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A STRANGE VERTEX CONDITION COMING FROM NOWHERE\ast 

FRANK RÖSLER\dagger 

Abstract. We prove norm-resolvent and spectral convergence in L2 of solutions to the Neumann
Poisson problem  - ∆uε = f on a domain Ωε perforated by Dirichlet holes and shrinking to a 1-
dimensional interval. The limit u satisfies an equation of the type  - u\prime \prime + µu = f on the interval
(0, 1), where µ is a positive constant. As an application we study the convergence of solutions in
perforated graph-like domains. We show that if the scaling between the edge neighborhood and the
vertex neighborhood is chosen correctly, the constant µ will appear in the vertex condition of the
limit problem. In particular, this implies that the spectrum of the resulting quantum graph is altered
in a controlled way by the perforation.

Key words. homogenization, spectral theory, norm-resolvent convergence, thin structures,
asymptotic analysis

AMS subject classifications. 35B27, 35P05, 35J05, 47A10

DOI. 10.1137/20M1322194

1. Introduction. Let N \geq 3, and consider an open subset Ω\varepsilon of R
N of the

form Ω\varepsilon = \varepsilon Ω0 \times (0, 1) (see section 2 for precise definitions). Let us introduce a
perforation of this domain by removing periodically distributed spherical holes of
distance \delta \varepsilon \in (0, \varepsilon ) (cf. Figure 2.1). On this domain we consider the Poisson equation
with Dirichlet boundary conditions on the holes of radius r\varepsilon \ll \delta \varepsilon . We ask the
question whether the solutions u\varepsilon to this equation converge in a meaningful sense to a
function u on the interval (0, 1) and whether u is the solution of a reasonable “limit”
differential equation.

Homogenization problems of a similar type have been studied extensively for a
long time [CM97, RT75, MK64] and recently gained more attention (cf. [Zhi00, Pas06]
for perforated domains of fixed size with Neumann boundary conditions, [MS10] for
perforated domains with periodic boundary conditions, and [BCD16] for domains
perforated along a curve. Advances towards operator norm and spectral convergence
in perforated domains have been made in [Pas06, BCD16, CDR17, KP17]). A result
by Cioranescu and Murat gives a positive answer to the question of convergence of
solutions in the case where the size of Ω\varepsilon remains constant but the holes shrink and
concentrate. In fact, they showed that the solutions of  - ∆u\varepsilon = f converge strongly
in L2(Ω) to the solution u \in H1

0 (Ω) of ( - ∆ + \̄mu )u = f , where \̄mu > 0 is a constant
related to the harmonic capacity of the unit ball. The constant \mu (which was dubbed
a “strange term coming from nowhere” in [CM97]) will appear frequently in later
sections of this article, and we will henceforth refer to \mu as the strange term.

The general idea of coupling thin geometry with a highly oscillating boundary
of the domain has also gained interest during the last decade. Indeed, elliptic prob-
lems on a thin domain whose boundary is given as the graph of a rapidly oscillating
function G\varepsilon have been studied in [AP10, AV14, AV16]. The more specific situation
of a perforated thin domain was the object of study in [MP10, MP12] (see also the
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A STRANGE VERTEX CONDITION COMING FROM NOWHERE 3099

Ωp
\varepsilon 

\varepsilon Ω0

∼ \varepsilon 

2\delta \varepsilon Brε(i)

Fig. 2.1. A sketch of the thin perforated domain in 3d.

references therein). The effects of perforations in thin domains on spectral gaps have
been studied in [Naz10].

The present article differs from these works in several ways. First, the geometric
situation is different in the sense that the radius of the holes does not have the same
scaling as the distance between the holes or the thickness of the domain. Second,
the boundary conditions we consider on the surface of the holes are Dirichlet (rather
than Neumann), which changes the analysis of the problem completely and ultimately
leads to the appearance of the strange term \mu in the limiting equation. Moreover,
the emphasis of the present work differs from those mentioned in the last two para-
graphs. We take an operator theoretic point of view and prove that the operators
involved converge in norm-resolvent sense, i.e., the resolvents of the operator family
indexed by \varepsilon converge in the uniform operator topology. This notion of convergence is
stronger than that of strong convergence, which is more commonly studied in classical
homogenization theory. In particular, norm-resolvent convergence implies a number
of physically interesting consequences like local convergence of spectra (cf. section 7)
or convergence of the associated semigroups. Finally, our results are applied to so-
called graph-like domains in section 8, where the additional challenge of determining
vertex conditions for the limiting equation is present. This situation is similar to that
in [Pos06]; however, there the author did not consider the effect of perforations.

This article is organized as follows. In section 2, we give a precise description
of the geometric situation at hand and the resulting boundary value problem in the
perforated thin domain. Section 3 contains the statements of our main theorems
and relevant corollaries. Sections 4, 5, and 6 are devoted to the proof of our main
theorem. In section 7 we prove local convergence of spectra as a corollary of norm-
resolvent convergence. Finally, in section 8 we apply our results to perforated graph-
like domains and obtain vertex conditions for the limiting problem on the underlying
metric graph.

2. Geometric setting. In this article we consider the following homogenization
problem. Let N \geq 3 and Ω0 \subset R

N - 1 be a bounded open set with \partial Ω0 of class C2, and
let Ω := Ω0 \times (0, 1). For \varepsilon > 0, let \delta \varepsilon < \varepsilon , and define the set T̃\varepsilon :=

\bigcup 
i\in 2\delta εZN Brε(i),

where r\varepsilon = \delta 
N/(N - 2)

\varepsilon . We consider the domain Ω\varepsilon := \varepsilon Ω0 \times (0, 1), perforated by the
Brε(i) and shrinking towards a thin rod as \varepsilon \rightarrow 0.

D
o
w

n
lo

ad
ed

 0
7
/0

5
/2

1
 t

o
 1

3
1
.2

5
1
.2

5
4
.1

9
7
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3100 FRANK RÖSLER

To this end, define the subset of lattice points which are sufficiently far from the
boundary L\varepsilon := \{ i \in 2\delta \varepsilon Z

N : dist(i, \partial (Ω\varepsilon )) > \delta \varepsilon \} and the corresponding “holes”
T\varepsilon :=

\bigcup 
i\in Lε

Brε(i). Finally, define the perforated domain

Ωp
\varepsilon := Ω\varepsilon \setminus T\varepsilon .

In order to compare functions defined on different domains Ω\varepsilon and (0, 1) we define
the operator family

U\varepsilon : L
1((0, 1)) \rightarrow L1(Ω\varepsilon ),

U\varepsilon \phi = | \varepsilon Ω0| 
 - 1

2\phi \ast ,

where \phi \ast denotes the extension of \phi to a constant on every slice \{ t\} \times \varepsilon Ω0. Restrictions

of U\varepsilon to subspaces of L1(Ω\varepsilon ) will also be denoted U\varepsilon . Note that the scaling | \varepsilon Ω0| 
 - 1

2

in the definition of U\varepsilon was chosen such that for \phi \in L2((0, 1)) the norm \| U\varepsilon \phi \| L2(Ωε)

is of order 1 as \varepsilon \rightarrow 0. On the domain Ωp
\varepsilon we consider the following problem:

\left\{ 
  
  

( - ∆+ z)u\varepsilon = f\varepsilon in Ωp
\varepsilon ,

u\varepsilon = 0 on \partial T\varepsilon ,

\partial \nu u\varepsilon = 0 on \partial Ω\varepsilon ,

(2.1)

where z > 0 and f\varepsilon \in L2(Ω\varepsilon ) is a family such that \| f\varepsilon  - U\varepsilon f\| L2(Ωε) \rightarrow 0 for some
f \in L2((0, 1)). This problem can easily be seen to possess a unique solution for each
fixed \varepsilon > 0 by virtue of the Lax–Milgram theorem.

Moreover, let \scrH \varepsilon := H1(Ω\varepsilon ) and

\scrH 0
\varepsilon :=

\bigl\{ 
\phi | Ωε

: \phi \in C\infty 
0

\bigl( 
RN \setminus T\varepsilon 

\bigr) \bigr\} 
,

where the closure is taken in the H1(Ω\varepsilon )-norm (this is the space of functions vanishing
on the holes). For a function u \in \scrH 0

\varepsilon we will not distinguish in notation between u
and its extension by zero to Ω\varepsilon (which belongs to \scrH \varepsilon ).

Finally, the following notation will be used frequently. For x \in Ω\varepsilon we write
x = (x̄, xN ), where x̄ \in \varepsilon Ω0 and xN \in (0, 1). Accordingly, we denote by \̄nabla the
gradient with respect to x̄ and by \partial N the partial derivative with respect to xN . The
transversally constant extension of a function \phi from (0, 1) to Ω\varepsilon will be denoted
\phi \ast (x̄, xN ) := \phi (xN ). A variable in (0, 1) will often be denoted by t.

3. Main results. In the above setting, we are going to prove the following
results.

Theorem 3.1. The solutions u\varepsilon of (2.1) converge to a function u \in H1((0, 1))
in the sense that

\| u\varepsilon  - U\varepsilon u\| L2(Ωε)
\rightarrow 0

as \varepsilon \rightarrow 0 and u solves the ordinary differential equation

\Biggl\{ \Bigl( 
 - d2

dt2 + z + \mu 
\Bigr) 
u = f in (0, 1),

u\prime = 0 on \partial (0, 1),
(3.1)

where \mu = 2 - NSN (N  - 2), SN being the surface area of the unit sphere in R
N .

The above theorem can be understood as strong operator convergence  - ∆Ωp
ε

s
 - \rightarrow 

 - d2

dt2 + \mu . The next result shows that even a stronger type of convergence holds.
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A STRANGE VERTEX CONDITION COMING FROM NOWHERE 3101

Theorem 3.2. The above convergence even holds in the norm-resolvent sense.

The meaning of “convergence in the norm-resolvent sense” will be made precise
in section 6 (see Theorem 6.3). An important corollary of norm-resolvent convergence
is convergence of spectra.

Corollary 3.3 (spectral convergence). Choose z = 1, and let \lambda \varepsilon 
k and \lambda k denote

the kth eigenvalues of problem (2.1) and (3.1), respectively. There exist a constant
C > 0 and a function a(\varepsilon ) with a(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0 such that

| (\lambda \varepsilon 
k)

 - 1  - \lambda  - 1
k | \leq Ca(\varepsilon ) \forall k \in N,

where C is independent of \varepsilon and k.

This corollary will be proved in section 7. The appearance of the additive term
\mu u in (3.1) has been first observed in the classical situation of a perforated domain
Ω of fixed size by [MK64, CM97] and has been dubbed a “strange term coming from
nowhere.” We will in the following refer to \mu as the strange term.

Graph-like domains. The above results will be applied to graph-like domains in
section 8. In particular, we will show that for a graph-like domain in which the volumes
of the fattened edges and the fattened vertices have the same scaling as \varepsilon \rightarrow 0, the
limit will be a quantum graph with vertex conditions of Robin type with parameter
\mu . For details, see section 8.4.

4. General convergence results on Ωε. In the following sections we will prove
Theorem 3.1. We start with some general lemmas about convergence in shrinking
domains.

Definition 4.1. A sequence \phi \varepsilon \in \scrH \varepsilon is said to strongly converge to \phi \in H1((0, 1))

(we write \phi \varepsilon 
H1

 -  - \rightarrow \phi ) if

\| \phi \varepsilon  - U\varepsilon \phi \| 
2
L2(Ωε)

+ \varepsilon 2\| \̄nabla \phi \varepsilon  - \̄nabla U\varepsilon \phi \| 
2
L2(Ωε)

+ \| \partial N\phi \varepsilon  - \partial NU\varepsilon \phi \| 
2
L2(Ωε)

\rightarrow 0

as \varepsilon \rightarrow 0. Strong convergence in L2 is defined analogously, for which we will write

\phi \varepsilon 
L2

 -  - \rightarrow \phi .

