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� Computational modelling is combined with MEG to differentiate people with juvenile myoclonic epi-
lepsy from healthy controls.

� Brain network ictogenicity (BNI) was found higher in people with juvenile myoclonic epilepsy relative
to healthy controls.

� BNI’s classification accuracy in our cohort was 73%.

a b s t r a c t

Objective: For people with idiopathic generalized epilepsy, functional networks derived from their
resting-state scalp electrophysiological recordings have shown an inherent higher propensity to generate
seizures than those from healthy controls when assessed using the concept of brain network ictogenicity
(BNI). Herein we tested whether the BNI framework is applicable to resting-state magnetoencephalogra-
phy (MEG) from people with juvenile myoclonic epilepsy (JME).
Methods: The BNI framework consists in deriving a functional network from apparently normal brain
activity, placing a mathematical model of ictogenicity into the network and then computing how often
such network generates seizures in silico. We considered data from 26 people with JME and 26 healthy
controls.
Results: We found that resting-state MEG functional networks from people with JME are characterized by
a higher propensity to generate seizures (i.e., higher BNI) than those from healthy controls. We found a
classification accuracy of 73%.
Conclusions: The BNI framework is applicable to MEG and was capable of differentiating people with epi-
lepsy from healthy controls.
Significance: The BNI framework may be applied to resting-state MEG to aid in epilepsy diagnosis.
� 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Epilepsy is one of the most common neurological disorders with
an estimated 5 million new diagnosis each year (WHO, 2019). The
diagnosis of epilepsy is based on clinical history and supported by
clinical electroencephalography (EEG). The presence of interictal
spikes in the routine scalp EEG recordings is one of the most valu-
able biomarkers of epilepsy (Pillai and Sperling, 2006). However,
the presence of interictal epileptiform discharges (IED) in a routine
EEG is low, ranging between 25 and 56% (Smith, 2005; Benbadis
et al., 2020). Furthermore, about 10% of people with epilepsy do
not show IEDs even after repeated or prolonged EEG (Smith,
2005; Benbadis et al., 2020). On the other hand, specificity is also
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suboptimal, ranging between 78 and 98% (Smith, 2005), which, for
example, may delay the diagnosis of psychogenic nonepileptic
attacks by 7 to 10 years (Benbadis, 2009).

The low sensitivity of IEDs results from IEDs being typically rare
events. This may be a consequence of their sources being deep in
the brain and/or the extent of cortex involved in epileptic activity
being undetectable at the scalp surface (Pillai and Sperling, 2006).
Consequently, much of the routine clinical EEG recording consists
of brain activity that appears normal to visual inspection, which
without other visible disturbances in background rhythms is con-
sidered non-informative. However, growing evidence suggests that
such sections of interictal EEG without IEDs may be used to inform
epilepsy diagnosis (e.g. Larsson and Kostov, 2005; Schmidt et al.,
2016; Verhoeven et al., 2018). Larsson and Kostov (2005) showed
that there is a shift in the peak of the alpha power towards lower
frequencies in interictal EEG from people with both focal and gen-
eralized epilepsy. More recently, Abela et al. (2019) found that a
slower alpha rhythm may be an indicator of seizure liability. Other
studies have used graph theory to test whether functional net-
works derived from interictal EEG differ from EEG obtained from
healthy controls. Functional networks are graphs, where nodes
correspond to brain regions and connections are inferred from sta-
tistical dependencies (e.g. correlations) between brain signals from
the regions. Such networks may represent the brain’s functional
coordination between regions (Park and Friston, 2013; Bassett
and Sporns, 2017). It has been found that functional networks from
people with epilepsy are more ‘‘regular” (i.e. higher path lengths
between nodes) and deviate more from small-world structures
than those found in healthy controls (Horstmann et al., 2010;
Quraan et al., 2013). Functional network alterations inferred from
resting-state EEG have also been used to differentiate children with
focal epilepsy from healthy children (van Diessen et al., 2013,
2016). Furthermore, resting-state EEG functional networks from
people with idiopathic generalized epilepsy (IGE) (also known as
genetic generalised epilepsy) were shown to have more functional
connections than healthy controls (Chowdhury et al., 2014). Func-
tional networks inferred from interictal EEG from people with tem-
poral lobe epilepsy have also been shown to differ from those from
healthy controls (Coito et al., 2016).

