’s wave equation with the permittivity ε(z). Cut
modes are not eigensolutions in the full sense (they satisfy
Maxwell’s wave equation but not Maxwell’s boundary con-
ditions), but they appear as a result of discretization of the
branch cuts of the dyadic Green’s function (GF) of the basis
system in the complex frequency plane.

In this paper, we use as basis system a homogeneous di-
electric slab of permittivity εs and width 2a, surrounded by
vacuum and infinite in the x and y directions. It is described
by the permittivity profile

ε(z) = 1 + (εs − 1)θ (a − |z|), (10)

where θ (z) is the Heaviside function. Focusing on TE polar-
ization and introducing the wave vector p in the x direction,
the full electric field of the basis states, labeled by an integer
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number n, is given by En(x, z, t ) = eyEn(z)ei(px−ωnt ), where ey

is the unit vector in the y direction, and

En(z) =

⎧⎪⎨
⎪⎩

Aneiknz z > a

Bn(eiqnz + (−1)ne−iqnz ) |z| � a

(−1)nAne−iknz z < −a

(11)

is a scalar wave function, which consists of standing waves
within the slab (|z| � a) and outgoing waves outside the slab
(|z| > a). Here, An and Bn are the normalization coefficients,
linked to each other via Maxwell’s boundary condition of the
continuity of the electric field,

Aneikna = Bn(eiqna + (−1)ne−iqna), (12)

and the factor (−1)n accounts for the mode parity, which can
be either even or odd, due to the mirror symmetry of the
slab in the z direction, see Eq. (10). The normal component
of the wave numbers in vacuum, kn, and within the slab,
qn, are linked to the RS eigenfrequency ωn and the tangent
component of the wave number p (which is conserved) via

ω2
n = k2

n + p2 and εsω
2
n = q2

n + p2, (13)

which are, respectively, the light dispersion in vacuum and
within the slab. Note that we are using throughout this paper
the units in which the speed of light in vacuum c = 1.

1. Resonant states

The eigenfrequencies ωn of the basis RSs are generally
complex and are found by solving the secular equation,

(qn + kn)e−iqna = (−1)n(qn − kn)eiqna, (14)

which is obtained from Maxwell’s boundary conditions of the
continuity of the electric field En(z) and its derivative. Com-
bining the latter with the outgoing wave boundary conditions,
we obtain

E ′
n(±a) = ±iknEn(±a). (15)

The last equation for the field on the slab boundaries demon-
strates that the general solution of Maxwell’s equations (for
example, the GF satisfying the same boundary conditions)
is analytic in the complex k plane, where k is the normal
component of the wave vector in vacuum, which takes the
values k = kn for the RSs. In the complex ω plane, however,
the light dispersion in vacuum introduces branch cuts due
to the square root in the light frequency, ω = ±

√
k2 + p2,

with the branch points at ω = ±p, in this way splitting the
frequency plane into two Riemann sheets, with the RSs at
ω = ωn distributed between the sheets. This creates a choice
for which sheet should be taken into account in any expansion,
with the states on the other sheet being discarded. Note that
the cuts introduce a continuous contribution to the expansion,
on top of the discrete contribution of the RSs on the selected
Riemann sheet. In other words, both RSs and states on the
cuts are required for completeness. The contribution of the
cuts and their discretization is considered in more detail in
Sec. II B 2 below.

FIG. 1. Basis modes for p = 5 and a = 1 showing the dif-
ferences between the physical sheet containing Fabry-Pérot and
waveguide modes (red circles) and the unphysical sheet containing
anti-Fabry-Pérot and antiwaveguide modes (blue crosses).

The wave functions of the RSs are normalized in such a
way that

2
∫ a

−a
ε(z)E2

n (z)dz − E2
n (a) + E2

n (−a)

ikn
= 1, (16)

which determines the normalization constants in Eq. (11):

B−2
n = 8(−1)n

[
εsa + ip2

knω2
n

]
, (17)

see Ref. [54] for derivation of Eqs. (16) and (17).