Definition 4.2. A sequence u\varepsilon \in \scrH \varepsilon is said to be weakly convergent in H1 to

u \in H1((0, 1)) (we write u\varepsilon 
H1

 -  - \rightharpoonup u) if for all \phi \varepsilon \in \scrH \varepsilon with \phi \varepsilon 
H1

 -  - \rightarrow \phi one has

\langle u\varepsilon , \phi \varepsilon \rangle L2(Ωε) + \varepsilon 2\langle \̄nabla u\varepsilon , \̄nabla \phi \varepsilon \rangle L2(Ωε) + \langle \partial Nu\varepsilon , \partial N\phi \varepsilon \rangle L2(Ωε) \rightarrow \langle u, \phi \rangle H1((0,1)).

Weak convergence in L2 is defined analogously, for which we will write \phi \varepsilon 
L2

 -  - \rightharpoonup \phi .

It can easily be seen that in the above sense strong convergence implies weak
convergence.

Remark 4.3. (i) We remark that the concepts of convergence introduced in Def-
initions 4.1 and 4.2 are not new. Indeed, convergence of sequences in varying
Banach spaces has been studied for several decades, and Definitions 4.1 and
4.2 are special cases of what is known as discrete convegrence (cf. [Stu70]).
Properties of discretely converging sequences of vectors have been studied in
the classical works [Stu70, Stu72, Vai81]. In fact, Proposition 4.4(i) below is a
consequence of [Vai81, Prop. 1.5]. We nevertheless chose to include these defi-
nitions and proofs in our article in order to keep the presentation as clear and
self-contained as possible.
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3102 FRANK RÖSLER

(ii) The convergence of operators defined on varying spaces has also been studied in
[Stu70, Stu72, Vai81] to a certain extent. Classical results include various condi-
tions for the strong discrete convergence of bounded operators (and strengthened
versions thereof). Let us stress again that in our situation we are dealing with
unbounded operators for which we are studying the stronger notion of opera-
tor norm convergence. For more recent results on the convergence (especially
spectral convergence) of unbounded operators on varying Hilbert spaces, the
interested reader may consult [Pos06, MNP13] and [Boe17, Boe18].

The next proposition shows that compact embeddings also generalize to shrinking
domains.

Proposition 4.4. Let u\varepsilon \in \scrH \varepsilon be a sequence, and let there exist a C > 0 such
that

\| u\varepsilon \| 
2
L2(Ωε)

+ \varepsilon 2\| \̄nabla u\varepsilon \| 
2
L2(Ωε)

+ \| \partial Nu\varepsilon \| 
2
L2(Ωε)

\leq C(4.1)

for all \varepsilon > 0. Then

(i) there exists a subsequence (still denoted by u\varepsilon ) such that u\varepsilon 
H1

 -  - \rightharpoonup u for some
u \in H1((0, 1));

(ii) if in addition \varepsilon 2\| \̄nabla u\varepsilon \| 
2
L2(Ωε)

\rightarrow 0, then one has \| u\varepsilon  - U\varepsilon u\| L2(Ωε)
\rightarrow 0.

Proof. We use scaling in order to keep the domain fixed. Let ũ\varepsilon : Ω \rightarrow R, ũ\varepsilon (x) :=
u\varepsilon (\varepsilon x̄, xN ). By the usual dilation formula and chain rule we find

\| u\varepsilon \| 
2
L2(Ωε)

= \varepsilon N - 1\| ũ\varepsilon \| 
2
L2(Ω),

\| \partial Nu\varepsilon \| 
2
L2(Ωε)

= \varepsilon N - 1\| \partial N ũ\varepsilon \| 
2
L2(Ω),

\| \̄nabla u\varepsilon \| 
2
L2(Ωε)

= \varepsilon N - 3\| \̄nabla ũ\varepsilon \| 
2
L2(Ω).

Our assumption (4.1) immediately yields \varepsilon N - 1\| ũ\varepsilon \| 
2
H1(Ω) \leq C. Thus, there exists a

subsequence \varepsilon 
N - 1

2 ũ\varepsilon \rightharpoonup ũ in H1(Ω) (in the usual sense).

Now let \phi \varepsilon \in \scrH \varepsilon with \phi \varepsilon 
H1

 -  - \rightarrow \phi \in H1((0, 1)). By scaling arguments similar to
the above, one immediately obtains that denoting \phi \varepsilon (x) := \phi \varepsilon (\varepsilon x̄, xN ) and \phi \ast (x) :=
\phi (xN ) one has

\varepsilon 
N - 1

2 \phi \varepsilon \rightarrow \phi \ast strongly in H1(Ω).

Consequently,

\varepsilon N - 1\langle ũ\varepsilon , \phi \varepsilon \rangle H1(Ω) \rightarrow \langle ũ, \phi \ast \rangle H1(Ω).

Undoing the scaling this can be written as

\langle u\varepsilon , \phi \varepsilon \rangle L2(Ωε)+\varepsilon 2\langle \̄nabla u\varepsilon , \̄nabla \phi \varepsilon \rangle L2(Ωε)+\langle \partial Nu\varepsilon , \partial N\phi \varepsilon \rangle L2(Ωε) \rightarrow \langle ũ, \phi \ast \rangle H1(Ω)

(4.2)

=

\biggl\langle \int 

Ω

ũ(x, \cdot ) dx , \phi 

\biggr\rangle 

H1((0,1))

,

where the last equality holds because \phi \ast is independent of x. Hence, we have shown

that u\varepsilon 
H1

 -  - \rightharpoonup u with u(t) =
\int 
Ω
ũ(x, t) dx, which concludes the proof of (i).
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A STRANGE VERTEX CONDITION COMING FROM NOWHERE 3103

To see (ii), we first use the compact embedding H1(Ω) \lhook \rightarrow L2(Ω) to see that\bigm\| \bigm\| \varepsilon N - 1
2 ũ\varepsilon  - ũ

\bigm\| \bigm\| 
L2(Ω)

\rightarrow 0, for a subsequence, and note that \| \̄nabla ũ\varepsilon \| L2(Ω) \rightarrow 0 by as-

sumption. It follows that \̄nabla ũ = 0, that is, ũ(x) = c \cdot u(xN ). A simple calculation
shows c = | Ω0| 

 - 1. Reversing the scaling, this proves (ii).

In the same way as above one can prove the existence of weakly convergent sub-
sequences in L2(Ω\varepsilon ).

Proposition 4.5. Let f\varepsilon \in L2(Ω\varepsilon ) and \| f\varepsilon \| L2(Ωε) uniformly bounded. Then

there exists a subsequence f\varepsilon \prime with f\varepsilon \prime 
L2

 -  - \rightharpoonup f for some f \in L2((0, 1)) as \varepsilon \prime \rightarrow 0.

Proof. L2-boundedness in the scaled domain Ω yields weak convergence of \varepsilon \prime 
N - 1

2 f\varepsilon \prime 

in L2(Ω\varepsilon ). Scaling back as in the proof of Proposition 4.4 yields the assertion.

5. Proof of Theorem 3.1.

5.1. Auxiliary results. In the following, our discussion will be along the lines
of the classical proof from [CM97] with the necessary modifications. We define an
auxiliary function w\varepsilon as follows. Let P \varepsilon 

i denote a cube of edge length 2\delta \varepsilon centered at
i \in L\varepsilon , and let w\varepsilon be the solution to

\left\{ 
    
    

w\varepsilon = 0 in Brε(i),

∆w\varepsilon = 0 in B\delta ε(i) \setminus Brε(i),

w\varepsilon = 1 in P \varepsilon 
i \setminus B\delta ε(i),

w\varepsilon continuous.

(5.1)

Requiring that w\varepsilon \equiv 1 outside the union of all P \varepsilon 
i we obtain a function w\varepsilon \in 

W 1,\infty (RN ) for every \varepsilon > 0. In fact, exploiting radial symmetry, one can derive
the explicit expression

w\varepsilon (r) =
r2 - N  - r2 - N

\varepsilon 

\delta 2 - N
\varepsilon  - r2 - N

\varepsilon 

in polar coordinates (cf. [CM97, eq. (2.2)]). Note that in particular w\varepsilon \equiv 1 in the

small cubes C\varepsilon 
j of edge length 2(

\surd 
N - 1)\surd 
N

\delta \varepsilon centered at the corners of the P \varepsilon 
i (cf. [CM97,

Fig. 2]).

Lemma 5.1. Denote C\varepsilon :=
\bigcup 

j\in Lε
C\varepsilon 

j . The characteristic function \chi Cε
converges

to a constant \alpha weakly \star in L\infty in the sense that for all \varphi \in L1((0, 1)) and \varphi \varepsilon \in L1(Ω\varepsilon )
such that | \varepsilon Ω0| 

 - 1\| \varphi \varepsilon  - \varphi \ast \| L1(Ωε) \rightarrow 0 as \varepsilon \rightarrow 0, one has

| \varepsilon Ω0| 
 - 1\langle \chi Cε

, \varphi \varepsilon \rangle L\infty ,L1 \rightarrow \alpha 

\int 1

0

\varphi (x) dx

(recall the convention \varphi \ast (x, xN ) = \varphi (xN )).

Proof. We use the shorthand \chi \varepsilon := \chi Cε
. We first prove the statement for smooth

\varphi . The general statement will then follow by a density argument. To this end, let
\varphi \in C\infty ((0, 1)), and assume | \varepsilon Ω0| 

 - 1\| \varphi \varepsilon  - \varphi \ast \| L1(Ωε) \rightarrow 0. Then

| \varepsilon Ω0| 
 - 1

\int 

Ωε

\chi \varepsilon \varphi \varepsilon dx = | \varepsilon Ω0| 
 - 1

\int 

Ωε

\chi \varepsilon \varphi 
\ast dx+ | \varepsilon Ω0| 

 - 1

\int 

Ωε

\chi \varepsilon (\varphi \varepsilon  - \varphi \ast ) dx

=: | \varepsilon Ω0| 
 - 1

\int 

Ωε

\chi \varepsilon \varphi 
\ast dx+ I\varepsilon .
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3104 FRANK RÖSLER

We have

| I\varepsilon | \leq \| \chi \varepsilon \| \infty \cdot | \varepsilon Ω0| 
 - 1\| \varphi \varepsilon  - \varphi \ast \| L1(Ωε)

\rightarrow 0,

by assumption on \varphi \varepsilon . Denote by x\varepsilon 
j the centers of the cubes C\varepsilon 

j , and consider the
remaining term

| \varepsilon Ω0| 
 - 1

\int 

Ωε

\chi \varepsilon \varphi 
\ast dx = | \varepsilon Ω0| 

 - 1
\sum 

j

\int 

Cε
j

\varphi \ast (x\varepsilon 
j) dx+ | \varepsilon Ω0| 

 - 1
\sum 

j

\int 

Cε
j

\bigl( 
\varphi \ast  - \varphi \ast \bigl( x\varepsilon 

j

\bigr) \bigr) 
dx

=: | \varepsilon Ω0| 
 - 1

\sum 

j

| C\varepsilon 
j | \varphi 

\ast \bigl( x\varepsilon 
j

\bigr) 
+

\sum 

j

I\varepsilon j .

The total volume of C\varepsilon is asymptotically

| C\varepsilon | =
\sum 

j

C\varepsilon 
j ∼ | Ω0| 

1
\delta ε

\Bigl( 
\varepsilon 
\delta ε

\Bigr) N - 1

\underbrace{}  \underbrace{}  
number of cubes

\delta N\varepsilon 
\underbrace{}  \underbrace{}  
volume

= | \varepsilon Ω0| .

Thus
\sum 

j

| I\varepsilon j | \leq | \varepsilon Ω0| 
 - 1

\sum 

j

| C\varepsilon 
j | \| \varphi 

\ast  - \varphi \ast \bigl( x\varepsilon 
j

\bigr) 
\| L\infty (Cε

j )

\leq C sup
j

\| \varphi \ast  - \varphi \ast \bigl( x\varepsilon 
j

\bigr) 
\| L\infty (Cε

j )

\rightarrow 0 (\varepsilon \rightarrow 0),

where the last statement follows from the smoothness of \varphi . Putting the pieces back
together we have

| \varepsilon Ω0| 
 - 1

\int 

Ωε

\chi \varepsilon \varphi \varepsilon dx = | \varepsilon Ω0| 
 - 1

\sum 

j

| C\varepsilon 
j | \varphi 

\ast \bigl( x\varepsilon 
j

\bigr) 
+ o(1).

