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ABSTRACT
We propose a new model for the evolution of a star cluster’s system mass function (SMF). The model involves both turbulent
fragmentation and competitive accretion. Turbulent fragmentation creates low-mass seed proto-systems (i.e. single and multiple
protostars). Some of these low-mass seed proto-systems then grow by competitive accretion to produce the high-mass power-law
tail of the SMF. Turbulent fragmentation is relatively inefficient, in the sense that the creation of low-mass seed proto-systems
only consumes a fraction, ∼23 per cent (at most ∼50 per cent), of the mass available for star formation. The remaining mass is
consumed by competitive accretion. Provided the accretion rate on to a proto-system is approximately proportional to its mass
(dm/dt ∝ m), the SMF develops a power-law tail at high masses with the Salpeter slope (∼−2.3). If the rate of supply of mass
accelerates, the rate of proto-system formation also accelerates, as appears to be observed in many clusters. However, even if
the rate of supply of mass decreases, or ceases and then resumes, the SMF evolves homologously, retaining the same overall
shape, and the high-mass power-law tail simply extends to ever higher masses until the supply of gas runs out completely. The
Chabrier SMF can be reproduced very accurately if the seed proto-systems have an approximately lognormal mass distribution
with median mass ∼0.11 M� and logarithmic standard deviation σlog10(M/M�) ∼ 0.47).
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1 IN T RO D U C T I O N

Theories for the origin of the system mass function (SMF), and hence
also the stellar initial mass function (IMF), can be divided between
two main categories, which are distinguished by the scale on which
most of the mass of a proto-system is accumulated. The first category
comprises turbulent fragmentation theories, in which a star-forming
cloud is presumed to breakup into a population of prestellar cores
(e.g. Padoan & Nordlund 2002; Hennebelle & Chabrier 2008, 2009;
Oey 2011; Hopkins 2012; Hennebelle & Chabrier 2013). The final
mass of a proto-system is then determined by the local mass reservoir
in a prestellar core, on relatively small scales �0.1 pc. The masses of
cores are determined primarily by supersonic turbulence, and there
is little subsequent accretion on to a proto-system from the rest of the
parent cloud. Turbulent fragmentation theories are supported by the
fact that the observed prestellar core mass function (CMF) appears
to have the same overall shape as the SMF and the IMF (e.g. Motte,
Andre & Neri 1998; Testi & Sargent 1998; Johnstone et al. 2000,
2001; Nutter & Ward-Thompson 2007; André et al. 2010), although
there are some apparent exceptions to this (e.g. Motte et al. 2018).

The second category comprises competitive accretion theories, in
which the SMF is largely determined by how an embryonic proto-
system competes with other proto-systems for the mass of the parent
cloud (Zinnecker 1982; Bonnell et al. 2001a, b; Bonnell, Vine &
Bate 2004). In these theories, turbulent fragmentation of the parent
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cloud is important in setting the peak of the SMF (Larson 1985,
2005; Jappsen et al. 2005; Bonnell, Clarke & Bate 2006; Lee &
Hennebelle 2018; Hennebelle, Lee & Chabrier 2019), but the final
distribution of proto-system masses above the peak is regulated by
the accident of birth. Proto-systems that are born in the dense gas
near the bottom of the parent cloud’s gravitational potential, and are
moving slowly, accrete rapidly and end up as high-mass systems. In
contrast, proto-systems that are born in the more diffuse gas towards
the edges of the parent cloud, and/or are moving fast, accrete much
less, so their masses remain close to the peak. In the case of the
high-mass proto-systems, their final mass may have been gathered
from very disparate locations within the parent cloud.

Both theories have issues. A critical issue with turbulent fragmen-
tation theories is that, although the similarity between the shapes of
CMF, SMF, and IMF is suggestive, the CMF is highly uncertain,
because it is very difficult to determine whether an observed core
is truly prestellar (i.e. subvirial). First, we have limited information
about the different energy modes in a core (e.g. Enoch et al. 2008;
Lomax, Whitworth & Hubber 2016). Secondly, the procedures
used to define the boundary of a core are arbitrary and this has a
strong influence on estimates of a core’s virial balance (e.g. Smith,
Clark & Bonnell 2009; Gong & Ostriker 2011). Thirdly, there are
uncertainties associated with converting dust fluxes into core masses
(e.g. Howard et al. 2019; Priestley & Whitworth 2020). It is therefore
unclear how reliable estimated core masses are. Moreover, even if
the estimated masses of prestellar cores are reliable, mapping the
CMF into the SMF and then the IMF is fraught with problems (e.g.
Clark, Klessen & Bonnell 2007; Holman et al. 2013; Offner et al.
2014).
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A critical issue with competitive accretion theories is that they
postulate the existence of a population of preexisting, low-mass
proto-systems, which then share the gaseous reservoir from which
they accrete; this is an unrealistic starting point. Numerical simula-
tions of cluster formation, in which the proto-systems (modelled
by sink particles) form self-consistently from a turbulent cloud,
have shown that this postulate can be relaxed (e.g. Bonnell, Bate &
Vine 2003; Bonnell et al. 2004; Clark, Bonnell & Klessen 2008a),
because fragmentation to produce new proto-systems continues after
accretion on to existing proto-systems has started, and competitive
accretion then regulates the high-mass end of the emerging SMF.
However the initial conditions for these simulations are still rather
artificial, i.e. a very dense (nH2 ∼ 105 cm−3) cloud containing many
(∼1000) Jeans masses.

It is unclear how such a heavily Jeans-unstable cloud could occur
in nature, unless there were a sudden burst of synchronized cooling.1

Indeed, there is growing evidence that star formation starts as soon as
bound gas is assembled, and hence that star formation is concurrent
with the growth of a star-forming cloud (Hartmann, Ballesteros-
Paredes & Bergin 2001; Banerjee et al. 2009; Hartmann, Ballesteros-
Paredes & Heitsch 2012; Zamora-Avilés, Vázquez-Semadeni &
Colı́n 2012; Kirk et al. 2013; Peretto et al. 2013; Kruijssen, Dale &
Longmore 2015; Smilgys & Bonnell 2016; Barnes et al. 2018;
Urquhart et al. 2018; Vázquez-Semadeni et al. 2019). The evolution
of the emerging SMF may therefore depend on both the rate at which
new proto-systems form, and accretion on to existing proto-systems.