2. Cut modes

As already mentioned, states on the branch cuts in the
complex ω plane contribute to the completeness and thus
have to be taken into account in any expansion. For practical
purpose, the continuous contribution of the cuts is discretized,
replacing each cut with a series of artificial cut modes posi-
tioned on the branch cut and added to the basis along with
the discrete RSs. As shown in Ref. [54], this discretization
has the same effect as the truncation of the infinite countable
basis of RSs, and the optimal number of the basis cut modes is
about the same as the number of the basis RSs. There is also
a lot of freedom in choosing the direction of the cuts going
from the branch points at ω = ±p to infinity. However, the
cuts directed vertically down,

ω = ±p − iλ, 0 < λ < ∞ (18)

(with a positive real λ), turn out to be close to the optimal
ones, almost minimizing the cut contribution.

In Fig. 1, we show the basis modes for p = 5 where we
include the modes present on both sheets as well as the cut
which causes the splitting of the complex plane into two Rie-
mann sheets. We label the sheets “physical” and “unphysical,”
which refers to which set of modes aligns with observable
quantities, e.g., the transmission spectrum.

The cut contribution is evaluated from the analytic prop-
erties of the dyadic GF of the homogeneous dielectric slab
Eq. (10), by extracting the cut density function:

σ±(ω) = 1

4π

k

(k2 − q2) cos(2qa) ± (k2 + q2)
, (19)
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where k =
√

ω2 − p2 and q =
√

εsω2 − p2, in accordance
with Eq. (13). Here the sign of q is arbitrary, but the sign of k
(changing to the opposite across the cut) is taken as its value
on the left-hand (right-hand) side of the left (right) cut. The
other sign in Eq. (19), ±, in turn, refers to the state parity.
Note that the cut density Eq. (19) is valid for any direction of
the cuts, not only for the vertical direction used in this work.

The continuous cut contribution is discretized by splitting
the cuts into finite number of pieces of length �ωn in such
a way that the value of

∫
�ωn

√|σ±(ω)|dω is the same for all
pieces. Then the cut mode frequencies ωn and the normaliza-
tion constants Bn standing in the wave function Eq. (11) are
defined as

B2
n =

∫
�ωn

ωσ±(ω)dω = ωn

∫
�ωn

σ±(ω)dω, (20)

where the parity sign can be encoded with an integer state
number n, exactly in the same way as for the RSs: ± = (−1)n.
More details on the cut discretization and the use of the cut
modes in the RSE can be found in Ref. [54].

As already mentioned, the cut modes are not solutions of
Maxwell’s equations, as the Maxwell boundary condition of
the continuity of E ′

n(z) on the slab boundaries is not fulfilled
for them. Moreover, the field outside the slab, while formally
introduced by Eq. (11) also for the cut modes, is physically not
defined for them. However, the field of the basis states outside
the basis system is not required in the RSE formalism.

C. RSs of a photonic-crystal slab

The homogeneous slab in vacuum considered in Sec. II B
presents the unperturbed system for the RSE. The RSs and cut
modes of the homogeneous slab are introduced in Sec. II B for
a given fixed wave vector p parallel to the slab. To determine,
for the same wave vector p, the RSs (and cut modes) of a PC
slab, the RSE treats the difference between the PC slab and
the homogeneous slab as a perturbation that is not necessarily
small. Since this perturbation is periodic (in the x direction),
it mixes p with wave vectors p + g of all possible Bragg
replicas, where g is defined by Eq. (4). This implies that in
order to obtain the exact result, we need to take all these Bragg
channels into account simultaneously in the basis. We denote
these Bragg channels with the upper index g, which appears in
the basis frequencies ω

g
n and wave functions Eg

n (z) obtained,
respectively, from ωn and En(z) presented in Sec. II B, by
making a replacement p → p + g in all the equations for the
basis RSs and cut modes. In theory, all Bragg channels should
be included, but in practice, the basis is truncated by some
maximum frequency ωmax determining a circle in the complex
plane, within which all the unperturbed modes for all possible
channels are taken into account.

Using this extended basis, which includes all the RSs and
cut modes for all Bragg channels within the cutoff frequency,
|ωg

n| < ωmax, the RSE matrix equation (1) is solved for a
periodic perturbation of interest, �ε(x, z), in order to find the
optical modes of the target system. Since the RSE equation
is a linear eigenvalue problem, the number of the output
eigenfrequencies ω of the PC system is exactly the same
as the number of the input states ω

g
n of the truncated basis.