Note that the volumes | C\varepsilon 
j | ∼ \delta N\varepsilon do not depend on j, and so

| \varepsilon Ω0| 
 - 1

\int 

Ωε

\chi \varepsilon \varphi \varepsilon dx = \alpha \prime \varepsilon  - N+1\delta N\varepsilon 
\sum 

j

\varphi \ast \bigl( x\varepsilon 
j

\bigr) 
+ o(1)

for some constant \alpha \prime . Next we use the fact that all x\varepsilon 
j lie in planes \{ xn = const\} and

that \varphi \ast is constant in x̄. Thus all terms \varphi \ast (x\varepsilon 
j) in the above sum with (x\varepsilon 

j)N = (x\varepsilon 
k)N

are equal and lead to a factor
\bigl( 

\varepsilon 
\delta ε

\bigr) N - 1
. Denoting t\varepsilon 1, . . . , t

\varepsilon 
n the projection of x\varepsilon 

j onto
the Nth coordinate we obtain

| \varepsilon Ω0| 
 - 1

\int 

Ωε

\chi \varepsilon \varphi \varepsilon dx = \alpha \varepsilon  - N+1\delta N\varepsilon 

\biggl( 
\varepsilon 

\delta \varepsilon 

\biggr) N - 1 n\sum 

m=1

\varphi (t\varepsilon m) + o(1)

= \alpha 

n\sum 

m=1

\delta \varepsilon \varphi (t
\varepsilon 
m) + o(1)

\rightarrow \alpha 

\int 1

0

\varphi (t) dt

for some constant \alpha . The last statement holds because \varphi is Riemann integrable.
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Finally we prove the statement for all \varphi \in L1((0, 1)). This follows by a standard
density argument, though some care is required to deal with the technical difficulties
posed by the varying function spaces. Let \varphi \in L1((0, 1)) be arbitrary, and let \varphi \varepsilon \in 
L1(Ω\varepsilon ) such that | \varepsilon Ω0| 

 - 1\| \varphi \varepsilon  - \varphi \ast \| L1(Ωε) \rightarrow 0. Next, let \delta > 0, and use density of
C\infty ((0, 1)) in L1((0, 1)) to choose \eta \in C\infty ((0, 1)) with \| \varphi  - \eta \| L1((0,1)) < \delta , and let
\eta \varepsilon \in L1(Ω\varepsilon ) be such that | \varepsilon Ω0| 

 - 1\| \eta \varepsilon  - \eta \ast \| L1(Ωε) \rightarrow 0. We first note that \varphi \varepsilon and \eta \varepsilon 
are necessarily close in the limit:

lim sup
\varepsilon \rightarrow 0

| \varepsilon Ω0| 
 - 1\| \varphi \varepsilon  - \eta \varepsilon \| L1(Ωε) \leq lim sup

\varepsilon \rightarrow 0
| \varepsilon Ω0| 

 - 1
\bigl( 
\| \varphi \varepsilon  - \varphi \ast \| L1(Ωε) + \| \varphi \ast  - \eta \ast \| L1(Ωε)

(5.2)

+ \| \eta \ast  - \eta \varepsilon \| L1(Ωε)

\bigr) 

\leq lim sup
\varepsilon \rightarrow 0

| \varepsilon Ω0| 
 - 1\| \varphi \ast  - \eta \ast \| L1(Ωε)

= \| \varphi  - \eta \| L1((0,1))

< \delta ,(5.3)

where the second line follows from the assumptions on \eta \varepsilon and \varphi \varepsilon and the third line
follows from the definition of \varphi \ast and \eta \ast . Next, we estimate

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1\langle \chi \varepsilon , \varphi \varepsilon \rangle  - \alpha 

\int 1

0

\varphi (t) dt

\bigm| \bigm| \bigm| \bigm| \leq | \varepsilon Ω0| 
 - 1| \langle \chi \varepsilon , \varphi \varepsilon  - \eta \varepsilon \rangle | 

+

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1\langle \chi \varepsilon , \eta \varepsilon \rangle  - \alpha 

\int 1

0

\eta (t) dt

\bigm| \bigm| \bigm| \bigm| 

+ | \alpha | 

\int 1

0

| \eta (t) - \varphi (t)| dt

\leq \| \chi \varepsilon \| \infty | \varepsilon Ω0| 
 - 1\| \varphi \varepsilon  - \eta \varepsilon \| L1(Ωε)

+

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1\langle \chi \varepsilon , \eta \varepsilon \rangle  - \alpha 

\int 1

0

\eta (t) dt

\bigm| \bigm| \bigm| \bigm| 

+ | \alpha | \delta .

Finally, using (5.3), together with the facts that \| \chi \varepsilon \| \infty \leq 1 and | \varepsilon Ω0| 
 - 1\langle \chi \varepsilon , \eta \varepsilon \rangle \rightarrow 

\alpha 
\int 1

0
\eta (t) dt, we conclude that

lim sup
\varepsilon \rightarrow 0

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1\langle \chi \varepsilon , \varphi \varepsilon \rangle  - \alpha 

\int 1

0

\varphi (t) dt

\bigm| \bigm| \bigm| \bigm| \leq (1 + | \alpha | )\delta .

Since \delta > 0 was arbitrary, it follows that

lim sup
\varepsilon \rightarrow 0

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1\langle \chi \varepsilon , \varphi \varepsilon \rangle  - \alpha 

\int 1

0

\varphi (t) dt

\bigm| \bigm| \bigm| \bigm| = 0.

Lemma 5.2. For the function | \varepsilon Ω0| 
 - 1

2w\varepsilon , with w\varepsilon defined in (5.1), one has | \varepsilon Ω0| 
 - 1

2

w\varepsilon 
H1

 -  - \rightharpoonup 1.

Proof. It follows by a straightforward modification of the argument in [CM97] that

| \varepsilon Ω0| 
 - 1

2w\varepsilon satisfies the bound (4.1) and even the stronger condition (ii) in Proposition

4.4. Thus, by Proposition 4.4 there exists a subsequence | \varepsilon Ω0| 
 - 1

2w\varepsilon 
H1

 -  - \rightharpoonup w for some

w \in H1((0, 1)) and | \varepsilon Ω0| 
 - 1

2w\varepsilon 
L2

 -  - \rightarrow w. It remains to show w = 1. This will be done
by applying Lemma 5.1.
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Claim. If \phi \varepsilon 
L2

 -  - \rightarrow \phi , then | \varepsilon Ω0| 
 - 1

\bigm\| \bigm\| w\varepsilon | \varepsilon Ω0| 
1
2\phi \varepsilon  - w\ast \phi \ast \bigm\| \bigm\| 

L1(Ωε)
\rightarrow 0.

Proof of claim. By the triangle inequality we have

| \varepsilon Ω0| 
 - 1

\bigm\| \bigm\| \bigm\| w\varepsilon | \varepsilon Ω0| 
1
2\phi \varepsilon  - w\ast \phi \ast 

\bigm\| \bigm\| \bigm\| 
L1(Ωε)

\leq 

\leq | \varepsilon Ω0| 
 - 1

\bigm\| \bigm\| \bigm\| w\varepsilon | \varepsilon Ω0| 
1
2\phi \varepsilon  - w\varepsilon \phi 

\ast 
\bigm\| \bigm\| \bigm\| 
L1(Ωε)

+ | \varepsilon Ω0| 
 - 1

\bigm\| \bigm\| w\varepsilon \phi 
\ast  - w\ast \phi \ast \bigm\| \bigm\| 

L1(Ωε)

\leq | \varepsilon Ω0| 
 - 1\| w\varepsilon \| L2(Ωε)

\bigm\| \bigm\| \bigm\| | \varepsilon Ω0| 
1
2\phi \varepsilon  - \phi \ast 

\bigm\| \bigm\| \bigm\| 
L2(Ωε)

+ | \varepsilon Ω0| 
 - 1\| \phi \ast \| L2(Ωε)

\bigm\| \bigm\| w\varepsilon  - w\ast \bigm\| \bigm\| 
L2(Ωε)

=
\Bigl( 
| \varepsilon Ω0| 

 - 1
2 \| w\varepsilon \| L2(Ωε)

\Bigr) \Bigl( 
\| \phi \varepsilon  - U\varepsilon \phi \| L2(Ωε)

\Bigr) 

+
\Bigl( 
| \varepsilon Ω0| 

 - 1
2 \| \phi \ast \| L2(Ωε)

\Bigr) \biggl( \bigm\| \bigm\| \bigm\| | \varepsilon Ω0| 
 - 1

2w\varepsilon  - U\varepsilon w
\bigm\| \bigm\| \bigm\| 
L2(Ωε)

\biggr) 

\rightarrow 0.

To prove w = 1, note that w\varepsilon \chi Cε
= \chi Cε

. Hence, for \phi \varepsilon 
L2

 -  - \rightarrow \phi , Lemma 5.1 (with

\varphi \varepsilon = w\varepsilon | \varepsilon Ω0| 
1
2\phi \varepsilon ) gives

| \varepsilon Ω0| 
 - 1

2

\int 

Ωε

w\varepsilon \chi Cε
\phi \varepsilon dx = | \varepsilon Ω0| 

 - 1

\int 

Ωε

w\varepsilon | \varepsilon Ω0| 
1
2\phi \varepsilon \underbrace{}  \underbrace{}  

str. in L1

\chi Cε
dx

\rightarrow \alpha 

\int 1

0

w\phi dx.

On the other hand, also by Lemma 5.1,

| \varepsilon Ω0| 
 - 1

2

\int 

Ωε

\chi Cε
\phi \varepsilon dx = | \varepsilon Ω0| 

 - 1

\int 

Ωε

\chi Cε
| \varepsilon Ω0| 

1
2\phi \varepsilon dx

\rightarrow \alpha 

\int 1

0

\phi dx.

Since \phi \in L2((0, 1)) was arbitrary, we conclude w = 1.

From Lemma 5.2 we conclude that | \varepsilon Ω0| 
 - 1

2\nabla w\varepsilon 
L2

 -  - \rightharpoonup 0 (note that this is the full
gradient and not merely \̄nabla ), i.e., we have

\int 

Ωε

| \varepsilon Ω0| 
 - 1

2\nabla w\varepsilon \cdot ψ\varepsilon dx \rightarrow 0(5.4)

whenever \| ψ\varepsilon  - U\varepsilon ψ\| L2(Ωε)N \rightarrow 0 for some ψ \in L2((0, 1))N .

5.2. Convergence of solutions.

Lemma 5.3. Let u\varepsilon be a weak solution of (2.1) with right-hand side f\varepsilon 
L2

 -  - \rightarrow f .
Then the a priori bound

\| u\varepsilon \| 
2
L2(Ωε)

+ \| \nabla u\varepsilon \| 
2
L2(Ωε)

\leq C\| f\| 2L2((0,1))(5.5)

holds.

Proof. The weak formulation of (2.1) yields for arbitrary \delta > 0
\int 

Ωε

| \nabla u\varepsilon | 
2 dx+ z

\int 

Ωε

| u\varepsilon | 
2 dx =

\int 

Ωε

f\varepsilon u\varepsilon dx

\leq 
\delta 

2
\| u\varepsilon \| 

2
L2(Ωε)

+ (2\delta ) - 1\| f\varepsilon \| 
2
L2(Ωε)

.
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Choosing, e.g., \delta := z, this yields

\| \nabla u\varepsilon \| 
2
L2(Ωε)

+
z

2
\| u\varepsilon \| 

2
L2(Ωε)

\leq (2z) - 1\| f\varepsilon \| 
2
L2(Ωε)

.(5.6)

Next, without loss of generality, choose \varepsilon small enough such that
\bigm| \bigm| \| f\varepsilon \| 2L2(Ωε)

 - 

\| f\| 2L2((0,1))

\bigm| \bigm| < \| f\| 2L2((0,1)). We obtain from (5.6) that

\| \nabla u\varepsilon \| 
2
L2(Ωε)

+
z

2
\| u\varepsilon \| 

2
L2(Ωε)

\leq 
\bigl( 
(2z) - 1 + 1

\bigr) 
\| f\| 2L2((0,1))

and hence

\| \nabla u\varepsilon \| 
2
L2(Ωε)

+ \| u\varepsilon \| 
2
L2(Ωε)

\leq 
(2z) - 1 + 1

min\{ 1, z/2\} 
\| f\| 2L2((0,1)).