One weakness of both turbulent fragmentation theories and com-
petitive accretion theories is that they do not normally consider how
the emerging SMF develops in time. A comparison of the SMFs from
different star-forming regions reveals that clusters of very different
ages, sizes, and densities are all well described by a power law with
a Salpeter (1955) slope of ∼−2.3 at the high-mass end (Bastian,
Covey & Meyer 2010; Offner et al. 2014). This suggests that the
shape of the emerging SMF is broadly time-invariant, at least over
the observed time-scales of � 0.5 Myr. This is an important feature
of the SMF, since in a given region the star formation could be
terminated at any stage by a wide variety of feedback processes,
both internal (Rogers & Pittard 2013; Dale et al. 2014; Dale 2017;
Rahner et al. 2017, 2019) and external (Padoan et al. 2016, 2017;
Seifried et al. 2018). Although some work has been done on the
time dependence of turbulent fragmentation (Hennebelle & Chabrier
2013), it is difficult to relate this to a growing star-forming region, in
which the internal conditions are evolving.

In this paper, we consider a new model for the evolution of a star
cluster’s SMF. This model focuses on the balance between the forma-
tion of new proto-systems and accretion on to existing proto-systems.
The model – which is based on the ideas presented in Dopcke et al.
(2011) – conflates the two aspects of star formation theory that are
best supported by numerical simulations: (i) that the peak of the
SMF is determined by turbulent fragmentation (e.g. Jappsen et al.
2005) and (ii) that competition for residual mass is unavoidable
if the proto-systems thus formed sit within a common gravitational
potential (Bonnell & Bate 2006). We therefore explore how a mixture
of turbulent fragmentation and competitive accretion can deliver a
time-invariant SMF. The conversion of the SMF into the IMF is not
addressed here, since this involves additional physical processes like
disc fragmentation and the dissolution of multiple systems.

1It has been suggested that this may occur in very metal poor gas (10−5 �
Z/Z� � 10−3) via gas–dust coupling (Omukai et al. 2005; Clark et al. 2008a;
Dopcke et al. 2011, 2013).

In Section 2, we derive an analytic model for the evolution of the
SMF in a forming star cluster (full details are given in Appendix A)
and the constraints that must be met for a power-law tail with constant
slope to develop. In Section 3, we explore how these constraints can
be relaxed. In Section 4, we discuss the physics behind the model: the
mass dependence of the accretion rate; the division of mass between
the creation of seed proto-systems (by turbulent fragmentation) and
competitive accretion; the acceleration of star formation in a forming
star cluster; and aspects of star formation that might corrupt the
model. In Section 5, we show that our model still produces the same
time-invariant SMF, with a Salpeter slope at high masses, when the
supply of mass to the cluster varies with time – even if, for example,
the mass supply cuts off abruptly and then resumes. In Section 6, we
summarize our conclusions.

2 A N ID E A L I Z E D A NA LY T I C M O D E L

In this study, we are primarily concerned with the high-mass end of
the SMF. If at time t a cluster has N(t, m) proto-systems with mass
below m, our model requires that

∂N

∂m

∣∣∣∣
t

= A(t) m−α . (1)

In other words, the amplitude of the SMF, A(t), increases with time
as more proto-systems form, but the SMF is always a power law with
a constant slope −α. In the standard formulation of the SMF, α takes
a value of 2.3 ± 0.3 for masses m � M� (e.g. Chabrier 2003).2

In competitive accretion theories, low-mass seed proto-systems
with masses around the peak of the SMF are formed by turbulent frag-
mentation of a proto-cluster cloud. Some of these proto-systems then
develop into high-mass proto-systems by competing successfully for
the remaining cloud gas. Bonnell et al. (2001b) postulate that there
should be two accretion regimes: ‘tidal-lobe’, and ‘Bondi–Hoyle’.
Tidal-lobe accretion is presumed to dominate when the potential of
the cluster is still dominated by gas. In a spherically symmetric,
centrally condensed cloud the resulting accretion rate on to a proto-
system of mass m is given by

dm

dt
∝ m2/3 . (2)

In contrast, Bondi–Hoyle accretion dominates when the cluster
potential is dominated by proto-systems, and the resulting accretion
rate is then given by

dm

dt
∝ m2. (3)

We will adopt a general accretion rate of the form

dm

dt
= B mβ . (4)

Provided β > 0 this results in competitive accretion, since more
massive proto-systems grow faster and become even more massive,
i.e. ‘the rich get richer’.

The high-mass end of the SMF appears to be broadly invariant
with cluster mass, cluster age, and environment. Therefore, in a
growing cluster, the gas reservoir must continually undergo turbulent
fragmentation to form new low-mass seed proto-systems, as well
as accreting on to existing proto-systems to increase their masses.
Otherwise the low-mass proto-systems will steadily disappear, and

2In mathematical expressions, we use standard brackets exclusively to denote
functional dependence, as for example in A(t).
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the SMF will become increasingly top-heavy. The SMF will then
depend on when the cluster is observed, and the final SMF will
depend on when accretion is terminated by exhaustion of the gas
supply.

In Appendix A, we develop an analytic model for the SMF in
which new seed proto-systems are continually injected at some
characteristic low mass, m0, and then grow according to equation (4).
We show that the amplitude of the SMF (see equation 1) must evolve
according to

d ln(A)

dt
= [α − β] B m[β−1]. (5)

Since A(t) is by construction independent of m, it follows that β =
1. In other words, a necessary, but not sufficient, condition for the
slope of the high-mass end of the SMF to remain exactly constant is
that proto-systems grow at a rate

dm

dt
= B m, (6)

where B−1 is the e-folding time for growth of a proto-system. Values
of β above (below) unity cause the SMF to flatten (steepen) over
time. We explore the effects of β �= 1 further in Section 3.

