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Abstract 

This work is aimed at the understanding and application of several emerging technologies as 

they relate to improving the interactions which occur between robotic operators and their 

human colleagues across a range of manufacturing processes. These interactions are 

problematic, as variation in performance of human beings remains one of the largest sources 

of disturbances within such systems, with potentially significant implications for productivity 

if it continues unmitigated. The problem remains for the most part unaddressed, despite these 

interactions becoming increasingly prevalent as the rate of adoption of automation 

technologies increases.  

By reconciling multiple areas encompassed by the wider domain of intelligent 

manufacturing, the presented work identifies a methodology and a set of software tools which 

leverage the strengths of neural-network-based reinforcement learning to develop intelligent 

software agents capable of adaptable behaviour in response to observed environmental 

changes. The methodology further focuses on developing representative simulation models 

for these interactions following a pattern of generalisation, to effectively represent both 

human and robotic elements, and facilitate implementation. By learning through their 

interaction with the simulated manufacturing environment, these agents can determine an 

appropriate policy, by which to autonomously adjust their operating parameters, as a 

response to changes in their human colleagues. This adaptability is demonstrated to enable 

the intelligent agents to determine an action policy which results in less observed idle time, 

along with improved leanness and overall productivity, over multiple scenarios.  

The findings of the work suggest that software agents that make use of a reinforcement-

based learning approach are well suited to the task of enabling robotic adaptability in such a 

way, and the developed methodology provides a platform for further development and 

exploration, along with numerous insights into the effective development of these agents. 
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1. Introduction 

 Background 

While the word ‘robot’ conjures images of 1950s sci-fi, it originates in Czech writer Karel 

Čapek’s 1920 play, Rossumovi Univerzální Roboti (Rossum’s Universal Robots) as a term 

for ‘forced labour’. Perhaps ironically, it is as labourers, that robots have found their niche, 

and the increase in the prevalence of robotics and automation within the manufacturing sector 

in the wake of what has come to be referred to as the third industrial revolution has continued 

to the point where they have become ubiquitous (Moniz and Krings, 2016). Despite this, 

there remain a number of manufacturing tasks which require either a level of dexterity or 

adaptability that only humans are able to achieve. The result of this is a transitional period, in 

which a growing number of manufacturing processes feature tasks where robotic operators 

must interact with human operators as colleagues and collaborators (Teiwes et al., 2016).  

The investment in and adoption of automation technologies stems from the socio-

economic pressures to continually increase the productivity of many European nations 

(manufacturing accounts for 25% of the German GDP and represents a considerable portion 

of the GDP of several other European Countries (Heinisch and Scheufele, 2017)). This is due 

to the need to remain competitive in the face of challenges including increased 

industrialisation and growth in the manufacturing sectors in the east (Goldstone, 2015); and 

an ageing population in many of these same European countries with developed economies. 

Investment has also been required to meet the massively increased demand within these 

developed nations for high quality, bespoke products (Tao et al., 2011), developed using 

sustainable and efficient methodologies (Rusinko, 2007). As a consequence, the key to 

competitiveness in the modern age is resilience to, and capability to adapt in response to 

change. Therefore, existing approaches to manufacturing are rapidly becoming obsolete due 
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to their inability to efficiently provide the current requirements imposed by manufacturing 

systems (Leitão, 2009). 

Concurrent to the developments in automation, and driven by the massive increase in 

data generation over the past several decades, advances in the field of computer science have 

resulted in modern software implementations capable of learning from vast reserves of data 

in addition to their own experiences to intelligently analyse new data to enable predictions, 

and decision-making (Witten et al., 2016; Marsland, 2015). The application of these systems 

within manufacturing provides the capacity to overcome the challenges facing developed 

manufacturing industries, and exploration into the implementation of intelligent systems for 

high-level data analytics, data mining and machine learning within industrial manufacturing 

processes has already begun to be undertaken by many companies with large manufacturing 

requirements (Auschitzky, Hammer and Rajagopaul, 2014).  

This application of intelligence has given rise to various related fields, referred to 

collectively as Intelligent Manufacturing (Zhou, Liu and Zhou, 2015). Work in these areas 

often relates to the development of  Cyber-Physical Systems (CPS’s), which, as described by 

(Lee, 2008b), combine computational and physical processes such that the embedded 

computers can autonomously control, monitor and predict the physical processes on an 

automated level. The realisation of CPS’s promise to deliver several benefits to 

manufacturing processes, through the combination of advanced digitalisation, simulation, and 

data analysis techniques, which enable manufacturing control systems to operate with greater 

fidelity and accuracy, and for advanced capabilities to be realised in the intelligent behaviour 

of autonomous systems, in terms of adaptability (Monostori et al., 2016). These novel 

behaviours play an important role in facilitating the interaction between autonomous robotic 

operators and their human counterparts and have significant implications for manufacturing 

processes as a result.  
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 Main Challenges 

The role of the human operator is far from obsolete, particularly within heavily governed 

industries, such as logistics, food, pharmaceutical/chemical, and medical, due to stringent 

quality and accountability controls. Human beings are, however, subject to the influence of 

many factors which can dynamically and unpredictably affect their task performance, and its 

consistency, and consequently, they are a source of disturbance in such systems. The 

disturbances that arise as a result of the natural variation between human beings remain a 

significant obstacle to improving the productivity of these processes, and human components 

of such systems are often ineffectively modelled, leading to inefficiencies in the design and 

control of such processes. The study of these Human Factors is a field in its own right and is 

more comprehensively explored in section 2.5.  

The impact of human performance variation is particularly pronounced in the case of 

manufacturing processes, where individual elements are highly dependent on one another, 

and ideal operation is typically realised as a perfect one-piece-flow of product through such 

systems, based on lean principles (Herron and Braiden, 2007; Adams et al., 2001). Variation 

in human-beings, combined with ineffective modelling in the design of these processes, can 

often lead to a disparity between human task performance, and the repeatable performance of 

their robotic counterparts, with a negative effect on the overall system productivity. The 

factors which influence human performance are well understood from the perspective of 

human resources and management, However, limited work exists on how to how to apply this 

knowledge to the study of Human-Robot-Interaction (HRI), or how it may be leveraged to 

alleviate the effects of these interactions on manufacturing processes. 

 Within the manufacturing domain, work has demonstrated that the application of 

learning and intelligent data analysis to robotic operators within manufacturing processes 

may leverage novel capabilities to enable adaptable behaviour in robotic operators, as in the 
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case of the aforementioned CPS’s. The ever-increasing application of intelligence to these 

systems has in itself developed into a new field, which studies how interactions between 

these robotic entities and their collaborating agents occur, known as collaborative robotics 

(Khalid et al., 2016; Brown and Woods, 2017). Work in the field has resulted in insight and 

implementations of robotic operators that are able to coordinate actions and adapt behaviours 

to the state and actions of other operators, to achieve automation of more complex tasks, and 

further optimise existing ones in real-time, and in cases where modelling is difficult as a 

result of unpredictability. However, much of the research in this field has however neglected 

the importance of Human-Robot-Interaction, and its relevance to collaboration, particularly 

in the manufacturing setting. Consequently, it seems logical to extend this adaptability to the 

problem of mitigating the effects of the variation in the performance of human beings, and 

the resultant disparity.  

This increased adaptability of robotic operators within a CPS enables changes in 

behaviour in response to the actions of others, potentially facilitating collaboration with 

human colleagues. Consideration of the impact caused by human factors can be used to 

model the consequent variations in performance, and a machine learning approach can be 

leveraged to enable the robotic agents to intelligently analyse the observed data, model the 

relationships between observed human performances, adapt its behaviour, and eliminate the 

variation in performance between operations, enabling processes to achieve a more optimal 

and agile one-piece-flow, in line with the modern application of lean-manufacturing methods 

(Monostori, 2014; Lee, Bagheri and Kao, 2015).  

The theoretical aspect of this application is backed by this existing work, however, 

there are many substantial challenges involved in realising such a system. In addition to the 

existing questions surrounding the effective modelling of human beings within these 

scenarios, the technical implementation of the necessary data processing systems is 
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undefined, in both a practical and theoretical sense. Extension of machine learning techniques 

to enable adaptable behaviour in this context is currently poorly explored, as there is little 

knowledge on how learning models may account for human behaviour, evidenced by a lack 

of referenceable work in the area. Furthermore, there is a substantial challenge in developing 

an effective control system based on this modelling and analysis to effectively provide 

adaptability in these systems, as almost all of the elements and constraints of such a system 

remain unknown. What is clear, is that if the challenges associated with the development and 

implementation of such systems are met, there are potentially significant benefits to be 

realised in manufacturing processes, at both the human and system levels.  

 

 Identified Research Questions 

Many of the emerging techniques that the field of intelligent manufacturing promise to enable 

the capabilities required to achieve this level of understanding and adaptability to be realised, 

from the digitisation of processes for modelling to the integration of full Cyber-Physical-

Systems. Realising CPS applications has the potential to improve the collaboration between 

robotic operators and their human equivalents, across a variety of domains and applications, 

and with tangible benefits to manufacturing systems.  Work in the domain of computer 

science, namely machine learning, has demonstrated that such systems may be realised 

through algorithms which are capable of learning from experience to determine individual 

behavioural policies to enable adaptable behaviours. Realising such a system requires a 

combination of methods, techniques, and approaches, but overcoming the associated 

challenges suggests such adaptability and the resultant benefits, may be attainable. From this, 

the following research questions have been proposed: 
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Question 1: How can the typical interactions between human operators and their 

robotic counterparts within manufacturing be modelled; and what implications does this have 

for the productivity of these processes? 

 

This question is posed to develop understanding of how humans and robots work within 

manufacturing operations, as they occur in production line processes. As discussed, certain 

tasks remain that require levels of dexterity in control, and environmental analysis, that 

prevent their effective automation. Within production line processes, efficient systems are 

often determined by their leanness, and how close they operate to a one-piece-flow. The 

disparity in performance between individuals and across contexts is an unpredictable factor in 

the design, monitoring and analysis of these systems, and leads, often to sub-optimal process 

performance.  

 

Question 2: Which methods can enable intelligence be implemented into the robotic 

operators in such a manufacturing system to enhance their understanding and adaptability 

with respect to the behaviours of their human counterparts? 

 

Intelligent manufacturing is one of the fundamental areas under the Industry 4.0 initiative. 

Whilst not exclusively so, many of the key ideas are realised under the Cyber-Physical-

Systems methodology, which combines physical process with computational elements to 

enable autonomous adaptable behaviours. Machine learning seems well placed to enable 

these capabilities, with reinforcement techniques having been demonstrated to allow 

intelligent agents to act in an autonomous and adaptable manner (Monostori et al., 2016). To 

realise these systems, there remains a large volume of work to be completed, in terms of how 

to apply computational techniques, and model real-world processes, to provide the necessary 
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capability to extract knowledge for observations of the environment and others. This question 

aims to identify the appropriate use of intelligence to fully realise the potential of such 

systems, concerning improving the interactions between robotic elements with production 

line systems and improving the processes as a whole. 

 

Question 3: Is it possible to leverage the benefits of an intelligent-agent-based control 

system for the robotic operators within manufacturing systems, to improve their adaptability 

and to realise benefits in interacting with human beings, and at the system level? 

 

This question aims to explore novel concepts under the intelligent manufacturing umbrella, 

which seek to embed a degree of contextual and social awareness in robotic systems (social, 

in the context of this work, referring to the interactions and collective action of different 

individuals), to improve their interactions with humans, and provide improvements to these 

production processes. Enabling adaptive behaviours in robotic elements of manufacturing 

process has been hypothesised and demonstrated to provide tangible benefits in terms of 

optimisation (Lee, Bagheri and Kao, 2015; Scholze and Barata, 2016), but there is an 

identified lack of work on extending this adaptability, to enable robotic operators to adapt 

their behaviour based on the variation of human operators to reduce the impact of this 

disturbance on the overall process.  

 

The research aims, that seek to be resolved through these questions, are well identified. 

Existing control systems for manufacturing processes are limited by the complexity required 

to enable the numerous benefits of mass data-collection; advanced computational 

intelligence; and advanced automation. Digitalisation of processes through data collection, 

decentralisation of control through both hardware and software, and the use of intelligent data 
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analysis, enable the development of control systems that are autonomous, adaptive and 

capable of autonomous response to change (Wang, Törngren and Onori, 2015). These 

capabilities are crucial to facilitating collaboration between elements of these processes 

which has been demonstrated to allow real-time optimisation of these processes, through 

adaptable behaviours.  

Despite the promise of these systems to provide real-time optimisation and reduce the 

impact of disturbances on these processes, there has been limited consideration the human 

impact on manufacturing processes; an inherently unpredictable variable and a source of 

disturbance. As such, control systems must be developed, which have a contextual 

understanding of the factors that influence human performance, and which can act and adapt 

in a manner suited to working alongside their human counterparts, if the industry 4.0 vision is 

to be fully realised.  

 

 Thesis Structure 

The following outlines the structure of this thesis, and the necessary elements considered to 

answer the identified questions. This opening chapter forms an introduction to the problem 

and wider fields and provides detail on the background and context which underpins this 

work. This is followed by a comprehensive review of the relevant literature covering five 

relevant topics: Intelligent Manufacturing & Industry 4.0, covering the wider field of 

computational intelligence and its application to the manufacturing sector; Decentralisation 

of Control, a topic within intelligent manufacturing concerned with improving the control of 

complex systems; Machine Learning, covering the computational implementations to extract 

knowledge from data; Human-Robot-Interaction, which explores the current state-of-the art 

and theoretical background of this specialised area; and finally, Human Factors, focused on 

the theoretical background of human management and behavioural analysis. 
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The literature review is followed by a chapter which outlines the framework for 

approaching this research problem, and the relevant methods and techniques utilised to do so. 

This is followed by three chapters which constitute the main body of this research, which 

cover the modelling of human beings and the simulated environment, the design and 

development of the reinforcement learning agent, and the evaluation and validation processes 

of the relevant constituent elements, and performance at the system level. As a part of the 

identified process of validation, a case-study was completed, and the details of this are further 

outlined in the chapter immediately following.   

The results of the previously outlined experiments are then presented to form a 

cohesive picture of the completed research and its consequences. These results are discussed 

and interpreted fully in the chapter following, which is sub-divided relevant to the identified 

research questions. These chapters are then followed by a final section of the work, which 

outlines the key conclusions, research contributions, and personal reflections on the project 

and its results. References and other information are then appended.  
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2. Literature Review 

This chapter presents a review of all existing literature in this area and is divided into five 

main sections. These cover the scope of intelligent manufacturing, and its relationship to the 

current state of the industry; the decentralisation of control, and how this is a key enabler of 

collaborative systems; machine learning, and its application to enabling the intelligent aspects 

of such systems; the current state of the art of HRI, again with a specific focus on the 

relevance to manufacturing applications; and a final section covering human factors, and how 

this relates to modelling and prediction of human behaviours and variation.  

  

 Intelligent Manufacturing & Industry 4.0 

Originally conceived as a strategy for economic growth in the manufacturing sector by a 

think-tank based in Germany, which consisted of engineers, business owners, politicians, and 

academics. The Industry 4.0 Initiative has, since its introduction at the 2013 Hamburg world 

fair (Zuehlke, 2010), emerged as one of the most widely discussed topics in the 

manufacturing world. The term, coined by the German government to describe their ongoing 

vision for manufacturing; illustrates the concept of ‘smart-factories’; manufacturing facilities 

within which each of the processes is connected either centrally or modularly to every other 

process and which makes use of computation and machine learning processes to 

autonomously self-adjust and self-correct to problems.  

Whilst Industry 4.0 was the first and most globally recognised, similar initiatives have 

existed (the product of similar research founded on similar concerns) for years under the 

direction of the American, UK and Japanese Governments. Despite arguments that advances 

in the field of intelligent manufacturing, are simply a natural progression of technology, the 

initiatives have nonetheless served as a catalyst, coordinating research efforts and 

accelerating progress in recent years (Schönsleben, Fantana and Duchi, 2017).  
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The term industry 4.0 has evolved beyond its original meaning, becoming, in many 

aspects, simply a buzzword that refers to the underlying aims and objectives –In the author's 

opinion- this devalues the term from an academic perspective, the 'simplification' that occurs 

with frequent (and often incorrect) use provides a useful terminology by which to group 

related research, and enables communication with the larger community. 

Many of the advancements within Industry 4.0 have been driven by the emergence of 

‘Big-Data’ (Hilbert, 2016). Developments in the field of big data have led to an 

understanding of how to handle and effectively process large datasets where statistical 

methods are no longer effective due to its complexity and volume. Despite advances in the 

field, the capture, handling, storage, and processing of large datasets remains challenging 

(Wuest, Irgens and Thoben, 2014; Babcock et al., 2002). An extensive view on the 

challenges of practically managing this data can be found in (Jagadish et al., 2014). 

The capacity and understanding of how to process and extract of knowledge from this 

collected data has fuelled the emergence of a vast number of enabling technologies and fields 

of study which form a larger body of research (Brettel et al., 2014), which is a cornerstone of 

the Industry 4.0 initiative. Termed Intelligent Manufacturing, the collective focus is used to 

describe the application and integration through a variety of disciplines to contemporary 

manufacturing systems (Zhong et al., 2017; Li et al., 2017; ElMaraghy and ElMaraghy, 

2016). The main research focuses include: novel automation control systems, with) a focus 

on, decentralisation, virtualisation, reconfiguration, and adaptability (da Silva et al., 2015; 

Mendes et al., 2009; Shafiq et al., 2016), the development and application of machine 

learning and artificial intelligences (Spezzano and Vinci, 2015); and virtual and augmented 

reality systems, which are being used to bridge gaps in geography, knowledge and skill level 

(Pirvu, Zamfirescu and Gorecky, 2016). 
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Whilst the area of Intelligent Manufacturing is itself a many-faceted problem, the 

recurring element that underpins much of this revolution is the collection, utilisation and 

understanding of data, or the study of ‘Informatics’, and all of the areas linked with the 

intelligent manufacturing research area rely on the capture and analysis of data in some 

capacity. To this end, the use of advanced data analytics and machine learning and the 

associated algorithm development and Software Engineering (Vyatkin, 2013), alongside 

embedded and distributed sensing technologies as in the case of Internet of Thing (IoT) 

technologies (Atzori, Iera and Morabito, 2010) have all seen a great deal of interest in recent 

years. 

 These areas build on ideas of big-data and connectivity, to enable digitalisation of 

manufacturing processes, where digital representations of real-world processes may be used 

for analysis, prediction, and control (Kritzinger et al., 2018; Ding et al., 2019).  

The digitalisation of manufacturing processes is a key enabler of Cyber-Physical 

Systems (CPS), which form a combination both physical and digital elements, and a system 

of networked machines and sensors, which communicate and collaborate intending to enable 

autonomous intelligent behaviour (Lee, 2008a; Lee, Bagheri and Kao, 2015). The utilisation 

of data allows for these systems to construct detailed process models, and interpret perceived 

data with respect to these models, enabling:  

Self-Awareness & Prediction; through the construction of a digital representation or 

Digital Twin of a system enables potential solutions and control structures to be virtually 

implemented and validated; and for improving understanding (Schuh et al., 2014).  

Self-Diagnosis; through data-driven modelling and intelligent analysis of real-time 

observations, which enables preventative maintenance and fault diagnosis, and reduces 

unpredictability and disturbances within the system (Chukwuekwe et al., 2016). 



 20 

Self-configuration; through the complex and distributed nature of CPS’s, which 

enables self-configuration, as system controls, parameters, resources, and operations can be 

configured and reconfigured remotely, and in response to observed changes in the 

environment (Gurgen et al., 2013).  

Self-Optimisation; through adaptability and autonomy, which provide the tools 

necessary to implement self-optimisation. Experience-based learning can ensure process 

stability given changing contexts. This can be combined with digital representations to enable 

learning systems to explore states other than those observed to find ever more optimal 

solutions (Permin et al., 2016).  

The use of digitalisation by Cyber-Physical-Systems may be leveraged to improve 

manufacturing processes and products in various ways and provide them with many of the 

capabilities required under the Industry 4.0 initiative (Bagheri et al., 2015). 

The combination of these capabilities enables the intelligence of these systems to be 

quantified. The 5C’s architecture ((Lee, Bagheri and Kao, 2015) outlines 5 levels of 

intelligence, and their associated technologies and capabilities. At the low end, the 

Connection level describes the majority of current manufacturing environments, that have 

adopted the principles of data collection, via connectivity, but whose systems are not 

advanced enough to provide reliable analytics. The levels of autonomy increase with the 

degree of intelligence -implying that these two factors have an inherent link with one 

another- with systems that achieve the Configuration level capable of adaptability and 

reconfiguration based on the perceived surroundings. This architecture is illustrated in 

Figure.1. 

Current CPS implementations based on intelligence and distributed control have 

demonstrated adaptive scheduling, real-time modelling of processes, and Decision Support 

Systems. These features have been used to refine processes and component design across a 
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wide range of control disciplines, such as automation control for manufacturing, Electrical 

Grid control (Pipattanasomporn, Feroze and Rahman, 2009); and Traffic Management/Air 

Traffic Control systems (Wang, 2005).  

