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Purpose: The apparent propagator anisotropy (APA) is a new diffusion MRI metric 
that, while drawing on the benefits of the ensemble averaged propagator anisotropy 
(PA) compared to the fractional anisotropy (FA), can be estimated from single-shell 
data.
Theory and Methods: Computation of the full PA requires acquisition of large data-
sets with many diffusion directions and different b-values, and results in extremely 
long processing times. This has hindered adoption of the PA by the community, 
despite evidence that it provides meaningful information beyond the FA. Calculation 
of the complete propagator can be avoided under the hypothesis that a similar sen-
sitivity/specificity may be achieved from apparent measurements at a given shell. 
Assuming that diffusion anisotropy (DiA) is nondependent on the b-value, a closed-
form expression using information from one single shell (ie, b-value) is reported.
Results: Publicly available databases with healthy and diseased subjects are used 
to compare the APA against other anisotropy measures. The structural information 
provided by the APA correlates with that provided by the PA for healthy subjects, 
while it also reveals statistically relevant differences in white matter regions for two 
pathologies, with a higher reliability than the FA. Additionally, APA has a compu-
tational complexity similar to the FA, with processing-times several orders of mag-
nitude below the PA.
Conclusions: The APA can extract more relevant white matter information than the 
FA, without any additional demands on data acquisition. This makes APA an attrac-
tive option for adoption into existing diffusion MRI analysis pipelines.
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1 |  INTRODUCTION

The term diffusion magnetic resonance imaging (dMRI) re-
fers to a set of diverse imaging techniques that, when applied 
to brain studies, provide useful information about the mi-
croscopic organization and connectivity of the white matter. 
One relevant feature of dMRI is its ability to measure orien-
tational variance in the different tissues, that is, anisotropy. 
Nowadays, the most common way to estimate the anisotropy 
is via the diffusion tensor (DT).1 Diffusion tensor MRI (DT-
MRI) brought to light one of the common issues of dMRI 
techniques: in order to carry out clinical studies, the informa-
tion given by the selected diffusion analysis method must be 
translated into some scalar measures that describe different 
features of diffusion within every voxel. That way, metrics 
like the fractional anisotropy (FA) were defined with the DT 
as a starting point.1 Despite the strong limitations that the un-
derlying Gaussian assumption imposes, the FA is still widely 
used in clinical studies involving dMRI.

In practice, the diffusion mechanisms cannot be fully de-
scribed by DT-MRI because of the oversimplified Gaussian  
fitting. Accordingly, techniques with more degrees-of-freedom  
naturally arose, such as diffusion kurtosis imaging (DKI)2 or 
methods based on high angular resolution diffusion imaging 
(HARDI).3,4 The trend over the last decade has been to ac-
quire a large number of diffusion-weighted images distributed 
over several shells (ie, with several gradient strengths) and 
with moderate-to-high b-values to estimate more advanced 
diffusion descriptors, such as the ensemble average diffusion 
propagator (EAP).5 The estimation relies on model-free, non-
parametric approaches that can accurately describe most of 
the relevant diffusion phenomena.

The most straightforward strategy to estimate the EAP is to 
sample the Cartesian q-space densely enabling diffusion spec-
trum imaging (DSI),6 which requires a vast number of acquisi-
tions. Alternatively, several methods were proposed grounded 
on sparse samplings of the q-space, being the most prominent: 
hybrid diffusion imaging (HYDI),7,8 multiple q-shell diffusion 
propagator imaging (mq-DPI),9,10 Bessel Fourier orientation re-
construction (BFOR),11 the directional Radial Basis Functions 
(RBFs),12 the mean apparent propagator MRI (MAP-MRI),5,13 
or the Laplacian-regularized MAP-MRI (MAPL).14

Regardless of the method selected for estimating the EAP, 
the typical end-user condenses the information provided by the 
whole EAP into a set of scalar metrics such as: the probability 
of zero displacement (or return-to-origin probability, RTOP), 
the q-space inverse variance, the return-to-plane (RTPP) and 
return-to-axis probabilities (RTAP),8,12,15 or the propagator an-
isotropy (PA).5 In this work, we will focus on the latter.

The PA can be seen as an alternative anisotropy measure 
able to discern changes that remain hidden for the FA. It reveals 
microstructural information of interest in the white matter. For 
example, a recent study in transgenic rats suggests that the PA 

may be a valid biomarker for Alzheimer’s disease.16 The same 
study also shows that the PA could be an important marker in 
longitudinal studies, indicating a possible dependency with age. 
Ref. [13] showed that the PA shows higher tissue contrast than 
the FA in white matter. Finally, in Ref. [17], the main limitation 
of the PA was detected: the bottleneck of studies with EAP-
derived measures is the amount of data needed for the calcula-
tion. This issue, together with the long processing times needed 
for EAP imaging, has slowed down a widespread adoption of 
propagator-based anisotropy measures by the clinical commu-
nity and motivated the current work.

This same pitfall has been recently addressed in Ref. [18] 
for the computation of other EAP imaging-related markers 
(namely RTOP, RTPP, and RTAP). The so-called “Apparent 
Measures Using Reduced Acquisitions” (AMURA) can 
mimic the sensitivity of EAP-based measures to microstruc-
tural changes when a reduced amount of data distributed in a 
few shells (even one) is available. AMURA assumes a prior 
model for the behavior of the radial q-space instead of trying to 
numerically describe it, yielding closed-form expressions that 
can be computed easily even from single-shell acquisitions.