Note that this a priori bound actually proves that case (ii) of Proposition 4.4 is
satisfied by the solutions u\varepsilon , since \| \̄nabla u\varepsilon \| L2(Ωε) is uniformly bounded. Thus there

exists u \in H1((0, 1)) such that u\varepsilon 
H1

 -  - \rightharpoonup u and u\varepsilon 
L2

 -  - \rightarrow u. We will show that u satisfies
the weak version of (3.1). Let \phi \in H1((0, 1)), and consider the weak formulation of
(2.1) with test function w\varepsilon \cdot U\varepsilon \phi :

\int 

Ωε

\nabla u\varepsilon \cdot \nabla (w\varepsilon U\varepsilon \phi ) dx+ z

\int 

Ωε

u\varepsilon w\varepsilon U\varepsilon \phi dx =

\int 

Ωε

f\varepsilon w\varepsilon U\varepsilon \phi dx.

Expanding the product rule in the first term gives

\int 

Ωε

(U\varepsilon \phi )\nabla u\varepsilon \cdot \nabla w\varepsilon dx+

\int 

Ωε

w\varepsilon \nabla u\varepsilon \cdot \nabla (U\varepsilon \phi ) dx+ z

\int 

Ωε

u\varepsilon w\varepsilon U\varepsilon \phi dx =

\int 

Ωε

f\varepsilon w\varepsilon U\varepsilon \phi dx.

(5.7)

We will consider the convergence all four terms separately.
Right-hand side. Since \phi \in H1((0, 1)) we have \| \phi \| L\infty < C\| \phi \| H1((0,1)) uniformly

in \varepsilon , by Morrey’s inequality. Thus w\varepsilon U\varepsilon \phi converges strongly in L2 to \phi . Indeed, we
have

\| w\varepsilon U\varepsilon \phi  - U\varepsilon \phi \| L2(Ωε) \leq \| U\varepsilon \phi \| \infty \| w\varepsilon  - 1\| L2(Ωε)

= \| \phi \| \infty 
\bigm\| \bigm\| \bigm\| | \varepsilon Ω0| 

 - 1
2w\varepsilon  - U\varepsilon (1)

\bigm\| \bigm\| \bigm\| 
L2(Ωε)

\rightarrow 0.

Since f\varepsilon 
L2

 -  - \rightharpoonup f we can conclude

\int 

Ωε

f\varepsilon w\varepsilon U\varepsilon \phi dx \rightarrow 

\int 1

0

f\phi dx.

Third term on the left-hand side. By the same reasoning as above, one has u\varepsilon \rightarrow u
and w\varepsilon U\varepsilon \phi \rightarrow \phi strongly in L2 and thus

z

\int 

Ωε

u\varepsilon w\varepsilon U\varepsilon \phi dx \rightarrow z

\int 1

0

u\phi dx.

Second term on the left-hand side. By the same reasoning as above, w\varepsilon \nabla (U\varepsilon \phi ) =
w\varepsilon U\varepsilon \phi 

\prime converges strongly in L2 to \phi \prime . Since \nabla u\varepsilon converges weakly in L2, the whole

integral converges to
\int 1

0
u\prime \phi \prime dt.
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First term on the left-hand side. First, we rewrite the term
\int 

Ωε

(U\varepsilon \phi )\nabla u\varepsilon \cdot \nabla w\varepsilon dx = \langle  - ∆w\varepsilon , u\varepsilon U\varepsilon \phi \rangle H - 1,H1
0
 - 

\int 

Ωε

u\varepsilon \nabla w\varepsilon \cdot \nabla (U\varepsilon \phi ) dx.(5.8)

The second term on the right-hand side of (5.8) converges to 0 by (5.4). Indeed,
since u and \nabla U\varepsilon \phi are uniformly bounded in L\infty , by Morrey’s inequality, we have

u\varepsilon \nabla U\varepsilon \phi 
L2

 -  - \rightarrow u\phi \prime . The last remaining term is treated in the following lemma.

Lemma 5.4. One has

\langle  - ∆w\varepsilon , u\varepsilon U\varepsilon \phi \rangle H - 1,H1
0

\rightarrow \mu 

\int 1

0

u\phi dt,

where \mu was defined Theorem 3.1.

Proof. The proof is only a small variation of that of [CM97, Lem. 2.3]. We give
it here nevertheless for the sake of self-containedness. First, note that by partial
integration and boundary conditions, we have

\langle  - ∆w\varepsilon , u\varepsilon \phi \varepsilon \rangle =
N  - 2

1 - \delta 2\varepsilon 

\sum 

i\in Lε

\langle S\varepsilon 
i , u\varepsilon U\varepsilon \phi \rangle ,

where S\varepsilon 
i is the Dirac measure on \partial B\delta ε(i): \langle S\varepsilon 

i , \varphi \rangle =
\int 
\partial Bδε (i)

\varphi dS. Moreover, let us

define the function q\varepsilon as the unique solution of the Neumann problem

\Biggl\{ 
 - ∆q\varepsilon = N in B\delta ε(i),

\partial \nu q\varepsilon = \varepsilon on \partial B\delta ε(i)

satisfying q\varepsilon = 0 on \partial B\delta ε(i). Extending q\varepsilon by zero to all of Ω\varepsilon we can easily see that
q\varepsilon \rightarrow 0 in W 1,\infty (RN ). Consequently,

\langle  - ∆q\varepsilon , \varphi \varepsilon \rangle =

\int 

Ωε

\nabla q\varepsilon \cdot \nabla \varphi \varepsilon dx

\leq \| \nabla q\varepsilon \| \infty \cdot \| \varphi \varepsilon \| L1(Ωε)

\rightarrow 0

for every sequence with \| \varphi \varepsilon \| L1(Ωε) bounded. On the other hand, one has  - ∆q\varepsilon =
N\chi \varepsilon 

\cup iBδε (i)
 - 

\sum 
i\in Lε

\delta \varepsilon S
\varepsilon 
i . Thus, we can take the limit in the following equation:

\langle  - ∆q\varepsilon , \varphi \varepsilon \rangle =

\int 

\cup iBδε (i)

\varphi \varepsilon dx+
\sum 

i\in Lε

\delta \varepsilon 

\int 

\partial Bδε (i)

\varphi \varepsilon dS.

The first term on the right-hand side converges to \mu 
\int 1

0
u\phi dt as can be seen by the

same argument as in the proof of Lemma 5.1. We obtain the equality

lim
\varepsilon \rightarrow 0

\sum 

i\in Lε

\delta \varepsilon 

\int 

\partial Bδε (i)

\varphi \varepsilon dS = \mu 

\int 1

0

\varphi dt.

The assertion now follows by choosing \varphi \varepsilon = u\varepsilon U\varepsilon \phi in the above equation (note that
\| u\varepsilon U\varepsilon \phi \| L1(Ωε) is uniformly bounded).
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This settles the convergence of the last remaining term in (5.7) and leads to the
limit problem

\int 1

0

u\prime \phi \prime dt+ (\mu + z)

\int 1

0

u\phi dt =

\int 1

0

f\phi dt,(5.9)

which is nothing but the weak formulation of (3.1). Since it has already been shown
that u\varepsilon satisfies hypothesis (ii) of Proposition 4.4 and thus converges strongly in L2,
the proof of Theorem 3.1 is completed.

Remark 5.1. We note that our assumption on the spherical shape of the holes
was made for the sake of definiteness; however, our results easily generalize to more
general geometries as detailed in [CM97, Thm. 2.7]. Moreover, our results are also
valid for more general elliptic operators div(A\nabla ) with continuous coefficients A (cf.
[CM97, Ex. 2.16]).

6. Norm-resolvent convergence. In this section we will take a more operator
theoretic point of view and prove operator norm convergence for the resolvent. To
this end, let us first introduce some notation. We define the following operators in
L2:

A\varepsilon :=  - ∆, \scrD (A\varepsilon ) = \{ u \in \scrH 0
\varepsilon \cap H2(Ωp

\varepsilon ) : \partial \nu u| \partial Ωε
= 0\} ,

A :=  - 
d2

dt2
+ \mu , \scrD (A) = \{ u \in H2((0, 1)) : u\prime (0) = u\prime (1) = 0\} ,

(6.1)

where \scrD (\cdot ) denotes the domain of the relevant operator. Furthermore, we define the
two identification operators between the domains:

\scrU \varepsilon : L
2((0, 1)) \rightarrow L2(Ωp

\varepsilon ), (\scrU \varepsilon g)(x) = | \varepsilon Ω0| 
 - 1

2 g(xN ),

\scrU \varepsilon : L
2(Ωp

\varepsilon ) \rightarrow L2((0, 1)), (\scrU \varepsilon f)(t) = | \varepsilon Ω0| 
 - 1

2

\int 

\varepsilon Ω0

\widetilde f(x̄, t) dx̄,
(6.2)

where \widetilde f denotes extension of f by 0 into the holes. Note that \| \scrU \varepsilon \| \scrL (L2((0,1)),L2(Ωp
ε)),

\| \scrU \varepsilon \| \scrL (L2(Ωp
ε),L2((0,1))) are uniformly bounded in \varepsilon .

Now, let us go back to (5.7) and observe that the right-hand side will still converge
if f\varepsilon is only weakly convergent in L2. We deduce the following lemma.

Lemma 6.1. Let (g\varepsilon ) \subset L2((0, 1)), and assume that g\varepsilon \rightharpoonup g weakly in L2((0, 1)).
Then for any z > 0 one has

\| (A\varepsilon + z) - 1\scrU \varepsilon g\varepsilon  - \scrU \varepsilon (A+ z) - 1g\| L2(Ωp
ε) \rightarrow 0

in L2((0, 1)).

Proof. By the above comment, it is enough to show that \scrU \varepsilon g\varepsilon 
L2

 -  - \rightharpoonup g in the sense

of Definition 4.2. To this end, let \phi \varepsilon \in L2(Ωp
\varepsilon ), and assume \phi \varepsilon 

L2

 -  - \rightarrow \phi for some
\phi \in L2((0, 1)). We have

\langle \scrU \varepsilon g\varepsilon , \phi \varepsilon \rangle L2(Ωp
ε) = \langle \scrU \varepsilon g\varepsilon ,\scrU \varepsilon \phi \rangle L2(Ωp

ε) + \langle \scrU \varepsilon g\varepsilon , \phi \varepsilon  - \scrU \varepsilon \phi \rangle L2(Ωp
ε)

= \langle \scrU \varepsilon g\varepsilon ,\scrU \varepsilon \phi \rangle L2(Ωε) + \langle \scrU \varepsilon g\varepsilon ,\scrU \varepsilon \phi \rangle L2(Tε) + \langle \scrU \varepsilon g\varepsilon , \phi \varepsilon  - \scrU \varepsilon \phi \rangle L2(Ωp
ε)

= \langle g\varepsilon , \phi \rangle L2((0,1)) + \langle \scrU \varepsilon g\varepsilon ,\scrU \varepsilon \phi \rangle L2(Tε) + \langle \scrU \varepsilon g\varepsilon , \phi \varepsilon  - \scrU \varepsilon \phi \rangle L2(Ωp
ε).

The last term goes to 0 since \phi \varepsilon 
L2

 -  - \rightarrow \phi , whereas the second term on the right-hand
side converges to 0 because | \varepsilon  - 1T\varepsilon | \rightarrow 0. Finally, the first term on the right-hand side
converges to \langle g, \phi \rangle L2((0,1)) by assumption, which concludes the proof.
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Lemma 6.1 shows that using \scrU \varepsilon as an identification operator, the convergence
of solutions of (2.1) is uniform in the right-hand side. We will now prove a similar
statement for \scrU \varepsilon .

Lemma 6.2. Let f\varepsilon \in L2(Ωp
\varepsilon ) be a sequence with f\varepsilon 

L2

 -  - \rightharpoonup f and u\varepsilon be the sequence
of solutions to (2.1). Then one has

\scrU \varepsilon u\varepsilon \rightharpoonup u in H1((0, 1)),

where u solves the limit problem (5.9).