The development of the necessary technologies has enabled easy experimentation with 

these systems; however, as a result of a wide variance in their application, large scale 

implementation and commercialisation is not without challenges. Standardisation is essential 

for the implementation and facilitation of interconnectivity; a key component in enabling 

CPS. Standardisation of electro-mechanical components, software, interfaces, communication 

and interoperability protocols, data formats, and system intelligence are all critical (Leitão 

and Strasser, 2016; Weyer et al., 2015). The other major challenge is security, as Cyber-

Physical Systems have multiple vulnerabilities both to external security threats; which can 

exploit communication networks, and information security protocols, which can lead to 

internal system failures and error. Consequently, both be addressed to ensure reliability, 

protection and resilience against these threats (Pasqualetti, Dörfler and Bullo, 2013; Ali et al., 

2018). 

Figure.1 - Illustration of the 5C's architecture used to quantify the capabilities and intelligence 

of CPS's (Reproduced from: (Lee, Bagheri and Kao, 2015)). 
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In addition to overcoming these challenges, several other areas remain in which more 

work is needed to fully realise the potential of these systems (Wang, Törngren and Onori, 

2015). Given the potentially unlimited number and variety of applications for CPS’s, robust, 

developed architectures and methodologies for their implementation are lacking, and 

development of the necessary guidelines and standards to facilitate implementation and 

development of CPS’s is also a key challenge in their effective realisation. The increase in 

both the number of computational elements and process elements also inherently provides a 

major obstacle to realising Cyber-Physical-Systems, which rely on distributing the control of 

individual elements to overcome increasing system complexity. Work on coordinating these 

networked elements or agents is crucial for enabling flexibility and adaptability through self-

organisation and context-aware decision-making. The use of high-level analytics will enable 

robust control, capable of dealing with errors and unfamiliarity, and adaptability, through an 

awareness of contextual factors inherent in the decision-making process. Intelligent agents 

have been utilised in practical applications and demonstrated as capable of performing a 

multitude of self-organisational and autonomous tasks for use in the manufacturing industry 

(Zhang et al., 2016; Musil et al., 2017).  

 

 Decentralised Control 

Many of the existing manufacturing control systems were developed at the beginning of the 

digital age, with the emergence of robotic and computational manufacturing systems. These 

systems are frequently centralised and use a hierarchical control structure, which, due to its 

intrinsic capacity for optimisation, led to significant increases in productivity over traditional 

methods that were in use at the time. However, as the representations of production processes 

become increasingly detailed and complex, top-down control faces significant challenges 

when faced with enabling autonomous adaptable behaviour (Cao et al., 2013; Leitão and 
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Restivo, 2006). Traditional automation techniques have been made obsolete by the rise of the 

data-driven processes, and the consequently increased complexity required of intelligent 

systems.  

To overcome these challenges, manufacturing control systems must become distributed 

in terms of both hardware and software; and intelligent, through the application of machine 

learning and artificial intelligence techniques. This will enable said systems to respond 

dynamically to change in response to observations of the environment, flexibility, 

reconfigurability, adaptability, and autonomy, to increase productivity in line with the aims of 

intelligent manufacturing (Leitão, Mařík and Vrba, 2013; Brettel et al., 2016). 

The concept of distributed control and the mechanics of distributed interaction have 

been studied and utilised since the introduction of planning agents in the 1970s (Wooldridge 

and Jennings, 1995). Contemporary applications explore intelligent agents, often form 

combinations of hardware and software (these combined elements form a logical unit within 

the system, defined as a Holon, within the Holonic Manufacturing System) (Van Brussel et 

al., 1998). Each agent is autonomous with its own sensory inputs, objectives, knowledge, and 

internal intelligent functions. The strength of distributed control when faced with complexity, 

is that it enables a complex problem to be divided into several small problems, each of which 

is distributed to a network of multiple intelligent agents. These agents interact as governed by 

the rules of the Multi-Agent-System (MAS). And the global control decisions are determined 

by the collaborative efforts of the agents through their interaction, as no single agent has a 

global view of the system (Leitão and Colombo, 2006). Each of the agents solves their own 

localised problem, aiming to facilitate those around them, to provide a global solution to the 

original global problem. 

In the manufacturing context, a multi-agent-system typically consists of agents of two 

types: Resource, represent hardware, such as machines and robotic operators; and Orders, 
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which represent raw materials, tooling, components, etc. Software agents, which able to act 

autonomously based on observation of the environment and communication with other 

agents, are connected to the physical hardware of the robot forming a Resource Holon, which 

enables actions to be taken based on computational decisions. These resource holons are 

similar to the elements defined in Cyber-Physical Systems, which also form combinations of 

hardware and software.  The formation of these holonic systems enables physical hardware to 

be controlled in a distributed and adaptive manner, as the software interacts and generates 

commands as necessary to achieve a given state or goal. For a detailed breakdown of the 

history, structure and capability of Intelligent agents and their applications see (Marik and 

McFarlane, 2005). 

The challenge of coordinating multiple agents effectively and implementing control 

systems based on these methods, has resulted in the emergence of collaborative robotics as a 

distinct discipline. Collaborative robotics is based on improving the interaction dynamics of 

robots with others, by leveraging the capabilities of the intelligent agents to overcome the 

former roadblocks to centralised approaches. This is, therefore, of particular relevance to the 

development of distributed manufacturing control systems, which are heavily reliant on 

robotic systems, and how they interact with one another, and human operators (Bochmann et 

al., 2017; Kirgis, Katsos and Kohlmaier, 2016). Research in this area primarily focuses on 

how to enable intelligent processing of sensory data in terms of coordinating robotic 

behaviour with that of others. This requires consideration of the intelligent agent’s control 

structure, and how different functionality may be used to enable an adaptable behaviour and 

appropriate response to changes in the environment, or the actions of the collaborators 

(Vorotnikov et al., 2018; Khalid et al., 2016; Brown and Woods, 2017).  

The coordination with other agents in the system inherently requires the consideration 

of the mechanisms of collaborative behaviours and the internal structure of learning and data 
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analysis. Whilst of course teamwork is not unique to Homo Sapiens, collaboration is 

commonly considered a very human trait, many studies on collaboration have sought to 

understand cognitive processes as they occur in humans, and to replicate these cognitive 

processes. The combination of these cognitive processes to enable an agent to behave 

intelligently has led to the development of numerous cognitive architectures (Kotseruba, 

Gonzalez and Tsotsos, 2016). 

Many of these architectures exist to provide intelligent agents with cognition (Haykin et 

al., 2012). Notable examples of these architectures include ACT (Anderson, 1996), SOAR 

(Laird, Newell and Rosenbloom, 1987), and C4 (Isla et al., 2001) which was originally used 

to provide AI for enemies in video games. These architectures contain many insights with 

regards to the agent’s structure and how it interacts, despite being conceptualised for more 

primitive computational systems and hardware. These insights may be drawn from both the 

variance and similarities in their designs, with a common feature among many being a 

modularised structure, with multiple elements which are responsible for different aspects of 

cognition and interact to form the desired behaviours.  The modules contained within each 

architecture are often structured around a central module which acts as a controller for 

internal processes and acts as the decision-maker. This control module is supported by others 

which facilitate necessary behaviours; such as Perception, Learning, Decision-Making, and 

Memory. The segregation of processes in this way facilitates the integration of low-level 

perceptual and motor control with higher-level knowledge extraction and decision-making 

processes (Salvucci, Boer and Liu, 2001) through a further reduction in the complexity of 

control. Such an approach is therefore beneficial in terms of combining higher-level 

processing elements with established control techniques without interference.   

The final concept with an application to distributed control that comes from the study 

of cognition is embodiment, a factor which is beneficial in terms of developing software 
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agents, and how they interact, for several reasons. Embodiment refers to the clear distinction 

between internal and external processes and factors. This embodiment enables multiple 

agents with identical internal structures, to behave based on their individual goals and 

knowledge gained from their own cumulative experience, and its context (Hoffman, 2012). 

This enables these agents to behave differently from one another, even when provided with 

the same observation, due to the unique nature of each agent’s cumulative experience (Young 

et al., 2011).  

In a practical sense, the implementation of embodiment is well suited to the structure of 

Object-Oriented programming languages (this has benefits with working with languages such 

as C++ and Java, two of the most widespread programming languages, especially within the 

manufacturing industry), which defines pieces of code as individual objects, with defined 

internal and external access.  

Despite a renewed interest in the application of distributed control, there remain many 

problems to be resolved to enable the use of these methodologies. These include questions 

surrounding practical issues, such as connectivity, and security (Ali et al., 2018; Bannour, 

Souihi and Mellouk, 2018), but one of the key challenges facing implementations of 

intelligent agents is a lack of standardisation, both in a real sense, but also in terms of agent 

behaviour and design, due to the application-specific nature of many approaches. Some of the 

most respected of numerous architectures and frameworks include ADACOR; developed by 

(Leitão and Restivo, 2006), a holonic architecture which has gained traction and popularity 

due to its applicability to manufacturing systems; And GRACE; or inteGration of pRocess 

and quAlity Control using multi-agEnt technology, a Multi-Agent-System developed with the 

purpose of utilising collaboration and distributed control for process and quality control 

integration (Leitao et al., 2015; Rodrigues, Pereira and Leitão, 2013).  
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A manufacturing control system that satisfies the conditions and overcomes the 

challenges of decentralisation has numerous advantages over traditional centralised control 

systems. Multi-agent systems are a promising implementation of distributed control, through 

embodiment of learning algorithms to provide intelligence, will contribute to increasing 

capabilities and the realisation of CPS. Recent applications of intelligence to autonomous 

agents have made considerable use of the strengths of a neural network-based approach to 

automate each agent's analytical and decision-making processes, based on its cumulative 

experience (Monostori, 2014; Monostori et al., 2016; Shi et al., 2020). 

 

 Machine Learning 

It is important to consider the mechanisms which enable the capacity for intelligent 

behaviour. Whilst Intelligent Manufacturing as a field of study is well defined in its scope 

and incorporated areas, Intelligence is a subjective term, and the definition used within the 

field is fluid. Typically, intelligence manifests itself through several behaviours: the ability to 

observe a set of inputs and use this information to take appropriate action. Attempts to 

quantify such behaviour goes back as far as the 1940s, and Alan Turing's now infamous 

'Turing Test'; designed to establish whether a machine was capable of human-level 

intelligence, through its decision-making abilities (Turing, 1950). Developments of both 

hardware and software, have enabled machine learning techniques to become ever more 

powerful, and increasingly feasible to implement on accessible hardware (Abadi et al., 2016; 

Team, 2018), and for Artificial Intelligences to be applied in a wide range of applications, 

including Image Recognition; Language Translation; Finance; Logistics; and Gaming (Silver 

et al., 2016; Firoiu, Whitney and Tenenbaum, 2017; Witten et al., 2016).  

Machine learning as an approach is increasingly leveraged as an effective tool for the 

generation of knowledge from data (Lee, Bagheri and Jin, 2016; Miškuf and Zolotová, 2016), 
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and has been explored extensively within the manufacturing field (where reserves of 

historical data are plentiful) to generate process insight; and more recently, to realise the 

ideas presented by Intelligent Manufacturing (Sharp, Ak and Hedberg Jr, 2018; Qiu et al., 

2016). 

Owing to their strengths in abstraction and pattern recognition; their ability to manage a 

large number of data inputs; and their adaptability to a wide variety of applications, neural 

networks have been successfully applied to learning and analytics tasks, within several fields 

and applications and provide a non-deterministic method of matching a number of input 

variables to singular or multilabel outputs, and for approximating relationships between 

multidimensional data. Neural Networks and their applications are well established and are 

documented in (Witten et al., 2016; Goodfellow, Bengio and Courville, 2016; Schmidhuber, 

2015).  

A neural network is a collection of nodes, each of which is connected to numerous 

other nodes through weighted connections, analogous to human neurons. The structure and 

interactions of the network can be used to exhibit a multitude of desired behaviours. These 

Neurons are typically arranged into layers, forming representations, with the leftmost layer 

Input Nodes, which convey information into the network, and the rightmost layer the Output 

Nodes, where the resulting output is provided to the system. The observation signal is 

propagated through the network, based on the activation function of each neuron, which 

describes its behaviour in terms of whether it passes on the signal (Baldi and Hornik, 1989). 

In a typical implementation of Supervised Learning, in which a set of Training data is 

used with known input/output pairings. The weights are initially randomised and are altered 

during training, usually via Gradient Descent backpropagation, which aims to maximise the 

rate of correct output for a given input and minimise the total system error (Medsker and Jain, 
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2001). Significant care must be taken when training Neural Networks, as gradient descent is 

particularly vulnerable to local minima phenomena (Baldi and Hornik, 1989). 

The network may also contain a vast number of intermediary layers or hidden layers, 

which, as each forms a representation of the input based on the layers before it, may be 

designed to provide layers of abstraction to an input example. Neural networks are defined in 

terms of these layers, whereby increasing the number of layers, increases the depth of the 

network. The addition of these intermediary hidden layers proved to be monumental in the 

development and application of Neural Networks to advanced and Intelligent tasks.  

Termed Deep Learning, the increase in intermediary layers enabled the development of 

advanced techniques which have proved to surpass most other methods in the discovery of 

intricate patterns in datasets large in volume and high in dimensionality(Goodfellow, Bengio 

and Courville, 2016). NN’s utilise the multiple levels of layers to abstract data and form 

representations of different features in the data. Convolutional Neural Networks, which use 

hierarchal layers of tiled convolutional filters, to reduce high-dimensional data into 

increasingly abstract representations. These networks are capable of identifying policies with 

little prior knowledge and have been used successfully in the field of machine vision and 

language processing (Mnih et al., 2015; Matsugu et al., 2003). Additionally, Recurrent neural 

networks make use of deep architectures to incorporate elements of short term memory, and 

can accurately track temporal changes from one state to the next, and improved pattern 

recognition over time from time-series data; with demonstrated success in speech and written 

word comprehension and generation (Medsker and Jain, 2001; Sak, Senior and Beaufays, 

2014). 

An important strength of neural networks is their capacity for Unsupervised Learning, 

reducing the need for extensive examples required to train the network; and hand-designed 

feature extraction and dataset manipulation (LeCun, Bengio and Hinton, 2015). This enables 
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an iterative approach to training to be used, to enable a neural network to make associations 

between states and sets of actions, through the use of rewards and penalties provided whilst 

the agent is training and exploring an environment. Within control theory, this is referred to 

as Reinforcement learning, and as mentioned, is commonly utilised to dictate the behaviour 

of autonomous agents within multi-agent-systems, through control of agent actions and 

process parameters, in response to changes in the external environment as a result of action 

(Permin et al., 2016). This learning is referred to as online if the learning is conducted 

directly in the problem setting, using real-time data, and is used to autonomously control to 

real-world agents; whereas offline learning makes use of simulation and is used for analytics, 

and when the training may require millions of instances, impractical to implement on an 

onboard controller; and allows control schemes to be evaluated in an isolated, and therefore 

safe environment (van Otterlo and Wiering, 2012).  

Application of neural networks are vast, however recent implementations have 

demonstrated success at the combination of Markov Decision Processes (MDP’s) (Bellman, 

1957) and Neural Network learning for Multi-Agent-Control (Lowe et al., 2017; Sutton and 

Barto, 2018) in developing agents trained via Reinforcement. The interaction of devices in 

the Cyber-Physical-System environment provides opportunities for decentralised control 

systems. The MDP model, separates the system into a state, s, representing the condition of 

the environment at different timesteps; and a set of actions, a, which the agent may perform, 

before receiving a reward, r, and an updated state observation, s’. Actions are selected based 

on a policy, p, which aims to maximise the cumulative expected discounted sum of rewards. 

In an MDP, the question becomes defining the policy to maximise the received reward. In Q-

Learning, this is achieved by assigning each action a value function Q(s, a), or  'Q-Score', 

representative of the quality of an action in a specific state (van Otterlo and Wiering, 2012; 

Watkins and Dayan, 1992). These scores are generated using the Bellman Equation.1:  
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𝑄(𝑠, 𝑎) = 	∑ 𝑟+ + 𝛾 ∙ max2 𝑄 (𝑠+34, 𝑎)                                     (1) 

These scores may then be used to select the appropriate action for a given input. This 

approach has proven exceptionally competent at learning complex and non-deterministic 

systems, especially when leveraging Neural Networks to approximate the policy in an MDP, 

by predicting rewards for actions given a state based on cumulative experience of interacting 

with the environment; referred to as Deep Q-learning Network’s (DQN’s).  

The success of the application of DQN's to learning tasks is as a result of the ability of 

neural networks to act as function approximators and to evaluate their performance based on 

received feedback, which minimises the need for labelled data, and the need to fully define 

the environment and its possible states (Hester et al., 2018; Chen, Ying and Laird, 2016; 

LeCun, Bengio and Hinton, 2015). More recently, Google's Deepmind, have focused on 

developing networks that outperformed existing examples and human performance across the 

domain of multiple ATARI 2600 games, which has become a benchmark for learning 

systems to learn from visual input, with performance over multiple games being used as a 

good measure of a networks generalisability. This work is a natural extension of Google's 

existing work in the field of image recognition and was one of the first applications to 

utilising the strength of convolutional nets to extract abstract representations from an array of 

on-screen pixels and their values in different colour channels which are used to form digital 

images. This ability to create simple representations from high dimensional inputs further 

highlights the strength on neural networks to effectively learn from complex state 

information and has since been applied across varied domains, including manufacturing 

(Kusiak, 2019).  

These tasks extend the application in terms of how neural network predictions may be 

used, by extracting state value functions from visual state representations. In addition, the 

work by Deepmind has led to the establishment of multiple techniques exist to improve DQN 



 32 

performance during training. These include the use of training methodologies such as 

advanced action-selection policy methods, including epsilon decay, which uses an additional 

parameter, epsilon, to encourage initial exploration of the environment by selecting random 

actions, which decays over time to give the agent progressively more control; Experience 

Replay, where a buffer of recent transitions is collected and sampled for training, serving as a 

form of memory; and the use of Fixed Targets, which involves using a separate target 

network to make value predictions for the training of the action-selection network, which 

enables the algorithm to converge to a stationary target. The Target Network is then updated 

after a certain number of training steps (Mnih et al., 2013).  

The application of DQN’s to a wide variety of applications is well documented in 

recent work, however, there remain challenges in the effective utilisation and training of the 

approach. As with other Neural Networks, DQN’s are similarly susceptible to converging on 

a suboptimal learning policy, as a result of their relatively fast response to prediction errors 

which results in a susceptibility to local-minima phenomena (Bernstein and Zilberstein, 

2014), which may prevent the network finding an optimal solution. There are, however, 

various novel techniques and methods for effective training in a reinforcement learning 

environment. These methods typically apply to DQN’s and associated applications which can 

leverage offline learning in a simulated setting, enabling the network to perform multiple 

training iterations and converge to an optimal policy. The training of algorithms iteratively is 

a time-intensive process however, with many image-based training regimes requiring 

millions of iterations. Similarly, to defining neural network structures and training in a 

supervised fashion, there are several additional parameters which must be defined a-priori to 

the learning process. The digital nature (or increasing capacity for digitalisation of many 

applications) of the problems DQN’s are tasked with solving does in itself enable several 

novel techniques to further leverage simulation and offline learning to overcome many of 
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these issues and provide more effective training processes. Notable examples include Actor-

Critic Architectures (Sutton, 1985; Sutton and Barto, 1998), which compare the performance 

of multiple networks and propagate the most successful changes; and approaches using 

principles of Natural Selection as inspiration, the most well documented of these approaches 

being Generative Adversarial Networks (GAN’s) (Goodfellow et al., 2014). Other 

evolutionary algorithms mutate the network topology randomly during their training, with 

mutations that lead to a better performance being retained, and vice versa. This use of the 

evolutionary process for training neural networks, has itself generated a new ‘spin-off’ field 

of computer science and algorithm design, with similarities to many biomorphic design 

applications. 

The popularity of Neural Networks, in addition to continual advances in hardware 

speed and power under Moore’s Law, has resulted in the development of robust development 

platforms and architectures for experimenting with and implementing Neural Networks.  

Notable amongst these examples is Google’s Tensorflow; a Python software library focused 

on the development of NN’s, with API’s for Java and C++. The platform has been used with 

increasing success in the field of neural network development and is capable of many 

specialised & large-scale intelligence tasks (Abadi et al., 2016), M. et al. 2016). Numerous 

other software packages and implementations exist for a variety of languages and with a 

variety of different capabilities, DL4J is a robust, Java-Based package with an active support 

community, along with more general machine learning packages including WEKA (Witten et 

al., 2016), and KERAS (Chollet, 2015). 

The development of robust, open-source software libraries has greatly accelerated the 

rate of knowledge advancement in the area, although practical implementation is not without 

challenges. The increased algorithm complexity has consequences for computation; in terms 
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of both time and loading; and presents challenges in management and analysis of data 

(Jagadish et al., 2014), in the interests of achieving real-time control 

The strength of neural networks, especially in applications with complex and 

unpredictable or random factors affecting their dynamics is the iterative or evolutionary 

nature. The capacity to learn from previous experience and generalise this knowledge into 

new areas has proved a crucial ability in developing many advanced robotics techniques.   

This new approach to learning, using an unsupervised and iterative approach has made 

real several biomorphic traits, which have important applications in robotics. The US 

robotics company ‘Boston Dynamics’ is one of the pioneering robotics companies in the 

world today; developing and consistently refining a range of advanced robots, which replicate 

the musculoskeletal structure of biological creatures to overcome issues associated with 

mobility, and crucially, have exploited the strengths of neural networks to provide control 

over coordinated perception and motion (gait and balance etc.).  

