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Abstract  

Recent evidence from proteomics and deep massively parallel sequencing studies have revealed 

that eukaryotic genomes contain substantial numbers of as yet uncharacterised open reading 

frames (ORFs). We define these uncharacterised open reading frames as novel open reading 

frames (nORFs). nORFs in humans are mostly under 100 codons and found in diverse regions of 

the genome, including in long noncoding RNAs, pseudogenes, 3’UTRs, 5’UTRs, and alternative 

reading frames of canonical protein coding exons. There is therefore a pressing need to evaluate 

the potential functional importance of these unannotated transcripts and proteins in biological 

pathways and human disease on a larger scale, rather than one at a time. In this study, we outline 

the creation of a valuable nORFs dataset with experimental evidence of translation for the 

community, use measures of heritability and selection that reveal signals for functional importance 

in nORFs and demonstrate the potential implications for functional interpretation of genetic 

variants in nORFs. Our results indicate that some variants that have been previously classified as 

being benign or of uncertain significance may have to be reinterpreted.   

    

Introduction  

Recent evidence from proteomics, proteogenomics, ribosome profiling, and massively parallel 

sequencing studies have revealed that prokaryotic and eukaryotic genomes contain a substantial 

number of as yet uncharacterised and unannotated open reading frames (ORFs) (Firth and 

Brierley 2012; Miravet-Verde et al. 2019; Hellens et al. 2016; Albuquerque et al. 2015; Saghatelian 

and Couso 2015; Andrews and Rothnagel 2014; Prabakaran et al. 2014; Brunet et al. 2018). 

These ORFs have largely evaded detection due to the original conservative definition of a gene 

with annotation criteria of one coding sequence (CDS) per transcript, a minimum of 100 codons 

for each CDS, ‘ATG’ as the only start codon, and conservative definitions of Kozak sequences 

(Brunet et al. 2018; Plaza et al. 2017). There have also been recent advances in the sensitivity of 

proteomics methods such as ribosome profiling and mass spectrometry (MS), the ability to 
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sequence genomes and transcripts at a deeper depths, and in the ability to integrate these two 

data types, which our lab specializes in and calls Systems Proteogenomics (Prabakaran et al. 

2014). These advances have revealed that we have underestimated the genome’s coding 

potential, with many unannotated ORFs showing evidence of translation in humans alone (Ma et 

al. 2014; Jagannathan et al. 2019; Erady et al. 2019; Chen, J. et al., 2020). These ORFs are 

mostly under 100 codons and found in diverse regions of the genome, including in long noncoding 

RNAs (lncRNAs), pseudogenes, 3’UTRs, 5’UTRs, and alternative reading frames of canonical 

protein coding exons (Prabakaran et al. 2014; Brunet et al. 2018; Plaza et al.  

2017).  

  

Based on their genomic location and their size, these unannotated ORFs have been defined in 

numerous ways including as short ORFs (sORFs), small ORFs (smORFs), alternative ORFs 

(altORFs), and upstream/downstream ORFs (u/dORFs). The definitions for these labels, like 

those for original gene annotations, again set arbitrary bounds and even tend to vary between 

reports and species (Olexiouk et al. 2018). In this study, we have attempted to collate and 

reclassify all of these observed ORFs and we refer here to any unannotated ORF as a ‘novel 

ORF’ or ‘nORF’, which encompasses all of the above definitions. Specifically, a nORF is any ORF 

that can encode a not yet classified transcript or protein product, nor an isoform of one, with no 

bounds on number of codons, location, number of ORFs per transcript, nor start codon. Although 

nORFs may appear by chance in the genome (Olexiouk et al. 2018), in this study we have 

exclusively focused on nORFs with experimental evidence of translation from MS or ribosome 

profiling studies and have attempted to interpret their potential functional consequences.  

  

For humans, two published databases of note: OpenProt (Brunet et al. 2019) and sORFs.org  

(Olexiouk et al. 2018) have compiled and analyzed translation data from ribosome profiling and 

MS studies to identify and share novel proteins. Evidence from these two databases has helped 
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challenge conventional gene annotations to provide critical data for the field of nORFs, but both 

still have important limitations because of ambiguous definitions of these nORFs. sORFs.org for 

instance only considers ORFs under 100 codons, presents many duplicate or highly similar 

entries, and shares data in formats difficult to use in downstream analyses. OpenProt, though 

more accessible, has far fewer entries with experimental evidence, partly due to only considering 

ORFs above 30 codons and limiting ORFs to ATG start codons and canonical transcripts. 

Additionally, annotation pipelines differ between the databases and are somewhat outdated, 

making comparisons difficult. Overall, the field lacks a consensus definition of what a nORF is and 

an accessible central resource with nORF data consolidated in a consistent manner. In this study 

we address these needs with the curation and redefinition of nORFs.  

  

While mechanisms by which uORFs influence the translation of nearby canonical genes have 

been investigated (McGillivray et al. 2018; Whiffin et al. 2020), the functional consequence of 

nORFs more generally remains largely unexplored. The functional evidence which does exist has 

implicated nORFs in roles both related to and independent of nearby canonical genes (Brunet et 

al. 2018), including mRNA decapping (Pueyo et al. 2016), muscle regeneration (Matsumoto et al. 

2017), and insulin secretion (Hu et al. 2016). Additionally, we have shown previously that nORF 

encoded protein-like products can form structures with potential biological functions (Erady et al. 

2019), can be regulated by post-translational modifications (Jagannathan et al. 2019), are 

biologically regulated in mouse neurons (Prabakaran et al. 2014), and harbour deleterious 

mutations from cancer and other inherited diseases (Jagannathan et al. 2019; Erady et al. 2019). 

Despite these examples, the vast majority of nORFs have no known function and their exclusion 

from canonical genome annotations means that many of the studies that could uncover roles for 

nORFs do not even consider them.   
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In this study, we have investigated the potential functional importance of a curated set of nORFs 

genome-wide. We begin at a broad scale, investigating the heritability associated with nORF 

regions for several human traits and diseases. We then narrow our focus from nORF regions to 

specific classes of nORF variants (e.g. nORF stop gained variants), to evaluate potential signals 

of negative selection, which would be indicative of functional importance. Finally, we move to 

specific genetic variants, such as those known to cause disease, to investigate whether their 

pathogenicity can be explained by their effect on nORFs. In particular, we highlight disease 

mutations that appear benign to canonical proteins but highly deleterious to nORFs, the clearest 

potential examples of nORF functional importance and hence warranting reinterpretation of some 

variants of benign or unknown significance.   

  

Results  

Data Overview  

The nORFs dataset contains 194,407 ORFs curated from OpenProt (Brunet et al. 2019) and 

sORFs.org (Olexiouk et al. 2018) (Fig. 1A), which we have made publicly available on the 

nORFs.org platform (Fig. 2). The curation steps (Fig. 1A) involved selecting unique ORFs with 

translation evidence from MS or ribosome profiling experiments that are distinct from each other 

(Fig. 1B) and from canonical proteins (Fig. 1C). These nORFs were annotated with respect to 

canonical transcripts and CDS, and they are found in diverse locations in the genomes such as 

overlapping canonical CDS in alternate frames (altCDS), in UTRs, in noncoding RNAs (ncRNAs), 

and in intronic/intergenic regions (Fig. 3A). From the 194,407 nORFs, we found that 98,577  

(50.7%) fully overlap canonical CDS, 31,361 (16.1%) overlap CDS and intron regions, 28,067  

(14.4%) overlap 5’UTRs, 5509 (2.8%) overlap 3’UTRs, 19,909 (10.2%) overlap ncRNAs, and 

4,836 (2.5%) fully map to intronic or intergenic regions (Fig. 3B). The length distribution of nORFs 

for each major annotation category falls mostly below 100 amino acids, with mean lengths of 

39.8aa, 27.6aa, 29.9aa, and 54.4aa for UTRs, altCDS, intergenic, and ncRNA nORFs 
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respectively, much smaller, as previously reported (Jagannathan et al. 2019), than the mean 

canonical protein length of 557.3aa (Fig. 3C). They are found spread throughout all 22 

autosomes, both sex chromosomes and on mitochondrial DNA, similar to canoncial CDS (Fig 

3D).   