Moreover, as approximately half of the basis states are cut

modes, about the same number of cut modes are obtained for
the target system as a result of solving Eq. (1). Interestingly,
these perturbed cut modes, representing discretized cuts of
the PC slab, are positioned in the complex frequency plane
along the cuts of the unperturbed system [54]. In particular,
the real part of the eigenfrequency takes the same values as
for the basis cut modes; however, their imaginary parts are
different, which implies a renormalization of the cut density
Eq. (19) due to the perturbation. This remarkable property of
the RSE, that it conserves the positions of the cuts, allows us
in particular to distinguish the cut modes from the physical
RSs of the target system. This is usually not achievable by
other available numerical approaches [57] also dealing with
the cuts of PC systems.

The electric field of a perturbed RS (or a perturbed cut
mode) is then given by E(x, z, t ) = eyE (x, z)ei(px−ωt ), where

E (x, z) =
∑

gn

cg
nEg

n (z)eigx for |z| � a (21)

is the corresponding scalar wave function within the basis
system. We see that the perturbed wave function E (x, z) is
expressed in Eq. (21) as a superposition of the basis modes
Eg

n (z) combined with plane waves eigx of the Bragg channels,
with the expansion coefficients cg

n and the eigenfrequency ω

being a solution of Eq. (1).
Although the basis RSs are defined by Eq. (11) both

within and outside the basis slab, the expansion Eq. (21)
for a perturbed mode is valid only within the bounds of the
basis system, i.e., for |z| � a. To find the electric field of
the perturbed mode outside the basis system, we can use the
homogeneity of the outside medium, which allows us to find
an explicit analytic solution in terms of plane waves. This
solution exactly matches the field Eq. (21) on the surface
of the basis system, i.e., at z = ±a. We therefore find the
field outside the basis system also in terms of the expansion
coefficients cg

n:

E (x, z) =
∑

g

eigxeiκg(|z|−a)
∑

n

cg
nEg

n (±a) for |z| � a, (22)

where the sign + (−) refers to the region z � a (z � −a), and

κg =
√

ω2 − (p + g)2. (23)

Equation (23) for the normal component κg of the light wave
vector in vacuum for the gth Bragg channels again introduces
a square-root ambiguity. However, the positions of the cuts for
the perturbed system are known and are actually the same as
for the basis system, as explained above. This unambiguously
determines the following choice of the root in Eq. (23):

Im κg � 0 if |Re ω| > |p + g|,
Im κg > 0 if |Re ω| < |p + g|, (24)

which can be obtained by analytic continuation, using the
corresponding values of κg on the real frequency axis. For
a better understanding of the meaning of Eq. (24), let us
assume for definiteness that Re ω > 0. This assumption does
not impose any limitations as the modes with Re ω < 0 are
solutions, which are the complex conjugate of their mirror
images with respect to the imaginary axis in the complex ω

plane—this is a general property of the RSs of an optical
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system, related to its time-inversion symmetry [44]. Then the
first case in Eq. (24) corresponds to a so-called open Bragg
channel, for which eiκgz represents a wave propagating away
from the system in the positive z direction. Such a wave
has a constant amplitude if the mode eigenfrequency ω is
purely real (in this case this amplitude is zero in reality, see
a discussion in Sec. II D below), or an exponentially growing
amplitude, due to Im κg < 0, if the mode eigenfrequency is
complex, i.e., Im ω < 0. Note that this exponential growth is
a typical spatial behavior of the RSs [1,10,58]. The second
case in Eq. (24) corresponds to a closed Bragg channel, for
which the field due to eiκgz is exponentially decaying with
the distance from the system, due to Im κg > 0, no matter
whether the eigenfrequency ω is real or complex. Note that the
case of Re ω = p + g, not included in Eq. (24), corresponds to
cut modes.

We can see from the expansions Eqs. (21) and (22) that the
coefficients cg

n act as amplitudes controlling how much each
basis mode contributes to a given perturbed state. This makes
it possible, in particular, to determine which basis mode the
perturbed state originates from, that is, which basis mode it
would evolve from if the position of the mode were traced out
as the contrast of the periodic modulation is increased.