The present paper extends AMURA to the estimation of the 
PA. To that end, the same constrained model for radial diffusion 
used in Ref. [18] is adopted here, that is, the DiA is assumed 
to be independent of the actual b-value of the measured shells. 
We use this simplification to derive alternative closed-forms for 
the inner products that define the original PA that can be com-
puted even from single-shell acquisitions. At the same time, the 
so-called apparent propagator anisotropy (APA), together with 
other closely related measures we derive from it, may reveal 
analogous tissue anisotropy features as the original PA and other 
anisotropy measures. The use of a constrained model, instead 
of regularizing a heavily under-determined problem, makes the 
APA more robust for certain brain structures than the PA itself, 
as we illustrate over an extensive set of experiments performed 
on data acquired with a ’clinical’ type acquisition.

2 |  THEORY

2.1 | The diffusion signal

The EAP, P(R), is the probability density function of the water 
molecules inside a voxel moving an effective distance R in a 
time Δ. It is related to the normalized magnitude signal provided 
by the MRI scanner, E(q), by the Fourier transform ℱ { . }19:

The inference of exact information on the R-space would re-
quire the sampling of the whole q-space to exploit the Fourier 
relationship between both spaces.

(1)P(R ) = ∫ ℝ3 E (q )e−2�jq ⋅Rdq = ℱ { |E(q ) |} (R) .
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In order to obtain a closed-form analytical representation 
from a reduced number of acquired images, a model of the 
diffusion behavior must be adopted. The most common tech-
niques rely on the assumption of a Gaussian diffusion profile 
and a steady state regime of the diffusion process leading to 
DT representation.20 Alternatively, a more general expression 
for E(q) can be used21: 

where the positive function D (q) = D (q0, �, �) is the ap-
parent diffusion coefficient (ADC), b = 4�2� ‖q‖2 is the so-
called b-value, q0 = ‖q‖ and θ, ϕ are the angular coordinates 
in the spherical system. The effective diffusion time τ is defined 
as τ = Δ−δ/3, where the diffusion time Δ is usually corrected 
with the pulse duration δ.

The monoexponential assumption is ubiquitous to many 
HARDI techniques, and it implies the anisotropy of the diffu-
sion signal is roughly independent of the b-value. The accu-
racy of such an assumption depends on the range of b-values 
considered: according to Ref. [21], this monoexponential sig-
nal representation is predominant in the mammalian brain for 
b-values up to 2000 s∕mm2. Beyond this value, in the range 
2000-10,000 s∕mm2, it has been proven that the deviation of 
the actual signal from monoexponentials embeds meaning-
ful information about the diffusion process.5 However, the 
relevance of this extra information might be at stake due to 
the limitations inherent to commonly used samplings (with 
maximum b-values ranging 3000 to 5000 s∕mm2), which are 
able to capture only the low-frequency spectrum.

2.2 | Propagator anisotropy and 
inner product

In Ref. [5], the authors propose a measure called the PA that 
quantifies how the propagator diverges from the isotropic 
one. The PA is defined as a function of the sine of the angle 
between two propagators as: 

 where P(R) is the actual propagator and PI (R ) its equivalent 
isotropic propagator. The function γ(.,ε) is a contrast enhance-
ment to better distribute the output values in the range [0, 1]. 
For the sake of simplicity, hereon, we will use �P,PI

 to denote 
the angle.

In order to calculate this metric, we need to define the 
inner product between two propagators. Let P1 (R ) and 
P2 (R ) be two different propagators. If we consider them as 
two different signals defined over a common signal space �, 
we can define an inner product as5,22: 

where P∗
2
(R) is the conjugate of P2 (R ). According to 

Parseval’s Theorem,22 since variables R and q are related via 
the Fourier transform, there is an equivalence of this product in 
the q-space. Considering that the magnitude-reconstructed dif-
fusion-weighted MR signal E(q) is always real and symmetric, 
E∗ (q) = E (q) and E(q) = E(−q), we can write: 

where E1 (q) =ℱ
−1

{
P1 (R )

}
(q) and E2 (q) = ℱ

−1
{

P2 (R )
}

(q).  
The norm of a signal is defined as: 

The similarity between two signals is given by the cosine of the 
angle between them, defined as: 

The sine is calculated from Equation (7) as: 

 This result can be extrapolated for the EAP, P(R), and its iso-
tropic equivalent, P1 (R ), to define the PA as in Equation (3).

3 |  METHODS

3.1 | Apparent propagator anisotropy

The calculation of the PA demands the full estimation of the 
EAP which requires an extensive data acquisition. In contrast, 
AMURA permits the use single-shell data at the expense of 
constraining the radial behavior so that the diffusivity D(q) 
does not depend on the radial direction (ie, independent of 
the magnitude of the q-vector): D(q) = D(u), where ‖u‖ = 1 
and q = qu.18 Then, Equation (2) becomes: 

Note that, although D(q) is independent of q, the signal attenu-
ation, E(q), still has q-dependence. This assumption, although 
restrictive, is used to define certain diffusion representations in 
HARDI,4,23 where only one data shell (ie, b-value) is usually 
acquired.