  

We compared this nORF dataset with previously published uORF dataset (McGillivray et al. 2018 

NAR 2018). We note that the sources of uORF entries from McGillivray et al. (Lee et al., Fritsch 

et al., and Gao et al.) are three of the ribosome profiling experiments also used as input for the 

sORFs.org dataset. Comparing the 188,802 “likely active” uORFs from McGillivray et al. 2018, 

with the 194,407 nORFs from this work, we find that there are 15,082 entries that are identical or 

highly similar (share stop codon but differ in start codon) between datasets. The majority of these 

shared entries fall, as expected, under the nORFs classified as 5’UTR (7,333) or 5’UTR-altCDS 

(3,681). The entries in the nORFs dataset not found in the uORF dataset can be attributed to the 

broader set of experiments used as input from sORFs.org and OpenProt, and the broader focus 

of any all unannotated ORFs, compared to the specific uORF focus of McGillivray et al. 2018. As 

the 188,802 “likely active” uORFs from McGillivray et al. 2018 would have been found in 

sORFs.org dataset, those not found in the nORFs dataset would have been filtered out at one of 

data curation steps performed (e.g. good/extreme ORFscore, longest ORF if similar, removing 

inframe entries (Figure 1a.)).  

  

Heritability  

We investigated the heritability of nORF regions in the genome to assess their importance to 

human traits and disease. To achieve this we applied Stratified LD score regression (S-LDSC) 

(Finucane et al. 2015; Gazal et al. 2017) with the baseline-LF model (Gazal et al. 2018) developed 

to assess both common (minor allele frequency (MAF) ≥ 5%) and low frequency  

(0.5%≤ MAF <5%) heritability in complex traits. As applied by Gazal et al. (Gazal et al. 2018), we  
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used a UK10K (The UK10K Consortium 2015) LD reference panel, analyzing 40 heritable, 

complex UK Biobank (Bycroft et al. 2018) traits restricted to 409 thousand individuals with UK 

ancestry.  

  

With this we analyzed all baseline-LF model annotations and custom annotations (see Methods). 

For 67 baseline-LF annotations and for our 7 custom annotations, we calculated heritability 

enrichments in each of the 40 UK Biobank traits. For each annotation, common variant enrichment 

(CVE) and low frequency variant enrichment (LFVE) were meta-analyzed across 27 independent 

traits (Supplemental Table S1; Supplemental Table S2). To interpret heritability enrichments of 

nORFs we focus on 4 custom annotations from canonical genes: transcribed regions, CDS, 

5’UTR, and 3’UTR, and 3 custom annotations from nORFs: all nORFs, nORF regions overlapping 

canonical CDS (norfs_altCDS), and nORF regions not overlapping canonical CDS  

(nORFs_noCDS). Results from common variant heritability show that nORFs have a similar CVE 

(6.0 ± 1.2, P = 8 x 10-4) to canonical CDS (5.5 ± 0.7, P = 7 x 10-7), and that this CVE in nORFs is 

concentrated in the subset that overlaps canonical CDS (9.2 ± 1.6, P = 2 x 10-4) rather than those 

which do not (3.2 ± 1.2, NS) (Fig. 4A). In low frequency variant heritability we found that again 

nORFs have a comparable enrichment (17.6 ± 3.0, P = 1 x 10-8) to canonical CDS (23.6 ± 2.0, P 

= 1 x 10-31), but that the difference between LFVE in nORFs overlapping CDS (30.7 ± 4.5, P = 7 

x 10-11) and nORFs not overlapping CDS (2.3 ± 3.0, NS) was more pronounced (Fig. 4B).   

  

Higher ratios of LFVE/CVE have been associated with coding sequences, theorized to be due to 

natural selection keeping trait relevant variation at lower frequencies (Gazal et al. 2018). Here we 

found that canonical CDS showed the highest LFVE/CVE ratio (4.3x), with all nORFs (2.9x) and 

nORFs overlapping CDS (3.3x) showing high ratios but nORFs not overlapping CDS showing a 

ratio below one (0.7x) more comparable to that of 5’UTRs (0.5x) (Fig. 4C). These results suggest 

that nORFs outside of coding regions may have less functional importance, but nORFs in the 
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altCDS and canonical CDS show a possible additive effect on heritability. From the results, 

however, we cannot distinguish between heritability coming from canonical CDS vs. nORFs. We 

attempt to disentangle the potential functional importance of nORFs from canonical CDS in the 

following analyses by examining specific nORF variant classes.  

  

Mutability adjusted proportion of singletons (MAPS)  

To examine the potential functional importance of nORFs separately from canonical CDS, we 

drew on variant frequencies from the Genome Aggregation Database (gnomAD) datasets, made 

up of 125,748 exome sequences and 15,708 genome sequences (Karczewski et al. 2020). 

Specifically, we used the mutability adjusted proportion of singletons (MAPS) score, which 

measures selection against classes of variants in a population (Lek et al. 2016; Karczewski et al. 

2020). This measure is based on the principle that damaging classes of variants are kept at lower 

frequencies by natural selection. It compares the number of observed singletons for a particular 

variant class against the number of expected singletons under neutral selection, with a higher  

MAPS score being indicative of stronger selection against that variant class.   

  

Variant bins for MAPS analysis were created using Ensembl’s Variant Effect Predictor (VEP) 

(McLaren et al. 2016) to annotate the gnomAD exomes and genomes variants in the context of 

both nORFs and canonical genes. Selection patterns for nORFs are unclear when considering 

nORF annotations in isolation, likely due to consequences in canonical frames confounding the 

results (Supplemental Fig. S1). We therefore stratified our analysis by canonical consequence 

to examine the selection on nORF variants independently of their effect on canonical genes. We 

focus on seven annotations in canonical frames and five in nORFs, for a total of 35 variant bins 

which vary substantially in bin size (Supplemental Fig. S2). For each bin, the MAPS score was 

calculated for the exomes (Supplemental Table S3) and genomes (Supplemental Table S4)  

dataset.   
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We observe that across most canonical consequences, variants annotated as stop lost or stop 

gained in nORFs show higher MAPS scores than the remainder of the canonical consequences, 

suggesting additional selective pressure on these variants (Fig. 5). Several of the larger and 

therefore better powered bins showed significant differences in MAPS scores. For instance, for 

all exome dataset variants that are annotated as synonymous in canonical proteins, those which 

have stop lost or stop gained effects in nORFs show significantly higher MAPS scores than 

variants which fall outside of nORFs (both permuted P < 1 × 10−4) or are which are synonymous  

in nORFs (both permuted P < 1 × 10−4; Fig. 5A). Similarly, when considering all canonical 

missense variants, those which have missense, stop lost, or stop gained effects in nORFs, all 

show significantly higher MAPS scores than variants which fall outside of nORFs (all permuted 

P < 1 × 10−4) or are which are synonymous in nORFs (all permuted P < 1 × 10−4; Fig. 5A). From 

the genomes, four of the five significant bins from the exomes analysis were also significantly 

different from variants falling outside of nORFs but not from synonymous nORF variants (Fig. 5B; 

Supplementary Table S4). We also observed in the genomes dataset that 5’UTR variants from 

canonical proteins showed significantly higher MAPS scores if they caused a stop gained effect 

in a nORF rather than a falling outside of nORFs (permuted P = 1 × 10−4) or synonymous in nORFs  

(permuted P = 7 × 10−4; Fig. 5B). Overall, these results indicate selective pressure against 

deleterious nORF variants, suggesting that many of these variants may not be benign like current 

annotations would suggest.   

  

Disease mutations in nORF contexts  

Considering that stop lost and stop gained variants in nORFs show signals of negative selection, 

we investigated potential disease causing variants that could be due to these mutation types. We 



9  

first examined somatic cancer mutations from the Catalogue Of Somatic Mutations In Cancer 

(COSMIC) database (Tate et al. 2019). We annotated the 6.2 million coding and 19.7 million non 

coding somatic variants using VEP in the context of nORFs and then canonical annotations. 

Although COSMIC variant sets are expected to be dominated by passenger mutations, their 

functional interpretation is key to identifying the cancer causing genes and variants. We highlight 

109K potential frameshift, stop gained, or stop lost variants in nORFs that have a less severe 

consequence in canonical genes (Fig. 6A; Supplemental Table S5).   

