
Statistical Science
2022, Vol. 37, No. 1, 42–63
https://doi.org/10.1214/20-STS820
© Institute of Mathematical Statistics, 2022

A Comparative Tour through the Simulation
Algorithms for Max-Stable Processes
Marco Oesting and Kirstin Strokorb

Abstract. Being the max-analogue of α-stable stochastic processes, max-
stable processes form one of the fundamental classes of stochastic processes.
With the arrival of sufficient computational capabilities, they have become
a benchmark in the analysis of spatiotemporal extreme events. Simulation
is often a necessary part of inference of certain characteristics, in particular
for future spatial risk assessment. In this article, we give an overview over
existing procedures for this task, put them into perspective of one another
and use some new theoretical results to make comparisons with respect to
their properties.
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1. INTRODUCTION

The severe consequences of extreme events such as
strong windstorms, heavy precipitation or heat waves em-
phasize the need of appropriate statistical models for these
types of events. To adequately assess the associated risk,
not only the intensity, but also the spatial or spatiotem-
poral extent of extremes has to be taken into account.
Motivated by the central limit theorem, classical geo-
statistics typically applies Gaussian processes to model
the bulk of the distribution and the dependence structure
of continuous variables. Being the natural analogue to
Gaussian or, more generally, α-stable processes for max-
ima, max-stable processes are frequently used to model
spatial and spatiotemporal extremes, specifically in envi-
ronmental applications (cf. Davison, Padoan and Ribatet,
2012, Davison, Huser and Thibaud, 2018 and references
therein).

The prevalence of max-stable processes as a bench-
mark is justified by the fact that they arise as the only
possible location-scale max-limits of stochastic processes
in the following way: Let X1,X2,X3, . . . be indepen-
dent copies of a real-valued process X = {X(x)}x∈S on
some locally compact metric space S. If there exist suit-
able location-scale norming sequences an = an(x) > 0

Marco Oesting is Junior Professor of Computational Statistics,
Stuttgart Center for Simulation Science & Institute for
Stochastics and Applications, University of Stuttgart, 70569
Stuttgart, Germany (e-mail:
marco.oesting@mathematik.uni-stuttgart.de). Kirstin Strokorb
is Senior Lecturer, School of Mathematics, Cardiff University,
Cardiff CF24 4AG, UK (e-mail: strokorbk@cardiff.ac.uk).

and bn = bn(x) ∈ R, such that the law of{
max

i=1,...,n

Xi(x) − bn(x)

an(x)

}
x∈S

converges in distribution to a stochastic process Z =
{Z(x)}x∈S , then the resulting limit process Z necessarily
satisfies a stability property with respect to the maximum
operation. More precisely,{

max
i=1,...,n

Zi(x) − dn(x)

cn(x)

}
x∈S

= {
Z(x)

}
x∈S in distribution

for independent copies Z1,Z2,Z3, . . . of Z and appropri-
ate location-scale norming sequences cn = cn(x) > 0 and
dn = dn(x) ∈ R. In this sense, the process Z is max-stable
and the process X lies in its max-domain of attraction.

Over the last decades, max-stable processes have gained
attention from several research perspectives. In the 1980s
and early 1990s, they have mainly been studied from a
probabilistic angle, resulting, for instance, in a full charac-
terization of the class of sample-continuous simple max-
stable processes; see de Haan (1984), Norberg (1986) and
Giné, Hahn and Vatan (1990), among others. This work
has been complemented by a precise description of the
corresponding max-domain of attraction in de Haan and
Lin (2001). Since the early 2000s, methods for statistical
inference have been developed and, in parallel, suitable
models for subclasses of max-stable processes have been
introduced. Important examples for such models com-
prise Gaussian extreme value processes (Smith, 1990),
extremal Gaussian processes (Schlather, 2002), Brown–
Resnick processes (Kabluchko, Schlather and de Haan,
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2009) and extremal-t processes (Opitz, 2013) providing a
generalization of extremal Gaussian processes. With these
flexible models and tools at hand, max-stable processes
have become attractive for practitioners from various ar-
eas, in particular from environmental sciences.

However, a serious drawback is that most probabilis-
tic properties of max-stable processes are analytically
intractable. Therefore, simulation is often a necessary
part of inference of certain characteristics, in particu-
lar for future spatial risk assessment. Meanwhile, start-
ing from a general idea coined by Schlather (2002), a
number of approaches to the simulation of max-stable
processes have emerged: They include both approximate
(Oesting, Kabluchko and Schlather, 2012, Oesting and
Strokorb, 2018) and exact (Dieker and Mikosch, 2015,
Dombry, Engelke and Oesting, 2016, Oesting, Schlather
and Zhou, 2018, Liu et al., 2019) simulation procedures,
some of them focusing on the particularly difficult prob-
lem of simulating within the subclass of Brown–Resnick
processes. A first overview over some of these methods
has been given in Oesting, Ribatet and Dombry (2016).
The present article extends and updates this overview.
New theoretical results allow to put the different methods
into perspective of one another and to make comparisons
with respect to their theoretical properties and their per-
formance in numerical experiments.

Our text is structured as follows. To illustrate the need
for efficient and accurate simulation of max-stable pro-
cesses in an application, Section 2 describes a worked ex-
ample addressing questions that involve the (joint) distri-
bution of areal maxima over certain time horizons. Sub-
sequently, we review existing simulation approaches in
Section 3. Besides generic algorithms for the simulation
of arbitrary max-stable processes, we also present more
specific procedures that have been developed for the im-
portant and popular subclass of Brown–Resnick processes
(Section 4). In Section 5, we provide new theoretical re-
sults that allow us to evaluate and compare the simulation
approaches with respect to their efficiency and their ac-
curacy. The results of a numerical study comparing the
performance of the generic algorithms in a wide range of
scenarios are reported in Section 6. We conclude with a
discussion in Section 7 including further practical advice.

Full reproducible code of the analysis of Section 2 and
the numerical study of Section 6, all of which were car-
ried out in the statistical software environment R (R Core
Team, 2020), are available at https://github.com/Oesting/
Comparative-tour-through-simulation-algorithms-for-
max-stable-processes.

Marginal Standardization

For convenience, let us recall a structural result at the
very start. We shall assume throughout that all marginal
distributions of a max-stable process Z = {Z(x)}x∈S are

nondegenerate (i.e., not concentrated on a single value).
This implies that the marginal distributions of Z are nec-
essarily Generalized Extreme Value (GEV) distributions
(Jenkinson, 1955 and von Mises, 1936)

P
(
Z(x) ≤ z

) = Gξ(x)

(
z − μ(x)

σ (x)

)
,

Gξ(x)(z) = exp
(−(

1 + ξ(x)z
)−1/ξ(x)
+

)
,

with shape, location and scale parameters ξ(x),μ(x) ∈R

and σ(x) > 0, a result that goes back to Fréchet (1927)
and Fisher and Tippett (1928) and was first rigorously
proved in Gnedenko (1943). As the max-stability prop-
erty is preserved under marginal transformations within
the class of GEV distributions, attention is often drawn
to max-stable processes with fixed marginal distributions
such as the class of so-called simple max-stable processes,
the ones that have standard unit Fréchet marginal distribu-
tions, that is, P(Z(x) ≤ z) = exp(−1/z) for all z > 0 and
x ∈ S. To make this precise, if Z is a general max-stable
process with shape function ξ , location function μ and
scale function σ , then{(

1 + ξ(x)
Z(x) − μ(x)

σ (x)

)1/ξ(x)}
x∈S

is a simple max-stable process and, conversely, if Z is a
simple max-stable process, then{

σ(x)
Z(x)ξ(x) − 1

ξ(x)
+ μ(x)

}
x∈S

is a max-stable process with general GEV marginal distri-
butions. Thus, the simple max-stable process associated
with a general max-stable process in this way is a natu-
ral object to encapsulate its dependence structure (similar
to the disentanglement of a multivariate distribution into
marginal distributions and a copula). In addition, if we are
concerned about the simulation of a max-stable process
with given marginal distributions, this amounts to the sim-
ulation of a simple max-stable process and transforming
it thereafter to the desired marginal distributions.

2. DATA EXAMPLE

In statistical practice, max-stable processes are used to
approximate pointwise block maxima taken over suffi-
ciently long time periods. In this data example, we con-
sider daily maximum summer temperatures from 1990
to 2019 that were measured at 18 inland stations in the
Netherlands and are freely available from http://projects.
knmi.nl/klimatologie/daggegevens/selectie.cgi (cf. Fig-
ure 1) to answer questions about . . .

(Q1) . . . the distribution of the maximum inland tem-
perature over a period of 2 weeks in summer,

(Q2) . . . the probability that three subregions (SW, SE,
NE, cf. Figure 4) experience a joint exceedance of 38°C
within the same period of 14 days in summer.
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FIG. 1. Daily maximum summer temperatures on 84 summer days (5 June–27 August) from 1990 to 2019 at Deelen and their 14 day block
maxima. Their location-scale transformation and the model quantiles arise from the marginal estimates as described in Section 2.

FIG. 2. Left: Location function of the marginal GEV fit evaluated on the entire inland grid. Middle: Nonparametric estimates of bivariate extremal
coefficients corresponding to station pairs as estimated by the nonparametric procedure of Capéraà, Fougères and Genest (1997) (dots) and theoret-
ical counterpart of the fitted isotropic spatial max-stable model (line). Red dots indicate pairs that have been included in the procedure of Einmahl
et al. (2016) to estimate the spatial model. Right: Such pairs are connected in this graph.