This has enabled a number of successful robots to be developed, including: ‘Big-Dog’, 

a quadrupedal robot developed for the US military for traversing rough terrain, providing 

transport for combat equipment as part of a unit of troops (Raibert et al., 2008). The 

increased mobility and all-terrain capability and the versatility that the platform provided by 

Big-Dog has more recently been miniaturised and modularised into SPOT (Boston 

Dynamics, 2020b), a commercially available fully autonomous quadruped, aimed at industry. 

Shipping in the first quarter of 2020, the company hopes that facilitating access to the design 

will itself generate new ideas and areas of study.   

The most prominent and well known of Boston Dynamics robots is, however, ATLAS 

(Boston Dynamics, 2020a). ATLAS is anthropomorphic in structure, facilitating its 

application to human-based tasks, and is designed to provide a general task versatility by 

being constrained to a similar range of motion enhanced by increased strength and durability. 
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The development of anthropomorphic systems like this provides many benefits, ATLAS can 

lift and carry objects, manoeuvre over obstacles whilst doing so, and regain and correct its 

balance if interfered with. Applications include replacing many manual, menial tasks, and 

replacing human beings in situations too hostile for human beings to survive (Hsu and Peters, 

2014); as evidenced by the ATLAS project’s funding from the Defence Advanced Research 

Projects Agency (DARPA). Anthropomorphism does, however, present significant 

challenges in the form of the Uncanny Valley phenomenon (Mori, 1970; Young et al., 2011), 

which is often a significant factor in project failure. 

Tangent into the benefits of biomorphic applications in robots aside, neural networks 

themselves are an excellent demonstration of the strengths of biomorphism in design Neural 

networks enable human-like traits and abilities by learning as we do (Fink, 2012). Indeed, the 

fascination with anthropomorphism in robotic design dates back centuries to the intricate 

clockwork Automatons, (designed and built to give the illusion of human behaviour), but as 

demonstrated, has important implications for contemporary robotics, and the way in which 

we interact with them. Robots that move, look, and think as we do are inherently easier to 

predict, understand, and ultimately trust.  

The autonomy and adaptability that machine learning enables can be argued to 

increased intelligence, and the capacity to which it can be implemented within manufacturing 

systems. The benefits that intelligent behaviours enabled by Neural Networks in a 

reinforcement learning environment are proven by their frequent appearance in the literature 

on learning tasks, and create new opportunities, as behavioural models that rely on learning 

and experience to dictate their outcomes can be embodied by these techniques. Combined 

with the principles of distributed control, it enables many of the capabilities envisioned under 

Intelligent Manufacturing to be realised. It is, however, both appropriate and necessary to 
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consider these capabilities, with respect to the human element of the systems that remains, 

and how they may be leveraged to facilitate interactions between human and robotic entities. 

Furthermore, the utilisation of neural networks as a learning model has significantly 

expanded the field within computer science which specialises in understanding and 

replicating human thought processes, known as cognitive computing. Intuitively, approaches 

within cognitive computing make use of combinations of neural networks, to replicate 

cognitive processes (Noor, 2015; Modha et al., 2011), and to replicate human behaviours. 

This has potential implications for the facilitation of collaborative behaviour and the 

improvement of human-machine-interaction. With recent work on social cognition and social 

intelligence suggests that providing intelligent robots with social understanding, and human-

like cognitive processes and structures, will better enable natural and intuitive behaviour 

when interacting with humans (Vernon, 2014; Wiltshire, Barber and Fiore, 2013). This is 

further explored in the following section. 

 

 Human-Robot-Interaction 

The study of interaction mechanisms between humans and their robotic counterparts has seen 

rapid growth, as a consequence of the increased capabilities of automation, resulting in an 

increased prevalence of HRI's in the manufacturing setting. Furthermore, this interaction is of 

increasing complexity, as intelligences become more capable. As discussed in the previous 

section, enabling robots to behave in a way that is adaptable as a response to changes in 

human behaviour has considerable significance and application to improving these 

interactions. There is a growing interest in the field, but limited work into its applicability to 

robotics under the intelligent manufacturing paradigm, in contrast to other areas of 

investigation (Lemaignan et al., 2017). This section discusses this work in detail and 

considers the current state of the application of intelligence to robotics where they interact 
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with humans, in terms of both current approaches and interesting research opportunities that 

should be exploited. 

It is also important at the beginning of this section, to make clear the distinction in 

terminology that surrounds this area, as many different phrases and nomenclature exist within 

the literature. Broadly speaking, Human-Machine-Interaction (HMI) and Human-Robot-

Interaction (HRI), are used to refer to interaction at the abstract level, covering all forms. 

However, the concept of interaction may be further divided into two types: Direct 

Interaction; which are types of interaction that involve direct physical, communication or 

manipulation. These types of interaction include: User-Interfaces (UI’s), both Physical (PUI) 

and Graphic (GUI) User-Interfaces, and physical interactions involving robotics hardware, 

and Passive Interaction; which are types of interactions that involve passive communication. 

These types of interaction are concerned with more abstract behaviours associated with 

inferring knowledge and understanding based on both social and contextual cues. 

There are numerous contemporary implementations which exist to demonstrate and 

leverage the benefits of intelligence (in terms of facilitating collaborative and assistive 

behaviour in robotic operators) in Human-Robot-Interactions and provide entirely new 

opportunities. Based mostly on advances in machine vision systems and improved image 

processing, current implementations focus heavily on Direct Interaction, and typical 

interactions include: 

Multi-Robot Handling/Robot-Human coordination; where the end effector 

coordination of multiple robots can be used to increase human strength, enabling handling of 

large and unwieldy components, and reducing the manual aspect of human Labour (Djuric, 

Urbanic and Rickli, 2016); Coordination with the motion of a human operator additionally 

improves safety when sharing a common work area, and collision detection is implemented 

in commercially available robotic operators manufactured by KUKA (AG, 2020) and ABB 
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(ABB); enabling them to share a work environment with a human operator with increased 

safety. 

Direct-Teaching; where the use of collaboration enables proximity working, and 

programming of advanced motion combines the flexibility and reconfigurability of humans 

with the strength, accuracy and repeatability of robots. Applications enable autonomous 

replication of advanced manufacturing processes, such as composite layup, oversise 

component handling, and welding fabrication (Eckardt, Buchheim and Gerngross, 2016; 

Agravante et al., 2014; Rozo et al., 2016; Wang and Zhang, 2017). 

Augmented/Virtual Reality; used for visualisation based on virtual models, can be 

used for remote instruction, training, and real-time information retrieval/delivery; for 

example, technicians may be provided with instructions on procedures based on 3D CAD 

data, which can be used to provide fully virtual training environments and simulations, or be 

overlaid onto images of the real-world problem and used to instruct (Danielsson, 2016; 

Paelke, 2014). 

Perception; leveraging improved image and data processing technology, including the 

use of machine learning, has enabled many modes of perception. Current research involves 

voice recognition and natural language processing (NLP); facial recognition; gesture control; 

and motion tracking (Mohammed, Schmidt and Wang, 2016; Matsas and Vosniakos, 2015). 

However, it is the development and application of intelligence to robotic systems that 

have elevated the role of the machine from a subservient entity to one with its own goals and 

motives, and the ability to make independent decisions to achieve them. This has, in turn, led 

to the current state of research, in which robotic entities interact on the social level, forming 

cooperative and interdependent relationships with others (Warta et al., 2016).  As the 

learning ability of intelligent agents improves and their decision-making becomes more 

capable, the interactions and relationships that exist between humans and machines grow 
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more complex and based more on the inference of information from contextual clues; a 

behaviour more typical of passive interaction.  

Therefore, to facilitate interactions between humans and robots at the social level 

(where they can adapt their behaviour to be more cooperative or beneficial to their 

collaborators) leads to an argument for robots to have the capacity to think in the way human 

beings do, as the development of intelligence which is based on the ability to observe, 

perceive, and communicate both leads inherently to social interaction, and is already similar 

to the models found in human learning. Consequently, by developing behavioural models 

based on our understanding of human cognitive processes, and how these relate to social 

behaviour, it is anticipated that robotic systems that are able to mimic or exhibit human-like 

behaviours; reactions; motivations; and tendencies will interact intuitively, through the 

display of appropriate concurrent behaviours (Vernon, 2014), facilitating these interactions 

with human beings. This has particular relevance in how agency is implemented in robotic 

systems when interacting with human beings. (Wooldridge and Jennings, 1995) provide two 

different concepts: The Weak and Strong notions of agency. The weak notion of agency 

describes any system that exhibits the following behaviours: autonomy; social ability; 

communication language; reactivity; and pro-activeness. The strong notion of agency 

describes a system capable of weak agency, but that is designed or implemented in such a 

way as to mimic anthropomorphic features or behaviours, to facilitate interaction. 

The modelling of social cognition (or the cognitive processes which govern social 

behaviour and the process of decision making based on observation of others) requires a 

functional understanding of the mechanisms in the human context; fortunately, these have 

been well studied in the field of Psychology. Within the literature, the concept is frequently 

addressed by considering the social interactions of agents, an overlap occurring as a result of 

their aforementioned suitability for dynamic interactions. In terms of how human beings 
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perceive a situation and form an action based on it, models commonly embody perception 

through the principle of rational belief, the assumption that the agent will hold sensible 

beliefs, and that beliefs are formed based on these principles from observations of the 

environment; and reaction through the principle of rational action, which assumes that the 

agent will take appropriate action in relation to how it’s observations match up to its beliefs 

and desires (Baker and Tenenbaum, 2014). This concept is illustrated in Figure.2.  

The structure of this model bears a remarkable similarity to the application of a DQN 

and training under an MDP of an intelligent agent in the context of learning for distributed 

control, lending further weight to this approach. The agent receives an observation that 

describes the state, which forms a belief (Q-scores) when combined with the agent’s principle 

of belief (Neural Network). This enables the agent to select an action based on the policy of 

rational action (or the decision policy, pi, of the MDP). In addition to considering how 

cognitive processes may perceive and act based on inferred information from the 

environment to enable interaction, it is also useful to consider the internal processing of this 

information. From the perspective again of modelling human cognition opinion is split 

Figure.2 - Agent structure in relation to the principle of rational belief and the principle of 

rational action.  Reproduced from Baker & Tenenbaum (2014). 
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between several main branches based on the distinction between two types of cognitive 

processing; Type 1 and Type 2 (Evans and Stanovich, 2013).  

Type 1 processes are typically dominant where rapid response time is required. 

Influencing factors include a multitude of available clues, presented simultaneously; and a 

degree of familiarity with the situation and the agents involved, including knowledge of 

situational outcomes. Inversely, type 2 processes occur in situations where response time is 

non-critical, and are typically more analytical in nature; focusing on specific relationships 

between a relatively small number of cues, that may be provided dynamically or in a 

specified sequence; The situations are typically unfamiliar to the agent and analytical 

reasoning is employed to identify patterns and relationships, to form appropriate response 

behaviours (Wiltshire et al., 2016; Wiltshire et al., 2014). Traditional automation control, 

specifically its responsive and reactionary nature is analogous to instinctive Type 1 

processing, whereas the recent application of intelligence to these systems has been achieved 

through learning and analysis, which are more typical characteristics of Type 2 processing. It 

seems likely, therefore, that applications of intelligent manufacturing will retain some level 

of traditional automation control to govern type 1 cognitive processes, combined with an 

additional cognitive process, based on analytics of the whole system, representative of type 2 

processes. The manner in these two types of cognitive processes interact to produce an 

accurate model of cognition is a source of debate, but there is significant confidence in Dual-

Process Theory, which considers both types of cognition to contribute to exhibited behaviour, 

but to occur independently of one another, reducing computational load and reliance on large 

working memory.(Evans and Stanovich, 2013). As a result of their fast processing, default 

responses are governed by type1 processes; unless superseded by higher-order reasoning 

though processes, or type2 process. This work lends weight to the argument that traditional 

autonomous control should be retained, and control mechanisms developed to supersede the 
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instructions and control of these systems when necessary, based on higher-level, data-driven, 

decision-making. 

As a note on quantifying the soft benefits that facilitating robotic behaviours based on 

observations of a collaborator, the following section describes the impact of human 

perceptions of robots. (Young et al., 2011) observes that human beings inherently apply 

anthropomorphism to robotic entities, ascribing them personalities, and attributes such as 

names and gender. This tendency to socialise with robotic entities can be seen to be prevalent 

even when there are no specific design features to incite such a response (Forlizzi and 

DiSalvo, 2006). This is due to several factors, which set robotic technology apart from other 

technological artefacts; robots can work directly and in close proximity with human beings, 

within the bounds of personal space, but more importantly, they can do so autonomously, 

promoting the illusion of intentionality (Young et al., 2011; Dennett and Haugeland, 1987). 

This intentionality helps people to build expectations and predictions of behaviour, with the 

result of increasing familiarity and a sense of active agency, a term which describes the sense 

that the robot is behaving and reacting as a living thing would, when provided with 

interaction stimulus. 

The development of this intentionality within the scope of manufacturing, particularly 

in cases of direct interaction has given rise to the notable concept (recurrent in recent 

literature) of trust between human operators and their robotic teammates. Defined by 

(Sadrfaridpour et al., 2016), the concept of trust is described as a measure of familiarity and 

security, based on the performance of both the human and robotic entities, and the rates of 

successes and failures (Hoff and Bashir, 2015). The model can be time-series dependent, with 

prior trust levels incorporated into the metric to provide a measure of relationships over time 

or the concept of Building Trust. This is achieved through increased confidence that the 

autonomous entity will behave as intended and be of genuine assistance (Heitmeyer and 
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Leonard, 2015). Additionally, (Lohani et al., 2016) find that inclusion of socioemotional 

features in robotic teammates promotes the development and subsequent feeling of trust. 

As will be expanded in the following section, the scope for variation in human 

performance is large and is governed by multiple factors, with significant implications for 

numerous manufacturing tasks. What is evident from the literature covered in this section, is 

that whilst the potential capabilities that intelligent processing provides have been 

successfully leveraged in terms of physical interactions, significant work remains to reconcile 

areas of cognitive processing to enable these same capabilities to improve interactions more 

passively; such as leveraging adaptability reduce the impact that performance variation has 

on modelling and process control within the scope of manufacturing systems.  

 

 Human Factors  

In the application focused on in this work, these interactions occur between robots and their 

human colleagues, either directly or as sequential members of a production process. As 

highlighted in the previous section, the extension and applications of decentralised control to 

manufacturing processes with the aim on enabling intelligent behaviours necessitates the 

consideration of the interactions of intelligent agents, both with each other, and their human 

counterparts. At the system level, this influences the implementation of intelligence and how 

this may be leveraged to provide collaborative behaviours in robotics, and how multiple 

agents (human or robotic) may observe and adapt to one another to achieve a common goal, 

is particularly applicable to dealing with the challenge of Human-Robot-Interaction. This is 

due to the fact that humans possess their own agency, as well as significant variation in their 

task performance, which is the result of numerous external human Factors, most notably 

fatigue (Hart and Staveland, 1988; Lorist et al., 2000; Lorist et al., 2002). The performance 
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variation and ultimately disturbance to these manufacturing processes that these factors 

induce, requiring a degree of adaptability to overcome.  

The origins of the study of human factors and how they influence performance and 

productivity in labour tasks stem from Frederick Taylor’s investigations into manufacturing 

processes at the turn of the 20th century. This work consisted of the analysis of a variety of 

manual operations, through timings and empirical studies. This study, and the data captured 

from it, ultimately enabled Taylor to formulate his theory of Scientific Management (Taylor, 

1911; Taylor, 2004), which forms a collection of best principles to improve the productivity 

of human workers. The principles of Scientific Management persist to this day (thanks to the 

efforts of his wife in continuing Taylors work following his death) and have become 

pervasive throughout manufacturing processes in terms of both design and management. In 

many ways, it can be considered the work responsible for the introduction of process 

monitoring, and abstraction of these processes into models and databases; which has 

continually increased since. It is perhaps, therefore, no coincidence that a study focused on 

human beings has paved the way for the emergence of many technologies, in particular, 

Cyber-Physical-Systems (CPS's) based approaches to digitalisation, which are dependent 

themselves on human data for modelling and monitoring of real-world systems, prediction, 

and analysis.  

There are several factors which exist that are known to influence human performance, 

leading to decreased repeatability, accuracy, and other variations in performance ability. 

These factors are the result of multiple different environmental and contextual conditions, 

and the additional introduced variation means that in contrast to their robotic counterparts, 

human operators are a source of disturbance to manufacturing systems. This disturbance 

renders most optimisation techniques ineffective, due to lack of effective mathematical 

modelling. 
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In addition to the natural variation between different human individuals, the 

aforementioned factors exacerbate these differences and have a greater or lesser degree of 

influence on behaviour and consistency of performance depending on the individual. Many of 

these factors themselves were identified by Taylors work, and from a business management 

perspective, a large body of research exists covering the causes and effects of human factors. 

This research has been instrumental in modelling the influence of these factors on human 

operators in the manufacturing context.  

The Type of Task and the combination of both mental and physical demands on the 

individual is a significant source of human performance variability. The NASA developed 

‘TLX’ framework (Hart and Staveland, 1988) identifies multiple types of task, each 

characterised by different combinations of physical and mental demands, referred to as task 

demand characteristics. These characteristics are used to categorise different tasks, in terms 

of how these factors, such as the task duration, influence the perceived workload. Instances of 

increased workload perception have been associated with correspondingly increased stress, 

fatigue, and resultant decreased task performance. (Hart and Staveland, 1988; Hancock, 

Williams and Manning, 1995; Driskell and Salas, 2013). 

Of these tasks, assembly operations often require manual and dexterous manipulation 

of components; in particular, those which remain prevalent within manufacturing. Due to the 

combination of mental and physical demands, such tasks are very susceptible to the effects of 

fatigue, which will, in turn, influence task performance. Fatigue is a complex, albeit well-

studied phenomenon, and is understood to exist in two distinct types. These are motor 

fatigue, involving fatigue of the physical biology of the muscle; and cognitive fatigue, which 

results in the deterioration of cognitive functions (Lorist et al., 2000). The two types also do 

not occur independently of one another, with relationships understood to exist between the 

level of motor fatigue and the level of cognitive loading, which results in poorer response 
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times in decision-making tests, and a decrease in motor control and physical function (Lorist 

et al., 2002). The relationship between the different types of fatigue supports the assumption 

that dexterity is detrimentally affected by increased cognitive loading.  In addition to the task 

demands, the time-on-task is another factor which influences the rate of fatigue accumulation 

and its effects. The cumulative nature of fatigue means that repetitive actions which require 

physical or cognitive resources will have an increasingly greater effect on task performance 

(Benedetti et al., 2015). Additional factors, such as how periods of rest are structured and 

their duration, will influence the fatiguing mechanism (Enoka and Duchateau, 2016).  

The use of the term fatigue to describe this depletion of resources leads to the 

discussion of the more traditional understanding of the term, whereby fatigue is used to 

describe tiredness and the effects of sleep deprivation. Sleep is the primary mechanism by 

which physical and cognitive resources may be replenished, reducing the accumulated fatigue 

before rest. Consequently, it can be seen how a lack of sleep effects fatigue, and that both the 

immediate and cumulative effects of sleep deprivation have a significant influence on 

performance (Koslowsky and Babkoff, 1992; Dinges et al., 1997). Sleep itself, as a biological 

phenomenon, is at best, poorly understood. What is known, is that Human sleep patterns are 

governed by natural cycles known as circadian rhythms, which dictate in terms of 

physiological activity, periods of activity linked with increased motivation and task 

performance. These cycles are understood to be closely linked to the time of day (Blake, 

1967), and the study of these circadian rhythms has identified several patterns. These patterns 

are termed chronotypes and are often expressed through a preference for either morning 

(larks) or night (owls) activity. This preference, as a result of differences in physiological 

activity, corresponds to decreases in task performance at a non-preferential time of day 

(Kerkhof, 1985).  In addition to the time of day, there are several additional factors which 

influence these periods of increased activity. These include the quality and intensity of 
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environmental light levels, with better illumination associated with improved task 

performance (Campbell and Dawson, 1990) and by satiety, which is both susceptible to, and 

determinant of, many of the bodies same physiological processes (Berthoud, 2007; Lowden 

et al., 2010). Other studies have also led to the observation of a day-of-the-week effect, with 

decreased performance on Mondays, rising through the week to optimal performance on 

Thursdays (Testu and Clarisse, 1999), however, it is not known whether this phenomenon is 

associated with fatigue or is social in nature.  

The factors detailed in this section represent a selection of the most well understood 

and most influential in terms of their effect on task performance. The truth of the matter is, 

that the human machine is governed by complex interwoven processes, and the number of 

potential sources of variation is unquantifiable. 