We then performed a similar analysis to annotate known human disease variants present in the 

Human Gene Mutation Database (HGMD) (Stenson et al. 2017) and ClinVar (Landrum et al. 2018) 

databases. We identified 1,852 variants from HGMD and 5,269 variants from ClinVar that are 

frameshift, stop gained, or stop lost variants in nORFs, but have less severe consequences in 

canonical genes (Fig. 6B,C; Supplemental Table S6).   

  

To create a short list of disease mutations most likely to have a nORF related cause, we further 

prioritized the COSMIC, HGMD and ClinVar disease mutations. Specifically, we identified top 20 

cancer-associated genes with mutations with benign consequences in CDS but with deleterious 

consequences in the nORFs (Supplemental Table S7), 34 HGMD variants classified as disease 

causing (Supplemental Table S8) and 14 ClinVar variants classified as pathogenic or likely 

pathogenic (Supplemental Table S9) that have benign consequences in canonical annotations 

but stop loss or stop gain consequences in nORFs. We show an example where a theoretical 

synonymous disease variant has a stop gained effect on a nORF overlapping canonical CDS (Fig. 

6D,E) which would normally be missed as a potential mechanism of pathogenicity.  

  

Discussion  

Following the advent of proteogenomics, ribosome profiling, and massively parallel sequencing 

studies, a key observation was that the entire genome has the potential to encode transcriptional 

and translational products. It was observed that noncanonical transcription and translation is not 
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bound by classical motifs for transcriptional start or stop sites, polyadenylation, AUG start codons, 

single CDS per transcript, or numerous other signatures associated with the conventional gene 

definitions. Beyond the lack of conventional signatures to identify them, there is no consensus on 

how nORFs should be classified, with research groups often focusing on specific types or sizes 

of nORFs. We have undertaken a systematic analysis to collate and reclassify these nORFs into 

an accessible dataset available to the wider community. This dataset was created with the goal 

of facilitating investigations into nORF signatures for transcription, translation, regulation, and 

function. In this study, we curated and annotated 194,407 nORFs with translation evidence from 

MS or ribosome profiling and assessed their functional significance using global genomic 

properties. We found signals of functional importance for nORFs from heritability of common and 

low-frequency variants, negative selection against classes of nORF variants, and disease 

mutations potentially explained by nORFs consequences.  

  

Our observations demonstrate that nORFs show large heritability enrichments characteristic of 

CDS in both common and low frequency variation. We also show that these enrichments are 

vastly different when dividing nORFs into those that overlap canonical CDS and those that do not 

(Fig. 4). The nORF regions that do not overlap CDS show modest heritability enrichments, largely 

similar to other noncoding regions such as UTRs, which are not indicative of functional importance 

on the level of canonical CDS. By contrast, nORF regions overlapping canonical CDS show large 

heritability enrichments, higher than only canonical CDS. This suggests possible functional 

importance in nORFs and CDS showing an additive effect on heritability. An alternative 

explanation for these enrichments is that nORFs regions investigated are not causally adding 

heritability, but instead have been identified in a subset of highly enriched canonical CDS due to 

confounding factors such as gene expression, gene identity, or sequence composition. Future 

investigations might attempt to control for these factors by using within-gene control sites (i.e 

canonical CDS not overlapped by nORFs from only those genes with an overlapping nORF).  



11  

  

When considering both the canonical and nORF consequences of variants, MAPS scores reveal 

selection acting to keep nORF stop lost and stop gained variants at lower frequencies than other 

variants with the same canonical consequence (Fig. 5). This signal was significant in exonic 

regions from the exomes dataset and in 5’UTRs from the genomes dataset, possibly due to each 

being better powered in these respective areas. We also note that where there is signal of 

selection, the magnitude of that selection for stop gained variants in nORFs appears notably 

smaller than that of stop gained variants in canonical frames. This gap can be attributed to several 

possible reasons. Firstly, of the 194,407 nORFs in our dataset there are surely both false positive 

detections of translation, and detected translation of nORFs that do not create functional products, 

which would dilute the selection signal. Secondly, nORF products that are functional may have 

more specialized, cell specific, or context specific functions than canonical proteins. This could 

mean that the selection pressure against a ‘true’ set of stop gained variants from functional nORFs 

could be weaker than the pressure acting on canonical genes, and lead to a lower expected MAPS 

score. Nevertheless, these results suggest that nORF encoded protein products may have 

functional importance, motivating further analysis of disease mutations where they may be 

relevant.  

  

Investigation of this showed that numerous variants in disease mutation databases could 

potentially have nORF related mechanisms of pathogenicity such as stop lost, stop gained, or 

frameshift mutations. We identified candidate HGMD disease mutations and ClinVar 

pathogenic/likely-pathogenic mutations with benign effects in canonical genes for which we 

believe nORF consequences should be considered as possible mechanisms of pathogenicity, 

similar to uORF perturbing variants recently found to be disease causing (Whiffin et al. 2020). 

These examples highlight the potential impact of annotating disease mutations for their nORF 

consequence.  
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Although this study has added valuable insights into non-canonical translation products, it does 

have limitations. First, some entries gathered in our dataset may be false positive detections of 

translation, or translation events of proteins with no function. This may dilute signals of functional 

importance, and should be kept in mind when using the dataset. The difference in entry count is 

clearly weighted towards sORFs (12% vs 88%), however the difference in sequence context is 

not quite as pronounced (22% vs 78%) due to the length distribution of OpenProt being 

substantially higher. We believe that both databases add substantial value to the nORFs dataset 

with the advantages of the sORFs database being that it focuses on Ribo-seq (OpenProt is 

primarily MS) and it does not use several of the constraints of OpenProt, which only considers 

ORFs above 30 codons and limits ORFs to ATG start codons and canonical transcripts. While we 

acknowledge that there may be concerns as to the sORF scoring methods, we have filtered out 

over 90% of the 2.1 million sORFs.org entries to the 209K with the filtering methods described in 

the manuscript (ORFscore with unique genomic mappings, longest ORF at shared stop sites, 

removing in-frame entries) which we believe substantially reduces false-positives. Despite these 

measures, one could certainly hypothesize that the filtering strategies of OpenProt make it more 

likely to contain functional nORFs. Our investigations of this possibility have shown that perhaps 

the opposite is true, however it is difficult to make conclusive statements because of lack of 

statistical power when analyzing the smaller OpenProt dataset by itself. In an early analysis of 

averaged heritability partitioned across 11 UK Biobank traits, split by OpenProt and sORFs we 

found that sORFs show more heritability than OpenProt entries, however the confidence intervals 

here are mostly overlapping (Supplemental Fig. S4). We also re-ran our MAPS analysis using 

only OpenProt entries and found that they did not show particularly strong selection 

(Supplemental Fig. S5), however this analysis is limited by lack of power as shown by the large 

confidence intervals. Based on these results, we find it unlikely there are strong functional signals 

from OpenProt being contaminated by entries from sORFs.org. In addition, the calculation of 
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heritability and MAPS scores based on the source of the database suffers from statistical noise, 

making it difficult to draw meaningful conclusions, compared to the better powered joint analyses.  

  

Second, it is by no means a comprehensive catalogue of translation products in the human 

genomes; more nORFs are sure to be found as more investigations of translation products are 

carried out. Third, heritability enrichment estimates for nORF regions do not directly estimate the 

contribution of nORFs, but of any causal heritability signals in the region investigated. This is 

particularly relevant for the nORF regions that overlap canonical CDS where the relative 

contribution of these factors cannot reliably be distinguished. Despite this caveat the increase in 

heritability enrichment is an interesting finding that suggests a possible contribution of nORFs to 

the heritability of traits and disease. Last, for disease mutations potentially explained by nORFs, 

we caution that individual causal mechanisms cannot be confidently determined without weighing 

original translation evidence associated with the nORF, other possible mechanisms (e.g. 

regulatory), and potential follow-up functional analysis. Nevertheless, these disease mutation 

examples demonstrate the potential of annotating variants for their consequence in nORFs to 

explain their pathogenicity.  

  

In this work, we developed a consistent, comprehensive, and accessible nORF resource that will 

aid future investigations into non-canonical translation products for the community. We have used 

this dataset to make insights into the potential functional impacts of nORFs in the human genome. 

