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Remarks on thermoelastic effects at low temperatures and quantum limits
in displacement measurements
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The noise level of thermoelastic fluctuations of a mirror at low temperature was derived and introduced
by M. Cerdonio et al. [Phys. Rev. D 63, 082003 (2001)]. The importance of the paper has become
remarkable according to the increasing attention to the low-temperature high-precision measurement
device. Here we would like to introduce the analytical form of their equation of thermoelastic noise in the
integral form in order to reduce the computational labor.

DOI: 10.1103/PhysRevD.82.127101

L. INTRODUCTION

The first-generation gravitational-wave detectors such
as LIGO, Virgo, and GEO have reached their designed
goal sensitivity and the second-generation detectors
such as Advanced LIGO, Advanced Virgo, GEO HF, and
LCGT are in the construction phase. A third-generation
detector ET is also planned and the design study is
underway. Among those, LCGT and ET will be operated
in the cryogenic temperature, accommodating mirrors
and suspension fibers made of sapphire (LCGT) or silicon
(ET) [1,2].

Those materials with high thermal conductivity are
suitable for the low-temperature operation, but at the
same time thermoelastic noise is going to be an issue.
Thermoelastic noise, first introduced by Braginsky et al.
[3], is caused by temperature fluctuation that is converted
to the volume fluctuation via thermal expansion. Thus, at
least at room temperature the thermoelastic noise of the
potential materials for cryogenic operation is high. Silicon
shows two special temperatures, 18 and 125 K, where the
coefficient of thermal expansion vanishes and therefore
the thermoelastic noise is zero as well [4].

Let us first review the equations for thermoelastic noise
introduced by Cerdonio et al. [5]. We will then introduce
our equation that allows a much quicker computation.

II. THERMOELASTIC NOISE

The power spectrum of thermoelastic noise at room
temperature is given by Braginsky ef al. [3] and is also
introduced in Ref. [5] as the noise level in the adiabatic
limit:
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Here kg is the Boltzmann’s constant, 7 is temperature, v, is
Poisson’s ratio, « is thermal expansion, C; is specific heat
per volume, wy is the beam radius on the mirror, and w is
the angular frequency of the measurement.

The analytical expression of thermoelastic noise that fits
well at low temperature is introduced by Yamamoto for the
study of LCGT [6]:
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The relaxation time is short at low temperature and the
noise level does not depend on the beam radius.

Equation (1) is good for room temperature and/or at
high frequencies while Eq. (2) is good for low temperature
and/or at low frequencies. Cerdonio et al. has derived
an equation that is good for arbitrary temperature at any
frequencies [Egs. (20) and (21) in Ref. [5]]:
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with Q.= w/w, as a dimensionless frequency.
Equation (21) in Ref. [5] has /2/7 instead of 42/ in
front of the integral, which is a typo and has been corrected
here. Comparing Egs. (1)—(3), we can see that J({)) takes
the following forms in the high-temperature and low-
temperature limits:

J(Qc) - JH(QC) = I/Qg [1 < Qc]’ (5)

J(Qc) - JL(QL) = 1/V8QC [Qc < 1] (6)

In fact, Eq. (2) was introduced referring to the exact
solution by Cerdonio et al. by resolving the integral part
of Eq. (4) and fitting the coefficients.

ITII. ANALYTICAL FORM OF
THERMOELASTIC-NOISE EQUATION

While Eq. (3) lets us calculate thermoelastic noise for
arbitrary temperatures, it takes time to actually compute
J(Q.) numerically. One may sometimes want to know
the temperature dependence of thermoelastic noise. Since
the parameters «,, Cy, and « have strong dependence on
the temperature, (). varies for different temperature. This
will additionally increase the computational time needed
to evaluate the integral. Instead it would be useful to have
the analytical form of Eq. (3) for such cases.

What we need is just some sequence of algebra to
resolve J({).) into the analytical form without the integral.
Using the residue theorem, the integral over v can be
resolved. The function J({),) reads
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This can be finally resolved into the following form with
the Gauss error function:
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FIG. 1. Exact values of the function J({),) and its approxi-

mated values at low temperature and high temperature.
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One should just plug this into Eq. (3) to get the power
spectrum of thermoelastic noise. Figure 1 shows that J({),)
in the exact form (8) coincides with the approximated
ones in the low-temperature extreme and in the high-
temperature extreme.

The importance of the work done by Cerdonio ef al. is
remarkable not only for the gravitational-wave detectors
but also for other experiments in which sensitivity can be
limited by thermal noise. The analytical form given in this
paper will be useful for a quick evaluation of thermoelastic
noise for various experiments.
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