To be more precise, when we say “inland,” we mean
every location in the Netherlands that is 15 km away
from the coast.1 In this study, it is represented by a grid
S = {yj }4712

j=1 of 4712 inland locations with (approximate)
grid distance 2.5 km as displayed in Figures 1 (left) and
2 (right). As regards the temperature data, exemplarily,
Figure 1 shows the daily maximum temperatures on 84
summer days (5 June to 27 August) from 1990 to 2019 as
well as their 14 day block maxima at one of the 18 sta-
tions, Deelen. Considering temporal dependence, we did

1Coastline data were obtained from rnaturalearth (South,
2017) and the package geosphere (Hijmans, 2019) used to com-
pute coast distances. The data at stations in this region exhibit a more
homogeneous behaviour compared to including stations closer to the
coast.

not detect strong evidence against independence among
14 day block maxima, while spatial dependence seems
to be of paramount importance, especially in the extreme
values (as we shall see confirmed below). Hence, our
working assumption is that these 14 day block maxima
can be considered as 180 independent samples2 (30 years
with 6 blocks/year) of a max-stable process {Z(x)}x∈S on
the inland part S of the Netherlands measured at 18 sites
x1,x2,x3, . . . ,x18 ∈ S as displayed in Figures 1 (left)
and 2 (right).

2Missing values only occur at two sites, Stavoren and Arcen, where
we lack knowledge about the first 29 summer days in 1990. The corre-
sponding 14 day block maxima have been removed from the analysis.
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Estimation

Following the paradigm of separating estimation of the
marginal and dependence structure, a standard approach
in Extreme Value Analysis, we first fitted a marginal
GEV distribution G(z;μ,σ, ξ) to the 14 day block max-
ima via maximization of the independence likelihood.
Here, while assuming the shape parameter ξ and the
scale parameter σ to be constant, geographical infor-
mation on the measurement stations serve as covariates
in the location parameter μ = μ0 + μ1longitude +
μ2latitude + μ3altitude. This maximum likeli-
hood estimator for the GEV parameters is consistent and
asymptotically normal for ξ > −0.5 (cf. Chandler and
Bate, 2007 and Bücher and Segers, 2017) and is, for in-
stance, readily available in the R package extRemes
(Gilleland and Katz, 2016). In our case, the estimated
GEV distributions are of Weibull-type (̂ξ ≈ −0.27 <

0). Exemplarily, Figure 1 (right) displays a QQ-plot of
the site-specific location-scale-standardized block max-
ima against the model quantiles of G(x; ξ̂ ). The marginal
GEV-fit has been found reasonable at almost all sites. Fig-
ure 2 (left) displays the estimated location function μ̂,
when evaluated on the inland grid. Altitude information
on the inland grid stems from the ASTER Global Digital
Elevation Model V2 (U.S./Japan ASTER Science Team)
and was accessed with geonames (Rowlingson, 2019).

Subsequently, what remains to be modeled, is the de-
pendence structure of Z, or equivalently, the associated
simple max-stable process after marginal standardization
as described in Section 1. For simplicity, we decided
for an isotropic Brown–Resnick process with variogram
γ (h) = ‖h/s‖α . Details about this process can be found
in Section 4 here. In addition to the estimation of the six
marginal parameters, this amounts to the estimation of
two further parameters to account for the spatial depen-
dence, a smoothness parameter α ∈ (0,2) and a spatial
scale s > 0. An approach for this task, for which con-
sistency and asymptotic normality have been established
even under max-domain of attraction conditions, is the
M-estimator of spatial tail dependence (Einmahl et al.,
2016). We chose it here as a generic approach with good
large sample properties that is not specifically tailored to
the class of Brown–Resnick processes. Alternatively, one
might consider likelihood based methods (Huser, Davison
and Genton, 2016) or more bespoke methods such as the
Peaks-over-threshold-inspired estimation of Engelke et al.
(2015) that was proposed specifically for Brown–Resnick
processes. The M-estimator relies on a selection of bivari-
ate distributions only, that is, pairs among the measure-
ment stations, and a number k of upper order statistics to
be taken into account for the estimation. Our choice of
pairs is displayed in Figure 2 (right) and we used k = 50.
In the related package tailDepFun (Kiriliouk, 2016),

we used the option iterate=T to improve and update
the (internal) distance weight matrix.

A typical sanity check after fitting a spatial max-stable
model to station data is a comparison of pairwise non-
parametric estimates of bivariate extremal coefficients
θ(xi ,xj ) (cf. (5.2) for K = {xi ,xj } in Section 5.1) with
the theoretical extremal coefficient function θ(‖x−y‖) of
the estimated spatial model as displayed in Figure 2 (mid-
dle). Our bivariate nonparametric estimates are based on
the procedure of Capéraà, Fougères and Genest (1997) as
implemented in evd (Stephenson, 2002). The very low
extremal coefficients, even for large distances, hint al-
ready at a strong extremal dependence among high tem-
peratures.

Simulation

Finally, we draw 60,000 independent samples Zi =
{Zi(yj )}4712

j=1 from the fitted max-stable model Zi∼Z (i =
1, . . . ,60,000) on the inland grid (yj )

4712
j=1 , which can be

interpreted in this context as 60,000 (grid-pointwise) tem-
perature maxima of a 14-day summer interval. All simula-
tions were carried out using the exact extremal functions
methodology from Dombry, Engelke and Oesting (2016)
(cf. Section 3.3 below). Normal random variables therein
were generated with the fast pseudo random number gen-
erator from dqrng (Stubner, 2019). Figure 3 shows the
first six simulations and a histogram of the corresponding
60,000 inland maxima, the latter being our data-driven an-
swer to (Q1).

Since each summer consists of six such blocks in our
setup, one may see this as sampling 10,000 times from a
summer that is represented by the data. In this sense, the
(1 − 1/(6�))-empirical quantile constitutes a return level
estimate for � years. Figure 3 (right) contains these esti-
mates for � ∈ {10,100,1000}. Since our estimated model
has Weibull margins, the maximum upper endpoint across
the grid is finite and gives us an estimate for the maximum
summer temperature across the entire inland. According
to this model it would be 43.1°C.

With regard to (Q2), we would like to draw attention
to Figure 4, which shows a scatterplot of the 60,000 joint
areal maxima{(

max
yj∈SW

Zi(yj ), max
yj∈SE

Zi(yj ), max
yj∈NE

Zi(yj )
)}60,000

i=1

across the three marked regions. In particular, the plot de-
picts that in our model dependence among high tempera-
tures increases. In other words, particularly high temper-
atures are more likely to be experienced across a wider
range of the inland. So our purely data-driven model
would be in line with a (physical) theory that supports a
single cause in such cases, a theory in which particularly
large values may arise only during a wide-spread heat-
wave. Counting the joint exceedances of 38°C in all three
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FIG. 3. Left: The first six out of 60,000 simulations from the estimated max-stable process on the inland grid after transformation to the estimated
GEV marginal distributions. Right: Histogram of the corresponding 60,000 inland maxima. Return levels need to be interpreted with caution (cf.
Section 2).

regions (marked red in Figure 4), leads to an estimate of
p̂ = 0.0046 for a joint exceedance during a 14 day sum-
mer interval, our data-driven answer to Q2. Referring to
an entire summer, one can interpret this as an estimate
of 1 − (1 − p̂)6 ≈ 6p̂ ≈ 2.75% for the probability of a
summer, in which 38°C is hit simultaneously in all three
regions during at least one of the six 14-day summer pe-
riods.

Caution!

All results in this section need to be interpreted with
caution. First of all, one needs to account for the uncer-
tainty inherent in the estimated characteristics, such as
the ones asked for in (Q1) and (Q2). Provided that the
fitted model was perfectly correct, these could be esti-
mated with arbitrary precision by the use of a sufficiently
large number of simulations. In practice, however, as sum-
marized in Davison and Huser (2015), there are different
types of uncertainty in the model fit, including uncertain-
ties related to taking measurements, choice of model class
and parameter estimation, for instance.

The vigilant reader will have also noted, that already
phrasing the initial questions (Q1) and (Q2) in this way
comes along with several assumptions about the data and
the underlying processes. Both (Q1) and (Q2) express
that we assume to see a more or less homogeneous be-
havior of maximum temperatures within a given sum-
mer and otherwise independent and identically distributed
summers. All the more, we would like to stress that our
(imperfect) answers defy easy interpretation in a clima-
tological context that is far beyond the scope of this arti-
cle.

Instead, one may understand this section as a simple
analysis of the current climate in the sense of the studied
questions and time frame. We deliberately draw attention
to the spatial rather than temporal aspects here, which is
in line with the core contents of this article. And we hope
that there is no doubt left about the critical role of the
simulations in this data example to provide answers to
questions that otherwise would be difficult to address at
all.

FIG. 4. Three inland regions (SW, SE, NE) and a scatterplot of simulated 60,000 joint areal maxima across these regions. Points (and their
bivariate projections) are marked red if all three areal maxima exceed 38°C.
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3. A SURVEY OF SIMULATION APPROACHES

In this section, we will give an overview over existing
algorithms for the simulation of a simple max-stable pro-
cess {Z(x)}x∈K on a compact domain K . Almost all sim-
ulation approaches are based on the fact that any sample-
continuous simple max-stable process Z possesses a spec-
tral representation{

Z(x)
}
x∈K

=
{
max
j∈N �−1

j Vj (x)
}
x∈K

in distribution,
(3.1)

where {�j }j∈N are the arrival times of a unit rate Poisson
process on (0,∞) with independent markings {Vj }j∈N
that are distributed according to a nonnegative sample-
continuous stochastic process {V (x)}x∈K , the so-called
spectral process (de Haan, 1984, Giné, Hahn and Vatan,
1990, Penrose, 1992). Since Z possesses standard unit
Fréchet margins, the spectral process V satisfies
E{V (x)} = 1 for all x ∈ K . Conversely, any continuous
stochastic process V that satisfies the moment condition
E{V (x)} = 1 for all x ∈ K gives rise to a max-stable pro-
cess Z via (3.1). The representation (3.1) is illustrated in
Figure 5.

