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Abstract

In order to alleviate the effects of greenhouse gas emissions, thenemtital and economic dispatch (EED) is
formulated as multiobjective optimization problem (MOP) solved by multitliémmune algorithm (MOIA).
Building on this model, the virtual power plant (VPP) is proposedlwivg distributed generation (DG), interruptible
load (IL), and energy storage (ES) to participate in joint energyraserve markets. The uncertainties of load
prediction, DG, and IL are treated as an interval-based optimization stulis The static and real-time simulations
are conducted to demonstrate the validitproposed stochastic EED model through the IEEE 30-bus test system.
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1. Introduction

Greenhouse gas emissions have detrimental effects on sustainable deweldpia particularly for
the power generation sector which accounts for around 40 % ofncanigsions [1]. Conventionally, the
economic dispatch is responsible for allocating the optimal generationhgitbbjective of minimizing
total operatig costs while being subject to system constraints [2]. In additionet@lssic economic
dispatch, the environmental dispatch, on the contrary, seeks to mintmizetal pollutant emissions
irrespective of costs [3]. Nevertheless, costs and emissions do nettBkasame dimension, which
presents a challenge to designing a more dedicated dispatch approach coordimhtomiinaizing
balanced operational points reasonably from economic and envirtairaspects.

Existing studies aim to solve environmental and economic dispatch (EEDta;eously. F. Z.
Gherbiet al. [4] considered carbon emissions as an additional constraint to optimigertbration csis.
The emissions and costs were also optimized separatelgiagle objective function, before weighted
evaluating for each objective [5], [6Nonetheless, it would be more useful to apply multiobjective
optimization problem (MOP) int&ED for the purpose of fairly and effectively evaluating the interefsts o
both costs and carbon emissions. To solve the EED problem, dpisr mploys multiobjective
optimization immune algorithm (MOIA) because it is able to obtain the optimal solutithout
sacrificing the interest of any objective [7]. Therefore, a balanced opepatinigfor each generator can
be obtained.

Moreover, the generation dispatch can be classified into deterministic approdcktoghastic
approach in terms of optimization features. A majority of studies maestigated deterministic dispatch
problem [8], [9]. However, due to the system uncertainties caysdistnibuted energy sources and load
predictions there are opportunities in applying the stochastic approach to copsysfém uncertainties
H. Wu et al. [10] proposed stochastic programming methods for securitytragmesd unit commitment to
deal with uncertainties in renewable energy. The uncertainties of sysermittency and incidents were
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investigated by using frequency-constrained stochastic optimization modglli The stochastic
approach requires the probability distribution functipdf( of the stochastic variables, which is difficult

to be obtaied in practical operations of power systems. By contrast, it isre@séstablish the interval-
based dispatch mod& describe the range of uncertain variables. The interval-based optimization was
noted in [12]. This paper adopts the interval-based stochastic appreatVing the uncertainties of
distributed generation (DG), energy storage (ES), and interruptible load (IL

Additionally, increasing penetrations of DG promotes replacement of gfridctures, which
economically and technically attributes to these resources through offering emerggserve services
[13]. Meanwhile, the requirements of demand response, system reliabildysecurity of electricity
supplies during these services enable the virtual power plant (VPP) to beessamgccontrol
infrastructure to coordinate each component indit]. The VPP is capable of dispatching and
optimizing the DG to support power system regulations through utiegrapid and flexible
characteristics of distributed resources. The carbon emissions issuenegrdainties of distributed
resources in the VPP, however, have barely been studied.

Compared with the existing work, contributions of this paper ard/elaim to propose aBED model
to consider both operatj costs and carbon emissions as objectives of MOP; 2) We extend tleea$cop
current research in the field of VPP through considering uncertaintiesagnoh emissions into the MOP.
The uncertainties of load predictions, DG, and IL are evaluated by interval dy@s@ech.

The rest of this paper is organized as follows. Section 2 introducesEeriodel considering the
uncertainties of load predictions, DG, and IL. The interval-based stochastiel riso subsequently
described to cope with the uncertainties. Section 3 illustrates the transforfratiostochastic model to
deterministic optimization problem. Case studies are conducted in Sectiorrhanstrate the proposed
model. Finally, Section 5 comes to the conclusion.