In what follows, we explicitly calculate the inner product 
that defines the PA by using the simplification in Equation 
(9), yielding an anisotropy metric related to the PA for a spe-
cific shell. First, we define an isotropic signal equivalent to 

(2)E(q) = exp
(
−4�2�q2

0
D (q)

)
= exp (−b ⋅ D (q ))

(3)PA = �
(
sin

(
∠ [P(R ) , PI (R ) ]

)
, �

)
,

(4)
⟨P1 (R) , P2 (R)⟩ = ∫ ℝ3 P1 (R)P∗

2
(R) dR.

(5)⟨P1 (R) , P2 (R)⟩ = ∫ ℝ3 E1 (q)E2 (q) dq,

(6)P1 (R) = ⟨P1 (R) , P1 (R)⟩1∕2 =

�
∫ ℝ3

��E1 (q) ��2 dq

�1∕2

(7)cos�P1,P2
=

⟨P1 (R) , P2 (R) ⟩
‖P1 (R ) ‖ ⋅ ‖P2 (R ) ‖ .

(8)sin�P1,P2
=
√

1 − cos2�P1,P2
.

(9)E(q ) = E (q, u ) = exp
(
−4�2�q2 D (u)

)
.
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the monoexponential model, EI (q). Pursuing an analogous 
formulation to that in AMURA,18 we propose an alternative 
formulation, leading to a linear computation: 

for: 

The integration on the surface of the sphere from a limited num-
ber of samples is performed by fitting corresponding signals in 
the basis of spherical harmonics (SH), whose 0th order coeffi-
cient is defined as: 

Therefore, DAV can be calculated as: 

 Second, we calculate the norm of P(R) and PI (R ) under the 
considered assumption: 

 

where Cp is a constant. Following the same reasoning, the norm 
of the isotropic equivalent is: 

 Third, we calculate the inner product of both signals using the 
single-shell assumption: 

 

 Next, we calculate the cosine and sine of the angle between 
both signals: 

 

From here, we can define the anisotropy measure prior to the 
nonlinear transformation as: 

 Finally, the PA is calculated using the Gamma transformation 
proposed by Ref. [5]: 

This way, the APA at a given b-value is calculated as: 

3.2 | Alternative form of the APA

The need for a contrast enhancement of the raw values of the 
PA through the gamma correction in Equation (23) was al-
ready recognized by Ref. [5]. Generalizing this idea, we can 
apply a contrast enhancement to the attenuation signal itself 
before the PA is actually computed. Since E(q) is bounded in 
the range (0, 1), the negative logarithm of E(q), that is, D(q), 
is an appropriate transformation in this sense. Hence, we can 
reformulate: 

 

and the DiA is defined straightforwardly as: 

(10)EI (q)
Δ
= exp

(
−4�2�q2 DAV

)
,

(11)DAV =
1

4� ∫ SD (u )du.

(12)C0,0 {H (u)} =
1√
4�

∫ SH (u )du.

(13)
DAV =

1√
4�

C0,0 {D (u)} ,

sothatEI (q) = exp
�
−2�3∕2�q2C0,0 {D (u )}

�
.

(14)

| |P(R ) | |2= ∫ ℝ3 exp
(
−4�2�q2 2 D (u)

)
dq

= ∫ ∞
0 ∫ Sexp

(
−4�2�q2 2 D (u)

)
q2du dq

= Cp ∫ S

1

(2 ⋅ D (u) )3∕2
du

(15)= Cp ⋅

√
�

2
⋅ C0,0

{
D (u) −3∕2

}
,

(16)
� �P1 (R) � �2 = ∫ ℝ3 exp

�
−4�2�q22DAV

�
dq

= Cp

√
2� ⋅ D

−3∕2

AV
.

(17)

⟨P(R ) , PI (R) ⟩= ∫ ℝ3 exp
�
−4�2�q2

�
D (u ) + DAV

��
dq

= Cp ∫ S

1

(D(u) + DAV )3∕2
dS

(18)= Cp ⋅

√
4� ⋅ C0,0

�
(D (u) + DAV ) −3∕2

�
.

(19)
cos2�P,PI

=
⟨P(R ) , PI (R) ⟩2

� �P(R ) � �2 ⋅ � �PI (R ) � �2

=
4√
�

�
C0,0

�
(D (u) + DAV ) −3∕2

��2

C0,0

�
⋅D(u ) −3∕2

�
⋅ D

−3∕2

AV

;

(20)sin�P,PI
=
√

1 − cos2�P,PI
.

(21)APA0 = sin�P,PI
.

(22)� ( t, � ) =
t3�

1 − 3t� + 3t2�
.

(23)APA = � (sin�P,PI
, � ) .

(24)⟨D1 (q) , D2 (q) ⟩ = ∫ SD1 (u )D2 (u )du ;

(25)| |D (q) | |2 = ∫ SD2 (u)du,

(26)

DiA = sin�D,DAV

=

����
1 −

�
DAV ⋅ ∫ SD (u) du

�2

4� ⋅ D2
AV

⋅ ∫ SD2 (u) du

=

⎛
⎜⎜⎝

C0,0

�
D2 (u)

�
−

1√
4�

⋅ C2
0,0

{D (u)}

C0,0

�
D2 (u)

�
⎞
⎟⎟⎠

1∕2

.
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so that the term DAV no longer appears. The DiA can be seen as 
a generalization of the coefficient of variation of the diffusion 
(CVD) defined in Ref. [24] as a robust alternative for the FA. 
According to Ref. [25], the DiA is also an alternative definition 
to the generalized anisotropy proposed by Ref. [26]. Note that 
the derived DiA also resembles to the generalized fractional an-
isotropy (GFA) defined in Ref. [27].