D. Bound states in the continuum

As well as allowing us to be able to construct the perturbed
electric field, the eigenvectors cg

n of the RSE allow us to easily
identify BICs in the system and to be able to distinguish
between S-BICs and A-BICs. As BICs have localized (i.e.,
bound) wave functions, their eigenfrequencies ω have to be
purely real, otherwise an excitation of the system into such
an optical mode would decay in time, which would in turn
require an exponential growth of the wave functions. And vice
versa, all real-eigenfrequency modes have to have localized
wave functions, which means they can only be bound states.
Purely harmonic behavior in vacuum (with a finite constant
amplitude) is not possible for an isolated optical mode at
real frequency as this would also mean a flow of energy to
the outside of the system. Mathematically, this implies, in
accordance with Eq. (24) and the discussion following it in
Sec. II C, that ∑

n

cg
nEg

n (±a) = 0 (25)

for every Bragg channel g satisfying the inequality

|p + g| < |ω|, (26)

where ω is the real frequency of the mode. This is a general
condition for any BIC. Note that in addition to BICs, guided
modes with real frequencies |ω| < |p| can form in the energy
spectrum of a PC slab in vacuum (the last inequality is modi-
fied for a PC slab with a substrate or two different substrates
replacing vacuum on either side of the slab [10]).

For S-BICs, however, a stronger condition replaces
Eq. (25):

cg
n = 0. (27)

This should be fulfilled for all basis states n for the Bragg
channels g selected by the inequality Eq. (26). In fact, as

already mentioned in Sec. I, S-BICs are formed due to the de-
coupling of modes of different symmetry, so while all modes
of one symmetry class couple to the radiation continuum
outside the system and become leaky, some modes of the other
symmetry class do not and remain bound to the system. All
the matrix elements V gg′

nn′ between different symmetry classes
vanish by symmetry, and the RSE equation (1) yields imme-
diately Eq. (27). For example, in the case of a PC slab treated
in Sec. III below, for p = 0 and mirror symmetry in the z
direction, these two symmetry classes are, respectively, even
and odd solutions in the periodic x direction. The correspond-
ing even and odd-parity basis modes do not couple to each
other, leading to Eq. (27) for the even-mode contribution to the
odd-parity states. From this follows, in particular, that Eq. (27)
results in S-BICs existing only below the first Bragg channel
threshold, i.e., for |ω| < 2π/d , as it has been demonstrated
numerically in Ref. [54]. One could even argue that S-BICs
are simply guided modes of the odd-symmetry class.

Equation (27) is a defining characteristic for S-BICs that
is not seen in A-BICs, which would be otherwise difficult to
differentiate. The RSE method reveals how this decoupling
occurs mathematically. A-BICs, on the other hand, can form
at any frequency given that the parameters of the system are
properly tuned. Unlike S-BICs the values of cg

n are not nec-
essarily zero for leaky modes. Instead, according to Eq. (25),
it is the summation of the basis electric fields at the edges of
the system that becomes zero, representing destructive inter-
ference. For an A-BIC to form, this destructive interference
only needs to occur in open channels, i.e., for all g satisfying
Eq. (26).

The condition for A-BICs Eq. (25) with generally nonva-
nishing amplitudes cg

n can be also seen as orthogonality of
vectors with component cg

n and Eg
n (±a), labeled by n, for each

relevant g. If only one value of g contributes (for example
g = 0, for sufficiently small |ω|), and the PC slab possesses
a mirror symmetry in the z direction, the same as for the basis
system, then the two equations given by Eq. (25), with +a
and −a in the argument of the basis functions, produce only
one (for each parity in the z direction) vector orthogonality
condition for an A-BIC to occur, which is easy to satisfy
by tuning a single parameter of the system, as demonstrated
in Sec. III below. However, for a PC slab without mirror
symmetry, and for larger frequencies, Eq. (25) contains two or
more conditions of orthogonality of vectors, which are harder
to meet and which may require a simultaneous tuning of,
respectively, two or more parameters of the system.

As already mentioned in Sec. I, the condition for A-BICs
Eq. (25), provided by the RSE, which physically reflects the
phenomenon of destructive interference and cancellation of
the field at the edges of the system, has some similarity with
a BIC condition developed in the theory of an open Sinai
billiard [42,43]. The latter presents an interesting example of
an open optical system treated in a rigorous way without intro-
ducing the RSs explicitly, but rather mapping Maxwell’s wave
equation onto a non-Hermitian matrix eigenvalue problem,
using as basis the eigenstates of a closed system supplemented
with guided and evanescent modes of leaky channels. While
the open Sinai billiard is not a periodic system, it has a re-
markable similarity with a PC slab, in terms of the existence of
open (i.e., leaky) and closed (i.e., evanescent) channels, which
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are analogous, respectively, to the discussed above open and
closed Bragg channels of a PC slab. It has been shown in
Ref. [42] that, neglecting the contribution of evanescent chan-
nels, the condition determining BICs in such a system can be
formulated in term of a vanishing coupling matrix element
between a relevant mode of the closed resonator and the
leaky channel. While for some BICs this approximation works
very well, in some other cases the contribution of evanescent
modes can be more significant, as has been also demonstrated
in Ref. [42]. In PC systems instead, the A-BIC condition
Eq. (25) is exact.