It is important to note that the law of the max-stable pro-
cess Z in (3.1) does not uniquely determine the law of the
spectral process V . Instead, a different spectral process
V ′ in (3.1) may result in the same max-stable process Z.
More precisely, two spectral processes V and V ′ generate
the same max-stable process (in distribution) if and only
if

E

{
n

max
k=1

akV (xk)
}

= E

{
n

max
k=1

akV
′(xk)

}
for all n ∈ N, ak > 0 (k = 1, . . . , n), {x1, . . . ,xn} ⊂ K (de
Haan, 1978). We will call the processes V and V ′ equiv-
alent spectral processes in this case. For instance, multi-
plying V with a positive random variable with unit expec-
tation and independent of V yields the same max-stable

FIG. 5. Illustration of the spectral representation (3.1). Grey points
represent the reciprocal arrival times �−1

j , j ∈N, while grey lines cor-

respond to the processes �−1
j Vj (·), j ∈ N. The resulting max-stable

process Z is marked by the black dashed line.

process Z. In practice, the choice of spectral process V

can have a major effect on the accuracy and efficiency of
a certain simulation algorithm. As a starting point, how-
ever, we assume that a max-stable process Z is given by
a specific choice of the spectral process V despite the fact
that there may be other more convenient equivalent spec-
tral processes V ′ for Z.

3.1 Threshold Stopping—the General Idea

The first simulation algorithm was introduced by
Schlather (2002) and is motivated by the fact that the
points {�j }j∈N are the arrival times of a renewal process
with standard exponential interarrival times. In particu-
lar, the points {�j }j∈N are ordered: �1 < �2 < · · · almost
surely. Therefore, we would expect that the contribution
of the process �−1

j Vj (·) to the maximum in (3.1) becomes
smaller and smaller as j gets large and at some point neg-
ligible. In other words, the distribution of Z can be ap-
proximated by the pointwise maximum

Z(T )(x) = max
j=1,...,T

�−1
j Vj (x), x ∈ K,

where T is a sufficiently large, but finite number. Instead
of picking a deterministic number T , it turns out that an
appropriately defined random stopping time T results in
more accurate approximations. Typically, a threshold de-
pendent stopping time

(3.2) T = Tτ = min
{
j ∈ N : �−1

j+1τ < inf
x∈K

Z(j)(x)
}

is chosen, where τ > 0 is a prescribed threshold reflect-
ing an upper bound for the maximal contribution of the
spectral process V to the maximum in (3.1). A precise
description of the sampling procedure is given by Algo-
rithm 1 below.

If the spectral process V is uniformly bounded, we can
choose τ large enough to satisfy supx∈K V (x) < τ almost
surely. Clearly, in this case, (3.2) implies that for all x ∈ K

and j > Tτ

�−1
j Vj (x) < �−1

j τ ≤ �−1
Tτ +1τ < Z(Tτ )(x).

Consequently,{
Z(Tτ )(x)

}
x∈K = {

Z(∞)(x)
}
x∈K almost surely,

and a sample from the finite maximum Z(Tτ ) can be seen
as an exact sample from Z, since the distribution of Z(∞)

equals the distribution of Z by (3.1).
If, by contrast, P{supx∈K V (x) > τ } > 0, there is a

positive probability that Z(Tτ )(x) 
= Z(∞)(x) for some
x ∈ K . In this case, samples from Z(Tτ ) only provide ap-
proximations to the process of interest Z.

REMARK. The stopping time in (3.2) is almost surely
finite, since we assumed the max-stable process Z to
be sample-continuous. Indeed, sample-continuity implies
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Algorithm 1 Threshold Stopping Algorithm

that infx∈K Z(x) > 0 almost surely and only a finite num-
ber of functions {�−1

j Vj (x)}x∈K , j ∈N, contributes to the
maximum in (4.1); see Dombry and Eyi-Minko (2012),
Theorem 2.2, and de Haan and Ferreira (2006), Corol-
lary 9.4.4, respectively. Therefore, the infimum of the
Z(j)’s on the right-hand side in (3.2) exceeds 0 after a
finite number of steps j almost surely, while the inverses
of the �j ’s on the left-hand side tend to 0 with probabil-
ity one. Consequently, the stopping time in (3.2) is almost
surely finite.

3.2 Threshold Stopping—Normalizing Spectral
Processes

As discussed above, Threshold Stopping Algorithm 1
provides exact realizations of the max-stable process Z if
the spectral process V is almost surely bounded. If this
is not the case for V , it can still often be transformed
into an equivalent spectral process V ′, which is uniformly
bounded and generates the same max-stable process Z in
the sense of (3.1). Two such procedures have been studied
in further detail, both of which transform a given spectral
process V into an equivalent spectral process V ‖·‖, which
is normalized w.r.t. some norm ‖·‖, that is, it satisfies

(3.3)
∥∥V ‖·‖∥∥ = θ‖·‖ almost surely for some θ‖·‖ > 0.

The constant θ‖·‖ is uniquely determined by

θ‖·‖ = E‖V ‖ = lim
u→∞uP

{‖Z‖ > u
}
.(3.4)

and does not depend on the choice of the starting spectral
process V .

REMARK. More generally, Dombry and Ribatet
(2015) show that for each sample-continuous simple max-
stable process Z and each nonnegative measurable 1-
homogeneous functional � on C(K, [0,∞)), there exists
a spectral process V � for Z in the sense of (3.1) that is
uniquely characterized by the property �(V �) = θ� a.s.
for some constant θ� > 0. The constant θ� is necessar-
ily given by θ� = E�(V ) = limu→∞ uP{�(Z) > u} and

we may call V � the �-normalized spectral process of
Z. If V is an arbitrary spectral process for the simple
max-stable process Z, the equivalent �-normalized spec-
tral process V � can be obtained by a measure transform
V � = θ�Y/�(Y ), where P{Y ∈ dv} = �(v)/θ�P{V ∈ dv}.
The �-normalized spectral process V � characterizes ex-
tremes of stochastic processes also in terms of thresh-
old exceedances instead of maxima. Let X be a sample-
continuous process in the max-domain of attraction of
Z. Then, as u ↑ ∞, the conditional distribution of u−1X

given that �(X) > u converges weakly to the distribution
of the product P · θ−1

� V �, where P is a standard Pareto
random variable independent of the process V �. Thus,
the resulting limit process, the so-called �-Pareto pro-
cess (Dombry and Ribatet, 2015), is fully described by
the �-normalized spectral process V � and being able to
effectively simulate from V � has important implications
beyond the max-stable context. In what follows, with the
max-stable simulation context in view, we consider the
cases � = ‖·‖∞ (when K is compact) and � = ‖·‖1 and �

being the evaluation at a single point in K (when K is a
finite set) and discuss how the resulting processes V � are
related to each other.

Sup-normalization. The first transformation of this
type was introduced in Oesting, Schlather and Zhou
(2018) who proposed a normalization w.r.t. the supremum
norm ‖f ‖∞ = supx∈K f (x) for f ≥ 0. Starting from
an arbitrary sample-continuous spectral process V , the
unique equivalent sup-normalized spectral process V ‖·‖∞ ,
which satisfies supx∈K V ‖·‖∞(x)=θ‖·‖∞ almost surely,
can be obtained as the normalization

V ‖·‖∞(x) = θ‖·‖∞Y(x)

supx′∈K Y(x ′)
(3.5)

of a stochastic process Y with transformed law

P{Y ∈ A}

= 1

θ‖·‖∞

∫
A

sup
x∈K

v(x)P{V ∈ dv}, A ⊂ C(K).
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As the spectral processes V and V ‖·‖∞ are equivalent,
we can use the sup-normalized spectral process for simu-
lation. By construction, all the sample paths of V ‖·‖∞ are
bounded by θ‖·‖∞ almost surely, and by Resnick and Roy
(1991), sample-continuity of Z already implies that θ‖·‖∞
is finite (see also de Haan and Ferreira, 2006, Theorem
9.6.1). Therefore, the output of Algorithm 1 with thresh-
old τ = θ‖·‖∞ is an exact realization of the max-stable pro-
cess Z, when the sup-normalized spectral representation
V ‖·‖∞ is used therein.

By (3.5), simulation of V ‖·‖∞ can be based on sim-
ulation of the transformed process Y . While Oesting,
Schlather and Zhou (2018) suggest an approximating
Markov Chain Monte Carlo (MCMC) algorithm for this
task, more recently, de Fondeville and Davison (2018)
present a relation that allows for exact simulation of Y

via rejection sampling provided that a simulation proce-
dure for the normalized spectral process V ‖·‖ for an ar-
bitrary norm is given. We refer to Section 4.3 for further
efficiency improvements when V is log-Gaussian. The re-
sulting process Y/‖Y‖∞ has then the law of V ‖·‖∞/θ‖·‖∞ .
While analytic expressions for the normalizing constant
θ‖·‖∞ are usually not available, it can still be estimated
in the course of the simulation procedure, for example,
via the relation θ‖·‖∞ = E‖V ‖∞, and can subsequently be
used for an ex post normalization. The constant θ‖·‖∞ is
also known as extremal coefficient; cf. (5.2).

Sum-normalization. The second transformation of type
(3.3) uses a normalization w.r.t. the �1-norm ‖f ‖1 =∑N

k=1 f (xk) for f ≥ 0 on a finite domain K = {x1, . . . ,

xN }. It has been proposed by Dieker and Mikosch (2015)
for the special case of Brown–Resnick processes (see Sec-
tion 4) and extended to a more general framework by
Dombry, Engelke and Oesting (2016). The starting point
for the construction of this representation is the fact that,
given the distribution of Z, for each k ∈ {1, . . . ,N}, there
is a unique equivalent spectral process V (k) of Z with the
property V (k)(xk) = 1 almost surely. Its law is given by

Pk(A)

=
∫
[0,∞)K

v(xk)1
{
v ∈ v(xk)A

}
P{V ∈ dv},(3.6)

for A ⊂ [0,∞)K = [0,∞){x1,...,xN }, where V is an arbi-
trary spectral process of Z. Dombry, Engelke and Oesting
(2016) show that the unique equivalent sum-normalized
spectral process V ‖·‖1 , which satisfies

∑N
k=1 V ‖·‖1(xk) =

θ‖·‖1 = N almost surely, is then given by

V ‖·‖1 = N
Y

‖Y‖1
, where Y ∼ 1

N

N∑
k=1

Pk.