We have shown heritability enrichments associated with nORFs, particularly those overlapping 

canonical CDS. We then demonstrated selective pressure acting on potentially deleterious nORF 

variants, suggesting their potential functional importance. Finally, we annotated disease mutations 

with nORF consequences, demonstrating a potential to uncover plausible mechanisms and to 

generate hypothesis of their pathogenicity. In future investigations this technique may be a 

valuable addition for discerning pathogenic mechanisms for rare disease diagnosis or in common 
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disease phenotypes. If these investigations are successful nORFs could be a set of new potential 

drug targets for disease treatment.  

  

Methods  

Selection of sources for evidence of nORFs   

Three existing databases with entries that qualify as nORFs were considered for inclusion in the 

nORFs dataset: OpenProt (Brunet et al. 2019), sORFs.org (Olexiouk et al. 2018), and SmProt 

(Hao et al. 2018). SmProt was not used due to inconsistencies in data (e.g. incorrect genomic 

coordinate annotations) and lack of details in their methods to reanalyse the data, specifically in 

regards to their MS evidence (Olexiouk et al. 2018). By contrast, OpenProt and sORFs.org have 

shown commitment to providing consistent, verifiable, and maintained data, and were therefore 

used as the main sources for the nORFs dataset.  

  

OpenProt (Release 1.3) predicts all possible ORFs with an ATG start codon and a minimum length 

of 30 codons that map to an Ensembl (Zerbino et al. 2018) or RefSeq (O’Leary et al. 2016) 

transcript. They identified 607,456 alternate ORFs (altORFs) that are neither canonical ORFs, nor 

an isoform of those ORFs, but in noncoding regions or an alternate frame to canonical CDS. 

Although OpenProt maps to both Ensembl and RefSeq transcripts, we focus exclusively on the 

Ensembl annotations for compatibility with the sORFs.org dataset and other downstream 

analyses. From the altORFs mapped to Ensembl transcripts, we consider the 26,480 altORFs 

with translation evidence from MS (21,708), ribosome profiling (5,059), or both (398).   

  

The sORFs.org database (downloaded April 30, 2019) uses notably different inclusion criteria, 

annotating ‘sORFs’ with translation evidence from 43 human ribosome profiling experiments, then 

adding MS evidence found in publicly available datasets. The sORFs are defined as ORFs 
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between 10 and 100 codons using any of four start codons: ‘ATG’, ‘CTG’, ‘TTG’, or ‘GTG’, and 

are not restricted to known transcripts.   

     

Curation of nORFs  

The curation steps we performed to create a nORF dataset are detailed in Fig. 1. The final dataset 

that we created a) contains only nORFs with translation evidence from either MS or ribosome 

profiling b) contains no duplicate or highly similar entries and c) contains only ORFs clearly distinct 

from currently annotated canonical proteins.  

  

We used 607,456 predicted altORFs from OpenProt and filtered to the 26,480 entries with MS or 

ribosome profiling evidence of translation. From over 2.1 million sORFs.org entries with ‘good’ or 

‘extreme’ ORFscore (Bazzini et al. 2014),  502,056 entries with unique genomic mappings were 

extracted (Fig. 1A). The next step involved processing similar entries in the sORFs.org dataset 

that shared the same stop site and amino acid sequences up to differing start sites. A 

characteristic example is shown in Fig. 1B where in an alternative frame of the final coding exon 

of the MRPS21 gene, sORFs.org provides evidence for five small ORFs sharing the same end 

site and differing only by their start site. This is common in the sORFs.org dataset because of the 

ambiguity in ribosome profiling experiments to identify the correct translation start site, unless 

specifically using methods that search for them (e.g. ribosome profiling with antibiotics used to 

trap newly initiated ribosomes at start codons) (Olexiouk et al. 2018; Weaver et al. 2019). Although 

ideally the correct start site(s) would be identified through experiments, this data is not currently 

available. For consistency and simplicity, we have selected the longest ORF in these cases, which 

may not always represent the true translated ORF, but will always encompass all ORFs identified 

at these sites. We emphasize this ambiguity in the correct start site as an important limitation to 

be kept in mind when using the dataset. In all, the selection of the longest ORF at ambiguous start 

sites further reduced extracted sORFs.org entries to 209,543.  
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Next, the OpenProt and sORFs.org datasets were merged, 1,028 redundant entries between the 

datasets were removed, and 1,976 cases of ambiguous start sites between the two datasets were 

resolved by again taking the longest ORF, resulting in a merged total of 233,021 entries. The 

small number of overlapping or similar entries between the two datasets can be partly attributed 

to different inclusion criteria for ORFs between the databases (i.e. ORF length, start codon, 

transcript requirement) and the main source of entries (sORFs from ribosome profiling and 

OpenProt predominantly from MS).  

  

Finally, we separated all entries that were in-frame with canonical CDS, as the translation 

evidence from these entries cannot be unambiguously resolved as to whether they are from a 

canonical protein product or an independent nORF embedded within a canonical protein. We 

identified 38,614 such entries and removed them, leaving a total of 194,407 entries in the final 

nORFs dataset. An example case is shown in Fig. 1C where two small ORFs overlap the CDS of 

the RICA gene. One of these ORFs is in the same frame as the RICA CDS and was therefore 

filtered out, whereas the second ORF is in a different frame and retained in the dataset. Following 

this final curation step all entries in the nORF dataset that overlap canonical CDS are in a different 

frame from and do not share amino acid sequence with that CDS.   

  

Annotation of nORFs   

We annotated each nORF with reference to human GENCODE (v30) gene annotations (Frankish 

et al. 2019). The annotation categories included nORFs mapping to UTRs or CDS of protein 

coding transcripts, ncRNAs, or intergenic regions. When multiple annotations were possible, due 

to multiple transcripts in a region, annotations were prioritized by first selecting full overlaps with 

protein coding transcripts, particularly those that overlap canonical CDS in an alternative reading 

frame (altCDS), followed by full overlaps with ncRNA transcripts, then by partial transcript 
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overlaps, and finally intronic or intergenic regions. Our detailed prioritization summary is shown in 

Supplemental Fig. 3.   

  

Using GENCODE 34 (latest version) our pipeline identifies 194,291 rather than 194,407 nORFs, 

meaning that between releases 30 and 34, 116 nORFs became part of canonical CDS as newly 

identified genes or as part of new coding transcripts of existing genes. We find it encouraging that 

some nORFs are becoming canonical CDS and plan to regularly update our GENCODE reference 

in future iterations of the nORFs database.  

  

Database and web platform  

To reduce the threshold of accessibility, databases need to be accessible with minimal 

requirements of tools or prior knowledge. We therefore built an online platform with  

Representational State Transfer (REST) application programming interface (API) functionality.  

This online platform acts as an entry and lookup point for individual entries, while the REST API 

is feature compatible with existing bioinformatics pipelines. We made the curated and annotated 

GRCh38 raw dataset available in BED and GTF format as well as a downloadable nORFs.org 

UCSC track. Considering reproducible research guidelines, we used git as a versioning tool and  

 uploaded  the  repository  to  GitHub  under  an  MIT  license  

(https://github.com/PrabakaranGroup/nORFs.org).   

        

Stratified LD score regression (S-LDSC) heritability analysis  

As applied previously (Gazal et al. 2018), we obtained summary statistics for 40 heritable,  

 complex  UK  Biobank  (Bycroft  et  al.  2018)  traits  (downloaded  from  

https://data.broadinstitute.org/alkesgroup/UKBB/UKBB_409K/) that were restricted to 409 K 

individuals with UK ancestry. We then generated an LD reference panel for UK ancestry to match 

the summary statistics with 3,567 UK10K (The UK10K Consortium 2015, 10) whole-genome 

sequencing (WGS) samples from the ALSPAC and TWINSUK cohorts.  
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With these inputs, we analyzed a total of 177 genomic annotations, each corresponding to a 

defined set of variants, for their heritability enrichment. Of the 177, 163 are together known as the 

previously described baseline-LF model (Gazal et al. 2018). We added to the analysis 14 custom 

annotations, from seven functional annotations doubled for common variants and low frequency 

variants. Of these seven, three custom annotations were nORF related: one for all nORFs, and 2 

in which nORFs were split at the variant level to those regions which overlap canonical CDS 

(norfs_altCDS), and those which do not (nORFs_noCDS). The remaining 4 were canonical 

annotations from GENCODE: transcribed regions, CDS, 5’UTRs, and 3’UTRs. It should be noted 

that similar annotations appear to be already present in the baseline-LF model, but they were 

generated from a different reference set than our nORFs (UCSC 2013) (Gusev et al. 2014) and 

their ‘Coding’ annotation contains UTRs, which ours does not.  