III. RESULTS

One of the advantages of the RSE method is the speed at
which it can calculate the RSs of an optical system within
a wide spectral range. This becomes crucial if one needs
to change one or several parameters of the optical system
in order to optimize its optical properties or to achieve a
desired effect. In fact, if the basis system remains the same
while varying parameters of the target system, the perturba-
tion matrix can be precalculated as it is using the same basis
functions, or at least its calculation can be optimized. Then the
only computationally expensive element of the RSE is matrix
diagonalization. For example, for the perturbations treated in
this work with the relative error in the RS frequency of about
10−5 or lower, one needs for determining the full spectrum of
the RSs in a wide spectral range to diagonalize a 4500 × 4500
matrix, which requires only about 600 seconds on a standard
computer. This allows the RSE to be run several thousand
times within a manageable time frame, in order to explore the
parameter space of the PC system and to trace the evolution of
its optical modes while its structural and/or material parame-
ters are changing. This is particularly important for studying
A-BICs, as discussed in Sec. II D.

In this section, we introduce a planar PC system in the form
of a harmonic perturbation on top of a homogenous dielectric
slab and vary the parameters of this perturbation (namely, the
perturbation strength and width), in order to study symmetry
protected and accidental BICs in such a system.

A. Perturbation matrix and parameters of the PC slab

The PC system considered in this paper is essentially the
same as in Ref. [54]. It is described by the total permittivity
ε(x, z), given by Eq. (2), in which ε(z) is the permittivity of
a homogeneous slab, given by Eq. (10), and �ε(x, z) is a
perturbation having the following form:

�ε(x, z) = β cos

(
2π

d
x

)
θ (b − |z|), (28)

in which β is the perturbation strength, i.e., the contrast of the
periodic modulation of the permittivity with period d , and b is
the perturbation widths.

The matrix elements of the perturbation Eq. (28) are calcu-
lated according to Eqs. (3), (4), and (5), and take the following
simple analytic form:

V gg′
nn′ = Bg

nBg′
n′ (δg-g′,g1 + δg-g′,g−1 )βbZgg′

nn′ , (29)
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a

FIG. 2. Bottom: Evolution of the RS eigenfrequencies (centers
of the colored circles) and the zeroth Bragg channel contribution
|C0|, defined by Eq. (32) (circle area), for the amplitude of the
periodic modulation β (circle color) changing between β = 0 and
β = 6. As β grows, a doubly degenerate fundamental guided mode
of the first Bragg channel (a) splits into a symmetry protected BIC
with an infinite Q factor and a QGM with a finite Q factor (b), (d),
which becomes an accidental BIC (c) at β ≈ 4.34. The inset shows a
schematic of the target photonic-crystal system. The basis system is
a dielectric slab in vacuum, having width 2a and permittivity εs = 6.
Top: Q factor of the QGM of interest.

where g±1 = ±2π/d ,

Zgg′
nn′ = (1 + (−1)n+n′

)sinc
[(

qg
n + qg′

n′
)
b
]

+((−1)n + (−1)n′
)sinc

[(
qg

n − qg′
n′
)
b
]
, (30)

sincz = sin z/z, and qg
n = √

εsω2
n − (p + g)2. Here, ω

g
n and Bg

n

are, respectively, the eigenfrequency and the normalization
coefficient of a basis RS or a cut mode with the in-plane wave
vector p + g, in a homogeneous dielectric slab in vacuum,
having permittivity εs and width 2a.

For the rest of the paper, we fix the following parameters
of the system: p = 0, εs = 6, and d = 2π/5, and vary the
perturbation strength β in Sec. III B (while keeping fixed the
perturbation width at b = a/2) and both β and b in Sec. III C.
A sketch of the system is provided in the inset of Fig. 2.