An overview of all the proposed diffusion anisotropy met-
rics, together with their specific numerical implementations, 
is presented in Table 1.

3.3 | Public datasets used for the 
experiments

In order to test the proposed measures for a wide range of 
acquisition protocols and MR hardware configurations, four 
different datasets were used:

1. Human Connectome Project (HCP) (Data obtained 
from the Human Connectome Project (HCP) database 
(ida.loni.usc.edu/login.jsp). The HCP project (Principal 
Investigators: Bruce Rosen, M.D., Ph.D., Martinos Center 
at Massachusetts General Hospital; Arthur W. Toga, 
Ph.D., University of Southern California, Van J. Weeden, 
MD, Martinos Center at Massachusetts General Hospital) 
is supported by the National Institute of Dental and 
Craniofacial Research (NIDCR), the National Institute 
of Mental Health (NIMH) and the National Institute 
of Neurological Disorders and Stroke (NINDS). HCP 
is the result of efforts of co-investigators from the 
University of Southern California, Martinos Center for 
Biomedical Imaging at Massachusetts General Hospital 
(MGH), Washington University, and the University of 
Minnesota.): specifically volumes MGH1007, acquired 
on a Siemens 3T Connectom scanner with four different 
shells at b = [1000, 3000, 5000, 10, 000] s∕mm2, with 
[64, 64, 128, 256] gradient directions each, in-plane 
resolution 1.5 mm and slice thickness was 1.5 mm.

2. Public Parkinson’s disease database (PPD): publicly 
available database (www.nitrc.org/frs/?group\_id=835) 
acquired in the Cyclotron Research Centre, University 
of Liège. It consists of 53 subjects in a cross-sectional 

Parkinson’s disease (PD) study: 27 PD patients and 26 age, 
sex, and education-matched control subjects. Data were ac-
quired on a 3T head-only MR scanner (Magnetom Allegra, 
Siemens Medical Solutions, Erlangen, Germany) operated 
with an eight-channel head coil. DWIs were acquired with 
a twice-refocused spin-echo sequence with EPI readout 
at two shells b = [1000, 2500, 5000, 10, 000] s∕mm2 
along 120 encoding gradients. Acquisition parameters are 
TR = 6800 ms, TE = 91 ms, and FOV = 211 mm2, voxel 
size 2.4 × 2.4 × 2.4 mm, no parallel imaging and 6/8 par-
tial Fourier were used. More information can be found in 
Ref. [28].

3. ADNI database (ADNI): multi-shell data from 55 sub-
jects were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (Data used in 
preparation of this article were obtained from ADNI data-
base (adni.loni.isc.edu). As such, the investigators within 
the ADNI contributed to the design and implementation 
of ADNI and/or provided data but did not participate in 
analysis or writing of this report. A complete listing of 
ADNI investigators can be found at: http://adni.loni.usc.
edu/wp-conte nt/uploa ds/how_to_apply/ ADNI_Ackno 
wledg ement_List.pdf. The ADNI was launched in 2003 as 
a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has 
been to test whether serial MRI, PET, other biological 
markers, and clinical and neuropsychological assessment 
can be combined to measure the progression of MCI and 
early Alzheimer’s disease (AD). From the whole data-
base, we have focused on those subjects scanned with 
more than one shell (ADNI 3 advanced protocol). The 
data used consist of 38 cognitively normal elderly con-
trols (CN; mean age: 71.4 ± 6.4 years, 15 M/23 F) and 17 
with mild cognitive impairment (MCI; mean age: 71.6 ± 
8.6 years, 10 M/7 F). Data were acquired on 3T Siemens 
Advanced Prisma scanners (at 9 different acquisition 
sites). DW images were acquired at three distinct b-values 
b = [500, 1000, 2000, 10, 000] s∕mm2 with different 
encoding gradients for each shell: 6 (b = 500 s∕mm2), 
48 (b = 1000 s∕mm2), 60 (b = 2000 s∕mm2) and 12 un-
weighted (b  =   0) volumes. Acquisition parameters are 
TR  =  3300 ms, TE  =  71, 116 × 116 matrix, 81 slices, 
voxel size 2 × 2 × 2 mm, whole scanned volume 232 × 
232 × 160 mm. All raw DWI were corrected for motion, 
eddy-current and echo-planar imaging (EPI) induced sus-
ceptibility artifacts and B1 field inhomogeneity.

4. Multi-shell data acquired at CUBRIC (CBR www.cardi 
ff.ac.uk/cardi ff-unive rsity -brain -resea rch-imagi ng-centr e/
resea rch/proje cts/cross -scann er-and-cross -proto col-diffu 
sion-MRI-data-harmo nisation): 14 healthy volunteers 
scanned on a 3T Siemens Prisma scanner (80 mT/m) 
with a pulsed-gradient spin-echo (PGSE) sequence. Three 
shells were acquired at b = [1200, 3000, 5000] s∕mm2 

T A B L E  1  Summary of the proposed anisotropic diffusion metrics

Measure Formula Practical implementation

APA �
(
APA0, �

)
�
(
APA0, �

)