  

For the baseline-LD functional annotations and our custom annotations, we calculated common 

variant enrichment (CVE) and low frequency variant enrichment (LFVE) for each of the 40 UK 

Biobank traits. CVE is the proportion of common heritability (h2
C) divided by the proportion of 

common single nucleotide polymorphisms (SNPs) in the annotation, while LFVE is proportion of 

low-frequency heritability (h2
LF) divided by the proportion of low frequency SNPs in the annotation:  

 𝐶𝑉𝐸 = 𝑃𝑟𝑜𝑝(ℎ "!)/𝑃𝑟𝑜𝑝(𝑐𝑜𝑚𝑚𝑜𝑛 𝑆𝑁𝑃𝑠)  

 𝐿𝐹𝑉𝐸 = 𝑃𝑟𝑜𝑝(ℎ "#$)/𝑃𝑟𝑜𝑝(𝑙𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑁𝑃𝑠)  

  

Meta-analysis of results was conducted using random-effects meta-analyses in the rmeta 

package on 27 independent traits (Gazal et al. 2018), indicated in Supplemental Table S1. All 

standard errors were computed using a block jackknife procedure (Bulik-Sullivan et al. 2015).  
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Mutability adjusted proportion of singletons (MAPS) analysis  

We calculated MAPS with gnomAD genomes and exomes by using publicly available code at 

https://github.com/macarthur-lab/gnomad_lof. We modified the code to include variant bins based 

on both nORF consequences and canonical consequences, rather than only canonical 

consequences. We selected five nORF consequences of interest: missense, synonymous, stop 

lost, stop gained, and noncoding (intergenic + upstream gene + downstream gene) and 7 

canonical consequences of interest: missense, synonymous, ncRNA, 5’UTR, 3’UTR, intronic and 

intergenic. For each of these 35 (5x7) bins, MAPS calibrated expected variant frequencies to 

account for 1 surrounding base of context and CpG methylation, two factors known to influence 

the mutability of base pairs (Lek et al. 2016). The transformation between variant frequencies and 

the expected proportion of singletons was regressed against the observed proportion of 

synonymous variants in canonical proteins. As the MAPS score given to variant classes is a 

relative metric, this means that synonymous variants in canonical proteins were set as 0 and 

higher scores reflected more negative selection. We reported MAPS scores for bins with at least 

100 variants in the gnomAD exomes or genomes dataset respectively.   

  

P-values were calculated using a bootstrapping approach as applied previously (Whiffin et al. 

2020). For a given bin with n variants, n variants were randomly sampled with replacement and 

used to calculate MAPS for two bins or interest: bin A and bin B. This was repeated over 10,000 

permutations with the P-value being the proportion of permutations where MAPS of bin B was 

less than MAPS of bin A.  

  

Variant annotation  

Variant annotation was carried out using version 96 of VEP (McLaren et al. 2016) to investigate 

the consequences of variants in the context of canonical frames and nORFs. Variant sets were 

obtained for annotation as VCFs. These included gnomAD genomes and exomes (release 2.1.1)  
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(Karczewski et al. 2020), HGMD (pro release 2019.2) (Stenson et al. 2017), ClinVar (release 2019  

0708) (Landrum et al. 2018), and COSMIC coding and noncoding mutations (v89) (Tate et al. 

2019). Each set of variants was annotated for their most severe consequence as defined by VEP 

with respect to a) canonical gene annotations, corresponding to GENCODE 30 in GRCh38 or 

GENCODE 30 lifted over to GRCh37 and b) nORF annotations provided as a custom GTF in the 

appropriate genome assembly.   

  

When examining possible disease mutations that could be explained by nORF consequences, we 

first filtered variants from the disease mutations databases (COSMIC, HGMD, and ClinVar) to 

remove those with strongly deleterious annotations in canonical proteins (i.e. essential splice, 

frameshift, stop gained, stop lost, start lost). We then further filtered these variant sets to those 

with possible pathogenic consequences in nORFs (stop lost, stop gained, and frameshift).   

  

Software availability  

The code used to curate, annotate, and analyze the nORFs dataset is publicly available at 

https://github.com/PrabakaranGroup/nORF-data-prep and uploaded as Supplemental Code File 

1 and 2. To share the nORFs dataset we have also created nORFs.org, an open source platform 

for the nORFs dataset with implementation available at 

https://github.com/PrabakaranGroup/nORFs.org and uploaded as Supplementay Code File 3. A 

UCSC track download is also provided on the nORFs.org API page.  
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Legends  

Figure 1. Flow chart for the curation of the nORFs dataset. (A) Steps illustrating the workflow to curate 

nORFs entries. From OpenProt, all predicted human altProts were filtered to entries with MS or ribosome 

profiling evidence (26,480). From sORFs.org all human sORFs with an ORFscore of good or extreme were 

filtered to unique entries (502,056), and then summarized to the longest ORF at sites with multiple ORFs. 

Entries were then merged, the longest ORF was selected at multiple ORF sites and in-frame entries were 

removed, leaving a total of 194,407 nORFs in the final dataset. (B) An example of selecting the longest 

ORF for 5 small ORFs in an alternative frame of the final coding exon of the MRPS21 gene. In these cases 

where the ORFs share the same end site and differ only by their start site, we retain the longest ORF, 

indicated by the orange arrow and remove the shorter ORFs, indicated by the red cross. (C) An example of 

removing in-frame entries where two small ORFs overlap the CDS of the RICA gene. The ORF in the same 

frame as the RICA CDS is removed from the dataset as indicated by the red cross, whereas the second 

ORF in a different frame is retained in the dataset, indicated by the orange arrow.   
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Figure 2. Overview of Platform. The nORFs.org platform contains 6 individual pages (3 shown above) that 

introduce the platform, methods and nORF entries. The nORF detail page (right) is divided into 3 sections: 

the meta data section includes the unique identifier, genomic position and experimental sources, the  

(biodalliance) genome browser displays genes, repeats, conservation and epigenetic information such as 

DNase I binding sites, and Histone modifications (H3K4me1-me3), and the protein sequence section which 

can be utilized for biostatistical pipelines to display variants, topology and alternative splicing.  

  
Figure 3. nORF genomic annotations. (A) Schematic of common nORF locations with respect to a typical 

protein coding gene and a ncRNA. (B) Number of nORFs per genomic annotation. (C) Distribution of amino 

acid length of major categories of nORF annotations and canonical UniprotKB/Swiss-prot proteins (The 

UniProt Consortium 2019). (D) Distribution of nORFs and canonical CDS from GENCODE throughout 

human chromosomes. Canonical and nORF scales are not proportionate.  

  

Figure 4. Meta-analysis of heritability partitioned across 27 UK Biobank traits for nORF regions.  

Heritability enrichment was compared for canonical gene annotation from GENCODE vs nORF annotation 

for (A) common variation enrichment (CVE), defined as the proportion of common variant heritability 

explained by the annotation divided by the proportion of common variants in the annotation  (B) 

lowfrequency variant enrichment (LFVE), defined similarly to CVE and (C) the LFVE/CVE ratio. Higher 

enrichments suggest more functional importance in the studied traits and diseases.  

  

Figure 5. nORF stop lost and stop gained variants show signals of negative selection. The 

mutabilityadjusted proportion of singletons (MAPS) was calculated for 35 variant bins of SNVs from 

gnomAD (A) exomes and (B) genomes. Higher values indicate an enrichment of lower frequency variants, 

suggesting negative selection. The canonical annotation of the bin is indicated along the x-axis, while the 

nORF annotation is indicated by colour. Noncoding refers to variants falling outside of nORF regions. Dotted 

lines correspond to results from bins of only canonical annotations previously reported (Karczewski et al. 