β = 1 appears to be incompatible with both tidal-lobe accretion
theory (β = 2/3) and Bondi–Hoyle accretion theory (β = 2).
However, the results of Maschberger et al. (2014), in particular their
fig. 6, suggest that β ≈ 1 gives a good fit to the accretion rates
in the simulations of cluster formation by Bonnell et al. (2011).
The physical motivation for β = 1 can still be related to Bondi–
Hoyle accretion (Hsu et al. 2010; Ballesteros-Paredes et al. 2015;
Kuznetsova, Hartmann & Ballesteros-Paredes 2015), and we will
discuss this further in Section 4.

If we set β = 1, equation (5) gives

A(t) = A0 e[α−1] Bt , (7)

which together with equation (1) completely describes the evolution
of the SMF. Since the first seed proto-system is introduced at t = 0,
the most massive proto-system at time t has mass

mmax(t) = m0 eBt . (8)

The total number of proto-systems at time t is therefore

N (t) = A(t)
∫ m=mmax(t)

m=m0

m−α dm

= A0

[
e[α−1]Bt − 1

]
[α − 1] m

[α−1]
0

, (9)

and the rate of creation of seed proto-systems is

dN
dt

= A0 B e[α−1]Bt

m
[α−1]
0

. (10)

Thus, the necessary and sufficient condition for the slope of the
high-mass end of the SMF to remain constant is that turbulent
fragmentation creates low-mass seed proto-systems at the rate given
by equation (10), and that these proto-systems then accrete according
to equation (6).

It follows that the total mass of the cluster at time t is

Mtot(t) = A(t)
∫ m=mmax(t)

m=m0

m1−α dm

= A0

[
e[α−1]Bt − eBt

]
[α − 2] m

[α−2]
0

, (11)

and hence the rate at which matter is consumed by star formation is

dMtot

dt
= A0B

[
[α − 1]e[α−1]Bt − eBt

]
[α − 2] m

[α−2]
0

. (12)

This is divided between the rate at which mass is consumed by
turbulent fragmentation (TF) creating low-mass seed proto-systems,

dMTF

dt
= dN

dt
m0 = A0Be[α−1]Bt

m
[α−2]
0

, (13)

and the rate at which mass is consumed building higher mass proto-
systems by competitive accretion (CA),

dMCA

dt
= BMtot(t) = A0B

[
e[α−1]Bt − eBt

]
[α − 2] m

[α−2]
0

. (14)

Hence, the fraction of the consumed mass that goes into forming
seed proto-systems by turbulent fragmentation is

f (t) = dMTF/dt

dMtot/dt

= [α − 2]

[α − 1]

{
1 − e−[α−2]Bt

[α − 1]

}−1

. (15)

In the limit t � B−1 (i.e. with the value of B that we will adopt below,
t � 105 yr), this tends to the asymptotic expression,

fTF = [α − 2]

[α − 1]
. (16)

For α = 2.3 this gives fTF 	 0.23. Thus, roughly 23 per cent of
the mass consumed forms low-mass seed proto-systems by turbulent
fragmentation, and the remaining 77 per cent goes towards increasing
the masses of existing proto-systems by competitive accretion.
We discuss possible physical reasons for this division of mass in
Section 4.2.

To test the analytic model, we construct a numerical model for the
evolution of the SMF based on equations (10) and (6). Since the term
A0m

1−α
0 in equation (10) is simply a scaling factor for the amplitude

of the SMF, we set it to unity. Motivated by the results of Maschberger
et al. (2014), we set B = 10−5 yr−1, but again B is simply a scaling
factor for the time-scale on which accretion occurs. We set α = 2.3
since this is the observed slope of the high-mass end of the SMF
(e.g. Salpeter 1955; Kroupa 2001; Chabrier 2003). Finally, we set
m0 = 0.2 M�, since this is the peak of the observed SMF (Chabrier
2003), and we assume that all proto-systems are born with exactly
this mass. Fig. 1 shows the initial seed proto-system mass distribution
(essentially a delta-function at m0 = 0.2 M�), and the SMFs once
667 proto-systems have formed, and once 2000 proto-systems have
formed. On a log–log plot, both SMFs approximate well to the slope
−α = −2.3. The formation of new low-mass seed proto-systems by
turbulent fragmentation (equation 10) perfectly balances the growth
of proto-systems by competitive accretion (equation 6).

3 A MORE REALI STI C STOCHASTI C MO DEL

In this section, we explore how the evolution of the SMF changes
when the rather precise conditions of the idealized analytic model
(equations 6 and 10) are relaxed.

3.1 Turbulent fragmentation

Turbulent fragmentation is not expected to deliver a single seed
proto-system mass, m0. Therefore hereafter, we draw seed-masses
randomly from a lognormal distribution. The parameters of this
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Figure 1. The evolution of the SMF for the simplest realization of the
stochastic fragmentation/accretion model. All seed proto-systems are born
with m0 = 0.2 M�, at a rate given by equation (10) with A0 = 1, α =
2.3, and B = 10−5 yr−1. Proto-systems then accrete mass according to
equation (6). The initial proto-system masses are shown in dark red, while
the (progressively lighter) orange and yellow distributions show the emerging
SMF after, respectively, 667 and 2000 proto-systems have formed. We see
that the slope is approximately time-invariant, and equal to the desired −α =
−2.3, as indicated by the solid red line.