Since V ‖·‖1 satisfies ‖V ‖·‖1‖1 = N almost surely, and
each component of a vector is bounded by its �1-norm,

that is, V ‖·‖1(x) ≤ ‖V ‖·‖1‖1 = N for all x ∈ K , the sum-
normalized spectral process V ‖·‖1 can be used as spec-
tral process for Algorithm 1 resulting in exact realizations
for the threshold τ = N . Dombry, Engelke and Oesting
(2016) also explicitly calculate the laws Pk , k = 1, . . . ,N ,
and thus, verify that they can be easily sampled for many
popular max-stable models such as Brown–Resnick pro-
cesses or extremal-t processes.

3.3 Extremal Functions

A simulation procedure that essentially differs from
the previously considered threshold stopping algorithm
is the extremal functions approach, which was also in-
troduced in Dombry, Engelke and Oesting (2016). In-
stead of simulating the elements of the Poisson point pro-
cess 
 = {ϕj }j∈N with ϕj (·) = �−1

j Vj (·) in an ascend-
ing order w.r.t. �j until a stopping criterion is fulfilled,
the idea is to simulate only the so-called extremal func-
tions (Dombry and Eyi-Minko, 2013) that definitely con-
tribute to the final maximum in (3.1) on the finite domain
K = {x1, . . . ,xN }, that is, all the functions ϕ ∈ 
 such
that

ϕ(xk) = max
j∈N ϕj (xk)(3.7)

for some k ∈ {1, . . . ,N}. It can be shown that, for each
k ∈ {1, . . . ,N}, with probability one, there is exactly one
(extremal) function ϕ ∈ 
 satisfying (3.7), which we de-
note by ϕ

(k)
+ in the following. The algorithm subsequently

simulates the processes

Z
(k)
+ (·) = max

j=1,...,k
ϕ

(j)
+ (·).(3.8)

By construction, the process Z
(k)
+ is exact at x1, . . . ,xk ,

that is,{
Z

(k)
+ (xi )

}
i=1,...,k = {

Z(xi )
}
i=1,...,k in distribution.

In particular, the final process Z
(N)
+ has the same distri-

bution as the desired max-stable process Z on the entire
domain K = {x1, . . . ,xN }.

The theory behind this procedure stems from Dombry
and Eyi-Minko (2013) who show—by using Slivnyak–
Mecke type arguments—that, for each k = 1, . . . ,N , the
point process 
 \ {ϕ(1)

+ , . . . , ϕ
(k)
+ } is conditionally inde-

pendent from {ϕ(1)
+ , . . . , ϕ

(k)
+ } conditional on Z(x1), . . . ,

Z(xk). Based on this result, the law of the collection of
all N needed extremal functions {ϕ(k)

+ }k=1,...,N can be de-
scribed by an iterative procedure:

• Initially, ϕ
(1)
+ ∼ �−1

1 V (1).
• Subsequently, the conditional law of the next extremal

function ϕ
(k)
+ , when the previous extremal functions

ϕ
(1)
+ , . . . , ϕ

(k−1)
+ are already given, can be described as

follows:
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(i) Either ϕ
(k)
+ is the unique argmax of the evalua-

tion functional at xk in a Poisson point process 
(k) on
[0,∞)K , whose intensity measure equals the intensity
measure of 
 restricted to the set{

ϕ ∈ [0,∞)K : ϕ(xi ) < Z
(k−1)
+ (xi )

for i < k and ϕ(xk) > Z
(k−1)
+ (xk)

}
(ii) Or, in the event that 
(k) is empty, ϕ

(k)
+ is one of

the previous extremal functions.

The restricted Poisson point process 
(k) in (i) can be
conveniently simulated by iteratively generating Poisson
points ϕ

(k)
j = �−1

j Vj from the original Poisson point pro-
cess 
, where we choose the spectral processes Vj as
independent copies of the special spectral process V (k)

(cf. (3.6)). This ensures that ϕ
(k)
j (xk) = �−1

j Vj (xk) =
�−1

j a.s. Thereby, similar to a threshold stopping proce-
dure, the potential new value at xk is running through
the descending values �−1

1 > �−1
2 > · · · . However, since

we are ultimately interested in 
(k) (and not 
), we
test each time if ϕ

(k)
j (xi ) < Z

(k−1)
+ (xi ) for all i < k.

If that happens, we have found our new argmax within

(k), and hence extremal function ϕ

(k)
+ = ϕ

(k)
j . Otherwise,

we will arrive at a �−1
j that falls below Z

(k−1)
+ (xk) for

some j ≥ 1. This corresponds to the event that 
(k) is
empty.

The entire procedure is summarized by Algorithm 2 be-
low.

3.4 Summary of Generic Simulation Approaches

The aforementioned simulation approaches to obtain a
simple max-stable process Z are generic in the sense that
they are not tailored to a specific class of max-stable pro-
cesses. Figure 6 provides a quick overview. We would

like to draw attention to the fact that each of these ap-
proaches relies on the ability to simulate from a (family
of) specific spectral process(es) V for the max-stable pro-
cess Z; cf. also Table 2. Considering a finite domain K =
{x1, . . . ,xN }, the extremal functions approach needs the
simulation of spectral processes V (1), . . . , V (N) (i.e., sim-
ulation from the N measures in (3.6)) readily available.
The sum-normalized and sup-normalized approaches are
by definition based on the availability of the spectral
processes V ‖·‖1 and V ‖·‖∞ , respectively. As explained
in Section 3.2, availability of V (1), . . . , V (N) guarantees
availability of V ‖·‖1 at a negligible additional compu-
tational cost (drawing a point from the finite domain
K = {x1, . . . ,xN }). Further, if any normalized V ‖·‖ is
available (for instance, the sum-normalized spectral pro-
cess V ‖·‖1 ), then it can also be used to simulate the sup-
normalized spectral functions V ‖·‖∞ via rejection sam-
pling up to a multiplicative constant (de Fondeville and
Davison, 2018); cf. Section 3.2. Rejection sampling is
usually costly; the computational cost can be reduced in
some special cases; cf. Section 4.3.

4. SPECIALTIES FOR BROWN–RESNICK
PROCESSES

Among several popular max-stable processes, the class
of Brown–Resnick processes stands out as a parsimonious
spatial model that has become a benchmark in spatial ex-
tremes. Let {W(x)}x∈K be a centered Gaussian process
with variance {σ 2(x)}x∈K . Then the max-stable process
{Z(x)}x∈K that is associated to the spectral process

V (x) = exp
(
W(x) − σ 2(x)

2

)
, x ∈ K(4.1)

Algorithm 2 Extremal Functions Algorithm
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FIG. 6. Overview over generic simulation approaches to obtain a max-stable process Z from one of its spectral processes V .

via (3.1) has unit Fréchet marginal distributions and its
law depends only on the variogram

γ : K × K → [0,∞),

γ (x,y) = E
(
W(x) − W(y)

)2

(Kabluchko, 2011). In particular, for K ⊂ R
d , the max-

stable process Z is stationary if the variogram γ depends
only on x − y and by slight abuse of notation we write
γ (x −y) = γ (x,y) in this case. The stationary process Z

has first been introduced in Kabluchko, Schlather and de
Haan (2009) in this generality and is now widely known
as Brown–Resnick process. In practice, among unbounded
variograms on R

d , it is almost exclusively the variogram
family γ (x − y) = ‖(x − y)/s‖α , s > 0, α ∈ (0,2) of
fractional Brownian sheets (fBS) that is considered in ap-
plications.

4.1 Threshold Stopping Based on Gaussian Mixtures

The first attempts of simulating a Brown-Resnick
process Z were based on threshold stopping with a
log-Gaussian spectral process V as in (4.1) satisfying
W(xo) = 0 for some xo ∈ K . Typically, the origin o ∈ R

d

belongs to the simulation domain K and xo = o. We re-
fer to such spectral processes V = V (orig) as the original
spectral representation of the Brown–Resnick process Z.
Since log-Gaussian processes do not have an almost sure
upper bound, such a threshold stopping procedure based
on V (orig) cannot be exact. Instead, a typical phenomenon
is that the threshold stopping procedure works well in a
neighborhood of xo, where the variance of the underly-
ing Gaussian process is small, but a simulation bias ap-
pears in those parts of the domain where the variance is
large. To avoid this phenomenon, Oesting, Kabluchko and

Schlather (2012) introduced a uniformly distributed ran-
dom shift in the spectral process

V (shift)(x)

= V (orig)(x − S), x ∈ K,S ∼ Unif(K).
(4.2)

Note that the superimposed homogeneity comes however
at the cost of increasing the variance of the spectral pro-
cess even further in most situations.

More recently, Oesting and Strokorb (2018) explain
how a variance reduction of the Gaussian process W in
(4.1) with fixed variogram γ can lead to faster and more
accurate simulations based on the threshold stopping pro-
cedure. Specifically, when W is chosen such that the max-
imal variance supx∈K Var(W(x)) is minimal among all
Gaussian processes on K with variogram γ , we call the
corresponding spectral process in (4.1) minimal variance
spectral process V (minvar). Table 1 lists the corresponding
minimal Gaussian processes on the d-dimensional hyper-
rectangle [−R,R] ⊂ R

d for the variogram family γ (h) =
‖h/s‖α , α ∈ (0,2), s > 0. For d ≥ 2 and α ∈ (0,1), the
minimal representation is unknown. However, also in this
case the modified Gaussian process

W(x) = W (orig)(x) − 2−d
∑

v∈Ex([−R,R])
W (orig)(v),

where Ex([−R,R]) is the set of vertices of the simulation
domain [−R,R] ⊂ R

d , has a substantially reduced maxi-
mal variance compared to the original process W (orig) and
should be preferred.