2020). (*) permuted P adj < 0.05 vs noncoding bin and < 0.05 vs synonymous bin with the same canonical 

consequence.  
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Figure 6. Reinterpreting COSMIC, HGMD and ClinVar mutations in the context of nORFs. The canonical 

consequence and nORF consequence of (A) 109K somatic cancer mutations from COSMIC, (B) 1.8K 

disease mutations from HGMD, and (C) 5.3K disease mutations from ClinVar. Bins with 10 or fewer variants 

not shown. These mutations would likely be interpreted as benign or missense in canonical genes but may 

have more severe consequences in nORFs. (D) A theoretical example of a disease variant that results in a 

synonymous mutation in canonical CDS but (E) a stop gain mutation in a nORF from an alternative reading 

frame.  
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Supplemental Figure S1. Unclear selection signatures when only considering nORF consequences. 

The mutability-adjusted proportion of singletons (MAPS) is shown across functional categories for SNVs 

in gnomAD (A) exomes and (B) genomes. Each functional category is subdivided by variant annotation 

in nORFs. Dotted lines correspond to results from bins of only canonical annotations previously reported 

(Karczewski et al. 2020). Higher values indicate an enrichment of lower frequency variants, suggesting 

negative selection.    
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Supplemental Figure S2. Variant bin counts for gnomAD MAPS analysis. The 14.9 million and 229.9 

million high-quality variants from gnomAD (A) exomes and (B) genomes respectively were binned 

based on their worst consequence in the context of nORFs and canonical annotations. Non-coding 

refers to variants annotated as non-coding by VEP (intergenic + upstream gene + downstream gene) 

in the context of nORFs. Bins are colored based on count on a logarithmic scale.      
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Supplemental Figure S3. Annotation Prioritization Priority. Genomic location annotation of nORFs was 

prioritized by first selecting overlaps with canonical CDS in an alternative frame (altCDS), altCDS-UTR 

combinations, and full UTR overlaps. This was followed by full overlaps with ncRNA transcripts, then by 

partial overlaps with protein coding transcripts, partial overlap with ncRNA transcripts, and finally intronic 

or intergenic regions.  
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Supplemental Figure S4 Averaged heritability partitioned across 11 UK Biobank traits for nORF 

regions. Heritability enrichment was compared for canonical gene annotation from GENCODE vs nORF 

annotation for common variation enrichment (CVE), defined as the proportion of common variant 

heritability explained by the annotation divided by the proportion of common variants in the annotation.  
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Supplemental Figure S5 MAPS calculated using only OpenProt entries. The mutability-adjusted 

proportion of singletons (MAPS) was calculated for 35 variant bins of SNVs from gnomAD (A) exomes 

and (B) genomes. The canonical annotation of the bin is indicated along the x-axis, while the nORF 

annotation is indicated by colour. Dotted lines correspond to results from bins of only canonical 

annotations previously reported (Karczewski et al. 2020). Higher values indicate an enrichment of lower 

frequency variants, suggesting negative selection. Bins with fewer than 100 variants are excluded.  

  

  

  

  

  

  

  

Supplemental Methods  



8  

  

Selection of sources for evidence of nORFs   

Three existing databases with entries that qualify as nORFs were considered for inclusion in 

the nORFs dataset: OpenProt (Brunet et al. 2019), sORFs.org (Olexiouk et al. 2018), and 

SmProt (Hao et al. 2018). SmProt was not used due to inconsistencies in data (e.g. incorrect 

genomic coordinate annotations) and lack of details in their methods to reanalyse the data, 

specifically in regards to their MS evidence (Olexiouk et al. 2018). By contrast, OpenProt and 

sORFs.org have shown commitment to providing consistent, verifiable, and maintained data, 

and were therefore used as the main sources for the nORFs dataset.  

  

OpenProt (Release 1.3) predicts all possible ORFs with an ATG start codon and a minimum 

length of 30 codons that map to an Ensembl (Zerbino et al. 2018) or Refseq (O’Leary et al. 

2016) transcript. They identified 607,456 alternate ORFs (altORFs) that are neither canonical 

ORFs, nor an isoform of those ORFs, but in non-coding regions or an alternate frame to 

canonical CDS. Although OpenProt maps to both Ensembl and Refseq transcripts, we focus 

exclusively on the Ensembl annotations for compatibility with the sORFs.org dataset and other 

downstream analyses. From the altORFs mapped to Ensembl transcripts, we consider the 

26,480 altORFs with translation evidence from MS (21,708), ribosome profiling (5,059), or both 

(398).   

  

The sORFs.org database (downloaded April 30, 2019) uses notably different inclusion criteria, 

annotating ‘sORFs’ with translation evidence from 43 human ribosome profiling experiments, 

then adding MS evidence found in publicly available datasets. The sORFs are defined as  

ORFs between 10 and 100 codons using any of four start codons: ‘ATG’, ‘CTG’, ‘TTG’, or 

‘GTG’, and are not restricted to known transcripts.   

  

These sORFs are identified through a translation initiation site (TIS) detection pipeline with a 

noise filtering step to limit false positive detection events. This process is fully described in 

https://www.zotero.org/google-docs/?KbVkzu
https://www.zotero.org/google-docs/?MylW39
https://www.zotero.org/google-docs/?ooR04d
https://www.zotero.org/google-docs/?9f8c78
https://www.zotero.org/google-docs/?FITuXh
https://www.zotero.org/google-docs/?FITuXh
https://www.zotero.org/google-docs/?yhw0FS
https://www.zotero.org/google-docs/?yhw0FS
https://www.zotero.org/google-docs/?yhw0FS
https://www.zotero.org/google-docs/?yhw0FS
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their database paper (Olexiouk et al. 2018). Briefly, they identify all start sites genome-wide 

using the four most common start codons: ‘ATG’, ‘CTG’, ‘TTG’ and ‘GTG’. They then scan all 

start sites for an in-frame stop codon within 300nt (thereby limiting detected sORFs to 100 

codons), both with and without considering transcript splicing data. They filter out unlikely 

translation events by implementing a threshold of at least 10% in-frame coverage and 10 

ribosome profiling fragments (RPFs). As a noise filter to detect and remove false positives, 

they convert sORF transcripts into binary arrays of positions covered by ribosomes (1) and 

positions not covered (0). Then, they shuffle the array and recalculate in-frame coverage 

10,000 times, allowing a probability calculation for the likelihood of a non-random translation 

event.  

     

Curation of nORFs  

The curation steps we performed to create a nORF dataset are detailed in Fig. 1. The final 

dataset that we created a) contains only nORFs with translation evidence from either MS or 

ribosome profiling b) contains no duplicate or highly similar entries and c) contains only ORFs 

clearly distinct from currently annotated canonical proteins.  

  

We used 607,456 predicted altORFs from OpenProt and filtered to the 26,480 entries with MS 

or ribosome profiling evidence of translation. From over 2.1 million sORFs.org entries with  

‘good’ or ‘extreme’ ORFscore (Bazzini et al. 2014), 502,056 entries with unique genomic 

mappings were extracted (Fig 1A). The next step involved processing similar entries in the 

sORFs.org dataset that shared the same stop site and amino acid sequences up to differing 

start sites. A characteristic example is shown in Fig 1B where in an alternative frame of the 

final coding exon of the MRPS21 gene, sORFs.org provides evidence for five small ORFs 

sharing the same end site and differing only by their start site. This is common in the 

sORFs.org dataset because of the ambiguity in ribosome profiling experiments to identify the 

https://www.zotero.org/google-docs/?pHmMPe
https://www.zotero.org/google-docs/?VvLJrK
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correct translation start site, unless specifically using methods that search for them (e.g. 

ribosome profiling with antibiotics used to trap newly initiated ribosomes at start codons) 

(Olexiouk et al. 2018; Weaver et al. 2019). Although ideally the correct start site(s) would be 

identified through experiments, this data is not currently available. For consistency and 

simplicity, we have selected the longest ORF in these cases, which may not always represent 

the true translated ORF, but will always encompass all ORFs identified at these sites. We 

emphasize this ambiguity in the correct start site as an important limitation to be kept in mind 

when using the dataset. In all, the selection of the longest ORF at ambiguous start sites further 

reduced extracted sORFs.org entries to 209,543.  