Figure 2. As Fig. 1, except that (i) the masses of seed (red histogram) are
drawn randomly from a lognormal distribution with mean μlog10(M/M�) =
−0.975 and standard deviation σlog10(M/M�) = 0.470, and (ii) we have
generated 106 proto-systems in order to improve the statistics on the SMF
(yellow histogram). The blue solid curve shows the Chabrier (2003) SMF, and
– apart from low masses, � 0.03 M�, where disc fragmentation and ejection
are presumed to generate additional proto-systems – the fit is extremely
accurate, and well within the uncertainties.

distribution (its mean and standard deviation) have been set by
picking seed-masses from a trial lognormal distribution, evolving
them in the same way as described in Section 2 and seeking a close
match to the observed SMF.

For the observed SMF, we take the prescription in Chabrier
(2003), viz. a lognormal peak with mean μlog10(M/M�) = −0.658 and
standard deviation σlog10(M/M�) = 0.570, and we join this smoothly
to a power-law tail with α = 2.3. In order to obtain a smooth join,
the switch from lognormal to power law is at 2.03 M�. This SMF is
illustrated by the smooth solid curve in Fig. 2.

The lognormal seed-mass distribution that best reproduces this
SMF has mean μlog10(M/M�) = −0.975 and standard deviation
σlog10(M/M�) = 0.470; the median seed-mass is therefore m0 =
0.106 M�, and the FWHM of the seed-mass distribution extends
from 0.03 to 0.38 M�. This seed-mass distribution is represented
by the red histogram in Fig. 2, and it is adopted for all the cases
discussed in the sequel.

The SMFs derived from this seed-mass distribution for 1000 000
proto-systems is represented by the yellow histogram in Fig. 2 and
this is termed the fiducial case. We see that, between ∼0.03 and
∼100 M� it is an extremely good fit to the observed SMF. Below
∼0.03 M�, the model SMF falls below the observed one, but this is
the region where we expect a significant fraction of proto-systems to
have been formed by other processes.

The dominant formation mechanism for very low-mass proto-
systems (i.e. free-floating Brown Dwarfs and planets) is contentious
(Whitworth et al. 2007). Some authors argue that Brown Dwarfs
form like low-mass stars by turbulent fragmentation (e.g. Padoan &
Nordlund, 2004), but there are problems with this paradigm. In
particular, it seems to require very supersonic, and unrealistically
focused radial inflows to produce a gravitationally unstable core of
Brown-Dwarf mass (Lomax et al. 2016). The main alternative is that,
as one considers lower and lower masses, an increasing proportion
of stars are formed by disc fragmentation (e.g. Whitworth &
Stamatellos, 2006). Brown Dwarfs and planets formed in this way
can subsequently be ejected from their birth-disc to produce a
diaspora of free-floating low-mass systems. Since neither the detailed
dynamics of turbulent fragmentation, nor the detailed dynamics of
disc fragmentation and dynamical ejection, are addressed in this
paper, we do not pursue the issue of forming very low-mass proto-
systems further here.

We note that, if the best fit to the SMF changes in future with better
observations, provided that it still involves a lognormal peak merging
smoothly with a power-law tail at high masses, it can be fit equally
well simply by adjusting the parameters of the lognormal distribution
of seed-masses and the value of α. Based on the Chabrier (2003)
SMF, the lognormal seed-mass distribution has mean μlog10(M/M�) =
−0.975 and standard deviation σlog10(M/M�) = 0.470.

3.2 Competitive accretion

In this section, we explore the effects of changing the prescription
for competitive accretion. First, we abandon the use of equation (10)
to regulate the rate of creation of seed proto-systems. We continue to
set A0m

[1−α]
0 = 1, and B = 10−5 yr−1, but we characterize the birth

and growth of proto-systems by specifying the fraction of mass, fTF,
that goes into new seed proto-systems; values fTF = 0.25 and 0.50
are treated. Note that at early times, our model actually requires fTF

to be closer to unity, which means there should be an initial burst
of star formation. To mimic this effect we start our simulations with
3 systems initially. Secondly, we explore variations in the exponent
β characterizing the rate of mass accretion (see equation 4); values
of β = 2/3, 1, and 4/3 are treated. Thirdly, we explore a modified
expression for the mass dependence of the accretion rate,

dm

dt
= B {m + 0.1M�} ; (17)

this expression has the merit that it fits better the results obtained
by Maschberger et al. (2014) on the basis of a full hydrodynamical
simulation; for low-mass proto-systems (m � 0.1 M�), the accretion
rate tends to a fixed value. The results obtained with these changes
are displayed in the panels of Fig. 3. In all cases the histograms
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(a) (b)

(c) (d)

(e) (f)

Figure 3. SMFs obtained using different prescriptions for competitive accretion. On each panel, the solid red line has slope −α = −2.3, and the dashed red lines
have slopes −α = −2.0 and −2.6. The initial proto-system masses are shown in dark red, while the (progressively lighter) orange and yellow distributions show
the emerging SMF after 667 and 2000 proto-systems have been formed, respectively. Panels (a) through (d) show results obtained using different combinations
of β (equation 4) and fTF. Panels (e) and (f) show the results obtained using equation (17) for the rate of accretion and different values of fTF. One again, the
blue solid curve shows the Chabrier (2003) SMF, and the red dashed lines show the uncertainties in the observed slope of the power-law portion of the SMF.

display the seed-mass distribution (as derived in Section 3.1), and
the SMFs after 667 and 2000 proto-systems have formed.

Fig. 3(a) shows the results obtained with β = 1 and fTF = 0.25.
The emergent SMF is a good fit to the observed SFM, although there

is clearly some noise from the stochasticity of the model. Fig. 3(b)
shows the results obtained with β = 1 and fTF = 0.50. Again the
results are close to the observed SFM, but transition from lognormal
to Salpeter power law occurs a lower mass than in the Charbrier SMF,
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due to the increased rate of seed formation with relative to accretion.
However, given the uncertainties in the observed mass function, both
these models are consistent with SMFs of real stars.