Proof. First, note that \| \scrU \varepsilon u\varepsilon \| H1((0,1)) is uniformly bounded in \varepsilon . Indeed, we can
compute

\| \scrU \varepsilon u\varepsilon \| 
2
H1((0,1))=

\int 1

0

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1

2

\int 

\varepsilon Ω0

u\varepsilon (x̄, t) dx̄

\bigm| \bigm| \bigm| \bigm| 
2

dt+

\int 1

0

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1

2

\int 

\varepsilon Ω0

\partial Nu\varepsilon (x̄, t) dx̄

\bigm| \bigm| \bigm| \bigm| 
2

dt

\leq 

\int 1

0

\int 

\varepsilon Ω0

| u\varepsilon (x̄, t)| 
2
dx̄dt+

\int 1

0

\int 

\varepsilon Ω0

| \partial Nu\varepsilon (x̄, t)| 
2
dx̄dt

\leq \| u\varepsilon \| 
2
L2(Ωp

ε)
+ \| \nabla u\varepsilon \| 

2
L2(Ωp

ε)

\leq C\| f\varepsilon \| 
2
L2(Ωp

ε)
,

where we have used Jensen’s inequality in the second line and the a priori bound (5.5)
in the last line. The right-hand side remains bounded as \varepsilon \rightarrow 0 since (f\varepsilon ) converges
weakly. Hence there exists a H1-weakly convergent subsequence (again denoted by
\scrU \varepsilon u\varepsilon ) with \scrU \varepsilon u\varepsilon \rightharpoonup v for some v \in H1((0, 1)). By the Rellich–Kondrachov theorem
one has \scrU \varepsilon u\varepsilon \rightarrow v strongly in L2((0, 1)). It remains to show that v = u. This will be
done in two steps. Step 1: Because f\varepsilon \rightharpoonup f , every term in the weak formulation (5.7)

converges, that is, u\varepsilon 
H1

 -  - \rightharpoonup u (and thus strongly in L2) in the sense of Definition 4.2,
where u solves the limit problem (5.9). Step 2: compute

\| \scrU \varepsilon u\varepsilon  - u\| 2L2((0,1)) =

\int 1

0

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1

2

\int 

\varepsilon Ω0

u\varepsilon (x̄, t) dx̄ - | \varepsilon Ω0| 
 - 1

2u(t)

\bigm| \bigm| \bigm| \bigm| 
2

dt

=

\int 1

0

\bigm| \bigm| \bigm| \bigm| | \varepsilon Ω0| 
 - 1

2

\int 

\varepsilon Ω0

\bigl( 
u\varepsilon (x̄, t) - | \varepsilon Ω0| 

 - 1
2u(t)

\bigr) 
dx̄

\bigm| \bigm| \bigm| \bigm| 
2

dt

\leq 

\int 1

0

\int 

\varepsilon Ω0

\bigm| \bigm| \bigm| u\varepsilon (x̄, t) - | \varepsilon Ω0| 
 - 1

2u(t)
\bigm| \bigm| \bigm| 
2

dx̄ dt

= C \| u\varepsilon  - \scrU \varepsilon u\| 
2
L2(Ωε)

\rightarrow 0,

where the third line follows from Jensen’s inequality, and thus \scrU \varepsilon u\varepsilon \rightarrow u in L2((0, 1))
which implies v = u and concludes the proof.

We are now able to state the main result of this section.

Theorem 6.3. Let A\varepsilon , A and \scrU \varepsilon ,\scrU \varepsilon be defined as in (6.1) and (6.2). Then one
has

\bigm\| \bigm\| (A\varepsilon + z) - 1\scrU \varepsilon  - \scrU \varepsilon (A+ z) - 1
\bigm\| \bigm\| 
\scrL (L2((0,1)),L2(Ωp

ε))
\rightarrow 0,(6.3)

\bigm\| \bigm\| \bigm\| \scrU \varepsilon (A\varepsilon + z) - 1  - (A+ z) - 1\scrU \varepsilon 

\bigm\| \bigm\| \bigm\| 
\scrL (L2(Ωp

ε),L2((0,1)))
\rightarrow 0.(6.4)
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Proof. We first prove (6.3). Let (g\varepsilon ) be any bounded sequence in L2((0, 1)). Then
there exists a weakly convergent subsequence g\varepsilon \prime \rightharpoonup g for some g \in L2((0, 1)). Now
compute

\bigm\| \bigm\| (A\varepsilon \prime + z) - 1\scrU \varepsilon \prime g\varepsilon \prime  - \scrU \varepsilon \prime (A+ z) - 1g\varepsilon \prime 
\bigm\| \bigm\| 
L2(Ωp

ε\prime 
)

\leq 
\bigm\| \bigm\| (A\varepsilon \prime + z) - 1\scrU \varepsilon \prime g\varepsilon \prime  - \scrU \varepsilon \prime (A+ z) - 1g

\bigm\| \bigm\| 
L2(Ωp

ε\prime 
)
+

\bigm\| \bigm\| \scrU \varepsilon \prime (A+ z) - 1(g  - g\varepsilon \prime )
\bigm\| \bigm\| 
L2(Ωp

ε\prime 
)
.

The first term on the right-hand side converges to 0 by Lemma 6.1. The second
term converges to 0 too, because g\varepsilon \prime \rightharpoonup g, (A + z) - 1 is a compact operator and
\| \scrU \varepsilon \| \scrL (L2((0,1)),L2(Ωp

ε)) is uniformly bounded. Next, choose (g\varepsilon ) with \| g\varepsilon \| L2((0,1)) \leq 1
in such a way that

sup
\| h\| L2((0,1))\leq 1

\bigm\| \bigm\| \bigl( (A\varepsilon + z) - 1\scrU \varepsilon  - \scrU \varepsilon (A+ z) - 1
\bigr) 
h
\bigm\| \bigm\| 
L2(Ωp

ε)
 - \varepsilon 

<
\bigm\| \bigm\| (A\varepsilon + z) - 1\scrU \varepsilon g\varepsilon  - \scrU \varepsilon (A+ z) - 1g\varepsilon 

\bigm\| \bigm\| 
L2(Ωp

ε)
.

By the above, the right-hand side of this equation converges to 0 for a suitable sub-
sequence (\varepsilon \prime ), so taking the limit \varepsilon \prime \rightarrow 0 on both sides yields

lim sup
\varepsilon \prime \rightarrow 0

sup
\| h\| L2((0,1))\leq 1

\bigm\| \bigm\| \bigl( (A\varepsilon \prime + z) - 1\scrU \varepsilon \prime  - \scrU \varepsilon \prime (A+ z) - 1
\bigr) 
h
\bigm\| \bigm\| 
L2(Ωp

ε\prime 
)
\leq 0.

Applying this reasoning to every subsequence of (A\varepsilon + z) - 1\scrU \varepsilon  - \scrU \varepsilon (A + z) - 1 yields
the claim for the whole sequence and concludes the proof of (6.3).

To prove (6.4), let f\varepsilon \in L2(Ωp
\varepsilon ) be a sequence with \| f\varepsilon \| L2(Ωp

ε) uniformly bounded.
Then there exist f \in L2((0, 1)) and a weakly convergent subsequence (f\varepsilon \prime ) such that

\widetilde f\varepsilon \prime L2

 -  - \rightharpoonup f in the sense of Definition 4.2 (where \widetilde f\varepsilon denotes extension by 0 from Ωp
\varepsilon to

Ω\varepsilon ). In particular we have

\int 

Ωε\prime 

\widetilde f\varepsilon \prime \scrU \varepsilon \prime \phi dx =

\int 

Ωp

ε\prime 

f\varepsilon \prime \scrU \varepsilon \prime \phi dx \rightarrow 

\int 1

0

f\phi , dt

as \varepsilon \prime \rightarrow 0. The left-hand side of this equation can be rewritten in terms of \scrU \varepsilon f\varepsilon :

\int 

Ωp
ε

f\varepsilon \scrU \varepsilon \phi dx =

\int 1

0

\int 

\varepsilon Ω0

| \varepsilon Ω0| 
 - 1

2 \widetilde f\varepsilon (x̄, t) dx̄ \phi (t) dt

=

\int 1

0

(\scrU \varepsilon f\varepsilon )\phi dt.

Hence we have \scrU \varepsilon \prime f\varepsilon \prime \rightharpoonup f in L2((0, 1)). The rest of the proof is entirely analogous to
that of (6.3), using compactness of (A+ z) - 1 and Lemma 6.2.

7. Spectral convergence. In this section we will prove Corollary 3.3. Let us
first note that, since the domains Ωp

\varepsilon and (0, 1) are bounded, the domains \scrD (A\varepsilon ),\scrD (A)
are compactly embedded in L2, and hence A\varepsilon and A have compact resolvent and their
spectra are discrete. Let us denote by (\lambda \varepsilon 

k) (resp., (\lambda k)) the eigenvalues of A\varepsilon + id
(resp., A + id) labeled in increasing order. We will use a theorem from [IOS89] to
prove the convergence of spectra.
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Theorem 7.1 ([IOS89, Thm. III.1.4]). Assume that the following hypotheses
are satisfied:

(H1) One has \| \scrU \varepsilon g\| L2(Ωp
ε) \rightarrow \| g\| L2((0,1)) for all g \in L2((0, 1)).

(H2) The operators (A\varepsilon + id) - 1, (A+ id) - 1 are positive, compact, and self-adjoint,
and \| (A\varepsilon + id) - 1\| \scrL (L2(Ωp

ε)) is uniformly bounded in \varepsilon .
(H3) For any g \in L2((0, 1)) one has \| (A\varepsilon + id) - 1\scrU \varepsilon g  - \scrU \varepsilon (A+ id) - 1g\| L2(Ωp

ε) \rightarrow 0
as \varepsilon \rightarrow 0.

(H4) For each f\varepsilon \in L2(Ωp
\varepsilon ) with \| f\varepsilon \| L2(Ωp

ε) uniformly bounded there exists a subse-
quence f\varepsilon \prime and some g \in L2((0, 1)) such that \| (A\varepsilon \prime +id) - 1f\varepsilon \prime  - \scrU \varepsilon \prime g\| L2(Ωp

ε\prime 
) \rightarrow 

0 as \varepsilon \prime \rightarrow 0.
Then there exists C > 0 such that

\bigm| \bigm| (\lambda \varepsilon 
k)

 - 1  - \lambda  - 1
k

\bigm| \bigm| \leq C sup
g\in Eig(A0;\lambda k)

\| g\| L2=1

\bigm\| \bigm\| (A\varepsilon \prime + id) - 1\scrU \varepsilon g  - \scrU \varepsilon (A+ id) - 1g
\bigm\| \bigm\| 
\scrL (L2(Ωp

ε))
.(7.1)

We remark that the constant C in (7.1) can be given explicitly in terms of the
\lambda k. This more precise version of (7.1) can be found in [IOS89, eq. (III.1.13)].

We will now show that (H1)–(H4) are satisfied for A\varepsilon , A, and \scrU \varepsilon . First, note
that (H2) is obvious from the preceding discussion and the a priori estimate (5.5).
Furthermore, (H3) follows directly from Theorem 6.3. (H4) can be seen as follows.

If \| f\varepsilon \| L2(Ωp
ε) \leq C, there exists a subsequence f\varepsilon \prime 

L2

 -  - \rightarrow f for some f \in L2((0, 1)).
Now go back to the weak formulation (5.7) and note that the right-hand side term\int 
Ωε\prime 

f\varepsilon \prime w\varepsilon \prime \scrU \varepsilon \prime \phi dx only requires weak convergence of f\varepsilon in order to yield the desired

limit. This shows (H4) with g =
\bigl( 
 - d2

dt2 + 1 + \mu 
\bigr)  - 1

f . Finally, let us prove (H1). We
have

\| \scrU \varepsilon g\| 
2
L2(Ωp

ε)
=

\int 

Ωp
ε

| \varepsilon Ω0| 
 - 1| g(xN )| 2 dx

=

\int 

Ωε

| \varepsilon Ω0| 
 - 1| g(xN )| 2 dx+

\int 

Tε

| \varepsilon Ω0| 
 - 1| g(xN )| 2 dx

=

\int 1

0

| g(t)| 2 dt+

\int 

\varepsilon  - 1Tε

| Ω0| 
 - 1| g(xN )| 2 dx

\rightarrow 

\int 1

0

| g(t)| 2 dt.