APA0

�
1 −

[ ∫ S ( D ( u ) + DAV ) − 3∕2du]
2

√
2�D

− 3 ∕ 2

AV
∫ S ( 2D ( u ) ) − 3 ∕ 2du

�
1 −

4√
�

[C0,0{ ( D ( u ) + DAV ) − 3∕2}]
2

C0,0{D ( u ) − 3∕2} ⋅ D
− 3 ∕ 2

AV

DAV
1

4�
∫ SD ( u ) du

1√
4�

C0,0 {D ( u )}

DiA
√

4� ⋅ ∫ SD2 ( u ) du − [ ∫ SD ( u ) du]
2

4� ⋅ ∫ SD2 ( u ) du

�
1 −

1√
4�

⋅ C2
0,0

{ D ( u ) }

C0,0 { D2 ( u ) }

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonisation
https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonisation
https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonisation
https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonisation
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with 60 directions per value. The resolution is 1.5 ×  
1.5 × 1.5 mm. Other acquisition parameters are: TE = 80 ms,  
TR = 4500 ms, Δ/δ = 38.3/19.5 ms, parallel imaging ac-
quisition (GRAPPA2) with sum of squares combination 
and 32 channels.

4 |  RESULTS

4.1 | Visual assessment

A preliminary visual assessment of the different metrics was 
performed using three slices (42, 52, and 65) from the HCP 
volume MGH1007. The proposed measures (APA0, APA, and 
DiA) were calculated using a single shell at b = 3000 s∕mm2.  
For the sake of comparison, we have also calculated the FA 
at b = 1000 s∕mm2, the GA and GFA (calculated using 
FSL) at b = 3000 s∕mm2, and the PA using all the avail-
able information (four shells). Results are shown in Figure 1. 
A gamma-corrected version of DiA is also presented to en-
hance the contrast. It is calculated using the transformation in 
Equation (22) over Equation (26). As expected, all the met-
rics highlight the anisotropy of the white matter, meanwhile 
they suppress the signal from the (approximately) isotropic 
gray matter. isotropic gray matter. APA0 and DiA are not uni-
formly distributed over the range [0, 1], an effect also present 
in the GFA, which is palliated by the APA. Comparing the 
new measures with the original PA, the latter seems over-
saturated toward 1, in a way that most of the white matter 
looks homogeneous. Conversely, the APA exhibits wider 
dynamic range across the white matter, making it possible to 
distinguish different anatomical features.

Moreover, Figure 2 suggests that the APA exhibits a good 
noise behavior across the entire cerebrum, even in those areas 
with low anisotropy such as the CSF (which has low APA) 

and areas of intermediate anisotropy, such as thalamus and 
head of caudate. This is in stark contrast to the PA computed 
using MAP-MRI, where there is elevated anisotropy in the 
ventricles, and the poor contrast-to-noise ratio in the basal 
ganglia occludes corresponding structures.

4.2 | Validation with clinical data

The next set of experiments aims at quantitatively evaluat-
ing the potential of the new metrics for the clinical analysis 
of real data provided in public databases. The assessment is 
based on the ability to find significant differences between 
two different cases: (a) mild cognitive impairment (MCI), 
using the ADNI database, and (b) Parkinson disease (PD), 
using the PPD database. We have selected these two cases 
as they are illustrative of very different clinical studies: ac-
cording to the literature, significant differences in diffusion 
anisotropy can be easily found between MCI and controls 
in a large number of brain regions.29,30 In contrast, although 
patient-control anisotropy differences have been reported in 
white matter regions for PD,31 such differences are harder to 
find using standard dMRI analysis. This way, the ability of 
the new measures to detect pathology is evaluated under two 
different difficulty levels.

For all the experiments, the FA was calculated as a refer-
ence value using MRTRIX32 (mrtrix.org) from the data col-
lected at b = 1000 s∕mm2. The FA maps of all the volumes 
were warped to a common template using the standard TBSS 
pipeline.33 The same transformation was applied to all the 
metrics considered for the experiment.

Let us focus first on the MCI experiment. The FA was 
compared to the APA using two different shells for both mea-
sures (b = 1000 and b = 2000 s∕mm2) in order to check the 
capability of the latter to discriminate differences between 

F I G U R E  1  Visual comparison of the diffusion anisotropy metrics using slices 42, 52, and 65 of the MGH1007 volume from HCP. FA 
is calculated using b = 1000 s∕mm2, GA, GFA, APA0, APA, and DiA using b = 3000 s∕mm2, and PA using 4 shells (1000, 3000, 5000, and 
10,000 s∕mm2). γ(DiA) is the gamma-corrected version of DiA, constructed for visualization purposes
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MCI and healthy controls. To that end, a region of interest 
(ROI) analysis was carried out: 48 different ROI were identi-
fied on the subjects using the JHU WM atlas.34 For the sake 
of robustness, only those 22 ROIs containing more than 2500 
voxels were considered for the experiment. The average value 
of the FA and the APA inside each ROI was calculated using 
the 2% and 98% percentiles. Then we carried out a two-sam-
ple, pooled variance t-test between controls and patients for 
each of the measures considered and at each of the 22 ROIs. 
To observe the dependence of the measures with the number 
of subjects, the t-test was repeated in subsamples of the orig-
inal set. Starting with 55 subjects (38 CN and 17 MCI), the 
number of subjects per group was progressively reduced in 3 

subjects (2 CN and 1 MCI) for each iteration, until no regions 
with significant differences were found. For each iteration, 
200 repetitions were performed, each of them generating a 
random sub-sample of subjects for which the inference was 
carried out. This inference plots differences between the two 
groups in a certain number of white matter regions with sig-
nificance P < .05 (uncorrected). The median value of regions 
with significant differences across the 200 repetitions was 
considered as the figure of merit for each iteration.