Fig. 3(c) shows the results obtained with β = 2/3 (as appropriate for
tidal-lobe accretion) and fTF = 0.25. With such a low β, and hence
only moderately competitive accretion, lower mass proto-systems
accrete almost as fast as higher mass ones. Consequently, there is a
higher proportion of intermediate-mass proto-systems than in other
cases, and a clear deficit of high-mass stars. However, for the mass
range 1 M� < m < 10 M�, there is still a good fit to the power-law
portion of the observed SMF.

Fig. 3(d) shows the results obtained with β = 4/3 and fTF = 0.50.
With such a high β, and hence extremely competitive accretion,
the first exceptionally high-mass seed proto-system to form quickly
consumes a disproportionate fraction of the available mass. There
is little time for the other proto-systems to grow much, and so their
mass function is quite close to the seed-mass distribution, with a
small tail on the high-mass side. We conclude that such a high value
of β is incompatible with the observed high-mass slope (α 	 2.3).

Figs 3(e) and (f) show the results obtained when accretion is
regulated by equation (17) with fTF = 0.25 and 0.50, respectively.
Above 0.3 M�, the functions obtained are very similar to those
obtained using dm/dt = Bm with, respectively, fTF = 0.25 (Fig. 3a)
and fTF = 0.50 (Fig. 3b), although there is a slight steeping on the
power-law portion of the SMF in the case with fTF = 0.50 in panel
(e) in comparison to panel (b). At the low-mass end we see a larger
difference between the modules of the accretion rates: the extra
boost in accretion to the low-mass objects in the models following
the prescription given in equation (17) results in fewer objects
below 0.3 M� than the models adopting dm/dt = Bm. Although
this renders the models following equation (17) inconsistent with the
observational data, it is worth stressing that there is a large scatter in
the data in (Maschberger et al. 2014) which is not captured here, and
that the data in that paper is for individual stars, not systems.

In summary, the model parameters can vary slightly, i.e. 2/3 �
β � 1 and 0.25 � fTF � 0.50, and still be broadly consistent with
the observed SMF. The limits on β suggest that tidal-lobe accretion
might be a better model than Bondi–Hoyle accretion, and we return
to this below.

4 D ISCUSSION

The theoretical arguments outlined in the preceding sections place
constraints on the evolution of the SMF in a forming star cluster,
in the situation where a proto-system once formed, can grow by
accretion from a common reservoir of residual gas. In this section,
we discuss whether these constraints are plausible, and explore the
underlying physics.

4.1 The mass dependence of the accretion rate

Maschberger et al. (2014) argue that neither tidal-lobe accretion, nor
Bondi–Hoyle accretion, operates in simulations of star formation in
turbulent clouds, since they find β ∼ 1, rather than β 	 2. However,
their reasoning may be too simplistic. The Bondi–Hoyle accretion
rate is given by

dm

dt
= 4πG2m2ρbgvrel

(v2
rel + cs

2)2
. (18)

If the undisturbed background gas density, ρbg, the velocity of a
proto-system relative to this gas, vrel, and the sound speed in this
gas, cs, are all approximately independent of m, then equation (18)

implies β ∼ 2. However, dynamical collapse, and exchange of energy
between gas and proto-systems, produce variations in vrel. More
massive proto-systems tend to be concentrated near the centre of
the cluster-forming cloud, where ρbg is higher. Consequently, there
might be some extra dependence on mass that is not accounted for
by β 	 2.

Ballesteros-Paredes et al. (2015) find that this is indeed the case.
In different regions of their simulation, accretion subscribes locally
to the Bondi–Hoyle rate, i.e. dm/dt ∝ m2ρbg/v

3
rel (since vrel � cs).

Kuznetsova et al. (2018) find the same result (see their fig. 11).
At the same time, they also recover the Maschberger et al. (2014)
result that dm/dt ∝ m, because higher mass proto-systems tend to
be concentrated in regions where ρbg/v

3
rel is lower. They conclude

that Bondi–Hoyle accretion is the underlying mechanism for proto-
system growth, but variations in ρbg/v

3
rel are anticorrelated with m in

such a way that β ∼ 1.
It remains to be understood why ρbg/v

3
rel is anticorrelated with m in

this way. Where higher mass proto-systems are forming, the density
must be lower, and/or the velocity dispersion must be higher. One
possibility is that dynamical stirring of the gas by more massive proto-
systems increases the velocity dispersion, and this in turn reduces the
gas density.

Alternatively, since we have shown that an acceptable SMF can
be produced with β = 2/3 (Fig. 3c), and given the large scatter in
the simulations (Maschberger et al. 2014; Ballesteros-Paredes et al.
2015; Kuznetsova et al. 2015, 2018), it may be that in nature tidal-
lobe accretion dominates over Bondi–Hoyle accretion.

4.2 The fraction of mass going into seeds

A key element of our model is that turbulent fragmentation is rather
inefficient, in the sense that only a fraction, fTF, of the mass that
goes into forming a star cluster is used to form new low-mass proto-
systems by turbulent fragmentation, and the rest is accreted on to
existing proto-systems. While inefficient fragmentation is seen in
many cluster formation simulations (e.g. Bonnell, Clark & Bate 2008;
Clark et al. 2008a; Offner, Klein & McKee 2008; Offner, Hansen &
Krumholz 2009; Girichidis et al. 2011; Federrath & Klessen 2012,
2013), it is unclear how physics conspires to deliver the fraction 0.23
� fTF � 0.50 required by our model (see Section 3.2).

Inefficient fragmentation may arise in part due to the non-
homologous nature of gravitational collapse. Prestellar cores develop
strong central condensations as they collapse (Bodenheimer &
Sweigart 1968; Larson 1969; Penston 1969a, b; Shu 1977; Whit-
worth & Summers 1985). For an isothermal core, the outer parts
tend towards a density profile ρ(r) ∝ r−2, and fall towards the centre
of the core relatively slowly. This means that most of the mass of
a core is still quite diffuse when the centre of the core undergoes
fragmentation (Lomax et al. 2015, 2016). For a prestellar core that
starts collapse at density nH2 ∼ 105 cm−3, only about 1 per cent of
the mass is involved in the buildup of the first, central, optically thick
seed proto-system (Larson 1969). Much of the remaining core mass
is at this stage still quite far from the central seed proto-system and
only moving inwards slowly.