All these studies show that functional networks based on appar-
ently normal EEG may aid in the diagnosis of epilepsy. However,
these studies lack mechanistic insights as to why such differences
may be related to epilepsy. To build such understanding, we and
others have proposed to use mathematical models of epilepsy to
assess the functional networks and elucidate as to why a brain
may be prone to generate seizures (Schmidt et al., 2014, 2016;
Petkov et al., 2014; Lopes et al., 2019). In particular, resting-state
EEG functional networks from people with IGE were shown to be
more prone to support synchronization phenomena and the emer-
gence of seizure-like activity than those from controls (Schmidt
et al., 2014; Petkov et al., 2014). To quantify the differences, the
concept of brain network ictogenicity (BNI) was introduced, i.e., a
measure of how likely a functional network is of generating sei-
zures in silico (Petkov et al., 2014).

For the BNI to be useful for diagnosing people with epilepsy
from apparently normal brain activity, it relies on the assumption
that the ability of a brain to generate seizures is an enduring fea-
ture that should be identifiable during interictal periods. It further
assumes that such underlying closeness to seizures is captured by
the properties of functional networks. Then, the capacity of a given
functional network to generate seizures is assessed by estimating
BNI through computer simulations that produce long-term activity
from which the volume of epileptiform activity can be evaluated.
People with epilepsy are therefore assumed to have resting-state
functional networks that are more ictogenic, i.e., that have a higher
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propensity to generate seizures as estimated by the BNI, compared
to healthy people (Schmidt et al., 2016).

Since MEG has the advantage, relative to EEG, of neuromagnetic
fields being minimally perturbed by brain tissue, skull and scalp
(Supek and Aine, 2016), we expect that MEG-derived functional
networks would also be a candidate for the application of BNI. In
the current study, we aimed to test whether the BNI concept can
be applied to resting-state magnetoencephalography (MEG) data.
In particular, we aimed to find whether MEG-derived BNI can dif-
ferentiate juvenile myoclonic epilepsy (JME) from healthy controls.
JME is recognised by the International League Against Epilepsy
(ILAE) classification committee as a sub-syndrome of IGE, and
makes up by far the largest proportion of IGE in terms of preva-
lence, alongside Juvenile Absence Epilepsy (JAE), Childhood
Absence Epilepsy (CAE) and Epilepsy with Generalised Tonic Clonic
Seizures on Awakening (GTCSA) (Engel, 2001; Scheffer et al., 2017).
By applying the BNI framework to MEG, positive results would
support the generalizability of the BNI across data modalities, over
and above the previous EEG applications, and to a specific sub-
syndrome of IGE.
2. Methods

2.1. Participants

We used resting-state MEG data obtained from 26 people with
JME and 26 healthy controls. The individuals with epilepsy were
recruited from a specialist clinic for epilepsy at University Hospital
of Wales in Cardiff, and the healthy individuals were volunteers
who had no history of significant neurological or psychiatric disor-
ders. The healthy group was age and gender matched to the epi-
lepsy group. The age range in the epilepsy group was 17 to 47,
median 27 years, and in the control group was 18 to 48, median
27 years. There were 7 males in the epilepsy group and 7 males
in the control group. Individuals in the epilepsy group had a num-
ber of different seizure types and were taking anti-seizure medica-
tions (see Krzemiński et al. (2020) and Routley et al. (2020) for
more details about this dataset). Table 1 summarizes the clinical
characteristics of the individuals with epilepsy. This study was
approved by the South East Wales NHS ethics committee, Cardiff
and Vale Research and Development committees, and Cardiff
University School of Psychology Research Ethics Committee. Writ-
ten informed consent was obtained from all participants.
2.2. MEG acquisition and pre-processing