Results are shown in Figure 3. As expected, the number 
of regions showing significant group differences decreased 
together with the number of subjects in each group. However, 
for any given sample size, the APA consistently finds a larger 
number of regions with significant patient-control differences 
than the other metrics. Moreover, the APA is able to obtain 
similar results as the FA with a smaller sample size. This 
feature makes the APA a robust alternative to the FA even 
with datasets collected for DT-MRI-based analysis, that is, 
single-shell data with b ≈ 1000 s∕mm2. In this experiment, 
it is precisely at b = 1000 s∕mm2 where the best discrimina-
tion results were obtained for the APA compared to the FA.

Complementarily, in order to test the sensitivity of APA 
compared to FA, we have conducted a McNemar’s statisti-
cal test with the results provided by bootstrapping for FA 
and APA with b = 1000 s∕mm2, for each subsample set 
and the 200 repetitions. This type of test is usually em-
ployed to assess sensitivity and specificity of two different 
tests on the same sample. To that end, we have tested the 
null hypothesis that APA and FA detect differences in the 
same regions, and three alternative hypotheses: (a) APA 
detects more regions than FA (APA-not(FA)); (b) FA de-
tects more regions than APA (FA-not(APA)); and (c) FA 
and APA detect different number of regions (two-sided). 
Results can be seen in Table 2 where we show the num-
ber of regions with P < .01 for each subsample. Note that, 
according to the results, APA is able to detect differences 
in regions not detected by the FA (high values in the row 

F I G U R E  2  Visual comparison of PA to APA using slice 42 of the MGH1007 volume from HCP. APA is calculated using one single shell 
(b = 3000 s∕mm2), and PA using two (1000 and 3000 s∕mm2), three (1000, 3000, and 5000 s∕mm2) and four shells (1000, 3000, 5000, and 
10,000 s∕mm2). There are marked differences between APA and PA in the basal ganglia, including the head of caudate (red arrows) and thalamus 
(green arrows)

F I G U R E  3  Number of regions with significant differences 
(P < .05) for different number of samples. FA is compared to APA 
for the ADNI database to find differences between control and 
MCI subjects. Only those regions with more than 2500 voxels are 
considered



8 |   AJA-FERNÁNDEZ Et Al.

APA-not(FA)), while most of the findings reported by FA 
are in areas also reported by APA (low values in the row 
FA-not(APA)).

Next, we test the utility of the new measures using the PPD 
database. Though PD is known to affect the substantia nigra 
or the gray matter more than the white matter, significant 
differences have also been reported in several white matter 
regions such as the corpus callosum (CC), the corticospinal 
tract and the fornix.31 The aim of this experiment was to test 
the ability of the proposed measures to detect differences in 
the white matter. Two different analysis were considered:

1. A voxelwise cross-subject analysis using the FA skel-
eton with the randomise tool from the FSL toolbox 
(which performs a nonparametric permutation inference 
over the data) with 500 realizations. Those voxels with 
P  <  .01 (without TFCE) are highlighted in Figure 4. 
Voxels colored red denote where the considered metric 
decreases in the PD with respect to the controls.

2. A ROI oriented analysis: the three regions of the CC 
(genu—GCC, body—BCC, and splenium—SCC) were 
identified on the subjects using the JHU WM atlas.34 The 
average values of the different measures inside each ROI 
were calculated using the 2% and 98% percentiles. First, 
effect sizes were estimated using the Cohen’s d. Results 
are depicted in Figure 5. Then we carried out a two- 
sample, pooled variance t-test between controls and  
patients for each of the measures considered and at each of 
the three sections of the CC segmented in the JHU WM. 
Table 3 shows the results.

We have focused on the CC since this is the region where 
previous studies have reported group differences between PD 
and healthy controls. If we focus on this area in a sagittal 
plane in Figure 4, the FA and the GA only find some isolated 
voxels with statistically significant differences. The PA finds 
some extra voxels, but cannot show its true potential due 
to the small b-values considered. In contrast, the proposed 

Number of 
subjects 51 48 45 42 39 36 33 30 27 24

Two-sided 11 17 16 13 15 13 10 11 12 7

APA-not(FA) 10 15 15 14 15 15 11 11 12 9

FA-not(APA) 1 2 1 0 1 0 0 0 0 0

T A B L E  2  Results of the McNemar’s 
test on the ADNI data: comparison of areas 
detected by APA and FA (P < .01)

F I G U R E  4  Significant differences found by statistical test for the Parkinson database, using a voxel-wise analysis over the FA skeleton for the 
different considered metrics (sagittal view). In red, those points where the considered metric decreases in the PD with respect to the controls with 
statistical significance above 99% (P < .01)
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measures show more differences across the whole CC. All 
of them, especially the DiA, find differences in the genu of 
the CC (GCC). The slightly better performance of the DiA 
compared to the PA in this experiment supports the logarith-
mic contrast enhancement in the attenuation signal despite 
the uneven distribution of DiA values over the range [0, 1] 
seen in Figure 1.