Indeed, one has | \varepsilon  - 1T\varepsilon | ∼ \varepsilon  - N+1rN\varepsilon 
\varepsilon N - 1

\delta Nε
= \delta 

2N
N - 2
\varepsilon \rightarrow 0 as \varepsilon \rightarrow 0.

Thus, all hypotheses are satisfied and Theorem 7.1 applies. From (7.1) we imme-
diately obtain

\bigm| \bigm| (\lambda \varepsilon 
k)

 - 1  - \lambda  - 1
k

\bigm| \bigm| \leq C
\bigm\| \bigm\| (A\varepsilon + z) - 1\scrU \varepsilon  - \scrU \varepsilon (A+ z) - 1

\bigm\| \bigm\| 
\scrL (L2((0,1)),L2(Ωp

ε))
.(7.2)

Clearly, denoting a(\varepsilon ) :=
\bigm\| \bigm\| (A\varepsilon + z) - 1\scrU \varepsilon  - \scrU \varepsilon (A+ z) - 1

\bigm\| \bigm\| 
\scrL (L2((0,1)),L2(Ωp

ε))
, this proves

Corollary 3.3.

Remark 7.1. Let us note that all the above results also hold in two dimensions
with minor modifications in the definition of the function w\varepsilon which are detailed in
[CM97]. We have excluded this case merely to simplify the presentation.
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8. Graph-like domains. In this section we extend our analysis towards do-
mains approximating not merely an interval, but a finite connected graph. That is,
the perforated domain consists of “fattened edges” of the form E\varepsilon := \varepsilon Ω0 \times (0, \ell )
which are connected by “fattened vertices” of the form V\varepsilon := R\varepsilon \cdot V , with some open,
bounded set V \subset R

N and a scale parameter R\varepsilon \rightarrow 0 for \varepsilon \rightarrow 0. This geometric
configuration has been studied in [KZ03, EP05] who proved spectral convergence for
the operator  - ∆ with Neumann boundary conditions. The nature of the limit spec-
trum depends on the relative scaling of the edge neighborhoods E\varepsilon and the vertex
neighborhoods V\varepsilon .
(i) If | V\varepsilon | /| E\varepsilon | \rightarrow 0, the limit spectrum is that of the graph Laplacian with

Neumann–Kirchhoff vertex conditions.
(ii) If | V\varepsilon | /| E\varepsilon | \rightarrow \infty , the different edges decouple in the limit and the limit, spec-

trum will be the union of the Dirichlet spectra of all individual edges.
(iii) If | V\varepsilon | /| E\varepsilon | \rightarrow q > 0, the spectrum converges to the solution (u, \lambda ) of the problem

\Biggl\{ 
u\prime \prime = \lambda u on each edge e,\sum 

e\ni v u
\prime 
e(v) = \lambda qu(v) at each vertex v,

(8.1)

where the sum is over all edges e ending on v and u\prime 
e(v) = limx\rightarrow v,x\in e u

\prime (x). Since
the spectral parameter \lambda appears in the vertex condition, this is a generalized
eigenvalue problem.

The notion of norm-resolvent convergence in the cases (i), (ii), and (iii) has been
studied in [Pos12].

In the following we will apply our above results to study the influence of perfora-
tions on fattened graphs.

8.1. Building the fattened graph. Let us first describe in detail how the
fattened graph is defined. Let Γ be a finite, connected metric graph embedded in R

N .
We will give a local description of its fattened analogue around an arbitrary vertex
v \in Γ. Denote by e1, . . . , env

all edges in Γ incident to v, and let \ell 1, . . . , \ell nv
denote

their lengths. Every ei is canonically isometric to the line segment \{ 0\} \times (0, \ell i) \subset 
R

N - 1 \times R via an orthogonal transformation Θi that is unique up to rotation around
ei, followed by a shift by v. To build the fattened edges, let Ω0 be as in section 2 with
0 \in Ω0, and, for every i \in \{ 1, . . . , nv\} , fix an orthogonal transformation Θi as just
described. For \varepsilon > 0, we call the sets E\varepsilon ,i := Θi(\varepsilon Ω0\times (0, \ell i))+ v edge neighborhoods.
For simplicity we take the same set Ω0 for all edges here. Similarly, in appropriately
shifted coordinates in which v = 0, we choose a connected, open, bounded set V \subset R

N

with C1 boundary such that 0 \in V . We call the scaled set R\varepsilon V a vertex neighborhood
of v. For technical reasons we make the additional assumption that for all \varepsilon > 0, V \varepsilon 

intersects each edge “only once,” i.e., for all j \in \{ 1, . . . , nv\} the implication

x \in ej \setminus V \varepsilon \Rightarrow y /\in V \varepsilon \forall y \in ej with | y  - v| > | x - v| (8.2)

holds. We note that the set V may be different for every vertex v \in Γ, while the
scaling factor R\varepsilon is assumed to be global.

In the case R\varepsilon ∼ \varepsilon , we make the additional assumption that \partial V contains nv flat
copies \{ F1, . . . , Fnv

\} of Ω0 such that Fj \cap ej = Θj(Ω0 \times \{ t\} )+ v for some t > 0 (these
will serve as “docking sites” for the edge neighborhoods). In all other cases, where
\varepsilon /Rε \rightarrow 0, this last assumption on V is unnecessary, since the edge neighborhoods can
be attached to V\varepsilon via small collars, as the following lemma shows.
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ε diam(Ω0)

∂VεVε

dε,j

≤ Rε diam(V )

Bε,j

Eε,j

v

Fig. 8.1. Sketch of collar for ε \ll Rε.

Lemma 8.1. Let \varepsilon /Rε \rightarrow 0, and let V\varepsilon = R\varepsilon V , where V is a connected, open,
bounded set V \subset R

N with C1 boundary. If \varepsilon is small enough, then for each edge
neighborhood E\varepsilon ,j there exists a \scrO (R\varepsilon ) shift \eta \varepsilon ,j \in R

N and a collar domain B\varepsilon ,j

joining E\varepsilon ,j + \eta \varepsilon ,j to V\varepsilon such that (E\varepsilon ,j + \eta \varepsilon ,j) \cap V\varepsilon = \emptyset and the length d\varepsilon ,j of B\varepsilon ,j is
bounded by

d\varepsilon ,j \leq R\varepsilon diam(V )(8.3)

(cf. Figure 8.1). In particular d\varepsilon ,j \rightarrow 0 as \varepsilon \rightarrow 0 for any j.

Proof. Without loss of generality, assume that R\varepsilon diam(V ) < min\{ \ell 1, . . . , \ell nv
\} .

Let \eta \varepsilon ,j denote the minimizer of the set
\bigl\{ 
| \eta | 

\bigm| \bigm| \eta parallel to ej and V \varepsilon \cap (E\varepsilon ,j+\eta ) = \emptyset 
\bigr\} 
.

Then, clearly, | \eta \varepsilon ,j | \leq diam(V\varepsilon ) = R\varepsilon diam(V ).
A collar B\varepsilon ,j can now be defined as B\varepsilon ,j = (Θj(\varepsilon Ω0 \times (0, | \eta \varepsilon ,j | )) + v) \setminus V\varepsilon . By

construction the length of B\varepsilon ,j is bounded by | \eta \varepsilon ,j | . Finally, note that by our assump-
tions on V\varepsilon , we have that (E\varepsilon ,j + \eta \varepsilon ,j)\cap V\varepsilon = \emptyset for \varepsilon small enough. This follows from
(8.2) and the fact that \varepsilon /Rε \rightarrow 0.

Similar methods of flattening or attaching collars to the vertex neighborhoods
have been used in the literature (cf. [EP05, sect. 6], [KZ03, sect. 3.2]). In the following
sections, we will assume that such collars B\varepsilon ,j are used to define the fattened graph
whenever \varepsilon /Rε \rightarrow 0. To streamline notation, we define B\varepsilon ,j := \emptyset for all j when R\varepsilon ∼ \varepsilon .

Definition 8.1. Given a finite, connected graph Γ, by a fattened analogue we
shall mean a family of open subsets of R

N (indexed by \varepsilon > 0), consisting of edge
neighborhoods E\varepsilon ,j and vertex neighborhoods V\varepsilon , which are linked according to the
connection rules of Γ, using the techniques described above. For every edge Ej, there
will be two collars, Bl

\varepsilon ,j (attached at \varepsilon Ω0 \times \{ 0\} ) and Br
\varepsilon ,j (attached at \varepsilon Ω0 \times \{ \ell j\} ).

Remark 8.2. (i) According to Lemma 8.1, the fattened edges and vertices have
to be slightly moved with respect to their original counterparts. We will ignore
this in our notation in the following, since all equations considered are invariant
under shifts. That is, instead of E\varepsilon ,j + \eta \varepsilon ,j we simply write E\varepsilon ,j , etc.
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(ii) When building the fattened graph via Lemma 8.1, the shifts \eta \varepsilon ,j will in general
change the angles between the edges. This does not affect the results in the fol-
lowing sections, because the graph Laplacians defined in (8.9), (8.17), and (8.21)
depend only on the metric graph structure of Γ (that is, the connection rules
and the lengths of the edges) and are independent of the particular embedding
in R

N .

8.2. Small vertex neighborhoods. Let us first consider the situation in which
| Vε| /| Eε| \rightarrow 0. To be precise, we assume in this section that

\varepsilon \leq R\varepsilon = o
\bigl( 
\varepsilon 

N - 1
N

\bigr) 
.

The lower bound on R\varepsilon ensures that the diameter of V\varepsilon scales at least as the diameter
of the E\varepsilon ,j , i.e., the edge neighborhoods do not overlap as \varepsilon \rightarrow 0.

Let Γ be a finite, connected metric graph, and denote by Ω\varepsilon a fattened analogue.
Let v be a vertex of Γ and e1, . . . , en be all edges incident to v with lengths \ell 1, . . . , \ell n.

As discussed in section 8.1, after suitable changes of coordinates the vertex neigh-

borhood is of the form V\varepsilon = R\varepsilon \cdot V with
RN

ε

\varepsilon N - 1 \rightarrow 0 as \varepsilon \rightarrow 0, and the fattened edges
are of the form E\varepsilon ,i = (\varepsilon Ω0)\times (0, \ell i). Introducing a periodic perforation T\varepsilon as shown
in Figure 8.2 defines a domain Ωp

\varepsilon .

Remark 8.3. On each edge neighborhood we choose the perforation to be aligned
with the corresponding edge, in order to be able to apply the results of section 5. The
perforation of the vertex neighborhood can be chosen with arbitrary orientation with-
out affecting the limit. This follows from the fact that the classical homogenization
results hold for arbitrary domains (cf. [CM97]).

Note that we do not perforate the collars Bl,r
\varepsilon ,j . On this domain we consider the

Poisson equation with Dirichlet boundary conditions on the holes:
\left\{ 
  
  

( - ∆+ z)u\varepsilon = f\varepsilon in Ωp
\varepsilon ,

u\varepsilon = 0 on \partial T\varepsilon ,

\partial \nu u\varepsilon = 0 on \partial Ω\varepsilon 

(8.4)

for z > 0 and f\varepsilon \in L2(Ω\varepsilon ) with \| f\varepsilon \| L2(Ωε) uniformly bounded.