MEG data were acquired using a 275-channel CTF radial gra-
diometer system (CTF System, Canada) at a sampling rate of
600 Hz. We obtained approximately 5 minutes of MEG recordings
per individual. The participants were instructed to sit steadily in
the MEG chair with their eyes focused on a red dot on a grey back-
ground. Each individual also underwent a whole-brain T1-
weighted magnetic resonance imaging (MRI) acquired using a Gen-
eral Electric HDx 3 T MRI scanner and an 8-channel receiver head
coil (GE Healthcare, Waukesha, WI) with an axial 3D fast spoiled
gradient recalled sequence (echo time 3 ms; repetition time
8 ms; inversion time 450 ms; flip angle 20�; acquisition matrix
256 � 192 � 172; voxel size 1 � 1 � 1 mm).

To assess the presence of artefacts and interictal spike wave dis-
charges, the MEG data was divided into 2 s segments and each seg-
ment was visually inspected. Artefact-free segments were
identified and re-concatenated for each individual. We thus
obtained concatenated recordings with a variable length ranging
from 204 s to 300 s, and to avoid the potential impact of different



Table 1
Clinical characteristics of the individuals with juvenile myoclonic epilepsy (JME). Age and epilepsy duration are in years, m = male, f = female. Anti-seizure medication (ASM):
LEV = levetiracetam, TPM = topiramate, ZNM = zonisamide, LTG = lamotrigine, VPA = valproate, CLB = clobazam, CBZ = carbamazepine. Seizure frequency is in number of seizures
per year and is divided in three types of epileptiform activity: MJ = myoclonic jerks, ABS = absence seizures, and GTCS = generalized tonic-clonic seizures. Seizure frequency was
based on self-reporting at the time of scan and extrapolated to a number of seizures per year.

ID Age Gender Epilepsy duration ASM Seizure frequency

MJ ABS GTCS

JME1 17.8 f 2.8 LEV 12 365 3
JME2 31.3 f 18.3 TPM, LEV 12 12 1
JME3 27 f 19.0 LEV, ZNM 104 0 1
JME4 20.1 f 3.1 LEV, TPM 0 0 4
JME5 20.7 f 3.7 LTG 4 4 4
JME6 20.4 f 5.4 LTG 12 0 104
JME7 19.2 f 4.2 LEV, ZNM 12 12 12
JME8 20.9 f 12.9 VPA, TPM 104 36 4
JME9 35.3 f 23.3 LTG, CLB 2920 0 1
JME10 30.2 m 16.2 VPA 52 52 4
JME11 23.7 m 8.7 VPA, LEV, CLB 365 2 2
JME12 38.8 f 21.8 VPA, ZNM 365 365 104
JME13 22.2 m 4.2 VPA 104 0 52
JME14 33.1 f 21.1 LEV 12 1 12
JME15 29.7 m 14.7 VPA 12 0 0
JME16 25.7 f 10.7 LEV, ZNM, LTG 6 12 1
JME17 36 f 27.0 LEV, TPM, CLB 0 365 12
JME18 38.6 f 28.6 VPA, LTG 2 0 1
JME19 44.3 m 29.3 VPA, LEV 365 365 2
JME20 47.7 f 40.7 CBZ, LEV, CLB 52 52 1
JME21 26.8 m 8.8 VPA 1 0 0
JME22 22.3 f 10.3 VPA 6 0 1
JME23 38.7 f 24.7 LEV, CLB 0 0 1
JME24 18.9 f 3.9 VPA 0 0 1
JME25 31.1 f 18.1 VPA 1 0 0.2
JME26 22.7 m 10.7 LEV 1 1 0.2
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recording lengths on our analysis, we only considered the first
200 s of each recording for every individual. The pre-processed
data were then filtered in the alpha band (8–13 Hz) and down-
sampled to 250 Hz. We focused on the alpha band because it has
been shown to be the most informative for differentiating people
with epilepsy from healthy controls (Schmidt et al., 2014, 2016).