 

 Summary 

The exploration of current literature identifies several trends. Under international initiatives, 

such as Industry 4.0, development of numerous enabling technologies has been accelerated, 

in particular, those relevant within in the context of intelligent manufacturing. As human 

beings remain an integral part of many manufacturing operations, the increasing demand for 

autonomous, reconfigurable, and adaptable robotic elements within these manufacturing 

systems has led to interactions, and hence collaboration, between humans and robots 

becoming increasingly prevalent in the manufacturing context. This presents issues in terms 

of optimising these systems, and sets limits on potential productivity, due to the disturbance 

introduced into these systems by variations in human performance, both as individuals and as 

a result of other human factors.  The unpredictable and inconsistent nature of this disturbance 

has an impact on the processes ability to operate in a lean manner resulting in tangible 

increases in observed idle times, costs associated with WIP, and overall productivity. 
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The preceding section has explored a wide area of literature from various fields, which, 

in line with the proposed research questions, suggests that there are opportunities for the 

increase in the capacity of computers to act intelligently to improve the interactions between 

robotic operators and their human collaborators; and reduce the impact of human task 

perfromance variation on manufacturing processes. This section aims to quantify the existing 

body of literature with respect to its relevance to the main research questions. This includes 

identification of the areas in the existing research which are lacking, and the questions that 

this poses in terms of advancing work in this area. Within the scope of this work, this relates 

to how the techniques promised by intelligent manufacturing may be applied within the 

manufacturing environment, so as to facilitate the interactions between human and robotic 

operators and to understand and alleviate the consequences of the disruption introduced by 

the presence of human beings. 

With respect to the first of the main research questions, this involves work on the 

variation and adaptability of human beings and the consequences this has for manufacturing 

processes. This has been well studied in many direct domains and physical interactions, and 

novel ways of leveraging new technologies and methods to eliminate the negative effects, 

and leverage for the better, this variability, have been developed.  There remains, however, 

limited work into how these same traits influence more passive interactions, such as the 

system-level dynamics of these processes, and the effects. There is also a lack of work 

focusing on applying these new technologies based on principles of adaptability to working 

with human beings in such a way.  

Answering this question will build on existing research on social-intelligence and its 

application to autonomous systems and how they interact with human beings. In terms of 

furthering social intelligence, the act of collaboration requires effective perception and 

communication of another, to coordinate action to achieve a goal; and the problems presented 
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in terms of performance disparity provide the perfect case to explore the application of these 

concepts. From a process management perspective, it will provide a solution to human 

modelling, and address the application of social intelligence to adaptive control systems 

allow real-time changes in behaviour, in response to human variations. This will be achieved 

through enabling robotic operators to understand the variable behaviours of individual human 

operators, and to take the appropriate actions, resulting in more adaptable behaviours and 

decision making, at the social level.  

The second of the identified research questions seeks to provide insight into how this 

intelligence may be implemented and realised within these systems. From the existing 

research, this intelligence is typically manifest as the product of analysis of observed data by 

learning algorithms, which extract information from representations of the system or 

environment they are trying to model. This information is then used to make predictions 

about system variables or to determine appropriate actions through some selection policy. 

What is clear from the existing literature, is that the scope of these algorithms is vast, and 

there exists no definitive guide as to the applicability of different approaches. Neural 

network-based techniques have emerged as a versatile methodology for abstracting the 

relationships between data inputs and outputs and have been applied successfully in a variety 

of analysis and control applications; and there are significant parallels between neural 

network-based approaches and cognitive theory. As such, through a neural-network-based 

approach to analysis, this work aims to provide insight into how these techniques may be 

used within the context of facilitating human-robot-interactions, both in terms of 

understanding the dynamics of the system and for analysis and decision-making. This 

requires consideration of how to capture the relevant representation from the environment, 

and how this is presented to these algorithms, to provide effective learning, development, and 

evaluation; which is crucial to facilitating effective human modelling.  
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The last of the research questions seek to reconcile the numerous relevant domains 

within intelligent manufacturing, and the existing work further suggests that the realisation of 

intelligent systems requires the identification and evaluation of methodologies for the 

effective combination of numerous techniques within this domain. These techniques include: 

digitalisation, to functionally, yet representatively model interactions and control processes,  

distributed control, to enable appropriate processing of observed information; and machine 

learning techniques, including the application of the identified reinforcement methods to 

identify self-optimising behaviours within the modelled application; which must all work in 

synergistically to achieve the resultant desired behaviours. 

This is evidence by the advent of Multi-Agent-Systems, which address directly this 

problem of coordinated and decentralised control. Combined with the capacity for intelligent 

behaviour, these agents may be designed to coordinate their actions with observations of their 

collaborators, to improve the interaction between them. This has been demonstrated already 

in many applications that are reliant of physical interactions, but there is a lack of work on 

exploiting these capabilities to improve these relationships at the passive level; and how it 

may be applied in both theory and practice. It is unclear is how such opportunities can be 

capitalised upon, and there exists no agreed-upon method for realising the theoretical benefits 

of intelligent systems able to achieve a level of social cognition. This is due in part to the 

relative infancy of the technologies and methods involved, but primarily the result of the 

wide variety of applications. As a consequence, any developed systems should aim to 

generalise these interactions whilst maintaining representative accuracy. Much of the existing 

work is outdated, however, and the capability of modern systems far exceeds those for which 

these frameworks were designed. Despite this many of the insights and methods on how 

autonomy and adaptability can be replicated through the use of cognitive computing and 

multi-agent-systems remain useful.   
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Establishing these methods and realising a cohesive application of the identified and 

developed techniques in such a way as to be applicable to a real-world process, is a key aim 

of this work, and resolves many of the gaps in the existing research regarding how intelligent 

methodologies may be applied to the problem of human variation. Similarly to the first case, 

many of these technologies have been explored within similar applications, but the use of 

these methods to improve the interaction dynamics in the care of human-robot-interaction has 

yet to be explored, despite the very realisable benefits at the system level, in terms of 

reductions in observed idle times, increased productivity, and optimisation of the process 

through improvements to its lean operation. 

The research suggests that the implementation of intelligent agents may leverage 

several benefits of decentralised control and machine learning techniques, to enable robotic 

operators to behave in an adaptive and crucially social manner concerning their human 

counterparts. Adaptability within the robotic elements of manufacturing systems has begun to 

improve human-robot-interactions in the physical domain, however, despite the ubiquity of 

human workers and the obvious disruption that is associated with human performance from a 

production management process at the system level, it is an area that remains to be addressed.  

The benefits that adaptation can provide within the manufacturing setting are clear from 

the existing work, and consequently, it is relevant to explore the application of these methods 

to the problem of human performance variation and more passive interaction behaviours. 

Enabling social behaviours, which are characterised by benefitting both agents involved, is 

an example of how these passive interactions may be leveraged and necessitates the 

development of agents capable of social cognition. The following section outlines the 

research framework used to implement the necessary elements of cognition, and how these 

relate to enabling robotic operators to adapt their behaviours as a response to their human 

collaborators and facilitate these interactions, on both a human and process level.  
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3. Research Framework & Methods 

This section covers the developed research approach to enable the implementation of 

intelligent agents within the context of manufacturing control. The research approach is 

designed around answering the key research questions, and the key considerations were 

therefore development of a suitable modelling approach to enable interaction between the 

software and hardware components, and how the collection and processing of data relates to 

the domain of manufacturing systems. The first chapter of this section covers the definition of 

a framework, which is concerned with the handling of information within such systems and 

highlights the necessary elements for consideration to realised desired behaviours. In addition 

to the existing literature, the research framework is also informed by the processes and 

systems in place in the manufacturing processes of the industrial partner for this work, 

namely the separation required between the elements of data collection and robotic action 

execution. This separation provides the opportunity for interstitial data processing, and 

clearly separable external boundaries for the intelligent agent.  

The second section in this chapter further discusses the key framework elements in 

terms of the relevant technical and research methods to be used. These methods were again 

defined to best answer the proposed research questions, name monitoring processes used by 

the industrial partner also served to inform much of the approach towards the necessary 

elements of processing, both in terms of how the data was captured formatted and stored, and 

the necessary processing steps required to retrieve actionable information from it. This 

includes elements like the ability for the agent to execute learning and complex analysis 

separately from decision making to facilitate software embedding, to pre-process and 

reformat incoming observations, and to execute output actions independently of the 

application platform through the use of appropriate software API’s.  
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 Research Framework 

As established from the literature, there is good evidence to support the notion that enabling 

intelligence within manufacturing systems through the use of learning and decentralisation 

can facilitate adaptable behaviour of robotic operators. The decentralisation of control 

systems from the hierarchal level (where a central processor is used to monitor and control 

the parameters and execution of the entire process) to individual robotic operators (through 

the use of learning to enable an intelligent analysis of their observations), can improve 

collaborative behaviour, through the appropriate selection of action based on the observed 

state of the process and collaborators. This framework established the approach to this 

problem from the perspective of facilitating this collaborative behaviour, intending to 

minimise the impact of human task performance variation on the process.   

There are two independent disciplines which can be seen in a contemporary automated 

manufacturing process. These are the disciplines of Data collection, which in this context 

broadly describes the generation, collection, transfer and storage of data. And the discipline 

of Robotics, which is responsible for the hardware elements of automation, including the 

robotic manipulators and controllers themselves, and the connection of these physical 

elements to virtual systems.  

Whilst these disciplines exist separately, as data-driven robotics systems become more 

commonplace, the separation becomes less distinct, and there is an increasing need to 

formalise the interaction between the generated data, its representations, and the physical 

system elements. In these data-driven systems, (typically binary) signals from sensors in the 

data collection domain, are communicated to a robotic controller (Such as a Programmable 

Logic Controller PLC), in the robotics domain. This signal will trigger the appropriate 

response logic and corresponding action. The flow of information in this respect can be seen 

in the framework illustrated in Figure 3. 
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The data generated within a sample of a manufacturing process can be defined as being 

from one of two sources: Process data; which are the data points related directly related to 

the elements and parameters of the process; and Environmental data; any supplementary data 

providing contextual information, which may be analysed for additional insight. These 

sources of data may also be supported by databases of historical data, in certain applications.  

Whilst these signals can be centrally collected, processed, and more appropriate 

commands sent back to these controllers, as discussed, problems with these hierarchal 

systems become apparent when dealing complex systems (containing many individual 

machines, each with potentially thousands of sensors). Consequently, to enable the 

distributed intelligent processing of this data, the following framework is proposed, which 

outlines the necessary constituent elements of processing required, and the interactions 

between these elements; to enable adaptability and facilitate collaborative behaviours. 

Figure.3 - Existing information processing systems illustrated in terms of information flow 

through the system. 
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The framework in Figure.4 illustrates the addition of an intermediary Cognitive Layer 

which contains these modular elements to implement the necessary data processing steps. 

This cognitive layer is software-based and can be implemented on-board a robotic operator to 

enable an intelligent response to changes in the perceived environment, to provide agency in 

the robotic systems, and facilitate interactions with their human counterparts.  

As can be seen from Figure.4, there are three distinct areas of processing that are 

defined to enable the necessary data processing and end behaviours in the intermediary the 

proposed cognitive layer. The layer is based on the modular structure seen in existing 

cognitive architectures reviewed in the literature, which is leveraged here as the isolation of 

high-level cognitive processes facilitates integration with low-level control.  Each of the three 

modules combines is responsible for a different area of processing of the data and leverage 

multiple combined functions to replicate different cognitive processes and enable appropriate 

behaviour to be selected.  The following section outlines each of these modules in more detail 

and discusses the technical application of these processes, and the approach considered in this 

work.  

Figure 4 - The proposed framework illustrated in terms of information flow through the system. 

Divided into three functional layers. 
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 Research Methods 

Within the developed research framework, there are several distinct areas of processing, each 

of which must be suitably approached from the perspectives of both development and 

evaluation. The Perception module is responsible for providing the interface between the 

software agent and the data collection system. This is in terms of both capturing and 

appropriately and pre-processing relevant data in a manner that may be utilised by the other 

modules. Perception is a more accurate term here than observation, as the observed data and 

the information it contains is affected by the beliefs and aims of the observer in terms of how 

this data is processed. This may be formatting, or the derivation of more useful data 

instances, for example, establishing a cycle time by looking at the timestamp separation of 

execution of two different sensor activations. Additionally, the methodology for data 

collection is application-specific and dependent on the systems implemented. The framework 

identifies the critical elements that the data collection system must be able to capture and 

recall. Minimally, this is the capacity to gather, store and transfer multiple data instances, 

both real-time and historical, in a format which may be parsed by the software agent.  

The analytics module isolates the learning and analytical processing of the cognitive 

layer and is responsible for higher-level, analytical processing, focused on extracting 

information from contextual data. The analytics is done by utilising a neural network to build 

a predictive model to approximate the relationship between observed data and the desired 

output value. The module also provides storage to supplement the observed data with 

additional information that is not observable by the agent. This may include additional 

contextual information, such as shift patterns or production targets. Use of machine learning 

techniques for knowledge discovery here include consideration of multiple factors, which as 

mentioned are frequently application specific. Necessary consideration must be given to the 

data and format, including relevant pre-processing steps and suitable evaluation metrics to 
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asses learning and predictive performance. Consequently, specifics of the methods used for 

the realisation of these functionalities are detailed as part of the development of the 

intelligent agent.  

The Perception and Analytics modules provide support to the Cognitive Controller, 

which manages the information flow through the cognitive layer, and is responsible for 

enacting the actions of the agent. The internal structure of the module and its relationship to 

the previous two is detailed in Figure.5. 

 The cognitive controller contains the functionality to implement Q-Learning, following 

the process of an MDP. This enables the agent to optimise and select the operations and 

parameters of the robot to exhibit the necessary functionality, based on the information 

provided by the other modules. In addition to selecting the appropriate actions, the cognitive 

controller is also responsible for issuing the relevant commands to the robotics hardware, 

through the use of the relevant API’s, where they can be enacted using existing control 

techniques. In many robotics applications, the instructions will be received by a 

Programmable Logic Controller (PLC), is then responsible for generating the necessary 

command signal for the motors and actuators to affect the relevant motion of the robot.  

Figure 5 - Architecture illustrating information flow through the Agent, and how it interacts 

with the simulation environment. 
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The overall design of this cognitive layer is designed to act as a software agent, capable 

of leveraging Q-Learning through an MDP. Consequently, the design if based around 

developing an observation which describes the environment; performing the algorithmic and 

learning aspects of the process, resulting in an action, which influences the system, in turn, 

recorded environmental and process data, forming a feedback loop of the next state 

representation.  

The clear distinction between the digital and physical domains of the system facilitates 

the division of cognition as a whole into the constituent processes associated with higher-

level reasoning, reducing the computational load of the processing; whilst isolating the 

processes responsible for control planning which ensures correct motion of the robotic end 

effectors etc. (motor control being a separate area of cognition entirely (Lorist et al., 2002). 

This preserves reactive action as control can still be triggered by sensors connected to the 

robot controller located directly in the process (i.e. kill-switches and collision/fault-

detection). Using established automation techniques will also facilitate implementation and 

compatibility in terms of realising such systems.  

The architecture presented in this section illustrated the design and implementation of 

an intermediary cognitive layer, to provide robotic operators with adaptive functionality, 

based on the knowledge extracted from real-time contextual information observed from the 

environment and collaborators. The following section outlines the methodology to develop 

the necessary software elements, to enable the inclusion of knowledge of human factors and 

utilise adaptable behaviours to account for the variation and uncertainty resulting in the 

interactions with human beings and consequently these production processes. As discussed in 

the literature review, the use of q-learning through a Markov process has a significant overlap 

in compatibility with discrete event simulation (DES), providing distinct, discrete states, and 
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actions to transition between them, as such, a DES approach to explore the application of 

these machine learning techniques is a logical consideration.   

The following three chapters present the methodology developed to identify and 

overcome the demands and considerations required to create an adaptable control structure as 

outlined in the previous section. This methodology consists of several individual sections, 

each concerned with the development of a different aspect of the approach. These are 

Human Factors Modelling & Simulation Design, which is concerned with the effective 

modelling and parameterisation of human elements and human factors influence within the 

simulation model, the capture of human performance data, and the development of a 

simulation model in such a way that it is generalised to multiple real-world scenarios and 

provides the necessary functionality to explore the areas of reinforcement learning and 

human-robot-interaction; Agent Design, which covers the development of how the agent 

interacts with the simulation environment, how the environment is captured and provided to 

the agent, the actions necessary to achieve the relevant adaptable behaviours, and how the 

reinforcement aspect is realised through rewards and software design; and Agent 

Evaluation, which details the approach used to evaluate the performance of both the neural 

networks and the combined intelligent software agent.  
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4. Human Factors Modelling & Simulation 

This chapter outlines the development of an effective methodology to model and simulate 

interactions between robotic operators and their human counterparts, as they occur passively 

in the scenario observed in a variety of manufacturing applications. The chapter covers two 

main areas, the first relating to the dynamics of these interactions as they occur in these 

processes, and the development and application of methods to effectively model and 

consequently simulate these interactions is such a way that the interaction is generalisable to 

any specific production process. The second key area relates to capturing and understanding 

the influence of human performance variation on these interactions, and how this may also be 

effectively captured, modelled and simulated, in such a way that is representative an as 

generalisable to as many of these interactions as possible. Furthermore, this second section 

also explores the developed methodology for the effective parameterisation and modelling of 

human task performance, based on the monitoring of individuals over a sample period. This 

has particular relevance in terms of both improving the general validity of the approach, but 

longer-term consequences, which will be discussed as appropriate. 

 

 Simulation Design 

The initial consideration is the appropriate digitalisation of the production process and 

relevant interaction. A simulated version of a manufacturing process, that is suitably 

representative, is crucial to enable the effective development of a software agent. This 

scenario must be appropriately generalised in order to improve the validity and reliability of 

using a Q-Learning approach in such a way.  

A process consists of multiple operations, which -in an automated context- are 

performed by several robotic operators which together constitute the production line. The 

simplest production line model consists of a direction of motion, and the location of 
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operators who perform manipulation of the product at some point along the path of the 

product. These manufacturing cells are separated by conveyors for transportation and 

frequently have a fixed capacity. Within these operations, there may be several cells where 

tasks are completed by human operators. Despite good design and optimisation, this presence 

of human operators remains a source of disturbance, due to their variation in their respective 

cycle times, which introduces a performance disparity. This forms an interaction as 

illustrated in Figure.6: 

To illustrate how this disparity has implications for the overall efficiency of these 

interactions, assume there are no upstream constraints, to fulfil his goal (in the manufacturing 

context, the simplest goal definition is to maximise the volume of production) with no 

consideration for the downstream effect of his actions, the operator should logically attempt 

to complete each cycle as fast as possible. However, even simple optimisations will often 

reveal that working at capacity is not necessarily the most productive course of action. Where 

there is a disparity in performance which is allowed to persist over time, there occurs either a 

large surplus or deficit of products between the two operators, as the products completed by 

Figure 6 - The model of interaction between human and robotic operators typically observed 

in a manufacturing process, each cell has an associated Cycle Time. 
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operator one builds up, or fail to be delivered in a timely enough manner. Eventually, this 

process bottleneck leads to idle time being observed in the system, either in the upstream 

operator, where the buffer zone becomes filled and they must wait for space to become 

available and in the downstream operator, where they must wait for the next product to be 

delivered. In the former case, the disparity also introduces an increase of workpieces in 

production (WIP). Therefore, to improve these interactions that arise from the design of 

production systems in this manner requires each operator to consider the conditions at other 

locations and the actions of his collaborators. Considering the upstream operator, conclusions 

about how to adapt behaviour in the social context become apparent. Given an awareness of 

the downstream operator, the upstream operator should able to tailor their behaviour based on 

these actions, to optimise their work, and consequently, the process as a whole. The 

formulation of the interaction in this way bears similarity to fetch-and-deliver type 

interactions where one agent must provide the other with an object for them to perform their 

task. These have been studied in the field of human-machine interaction, often in terms of 

anticipation, and are defined by their fluency, which is a term used to describe the disparity in 

time between the need of the collaborator and the response of the agent. A lower disparity 

equivalent to higher fluency, and better interaction (Hoffman, 2013). 

To enable exploration, a simulated environment was developed using the AnyLogic 

simulation platform (PWC, 2018), a Java-Based software package designed for Agent-based, 

Discrete Event and System Dynamics simulation approaches. The software package provides 

several advantages to the applications of this work, including functionality for different 

modelling approaches, and the ease of extension and integration with external Java Libraries 

and custom software objects. This simulation environment was designed to replicate the 

identified model of interaction between a Robotic Operator (RO) and a Human Operator 

(HO), performing product assembly tasks as part of a production line. As far as possible, the 
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simulation is designed in a generalised manner, to provide a basis for exploration of how 

different actions may be determined, selected, and enacted to improve the fluency of these 

interactions. This is achieved within the simulation, by discretising specific sub-operations 

into a reconfigurable set of logical elements, which enables the methodology to be applied to 

a non-specific manufacturing operation. Within the model, combinations of these elements 

form the human and robotic agents, which are able to be defined by the task duration or 

Cycle Time (CT). Initially, the interaction dynamics are modelled in terms of an upstream 

and downstream position, with the cells of each operator are separated by a conveyor 

(doubling as a buffer zone). This follows the interaction typically seen in production 

processes identified in Figure.6 previously, and the model itself at the top level is illustrated 

in Figure.7.  