  

Next, the OpenProt and sORFs.org datasets were merged, 1,028 redundant entries between 

the datasets were removed, and 1,976 cases of ambiguous start sites between the two 

datasets were resolved by again taking the longest ORF, resulting in a merged total of 233,021 

entries. The small number of overlapping or similar entries between the two datasets can be 

partly attributed to different inclusion criteria for ORFs between the databases (i.e. ORF length, 

start codon, transcript requirement) and the main source of entries (sORFs from ribosome 

profiling and OpenProt predominantly from MS).  

  

Finally, we separated all entries that were in-frame with canonical CDS, as the translation 

evidence from these entries cannot be unambiguously resolved as to whether they are from a 

canonical protein product or an independent nORF embedded within a canonical protein. We 

identified 38,614 such entries and removed them, leaving a total of 194,407 entries in the final 

nORFs dataset. An example case is shown in Fig. 1C where two small ORFs overlap the CDS 

of the RICA gene. One of these ORFs is in the same frame as the RICA CDS and was 

therefore filtered out, whereas the second ORF is in a different frame and retained in the 

dataset. Following this final curation step all entries in the nORF dataset that overlap canonical  

CDS are in a different frame from and do not share amino acid sequence with that CDS.   

https://www.zotero.org/google-docs/?M126j4
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Annotation of nORFs   

We annotated each nORF with reference to human GENCODE (v30) gene annotations 

(Frankish et al. 2019). The annotation categories included nORFs mapping to UTRs or CDS 

of protein coding transcripts, ncRNAs, or intergenic regions. When multiple annotations were 

possible, due to multiple transcripts in a region, annotations were prioritized by first selecting 

full overlaps with protein coding transcripts, particularly those that overlap canonical CDS in 

an alternative reading frame (altCDS), followed by full overlaps with ncRNA transcripts, then 

by partial transcript overlaps, and finally intronic or intergenic regions. Our detailed 

prioritization summary is shown in Supplemental Fig. 3.  

  

Using GENCODE 34 (latest version) our pipeline identifies 194,291 rather than 194,407 nORFs, 

meaning that between releases 30 and 34, 116 nORFs became part of canonical CDS as newly 

identified genes or as part of new coding transcripts of existing genes. We find it encouraging that 

some nORFs are becoming canonical CDS and plan to regularly update our GENCODE reference 

in future iterations of the nORFs database.  

  

  

Database and web platform  

To reduce the threshold of accessibility, databases need to be accessible with minimal 

requirements of tools or prior knowledge. We therefore built an online platform with 

Representational State Transfer (REST) application programming interface (API) functionality.  

This online platform acts as an entry and lookup point for individual entries, while the REST 

API is feature compatible with existing bioinformatics pipelines. We made the curated and 

annotated GRCH38 raw dataset available in .bed and .gtf format as well as downloadable 

nORFs.org UCSC track.  

  

The norfs.org web platform was built with JavaScript ES6, webpack 4.5.0 and Facebook’s 

react.js framework in version 16.4.1. Furthermore, Gogo react 2.04 provides the CSS3 

https://www.zotero.org/google-docs/?iRp4sA


12  

  

elements for a flexible dashboard layout. Google’s Firebase cloud service was utilized to host 

a distributed NoSQL equivalent database with REST API access.   

  

On top of these base protocols, npm packages such as react-router (4.4.2), feature-viewer 

(0.1.44) and biodalliance (0.13) (Down et al. 2011) were embedded to create a professional 

and highly customizable layout. Specifically, biodalliance allowed the creation of a genome 

browser with optional additional feature tracks, and the feature-viewer was used to annotate 

the peptide itself with structure and potential variant annotations. Considering reproducible 

research guidelines, we used git as a versioning tool and uploaded the repository to GitHub 

under an MIT license (https://github.com/PrabakaranGroup/nORFs.org).   

        

Stratified LD score regression (S-LDSC) heritability analysis  

Heritability is a statistical concept used to describe how much of the observed variation for a 

phenotype is due to genetic variation (Visscher et al. 2008). S-LDSC (Finucane et al. 2015; 

Gazal et al. 2017) enables the estimation of heritability enrichment for  functional annotations 

in human traits and diseases. Although it was originally restricted to partitioning heritability 

explained by common variants (h2
C), it was recently extended with the baseline-LF model 

(Gazal et al. 2018) to also allow the partitioning of heritability explained by low frequency  

(0.5%≤ MAF <5%) variants (h2
LF). We used S-LDSC with the baseline-LF model to estimate 

the heritability enrichment of nORF annotations for both common and low frequency 

heritability. To achieve this we had to first generate the two required inputs to S-LDSC: 

genome-wide association study (GWAS) summary statistics for traits of interest and an 

external LD reference panel with ancestry matching the GWAS population. As applied 

previously (Gazal et al. 2018), we obtained summary statistics for 40 heritable, complex UK  

 Biobank  (Bycroft  et  al.  2018)  traits  (downloaded  from  

https://www.zotero.org/google-docs/?URL79i
https://www.zotero.org/google-docs/?URL79i
https://www.zotero.org/google-docs/?j4jTdA
https://www.zotero.org/google-docs/?j4jTdA
https://www.zotero.org/google-docs/?j4jTdA
https://www.zotero.org/google-docs/?j4jTdA
https://www.zotero.org/google-docs/?YCPUn3
https://www.zotero.org/google-docs/?YCPUn3
https://www.zotero.org/google-docs/?YCPUn3
https://www.zotero.org/google-docs/?YCPUn3
https://www.zotero.org/google-docs/?ufvCil
https://www.zotero.org/google-docs/?ufvCil
https://www.zotero.org/google-docs/?0I0UeM
https://www.zotero.org/google-docs/?16Jdxv
https://www.zotero.org/google-docs/?16Jdxv
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https://data.broadinstitute.org/alkesgroup/UKBB/UKBB_409K/) that were restricted to 409 K 

individuals with UK ancestry. We then generated an LD reference panel for UK ancestry to 

match the summary statistics with 3,567 UK10K (The UK10K Consortium 2015, 10) 

wholegenome sequencing (WGS) samples from the ALSPAC and TWINSUK cohorts.  

  

With these inputs, we analyzed a total of 177 genomic annotations, each corresponding to a 

defined set of variants, for their heritability enrichment. Of the 177, 163 are together known as 

the previously described baseline-LF model (Gazal et al. 2018). Briefly, the baseline-LF model 

is made up of MAF bins, LD-related annotations, and 33 main binary annotations for both 

lowfrequency and common variants. These main binary annotations include a number of gene 

related, regulatory, and conservation based annotations. We added to the analysis 14 custom 

annotations, from seven functional annotations doubled for common variants and low 

frequency variants. Of these seven, three custom annotations were nORF related: one for all 

nORFs, and 2 in which nORFs were split at the variant level to those regions which overlap 

canonical CDS (norfs_altCDS), and those which do not (nORFs_noCDS). The remaining 4 

were canonical annotations from GENCODE: transcribed regions, CDS, 5’UTRs, and 3’UTRs. 

It should be noted that similar annotations appear to be already present in the baseline-LF 

model, but they were generated from a different reference set than our nORFs (UCSC 2013)  

(Gusev et al. 2014) and their ‘Coding’ annotation contains UTRs, which our custom annotation 

does not.  

  

For the baseline-LD functional annotations and our custom annotations, we calculated 

common variant enrichment (CVE) and low frequency variant enrichment (LFVE) for each of 

the 40 UK Biobank traits. CVE is the proportion of common heritability (h2
C) divided by the 

proportion of common single nucleotide polymorphisms (SNPs) in the annotation, while LFVE 

is proportion of low-frequency heritability (h2
LF) divided by the proportion of low frequency  

SNPs in the annotation:  

https://www.zotero.org/google-docs/?8P0JUg
https://www.zotero.org/google-docs/?8P0JUg
https://www.zotero.org/google-docs/?8P0JUg
https://www.zotero.org/google-docs/?EGAAPt
https://www.zotero.org/google-docs/?RyBAKH
https://www.zotero.org/google-docs/?RyBAKH
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𝐶𝑉𝐸 = 𝑃𝑟𝑜𝑝(ℎ 2𝐶)/𝑃𝑟𝑜𝑝(𝑐𝑜𝑚𝑚𝑜𝑛 𝑆𝑁𝑃𝑠)  𝐿𝐹𝑉𝐸 = 𝑃𝑟𝑜𝑝(ℎ 2𝐿𝐹)/𝑃𝑟𝑜𝑝(𝑙𝑜𝑤 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑁𝑃𝑠)  

  

Meta-analysis of results was conducted using random-effects meta-analyses in the rmeta 

package on 27 independent traits (Gazal et al. 2018), indicated in Table S1. All standard errors 

were computed using a block jackknife procedure (Bulik-Sullivan et al. 2015). Results for all 

traits separately are available at https://github.com/PrabakaranGroup/nORF-data-prep/.  