If the core is part of a forming star cluster (i.e. a proto-cluster),
and bound to the proto-cluster, the core will tend to free-fall towards
the centre of the proto-cluster. If the mean density of gas and stars
closer to the centre of the proto-cluster is ρ̄clust, any core gas with
density less than ∼2ρ̄clust is likely to be tidally stripped from the core.
Since most of the mass in a collapsing core remains at low density
for at least one core free-fall time (tcore ∼ [Gρcore]−1/2, typically
� 105 yr), this low-density gas can be stripped from the core, rather
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Figure 4. The total mass of proto-systems, Mtot, as predicted by our
analytic model (full line, equation (11) with A0 = 7.96 M1.3� and B =
1.53 × 10−7 yr−1) and by the fitting formula of Caldwell & Chang (dotted
line, equation 19). The Caldwell and Chang fit is only made over half a dex
(as are all their fits) and has been offset by +log10(2) = +0.301 to avoid
confusion. Without this offset the two curves agree to within ±10 per cent
between 3 × 106 and 107 yr.

than accreting on to the central proto-system. There is therefore a
competition between the time it takes for the outer layers of a core
to collapse on to the proto-system at the centre of the core, and the
time it takes for a core formed in the outer reaches of a proto-cluster
cloud to fall towards the centre of the proto-cluster cloud. Once the
core reaches the centre of the proto-cluster, it can grow further by
gravitational accretion, but it is now in competition with other proto-
systems. This process was first explored by Bonnell et al. (2008),
where it was proposed as the mechanism by which clusters form
low-mass stars and brown dwarfs.

Finally, the formation of prestellar cores by supersonic turbulence
is intrinsically an inefficient process. Provided the mass supplied to
a forming cluster is turbulent, the rate of formation of seed proto-
systems will be slow (Smith et al. 2009).

4.3 Accelerating star formation

Our model requires that the rate of production of seed proto-
systems grow exponentially with time, according to equation (13). An
accelerating star formation rate has been inferred from observations
of nearby star-forming regions (Palla & Stahler 1999, 2000, 2002)
and forms the basis of several theories of cloud and cluster assembly
(e.g. Hartmann et al. 2001, 2012; Zamora-Avilés et al. 2012;
Murray & Chang 2015; Vázquez-Semadeni, González-Samaniego &
Colı́n 2017; Vázquez-Semadeni et al. 2019).

Caldwell & Chang (2018) have performed a new analysis of
four nearby star-forming regions. Based on pre-main-sequence age
estimates from the literature, they conclude that the star formation
rates in these regions are accelerating, and they fit their results
with a relation of the form Mtot(t) ∝ tγ with γ ∼ 2. These fits
are obtained over a rather small time range, typically half a dex,
and Caldwell & Chang (2018) do not discuss their uncertainties, so
the fits are only indicative. Our analytic model predicts a different
fit function (equation 11), but, given the limitations of the fitting
process, it is compatible with the Caldwell & Chang (2018) data, as
we show in Fig. 4.

We note that our choice of B = 10−5 yr−1 is motivated purely by
the desire to match the simulations of Bonnell et al. (2011) and

the analysis of those simulations by Maschberger et al. (2014).
The Bonnell et al. (2011) simulations start with a very dense
cloud, n̄H2 ∼ 105 cm−3, and therefore evolve on a very short free-
fall time-scale, ∼ 105 yr. Consequently, our model evolves on a
comparably short time-scale: 2000 proto-systems take ∼ 0.5 Myr to
form. Nearby star-forming clouds appear to have significantly lower
mean densities, n̄H2 � 100 cm−3 and hence significantly longer free-
fall time-scales, � 3 × 106 yr. Therefore in order to compare our
results with Caldwell & Chang (2018), we must stretch the time axis.
This is equivalent to reducing B, and has no effect on the systematics
of our model, since B only enters the equations in the combination
Bt. The solid line in Fig. 4 shows the predictions of our analytic
model (equation 11) with A0 = 7.96 M1.3

� and B = 1.53 × 10−7 yr−1

between 106 and 3 × 107 yr. For comparison, the dotted line shows
the corresponding Caldwell & Chang fit,

Mtot = M�

[
t

106 yr

]2

(19)

between 3 × 106 and 107 yr, but increased by a factor of 2 [i.e.
incremented by log10(2) = 0.301] to avoid confusion. Modulo this
increment, the difference between the two fits is less than 10 per cent
at all points, and hence less than the Poisson uncertainty due to
small-number statistics. In other words, even if the ages and masses
of the stars informing the Caldwell and Chang fit were exact, the
correspondence would be excellent. We conclude that our model is
consistent with the data of Caldwell & Chang (2018).

4.4 Caveats

By construction, the stochastic model developed here invokes a
balance between the creation of low-mass seed proto-systems by
turbulent fragmentation, and their subsequent growth by competitive
accretion. This balance is required to maintain an approximately
constant and universal slope, α ∼ 2.3, at the high-mass end of the
SMF in a forming cluster. Here, we review three putative physical
processes that might corrupt this balance in nature.

Krumholz & McKee (2008) suggest that there exists a critical
column density, 	CRIT ∼ 1 g cm−3, and that at column densities 	

� 	CRIT the radiation from young stellar objects and protostars is
trapped and heats the cloud, raising the Jeans mass and thereby
promoting the formation of high-mass protostars. The simulations
of Krumholz, Klein & McKee (2011) suggest that the heating that
occurs at high surface density actually has two effects. Not only
does it increase the Jeans mass in the vicinity of existing protostars,
thereby inhibiting further fragmentation, but it also increases the
density at which fragmentation occurs, and hence the accretion rate
on to existing protostars. The result is a top-heavy local SMF, with a
much higher proportion of high-mass proto-systems than the standard
SMF. However, we note that simulations which include the dynamic
effects of jets and winds from protostars show that their radiation
can easily escape. This keeps the temperature, and hence the Jeans
mass, low, and results in a more standard SMF (Krumholz, Klein &
McKee 2012).