\cdot \cdot \cdot 
v e1

e2

e3

E\varepsilon ,1

E\varepsilon ,2

E\varepsilon ,3

V\varepsilon 

Bl
\varepsilon ,2

Br
\varepsilon ,3

∼ \varepsilon 

∼ R\varepsilon 

Fig. 8.2. Sketch of graph-like perforated domain. The relative scaling between Rε and ε is

different in each subsection.
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This new geometric situation requires new identification operators to be defined.
To this end, let L2(Γ) :=

\bigoplus ne

j=1 L
2(ej), where \{ ej\} 

ne
j=1 is the set of edges of Γ, and let

H1(Γ) denote the space of continuous functions \phi on Γ such that for every edge ej
the restriction \phi | ej is in H1(ej). Moreover, let us define

\scrU Γ
\varepsilon : L2(Γ) \rightarrow L2(Ω\varepsilon ),

\scrU Γ
\varepsilon \phi (x) = | \varepsilon Ω0| 

 - 1
2 \cdot 

\Biggl\{ 
\phi (t) if x = (x̄, t) \in E\varepsilon ,j , j \in \{ 1, . . . , ne\} ,

0 if x \in V\varepsilon \cup 
\bigcup 

\{ j:ej\ni v\} B
l,r
\varepsilon ,j ,

(8.5)

where (x, t) are understood to mean local coordinates running along the fattened edge,

that is, x \in \varepsilon Ω0, t \in (0, \ell j), as described in section 8.1. In the union
\bigcup 

ej\ni v B
l,r
\varepsilon ,j we

include either Bl
\varepsilon ,j or B

r
\varepsilon ,j , depending on which end of ej meets v. In other words, the

union is over all collars that meet V\varepsilon . Problem (8.4) immediately yields the a priori
bound

\| \nabla u\varepsilon \| 
2
L2(Ωε)

\leq C\| f\varepsilon \| 
2
L2(Ωε)

.(8.6)

A proof analogous to that of Proposition 4.4 shows that there exists a subsequence
(again denoted by u\varepsilon ) such that \| u\varepsilon  - \scrU Γ

\varepsilon u\| L2(Ωε) \rightarrow 0 for some u \in H1(Γ). Note that
the fact that | V\varepsilon | /| E\varepsilon | \rightarrow 0 ensures the convergence on the vertex neighborhoods.

We are now going to derive an equation on Γ that identifies the limit u. To this
end, we define a second identification operator \scrV Γ

\varepsilon which preserves H1 regularity. Let

\scrV Γ
\varepsilon : H1(Γ) \rightarrow H1(Ω\varepsilon ),

\scrV Γ
\varepsilon \phi (x) = | \varepsilon Ω0| 

 - 1
2 \cdot 

\Biggl\{ 
\phi (t) if x = (x̄, t) \in E\varepsilon ,j , j \in \{ 1, . . . , ne\} ,

\phi (v) if x \in V\varepsilon \cup 
\bigcup 

\{ j:ej\ni v\} B
l,r
\varepsilon ,j .

Let w\varepsilon now be defined as in (5.1) (w\varepsilon \equiv 1 on the Bl,r
\varepsilon ,j), and consider the weak

formulation of this problem with test function w\varepsilon \scrV 
Γ
\varepsilon \phi for arbitrary \phi \in H1(Γ). Note

that w\varepsilon \scrV 
Γ
\varepsilon \phi \in H1(Ω\varepsilon ) with w\varepsilon \scrV 

Γ
\varepsilon \phi = 0 on the holes and is therefore a valid test

function for the perforated domain problem. The weak formulation of (8.4) now
reads

\int 

Ωp
ε

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx =

\int 

Ωp
ε

f\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx.

Decomposing into the different components of Ωp
\varepsilon we obtain

ne\sum 

i=1

\int 

Eε,i

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx+

ne\sum 

i=1

\int 

Bl
ε,i\cup Br

ε,i

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx

+

nv\sum 

j=1

\int 

Vε,j

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx+ z

ne\sum 

i=1

\int 

Eε,i

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx

+ z

ne\sum 

i=1

\int 

Bl
ε,i\cup Br

ε,i

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx+ z

nv\sum 

j=1

\int 

Vε,j

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx

=

ne\sum 

i=1

\int 

Eε,i

f\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx+

ne\sum 

i=1

\int 

Bl
ε,i\cup Br

ε,i

f\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx+

nv\sum 

j=1

\int 

Vε,j

f\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx

(8.7)
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for all \phi \in H1(Γ), where ne, nv denote the number of edges and vertices of Γ, respec-
tively. Let us next show that all integrals over the collars Bl

\varepsilon ,i\cup Br
\varepsilon ,i do not contribute

to the limit. First, note that all the terms
\int 
Bl,r

ε,i

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx vanish identically,

because w\varepsilon \scrV 
Γ
\varepsilon \phi is constant on Bl,r

\varepsilon ,i . Moreover, the terms

z

ne\sum 

i=1

\int 

Bl,r
ε,i

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx

from the second line of (8.7) can be estimated as follows:
\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 

Bl,r
ε,i

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \| u\varepsilon \| L2(Bl,r
ε,i)

\| \scrV Γ
\varepsilon \phi \| L2(Bl,r

ε,i)

= \| u\varepsilon \| L2(Bl,r
ε,i)

| \varepsilon Ω0| 
 - 1

2 \| \phi (v)\| L2(Bl,r
ε,i)

\leq \| u\varepsilon \| L2(Bl,r
ε,i)

| \varepsilon Ω0| 
 - 1

2 | \phi (v)| 
\bigm| \bigm| Bl,r

\varepsilon ,i

\bigm| \bigm| 1
2 ,

where we have used the fact that w\varepsilon \equiv 1 on Bl,r
\varepsilon ,i in the first line. Note that the

measure
\bigm| \bigm| Bl,r

\varepsilon ,i

\bigm| \bigm| is equal to | \varepsilon Ω0| \cdot d\varepsilon ,j (recall the definition of d\varepsilon ,j from Lemma 8.1).
Thus, we get

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 

Bl,r
ε,i

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq \| u\varepsilon \| L2(Bl,r
ε,i)

| \varepsilon Ω0| 
 - 1

2 | \phi (v)| | \varepsilon Ω0| 
1
2 \cdot d

1
2
\varepsilon ,j

= \| u\varepsilon \| L2(Bl,r
ε,i)

| \phi (v)| d
1
2
\varepsilon ,j .

Since d\varepsilon ,j \rightarrow 0 as \varepsilon \rightarrow 0, by Lemma 8.1, and \| u\varepsilon \| L2(Bl,r
ε,i)

is bounded, we conclude

that
\int 
Bl,r

ε,i

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx \rightarrow 0 for all i as \varepsilon \rightarrow 0. An analogous argument shows that

\sum 
i

\int 
Bl

ε,i\cup Br
ε,i

f\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx \rightarrow 0 as \varepsilon \rightarrow 0.

Next we turn to the integrals over the E\varepsilon ,i and V\varepsilon ,j . Since every fattened edge
is of the form E\varepsilon ,i = (\varepsilon Ω0) \times (0, \ell i), we can immediately conclude from the proof of
Theorem 6.3 that

ne\sum 

i=1

\int 

Ei,ε

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx \rightarrow 

ne\sum 

i=1

\int 

ei

\nabla u \cdot \nabla \phi dt+ \mu 

ne\sum 

i=1

\int 

ei

u\phi dt and

ne\sum 

i=1

\int 

Ei,ε

f\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx \rightarrow 

ne\sum 

i=1

\int 

ei

f\phi dt ,

z

ne\sum 

i=1

\int 

Ei,ε

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx \rightarrow z

ne\sum 

i=1

\int 

ei

u\phi dt

(8.8)

whenever f\varepsilon 
L2

 -  - \rightharpoonup f on each edge. It remains to study the integrals over V\varepsilon ,j . To treat
the gradient term, let j \in \{ 1, . . . , nv\} , and compute
\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 

Vε,j

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 

Vε,j

\nabla u\varepsilon \cdot \nabla w\varepsilon 

\bigl( 
\scrV Γ
\varepsilon \phi 

\bigr) 
dx+

\int 

Vε,j

\nabla u\varepsilon \cdot \nabla 
\bigl( 
\scrV Γ
\varepsilon \phi 

\bigr) 
w\varepsilon dx

\bigm| \bigm| \bigm| \bigm| \bigm| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 

Vε,j

\nabla u\varepsilon \cdot \nabla w\varepsilon 

\bigl( 
\scrV Γ
\varepsilon \phi 

\bigr) 
dx

\bigm| \bigm| \bigm| \bigm| \bigm| 

\leq C\| \nabla u\varepsilon \| L2(Vε,j)

\bigm\| \bigm\| \varepsilon 
 - N+1

2 \nabla w\varepsilon 

\bigm\| \bigm\| 
L2(Vε,j)

| \phi (v)| 
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\leq C\| f\varepsilon \| 
2
L2(Ωε)

\bigm\| \bigm\| \varepsilon 
 - N+1

2 \nabla w\varepsilon 

\bigm\| \bigm\| 
L2(Vε,j)

| \phi (v)| 

\leq C
\bigm\| \bigm\| \varepsilon 

 - N+1
2 \nabla w\varepsilon 

\bigm\| \bigm\| 
L2(Vε,j)

,

where we have used (8.6) in the fourth line. An explicit computation shows that

\bigm\| \bigm\| \varepsilon 
 - N+1

2 \nabla w\varepsilon 

\bigm\| \bigm\| 2

L2(Vε,j)
\leq C

RN
\varepsilon 

\varepsilon N - 1
.

Thus, the term
\int 
Vε,j

\nabla u\varepsilon \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx converges to 0 as \varepsilon \rightarrow 0. Similarly, we compute

\int 

Vε,j

f\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx \leq \| f\varepsilon \| L2(Ωε)| \phi (v)| \varepsilon 

 - N+1
2 \| w\varepsilon \| L2(Vε,j)

\leq C\varepsilon 
 - N+1

2 | V\varepsilon ,j | 
1
2

\rightarrow 0

as \varepsilon \rightarrow 0. Finally, we have

z

\bigm| \bigm| \bigm| \bigm| \bigm| 

\int 

Vε,j

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq z\| f\varepsilon \| L2(Ωε)| \phi (v)| \varepsilon 
 - N+1

2 \| w\varepsilon \| L2(Vε,j)

\leq zC\varepsilon 
 - N+1

2 | V\varepsilon ,j | 
1
2

\rightarrow 0

as \varepsilon \rightarrow 0. Since the vertex vj was arbitrary in the above procedure, we conclude that
the limit u solves the problem

\int 

Γ

\nabla u\nabla \phi dt+ (z + \mu )

\int 

Γ

u\phi dt =

\int 

Γ

f\phi dt \forall \phi \in H1(Γ),(8.9)

which is nothing but the sesquilinear form of the operator  - ∆ + \mu on L2(Γ) with
Neumann–Kirchhoff boundary conditions at each vertex. Since we only used weak
L2-convergence of f\varepsilon , we can argue as in the proof of Lemma 6.1 to obtain a norm-
resolvent convergence statement. More precisely, if we define

AΓ
\varepsilon :=  - ∆, \scrD (AΓ

\varepsilon ) =
\bigl\{ 
u \in H2(Ωp

\varepsilon ) : \partial \nu u| \partial Ωε
= 0 and u| \partial Tε

= 0
\bigr\} 
,

AΓ :=  - ∆+ \mu , \scrD (AΓ) =
\Bigl\{ 
u \in H2(Γ) :

\sum 

e\ni v

u\prime 
e(v) = 0 at all vertices v

\Bigr\} 
(8.10)

(where H2(Γ) is a defined as C(Γ) \cap 
\bigoplus ne

i=1 H
2(ei)), then we have the following.

Theorem 8.2. If
RN

ε

\varepsilon N - 1 \rightarrow 0 as \varepsilon \rightarrow 0, then
\bigm\| \bigm\| (AΓ

\varepsilon + z) - 1\scrU Γ
\varepsilon  - \scrU Γ

\varepsilon (A
Γ + z) - 1

\bigm\| \bigm\| 
\scrL (L2(Γ),L2(Ωp

ε))
\rightarrow 0

as \varepsilon \rightarrow 0.

It is easily seen that the conditions for Theorem 7.1 are also satisfied by the pair
(AΓ

\varepsilon ,\scrU 
Γ
\varepsilon ), which allows us to conclude the following.