Developing a machine learning model to of the relationships between the observed 

information and the resulting performance, in terms of both prediction of the impact of 

human factors, and in terms of reinforcement, is a key aim of this research. The literature has 

identified the advantages of a neural network approach, in particular, due to their excellent 

generalisability as function approximators. The robotic agent in the simulation model can be 

said to represent the hardware aspect, within this agent, a software object is developed to 

provide the neural network functionality. This development was done using the Java-based 

DeepLearning4j (DL4J)(Dl4j, 2018) to facilitate integration with the Java-based simulation 

platform; The Java classes which define the Neural Network behaviour are packaged using 

Figure 7 - The model developed and the corresponding Anylogic simulation, each cell 

contains a delay and data capture function. 
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Maven to produce a Java Archive file (.jar), which is included in the AnyLogic model as a 

Dependency enabling access to code developed using the DL4j library. The integration of the 

neural networks in this way enables function calls to be made to the software agent during 

simulation execution, enabling training and evaluation in a custom, reconfigurable, and 

dynamic task environment. Two of these neural networks are defined, each within their own 

modular code, to represent the different cognitive modules. The first is used in the analytics 

module and performs the multidimensional regression to provide a prediction based on an 

observed instance, of the collaborators' cycle time. This value can then be used to form the 

state representation, enabling decisions to be made based on knowledge of collaborator 

performance without direct observation, and at different points in time. The second neural 

network forms the reinforcement learning system which governs decision-making with 

respect to the state observation, to reduce the disparity in performances, resulting in a 

reduction of the number of Workpiece-In-Progress (WIP), and the idle time observed for 

either operator, consequently improving the fluency of the interaction.  

In addition to evaluating the accuracy of the neural network during training, integration 

of the learning element into the simulation environment is necessary to evaluate the validity 

of the approach and performance of the intelligent agent in terms of a representative (albeit 

generalised) task. This enables a more accurate assessment of the developed model in terms 

of how well such an approach can be used for real-time adaptive control. Developing the 

functionality to enable intelligent processing and adaptable behaviour is key to realising the 

potential of intelligent manufacturing systems and realising an intelligent agent which can 

provide accurate predictions based on observation will contribute to further understanding of 

the suitability of the approach. 

Furthermore, the presented method enables the development of a suitably 

representative simulation environment to be built following the presented principles of 
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generalisation, if greater fidelity is needed, which may be used to provide a training and 

evaluation platform for the development of these agents, in a customisable and application-

specific manner. Additionally, the use of the simulated environment enables this in a manner 

which is non-invasive to the real-world process. These are both strengths of the approach, 

facilitating the development of optimal solutions with minimal disruption, through ease of 

iterative evaluation. 

 

 Human-Factors Modelling 

A crucial element in designing the simulation environment is the modelling of human task 

performance in such a way as to effectively model the influence of human factors, whilst 

remaining representative. The simulation acts as a platform to evaluate on-task robotic 

performance but is also used to generate data for training the learning algorithms. For both of 

these reasons, appropriate care must be given to how this data is calculated and captured. To 

achieve this, the components of the simulation representing human operators are 

parameterised to replicate both the variation between different operators and the influence of 

human factors on their performance. As discussed in the literature review, the majority of 

human factors are expressed through or are directly related to the mechanisms governing 

fatigue; which in turn has the most significant influence on human performance across almost 

all types of task.  

To achieve this, several variables were defined representing different aspects of fatigue, 

which were then used to adjust the human task performance during the simulations. This was 

achieved by modifying the nominal Cycle Time (calculated as the total time duration between 

products leaving each cell) which is used to quantify task performance, as discussed in the 

previous section. The cycle time is directly related to the value of a delay element within the 

human agent, with a variable time value, which is manipulated through the use of these 
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modifiers to represent their influence. The modifiers were selected, as mentioned, based on 

factors influencing fatigue, which will influence individuals to a varying degree. As such the 

values of each modifier can be defined to replicate a variety of influence and susceptibility 

between individuals. Furthermore, the influence of several environmental effects including 

Noise, vibration, and light-levels, were not considered in the model, as their impact on 

performance is comparably negligible if they remain consistent. 

Three different profiles are defined to provide a wide range of conditions and 

combinations of susceptibility to the impact of the identified human factors. Operator 1 was 

parameterised as an experienced operator, with a low initial cycle time, but susceptibility to 

time-on-task fatigue; Operator 2 was designed to represent an average case, with a nominal 

base CT equal to that of the designed cycle time for the system processes (or takt time), and 

no fatigue influence was included; Operator 3 was designed to represent a more novice 

worker with a slower cycle time, but a pace which reduces the influence of fatiguing. The 

effects of fatigue on task performance are modelled with the use of a fatigue modifier, which 

assumes a linear evolution over the shift duration is calculated by scaling the maximum effect 

over the elapsed shift duration, as per Equation.2.  

𝐹𝑎𝑡𝑖𝑔𝑢𝑒	𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑟 = ?@A2BCDE	FG
HI+2A	FG

J ×	(1 + %NOPQD2CD
4RR

)                           (2) 

The human elements are additionally parameterised to represent the influence of the 

time of day, through a shift modifier. Operators 1 and 3 were considered Owls and receive a 

penalty of a 10% increase in cycle time during morning shifts. Similarly, the day-of-the-week 

effect is represented by a weekday modifier for Operators 2 and 3, representing their 

particular susceptibility, and increasing the individual variation. This modifier was set to 

decrease performance at the start of the week and shift this influence to a 10% performance 

increase on the penultimate day, replicating observed patterns. This combination of the 

modifiers enables the calculated cycle time for each human operator at a specific point in 
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time (Monday, AM, in the illustrated example.) to be obtained via equation.3, where n is the 

specific operator, and the values for each modifier for each defined operator is illustrated in 

Table.1., where, WM, SM, and FM, are the corresponding weekday, shift and calculated 

fatigue modifiers respectively.  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑	𝐶𝑇2WO = 𝐶𝑇O ∙ 𝑊𝑀2O ∙ 𝑆𝑀O ∙ 𝐹𝑀O                              (3) 

Table 1 - Breakdown of the values used to modify the performance of each operator. 

Operator Number 1 2 3 
Base Cycle Time CT1 CT2 CT3 

Fatigue Modifier (End of shift) FM1 FM2 FM3 

Shift Modifier AM SMAM1 SMAM2 SMAM1 

Shift Modifier Midday SMMD1 SMMD2 SMMD1 

Shift Modifier PM SMPM1 SMPM2 SMPM1 

Weekday Modifier Monday WMa1 WMa2 

Weekday Modifier Tuesday WMb1 WMb2 

Weekday Modifier Wednesday WMc1 WMc2 

Weekday Modifier Thursday WMd1 WMd2 

Weekday Modifier Friday WMe1 WMe2 

 

Parameterising the simulation model with these modifiers and through the outlined 

equations, enables the generation of models of HO performance, to induce different 

interaction dynamics and varied conditions. This is done by iterating the day of the week 

(Monday-Friday), and the shift order of the operators each week, to vary the Time of Day. 

Each simulation run represents one day of operation, and consists of three shifts, am, midday, 

and pm, each performed by a different human operator. The operator assigned to each shift is 

then varied week to week, to represent the performance of each operator across the full range 

of working conditions (These orders are: 123, 231, 312). This was done for a total of fifteen 

simulation runs, with every 5 simulation runs representing a working week. This has 
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relevance for two reasons, Firstly, it enables the generation of training datasets which profile 

the performance of different operators under the influence of varying combinations of these 

factors. This enables the neural network to infer and predict, from these four contextual input 

features, the Operator Number (ON), Shift Number (SN), Shift Duration (SD), and Weekday 

(WD) values (and the corresponding cycle time (CT) as the label), the impact on task 

performance of the HO, based on historical performance. Additionally, aggregating the 

performance data for each operator into one singular dataset in this way facilitates the 

discovery of patterns in performance that are independent of an individual HO or which exist 

over different timescales. Combined, these values form the observation space of the 

analytical network, and consequently must be included in the observations supplied to the 

intelligent agent, which will be discussed in detail, in a subsequent section. 

Additionally, where these values take a categorical type, i.e. in the case of the shift 

number and weekday attributes, it is important to consider their presentation the agent in 

terms of a one-hot-encoding. Representation of categorical data points in a one-hot encoding 

dates back to the early days of computing, as a technique for efficient memory management, 

but has significant applications in terms of improving the learning efficacy of neural network 

approaches. It does this by separating the possible values into separate binary inputs, 

removing the influence of scaling; as the magnitude of the value is not important in these 

cases, only that it is distinct. To demonstrate, the weekday variable takes a single input value 

of [4] on Thursday, which becomes [0,0,0,1,0], under a one-hot encoding.  

 

4.2.1. Human Data Profiling 

For use within the simulation model, it is also necessary to consider the randomness of 

individual human beings, and how their lack of repeatability may influence the ability of the 

agent to develop an appropriate policy. Consequently, a methodology must be developed to 
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appropriately profile human individuals, to enable effective modelling of these individuals 

within a typical manufacturing scenario, and without the requirement for constant 

surveillance of other data-driven approaches. The methodology proposed aims to make use of 

a period of initial monitoring, from which, a representative set of parameters can be 

calculated, and used to represent the variable behaviour and task performance of individuals 

within a simulated process. In this instance, the task performance is evaluated using the cycle 

time, and this value will be used to build these profiles. In addition, the methodology aims to 

capture the variation in this metric along several vectors of variation.  

To parameterise variability, the initial monitoring period makes timings of a relevant 

number of manufacturing cycles for each of the individual operators. These values can be 

averaged and used to parameterise a probability distribution, which in turn sampled, and used 

to affect the cycle times of the human operators modelled in the simulation environment. This 

allows the behaviours of individuals to be more accurately modelled, and more accurate 

predictions to be made and provide a data-driven approach without continuous monitoring. It 

is additionally necessary to establish the appropriate distribution to describe the task 

variation. An event such as this with a continuous range is often modelled using a normal 

distribution, centred around a mean value, and parameterised by a standard deviation, s. 

However, for an optimised manufacturing process, it is likely that the lower bound for 

performance much harder than the upper bound, as the number of factors which may slow 

down process far outweighs those which will speed it up. As such, it is there may exist a 

skew in the probability distribution towards the faster end. (i.e. more observations will be 

made of a well-optimised process working efficiently than will be made of events leading to 

disturbances). As such, the distribution of task performance may be more appropriately 

modelled as a skewed distribution, or a two-parameter distribution, such as a gamma 

distribution, to incorporate a shape parameter, k, to define this effect appropriately. This has a 
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potential consequence in terms of how performance for the operators is modelled and use of 

an incorrect distribution may misrepresent the observed behaviours when simulated. As such, 

establishing the appropriate distribution of cycle time variability is critical for effective 

human modelling. To do this, the distribution of samples for each of the operators is 

visualised and used to determine the nature of the observed variation in observed cycle times. 

Once the appropriate distribution has been identified, the appropriate parameters can be 

calculated for each operator from the collected data, and an appropriate distribution may be 

built and sampled to provide estimates for human performance within the simulation 

environment. The theoretical aggregation and parameterisation of this data for three 

hypothetical individuals, X, Y, and Z, for n samples, is illustrated in Table.2: 

Table 2 - Theoretical values measured during observation to enable profiling of performance 

for multiple human operators, over different conditions; assuming a Normal Distribution. 

Operator Condition 
Observation (s) 

Mean, µ (s) 
Standard Deviation, 
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In order to adequately capture variations in human performance over different 

contextual conditions, monitoring must also be done over a variable set of timescales. This 

will enable the adequate parameterisation of digital manufacturing models in terms of each of 

the data’s dimensions to reflect the influence of different human factors. Either by using the 

observations to validate the current models or by directly adjusting the distributions used 

based on different aggregations of the data. 
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5. Agent Design for Effective Reinforcement Learning 

This chapter is concerned with the design of the software agent in terms of enabling 

adaptability to balance the operational demands of the system with the demands of improving 

the interaction with other operators, both robotic and human. The design of this agent covers 

aspects of how the agent observes and interacts with its environment, from both the 

perspective of the simulation and the agent itself. It also necessitates the delivery of rewards 

to the agent and the development of appropriate policy for doing so. Each of the following 

sections presents the methodology used to establish these design parameters, and how they 

relate to implementing adaptable behaviour of the agent.   

 

 Agent Interaction 

With the capabilities of the intelligent agent defined to enable the reinforcement network to 

appropriately observe, respond, and affect the environment, the simulation model can be 

designed appropriately. Using the Anylogic simulation package (Compamy, 2018), a discrete 

event-based simulation can be combined with agent-based control to explore agent 

performance. The package is Java-based, enabling easy integration with the Deep-Learning-

4-Java (DL4J library) (Dl4j, 2018). The library facilitates the development of a Deep Q-

Learning Network, that can be integrated effectively with the simulated environment to 

provide control decisions. The discrete event simulation model as described in section 4.1 

contains a software agent which contains elements to represent several different operations of 

the manufacturing task. Within a manufacturing operation, we can define a number of actions 

which enable manipulation of products to complete a process. These are: Pick up and put 

down products; Move products from one location to another; Capacity to scrap a product in 

the event of error; and the ability to manipulate products by following pre-set 

motions/routines. 
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The elements within the simulation are consequently chosen to reflect the modelling of 

these abilities and other elements within a manufacturing process and to suitably generalise 

different variants of these operations based on their characteristics. Queue elements are used 

to represent individual or groups of products at a given position, such as in a stock of parts, or 

the products contained in an interstitial buffer; Delay elements are used to represent 

operations with a definable cycle time (either static or variable) associated with them (i.e. a 

fixing/glueing operation) and hold the product object for a duration equivalent to this value. 

Also, a queue element with a capacity of one is used to represent the robotic gripper within 

this agent, which is used to distribute products around the operations of the process, through 

variable output gates. These abstracted elements can be combined to represent any number of 

manufacturing tasks, through generalising different operations and enable the relevant 

observation and action spaces to be defined for the Deep Q-learning model. 

The actions selected by the agent enables a large variety of different commands to be 

represented dependent on the application, as they are issued as commands to traditional 

robotic controllers, to follow defined subroutines. Consideration must be given the output 

actions, and how they influence the simulation environment to enable the desired control to 

be realised. Within the simulation model, the robotic operator is controlled by a statechart, 

which makes the appropriate function calls to the neural network and manipulates the 

simulation through different states that the network selects, each representing the call to a 

different action subroutine. This enables the control loop to effectively follow the MDP, as it 

is designed in terms of the definition of a state and response to trigger an action. The 

generalised format enables the definition of a set of actions for each task, facilitating the 

application of the approach, and isolates the interaction of the software agent from the rest of 

the simulated environment, whilst providing an efficient channel of communication, for 
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structuring events as they occur within the MDP. The statechart takes the generic form 

illustrated in Figure.8. 

The statechart is based around a central Decision-Making state. Initially, the state 

triggers function calls which gather an observation of the environment and pass it to the 

software agent, the internal logic of which produces a set of Q scores, with the highest-

scoring action being selected (Although any policy based on these scores can be used) and 

returned to the statechart. This triggers the action within the simulated environment, the state 

moves to that defined by the selected action, and the simulation is advanced accordingly, 

before returning to the decision-making state. On return to this state, the simulation calculates 

a reward based on the action just taken, makes another set of function calls to gather an 

observation, and returns these to the neural network to complete the MDP transition, 

whereupon it is stored in the software agent’s memory. The network is then trained on the 

transition, and potentially a randomly sampled batch from its memory, and use of a target 

network to make forward predictions in a double Deep-Q-Network approach. 

Figure 8 - Generic behavioural Statechart format to discretise robotic processes within 

manufacturing simulation. Multiple similar states may be defined, and each state corresponds 

to a chosen action. 
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 Defining the Action and Observation Spaces 

To begin the development of an intelligent agent, consideration should be given to the 

fundamental aspects of the learning process. These are the state representation, the available 

actions, along with the rewards provided by the environment. As discussed in the review of 

the literature, observations may take many forms. They range in structure from low-

dimensional array-based representations to full pixel images and consequently require 

different processing to be interpreted effectively.  

The data necessary to sufficiently represent a given system, and to capture the desired 

knowledge will vary greatly between applications, as such, most intelligent control solutions 

are bespoke, which requires the definition of a cohesive set of rules for establishing which 

data sources must be observed to form an effective representation of the state. An effective 

representation containing the necessary information is a vital first step in developing systems 

capable of adaptation based on observed changes. Therefore, for the scope of this work, these 

key capabilities are defined as follows: 

• The ability to conceptualise time and temporal patterns, through observation of a time-

keeping data source. This enables identification of changes from one event to the next, 

critical for the analysis of changes over time. 

• An awareness of the agents own performance, which is necessary to quantify this value 

to enable a value comparison with the respective rewards, and how it varies from target 

performance. 

• Conversely, there must be an awareness of other agents’ performance, and how this 

changes as a result of the actions taken by the agent. This may be either directly observed 

or provided by other modules based on analysis of other factors and to represent various 

conditions.  
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• Observation of any additional factors that are necessary to model the required dynamics 

of the system. i.e. anything that may change and influence the system that it should be 

able to account for.  

These abilities allow the intelligent agent to build a sufficiently detailed representation of the 

manufacturing process, concerning the considered factors relating to the environment and 

decision-making.  Within the context of reducing performance disparity between an agent 

and its collaborator, the following data points are defined to encompass the necessary 

information. Combined, these form the observation space: [CT, TCT, CT, IT, CIT, SM, BC] 

for the reinforcement learning agent, defined by: 

• The Agent Cycle Time (CT), defined as the time between completion of each action. 

• The Target Cycle Time (TCT), given by: 

• Remaining No. Products to Target/Shift duration remaining 

• The Collaborator Cycle Time (TCT), multiple of these may be defined for multiple 

collaborators. 

• The Idle Time (IT), which is the consequence of performance disparity and is indicative 

of the task performance. 

• The Collaborator Idle Time (CIT), an additional consequence of performance disparity, 

this may be further divided into individual observations for each collaborator. 

• The Speed Modifier (SM), which represents the current state of the control parameter. 

• The Buffer Contents (BC), the number of products in the transition space, necessary to 

infer the impact of actions on the collaborator. 

These observations are combined with those identified in the previous section which are 

necessary to make predictions about the human collaborators' performance and are 

additionally used in constructing the state representation used by the reinforcement network; 
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such as in the case of the elapsed shift duration. These processes are performed by the 

perception module, which receives the whole observation and divides it into two separate 

observations to be received by the analytics and cognitive control modules respectively. 

An additional consideration that must be made is in terms of normalisation of these 

observations. This is relevant in the implementation of all machine learning methods and is 

particularly relevant in developing neural networks as the activation functions of each node 

can become saturated by large values. This is a challenge in terms of the implementation and 

training of DQN’s, double so as the dataset which will be used for training is not available 

apriori. To overcome this, a progressive normalisation technique is developed and applied, 

which captures the maximum and minimum values for each observation during the learning 

process to enable the range of observations to be normalised in the range 0 to 1. This 

technique compares each new observation to the stored min max values and progressively 

updates the network with a re-normalised memory each time a new minimum or maximum 

value is encountered during training. This has a consequence in terms of training time, as the 

technique leads to initial instability due to initially high frequency of updates, but as the 

learning space is explored, the dataset stabilises leading to a more effective learning process.  

Similarly, to the observation space used to form the state representations of the agent, 

it's action space which formalises the available actions which may be taken by the agent at 

each step to influence its environment. Similarly, to defining the observation space, the 

potential number of actions, and how these are discretised and designed is specific to the 

application and its domain. The combination of these actions provides a range of 

functionality to perform a wide range of tasks. Consequently, no frameworks for 

standardising these actions exist, and an action space must be defined within the context of 

this work, to enable adaptability in behaviours to reduce performance disparity. To achieve 

this, within the interaction outlines, an agent must able to control and adjust operating 
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parameters, such as movement speed, force application, etc. to account for differences 

between its own action and its collaborators and enable adaptability through the use of 

dynamic control systems. Within the scope of the application considered in this work, the 

necessary adaptability in behaviour is defined in terms of cycle time, which itself is reflective 

of movement speed, which is adjusted by controlling a Speed Modifier, which acts similarly 

within the simulation model to the parameters used to affect human task performance. To 

integrate a reinforcement learning model, which requires discretised action sets, the range of 

the modifier is discretised into a finite number of steps, with a degree of fidelity appropriate 

for the application (i.e. smaller steps enable finer control), which will enable the operator to 

adjust how it performs these operations with respect to its parameters. Consequently, the 

action space can reduce and simplified to: 

[Increase Parameter, No Change, Decrease Parameter] 

 

 Defining Reward Structures 

When implementing reinforcement learning through an MDP, the third element of the model 

which must be defined are the rewards, and how these relate to the selected actions and the 

environment.  This reward system, describing how the intelligent agent is rewarded and 

penalised for different actions and their effects with respects to its goals is again, often 

application-specific, and an appropriate policy must be established. There must be 

consideration of the value of these rewards concerning the metrics against which it is being 

evaluated, but also how these rewards are presented to the agent, in terms of positive or 

negative feedback, to enables the desired behaviours. Whilst there are numerous examples of 

Q-Learning, the methods for generating and delivering rewards to intelligent agents are 

application-specific and must be developed heuristically alongside the agent itself. The policy 

used for shaping these rewards must consider how these rewards should be presented, based 
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on which values, to what scale, and at which intervals, all of which will have an effect on 

training and agent behaviour by altering the environmental feedback it receives. 

In a typical reinforcement learning application, agents are provided with fixed rewards 

which are selected to result in desired behaviours. In this application, the agent may be 

provided with a fixed reward, R, at each iteration of the sequence, which is then subject to a 

Reward Penalty, which represents performance with respect to the evaluation metrics.  

In the scope of this work and the identified interaction model, where the aim is to 

reduce the disparity in performance, this reward factor may be defined as the proportion of 

the magnitude of the error between the robotic operators cycle time, and its target 

performance cycle time, and its cycle time and the cycle time of its collaborator(s). 