2. Stochastic Environmental and Economic Dispatch M odel

This section proposes the EED model through establishing obpeeativke constraints during power
system operations. The uncertainties of load prediction, DG, and IL as&lemedby an interval-based
stochastic approach.

2.1. Objective functions

The economic dispatch of Conventional Power Plant (CPP) seeks itmizsirthe operation costs
satisfying the total demand:

C(PGf.) =4a G’.+biPGl’.+Cir (1)

whereC(P ) is the generation cost @¢h CPP at hout, Pg is the power generated I generator for

spot energy markety, b;, and ¢; are cost coefficients of generator

Similarly, the economic dispatch of VPP is formulated to minimize thes edgtach component inside.
In this paper, the conventional model of VPP is considered including BGrs IL. The cost objective
of DG can be described as [15]:

CP ) = diP et + €Ppgy + 1, @)

whereC(P /) is generation cost function fith DG unit at hout, PDG} is power generated kth DG unit,
J

andd, e;, and £ are cost coefficients ¢th DG unit.
As another fundamental component of VPP, the behaviour of storages in BS cedellecs[15]:

min

-1 -1
Ppg- SoC:) < Ppy < Ppi- SoC;”, 3)
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SoC" - SoC{ < Ry, (4)

SoCt - SoC'< Ry, (5)

wherePES; is charged/discharged capacityjthf ES at hout, PZ;S’ and Pi"are minimum and maximum
. J J

capacities ofjth ES, respectivel\§oC; is state of charge ¢th ES, andk,, andR ., are maximum charge
and discharge rates ggh ES. Hence, the cost function of ES can be modelled as [15]:

C(PES;) :dES'| PES;| + €Es, (6)

whereC(PES;) is operation cost function gth ES, andizs andegs are cost coefficients ofth ES.
Furthermore, the cost function of IL can be described as [15]:

CPyy) = du Py + e Py + 1y @)
whereC(P,,:) is generation cost function ¢th IL unit, P,th_ is power generated byh IL unit at hourt,
J

anddy, ;, ey, andeL’j are cost coefficients gth IL unit. Therefore, the objective function of economic

dispatch is minimization of the total cost in CPP and VPP.
Cost objective of economic dispatch:

No. CPP No. DG No. ES No. IL
min( Z CPe) + Z rC(Pogt + Rpgt ) + (1= 1)C(Ppgs) + Z C(Pet) + Z rC(Pyg + Ryg) + (1= 1)C(Py),
i=1 j=1 j=1 j=1
)
whereRDGJr_ and R,Lj/, are power generated by DG and IL for reserve marketr anprobability of reserve
delivery.

By contrast, the environmental dispatch minimizes the total carbon emissitioh, means that the
generator with the lowest carbon emission will be triggered first [&d. carbon emissions of CPP can
be modelled using second order polynomial functiong [17

Emission objective of environmental dispatch:

min{ ZY" a;Pg+ BPo + G}, ©)

where a;, 5, and ¢; are coefficients of carbon emissions.

Carbon emissions in VPP are not taken into consideration of MOReprobecause these emissions
are irrelevant to the operational process. The carbon emissions iwN/Re evaluated through carbon
emissions factors based on the life cycle analys [

2.2. Constraints

2.2.1. Power balance constraint:

No.CPP No.DG No.ES No. IL

Z PGf + Z (PDG/’. + RDG]‘- )+ Z (Pch_;'nPDc;{/’-) + Z (PjL/’. +R1L/’. )= [DtLBaDtUB]v (10)
J=l J=1 J=1

=1

WherePch/q andPDch; are power charged and discharged ifkoES at hout, 5 is the efficiency of ES,

[DLB.DVUB] is the
interval of load predictions.
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2.2.2. Power output constraints;
The power output constraint for the CPP is:

P <Py <P, (11)