2.3. Source mapping from MEG

To infer functional networks from the MEG data, we first
mapped the data from the sensor space to the source space. The
MEG sensors were co-registered with the structural MRI using
the locations of the fiducial coils in the CTF software (MRIViewer
and MRIConverter), and we obtained a volume conduction model
from the MRI scan using a semi-realistic model (Nolte, 2003). To
reconstruct the source signals, we used a linear constrained mini-
mum variance (LCMV) beamformer on a 6-mm template with a
local-spheres forward model in Fieldtrip (Oostenveld et al., 2011;

http://www.ru.nl/neuroimaging/fieldtrip). We mapped the source
signals into the 90 brain regions of the Automated Anatomical
Label (AAL) atlas (Hipp et al., 2012). For more details about these
methods see our previous studies (Krzemiński et al., 2020,
Routley et al., 2020).

2.4. Functional networks

We divided the 200-s-long source reconstructed MEG record-
ings into 10, non-overlapping, 20 s segments. The choice of seg-
ment length was motivated by previous studies that aimed to
distinguish people with epilepsy from controls using resting-
state scalp EEG (Schmidt et al., 2014, 2016). For each segment,
we computed a functional network using the amplitude envelope
correlation (AEC) with orthogonalized signals (Hipp et al., 2012)
(see Supplementary Material S1 for more details). We selected this
method because it has been shown to be a reliable measure of
functional connectivity (Colclough et al., 2016). To remove spuri-
924
ous connections, we generated 99 surrogates from the original
MEG signals using the iterative amplitude-adjusted Fourier trans-
form (IAAFT) with 10 iterations (Schreiber and Schmitz, 1996,
2000) (surrogates are randomized time series comparable to the
original time series). We excluded connections if their weights
did not exceed the 95% significance level compared to the same
connection weights as computed from the surrogates (Schmidt
et al., 2014, 2016, Lopes et al., 2019). Using this method, we
obtained 10 functional networks per individual.

2.5. Mathematical model

To study the inherent propensity of a MEG functional network
to generate seizures, we placed a canonical mathematical model
of ictogenicity at each network node, i.e. at each of the 90 brain
regions represented in the functional network (Lopes et al., 2017,
2018, 2019, 2020). The activity of a network node was described
by a phase oscillator, which could transit between two states: a
‘resting state’ at which the oscillator fluctuated close to a fixed
stable phase and a ‘seizure state’ represented by a rotating phase
(see Supplementary Material S2 for more details about the model).
This canonical model has been shown to approximate the interac-
tion between neural masses (Lopes et al., 2017).

2.6. Brain network ictogenicity

The mathematical model allowed us to generate synthetic brain
activity which fluctuated between the resting and the seizure
states. To quantify this activity, we used the BNI (Chowdhury
et al., 2014; Petkov et al., 2014; Lopes et al., 2017, 2018, 2019,
2020), which is the average fraction of time that the network spent
in the seizure state (see Supplementary Material S3 for more
details). We interpret higher values of BNI as representing a higher
inherent propensity of the brain to generate seizure activity. Thus,
although we used resting-state MEG data to infer the functional
networks, we assumed that the underlying brain states may differ

http://www.ru.nl/neuroimaging/fieldtrip


Fig. 1. Scheme of the data analysis procedure to compute brain network ictogenicity (dBNI). (a) We select a magnetoencephalographic (MEG) source reconstructed data
segment and by measuring the amplitude envelope correlation (AEC) we obtain (b) a functional network. To assess the propensity of the network to generate seizures, we
then use (c) the theta model to simulate (d) synthetic brain activity. We then calculate (e) the brain network ictogenicity (BNI), i.e. the average fraction of time that network
nodes spend in seizure-like activity. To avoid an arbitrary choice of K , we compute (f) BNI as a function of K. (g) dBNI is then the integral of BNI in the interval K1;K2½ �, i.e. the
area under the BNI curve.
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in their inherent propensity to generate seizures and this may be
captured by our computational framework. We hypothesized that
functional networks from JME individuals should be characterized
by higher values of BNI than those from healthy individuals.