This reward factor may also be defined so as to represent the impact on other metrics, 

both positively and negatively. In the case considered, in addition to facilitating the 

interaction in terms of performance disparity, from the system level, the reduction of idle 

time is the key aim. As such, the value of observed idle time is also included to penalise the 

agent for choosing actions which lead to states in which it is observed. The calculation of this 

reward factor is therefore formalised in Equation 4 and is used to deliver a final reward to the 

agent, calculated using Equation 5. 

𝑅𝑒𝑤𝑎𝑟𝑑	𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = (|𝑇𝐶𝑇 − 𝐶𝑇| + |𝐶𝐶𝑇 − 𝐶𝑇|) + ∑ 𝐼𝑑𝑙𝑒	𝑇𝑖𝑚𝑒               (4) 

𝑅𝑒𝑤𝑎𝑟𝑑	 = 𝑅 − 𝑅𝑒𝑤𝑎𝑟𝑑	𝑃𝑒𝑛𝑎𝑙𝑡𝑦                                     (5) 

Furthermore, as each of the values used to calculate the rewards given to the agent 

represents a different constraint on the agent, different values may be weighting to modify the 

impact that they have on the reward received. This may be used to prioritise, the demands of 

the collaborator over the production demands, by scaling the rewards accordingly. The 

inclusion of these weights, w1 and w2, in the reward penalty is illustrated in Equation 6. 

𝑅𝑒𝑤𝑎𝑟𝑑	𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = (𝑤4|𝑇𝐶𝑇 − 𝐶𝑇| + 𝑤d|𝐶𝐶𝑇 − 𝐶𝑇|) + (𝑤4𝐼𝑇 + 𝑤d𝐶𝐼𝑇)          (6) 
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The use of rewards with a fixed value has benefits for the stability of learning, as values 

of similar magnitude are used (ideally for both positive and negative rewards), avoiding large 

changes at single steps in learning. Conversely, where changes in the environment are small, 

the delivered rewards should be scaled proportionately based on how close the agent is 

towards a balance of its operational targets and amplify the smaller differences in 

performance when close to the idealised point of operation. The reward factor for the scaled 

reward policy is calculated using Equation.7 below: 

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑅/𝑅𝑒𝑤𝑎𝑟𝑑	𝑃𝑒𝑛𝑎𝑙𝑡𝑦                                     (7) 

This approach may, however, present issues as the reward factor approaches zero, as 

the reward may grow too large between observations, leading to instability as discussed. This 

will be evaluated as part of agent development. 

As discussed, each parameter update precedes an iteration of the control loop. This is 

necessary, as the observations used to calculate the reward received are made for the state, s’, 

and represent the Cycle Times which both the human and robotic operators have just 

completed and the calculated Target Cycle Time for all products remaining in the shift. 

As the rewards are influenced by the effects on the environment, rewards must be 

delivered in response to actions on either side of an update to the environment, and the choice 

to take no action should also advance the manufacturing sequence, to avoid a negligible state 

change and provide meaningful observations, and a meaningful reward. 

With respect to the design of reward policy, there are several other aspects which must 

be defined. A manufacturing scenario is comprised of numerous discrete states and actions 

which are governed by certain rules. For example, attempting to lower the value of a 

parameter past its limit is not possible, both in terms of the validity of the action, and the state 

which it can lead to, as such, there is the inclusion of a fixed negative penalty applied when 

the agent decides on nonsensical operations, to encourage these actions to be avoided. 
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Additionally, there are often cases where a non-ideal action must be taken to reach a state 

where a much more valuable action can then be performed. This is reflected through the use 

of the discount factor (or gamma parameter in Q-Learning applications), which balances 

immediate rewards with those that may be obtained from future actions. The influence of the 

gamma parameter on performance is addressed further in the next section. 

Furthermore, consideration of future rewards is also relevant in an application such as 

this, where the agent aims to optimise its performance against a dynamic variable as it 

presents additional difficulties when the model is designed as an MDP. The agent must 

achieve a balance between several dynamic values, which presents issues in terms of 

learning, as optimisation is performed with respect to a towards a moving target (the future 

reward, which is predicted based on s’ using the same neural network). In the approach 

pioneered by Deepmind, the use of fixed targets (i.e. a separate network that is periodically 

updated from the main network) to make these predictions, enables the decision-making 

neural network to make accurate predictions for expected rewards much faster; and will be 

leveraged in this approach. 
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6. Agent Performance Evaluation 

This chapter explores the different evaluation methods and techniques used throughout both 

the development and testing of the intelligent agent and its application. Evaluation is relevant 

in terms of developing effective neural network learning models, the selection of the relevant 

hyperparameters, and the process of how these are evaluated. It is also relevant in terms of 

how the agent’s performance is quantified, both in terms of the task and facilitating 

interaction with its collaborators. Finally, the agent must be evaluated in terms of its efficacy 

at the system level, through the exploration of multiple scenarios to evaluate the reliability 

and robustness of the approach. This system-level evaluation is crucial, as it provides insight 

into the validity of the overall approach, and the extent to which real implementation may be 

realised. The following subsections outline each of these considerations in more detail. 

 

 Neural Network Hyperparameter Selection 

Neural Networks have demonstrated a great deal of success across several domains in 

recent years, both in terms of prediction and in the application of Q-Learning Agents. The 

performance of Neural Networks, however, is dependent on multiple factors, including their 

internal structure, and a variety of hyperparameters, such the learning rate, and the choice of 

updater function, which describes how errors are propagated through the network. This is an 

issue when implementing and developing learning algorithms, the chosen value of these 

hyperparameters is often crucial to the learning efficacy and must be defined in advance. As 

such, the first stage of evaluation focuses on the performance of these algorithms given 

different learning parameters to identify potentially viable configurations. This is achieved 

using a grid search and the previously defined training and test sets. In terms of establishing 

the predictive accuracy, the method enables an exploration of the hyperparameters and their 

influence (further contributing to establishing the suitability of the approach), and an optimal 
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set of values to be identified prior to implementation. The parameter values are iterated over 

their respective ranges, and neural networks built and trained using their respective test sets. 

Each network was then evaluated using the relevant isolated test set to produce a Root-Mean-

Squared-Error (RMSE) score for each parameter configuration. RMSE is calculated using 

Equation.8, where x is the predicted value, y is the actual value, and n is the number of 

instances, i: 

𝑅𝑀𝑆𝐸 =	q(∑ (𝑥^ − 𝑦^)d)/𝑛)	O
^_4                                         (8) 

Training of the neural networks is performed using a backpropagation approach to 

iteratively determine the weights for each node. This requires multiple passes through the 

dataset referred to as epochs. A learning rate of 0.01 was selected to mitigate vanishing 

gradients at the expense of training time; as the output range was relatively small. The Epoch 

and Number of Hidden Node parameters were evaluated using a grid search approach, with 

each evaluation performed using the isolated test set. The RMSE was selected as the loss 

function 

The generation of the training datasets is necessary for both online application and the 

heuristic development of the intelligent agent. To generate the data, simulation runs were 

performed using a static behaviour for the robotic operators. The data from each of these 

simulation runs is collated to form a training dataset containing a total of approximately 

10,000 data instances, and an isolated test set containing approximately 1000. Concerning 

training the analytical network, the dataset that is collated consists of data instances formed 

of the previously identified input features and label. Standard techniques for data pre-

processing to improve accuracy were considered, including normalisation, which are 

explored during the heuristic development of the network. 

In the case of the reinforcement learning network, the collated dataset is formed of sets 

of state, action, reward tuples, which is collected by selecting random actions over several 
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simulation runs, observing the received rewards, and storing these transitions to memory; 

10,000 transitions were again collected. In addition to the training set, a separate test set is 

defined following the same method, with a ratio between the two of 10:1. These datasets (or 

memories, more accurately, in the context of RL), are then similarly used to train and 

evaluate each hyperparameter configuration in terms of how well the network can make 

predictions; in this application, the expected reward from the action selected given a state. 

Appropriate normalisation and pre-processing techniques are again applied, following the 

progressive technique discussed previously.  

There are additional parameters which influence the learning of neural networks in a Q-

learning approach, to those which define the neural network itself. Within the Q Score, 

consideration must be given to the future rewards, which are scaled using the parameter 

gamma, or discount factor, which controls the weighting of predicted future rewards.  

Another parameter, Epsilon, must be defined and is used to implement Epsilon Annealing. 

This is used to determine the use of randomly chosen actions, which enable an agent to fully 

explore the state space. The epsilon parameter is defined using an initial maximum value 

adjusted with a decay rate for each iteration. The rate of annealing can influence training 

performance and duration. Both of these parameters should be evaluated where possible, 

although typical values are gamma = 0.7 and epsilon decay = 0.99. 

 

 Evaluation Metrics and Benchmark 

Evaluation of the multiple elements proposed in methodology at the system level requires 

consideration of factors which influence it, with regards to improving the process and the 

interactions between humans and their robotic counterparts. Most of the constituent elements 

requiring development which are detailed in the methodology are concerned with learning 

and are validated in terms of their efficacy as part of their development, using the simulated 
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environment as a representative task. This is useful in terms of evaluating the performance of 

the approach in a theoretical sense, however, a method for establishing benchmark 

performance and enabling comparisons to be drawn must also be defined, to evaluate and 

validate the benefits of the approach at the system level.  

The key criteria concerning the aims of the system have been defined previously but are 

formalised as the performance disparity here, as minimising the performance disparity is 

beneficial in terms of facilitating the interactions modelled in this approach. This is for 

several reasons: Firstly, it reduces the impact of human variation at the process level, both in 

terms of minimising the development of observed idle-time, and the build-up of product 

between processes. In addition, a minimal disparity in performance can be said to improve 

the interactions in terms of fluency, which provides a number of soft benefits from a human 

perspective and has real benefits for manufacturing systems, by moving closer to an idealised 

one-piece-flow. 

The reduction in disparity must, however, be realised whilst maintaining the demands 

and constraints of the production process, including appropriate levels of production. This 

balance between these demands is represented in the reward structures through the target 

cycle time, which is based on achieving a pre-defined level of production. The key metrics in 

terms of the system can, therefore, be identified as the cumulative observed idle time of all 

operators, and the number of products produced. To evaluate the efficacy of the intelligent 

agents and the proposed approach, a static control case will be defined. This will be done 

using a separate agent which follows the same operation sequence with a fixed speed 

modifier. The resultant idle times and productivity can then be used to benchmark the 

existing dynamics and metrics for the modelled interaction. Evaluation of the agent’s 

performance in terms of the system can then be achieved by replacing the static agent with 

the intelligent agent, and performing the simulation runs a second time to provide a 
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comparison. If the approach is valid, the intelligent agent should be able to reduce the 

observed cumulative idle time, whilst improving on, or maintaining the target level of 

production. 

Establishment of benchmark scenarios is of significant importance in terms of the 

validation of this and similar approaches, as unlike typical DQN implementations which are 

based on tasks with performance benchmarks set by human beings (i.e. video games, image 

classifications, etc.). As a result, the scenario must set a baseline level of performance in 

terms of the key metrics to compare the adaptable policy against, to determine the efficacy of 

the intelligent agents, in comparison to existing processes. Furthermore, the benchmarking 

provides additional validation to the modelling and data parameterisation, by enabling 

comparison of the modelled values to those observed, to confirm the assumptions and 

limitations of the modelled interaction, thus ensuring it is suitably representative of the real-

world process. 

 

 Evaluation Scenarios 

Besides providing a training and evaluation environment for the intelligent agent in terms of 

learning performance, the simulation model also serves to test the generalisability and 

validity of the approach, in terms of its efficacy at the system level, in terms of the metrics 

outline previously. To validate the efficacy of the approach, different simulation 

environments will be explored to measure the extent to which the agent can achieve 

consistent performance over multiple cases. This is achieved partially by adjusting the 

simulation parameters as discussed to represent different conditions and interacting 

behavioural changes in the operators and will partially be addressed by varying the task and 

production demands. Furthermore, the simulation environment explored in this work is based 

on, and representative of, an existing real-world problem and process; which, by comparison 
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to, and demonstrated improvement over, a static control case, will lend additional validity to 

the approach.  

The simulation model is already designed to provide a wide range of different scenarios 

in terms of the collaborators' demands. The parameters which are used to govern human 

behaviour, as discussed previously, can be modified to provide a variety of behaviours. This 

provides a good initial variety of cases in which to evaluate the intelligent agent's 

performance in terms of its learning ability, and robustness in terms of delivering the system-

level demands. These scenarios will be further explored by varying the demands of the 

process in addition to those of the collaborator. This will be achieved by using different 

production targets to put more strain on the robotic agent, to see if it can optimise in this 

scenario and whether it may leverage an even greater level of performance.   

In addition to considering the demands on the agent, it is also necessary to evaluate the 

agent’s performance in terms of how robust the agent is when these demands have different 

effects. To explore this, the simulation model will be modified to compare the performance 

of the agent when in both the upstream and downstream positions of the interaction, to see if 

a consistent performance can be achieved in both cases. This concept will be further 

expanded by considering multiple collaborators and how the demands of both an upstream 

and downstream collaborator can be balanced, if at all, by the learning agent. This will be in 

terms of both multiple robotic operators (each with their own intelligent agent), which 

extends and reconfirms the previous study in terms of a larger system; and multiple human 

collaborators, to test how resilient and capable the proposed methodology is to reduce the 

total impact of disparity at the system level. These configurations are illustrated in Figure.9. 

Furthermore, the use of multiple agents provides a good evaluation for the applicability of the 

work (Young et al., 2011) suggesting that embodiment of these agents enables different 

behaviours to be observed based on individual cumulative experience.   
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6.3.1. On-Task Validation 

Finally, the exploration of performance in these different configurations will enable a robust 

agent to be evaluated through the use of a comprehensive model of a case-study process, to 

be introduced in the next section, which is representative of a real-world process. Evaluation 

in the form of a case-study is particularly important, as it provides a representative problem, 

informed by verifiable data, by which to validate the task performance of the agent, and the 

potential benefits and implications. 

This is for the dual purpose of evaluating and demonstrating the simulation and 

learning methodologies and providing an exploration of how they can be practically applied 

to a manufacturing process, and how this application can provide the theoretical benefits 

identified by the literature. With respect to the first point, the use of a real-world process 

enables the methodology and intelligent agents to be evaluated against a ground truth, in 

terms of data collected from reality. It enables the effects of behavioural variations at the 

Figure 9 - Visualisations of the configurations of different operators to be explored to ensure 

the robustness of the approach. 
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process level to be validated against similar metrics monitored in the real-world process, 

providing additional and crucial validation for an otherwise abstract approach.  

The case-study additionally provides a significant contribution to the work, by 

demonstrating the application of the developed methods to a process, and how a real-world 

scenario can be decomposing into the relevant abstract elements to enable the use of 

intelligent agents. The practical application of the method is also crucial to evaluate, as the 

research gaps in the area remain issues surrounding realising the benefits that these emerging 

technologies promise to deliver. With respect to the latter point, the adaptability that 

decentralisation and reinforcement learning provides is hypothesised to enable the intelligent 

agent to adjust its operating parameters to affect behaviour that reduces the performance 

disparity between itself and its collaborators. This behaviour is further hypothesised to 

improve these processes at the system level, by converging to an optimal policy which 

reduces the observed idle time and WIP levels within the process; improving the overall 

productivity and leanness of the process. In addition, the case-study provides further ground 

truth for human performance, and validation of the modelling approach. This environment 

will explore various parameterisations of human behaviour, including the use of human-

derived parameters, to provide an evaluation as to the capabilities and potential benefits and 

applicability of the work to real-world implementation.  

Altogether, the case-study is a necessary process for the evaluation and validation of 

the developed methods, both in terms of establishing the efficacy of the approach, and how 

the approach demonstrates many of the desired behaviours and benefits which intelligent 

manufacturing promises. Realising the constituent elements into a cohesive system capable of 

delivering results is a key aim of this work, identified as a part of the initial research 

questions, and consequently, evaluation in such a manner is critical in order to draw 

conclusions about this work as a whole. 
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7. Case Study 

This section presents the application of the research framework and proposed methodology to 

a case-study, conducted in collaboration with an industrial partner, Olympus Surgical 

Technologies Europe (OSTE). Based in Hamburg, Germany, and reporting back to HQ in 

Japan, the Cardiff site of OSTE forms part of a multinational design, development, and 

manufacturing process for the production of high-quality, advanced medical equipment. The 

Cardiff site is responsible for the inhouse design, testing and manufacture of multiple single-

use surgical devices, with multiple fabrication facilities and production lines.  

As the products in this case are medical devices, the manufacturing facilities are 

enclosed in a clean room, and there is a great deal of benefit to automating as much of the 

manufacturing process as possible, to prevent biological contamination. However, the 

delicate nature of certain stages of the assembly process require human dexterity and 

adaptability. As a consequence, the automated production line at OSTE provides an excellent 

case-study opportunity, and enables the generalised approach developed to be applied to a 

representative process, with the potential to deliver tangible and actionable results. The 

production process is visualised in Figure.10 below. 

 

Figure 10 - Diagram of semi-automated production line used for case study. Call-out 

detail illustrates manual operation cell. 
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This case-study highlights the issues associated with a critical human presence within 

such systems. From Figure.10, the operation at Cell1a, represents the position of the human 

element within the overall process. The particular assembly operations at this stage involve 

the delicate manual insertion of a fine copper electrode wire to the product, some semi-

automated fixing operations, and a visual confirmation check that must be performed.  

The remaining operations in the process are fully automated, and run on a repeatable 

sequence of operations triggered by PLC’s. As such, the automated elements have a much 

smaller variance in there cycle times for each product, and the system is optimised to a 

nominal operation speed. The consequence therefore, of the human operator, is the 

significantly increased variability, both temporally and between individuals, in performing 

the assembly operations at this position. This is also exacerbated in this case, as the manual 

operation exists between two automated operations, doubling the potential impact of a 

variation from the nominally defined cycle time for the whole process. As such, the key 

challenges presented for the intelligent agent, are the ability for the upstream and downstream 

operators to account for the variation in the manual operation, and deliver/receive products 

from the human cell with as minimal a delay as possible. This will alleviate the observed idle 

times and prevent the build-up of in-progress pieces in the interstitial buffer zones, whilst 

maintaining a level of productivity consistent with the most variable element of the process.  

 

 Manufacturing Process Modelling 

Following the presented methodology, a case-study scenario was developed based on the 

previously detailed real-world semi-automated production line. A model of this process was 

created using the simulation platform to both provide a test environment for the developed 

software agent capabilities, and to demonstrate the feasibility and benefits of the approach, to 

these processes as a whole. The real-world production line is responsible for the manufacture 
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of single-use medical suction devices and includes several automated operations grouped into 

individual cells and a manual operation which occupies its own cell. As such, this interaction 

between the first and second stages of the process provides an ideal case study, as it can be 

suitably generalised as identified in the methodology. These two cells constitute the start of 

this manufacturing process, and the interaction as it is applied to the case study is illustrated 

in Figure.11.  

The first manufacturing cell (cell 1), consists of a robotic operator which is responsible 

for the completion of several operations. These are the retrieval from stock and assembly of 

two components, with a gluing and curing operation. Once these are complete, the operator is 

also responsible for passing the completed product to the intermediary conveyor where it is 

moved to the second cell, which contains the manual assembly step. This manual step 

involves the careful insertion of a fine electrode wire and is a good example of both physical 

and cognitive loading; involving both dextrous manipulation and visual analysis.  The 

conveyor has a discrete capacity of 10 products, which, when either empty or full, leads to 

observable idle time in each operator. This case provides a good representative real-world 

example of the modelled interaction, and the conditions relevant to the human factors which 

influence task performance. 

Figure 11 - Case Study production line, illustrating the interaction between the robotic cell 

and human-operated cell, and the simulation model for the robotic operator developed in 

Anylogic. 
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The manufacturing operations performed by cell 1 is discretised according to their type 

based on the presented methodology. The retrieval operations are represented by queue 

elements which hold a specified number of products, whereas the assembly and curing 

operations are represented in the simulation environment by delay elements given their 

associated fixed duration, which hold a product for a specified time.  The operations are 

represented by the elements down the left side and the block to the right acts as the robot's 

manipulator in Figure.10. The gripper element is then able to distribute products around the 

simulation environment using the selective output blocks and an associated position, with 

delays for moving between them. The actions which therefore enable the robotic operator to 

complete these operations are again discretised based on the methodology and are defined for 

this case as the ability to: move to each position, pickup and put down a product, wait for a 

defined period, and manipulate the relevant process parameters. These actions are combined 

to form the statechart illustrated in Figure.12.  

 

Figure 12 - Statechart used within Anylogic to determine robotic operator behaviour, each 

yellow state is an action 
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The observation space of the agent is also defined for the application following the 

methodology identified. From the simulation environment, the software agent receives a state 

observation in the form of a 1D array values representing the data points or input values. 