  

Mutability adjusted proportion of singletons (MAPS) analysis  

In addition to its importance for association studies and measures of heritability, genetic 

variation is also critical to evaluating natural selection at the variant level. Natural selection is 

an essential mechanism of evolution and acts over time to eliminate deleterious variants from 

populations. MAPS allows the estimation of negative selection, a proxy for functional 

importance, of variant classes in the genome. In this study, we apply MAPS to nORF variant 

classes (e.g. missense, stop lost, stop gained) to infer possible negative selection and 

potential signals of function.   

  

We calculated the MAPS score for classes of variants based on their consequence in nORFs 

and canonical annotations to infer selection levels against these variants. MAPS was first 

described in the release of the Exome Aggregation Consortium (ExAC) dataset (Lek et al.  

2016) and then updated with the release of gnomAD (Karczewski et al. 2019).  

  

We calculated MAPS with gnomAD genomes and exomes by using publicly available code at 

https://github.com/macarthur-lab/gnomad_lof. We modified the code to include variant bins 

based on both nORF consequences and canonical consequences, rather than only canonical 

consequences. We selected five nORF consequences of interest: missense, synonymous, 

https://www.zotero.org/google-docs/?Y1iyYS
https://www.zotero.org/google-docs/?puzLbw
https://www.zotero.org/google-docs/?puzLbw
https://www.zotero.org/google-docs/?puzLbw
https://github.com/PrabakaranGroup/nORF-data-prep/
https://github.com/PrabakaranGroup/nORF-data-prep/
https://github.com/PrabakaranGroup/nORF-data-prep/
https://github.com/PrabakaranGroup/nORF-data-prep/
https://github.com/PrabakaranGroup/nORF-data-prep/
https://github.com/PrabakaranGroup/nORF-data-prep/
https://www.zotero.org/google-docs/?qT3wNI
https://www.zotero.org/google-docs/?qT3wNI
https://www.zotero.org/google-docs/?qT3wNI
https://www.zotero.org/google-docs/?GTzUeJ
https://www.zotero.org/google-docs/?GTzUeJ
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stop lost, stop gained, and non-coding (intergenic + upstream gene + downstream gene) and 

7 canonical consequences of interest: missense, synonymous, ncRNA, 5’UTR, 3’UTR, intronic 

and intergenic. For each of these 35 (5x7) bins, MAPS calibrated expected variant frequencies 

to account for 1 surrounding base of context and CpG methylation, two factors known to 

influence the mutability of base pairs (Lek et al. 2016). The transformation between variant 

frequencies and the expected proportion of singletons was regressed against the observed 

proportion of synonymous variants in canonical proteins. As the MAPS score given to variant 

classes is a relative metric, this means that synonymous variants in canonical proteins were 

set as 0 and higher scores reflected more negative selection. We reported MAPS scores for 

bins with at least 100 variants in the gnomAD exomes or genomes dataset respectively.   

  

P-values were calculated using a bootstrapping approach as applied previously (Whiffin et al. 

2020). For a given bin with n variants, n variants were randomly sampled with replacement 

and used to calculate MAPS for two bins or interest: bin A and bin B. This was repeated over 

10,000 permutations with the P-value being the proportion of permutations where MAPS of 

bin B was less than MAPS of bin A. P-values were considered significant if they passed 

Bonferroni correction of 18 tests for exomes and 21 for genomes.  

  

Variant annotation  

A major application of variant class importance is to the biological interpretation of specific 

mutations, particularly in disease contexts. A number of databases exist to catalogue disease 

mutations such as HGMD (Stenson et al. 2017) and ClinVar (Landrum et al. 2018) for inherited 

mutations and COSMIC (Tate et al. 2019) for acquired cancer mutations. For these disease 

mutations, the primary method of mechanistic interpretation is annotating variants for their 

impact in canonical protein coding genes (Gloss and Dinger 2018). In particular, loss-

offunction mutations, such as nonsense, frameshift or essential splice variants, are thought to 

https://www.zotero.org/google-docs/?ElbPEC
https://www.zotero.org/google-docs/?GdnWQ0
https://www.zotero.org/google-docs/?GdnWQ0
https://www.zotero.org/google-docs/?GdnWQ0
https://www.zotero.org/google-docs/?GdnWQ0
https://www.zotero.org/google-docs/?g44TwR
https://www.zotero.org/google-docs/?g44TwR
https://www.zotero.org/google-docs/?9tsfB8
https://www.zotero.org/google-docs/?9tsfB8
https://www.zotero.org/google-docs/?8vVV33
https://www.zotero.org/google-docs/?8vVV33
https://www.zotero.org/google-docs/?CO2MQR
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be common mechanisms of pathogenicity (MacArthur et al. 2012). However, the mechanism 

of many disease mutations cannot currently be explained by their impact on canonical proteins 

alone (Gloss and Dinger 2018). This is unsurprising given that non-coding regions make up 

over 98% of the genome and have diverse regulatory functions (ENCODE Project Consortium  

2012). Specific examples of non-coding mechanisms include effects on gene expression from 

mutations at gene promoters (Fredriksson et al. 2014) or epigenetic imprinting loci (Chuang et 

al. 2017) and RNA stability from 5’ and 3’ UTR mutations (Zeraati et al. 2017).  

  

Variant annotation was carried out using version 96 of VEP (McLaren et al. 2016) to investigate 

the consequences of variants in the context of canonical frames and nORFs. Variant sets were 

obtained for annotation as VCFs. These included gnomAD genomes and exomes (release  

2.1.1) (Karczewski et al. 2019), HGMD (pro release 2019.2) (Stenson et al. 2017), ClinVar  

(release 2019 0708) (Landrum et al. 2018), and COSMIC coding and non-coding mutations 

(v89) (Tate et al. 2019). Each set of variants was annotated for their most severe consequence 

as defined by VEP with respect to a) canonical gene annotations, corresponding to GENCODE 

30 in GRCh38 or GENCODE 30 lifted over to GRCh37 and b) nORF annotations provided as 

a custom GTF in the appropriate genome assembly.   

  

When examining possible disease mutations that could be explained by nORF consequences, 

we first filtered variants from the disease mutations databases (COSMIC, HGMD, and ClinVar) 

to remove those with strongly deleterious annotations in canonical proteins (i.e. essential 

splice, frameshift, stop gained, stop lost, start lost). We then further filtered these variant sets 

to those with possible pathogenic consequences in nORFs (stop lost, stop gained, and  

frameshift).   

  

  

  

https://www.zotero.org/google-docs/?HTbMvc
https://www.zotero.org/google-docs/?1Vg0ng
https://www.zotero.org/google-docs/?1JX6fu
https://www.zotero.org/google-docs/?1JX6fu
https://www.zotero.org/google-docs/?1JX6fu
https://www.zotero.org/google-docs/?xB5DpA
https://www.zotero.org/google-docs/?xB5DpA
https://www.zotero.org/google-docs/?Zon4QA
https://www.zotero.org/google-docs/?Zon4QA
https://www.zotero.org/google-docs/?Zon4QA
https://www.zotero.org/google-docs/?Zon4QA
https://www.zotero.org/google-docs/?U3m98r
https://www.zotero.org/google-docs/?U3m98r
https://www.zotero.org/google-docs/?2Kcqy9
https://www.zotero.org/google-docs/?2Kcqy9
https://www.zotero.org/google-docs/?U3fVSd
https://www.zotero.org/google-docs/?is5Wz9
https://www.zotero.org/google-docs/?YQdY49
https://www.zotero.org/google-docs/?TtXusy
https://www.zotero.org/google-docs/?TtXusy
https://www.zotero.org/google-docs/?TtXusy
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