WhereP’gi_'” andP;" are minimum and maximum power generations of CPP.
1 1

Regarding power output of VPP, uncertainties of DG and IL are descadbadtervals. For the
dispatchable DG units, due to the intermittency of renewable resourcgsethietions of DG units tend
to be inaccurate, which can be reflected by an upper and lower bbontbat for energy and reserve
markets, respectively. Thus, in addition to the deterministic innertradeﬁZ/zUS(PDGﬁRDG;)S ;g’L,
in, L

e S(PDG;+RDG})SP’;”5;’UiS adopted to represent maximal regulation capacity. Hence,
the constraint for DG in energy and reserve mniggke

an outer constrai

nin, L nin, U ax,L ax, U
[P” ’PZG; 1= (PDsz_ +RDGJ'-) < [Pm P 1 (12)

t t t
DG; DG; DG;

in,L in, U ax,L ax, U- . :
where[ (e ’PZG; ]and[PI’ng,_ ,PI’;G} ] denote lower and upper bounds of power outpijitroDG in the

energy market. The inner and outer constraints reflect the conservatigptani$tic uncertain levels and
risks afforded by decision malser

2.2.3. IL congtraint:
Similarly, the uncertainties of IL due to the variations of load curtaiisnere reflected as an interval:

0= (Pyy+Ry) < [P P (13)

where[P;'ZZ"’L,P’,”L‘/Z’“'U] is the upper bound of IL.

2.2.4. Ramp rate constraints:

down

R, <PgP . <R, (14)

whereR?"" andR!” denote the ramp-down and ramp-+ates ofith CPP. The ramp rate of the DG is
faster than CPP due to rapid regulation capacities. Thus, the agomstraint of VPP is not taken into
consideration.

3. Stochastic Model Transfor mation

This section illustrates the conception of probability degree, so tieastochastic EED can be
transferred into deterministic MOP. The MOIA algorithm to solve the MOP ispatsented.

3.1. Probability degree

The probability degreelp)] is employed to solve the interval-based MOP. The probability degree can
represent the risk levels which decision makers are willing to take basedrespomding degree of
intervals. The conception of probability degree describes a comparisoeelbetiwreal number and an
interval B = [b,b], so that the position relationships as shown in Fig. 1 and correspopibgbility
degree can be defined as:
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, a<b
P(a<B)={7—, b<a<h (15)
, a<b

whereP(a <B) represents the probability degreeqof B. The variable within B is assumed to obey the
uniform distribution.

B
—_— b

ab b b

w Pm
ol

A J
o
ol
mI

Fig. 1 Relationship between a real number and @nvak

Furthermore, depending on the risk tolerance of decision makerspthebpity degree. € [0,1] can
be defined as a threshold on the condition afB. Therefore P (@ < B) > A can be transferred into:

a<bi+b(1-1), (16)
According to Eq (16), when = 0, the interval constraint< [b,5] becomes to be < 5, which means
that the decision maker is optimistic to focus on upper bound ofithieval. By contrast, wheh= 1, the
interval constraint becomes to be& b. Hence, the decision maker is pessimistic to reduce uncertainties.
Thus a higher probability degree represents a lower risk level would beedftny decision maker.

3.2. Transformation of stochastic model

Building on the aforementioned probability degree, the stochastic ihteasad constraints in Eq (10),
Eq (12), and Eq (13) can be transferred into deterministic constraints

LT P+ BEP (Ppg+ Rpgt ) + LS (PoynPpo) + L4 (Pyy + Ry )=DeP 4 +DEP (1-7,), - (17)

in, U min, L
PDG/(—"_RDG; > Panant Apg + PIDlgjt (1- 4pg), (18)
ax, L in,U
PDG;+RDG; < P’;G} Apg + PmDG]t_ (1- 2pg), (19)
ax, L in,U
Pu Ry < Py + P (1= ), (20)

where/,, 1pg, andl;; are the assigned probability degree of load, DG, and IL ednitstrrespectively
3.3. Methodology:

The MOP is solved by MOIA (See TABLE ) for the purpose of obtaining pareto front (PF) [7]. The
PF is the image of all nondominated solutions as shown in Fid.a2point is able to provide better
performance to at least one objective without sacrificing other objectives oinbeche pareto optimal
(PO) [7]
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Table 1. MOIA algorithm

Input: Objective functions: Eq (8), (9); initigblution sizen; maximum iteration time.
1: Generate a group of antibodies as initial populatioepicesent the power dispatch over constrg
Eq. 1), (14), (17), (18), (19), and (20):

2: Remove dominated antibodies and remain nondomisattiabdies.
3: Perform mutation operation over the remaining nondominateitbodies to produce a set
antibodies.
Repeat
4: Remove dominated antibodies.
5: Evaluating the remaining antibodies through satisfyingctivestraints and removing infeasih
antibodies.
6: if The population size is larger than the nominal Hisa
7: Update to normalize the antibodies
end if
Until The maximum iteration time is reached.
Output: A solution which is able to maximize the minimimmprovement in all dimensions.