4.2 Record Breakers

An exact simulation procedure for Brown–Resnick pro-
cesses, which is specifically tailored to this class, is the
record breakers approach by Liu et al. (2019). It is based
on the original spectral representation (3.1) with V being
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TABLE 1
Gaussian process W (minvar) with variogram γ (h) = ‖h/s‖α , α ∈ (0,2), s > 0 that minimize the maximal variance on the hyperrectangle

[−R,R] ⊂R
d . The process is either given by its covariance C(minvar) or built from the original representation W (orig)

d = 1 d ≥ 2

α ∈ (0,1] C(minvar)(x, y) = 2−1s−α(�( 2−α
2 )�( 1+α

2 )�( 1
2 )−1 − |x − y|α) unknown

α ∈ [1,2) W (minvar)(x) = W (orig)(x) − 2−d ∑
v∈Ex([−R,R]) W (orig)(v)

a log-Gaussian random field as in (4.1). Let a, c ∈ (0,1)

and C > 0 and consider the three random times

NX = sup
{
n ∈ N : max

i=1,...,N
Vn(xi) > na exp(C)

}
,

N� = sup{n ∈ N : �n ≤ cn},

Na = sup
{
n ∈N : nc ≤ �1n

a exp(C)

mini=1,...,N V1(xi )

}

=
⌊(

�1 exp(C)

c mini=1,...,N V1(xi )

)1/(1−a)⌋
.

From the definition of NX , N� and Na , it is easily checked
that

{
Z(max{NX,N�,Na})(x)

}
x∈K

= {
Z(∞)(x)

}
x∈K in distribution.

While Na can be obtained directly from �1 and V1, sim-
ulation of the random times NX and N� is more sophis-
ticated. For the simulation of N� , Liu et al. (2019) make
use of the fact that {�n − cn}n∈N is a random walk with
positive drift. An algorithm is provided that subsequently
samples the times when the random walk crosses zero.
Due to its positive drift the process will finally stay pos-
itive. To obtain NX , all so-called record-breaking times
η1 < η2 < · · · , that is, all η ∈ N such that

max
i=1,...,N

Vη(xi ) > na exp(C),

are subsequently simulated. The finiteness of all moments
of maxi=1,...,N V (xi ) implies that the number of record-
breaking times is almost surely finite. Consequently, the
record-breakers algorithm requires an almost surely finite
number of simulations of log-Gaussian processes Vi to
obtain a realization of the Brown–Resnick process Z.

REMARK. On a practical note, Liu et al. (2019) also
provide guidance on how to choose the parameters a, c ∈
(0,1) and C > 0. However, there is an additional parame-
ter δ ∈ (0,1) involved, where the practical implications of
this choice and its interplay with the other parameters are
still open.

4.3 Generic Approaches

Besides these approaches that are rather specific to the
class of Brown–Resnick processes, general procedures
such as simulation based on normalized spectral pro-
cesses (Section 3.2) or the extremal functions approach
(Section 3.3) can be used; cf. also Figure 6. Consider-
ing a finite domain K = {x1, . . . ,xN }, the distribution
Pk from (3.6) is the distribution of the stochastic process
{exp(W (orig)(x − xk))}x∈K (Dombry, Engelke and Oest-
ing, 2016). Therefore, the extremal functions approach as
in Algorithm 2 is readily available for Brown–Resnick
processes. Further, this implies that the sum-normalized
spectral process is of the form

V ‖·‖1(x)

= N
exp(W (orig)(x − S))∑N

k=1 exp(W (orig)(x − xk))
, x ∈ K,

(4.3)

where S is uniformly distributed on K = {x1, . . . ,xN }
and independent of W (orig), which has been demonstrated
already earlier in Dieker and Mikosch (2015). Finally,
the simple representation (4.3) of the sum-normalized
spectral functions can also be used to simulate the sup-
normalized spectral functions via rejection sampling (de
Fondeville and Davison, 2018). Modifications of the
last approach to reduce the rejection rate and alterna-
tive MCMC procedures have recently been proposed by
Oesting, Schlather and Schillings (2019).

REMARK. Furthermore, Ho and Dombry (2019) show
that, conditional on the component k∗ ∈ {1, . . . ,N} where
the maximum is assumed, the distribution of the vector
(V ‖·‖∞(xk))k=1,...,N/V ‖·‖∞(xk∗) equals the distribution
of a log-Gaussian vector conditional on not exceeding
one—a fact that can be used for its simulation. As effi-
cient sampling from such a conditional distribution is not
straightforward in high dimension and the calculation of
the distribution of k∗ involves the inversion of several ma-
trices of sizes N × N and (N − 1) × (N − 1) as well as
evaluations of (N − 1)-dimensional Gaussian distribution
functions; however, this approach is limited to small or
moderate N in practice.
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5. DESIRABLE PROPERTIES

Simulation algorithms are supposed to provide results
in an efficient and accurate way. In this section, we inves-
tigate the performance of the algorithms above with re-
spect to these two aspects from a theoretical angle. While
the efficiency of an algorithm can be characterized in
terms of its computational complexity, we measure its ac-
curacy in terms of distributional properties of the approx-
imation error. The proofs for this section are postponed to
Appendix A.

5.1 Efficiency

Apart from the record breakers approach (Section 4.2),
which is tailored to the class of Brown–Resnick pro-
cesses, all other simulation algorithms reviewed in this
manuscript are based on the simulation of standard Pois-
son points �j on the positive real line and associated
spectral processes Vj on the simulation domain K only.
Hence, if cV (K) denotes the computational complexity
of simulating a single spectral process V on the domain
K and NV (K) denotes the total number of spectral pro-
cesses Vj to be simulated in such a simulation algorithm,
then the law of the product NV (K) · cV (K) describes the
computational complexity of the entire procedure. As the
second factor cV (K) inevitably depends on the simula-
tion technique used to generate samples from the specific
spectral function V , we focus our analysis mainly on the
first factor NV (K) henceforth.

In case of the Threshold Stopping Algorithm 1, the ran-
dom number NV (K) of spectral processes to be simulated
coincides with the stopping time T = Tτ from (3.2). Its
expected value can be bounded as follows.

PROPOSITION 5.1.

(a) The expected stopping time of the Threshold Stop-
ping Algorithm 1 is bounded from below by

E
(
NV (K)

) = E(Tτ ) ≥ τE
{
1/ inf

x∈K
Z(x)

}
.(5.1)

(b) Equality in (5.1) holds if and only if supx∈K V (x) ≤
τ almost surely.

The lower bound in (5.1) is finite for sample-continuous
Z by Theorem 2.2 in Dombry and Eyi-Minko (2012). It
should be relatively sharp in most practically relevant sit-
uations, while an ad hoc rough upper bound is given by

E
(
NV (K)

) = E(Tτ ) ≤ 1 +E

{
τ/ inf

x∈K
V (x) − 1

}
+.

Another interpretation of Proposition 5.1 (b) is that equal-
ity in (5.1) holds if and only if the threshold stopping al-
gorithm produces exact samples of the max-stable pro-
cess Z; cf. Section 3.1. Equality in (5.1) in this situation
was already proved by a different technique in Oesting,
Ribatet and Dombry (2016). Naturally, the following re-
spective results for the normalized spectral representa-
tions (Section 3.3) can be recovered as special cases.

COROLLARY 5.2.

(a) (Oesting, Schlather and Zhou, 2018) The expected
stopping time of the Threshold Stopping Algorithm 1 with
sup-normalized representation V = V ‖·‖∞ and threshold
τ = θ‖·‖∞ is

E
(
NV ‖·‖∞ (K)

) = ETθ‖·‖∞ = θ‖·‖∞E

{
1/ inf

x∈K
Z(x)

}
.

(b) (Dombry, Engelke and Oesting, 2016) The ex-
pected stopping time of the Threshold Stopping Algo-
rithm 1 with sum-normalized representation V = V ‖·‖1

and threshold τ = N is

E
(
NV ‖·‖1 (K)

) = ETN = NE

{
1/ inf

x∈K
Z(x)

}
.

An interesting observation is that the expressions for
E(NV (K)) = ETτ above depend on the law of the spec-
tral process V used only via the law of the resulting max-
stable process Z. In particular, if V is any spectral process
for Z, the constant

θ‖·‖∞ = E

{
sup
x∈K

V (x)
}

= − logP
{

sup
x∈K

Z(x) ≤ 1
}(5.2)

is usually known as extremal coefficient of Z on K .
For K = {x1, . . . ,xN }, it ranges between 1 and N and
can be interpreted as the effective number of indepen-
dent variables in the set {Z(x1), . . . ,Z(xN)}. In view
of Corollary 5.2, being able to effectively simulate from
a sup-normalized spectral process is therefore a worth-
while endeavor. What is however unclear in this general
setting, is how the computational complexities cV ‖·‖1 (K)

and cV ‖·‖∞ (K) of obtaining a single realization of either
V ‖·‖1 or V ‖·‖∞ relate to one another. Here, a more effec-
tive simulation technique for V ‖·‖1 rather than for V ‖·‖∞

may outweigh the reduction of the factor E(NV (K)) =
E(Tτ ) by using V = V ‖·‖∞ instead of V = V ‖·‖1 ; see
Section 4.3 for related references for the case of Brown–
Resnick processes. This is a general trade-off associated
with the choice of the spectral process V for threshold
stopping algorithms. Should it be easy to simulate Z from
V (low NV (K)) or should be easy to simulate V itself
(low cV (K))? For V = V ‖·‖1 and V = V ‖·‖∞ , we can at
least trace E(NV (K)) analytically as just discussed.

What is more, Dombry, Engelke and Oesting (2016)
show that the expected number of simulated spectral pro-
cesses in the Extremal Functions Algorithm 2 neither de-
pends on the law of Z nor on the geometry of the do-
main K .