Corollary 8.3. Choose z = 1, and let \lambda \varepsilon 
k and \lambda k denote the kth eigenvalues

of AΓ
\varepsilon and AΓ, respectively. There exist a constant C > 0 and a function a(\varepsilon ) with

a(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0 such that
\bigm| \bigm| (\lambda \varepsilon 

k)
 - 1  - \lambda  - 1

k

\bigm| \bigm| \leq Ca(\varepsilon ) \forall k \in N,

where C is independent of \varepsilon and k.
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8.3. Large vertex neighborhoods. Next, we study the case of large vertex
neighborhoods, i.e., | V\varepsilon | /| E\varepsilon | \rightarrow \infty . In other words, we assume V\varepsilon = R\varepsilon \cdot V for

some open, bounded set V as in section 8.1, where
RN

ε

\varepsilon N - 1 \rightarrow \infty as \varepsilon \rightarrow 0. Here
the situation is different from that in the previous subsection because the vertex
neighborhoods cannot be neglected in the limit anymore. In particular, spectral
convergence will not follow straightforwardly in this case, since (\scrU Γ

\varepsilon ) does not satisfy
(H4) in Theorem 7.1 for large vertex neighborhoods. Indeed, spectral convergence in
a narrow sense is expected to fail, as this is already the case in the classical situation
(without perforation). This is easily seen from the fact that the Neumann Laplacians
on the graph-like domain all have 0 as an eigenvalue, whereas the limit operator (a
decoupled Dirichlet Laplacian) does not. In the classical case this fact is circumvented
by considering dilated versions of the operators involved in order to reintroduce the
0 eigenvalue on the graph (see, for instance, [EP05, sect. 6, 7]). The question to
what extent those methods can be applied to the perforated case will be studied in
future work, but here we shall content ourselves with proving only strong convergence.
Similar comments apply to the borderline case which is studied in the next section.
To prove strong convergence, let f \in L2(Γ), and consider the equation

(A\varepsilon + z)u\varepsilon = \scrU Γ
\varepsilon f(8.11)

on Ω\varepsilon . As a preparation, note that from the a priori estimate (8.6) we obtain a bound
for u\varepsilon on the vertex neighborhoods

\| \nabla u\varepsilon \| L2(Vε) \leq C\| f\| L2(Γ).(8.12)

A blow-up argument as in the proof of Proposition 4.4 shows that for any vertex v
there exists a constant uv such that

\bigm\| \bigm\| u\varepsilon  - | V\varepsilon | 
 - 1/2uv

\bigm\| \bigm\| 
L2(Vε)

\rightarrow 0. We will show that

necessarily uv = 0. Owing to the new scale | V\varepsilon | present in this case, we introduce the
extension operator

\scrW Γ
\varepsilon : H1(Γ) \rightarrow H1(Ω\varepsilon ),

\scrW Γ
\varepsilon \phi (x) = | V\varepsilon | 

 - 1
2 \cdot 

\Biggl\{ 
\phi (t) if x = (x̄, t) \in E\varepsilon ,j , j \in \{ 1, . . . , ne\} ,

\phi (v) if x \in V\varepsilon \cup 
\bigcup 

\{ j:ej\ni v\} B
l,r
\varepsilon ,j ,

(8.13)

where the same comments as below (8.5) apply to the union
\bigcup 

\{ j:ej\ni v\} B
l,r
\varepsilon ,j and the

notation (x̄, t) \in E\varepsilon ,j . To this end, let \phi \in H1(Γ) and z \not =  - \mu , and use w\varepsilon \scrW 
Γ
\varepsilon \phi as a

test function in the weak formulation of (8.11):
\int 

Ωε

\nabla u\varepsilon \cdot \nabla (w\varepsilon \scrW 
Γ
\varepsilon \phi ) dx+ z

\int 

Ωε

u\varepsilon w\varepsilon \scrW 
Γ
\varepsilon \phi dx =

\int 

Ωε

(\scrU Γ
\varepsilon f)w\varepsilon (\scrW 

Γ
\varepsilon \phi ) dx

=

ne\sum 

i=1

\int 

Ei,ε

(\scrU Γ
\varepsilon f)w\varepsilon (\scrW 

Γ
\varepsilon \phi ) dx,(8.14)

where in the last line we used the fact that \scrU Γ
\varepsilon f = 0 on V\varepsilon \cup 

\bigcup 
\{ j:ej\ni v\} B

l,r
\varepsilon ,j . As in

Lemmas 5.2 and 5.4 one shows that for any j \in \{ 1, . . . , nv\} ,\int 

Vε,j

\nabla u\varepsilon \cdot \nabla (w\varepsilon \scrW 
Γ
\varepsilon \phi ) dx \rightarrow \mu uvj

\phi (vj),

z

\int 

Ωε

u\varepsilon w\varepsilon \scrW 
Γ
\varepsilon \phi dx \rightarrow zuvj\phi (vj).

Moreover, all integrals over the edge neighborhoods Ei,\varepsilon converge to 0 by our choice

of scaling in (8.13). Similarly, the integrals over the collars Bl,r
\varepsilon ,i vanish in the limit
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by a similar calculation to that after (8.7) (with | \varepsilon Ω0| 
 - 1

2 replaced by | V\varepsilon ,j | 
 - 1

2 ), using
again Lemma 8.1. Therefore, passing to the limit in (8.14) leads to

\mu uv\phi (v) + zuv\phi (v) = 0 for any vertex v \in Γ.(8.15)

Since \phi \in H1(Γ) was chosen arbitrarily and z \not = \mu we conclude from (8.15) that
uv = 0 for all vertices v.

Moving on to identifying the limiting equation, we note that it follows from the
a priori estimate (8.6) that on each edge (a subsequence of) u\varepsilon \upharpoonleft Ei,ε

converges to a
function in H1(ei). We conclude that there exists a function u \in 

\bigoplus 
i H

1(ei) such that
\| u\varepsilon  - \scrU Γ

\varepsilon u\| L2(Ωε) \rightarrow 0. To conclude, we note that since \| \nabla u\varepsilon \| L2(Ωε) is uniformly
bounded and u\varepsilon \rightarrow 0 at each vertex, we must have u\upharpoonleft Ei,ε

\in H1
0 (Ei,\varepsilon ) for all i.

Finally, we identify the limit equation by letting \phi \in H1
0 (Γ) and using w\varepsilon \scrV 

Γ
\varepsilon \phi as

a test function in the weak formulation of (8.11) to obtain

\int 

Ωε

\nabla u\varepsilon \cdot \nabla (w\varepsilon \scrV 
Γ
\varepsilon \phi ) dx+ z

\int 

Ωε

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx =

\int 

Ωε

(\scrU Γ
\varepsilon f)w\varepsilon (\scrV 

Γ
\varepsilon \phi ) dx.(8.16)

By the choice of \phi , all integrals over vertex neighborhoods and collars are zero, while
the integrals over the edge neighborhoods are treated exactly as in the case of small
vertex neighborhoods (cf. (8.8)). Passing to the limit in (8.16) we conclude that

\int 

Γ

\nabla u\nabla \phi dt+ (z + \mu )

\int 

Γ

u\phi dt =

\int 

Γ

f\phi dt \forall \phi \in 
\bigoplus 

e\in Γ

H1
0 (e).

To summarize, we have shown the following.

Theorem 8.4. If
RN

ε

\varepsilon N - 1 \rightarrow \infty , then for every f \in L2(Γ) one has

\bigm\| \bigm\| u\varepsilon  - \scrU Γ
\varepsilon u

\bigm\| \bigm\| 
L2(Ωε)

\rightarrow 0

as \varepsilon \rightarrow 0, where u\varepsilon denotes the solution of (8.11) and u \in 
\bigoplus 

e\in Γ H
1
0 (e) denotes the

solution to the decoupled family of Dirichlet problems

\Biggl\{ 
( - ∆+ \mu + z)u = f on e,

u = 0 on \partial e
(8.17)

for all edges e \in Γ.

8.4. The borderline case |Vε|/|Eε| → c > 0. Let us now study the case in
which the volume of the edge and the vertex neighborhoods decay at the same rate.
In other words, we assume V\varepsilon = R\varepsilon \cdot V for some open, bounded set V as in section

8.1, where without loss of generality
RN

ε

\varepsilon N - 1 \rightarrow 1 as \varepsilon \rightarrow 0. We study again problem
(8.4) on the corresponding perforated domain.

The discussion before (8.6) carries over verbatim to the present situation, and it
only remains to study the integrals over the vertex neighborhoods and collars. As in
section 8.2, we have

\int 

Vε

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx =

\int 

Vε

\nabla u\varepsilon \cdot \nabla w\varepsilon 

\bigl( 
\scrV Γ
\varepsilon \phi 

\bigr) 
dx+

\int 

Vε

\nabla u\varepsilon \cdot \nabla 
\bigl( 
\scrV Γ
\varepsilon \phi 

\bigr) 
w\varepsilon dx

=

\int 

Vε

\nabla u\varepsilon \cdot \nabla w\varepsilon 

\bigl( 
\scrV Γ
\varepsilon \phi 

\bigr) 
dx(8.18)
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for any fattened vertex V\varepsilon and

ne\sum 

i=1

\int 

Bl
ε,i\cup Br

ε,i

\nabla u\varepsilon \cdot \nabla 
\bigl( 
w\varepsilon \scrV 

Γ
\varepsilon \phi 

\bigr) 
dx = 0(8.19)

(since \scrV Γ
\varepsilon \phi is constant on V\varepsilon and w\varepsilon \equiv 1 on the Bl,r

\varepsilon ,i), whereas now the right-hand
side of (8.18) does not converge to zero. As noted in the discussion around (8.1),
the spectral parameter enters the boundary condition in this case. Hence, the limit
operator is not the resolvent of an operator on L2(Γ), and the notion of norm-resolvent
convergence makes no sense. Therefore, as in the last subsection, we shall content
ourselves with proving strong convergence here. This is readily obtained as follows.
The proof of Lemma 5.4 immediately implies that

\int 

Vε

\nabla u\varepsilon \cdot \nabla w\varepsilon 

\bigl( 
\scrV Γ
\varepsilon \phi 

\bigr) 
dx \rightarrow 

| V | 

| Ω0| 
\mu u(v)\phi (v)

for any vertex neighborhood V\varepsilon . Finally, we have

z

\int 

Vε

u\varepsilon w\varepsilon \scrV 
Γ
\varepsilon \phi dx dx \rightarrow 

| V | 

| Ω0| 
z u(v)\phi (v).

This follows from the facts that
\bigm\| \bigm\| u\varepsilon  - \scrV Γ

\varepsilon u
\bigm\| \bigm\| 
L2(Vε)

\rightarrow 0 and
\bigm\| \bigm\| w\varepsilon \scrV 

Γ
\varepsilon \phi  - \scrV Γ

\varepsilon \phi 
\bigm\| \bigm\| 
L2(Vε)

\rightarrow 0.

Since | V\varepsilon | ∼ | Ei,\varepsilon | , the proofs are entirely analogous to those in section 5.2. Hence
the weak limit u satisfies the equation

\int 

Γ

\nabla u\nabla \phi dt+ (z + \mu )

\int 

Γ

u\phi dt+ (z + \mu )
| V | 

| Ω0| 
u(v)\phi (v) =

\int 

Γ

f\phi dt \forall \phi \in H1(Γ).

(8.20)

This is nothing but the sesquilinear form for the Laplacian with Robin boundary
conditions. We summarize our results in the following theorem.

Theorem 8.5. If
RN

ε

\varepsilon N - 1 \rightarrow 1 as \varepsilon \rightarrow 0, then the solutions u\varepsilon of (8.4) satisfy\bigm\| \bigm\| u\varepsilon  - \scrV Γ
\varepsilon u

\bigm\| \bigm\| 
L2(Ωε)

\rightarrow 0, where u \in H1(Γ) solves

\left\{ 
 
 
( - ∆+ z + \mu )u = f on Γ,

\sum 
e\ni v u

\prime 
e(v) = (z + \mu ) | V | 

| Ω0| u(v) at each vertex v.
(8.21)

In particular, the strange term \mu enters the vertex condition of the limit problem.

9. Conclusion. We have shown that the classical result by [CM97] also holds in
a thin domain shrinking towards an interval or a graph. Furthermore, norm-resolvent
convergence holds in the sense of Theorem 6.3 and convergence of eigenvalues. Several
generalizations naturally arise. First, the author believes that the norm convergence
result generalizes to unbounded domains (that is, when the limit domain is an un-
bounded interval). A suitable modification of the argument in [CDR17] or [KP17]
seems like a reasonable approach.

Second, the curious effect of the “strange term” \mu appearing in the vertex condi-
tion observed in section 8.4 requires further study. Spectral convergence and abstract
operator estimates will be the subject of future work.
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