B. Evolution of modes: Symmetry-protected
and accidental BICs

The evolution of a large number of the RSs with change
of the permittivity contrast β has been already considered for
this system in Ref. [54]. In this section, we focus only on a pair
of the RSs originating from the fundamental guided modes of
the homogeneous slab, corresponding to the first-order Bragg
channels, i.e., with g = g±1. Note that as we consider the
RSs of the PC slab with the in-plane wave number p = 0,
the Bragg channels with opposite signs of g in the basis are
degenerate by symmetry. This degeneracy also manifests itself
in the orthogonality of even and odd states along the x axis.
As a consequence of this orthogonality, the matrix elements
of the perturbation between even and odd basis states vanish
by symmetry, thus allowing formation of S-BICs as discussed
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in Sec. II D. Clearly, these S-BICs exist only for zero in-
plane vector p that guarantees the mirror symmetry of the
electromagnetic field in the x direction. With any deviation
from p = 0 condition, breaking the symmetry, these S-BICs
transform into modes with finite Q factors.

Figure 2 demonstrates the evolution of the fundamental
pair of RSs for p = 0 as the periodic modulation contrast β

increases. Being doubly degenerate by symmetry at β = 0 (no
periodic modulation), the fundamental guided mode splits for
a nonzero β into an S-BIC and a quasiguided mode (QGM),
the latter having a rather high but still finite Q factor. These
two modes are further separated as β increases. However,
as clear from Fig. 2, for a certain value of β (at around
β ≈ 4.34), the QGM transforms into an A-BIC with an in-
finite Q factor (corresponding to zero imaginary part of its
eigenfrequency). The Q factor is given by

Q = 1

2

∣∣∣∣Re ω

Im ω

∣∣∣∣ (31)

and is shown for the QGM of interest on the top panel of
Fig. 2. At S-BIC (β = 0) and A-BIC (β ≈ 4.34) the Q factor
increases reaching the values of 106–107. Note that these
numerical values of the Q factor are limited by the RSE error
for the RS frequencies, in the present calculation lying in the
range 10−6–10−7.

The symmetry-protected and accidental BICs, originating
from the same fundamental guided mode of the homogeneous
slab, are compared in Fig. 3, where the contribution of a large
number of basis modes to both states is shown by red circles
centered at the basis mode frequencies and having the area of
the circle proportional to the modulus of the square root of
the expansion coefficient,

√
|cg

n|. Among several thousand of
modes used in the basis, only a limited number of basis states
give an appreciable contribution to the perturbed RSs, with a
clearly dominating role of the fundamental guided mode, see
the largest circle close to the blue star, which in turn shows
the perturbed mode position on the real axis.

A remarkable difference between the two BICs is a van-
ishing (nonvanishing) contribution to S-BIC (A-BIC) of the
individual basis modes of the zeroth Bragg channel. These
basis modes all have the same imaginary part and equidistant
separation in the complex frequency plane, see Fig. 3. In
accordance with a discussion in Sec. II D above, all c0

n = 0
for the S-BIC, while c0

n �= 0 for the A-BIC, for all modes n
of the same (even) parity along z axis. However, the vector
with components c0

n is orthogonal to the vector E0
n (a) for the

A-BIC, as also discussed in Sec. II D. The absolute value of
the dot product of these two vectors,

C0 =
∑

n

c0
nE0

n (a), (32)

is shown by the circle area in Fig. 2, while the center
of the circle gives the position of the perturbed RS fre-
quency. Clearly, C0 is vanishing at the A-BIC and is strictly
zero for the S-BIC at all values of the periodic modulation
amplitude β.

The transformation of the QGM, passing through the A-
BIC as β increases, is accompanied by a morphological
change of the wave function, which is demonstrated in Fig. 4.

-20 -15 -10 -5 0 5 10 15 20
-0.3

-0.2

-0.1

0.0

(a)
10
-8

Im
(�
a)

Re(�a)

S-BIC1 10
-4

-20 -15 -10 -5 0 5 10 15 20
-0.3

-0.2

-0.1

0.0
A-BIC

Im
(�
a)

Re(�a)

(b)

FIG. 3. Basis mode contributions (red circles, centered at the ba-
sis mode frequencies) for (a) symmetry-protected and (b) accidental
BIC at β = 4.34, both originating from the same doubly degenerate
fundamental guided mode of the homogeneous slab with m = ±1.
The circle area is proportional to

√
|cg

n| of the basis mode amplitude
cg

n, and a key showing the relationship between the circle area and
|cg

n|2 is given by back circles and the numbers next to them. Blue star
gives the position of the BIC eigenfrequency and black dots of the
basis RSs.