PROPOSITION 5.3 (Dombry, Engelke and Oesting,
2016). The expected number of spectral processes to
be simulated in the Extremal Functions Algorithm 2 in
order to obtain an exact sample of Z on the set K =
{x1, . . . ,xN } equals N , that is, ENV (K) = N for this
algorithm.
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TABLE 2
The expected number E(NV (K)) of spectral functions Vj to be simulated to obtain an exact sample of a max-stable process Z on a set

K = {x1, . . . ,xN } for three generic simulation algorithms. Each method relies on the ability to simulate from specific spectral functions V

Method/Reference Spectral fcts. V E(NV (K))

SN Sup-normalized threshold stopping V ‖·‖∞ θ‖·‖∞E{1/infx∈K Z(x)}
(Oesting, Schlather and Zhou, 2018,
Section 3.2)

DM Sum-normalized threshold stopping V ‖·‖1 NE{1/infx∈K Z(x)}
(Dieker and Mikosch, 2015,
Section 3.2)

EF Extremal functions V (1), . . . , V (N) N

(Dombry, Engelke and Oesting, 2016,
Section 3.3)

Table 2 summarizes these findings on the efficiency of
the three generic exact simulation algorithms considered
in this section. Since the max-stable process Z to be sim-
ulated has standard Fréchet margins, we have

E

{
1/ inf

x∈K
Z(x)

}
≥ 1,(5.3)

and equality holds if and only if Z is almost surely con-
stant on K . Hence, apart from this exceptional case,
the expected number of simulated spectral processes
E(NV (K)) for the extremal functions approach is al-
ways smaller than the corresponding number for the sum-
normalized approach. According to the results in Dombry,
Engelke and Oesting (2016) (cf. also Section 3.4), the
spectral processes involved in the two approaches are very
closely related to each other, that is, their complexities
cV (K) are almost identical. Thus, in terms of computa-
tional complexity, the extremal functions approach is al-
ways preferable to the sum-normalized approach if exact
samples are desired.

REMARK. For the record breakers approach, Liu et
al. (2019) show that the expected number E(NV ({x1, . . . ,

xN })) of spectral processes Vj ∼ V (orig) to be simulated
in order to produce an exact sample of a Brown–Resnick
process Z lies in o(Nε) for any ε > 0. The result is how-
ever difficult to compare with Table 2 as it holds for fixed
K ⊃ {x1, . . . ,xN } only. For instance, the corresponding
result for the sup-normalized threshold stopping could be
phrased as E(NV ({x1, . . . ,xN })) ∈ O(1) for V = V ‖·‖∞ .
This exacerbates meaningful comparisons.

5.2 Accuracy

While simulation via normalized spectral functions
with appropriate thresholds or the extremal functions ap-
proach produce exact samples from the distribution of a
max-stable process, these algorithms can be computation-
ally expensive. Therefore, also the analysis of nonexact
simulation algorithms is of interest.

Threshold stopping. Our main focus lies on the poten-
tially nonexact Threshold Stopping Algorithm 1 in what
follows. As explained in Section 3.1, such an algorithm
can be nonexact if the threshold τ is exceeded by the
spectral process V on K with positive probability. Nat-
urally, decreasing the threshold τ reduces the computa-
tional cost. But at the same time, the simulation is more
likely to be less accurate as well. To make this specific,
let us define the simulation error as the deviation of the
resulting finite approximation Z(Tτ ) from the exact sam-
ple Z = Z(∞). The following proposition provides a very
general description of the distribution of the simulation
error.

PROPOSITION 5.4. For any measurable function f :
C(K) × K → [0,∞], we have

P
{∣∣Z(x) − Z(Tτ )(x)

∣∣ > f
(
Z(Tτ ),x

)
for some x ∈ K

}
= 1 −EZ(Tτ )

{
exp

(
−EV

{
sup
x∈K

V (x)

Z(T )(x) + f (Z(Tτ ),x)

− sup
x∈K

τ

Z(Tτ )(x)

}
+

)}
,

where the spectral process V and the stopped process
Z(Tτ ) are stochastically independent.

Specifically, by setting f (Z,x) = ε or f (Z,x) =
εZ(x), Proposition 5.4 entails the probability that an ab-
solute error of size larger then ε occurs

P (abs)
τ,ε = P

{
sup
x∈K

∣∣Z(x) − Z(Tτ )(x)
∣∣ > ε

}

= 1 −EZ(Tτ )

{
exp

(
−EV

{
sup
x∈K

V (x)

Z(Tτ )(x) + ε

− sup
x∈K

τ

Z(Tτ )(x)

}
+

)}
,
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and the probability that a relative error of size larger than
ε occurs

P (rel)
τ,ε = P

{
sup
x∈K

|Z(x) − Z(Tτ )(x)|
Z(Tτ )(x)

> ε

}

= 1 −EZ(Tτ )

{
exp

(
−EV

{
sup
x∈K

V (x)

(1 + ε)Z(Tτ )(x)

− sup
x∈K

τ

Z(Tτ )(x)

}
+

)}
.

Both error occurrence probabilities are increasing as the
error size ε goes to zero. For ε = 0, they coincide with the
probability that a simulation error occurs at all

Pτ = P

{
sup
x∈K

∣∣Z(x) − Z(Tτ )(x)
∣∣ > 0

}

= 1 −EZ(Tτ )

{
exp

(
−EV

{
sup
x∈K

V (x)

Z(Tτ )(x)
(5.4)

− sup
x∈K

τ

Z(Tτ )(x)

}
+

)}
,

which can serve as a benchmark. In the notation of Sec-
tion 3.3, an approximation error occurs precisely when the
finite approximation Z(Tτ ) does not involve all extremal
functions ϕ ∈ 
+ = {ϕ(1)

+ , . . . , ϕ
(N)
+ }. The situation gets

worse, the larger the number of missing extremal func-
tions

Mτ =
∣∣∣{�−1

j Vj ∈ 
+ : �−1
j τ ≤ inf

x∈K
max
k<j

�−1
k Vk(x)

}∣∣∣.
is. The expected number of missing extremal functions
E(Mτ ) is a natural upper bound for the error probability
Pτ , that is, Pτ ≤ E(Mτ ).

PROPOSITION 5.5. The expected number of miss-
ing extremal functions E(Mτ ) in the finite approximation
Z(Tτ ) of the max-stable random field Z is bounded by

E(Mτ ) ≤ E

{
sup
x∈K

V (x)

Z(x)
− sup

x∈K

τ

Z(x)

}
+

(5.5)

where the max-stable process Z and the spectral process
V are stochastically independent.

REMARK. Oesting, Schlather and Zhou (2018)
showed that

E|
+| = E

{
sup
x∈K

V (x)

Z(x)

}
.

In view of (5.1) and E(|
+|) ≤ E(Tτ ) + E(Mτ ), we
believe that inequality (5.5) provides a relatively sharp
bound for the error term E(Mτ ). In particular, it is sharper
than the bound

E(Mτ ) ≤ E

{(
sup
x∈K

V (x)

Z(x)

)
1{supx∈K V (x)>τ }

}

in the proof of Proposition 10.4.2 in Oesting, Ribatet and
Dombry (2016). A significantly simplified (though less
sharp) version of (5.5) is obtained by

E(Mτ ) ≤ E

{
sup
x∈K

V (x) − τ

Z(x)

}
+

≤ E

{
sup
x∈K

(
V (x) − τ

)
+

}
E

{
1/ inf

x∈K
Z(x)

}
.

For both, the error bound (5.5) and the exact error
(5.4), it is generally difficult to provide analytic expres-
sions. The precise terms can however be assessed for fi-
nite K = {x1, . . . ,xN } via simulation; see Appendix B
for details. The assessment is based on the observations
that all the extremal functions of a max-stable process can
be simulated via the Extremal Functions Algorithm 2 and
that the potentially relevant nonextremal functions can be
simulated independently once the extremal functions and
the process Z are known. This allows us to check which
of these functions would have been taken into account by
the Threshold Stopping Algorithm 1. Hence, we can com-
pare the approximation Z(Tτ ) and the exact realization Z

and identify the missing extremal functions.

Extremal functions. Besides the threshold stopping al-
gorithm, also the Extremal Functions Algorithm 2 may
include a simulation error if not all extremal functions
ϕ

(1)
+ , . . . , ϕ

(N)
+ are taken into account. Considering the ap-

proximation Z
(n)
+ of Z = Z

(N)
+ on K = {x1, . . . ,xN } after

the nth step of the extremal functions algorithm as given
in (3.8) for some n ≤ N yields the following analogies to
Propositions 5.4 and 5.5.

PROPOSITION 5.6. For any measurable function f :
C(K) × K → [0,∞], we have

P
{∣∣Z(x) − Z

(n)
+ (x)

∣∣ > f
(
Z

(n)
+ ,x

)
for some x ∈ K

}
= 1 −E

Z
(n)
+

{
exp

(
−EV

{
max

i=1,...,n

V (xi )

Z
(n)
+ (x)

− sup
x∈K

V (x)

Z
(n)
+ (x) + f (Z

(n)
+ ,x)

}
+

)}
,

where the spectral process V and the process Z
(n)
+ are

stochastically independent.

PROPOSITION 5.7. The expected number E(M
(n)
+ ) of

missing extremal functions M
(n)
+ after n steps of the ex-

tremal functions algorithm can be computed as

E
(
M

(n)
+

) = E

{
sup
x∈K

V (x)

Z(x)

}

−E

{
max

i=1,...,n

V (xi )

Z(xi )

}
,

(5.6)

where the max-stable process Z and the spectral process
V are stochastically independent.
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6. COMPARATIVE NUMERICAL STUDY

In order to gain further insights on the comparative per-
formance of the different approaches to max-stable pro-
cess simulation, specifically as we deviate from the exact
setting, the absence of analytic expressions makes it nec-
essary to conduct a broader numerical study. We focus on
comparing the three generic and potentially exact meth-
ods from Table 2/Figure 6 (DM/EF/SN) when applied to
generate (approximate or exact) samples from the widely
used classes of:

(i) Brown–Resnick processes (Kabluchko, Schlather
and de Haan, 2009) with spectral representation (4.1)
and fBS variogram γ (h) = 2v‖h‖α , where v > 0 and
α ∈ (0,2).