These values, as discussed, will vary between applications, but take a generic form, and in the 

presented case study are defined using 6 variables: the Robotic Operator's previous Cycle 

Time (CT); The calculated Target Cycle Time to reach the production target based on the 

remaining shift duration (TCT); The cycle time(s) of the human collaborator, the 

Collaborative Cycle Time (CCT); the current parameter modifier, the Speed Factor (SF); and 

the Idle Time (IT) for the last cycle: 

[CT, TCT, CCT, SF, IT, CIT] 

The action space of the agent is again defined using the methodology, and in this case, forms 

an array of actions enabling the agent to both increase and decrease the value of the speed 

modifier parameter, effecting the duration that actions take within the environment, or 

complete the next task without adjusting the parameters: 

[Increase Speed, No Change, Decrease Speed] 

Additionally, timings were made of the second cell in the real-world process, and the 

recorded values averaged to develop nominal cycle times for each operator, to enable 

representative modelling of the human performance and the interaction as a whole. These 

parameters for human performance were defined as in Table.3. based on a combination of 

observations and work examined in the existing literature. 
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Table 3 - Values used to profile performance for each of the three operators based on 

observed case-study 

Operator Number 1 2 3 

Base Cycle Time (s) 40 45 50 

Fatigue Modifier (End of shift) 1.2 1 1.1 

Shift Modifier AM 1.1 1 1.1 

Shift Modifier Midday 1 1 1 

Shift Modifier PM 0.9 1 0.9 

Weekday Modifier Monday 1 1.1 

Weekday Modifier Tuesday 1 1.05 

Weekday Modifier Wednesday 1 1 

Weekday Modifier Thursday 1 0.95 

Weekday Modifier Friday 1 1 
 

 Human Performance Profiling 

A set of task observations was made of a set of sequential, manual assembly processes to 

illustrate how to apply an initial monitoring period to human operators to capture an effective 

representation of their task performance. This was done using a different production-line 

assembly process similar to many automated layouts, which is entirely manual. The 

operations of this process closely resemble those performed in the semi-automated process 

identified previously, consisting of delicate, manual assembly of small components, 

completed with visual checks at each stage. As such, the variations in performance due to the 

type of task are likely to be consistent with those observed for operators in the automated 

process, and the work schedules for each location are also similar, preserving the effect of 

other fatigue influencing human factors. This was done, as each of the individual processes 

remains easily delineated, facilitating monitoring in terms of the cycle time at each position. 



 95 

The production line was designed to operate as close to a condition of One-Piece-Flow (OPF) 

as possible and provides a source for data with a 5 individual observation points improving 

the total observation frequency, by allowing several different individual profiles of human 

performance to be collected simultaneously.  

Cycle Time measurements were performed for each of the process positions, to build a 

dataset of observations of task performance for each operator. Five measurements were taken 

at each interval with each interval spaced two hours apart. This process was repeated across 

two days, and across two work shifts, increasing the number of observations used in the 

profiling, and building a dataset to verify the assumptions regarding the impact of human 

factors. These values are then scaled to match the nominal time of the case study application. 

Visualisation of the raw dataset by way of a heatmap aids in understanding the distribution, 

as does plotting the data values such as the mean, variance and standard deviation values for 

each operator, over all conditions. These are illustrated in Figure.13.   

Figure 13 - Heatmap illustrating the distribution of cycle time, mean, and standard deviation 

for all operators, across all conditions. 
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Furthermore, it is necessary to validate the assumptions made in the methodology 

regarding the appropriate probability distribution to describe the variation observed for a 

given task. This is achieved, by visualising the collected data as a histogram to confirm that 

the assumptions of its form are valid, and to identify appropriate parameters which must be 

defined. The histogram produced for the observed dataset is illustrated in Figure.14.  

The distribution of observed cycle time for the process can be seen to best approximate 

a normal distribution centred around a mean. As such, each human performance profile will 

use a Gaussian distribution which is parameterised by the respective derived mean and 

standard deviation.  

As discussed in the methodology, the next step is to derive parameters from the dataset, 

from the average task performance. Although these parameters may be derived along any of 

the variation vectors identified for the dataset, to enable the influence of different contexts to 

be compared, to support assumptions made in the use of the modifiers and results of related 

work, or potentially directly used as variable parameters. However, in this application, the 

monitoring process lacked the appropriate fidelity to generate individual parameterisations 

for a suitable number of scenarios. The dataset contains three key vectors: Time of day AM 

vs PM; Day of the Week (Wed vs Thurs); and the Individual Operator. The dataset is 

Figure 14 - Histogram showing the distribution of cycle times for all operators across all 

conditions. 
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aggregated into individual subsets for each vector from which mean value and standard 

deviation are calculated; the resulting parameters derived are illustrated in Figure.15. 

Additionally, the final column shows the calculated average values used to replace the 

nominal times previously used. The selected operator profiles used are shown in Table.4. 

Table 4 - Values used to parameterise the performance distribution for each of the three 

operators based on observed case-study 

Operator Number 1 2 3 

Mean, µ (s) 41.8 42.1 46.2 

Std. Deviation, s (s) 5.5 6.8 4.5 

 

 Agent Development and Training 

This section provides a detailed overview of applying the training methodologies outlined in 

the previous chapter to the outlined case-study. As has been discussed at length already, 

machine learning applications require the definition of various hyperparameters which must 

be known apriori. These parameters vary depending on the application and consequently, 

there exists a degree of heuristic development that must take place to establish effective 

learning models. The section outlines the process of identification for both the analytical and 

Figure 15 - Derived parameters for each of the variation vectors considered. Means and Std. 

Deviations used to parameterise a Gaussian distribution. 
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similar decision-making networks, but with distinct differences in their methodologies, as 

discussed in the previous section. Both of these networks were constructed using the ADAM 

updater, with rectilinear (RELU) activation functions for the hidden layers and an IDENTITY 

output layer, to enable real values to be produced by the networks. 

7.3.1. Human Task Performance Prediction 

The neural network used for the analysis of the human factors was trained as discussed in the 

methodology section over several different parameter conditions, and these results recorded 

and visualised to identify the optimal hyperparameter combination, in the presented case, the 

network structure, in terms of both the number of hidden layers and the nodes in each layer. 

The simulated process and the agent were defined as previously discussed and used to 

generate both training and test datasets for use of back propagation, which requires multiple 

passes through the dataset referred to as epochs. Too many training iterations may lead to 

overfitting, but it unlikely for this dataset as the feature set is relatively small compared to the 

number of data instances. 

 The network also requires the specification of a learning rate, of an appropriate value 

to enable efficient training. Within the presented case, there were problems early in 

development, as the range of the output variable is relatively small, compared to the 

magnitude of change in observed values. Consequently, the gradients would often converge 

and become stuck at local minima. The inclusion of dropout to the hidden layers, using a rate 

of 1, to randomly remove a connection at each training step also reduced this effect and 

improved the predictive performance. Consequently, a rate of 0.01 was selected to mitigate 

vanishing gradients at the expense of training time. The relevant number of iterations, the 

number of hidden layers, and the Number of Hidden Node parameters were then evaluated 

using the grid search approach as outlined in the methodology, and the results are presented 

in Figure 16.  
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Presentation of these results in the form of a heatmap helps to visualise the variations in 

the performance of the network in different conditions. This enables several initial 

conclusions to be drawn, concerning the selection of the optimal combination of 

hyperparameters.  From the heatmap, it can be seen that the majority of trained networks 

converge within a small number of epochs. In most applications initial improvement is rapid, 

as initially randomised or estimated weights and continuous outputs are quickly reduced to 

the observed range, minimising the error significantly. However, as the output range of the 

target value (the predicted cycle time) is relatively small, a subsequently longer training 

period is required to reduce the err or to a level which enables differentiation between 

instances. 

Three potential network configurations can be identified from the heatmap: the 15-

hidden-node, 18 hidden-node, and the 22 hidden-node, single-hidden-layer configurations all 

demonstrate comparatively low RMSE scores after 500 training epochs and are potentially 

viable. This also suggests that training in addition to 500 operations leads to diminishing 

returns in accuracy with respect to execution duration. The additional hidden layer can be 

seen to introduce higher initial errors and slower, more unstable convergence, for generally 

small gains in predictive accuracy. Of the identified configurations, the 15-node 

Figure 16 - Heatmap of RMSE scores, for the number of hidden nodes against the number of 

epochs trained.  For a) 1 hidden layer and b) two hidden layers. 
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configuration has a low initial error, the most stable rate of improvement highlighted by the 

gradual change as the training progresses. In addition to this, the simpler configuration 

reduces complexity and computational demands, additionally benefiting from faster training 

times. As such, a single-layer, 15 hidden-node configuration was selected for use in the 

simulation, despite lower absolute RMSE scores in the 18 and 22 node configurations.  

 

7.3.2. Reinforcement Learning 

As with the analytical network, the decision-making network was also evaluated using the 

grid search approach detailed in the methodology to establish the optimal hyperparameter 

combination. Figure.17 presents the grid search results for the DQN; in the case of training 

the reinforcement agent, each observation is guaranteed to be observed only once (although 

possibly multiple times due to the use of experience replay), and consequently, only a single 

training pass is performed for each combination of parameters.  

 

Furthermore, to evaluate the efficiency in terms of the capacity of the intelligent 

agent’s memory, two datasets were defined containing 10,000 and 25,000 instances. In the 

Figure 17 - Hyperparameter grid search results for DQN Agent using a)10k training instances, 

and b) 25k training instances. RMSE scores represented by the colour (blue lowest). 
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case of Figure.17, anomalous results (whereas in the majority of cases, the network achieved 

a reasonable level of accuracy, for certain hyperparameter combinations, accuracy was 

exceptionally poor, skewing the range of results heavily) were excluded from the colour-

mapping, to provide a clearer indication of performance variation.  

The optimal combination of hyperparameters in terms of predictive accuracy of the 

network can again be identified from the heatmap as the result with the lowest overall RMSE. 

The deepest blue values in Figure.17 suggest that the two hidden layers and 10 hidden nodes 

configuration achieves the lowest and most consistent error for multiple learning rates. The 3-

Hidden-Node, 2-Hidden-Layer configuration is also plausible. However, based on the results 

of the analytical network parameter selection, and the heat map results, there is evidence that 

simple structures provide a generally better choice for several reasons. The single hidden 

layer 3-node network similarly achieves good accuracy, although too few hidden nodes may 

contribute to over-fitting of the model.  

Consequently, a 5-hidden-node network as also selected to evaluate a simple model’s 

performance, at the benefit of faster training, as again, diminishing returns exist with 

increased complexity. The learning rate can be seen to have a real, albeit negligible influence 

on the performance of the network, with the networks internal structure being a much better 

dictator of predictive ability. As such, a Learning rate of 0.0025 will be used moving forward, 

to achieve a balance in overall performance.  In terms of the effect of training set sise, and 

how this may reflect on the number of transitions stored in the intelligent agent’s memory, 

the results of the preliminary work suggest that there is no clear advantage to larger sample 

sises. The 25,000-instance dataset does indicate an overall better predictive ability but also 

produces some of the worst-performing combinations, likely as a result of the larger potential 

range and variance in the samples. As such, a working memory size of 10,000 will be used 

for the intelligent agent in practice.   
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The manufacturing process identified for use in the case study also continues into a 

second automated cell following the manual operation. Consequently, this enables the model 

to be expanded, and the capability of the approach and the intelligent agent evaluated using a 

different generalised environment and interaction. Furthermore, the case-study model 

becomes more representative of the real-world process, lending further validity to the 

approach and its application in a real-world process, and consequent tangible benefits. In the 

downstream position, the agent has far less influence over the process as a whole and is 

entirely dependent on the pace set by the upstream human collaborator. This downstream 

process is illustrated similarly to the upstream and manual process in Figure.18 and is again 

discretised into its relevant operations and the elements which represent them in the 

simulation environment. The observation and action spaces for the agent remain the same as 

in the upstream case.  

The grid search approach is repeated for the downstream agent, the scores illustrated in 

Figure.19, and the optimal hyperparameters are chosen as before. Once more, the heatmap 

enables optimal hyperparameters to be established. The lowest scores were attained by a 25 

Hidden-Node, 2 Hidden-Layer, and 10 Hidden-Node, 1 Hidden-Layer configuration. To test 

the applicability of the potential for embodiment to enable effective behaviours given 

different experiences and beliefs, the previous configurations for the upstream agent were 

Figure 18 - Illustration of the downstream automated process in the case-study production line, 

and the corresponding simulation model. 
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evaluated alongside. Convergence of these networks under the different interaction dynamic 

would lend weight to this theory.  

The case-study provides a representative, yet suitably generalised environment to 

provide both heuristic development of the intelligent agents, and an evaluation platform with 

regards to the benefits of the approach the system level. The following section present the 

results of the development process for the agent implementation, and the evaluation of the 

agents, over a variety of situational constraints.   

  

Figure 19 - Hyperparameter grid search results for downstream DQN Agent using a)10k training 

instances. RMSE scores represented by the colour (blue lowest). 
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8. Results 

This section presents the heuristic aspects of the development and application of the 

methodology and the intelligent agent to the identified real-world manufacturing interaction. 

This section is divided into three sub-sections, the first outlines the results of human-

performance prediction, the second, which covers the development and application of the 

reinforcement learning methodology to the real-world case, and the third, which evaluates 

performance at the system level, with respect to the identified metrics.  

 

 Task Performance Prediction 

Once the optimal parameters were established, the simulation was again run using the trained 

network, with a random seed to produce a previously unseen environment. This was done for 

a full three weeks of operation, to evaluate predictive performance over varied conditions. 

Random element seeds are changed between runs, ensuring appropriate variability when the 

same conditions are imposed. Figure.20 plots the simulated human operator cycle times 

against the analytical neural network's predictions for simulation runs over a working week. 

Comparing the predicted values to those observed enables the performance of the neural 

network to be evaluated in terms of how well it can identify the influence of human factors 

and variation between operators. Figure.21 again plots the observed cycle times against the 

predictions made by the analytical network but illustrates the same day for different shift 

orders to illustrate how predictive ability varies with respect to this parameter. 
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From the presented figures, some initial conclusions can be drawn regarding predictive 

performance. The cycle times predicted by the analytical network show a clear trend that 

closely follows the observed human cycle times, a pattern which is consistent over each of 

the scenarios. This suggests that the network is able to successfully identify the disparity in 

task performance which exists between each of the individual operators. Furthermore, the 

predictions of the network can be seen to increase with the duration of each human 

collaborators shift proportionately to the observed decrease in task performance. This is 

indicative that the network can predict the effect of time-on-task fatigue. 

Figure 20 - RO CT and HO CT over time for a) Monday, b) Tuesday, c) Wednesday, d) 

Thursday, e) Friday. 
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Within Figure. 20 a) through e) present the network predictions for each day of the first 

week, maintaining a constant shift order and consequently the impact it has on human task 

performance. The predictions made by the network can be seen to decrease with each 

weekday, in proportion to the influence of the weekday modifier, suggesting the network can 

distinguish successfully this influence.  Additionally, Figure.21 compares the same weekday 

for each of the shift orders. The predictions made by the network suggest that can account for 

the influence of the time of day, as the predictions can be seen to move consistently when 

comparing am and pm shift performance of Operators 1 and 3, but not in the case of Operator 

2 who is not susceptible to the influence of the shift modifier.   

The offset from the observed times in the results also suggests, however, that the output 

range for each of the individual operators having significant overlap, and the contradictory 

influences of the multiple factors. The observed ranges of Operators 2 and 3 are often similar, 

whereas Operator 1 more consistently occupies an output range with limited overlap. Despite 

this, Cognitive Control these results provide good initial evidence that a neural network-

Figure 21 - RO CT and HO CT over time for Monday shift of three weeks and corresponding 

shift orders a) 123, b) 231, and c) 312. 
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based approach has an application in predicting, and consequently accounting for, variations 

in human task performance.   

 

 Reinforcement Learning for Cognitive Control 

This section explores the final heuristic development, the training, and initial performance 

evaluation of the intelligent agent in terms of determining appropriate action policy. The 

training was performed as discussed in the methodology, and the simulation environment 

parameterised for different human operators. Two agents were trained using the 5 hidden-

nodes and a single hidden layer, and 10 hidden-nodes, and two hidden-layers structures, 

previously identified from Figure.17 as being optimal for this application. The agent's scores 

were recorded for each training iteration and are illustrated in Figure.22.  

Training episodes represents a full day of real-time operation, and the parameters are 

iterated to enable the agent to explore as much of the state space as possible. Epsilon 

annealing was utilised as discussed in the methodology, with a rate of 0.995.  

Figure 22 - Results of DQN Agent training over 500 iterations for both the 5 Hidden Node 

and 10 Hidden node configurations. 
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The agents are then evaluated over another full simulation run of 15 iterations (with 

further training suspended), to evaluate performance in terms of key metrics at the system 

level. The values of observed idle time, the cumulative score received by the agent, and the 

productivity are presented alongside those for the static case (these values are also recorded 

for the Static case and used as a benchmark for intelligent agent performance) in Figure.23. 

The static case is used as a benchmark, as this policy best highlights the impact of human 

variation on the process, with different system-level implications dependent on multiple 

human factors. Figure.22 shows that both of the tested configurations converge to a solution, 

whilst Figure.23 illustrates that both generate an effective action policy after training leading 

to decreased observed idle time and maintained levels of production; when compared to the 

results of the static case. This can be seen below as consistently lower observed idle times 

when compared to the static case, with minimal variation to overall productivity, across all 

evaluated conditions. 

Figure 23 - Comparison of DQN Agents to benchmark case in terms of Idle Time, DQN 

score and Product Count. 
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8.2.1. Reward Structures 

After evaluating the hyperparameters, and developing an effective set to enable learning, the 

influence of how rewards are presented to the agent must be considered. This is in terms of 

both the reward structure and effect of discounting future rewards through the gamma 

parameter. The same methodology as before is repeated, with the single-layer 5 hidden node 

configuration selected for its stability and decreased in training time. This was done for each 

of the reward structures outlined previously. For each case, a value of 10 is used for R, 

representing the reward for completion of a task. Invalid actions receive a penalty of -5. The 

evaluations of both the penalty (Equation (5)) and the scaled reward structure (7) are repeated 

for gamma values of 0.1, 0.7, and 0.9. To explore the influence on both learning and policy 

generation. Figure.24 illustrates the training of these agents’ structures in terms of the score 

achieved by the agent. 
a) 

i) 

b) 

ii) 

Figure 24 - Comparison of DQN structures i)5 Hidden Nodes ii) 10 Hidden Nodes, and 

training in terms of DQN score for different gamma values and reward structures: a) Penalty 

rewards, and b) Scaled rewards. 
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The results presented in Figure.24. show that the scaled reward policy can be seen to be 

much more sensitive to the gamma value, with none of the evaluated networks showing any 

indication of convergence to a consistent policy. The penalty-based structure can 

conclusively be considered the more effective policy for generating reward for agents in this 

environment. Furthermore, it can be seen that the gamma parameter has a negligible effect on 

learning or training performance, for either of the evaluated policy, indicating that the 

stability of rewards is important to enable effective training. Consequently, this policy along 

with the single-Layer, 5 Hidden Node configuration as a benchmark, and a gamma value of 

0.7 to balance current and future rewards, will be used for evaluation and training moving 

forward. 

 

8.2.2. Parameter Variation 

With a suitable reward structure now established, the implementation can be considered fully 

developed, and the agent is more intensively evaluated in terms of absolute performance and 

generalisability, by testing over multiple scenarios, as discussed in the methodology. The 

simulation is parameterised to represent the influence of multiple human factors which affect 

fatigue and introduce performance variation, and the intelligent agent is evaluated across 

different scenarios which cover the range of these factors. This is in terms of both the time of 

day (shift order), and the day of the week, and are illustrated in Figure.25 which again 

compares the agent performance to the static behaviour case. 

The agent's performance is also evaluated, in terms of its ability to generalise its action 

policy based on the balance of multiple constraints, without one becoming a priority.  The 

initial training case already suggests that the intelligent agent can minimise disparity, whilst 

maintaining the demands of production. To stress-test this ability and validate the robustness 

of the approach to different conditions, the agent is tasked with an increased workload in the 
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same scenario. The production target is increased to 80 per hour or a nominal cycle time of 

45s. The results of this simulation are presented in Figure.26.  

 

Figure 25 - Comparison of DQN and Static Case performance total over full 3-week 

simulation run incorporating different shift orders. 

Figure 26 - Comparison of DQN to benchmark (static case) for increased production 

demands. 

 



 112 

The results presented in this section detail the training and final stages of heuristic 

development of the intelligent agent and methodology for implementation. The results show 

that the reinforcement learning policy converges to an optimal solution within the simulated 

interaction, and has potential realisable benefits to the process in terms of cumulative small 

reductions to observed idle times whilst maintaining consistent productivity; supporting the 

hypothesis of this work. The following section expands this simulation model and the 

application of the agents to multiple operators and increased simulation fidelity. 

 

 Production Process Evaluation 

This section covers the expansion of the case study beyond the initial interaction to 

encompass different interaction dynamics which arise as a result of different positions of, and 

combinations of demands placed on the robotic operator, and its intelligent agent. This 

section focuses on developing the downstream intelligent agent discussed in the previous 

section, further improving the fidelity and versatility in the modelling of the manufacturing 

interaction; and evaluating the methodology and simulation model with respect to real-world 

human data and leveraging prediction of human task performance from contextual factors.  

 

8.3.1. Multiple Agents & Collaborators 

As discussed in the previous section, the case-study process consists of multiple robotic 

operators, in both upstream and downstream positions from their human collaborator. As 

such, evaluation of the agent’s performance in terms of its ability to enable collaboration at 

the system level. This requires the agent to learn appropriate behaviours in terms of both 

upstream, and downstream implications. Initially, the interaction is modelled to include the 

upstream human operator, and the downstream robotic collaborator. The training of this 

agent, using the same methodology as with the upstream case, -and the identified 
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hyperparameters- is illustrated in Figure.27a. Furthermore, a static case was also simulated 

for this interaction, to provide a comparison for the agent’s performance. This is evaluated 

again using the same method as in the upstream case. The results of the downstream agent’s 

performance compared to the static case is illustrated in Figure.27b.  