It shows both the amplitude (intensity) and the phase (color)
of the wave function of the QGM at four different values of
β, starting from β = 0 in Fig. 4(a) at which the RS coincides
with the fundamental guided mode of the homogeneous basis
slab. Figures 4(b)–4(d) show the wave function of the mode
before, at, and after the A-BIC. These four positions are also
labeled (with the same letters a–d) in the complex-frequency
plot, Fig. 2. As the QGM originates from the fundamental
guided mode of the homogeneous slab, corresponding to the
first Bragg channel, the amplitude of the electric field of this
fundamental QGM before it transforms into the A-BIC has
only one maximum in the z direction and two maxima per
period d in the x direction, the same as for the basis mode.
After the A-BIC, however, the field amplitude shows three
maxima in the z direction representing a growing contribution
from a higher-order basis mode, specifically the third guided
mode in the first Bragg channel. Note that the second guided
mode does not contribute since it is of the opposite parity to
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FIG. 4. The amplitude (brightness) and phase (color) of the elec-
tric field of the fundamental optical mode in Fig. 2 at the positions
labeled a–d, corresponding to the following mode type and permittiv-
ity contrast β: (a) fundamental basis guided mode of the first Bragg
channel at β = 0; (b) QGM before the BIC, at β = 3; (c) A-BIC at
β ≈ 4.34; (d) QGM after the BIC, at β = 5. The thick (thin) dashed
lines indicate the edges of the slab at z = ±a (periodic perturbation
at z = ±b).

the fundamental mode from which the QGM originates. In
the x direction, the morphology of the QGM does not change
much: There are always two maxima per period indicating that
there is no major change in the contribution from higher-order
Bragg channels within this β range.

It can also be seen that the field quickly decays outside of
the system, in a similar way for both the basis mode and the
A-BIC, compare Figs. 4(a) and 4(c). In fact, since both modes
are bound, there are no traveling or exponentially growing
solutions outside the system; instead, there are only evanes-
cent waves, unlike the other two cases, which are shown in
Figs. 4(b) and 4(d). For them, a nonvanishing growing field,
though very small, is seen in the region outside the system.
One can see from the color of the plots that the fields in
Figs. 4(b) and 4(d) are almost real, which is consistent with
the fact that the Q factor of the QGM shown is very high,
see Fig. 2. Interestingly, the phase of the wave function is
either close to 0, or to π , with the amplitude of the wave
function almost vanishing on lines separating these two phase
regions. The wave functions of the basis guided mode and the
A-BIC shown, respectively, in Figs. 4(a) and 4(c) are purely
real, as expected for any bound states, having also purely real
eigenfrequencies. These real wave functions just change their
sign along the lines separating the above mentioned 0- and
π -phase areas.

For the same values of β as in Fig. 4, we show in Fig. 5
also the evolution of the S-BIC, which originates from the
same doubly degenerate pair of guided modes as the QGM
mode/A-BIC in Fig. 4. Clearly, the modes shown in Figs. 4
and 5 are, respectively, of even and odd parity in the x direc-
tion. The fact that the S-BIC does not gain any leakage for
any value of β is consistent with the dark areas outside the
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FIG. 5. As Fig. 4 but for the S-BIC shown in Fig. 2. The values
of the permittivity contrast β and all other parameters are the same
as in Fig. 4.

slab in all four panels of Fig. 5. As β increases, the S-BIC
does not change much within the slab either. In fact, there is
only a slight morphological change in the x direction, but no
change in the z direction is observed. This suggests that this
S-BIC is not communicating much with higher-order modes.
The overall lack of evolution of the S-BIC is also consistent
with the fact that this mode is not moving much in the complex
frequency plane as compared to its even counterpart, as it is
clear from Fig. 2. The S-BIC is also quite isolated in frequency
from other basis states, which effectively reduces their impact.
In fact, as we know, the S-BIC does not communicate at
all with the nearby g = 0 modes due to symmetry, compare
Figs. 3(a) and 3(b).

We now want to see how the summation of complex basis
electric fields shown in Eq. (21) creates an entirely real field at
the A-BIC. To do this, we plot in Fig. 6 the imaginary part of
the weighted basis fields cg

nEg
n against β, the sum of which will

clearly be zero at the A-BIC. In order to produce a readable
plot we can limit ourselves to just the top few contributors. In
this case, only the top six modes with the highest contributions
to the A-BIC, well seen in Fig. 3(b), are used.