(ii) extremal-t processes (Opitz, 2013) with spectral
representation

V (x) =
√

π21−ν/2

�((ν + 1)/2)
W(x)ν+, x ∈ K,(6.1)

where W is a standard Gaussian random field with
exponential correlation function ρ(h) = Cov(W(x +
h),W(x)) = exp(−‖h/s‖) with scale s > 0 and the pa-
rameter ν > 0 influences the degrees of freedom of the
underlying multivariate t-distribution in the dependence
structure, cf. Opitz (2013).

Both classes of processes are based on underlying Gaus-
sian random fields W and all algorithms considered to
obtain an (approximate or exact) sample Z(simulated) of
the associated max-stable process Z are based on re-
peated sampling from W . Therefore, the number NW(K)

of Gaussian processes Wj ∼ W needed for one sample of
Z constitutes a natural measure for the algorithms’ effi-
ciency and we call the number E(NW(K)) that is needed
on average the mean time in this context.

For exact simulation, it is possible to derive the precise
mean times of each algorithm from the theoretical consid-
erations of Section 5; see Table 3. While sampling from
the spectral processes V (1), V (2), . . . , V (N) and V ‖·‖1 is
straightforward for Brown–Resnick and extremal-t pro-
cesses and involves only one Gaussian process simula-

tion for each sample of the respective spectral process
(see Dombry, Engelke and Oesting, 2016, Dieker and
Mikosch, 2015 or Sections 3.2 and 4.3), we choose to use
the rejection sampling algorithm proposed by de Fondev-
ille and Davison (2018) based on sum-normalized spec-
tral processes as proposals to obtain (exact) samples from
the sup-normalized spectral function V ‖·‖∞ . In this case,
we need to take into account the average acceptance rate
θ‖·‖∞/N ; see Table 3. In view of (5.3), this shows already
that for exact simulation the EF algorithm should be pre-
ferred over the DM approach and the SN approach ac-
cording to the mean time E(NW(K)).

The main purpose of our study is now to investigate
the relative efficiency of the algorithms as we vary their
accuracy in a reasonable range. As a simulation do-
main, we consider the 501 equi-distantly spaced points
K = {−1,−0.996, . . . ,1} in the interval [−1,1]. In the
Brown–Resnick case, we consider the parameter scenar-
ios that arise from choosing α in {0.2,0.6,1.0,1.4,1.8}
(rather noisy to rather smooth) and variance parameter
v in {0.5,1,2}. The extremal-t scenarios consist of ν ∈
{1,2,4} and scale parameter s ∈ {0.5,1,2}. Further, we
prespecify error probabilities P = P(Z(simulated) 
= Z) ∈
{0,0.01,0.05,0.1} that we are willing to tolerate, while
observing the corresponding times NW(K) and estimat-
ing the mean time E(NW(K)) based on 50,000 simula-
tions in each case. For the threshold stopping approaches
DM and SN, the error probability P coincides with the
benchmark error term Pτ in (5.4). That is, for these algo-
rithms we need to select the threshold τ appropriately in
order ensure P assumes the right value. For the EF ap-
proach, we deviate from accuracy by fixing an appropri-
ate equi-distantly spaced subset of locations in the simu-
lation domain K . The appropriate thresholds and subsets
for given error probability P were also found simulation-
based.

The results of our study for Brown–Resnick processes
are reported in Figures 7 and 8 and for extremal-t pro-
cesses in Figure 9. Some of the observations are as ex-
pected. The mean time increases in each scenario with
lower tolerable error probability. It also increases in the
Brown–Resnick case with higher variance and as the

TABLE 3
The expected number E(NW (K)) of Gaussian processes Wj to be simulated to obtain an exact sample of the associated Brown–Resnick or

extremal-t process Z on a set K = {x1, . . . ,xN } for the three generic simulation algorithms from Table 2, where the SN algorithm is based on
rejection sampling (de Fondeville and Davison, 2018). The ratio cV (K)/cW (K) represents the number of samples from W that are needed to

obtain a sample from V

Method Spectral functions V cV (K)/cW (K) Mean time E(NW (K))

SN V ‖·‖∞ N/θ‖·‖∞ NE{1/infx∈K Z(x)}
DM V ‖·‖1 1 NE{1/infx∈K Z(x)}
EF V (1), . . . , V (N) 1 N
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FIG. 7. Brown–Resnick process simulation in 15 scenarios: Displayed are the mean times of three generic simulation algorithms (DM/EF/SN) for
a given tolerated error probability ranging from 0 (“exact simulation”) to 0.1; see Section 6 and Figure 8 for further details.

processes’ roughness increases due to smaller α. In the
extremal-t case, the mean time increases as the scale gets
smaller and as the degrees of freedom parameter ν in-
creases. However, our main interest lies in the relative

performance of the three algorithms DM, EF and SN. And
while for exact simulation (P = 0), the theoretical domi-
nance of the EF approach can be confirmed, the DM ap-
proach seems to be uniformly best once we allow for a
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FIG. 8. A closer look at the mean times of the Dieker–Mikosch (DM) algorithm for Brown–Resnick process simulation. The plots complement
Figure 7 revealing the scale and variability of the mean times of the DM algorithm, which may seem reduced to zero in Figure 7.

small tolerable error probability P ≥ 0.01. We anticipate
a critical value Pcritical closer to zero for the tolerable er-
ror probability at which the EF approach will start to per-
form better than the DM algorithm. The SN approach—

in the form considered here—cannot match up with either
the EF or DM algorithm, chiefly because sampling from
the sup-normalized spectral process is costly for Brown–
Resnick and extremal-t processes. However, in Section 7

FIG. 9. Extremal-t-process simulation in 9 different parameter scenarios: Displayed are the mean times of three generic simulation algorithms
(DM/EF/SN) for a given tolerated error probability ranging from 0 (“exact simulation”) to 0.1; see Section 6 for further details.
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we will point the reader to modifications of the SN ap-
proach and situations, in which it can be very valuable
again.

7. DISCUSSION

The simulation of max-stable processes has become an
important task as part of spatial risk assessment, specifi-
cally in the environmental sciences. The last decade saw
several new approaches to the simulation of max-stable
processes. The present article provides an overview and
compares the generic approaches according to their effi-
ciency in relation to their accuracy. Moving from accu-
rate simulation to tolerating small errors is a major issue
of practical concern due to the inherently large computa-
tional costs for simulating a max-stable process. We con-
textualize known theoretical results on the efficiency in
the exact setting (cf. Tables 2 and 3), while adding some
new point process based results on the efficiency and ac-
curacy for the approximate setting (cf. Section 5). An at
first sight surprising observation of our numerical study
is that the Dieker–Mikosch (DM) approach—despite be-
ing uniformly worse than the extremal functions (EF) ap-
proach in the exact setting—significantly outperforms all
generic approaches, once we allow for a small tolerable
error probability. That said, this finding is in line with
the computational results in Oesting and Strokorb (2018)
and may be attributed to the DM approach’s probabilistic
homogeneity of spectral functions. In other words, com-
pared to other algorithms, the DM approach “converges”
enormously fast to a stochastic process, which is an accu-
rate sample of a max-stable process with very high proba-
bility. However, the algorithm fails to be certain and seeks
this confirmation for a very long time.

Further, our numerical study might create the impres-
sion that the threshold stopping approach using sup-
normalized spectral functions (SN) is not worth consid-
ering anymore. We would like to correct that impression
by emphasizing that the success of this approach depends
largely on the ability to efficiently simulate from the sup-
normalized spectral process V ‖·‖∞ , which is a research
question in its own and of independent interest in other
contexts; see also Remark in Section 3.2. In fact, the mo-
tivation of de Fondeville and Davison (2018) for intro-
ducing the generic rejection sampling approach was not
to use it for max-stable process simulation, but to ob-
tain accurate samples from associated Pareto-processes to
be readily available for threshold-based inference. Spa-
tiotemporal threshold based inference on extremes is cur-
rently an active area of research. For Brown–Resnick pro-
cesses or extremal-t processes sampling from V ‖·‖∞ is
hard and choosing a generic rejection sampling approach
for this task is not particularly helpful, which explains the
poor performance of the SN approach in our study. Al-
ternatives include MCMC approaches (Oesting, Schlather

and Zhou, 2018, Oesting, Schlather and Schillings, 2019)
and for the class of Brown–Resnick processes modified
rejection sampling (Oesting, Schlather and Schillings,
2019) or using the ansatz of Ho and Dombry (2019).
For other classes of max-stable processes, the SN ap-
proach may well be the most efficient way of exact simu-
lation. For instance, Oesting, Schlather and Zhou (2018)
show that the sup-normalized process V ‖·‖∞ can be eas-
ily simulated for a broad subclass of mixed moving max-
ima processes including Gaussian extreme value mod-
els (Smith, 1990). Simulation procedures for several of
these max-stable models are implemented in the R pack-
age RandomFields (Schlather et al., 2020).

We conclude with some practical advice. First of all,
we recommend to use exact simulation of max-stable pro-
cesses, whenever it is feasible. The EF algorithm is de-
signed for this purpose and from our perspective it is the
generic approach to use as long as the number of points
N in the simulation domain does not get too large. Should
exact simulation from the sup-normalized spectral pro-
cess V ‖·‖∞ not be too costly, for example, for mixed mov-
ing maxima processes, then the SN approach can be a
worthwhile alternative. In view of the comparison in Ta-
ble 2, it may even reduce the computational cost signif-
icantly, when a large number N of points in a fixed do-
main K is considered. For approximate simulation, the
DM approach seems to perform best—at least we could
not detect a single scenario during our extensive numeri-
cal studies in which this was not the case. Unfortunately,
the efficiency comes at the price of not knowing when
to stop the DM algorithm. We therefore recommend to
employ at least additional checks to ensure the obtained
sample exhibits reasonable characteristics. Alternatively,
the SN approach also lends itself as an approximate ap-
proach by means of more efficient MCMC techniques to
obtain samples from the sup-normalized spectral process
V ‖·‖∞ as discussed above.