The simulated synthetic activity depends on a model parameter,
the global scaling coupling K (see Supplementary Material S2).
Higher K values imply stronger neuronal interactions between
connected nodes, which in turn leads to higher BNI values. Hence,
for a fair comparison of BNI between different functional networks,
K must be the same in all simulations. To avoid an arbitrary choice
of K , we considered a redefinition of BNI (Lopes et al., 2018). This
redefinition consists in computing BNI for a sufficiently large inter-
val of K values in order to capture the full variation of BNI from 0 to

1. Then we calculated dBNI as the integral of the BNI in this interval
(see Supplementary Material S3). For a meaningful comparison
between different functional networks, we used the same interval
of K for all simulations. This procedure has been shown to be

robust (Lopes et al., 2018). Analogously to the BNI, a higher dBNI
value corresponds to a higher propensity of a network to generate
seizures. Fig. 1 summarizes the key steps of our method.
Fig. 2. Brain network ictogenicity (dBNI) in healthy individuals and people with juveniledBNID E
) of a single individual and the error bars their standard error computed from 10

correspond to healthy individuals, whereas red markers correspond to individuals with e
Mann-Whitney U test). Panel (b) shows the receiver operating characteristic (ROC) curv
curve (AUC) is 0:72 and the circle identifies the optimal operating point of the ROC curv
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2.7. Statistical methods

We computed 10 functional networks per individual and there-

fore we obtained 10 dBNI values per individual. We then calculated
dBNID E

, the average of the 10 dBNI values. Finally, we used the

Mann-Whitney U test to assess whether the median of dBNID E
was higher in people with epilepsy than in the healthy controls.
3. Results

We considered resting-state MEG recordings from 26 people

with JME and 26 healthy controls. To test whether dBNI was larger
in individuals with JME than in healthy controls, we first built
functional networks from MEG source reconstructed data, then
we placed a mathematical model of ictogenicity into the network
nodes and measured the networks’ propensity to generate seizures

in silico. Fig. 2(a) shows the dBNI for all individuals. Overall, individ-
uals with JME had larger dBNI values than healthy controls
myoclonic epilepsy (JME). Each marker in panel (a) represents the average dBNI (i.e.
magnetoencephalographic (MEG) resting-state functional networks. Blue markers
pilepsy. The epilepsy group has a larger dBNID E

than the healthy group (p ¼ 0:0039,
e for one group versus the other using the dBNID E

as a classifier. The area under the
e, for which the sensitivity is 0:77, and the specificity is 0:58.
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(p ¼ 0:0039, Mann-Whitney U test). This finding confirms our
hypothesis that resting-state functional networks from people
with epilepsy have a higher propensity to generate seizures than
those from healthy controls. Note also that for each individual,

we observed that dBNI had a small variance (i.e. the intraindividual
BNI variability is smaller than the interindividual BNI variability),

implying that dBNI was consistent across the 10 different MEG
resting-state functional networks of each individual. We then

tested whether dBNI could be used for individual classification as
to whether individuals had epilepsy. Fig. 2(b) shows the receiver
operating characteristic (ROC) curve. The area under the curve
(AUC) was 0:72, the sensitivity was 0:77, and the specificity was

0:58. The dBNI ’s classification accuracy was 73%.
The results in Fig. 2 may be confounded by a number of factors.

Namely, epilepsy duration and seizure frequency may have an

impact on the dBNI values. Figure S1 shows the dBNI versus these
clinical characteristics in the JME group. From visual inspection,
the figure suggests that while individuals with short epilepsy dura-

tion or low seizure frequency may exhibit both low and high dBNI
values, individuals with relatively longer epilepsy duration (larger
than 20 years) and higher seizure frequency (higher than 200 sei-

zures per year) present high dBNI values. We also computed the

Pearson’s correlation between the dBNI values and the seizure fre-
quency of each seizure type (myoclonic jerks, absence seizures,
and generalized tonic-clonic seizures), as well as the total seizure
frequency across the three types. The correlations were not signif-
icant (r < 0:29 and p > 0:15 in all tests).
4. Discussion