It can be seen in Fig. 6 that the imaginary part of the
weighted basis fields from the guided modes all come to zero
at the A-BIC. This is expected behavior since the guided-
mode fields and the A-BIC field are purely real, so naturally
the corresponding eigenvector components cg

n are also real.
There are, however, leaky modes from the g = 0 Bragg chan-
nel, which are all complex (except the central mode) and so
do not necessarily produce real fields at the A-BIC, thus these
fields are required to cancel in some way. Figure 6 shows that
the weighted basis fields do not have a simple cancellation at
the A-BIC. Instead, there are a series of partial cancellations
leading to a complete cancellation overall showing that indeed
the A-BICs are a result of accidental destructive interference
of leaky modes.
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FIG. 6. Contributions of basis modes to the imaginary part of the
normalized electric field of the fundamental QGM as functions of
the permittivity contrast β. Only the top six contributions are shown,
corresponding to the basis mode frequencies ω0

0 = −0.177i, ω0
2 =

1.283 − 0.177i, ω0
4 = 2.565 − 0.177i, ω1

2 = 2.108, ω1
4 = 2.605, and

ω2
2 = 4.123(a = 1). The total electric field of the QGM is given by a

black thick line. The vertical dashed line shows the value of β = 4.34
where the QGM becomes the accidental BIC.

C. Accidental BIC: Varying other parameters

We now extend the parameter space while looking for
A-BICs to include both the perturbation strength β and the
perturbation width b. By varying both parameters, we need
to run the RSE thousands of times, where both the high ef-
ficiency and the high accuracy of the RSE become crucial.
Focusing on the same fundamental QGM, we plot in Fig. 7
its Q factor, given by Eq. (31), which is color coded on the
β-b plane. Both parameters have natural limits, b < a and
β < εs, which were used in the plot. The latter condition
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FIG. 7. The quality factor Q of the fundamental QGM of the PC
slab of width 2 as a function of the permittivity contrast β and the
half-width of the perturbation layer, b.

is a requirement that the system stays dielectric, having a
positive permittivity, while the former is a fundamental lim-
itation of the RSE that the perturbation must stay within
the volume of the basis system. Note, however, that the
present version of RSE applied to planar PC structures suf-
fers from the lack of convergence as b → a [54], so that
Fig. 7 shows a plot up to b = 0.75a only (but the data is
reliably calculated up to b = 0.95a). The Q factor of the
studied mode reaches a numerical value of Q = 106 as it is
clear from Fig. 7, which demonstrates a high accuracy of
the RSE calculation of the mode, with the relative error of
about 10−6.

We see from Fig. 7 that an A-BIC is formed at any value
of β, provided that the other parameter is properly tuned,
presenting a line in the two-dimensional parameter space.
However, no A-BIC is formed for b > 0.7a, which can be
understood as the system does not have thick enough sub-
strate layer (not affected by the periodic modulation) where
the destructive interference of leaky modes necessary for
A-BIC formation could occur. Clearly, the properties of the
A-BIC are also affected by both parameters as can be seen
from the strongly inhomogeneous profile of the Q factor. In
fact the range of high Q values becomes wider as β de-
creases, eventually approaching the limit of the infinite Q
for the original guided mode of the homogeneous dielec-
tric slab at β = 0, where b is no longer a parameter of the
system.

IV. CONCLUSION

We have applied the resonant-state expansion (RSE) to
planar photonic-crystal structures, in order to find in these
systems symmetry protected and accidental bound states in
the continuum (BICs) and to study their properties. We have
shown that the eigenvector analysis naturally following from
the RSE formalism is a useful tool for identifying BICs, and
have provided a rigorous mathematical criterion for differ-
entiating between symmetry-protected and accidental BICs.
We have demonstrated how the electromagnetic field of a
resonant state of a photonic-crystal slab can be broken down
into homogeneous-slab basis field components and how those
contributions change as the periodic perturbation is modi-
fied. In particular, complex-valued basis electric fields sum
together to create an entirely real field of an accidental BIC,
which, true to its name, is an accidental cancellation of an
infinite number of partial leaky waves with no one field fully
compensating another. We have furthermore demonstrated
that the RSE is an efficient tool for finding the BICs in
planar photonic crystal systems due to the unprecedented
speed at which it can calculate the modes, thus allowing a
multidimensional parameter space to be explored with a high
resolution.
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