Finally, we would like to mention that for specific
classes of max-stable processes, such as Brown–Resnick
processes, specific approaches tailored to this class, such
as Liu et al. (2019), may be worth considering, even
though meaningful comparisons in terms of efficiency and
accuracy seem difficult to achieve (cf. Remark in Sec-
tion 5.1), and it is unclear how an approximate version
would look like in this case.

APPENDIX A: PROOFS

The proofs given in this section rely on the fact that the
pairs {(Ui,Vi)}i∈N = {(�−1

i , Vi)}i∈N form a Poisson point
process � on (0,∞)×C(K) with intensity u−2 duP{V ∈
dv}. We make extensive use of the Slivnyak–Mecke equa-
tion (see, e.g., equation (4.1) in Møller (2003)), which we
recall here for convenience for our situation. To this end,
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let N denote the set of locally finite simple counting mea-
sures (0,∞) × C(K), whose σ -algebra is generated by
evaluations on Borel subsets of (0,∞) × C(K). With a
slight (but common and convenient) abuse of notation by
identifying simple counting measures with their induced
sets, we have

E

{ ∑
(u,v)∈�

f
(
(u, v),� \ {

(u, v)
})}

=
∫
(0,∞)×C(K)

E�

{
f

(
(u, v),�

)}
× u−2 duP{V ∈ dv}.

(A.1)

for any nonnegative measurable function f : ((0,∞) ×
C(K)) ×N → [0,∞).

PROOF OF PROPOSITION 5.1. By definition of Tτ ,
we have

E(Tτ )

= E

∣∣∣∣
{
(u, v) ∈ � : uτ > inf

x∈K

∨
(ũ,ṽ)∈�,ũ>u

ũṽ(x)

}∣∣∣∣
≥ E

∣∣∣∣
{
(u, v) ∈ � : u > inf

x∈K

∨
(ũ,ṽ)∈�\{(u,v)} ũṽ(x)

τ

}∣∣∣∣,
with equality if and only if supx∈K V (x) ≤ τ almost
surely. Then the Slivnyak–Mecke equation (A.1) can be
applied to the right-hand side to obtain

E

∣∣∣∣
{
(u, v) ∈ � : u > inf

x∈K

∨
(ũ,ṽ)∈�\{(u,v)} ũṽ(x)

τ

}∣∣∣∣
=

∫
C(K)

∫
C(K)

∫ ∞
0

1{infx∈K
z(x)
τ

<u}u
−2 du

× P{V ∈ dv}P{Z ∈ dz}

= E

{
sup
x∈K

τ

Z(x)

}

as desired. �
PROOF OF PROPOSITION 5.4. Since any condition

on Z(Tτ ) can be rewritten in terms of the restricted point
process �(· ∩ ((τ−1 infx∈K Z(Tτ )(x),∞) × C(K))), we
have that, conditional on Z(Tτ ), the restricted point pro-
cess

�
(
· ∩

((
0, τ−1 inf

x∈K
Z(Tτ )(x)

)
× C(K)

))
is a Poisson point process with intensity measure
u−2 duP(V ∈ dv). Consequently,

P
{∣∣Z(x) − Z(Tτ )(x)

∣∣
> f

(
Z(Tτ ),x

)
for some x ∈ K | Z(T )}

= P

{
∃(u, v) ∈ � : uτ < inf

x∈K
Z(Tτ )(x),

uv(x) > Z(Tτ )(x) + f
(
Z(Tτ ),x

)
for some x ∈ K

}

= 1 − exp
(
−EV

{∫ infx∈K
Z(Tτ )(x)

τ

infx∈K
Z(Tτ )(x)+f (Z(T ),x)

V (x)

u−2 du

})

= 1 − exp
(
−EV

{
sup
x∈K

V (x)

Z(Tτ )(x) + f (Z(T ),x)

− sup
x∈K

τ

Z(Tτ )(x)

}
+

)
.

Taking the expectation with respect to Z(Tτ ) completes the
proof. �

PROOF OF PROPOSITION 5.5. Let �+ = {(u, v) ∈
� : uv(·) ∈ 
+}. Then we can rewrite

Mτ =
∣∣∣∣
{
(u, v) ∈ �+ : uτ ≤ inf

x∈K

∨
(ũ,ṽ)∈�,ũ>u

ũṽ(x)

}∣∣∣∣
and hence,

E(Mτ )

= E

∣∣∣∣
{
(u, v) ∈ � : uv(x)

>
∨

(ũ,ṽ)∈�\{(u,v)}
ũṽ(x) for some x ∈ K,

uτ ≤ inf
x∈K

∨
(ũ,ṽ)∈�,ũ>u

ũṽ(x)

}∣∣∣∣
≤ E

∣∣∣∣
{
(u, v) ∈ � : inf

x∈K

∨
(ũ,ṽ)∈�\{(u,v)} ũṽ(x)

v(x)

< u ≤ inf
x∈K

∨
(ũ,ṽ)∈�\{(u,v)} ũṽ(x)

τ

}∣∣∣∣.
Applying the Slivnyak–Mecke formula (A.1) gives

E(Mτ ) ≤
∫
C(K)

∫
C(K)

∫ ∞
0

1{infx∈K
z(x)
v(x)

<u≤infx∈K
z(x)
τ

}

× u−2 duP{V ∈ dv}P{Z ∈ dz}.
which is equivalent to inequality (5.5). �

PROOF OF PROPOSITION 5.6. Analogously to the
proof of Proposition 5.4, we obtain

P
{∣∣Z(x) − Z(n)(x)

∣∣
> f

(
Z(n),x

)
for some x ∈ K | Z(n)}

= P
{∃(u, v) ∈ � : uv(xi ) < Z(n)(xi ), i = 1, . . . , n,

× uv(x) > Z(n)(x) + f
(
Z(n),x

)
for some x ∈ K

}

= 1 − exp
(
−EV

{∫ mini=1,...,n
Z(n)(xi )

V (xi )

infx∈K
Z(n)(x)+f (Z(n),x)

V (x)

u−2 du

})
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= 1 − exp
(
−EV

{
max

i=1,...,n

V (xi )

Z(n)(xi )

− sup
x∈K

V (x)

Z(n)(x) + f (Z(n),x)

}
+

)
.

Taking the expectation with respect to Z(n) completes the
proof. �

PROOF OF PROPOSITION 5.7. The expected number
of missing extremal functions after the nth step can be
expressed as

E
(
M

(n)
+

)
= E

∣∣∣∣
{
(u, v) ∈ �+ : uv(xi )

<
∨

(ũ,ṽ)∈�

ũṽ(xi) for all i = 1, . . . , n

}∣∣∣∣
(A.2)

Consequently, we have that E(M
(n)
+ ) equals

E

∣∣∣∣
{
(u, v) ∈ � : inf

x∈K

∨
(ũ,ṽ)∈�\{(u,v)} ũṽ(x)

v(x)

< u <
n

min
i=1

∨
(ũ,ṽ)∈�\{(u,v)} ũṽ(xi )

v(xi )

}∣∣∣∣.
The Slivnyak–Mecke equation (A.1) can be applied to the
right-hand side. Hence, we obtain that E(M

(n)
+ ) equals∫

C(K)

∫
C(K)

∫ ∞
0

1{infx∈K
z(x)
v(x)

<u≤mini=1,...,n
z(xi )

v(xi )
}u

−2 du

× P{V ∈ dv}P{Z ∈ dz}.
The latter coincides with (5.6). �

APPENDIX B: SIMULATION ASSESSMENT OF THE
ACCURACY

This section is a step-by-step description how one can
assess the approximation error of the Threshold Stopping
Algorithm 1 with threshold τ by simulation.

(1) Use the Extremal Functions Algorithm 2 to simu-
late 
+. Denote the resulting functions by ϕ1, . . . , ϕk and
set Z(x) = maxi=1,...,k ϕi(x), x ∈ K .

Note that only the products of the type ϕ = UV are ob-
tained this way, the components U and V with (U,V ) ∈
�+ (as in the proof of Proposition 5.5) are unknown.

(2) Simulate the set �+ = {(U+
i , V +

i )}i=1,...,k condi-
tional on U+

i · V +
i = ϕi for i = 1, . . . , k.

Here, the U+
i are independent with density

fU+
i
(u) ∝ u−2

P(V ∈ dϕi/u)

and V +
i = (U+

i )−1ϕi .

(3) Simulate the entire set �min ,− = {(U−
i ,

V −
i )}i=1,...,l of all nonextremal functions with U−

i >

Umin := mini=1,...,k U+
i .

These form a Poisson point process with intensity
u−2 du · P(V ∈ dv) restricted to the set {(u, v) ∈ [Umin ,

∞) × C(K) : u · v(x) < Z(x) for all x ∈ K}.
(4) Merge �+ and �min ,− to the set �min = {(Ui,

Vi)}i=1,...,k+l labeling the points in such a way that Ui >

Ui+1.
(5) Set Z(j)(x) = maxi=1,...,j Ui · Vi(x) and define

T := min
{
j ∈ {1, . . . , k + l − 1} :

Uj+1τ < inf
x∈K

Z(j)(x)
}
,

that is, T equals the stopping time Tτ provided that Tτ <

k + l. Otherwise, we have T = ∞.
(6) If T = ∞, the stopping criterion does not apply

before all the extremal functions are simulated, that is,
Z(T ) = Z and there is no error. Otherwise, that is, if
T < k + l, there is an error. This can either be measured
in terms of the absolute/relative deviation between Z and
Z(T ) or in terms of the number of missing extremal func-
tions, that is, the cardinality of the set {i ∈ {1, . . . , k} :
U+

i < UT }.
Repeating this procedure, the average error is an unbiased
estimator of the expected simulation error of the Thresh-
old Stopping Algorithm 1.
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