In the ROI analysis, it is precisely at the SCC where all 
the measures show the greatest values of Cohen’s d, see 
Figure 5. Once again, DiA shows larger effect sizes, al-
though the GA and GFA (with b = 2500 s∕mm2) are also 
able to find significant differences in this ROI, see Table 3. 
However, note that the DiA shows a statistical significance 
above 99%. If we focus on the GCC ROI, only the APA is 
able to find differences. In contrast, the PA calculated with 
MAP-MRI and the DTI version (proposed in Ref. [5]) both 
show very low effect sizes and are unable to detect signifi-
cant differences in any part of the CC.

Finally, it is important to stress here that the aim of the ex-
periments carried out in this section was not to demonstrate 
the clinical usefulness of APA in the particular case of MCI 
and PD, but rather to test its ability to detect differences in 
the white matter on real datasets. The fact that a particular 
measure finds significant patient-control differences indi-
cates that the diffusion properties it describes is altered by 
this particular pathology and/or in this particular dataset.

4.3 | Sensitivity analysis to 
acquisition parameters

Next, we tested the dependency of APA on the b-value and 
the number of diffusion samples taken in a given shell. To 
that end, we used five whole volumes from the CBR data. 
Each volume was divided in six different regions according 
to their diffusion features. The APA was first calculated and 
those voxels with APA < 0.1 removed. The remaining vox-
els were clustered in six different groups using k-means (at 
b = 3000 s∕mm2). Each voxel in the white matter was as-
signed to one cluster using its PA value and the minimum 
distance. The following test was carried out: first, the vari-
ability with the b-value was probed by computing the differ-
ent anisotropy measures with each of the available shells at 
b = 1200 s∕mm2, b = 3000 s∕mm2, or b = 5000 s∕mm2.  
For the variability with the number of diffusion sampling  
directions, we began with the 60 samples at b = 3000 s∕mm2 
and uniformly downsampled this set to obtain either 25, 32, 
40 and 48 diffusion directions subsets (A “uniform” down-
sampling of n gradients among the original 60 is here defined 
as those n directions that minimize the overall electrostatic 
repulsion energy among all (60

n
) combinations. The optimi-

zation is carried out using heuristic rules). All the proposed 
anisotropic diffusion measures were computed for each con-
sidered case, and the median value inside each of the six clus-
ters is depicted in Figure 6.

Note that all the measures show a dependence on the 
b-value: the smallest values tend to increase monotonically 
with the b-value, whereas the higher values tend to show a 
monotonic decrease. However, and this is the key point, the 
separation between clusters remains the same for different 
b values. This means that the differences in the anisotropy 

F I G U R E  5  Absolute value of effect 
sizes (absolute Cohen’s d) for associations 
between PD and controls in the Parkinson 
data base for different metrics and, where 
appropriate, different b-shells

T A B L E  3  Two-sample, pooled variance, t-tests for each measure 
and at each section of the corpus callosum: GCC (genu), BCC (body), 
and SCC (splenium)

b-value GCC BCC SCC

FA 1000 0.378 0.205 0.192

MAPMRI-PA All 0.656 0.585 0.517

MAP-PA-DTI All 0.664 0.290 0.345

GA 1000 0.443 0.151 0.102

2500 0.063 0.078 0.015

GFA 1000 0.428 0.211 0.059

2500 0.095 0.102 0.034

APA 1000 0.555 0.296 0.310

2500 0.038 0.238 0.116

APA0 1000 0.309 0.676 0.436

2500 0.180 0.472 0.062

DIA 1000 0.431 0.183 0.047

2500 0.057 0.071 0.004

Notes: The P-values represent the probability that the averaged values (using the 
values between the 2% and 98% percentiles) of each region of the corresponding 
tract have identical means for both controls and patients. Differences with 
statistical significance above 99% are highlighted in green, and those with 
significance over 95% are highlighted in amber.
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detected by these measures can be detected when using dif-
ferent shells. All the measures show an extremely robust be-
havior to the variation in the number of sampling directions 
even in the case of very heavy downsampling.

4.4 | Execution times

The long processing times associated with the estimation of 
EAP-based measures is one of the issues that has hindered a 
widespread clinical adoption of the PA. In comparison, the lin-
ear nature of SH needed to estimate the APA results in a signifi-
cant reduction of the calculation time, that can be several orders 
of magnitude faster than whole EAP-based techniques.

To test this extreme, a volume from the PPD was used here 
to compute APA and PA measures on a quad-core Intel(R) 
Core(TM) i7-4770K 3.50GHz processor under Ubuntu Linux 
16.04 SO. PA was calculated using the two available shells 
with MAP-MRI using the DIPY library under Python 3.6.4 
(scipy 1.0.0, the PA calculation is not available in the public 
distribution of DIPY. The current implementation has been 
kindly provided by Dr. Fick). APA was implemented using 
one single shell in MATLAB R2013b without multi-thread-
ing. The calculation of APA took 3.17s, while MAP-MRI-PA 
2 h 53 min for the same volume. Though raw execution times 
are an ambiguous performance index (they can be dramati-
cally improved, eg, via GPU acceleration), they give a rea-
sonable idea of the relative complexity of each method. The 
calculation of the APA for the whole volume is almost instan-
taneous, which makes it feasible for practical studies.