To date, the BNI framework has proved to be valuable for epi-
lepsy diagnosis using scalp EEG in IGE (Schmidt et al., 2014,
2016; Petkov et al., 2014), assessment of epilepsy surgery using
intracranial EEG in focal epilepsy (Goodfellow et al., 2016; Laiou
et al., 2019; Lopes et al., 2020, 2018, 2017), and epilepsy classifica-
tion using scalp EEG (Lopes et al., 2019). Here we extended previ-
ous results, testing whether the concept of BNI could differentiate
people with JME from age and gender matched healthy controls
using resting-state MEG data. We found that the BNI is on average
higher in the JME group than in the control group. We further
found that, as a classifier, the BNI yields a sensitivity of 0.77, a
specificity of 0.58, and an AUC of 0.72. This classification perfor-
mance is similar to previous results in classifying people with
IGE using scalp EEG (Schmidt et al., 2016). However, it is worth
noting that our results from people with JME may not be directly
comparable to those in the study by Schmidt et al. that were based
on an IGE cohort that would have included other sub-syndromes,
JAE, CAE and GTCSA, in addition to JME. Nevertheless, if we assume
the existence of common traits across the IGE spectrum (including
JME), our findings may suggest the hypothesis that MEG and scalp
EEG may yield similar diagnostic power through the BNI frame-
work, despite MEG often being considered superior to EEG in
recording reliable brain signals (Supek and Aine, 2016). More gen-
erally, our results further consolidate the validity and usefulness of
quantifying resting-state functional networks using a mathemati-
cal model of seizure transitions to assess the propensity of the
brain to generate seizures.

Resting-state MEG functional networks have been previously
shown to be altered in people with epilepsy relative to healthy
controls (van Dellen et al., 2012; Niso et al., 2015; Hsiao et al.,
2015; Wu et al., 2017; Routley et al., 2020). For example, Niso
et al. (2015) used 15 graph-theoretic measures to quantify
resting-state MEG functional networks from people with frontal
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focal epilepsy, generalized epilepsy and healthy individuals. They
found that functional networks from generalized epilepsy had
greater efficiency and lower eccentricity than those from controls,
whereas functional networks from frontal focal epilepsy exhibited
only reduced eccentricity over fronto-temporal and central sensors
relative to networks from controls. Furthermore, machine learning
has been used to also differentiate people with epilepsy from con-
trols (Soriano et al., 2017). Our study distinguishes from these
studies by not only searching for differences between functional
networks in health and disease, but instead test a specific mecha-
nistic hypothesis that justifies the difference. Thus, our approach is
more readily interpretable and may offer insight into why altered
functional networks underlie epilepsy.

We acknowledge that our study has some limitations. First, in
order to truly test how MEG-based predictions compare to scalp
EEG-based predictions, we would need both MEG and EEG data
collected from the same participants. Future work should assess
whether predictions based on both data modalities would deliver
equivalent individual classification. Second, people with JME were
taking anti-seizure medication, which may have potentially
reduced the BNI in some JME individuals, making them indistin-
guishable from healthy individuals. Future studies should consider
newly diagnosed drug-naïve individuals. This may be particularly
important to also control for the effect of epilepsy duration and sei-
zure frequency on BNI. Our results suggest that individuals with
longer epilepsy duration and higher seizure frequency were more
likely to be characterized by high BNI. On one hand this is an
expected observation, i.e. BNI should be higher for individuals
more prone to seizures and also those for which a longer disease
may have had an impact on resting-state functional connectivity.
On the other hand, these were individuals for which diagnosis
could be less challenging. Third, we focused our analysis on differ-
entiation of people with JME from healthy controls. We therefore
cannot exclude the possibility that our findings are specific to
JME. More comprehensive datasets will be needed to explore
whether our findings generalize to other types of epilepsy.
5. Conclusions

By extending the application of the BNI framework to MEG, our
results demonstrate that the BNI can be useful to interrogate dif-
ferent data modalities beyond EEG. We showed that resting-state
MEG from people with JME is characterized by higher BNI than that
from healthy controls. Our results suggest that BNI applied to
resting-state MEG may aid in the diagnosis of JME.
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