Li et al. (2010) have explored the effect of the magnetic field
strength on the SMF, using ideal MHD simulations of turbulent
clouds. They find that the high-mass end of the SMF becomes steeper
as the field strength is increased, i.e. the SMF has a lower proportion
of high-mass proto-systems than the standard SMF. This is because
the gas condenses into filaments aligned perpendicular to the field,
and the filaments then fragment into cores which collapse into proto-
systems. The proto-systems cannot grow much because they can only
accrete along the field, from the diffuse gas outside the filament.
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In the ‘fragmentation induced starvation’ process reported by
Peters et al. (2010) and Girichidis et al. (2012), the disc around
a massive protostar fragments to produce a population of low-mass
protostars, which promptly consume the remaining disc material,
and also intercept any material that flows in subsequently. This
process is the opposite of competitive accretion, since the lower mass
protostars grow at the expense of the massive protostar, by cutting
it off from its accretion reservoir. However, the massive protostar
and its attendant low-mass protostars are – until and unless they
disperse – a single proto-system, so this process does not change
the SMF.

5 N O N - STEADY CLUSTER GROW TH

In our stochastic model (Section 3), we fix the fraction of mass going
to create new low-mass seed proto-systems, fTF. In other words,
the mass going to form a star cluster is, throughout the process,
divided in a constant ratio (fTF: [1 − fTF]) between mass which
is consumed in the formation of low-mass seed proto-systems by
turbulent fragmentation, and mass which is consumed by competitive
accretion.

With this single condition, the rate at which mass is supplied
to the growing cluster becomes immaterial. The shape of the SMF
(the lognormal peak at low masses, and the power-law tail at high
masses) changes only in the sense that, as more mass is added, the
amplitude increases and the maximum mass increases. The rate of
supply of mass to the growing cluster can increase, decrease, or
stay constant; it can terminate abruptly and then resume equally
abruptly.

Specifically, if the rate at which mass is supplied to the cluster is
dMtot/dt, we can define

B(t) = [α − 2] m
[α−2]
0

A0 [α − 1] e[α−1]B(t)

dMtot

dt
(20)

and

B(t) =
∫ t ′=t

t ′=0
B(t ′) dt ′ . (21)

If we limit consideration to times, t, that do not exceed the time-
scale on which the constituent proto-systems evolve significantly or
the time-scale on which the cluster disperses, (say 10 Myr), then
the total mass of the star cluster, Mtot(t), the maximum proto-system
mass, mmax(t), the number of proto-systems,N (t), the rate of creation
of proto-systems, dN /dt , the rate at which mass is consumed in the
creation of low-mass seed proto-systems by turbulent fragmentation,
dMTF/dt, and the rate of consumption of mass by competitive
accretion, dMCA/dt, are given by

Mtot(t) 	 A0 e[α−1]B(t)

[α − 2] m
[α−2]
0

, (22)

mmax(t) 	 m0 eB(t) , (23)

N (t) 	 A0 e[α−1]B(t)

[α − 1] m
[α−1]
0

, (24)

dN
dt

	 A0 B(t) e[α−1]B(t)

m
[α−1]
0

, (25)

dMTF

dt
	 A0 B(t) e[α−1]B(t)

m
[α−2]
0

, (26)

dMCA

dt
	 A0 B(t) e[α−1]B(t)

[α − 2] m
[α−2]
0

. (27)

Consequently, Mtot can be used in place of t to track the evolution
of the global properties of the star cluster:

N (t) 	 [α − 2] Mtot

[α − 1] m0
, (28)

mmax(t) 	
{

[α − 2] m
[2α−3]
0 Mtot

A0

}1/[α−1]

. (29)

The use of approximate equalities (	) in equations (22) through
(29) reflects the stochastic selection of low-mass seed proto-systems
from a lognormal distribution function (see Section 3.1). This leads
to some noise and the creation of a small number of exceptionally
massive proto-systems.

We note that in our model the mass of a cluster is limited by the
availability of mass to form new seed proto-systems. Growth of the
cluster ceases either because the mass of the proto-cluster cloud is
exhausted, or because feedback – particularly from the most massive
proto-systems – disperses the remaining unaccreted gas. The mass
of the most massive proto-system increases monotonically with time
(see equations 8, 23 and 29). However, the ratio of mass in any
two well-populated mass intervals below the current maximum mass
does not change significantly with time.

6 SU M M A RY

We have presented a new phenomenological model for the formation
of a star cluster, which can reproduce the Chabrier (2003) SMF very
accurately.

In this model, turbulent fragmentation creates low-mass seed
proto-systems with a tightly constrained lognormal mass distribu-
tion,

dP

dμ
= 1

[2π]1/2[0.47]
exp

{− [μ + 0.975]2

2 [0.47]2

}
, (30)

where μ = log10(m/M�).
These proto-systems then grow by competitive accretion.

Throughout the formation of the star cluster, a constant fraction
fTF of the available mass is consumed by turbulent fragmentation,
producing low-mass proto-systems. The remaining [1 − fTF] is
consumed by accretion on to these proto-systems. The accretion
rate on to an individual proto-system is given by dm/dt ∝ mβ .

If fTF = 0.23 and β = 1, the high-mass tail of the mass function
immediately relaxes to the Salpeter slope, and – in accordance with
observations – retains this slope as the mass of the cluster grows
and the mass function extends to ever higher masses. Moreover, this
behaviour is completely independent of the rate at which mass is
supplied to the forming star cluster, even if this rate varies wildly.
These features are still retained approximately if these constraints
are relaxed, viz. 0.25 � fTF � 0.50 and 2/3 � β � 1.