4, Case Studies

In order to demonstrate the proposed model, case studies have bagrtetbnding the IEEE 30-bus
system which consists & generators [20]The generators from G1 to G5 are CPPs, and the G6 is
replaced by a VPP. The static simulation uses system oridatal to compare the results between
deterministic approach and stochastic approach. Moreoverdhiéne simulation uses the scaled-down
UK daily generation and consumption data in proportion to present tHesrefsdaily power dispatch in
CPP and VPP as well as corresponding carbon emissionsoéfiicients are selected based on practical
experience and [15].

4.1. Satic Smulation

Table 2. Total cost and emission of system

Approach Case AL ApG AL Cost [£/h] Emission [ton/h]
1 0 1 1 537.8525 206.5426
2 0.5 1 1 527.5326 198.4871
Stochastic 3 1 1 1 508.8145 193.7966
4 1 0.5 0.5 508.2081 192.8227
5 1 0 0 511.8148 190.4036
6 0.8 0.7 0.6 536.0419 202.1907
Deterministic - - - - 528.2506 197.2691

The uncertainties of load predictions, DG, and IL are reflected in the probatidigyees for
guantifying uncertain intervals under six conditions. Tallle shows the comparison between
deterministic and six conditions of stochastic results in EED. The cordisgopFs of MOP are shown
in Fig. 2. It can be seen that the highest cost and emission r83cB35£/h and 206.543ton/h
respectively in case 1, whereas the relatively lower cost and the lowest erdiggido 511.81%/h and
202.191ton/h respectively in case 5. This is because a lower probability degree affoadainty £;)
indicates a higher load level, whereas higher probability degrees ol RE dnd IL ¢;) in the VPP
indicate a lower output, which causes the highest cost and emissioitioralty, the deterministic
results are closer to case 2 with medium load uncertainty and loweoMP@&.
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Fig. 2. The comparison of EED between deterministicstochastic approaches.

4.2. Real-time simulation

The aforementioned condition in case 6 is selected as an example for resihtimation with the
scaled down UK generation and demand data [21]. The daily MOP res&ED for CPPs and VPP in
both energy and reserve markets are shown in Fig. 3 and Fig. 4 tiredpethe power curve of CPP is
closer to the lower-bound of load interval, because the selected probabiliég ddédoad uncertainty is
relatively high £;=0.8). The total daily generated power of VPP is presented in Figisscléar that the
dispatching VPP output falls into the uncertain interval during the ggefiom 12 to 14 and from 16
to 1&, which means that the EED is confronted with risks due to thasatamties. Furthermore, Fif.
shows the dailfeED. There is the same trend of variation between daily costs and emidsibriee
costs during the peak-timeh(& 18&) present a more dramatic increase than carbon emissions.

250

C__JcPP1|

 — el
I — ol Load interval _ _ _
200 [l —Jcppa - - = =
C—cPpPs =0

MW]

Allocated Powe

8 10 16 20
Time [h]

Fig. 3. EED power curves of CPPs.

5. Conclusion

This paper proposes a stochastic EED model in power systems cogsttlerWPP in both energy and
reserve markets. The generation dispatch problem is considered as a MOPbgalkedMOIA. The
uncertainties of load prediction, DG and IL are taken into consideration asaiméetervals, so that the
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stochastic optimization problem can be converted into deterministic optimizatiorstatteesimulation
demonstrates the various optimization results considering different levefgobfbility degrees.
Moreover, heresults indicate that the EED is confronted with risks caused by untiegai

[ DG in energy market

[ DGin reserve market| |

[ 1L in energy market e

[ 1L in reserve market

16 sec -
. VPP output

ES charge/discharge

M
=) o
5 =

Allocated Powe [MW]
=)

Power Charge/Discharge in ES [MW]

0.2
Z o
[+3]
=
[=]
o 01
h=]
[:5]
"
Qo
2 pos
<

0

Fig.5. Total generated power curves of VPP.
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Fig. 6 Daily EDD results of cost and emissi
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