5 |  DISCUSSION

The intention of the new anisotropy measure proposed here, 
APA, is not to exactly replicate a measure like the PA but, 

using a similar philosophy, to infer anatomical information 
with comparable discrimination power as the PA estimated 
using EAP-based methods (mainly, MAP-MRI). The origi-
nal PA calculated from the EAP explicitly accounts for the 
radial behavior of the diffusion signal, which also needs to 
be sampled extensively. For the APA calculation, the radial 
behavior is not sampled but modeled as a monoexponential 
decay.

One might anticipate that the computation of the whole 
EAP would provide a more specific and sensitive measure than 
the APA, since the anisotropy information encoded in the radial 
direction is otherwise neglected in the APA. This would be the 
case for a dense sampling of the q-space, or at least for a truly 
sparse one. However, actual samplings comprise a structured, 
regular grid of gradient directions describing a reduced number 
of shells (b-values). This way, the measured radial information 
does not suffice to describe the behavior of the attenuation sig-
nal in detail, so that a strong regularization of the prior model is 
required, leading to a heavily low-pass filtered estimation of the 
true EAP. As we report in the results with clinical data (see the 
PPD experiment), this issue may cause the original PA to lack 
the expected discriminant power, or even to have less discrimi-
nant power than conventional DT-MRI.

Moreover, Figure 2 suggests that the lack of a proper ra-
dial description of the diffusion signal, and the consequent 
over-regularization of the problem, may cause EAP estima-
tors like MAP-MRI to completely blur out white matter re-
gions such as the thalamus or the caudate, which are more 
clearly defined by the APA.

The experiments carried out in this paper confirm that the 
proposed measures show a discriminant power that is superior 
to traditional DT-MRI markers and, in some occasions, even 
over the PA. We are aware that the finding of more significant 
differences between groups does not directly imply that one 
method is better than other. However, under the assumption 
that the group differences represented here are true positives 

F I G U R E  6  Evolution of the proposed measures with the b-value (top) and the angular resolution (bottom), using data from a 3T Prisma 
scanner. The volume has been clustered in six different sets (for PA at b = 3000 s∕mm2) and the median of each set is shown. Centroids of the data 
CL = {0.27, 0.41, 0.52, 0.65, 0.78, 0.91}
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(which is endorsed by the related literature), the proposed 
APA may be reasonably attributed a higher sensitivity.

The main advantage of the proposed measures, when com-
pared to the PA, is that they can be calculated from a reduced 
set of measures leading to a significant reduction in data ac-
quisition time. Initially, they are intended for data collected 
with one shell (b-value), but the methodology can be easily 
extrapolated to more than one. In addition, the experiments 
with different gradient directions carried out over the CBR 
dataset have shown a robustness to differences in the number 
of gradient directions, which will allow a further reduction in 
the amount of requisite data, making it compatible with con-
temporary acquisition protocols widely deployed in studies, 
with as few as 64 gradient directions. It is a common prac-
tice to acquire two shells (eg, b = [1000, 3000] s∕mm2)  
to estimate classical DT-MRI parameters, like the FA and 
MD, and advanced models (DKI, HARDI, CHARMED, 
etc.). The APA (or the DiA) proposed here can also be cal-
culated with no additional effort and without changing the 
acquisition protocol.

Moreover, since the computation of the APA avoids the 
estimation of the actual EAP, it can be done in a fast and 
robust way, that is, without imposing a computational burden 
to the standard protocols. A whole volume can be processed 
in a matter of seconds while the processing of the original PA 
usually takes hundreds of minutes, which obviously limits its 
applicability.

On the other hand, the major drawback of the APA is 
the explicit assumption of a specific radial behavior for the 
diffusion, which cannot characterize the whole q-space. As 
a consequence, the selection of the b-value may impact the 
absolute values of the measures and difficult multicenter 
studies. However, we have shown that the relative anatomical 
differences between different regions are preserved regard-
less of the absolute changes in APA values: as long as the 
same b-value is preserved across each study, the results of 
different clinical trials in terms of increased/decreased an-
isotropy should be broadly compared. This is by no means 
something new to diffusion imaging: it is well-known that a 
change in the acquisition parameters (number of gradients, 
b-value, resolution, scanner vendor, etc.) seriously affects 
scalar measures like the FA or the MD.24,35

6 |  CONCLUSIONS

The newly introduced APA (or, alternatively, the DiA) can 
be easily integrated into the processing pipeline of currently 
existing single-shell dMRI protocols and databases to unveil 
anatomical details that remain hidden in traditional FA-based 
studies. Its simplicity (it is mainly based on linear fitting of 
SH coefficients) prevents the need for cumbersome param-
eter tuning procedures via cross-validation or trial and error, 

so that the same setting-up will suit virtually any acquisition 
protocol out-of-the-box, regardless of the number of acquired 
gradients and/or b-values.

In the case of multi-shell protocols, and whenever the ac-
curacy in the computation of the full PA gets compromised 
by the lack of a detailed sampling of the whole q-space, the 
proposed measures are a robust and useful alternative.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 Visual comparison of the APA calculated with 
the two approaches, full (F-APA) and simplified (APA), 
together with the absolute error. Slices 42, 52 and 65 of 
MGH1007 volume from the HCP are used. Both measures 
have been calculated using using b = 3000s∕mm2

TABLE S1 Average absolute error between F-APA and APA 
for the whole MGH1007 volume. Two different shells are 
considered
TABLE S2 Estimated execution time for the calculation of 
APA and F-APA for the MGH1007 volume
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