We stress that the IMFs/SMFs that emerge from numerical simu-
lations of star formation must be following the model that we present
here, since these simulations exhibit competitive accretion on to a
growing populations of stars/systems. The division of mass between
turbulent fragmentation and competitive accretion probably reflects
the fact that the initial condensation of a gravitationally unstable core
is highly non-homologous. Consequently, the material in the outer
envelope is easily stripped away from the much denser central proto-
system by ram-pressure or tidal forces, and once this has happened
other proto-systems can compete for it. Indeed Hennebelle, Lee &
Chabrier (2019) have argued that the tidal stripping of the outer layers
of cores is critical in setting the peak of the IMF.
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The required mass-dependence of the accretion rate appears at
first sight to favour tidal-lobe accretion (β 	 2/3) over Bondi–
Hoyle accretion (β 	 2). However, there is some evidence from
numerical simulations to suggest that high-mass proto-systems are
preferentially located in regions where the gas density is lower and/or
the velocity dispersion is higher, so that Bondi–Hoyle accretion
actually delivers β 	 1.

Evidently further work is needed to explore the physics of turbulent
fragmentation, core condensation and competitive accretion. This
paper simply outlines a framework that reconciles the notion of
turbulent fragmentation with the notion of competitive accretion.
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APPENDIX A : D ETAILS OF THE A NA LY TIC MODEL

We assume that star formation proceeds by the formation of low-mass seed proto-systems with mass m0, and that these then grow by accretion
at a rate

dm

dt
= B mβ (A1)

to form higher mass proto-systems. It follows that the second time derivative of the mass is given by

d2m

dt2
= β B2 m[2β−1] . (A2)

We also assume that the high-mass end of the proto-SMF in a star-forming region is given by

∂N

∂m

∣∣∣∣
t

= A(t) m−α , (A3)

and we are looking for solutions in which the exponent, α, does not change with time. In analysing the high-mass end of the SMF, we start
by neglecting the source term for low-mass seed proto-systems. Then we formulate the rate at which low-mass seed proto-systems must be
created in order to maintain the resulting SMF. As in the main text, we use standard brackets [e.g. A(t) in equation A3] exclusively to denote
functional dependence.

At time t we identify the cohort of proto-systems in the small but finite mass interval [m(t), m(t) + 
m(t)]. Their number is given by


N (t) = A(t)

{
m−α(t) 
m(t) − αm[−α−1](t)
m2(t)

2
+ O

(

m3

)}

= A(t) m−α(t) 
m(t)

{
1 − α
m(t)

2m(t)
+ O

(

m2

)}
. (A4)

By time t + 
t , where 
t is a small but finite time interval, the lowest mass in this cohort has become

m(t + 
t) = m(t) + Bmβ (t)
t + βB2m[2β−1](t)
t2

2
+ O

(

t3

)
. (A5)

Similarly, by time t + 
t the highest mass in this cohort has become

m(t + 
t) + 
m(t + 
t) = [m(t) + 
m(t)] + B [m(t) + 
m(t)]β 
t + βB2 [m(t) + 
m(t)][2β−1] 
t2

2
+ O

(

t3

)
= m(t) + 
m(t) + Bmβ (t)
t + βBm[β−1](t)
m(t)
t

+ βB2m[2β−1](t)
t2

2
+ O

(

m2
t, 
m
t2, 
t3

)
. (A6)

The mass interval now occupied by the cohort is obtained by subtracting equation (A5) from equation (A6) to obtain


m(t + 
t) = 
m(t) + βBm[β−1](t)
m(t)
t + O
(

m2
t,
m
t2

)
. (A7)

By analogy with equation (A4), the number of proto-systems in the cohort at time t + 
t is given by


N (t + 
t) = A(t + 
t) m−α(t + 
t) 
m(t + 
t)

{
1 − α
m(t + 
t)

2m(t + 
t)
+ O

(

m2

)}
. (A8)

If we focus on zeroth- and first-order terms in equation (A8), we can substitute

A(t + 
t) = A(t) + dA

dt

t + O

(

t2

)
= A(t)

{
1 + dA

dt


t

A(t)
+ O

(

t2

)}
, (A9)

m−α(t + 
t) = m−α(t)
{

1 + Bm[β−1](t)
t + O
(

t2

)}−α

= m−α(t)
{

1 − αBm[β−1](t)
t + O
(

t2

)}
, (A10)
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where we have used equation (A5);


m(t + 
t) = 
m(t)
{

1 + βBm[β−1](t)
t + O
(

m
t,
t2

)}
,

where we have used equation (A7); and{
1 − α
m(t + 
t)

2m(t + 
t)
+ O

(

m2

)} =
{

1 − α
m(t)

2m(t)
+ O

(

m2, 
m
t

)}
. (A11)

Equation (A8) then becomes


N (t + 
t) = A(t)

{
1 + dA

dt


t

A(t)
+ O

(

t2

)}
× m−α(t)

{
1 − αBm[β−1](t)
t + O

(

t2

)}
× 
m(t)

{
1 + βBm[β−1](t)
t + O

(

m
t, 
t2

)}
×

{
1 − α
m(t)

2m(t)
+ O

(

m2, 
m
t

)}

= A(t) m−α(t) 
m(t)

{
1 +

[
1

A(t)

dA

dt
− αBm[β−1](t) + βBm[β−1](t)

]

t

− α
m(t)

2m(t)
+ O

(

m2,
m
t, 
t2

)}
, (A12)

The number of proto-systems in the cohort does not change, i.e. 
N(t) = 
N(t + 
t), so we can equate equations (A4) and (A12). It follows
that, in the limit of decreasing 
t, the coefficients of 
t must vanish, so

1

A(t)

dA

dt
= [α − β] B m[β−1](t) . (A13)

Since A cannot depend on m, we must have β = 1, i.e.

dm

dt
= Bm , (A14)

and therefore

A(t) = A0e[α−1]Bt . (A15)
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