Figure 27 - a) Training over 500 iterations for the downstream operator, and b) Agent 

performance over the 3-week simulation run compared to static-case performance. 

a) 

b) 
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The presented figures illustrate that the intelligent agent is again able to determine an 

appropriate behavioural policy by which to minimise the performance disparity and its 

impact on the manufacturing process, as evidenced by the lower observed idle times and 

increased productivity for most of the evaluated configurations. The figures do highlight an 

overall lower training performance, with a looser convergence and overall score, in terms of 

both rewards received and the evaluation metrics.   

The inclusion of this downstream operator then enables the full interaction to be 

modelled, and intelligent agents demonstrably capable of appropriate behaviours can be 

implemented in both upstream and downstream cases. This simulation configuration is run, 

including a static case for both operators simultaneously. The results in terms of both agents 

score during training, and their performance during evaluation compared to the static-case 

performance, is illustrated in Figure.28 a) and b) respectively. 

The figure shows that in the expanded simulation model, both agents are again able to 

find an optimal solution for their behaviours and are able to reduce both the observed idle 

time and provide a modest increase to productivity. These benefits are additionally 

compounded by the presence of two adaptive systems. Additionally, what can be seen is that 

in the case of simultaneous training, the downstream operator demonstrates improved 

performance, in terms of both absolute score and convergence. This is likely the result of 

stability from iteration to iteration, provided by the upstream operator. In any sequential 

process, the productivity is (usually) limited by the output of the initial operator involved, 

who is responsible for determining the arrival rate for the process. In the case of training the 

downstream agent alone, this was the human operator and the variance in output that arises 

from the performance variation introduced a training instability. In the simultaneous training 

case, the upstream operator is capable of learning a policy and providing a more consistent 

level of productivity over different scenarios which may affect human behaviour.  
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Furthermore, to further evaluate the capabilities of the intelligent agent, and the 

application methodology, an additional case is considered whereby a robotic operator must 

coordinate with multiple human collaborators. This introduces additional complexity into 

both the dynamics of the system and consequently, the observation space and the reward 

a) 

b) 

Figure 28 - a) Training over 500 iterations for both the upstream and downstream operators, 

and b) Agent performance over the 3-week simulation run compared to static-case 

performance. 
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structure of the agent. The simulation model is expanded as described in the methodology, 

and the observation space and reward function amended to include observations of multiple 

collaborators. The agents were trained using the existing identified configurations. These are 

not necessarily optimal, but the interaction in terms of just the upstream or downstream is the 

same as the previous application, and likely performs well. The results of training and 

evaluation for the multiple human operator case are shown in Figure.29. 

The figure presenting the scores for the different agent configurations for each training 

iteration shows that there is limited if any, convergence to an optimal behaviour policy for 

the two-human case. This may be the result of increased situational complexity, and the 

inability of the neural network to make accurate predictions, or the variability between 

operators over which the robotic operator has limited influence, may prevent the existence of 

an optimal policy at all. This is discussed further in a later section. 

 

Figure 29 - Training over 500 iterations for the agent with multiple human collaborators. 
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8.3.2. Human Data and Performance Prediction 

This section details the two final sets of evaluations. Firstly, the extension of the human 

elements within the simulation model, to use distributions to generate cycle times, based on 

collected values enabling individuals to be profiled in terms of task performance. This will 

further enable the robustness of the intelligent agent, by further evaluating performance in a 

scenario that captures the random nature of human performance. Secondly, the results of 

using the analytical module to predict human task performance, which has implications for 

both the agent's ability and the ethical constraints of data-monitoring. 

In the case of capturing real-world human task performance data, 5 individuals were 

profiled, as discussed in the methodology and extended in the case-study section. Of these 5, 

Operators 1, 2, and 4 are selected to replace Operators 1-3 in the existing model respectively, 

due to the similarities between their nominal cycle times and variances with respect to the 

average time of the operation. The intelligent agent is re-evaluated using the same 

methodology as before, with the profiled behaviour of the human agents. The results of the 

DQN training, and the performance compared to the static case, are shown in Figure.30 

Figure.30 follows the pattern of previous results and further confirms the agent's ability 

and consequently it's robustness in terms of developing an optimal solution and improving 

the process with respect to the key metrics. In almost all of the evaluation cases, the 

intelligent agents can be seen to reduce the cumulative observed idle time and leverage a 

modest increase in throughput. Training of the agents overall can be seen to converge, but the 

observed range of scores over the training iterations is much greater, possibly the result of the 

increased range and degree of variance in observed human task performance.  

The final stage of evaluation for the methodology and agents is the combined use of 

both networks. Initially, the analytical network is used to provide collaborator cycle time 

predictions for the current time step, which are provided to the reinforcement network as part 
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of the state observation. This configuration has implications for applications and modelling 

without the reliance on continual monitoring, and to avoid direct observation and profiling of 

human data. Before the possible benefits of the analytics module can be explored, it is 

additionally important to establish equivalent performance to utilising direct observation. The 

results are presented in Figure.31, in terms of both the training of the intelligent agents and 

the predictions of the analytical network, compared to the observed human cycle times.  

Figure.31a) illustrates the scores achieved by each agent during the training process. 

Compared to the previous simulations, both agents can be seen to converge slower, due to the 

secondary degree of training occurring with the analytical network. Despite this instability, 

both converge to a solution within 500 iterations. This solution remains unstable, however, 

likely due to the predictive errors of the analytical networks, which whilst small and 

comparable to the training case presented previously, are non-negligible, and should be 

acknowledged of a potential source of disturbance to the agent training and performance. 

This can be seen in the offset of the predictions of the analytical network in Figure.31b). This 

may be alleviated by further training, or different network structures, generating a higher 

degree of accuracy in task performance predictions, to reduce the noise which the decision-

making network has to deal with. 

The results presented in this chapter support the key hypothesis of this work, that a 

reinforcement learning based intelligent agent may be used to develop a behavioural action 

policy for robotic operators in the manufacturing setting that improves the fluency of their 

interactions with their human counterparts. Across almost all tested conditions, the intelligent 

agent was able to reduce the cumulative observed idle times whilst maintaining the desired 

throughput of the production process. This can be seen to provide tangible benefits at the 

process level over time, and the improved interaction fluency inherently makes these actions 

more collaborative in nature. 



 119 

 

 

  

a) 

b) 

Figure 30 - a) Training over 500 iterations for the agent with profiled human task-

performance, and b) evaluation compared to static-case. 
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a) 

b) 

Figure 31 - a) DQN Scores over 500 iterations for the decision-making network, and b) 

Predictions vs observed human cycle times for analytical network for Monday of each week. 
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9. Discussion 

To reiterate, the mass-adoption of automation technologies has, in the past several decades, 

led to an increasing number of interactions between human beings and robotic operators, 

within production processes. These production lines are designed around and increasingly 

aim to improve repeatability and predictability, two qualities for which human beings are not 

renowned. This presents several issues therefore, with achieving optimal behaviours for 

robotic operators within these systems. Concurrently, the increased capability of 

computation, in terms of both hardware, software, and design knowledge, has enabled 

analytical systems to be developed in related domains, capable of human-level performance 

over a variety of tasks, including control and prediction.  

This work has sought to apply these concepts of intelligent manufacturing, to the 

development of a software agent which enables a robotic operator to behave in an optimal 

manner, in terms of improving its relationship with its human colleagues, and the production 

process as a whole. Three main aims were identified from the research. Firstly, to further 

understanding of these human-robot-interactions, in terms of how they influence system 

dynamics, and how these interactions may be generalised and modelled to leverage 

digitalisation approaches. Secondly, to explore the application of reinforcement learning to 

the challenge of robotic control, concerning adjusting behavioural parameters to improve 

social collaboration, and finally, to leverage this new understanding, into an applicable 

methodology and set of software, by which to realise the benefits of adaptive control, within 

a real-world implementation. 

 

 Intelligent Agent Development 

This section discusses the finding of this work in relation to the third of the identified 

research questions, which sought to reconcile and apply many of the emerging technologies 
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in the field of intelligent manufacturing into a cohesive method and set of tools to enable 

adaptability of robotic operators in response to changes in the behaviour and performance of 

their human collaborators. This adaptability was identified in the literature as a key enabler in 

realising many of the benefits of implementing intelligent manufacturing techniques and is 

crucial to realising CPS’s (Wang, Törngren and Onori, 2015; ElMaraghy and ElMaraghy, 

2016; Lee, Bagheri and Kao, 2015). Within the scope of this work, and from the perspective 

of process engineering, the adaptability was focused on reducing the impact of disturbance 

introduced into automated processes by these human operators. This disturbance introduces 

idle times, increased level of WIP, and a general divergence from lean operation, into 

otherwise well-optimised systems. 

A novel solution based on the principles of distributed control to divide complex 

environments and problems into simpler tasks was developed, alongside several software 

agents; which enable the neural networks to act as an intermediary processing layer in terms 

of information through digitised systems and facilitate their interaction with physical 

systems. This layer builds on established architectures in the fields of cognitive processing 

and human-robot-interaction (Baker and Tenenbaum, 2014; Laird, 2012; Isla et al., 2001). 

and provides the necessary functionality to expand these dated approaches to the capabilities 

of modern computational systems. Additionally, a simulation platform was identified, and a 

methodology defined to discretise and effectively model both the physical and human 

elements of these processes.  

The presented findings support the efficacy of the developed method, with almost all of 

the trained implantations capable of learning and applying an appropriate action policy, to 

reduce the overall performance disparity between themselves and their human collaborators. 

Importantly, this is achieved whilst maintaining, and in many cases exceeding the level of 

production seen in the static case and resulting in an appreciable decrease in observed idle 
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time. The presented results demonstrate that the implementation of adaptable control with 

respect to changes of the cumulative value of observed idle time is decreased significantly 

from the static control case, providing tangible cost savings, whilst improving the fluency of 

the interactions of robotic elements with other agents (both human and robotic) in the system. 

Whilst for each individual interaction, the inefficiency eliminated from the process may be of 

the order of a second, when multiplied by the number of repeat interactions and scaled across 

a company’s manufacturing operation, the cumulative effect can be considerable, and the 

benefits increasingly significant.  

The findings demonstrate that adaptability in response to human variation has the 

potential to be usefully leveraged by reducing the disparity in performance. The demonstrable 

success of the intelligent agents at this task supports the authors’ hypothesis that the 

integration of intelligent manufacturing concepts may be used to provide tangible benefits to 

manufacturing processes, both individually, and at the system level. The results further 

demonstrate that such an approach is well suited to aiding collaborative task performance and 

how these benefits can be realised using simple, proven methods and available hardware.  

Furthermore, the agent can achieve an appropriate policy after relatively few training 

iterations and demonstrates the effectiveness of DQN's being employed for adaptable robotic 

control. This is additionally true for most of the presented cases and evaluation scenarios, 

lending further support to the robustness of the approach in terms of enabling implementation 

and realising the development of these systems.   

The developed agents are capable of finding an optimal policy under almost all of the 

evaluated scenarios, and similarly in most cases, are able to affect appreciable benefits in 

terms of the key identified metrics. It is also worth highlighting the fact that either 

downstream or upstream adaptive behavioural policies can be achieved, expanding the 

potential applications of the work to cases with various operator configurations. Additionally, 
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the use of multiple agents can be seen to add stability in terms of training and performance 

(Figure.27 vs Figure 28). This supports the arguments from the literature review that the 

distribution of the control problem to multiple agents may enable optimal solutions to be 

achieved through division of complexity (Almada-Lobo, 2016; Leitão, 2009; Leitao et al., 

2016). This further suggests that implementation of a multi-agent approach into real-world 

processes may in some ways have advantages in terms of training and performance of 

intelligent systems, as opposed to digitalising and improving the intelligence of constituent 

processes on an individual basis.   

Certain scenarios, in particular those involving multiple human collaborators, still pose 

issues for the developed agents in terms of finding an optimal behavioural policy. Similarly, 

to the static case, the intelligent agent is often bound in terms of performance by external 

conditions, and the variation between different combinations of these conditions may prevent 

the Agent from achieving a policy that is repeatable or achievable in all of the states it 

encounters. This can be exemplified by considering the instability in training the downstream 

case, whereby the agent is constrained in terms of how fast it can complete products and 

increase its score by how fast upstream collaborators deliver products. This is compounded 

when considering the need to balance multiple demands, introducing further instability. 

However, the generalisation approach to modelling the interactions potentially enables the 

same process to be divided in different ways, and these tasks re-distributed to different 

agents. In the case of multiple operators, this may involve tasking each agent with reducing 

the disparity between only itself and its downstream collaborators, which may lead to smaller 

individual, but still significant cumulative improvements. The ideal distribution of tasks and 

constraints to individual agents within simulation models is a potential area for further 

exploration. 
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Regarding the implementation into real-world processes and the realisation of the 

benefits proposed by this work, the generated solution provides a validated method and set of 

tools to do so. The presented work includes numerous enabling technologies under intelligent 

manufacturing, and in addition to providing a methodology to develop and implement 

intelligent agents, it provides insights into effective digitalisation of these processes. The 

platform developed to contributes to understanding and best practise of how simulation can 

be used to explore the efficacy and implementation of intelligent systems. This has particular 

relevance when dealing with learning algorithms, as a representative simulation model based 

on a digitalised process enables functional, application-based testing in a controlled 

environment, speeding up the development process, improving the performance of these 

algorithms, and facilitating real-world implementation.  

The inclusion of intelligent software agents within simulated environments is a natural 

extension of existing technology and methods (see section 2.2). Discrete event simulation 

models are commonly used within process engineering, as they enable environments to be 

designed and built to replicate any number of manufacturing processes and scenarios. They 

are frequently employed to enable informed decision making from the perspective of 

management, and the expansion of these simulations to full digital representations of real-

world processes is a key identified aim of intelligent manufacturing (Kritzinger et al., 2018; 

Erol et al., 2016; He and Bai, 2019; Bochmann et al., 2017). This work contributes largely in 

this area, by formalising a methodology for the generalisation of manufacturing processes 

and interactions to enable effective simulation, and the development of bespoke machine 

learning solutions which can be evaluated in a representative, yet isolated test environment. 

The process of generalisation is intended to enable maximum applicability of the approach to 

scenarios where robotic operators are responsible for the manufacture of products with 

human collaborators, and provides a solid foundation for understanding these interactions, the 
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necessary information which must be monitored, and the development of adaptive control 

polices for the robotic elements involved in these interactions.  

In addition, the software developed during this research (in terms of the Java code 

written to form the software object which performs the algorithms processes within the 

simulation (See Appendix.1)) can be used to implement and experiment with reinforcement 

agents through an MDP, in a customisable environment, that can provide a representative 

task for training and evaluation. Despite the strengths of the chosen simulation platform, any 

appropriate software package capable or parsing or with API's to convert Java can be used to 

experiment with these agents. This is another contribution of this work and extends the 

existing work in terms of usable applications by providing a useable platform, improving the 

scope for the application of reinforcement learning technologies into manufacturing systems, 

and the adoption of the methodology in practise both in industry, and for further research.  

The contribution of the work in terms of supporting further research is important, as 

whilst the proposed approach is intended to generalise in a way that is representative, and is 

demonstrably applied to a case-study, fully validating such an approach will require work in 

considering a wider range of tasks and scenarios that may be encountered over a variety of 

different applications and real-world case studies. The standardisation of approaches remains 

a key challenge in terms of enabling the adoption of intelligent manufacturing techniques. 

Such standardisation is likely to remain challenging, as the process of development presented 

in this work has demonstrated, in almost all solutions a bespoke selection of network 

structures, hyperparameters and rewards are necessary to achieve optimal functionality. 

Additionally, and within the scope of leveraging intelligent systems to improve systems with 

a human component, the degree of variation between individual human beings, under 

different circumstances, and over a wide potential number of different manufacturing 

scenarios compounds the difficulty of such a validation task.  
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To summarise, the work highlights the value of pursuing adaptability in robotic control 

systems, improves knowledge on machine learning and principles of intelligent 

manufacturing can be leveraged within production processes. Utilising learning algorithms to 

provide robotic operators with agency, and tasking them with reducing the disparity in 

performance between themselves and their collaborators can be seen to reduce the observed 

idle time within these demands and levels of WIP; moving these processes closer to idealised 

one-piece-flow improving their efficiency and lean operation in line with the aims on many 

contemporary process management theories. 

 

 Intelligent Agent Performance 

This section discusses the findings of the work relating to the second of the identified 

research questions, namely focused on the application of intelligent methodologies to the 

problem of interactions between robots and their human counterparts. Based on existing 

applications in similar domains, this was done using a multitude of neural networks, which 

have proved again to be versatile in terms of their application, due to their ability to abstract a 

range of input variables to multiple desired outputs. The presented work sought to 

demonstrate the application of neural networks within the context of manufacturing systems, 

both in terms of identification and development of the algorithms themselves, and 

appropriately modelling the operations, scenarios, and interactions, in such a way as to enable 

effective learning.  

From the perspective of neural network development, there were two key aspects to the 

question covering two different applications. The first, focused on developing a neural 

network model to predict the impact on task performance of several human factors, identified 

from the literature (see section 2.5), and anecdotal human experience. Development of 

effective machine learning methods to realise CPS’s behaviours is a key challenge in their 
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realisation (Monostori, 2014; Spezzano and Vinci, 2015), and the work contributes largely in 

this area. The presented methodology provides enables the identification of relevant human 

factors within these interactions, and how to capture and construct this information to enable 

a neural network to make accurate predictions of their influence on human behaviour. The 

results presented in Figures.20 & 21 illustrate that networks lacking in complexity are able to 

achieve a good level of predictive accuracy, in terms of this variation. This has important 

applications in terms of predictive analysis and modelling of human-involved systems, as 

there are limited methods to provide effective modelling of the variable and random aspects 

of human task performance. Furthermore, the ability of the network to effectively analyse 

contextual and environmental factors enables modelling and prediction in unknown scenarios 

and in instances where continuous monitoring is not a possibility.  

The second of the key aspects concerning the application of intelligence is the 

application of a Q-learning approach to the control problem concerned with reducing the 

performance disparity and consequently improving the human-robot-interactions. Use of 

neural networks as value-estimators in Q-learning has been well documented in various 

domains, both theoretical and practical, as discussed extensively in the literature review of 

this work (Watkins and Dayan, 1992; Mnih et al., 2013; van Otterlo and Wiering, 2012; 

Sutton and Barto, 1998), and the presented solution supports the hypothesis that the approach 

may prove useful in terms of enabling intelligent manufacturing and its constituent 

technologies to be realised. Achieving this required the development of a neural network, and 

method for implementing this algorithm within the interaction environment, in such a way as 

to effectively train it using an MDP. The developed methodology provides a validated 

process to define the appropriate observations, and appropriately discretise a robotic 

operators action space, to enable the network to learn an appropriate behavioural policy.  
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This is supported by the initial development and training of the intelligent agent, 

illustrated in Figure.22, which demonstrates that in terms of cumulative reward, the approach 

enables the agents to effectively learn a policy to maximise their scores within the simulated 

process. The absolute value of these scores is arbitrary, and dependant on the values chosen 

for the application, but the distribution of how they are earned over time is important to 

assess the efficacy and learning of the network. The pattern of these scores follows that 

expected following an approach leveraging epsilon decay during training, which the results 

lend further support to the efficacy of. The scores can be seen to have an initially random 

distribution, as the initially high epsilon value encourages exploration of the state space. 

These scores can be seen to converge over time to a consistent value, as the network learns 

optimal actions for observed states, and the epsilon value decreases, passing more control to 

the network. This pattern in the distribution of these scores over time is indicative of 

sufficient optimisation and is repeated over most of the other applications tested, lending 

weight to the robustness of the approach in terms of learning an effective behavioural policy. 

The neural network converges to a solution in the majority of applications, and generally less 

complex network architectures can be seen to lead to more stable learning performance.  

 These remain variations in the DQN scores could be further refined through additional 

training or may well be the result of the constraints imposed by the system dynamics; this 

concept is discussed further in the context of training the neural network algorithm to 

collaborate with two human operators.  

In addition, the work establishes a method for providing rewards in such an 

environment, which is crucial in enabling an effective learning policy to be established. This 

is highlighted by the evaluation of the different reward structures (illustrated in Figure.24), 

which shows a significant disparity in the performance of the neural networks between the 

penalty and scaled approaches. The use of penalty-based rewards is optimal in terms of 
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developing a robust and effective solution within this application, (and indeed in a repeatable 

environment in general, whereby each state is similar to the previous one), and this work 

provides good evidence for the use of a fixed reward, penalty-based policy for generating 

rewards to facilitate improving these interactions. In a penalty-based policy, the rewards 

received on transitioning to a state will be similar in terms of value, and it is unlikely that one 

state will directly lead to a much more valuable future state. The opposite is true for the 

scaled policy, where the received reward becomes exponential as the performance disparity 

approaches zero. Furthermore, the almost irrelevance of the gamma parameter, and 

consequently the neural networks ability to predict the rewards of future states, is also likely 

due to the stability of the received rewards when utilising the penalty approach.  

The robustness of the developed networks is evaluated by assessing the agent’s 

performance over several tasks, with varied constraints. The results for the initial system-

level evaluation presented in Figure.28 illustrates that the Agent is able to determine an 

optimal policy with respect to the received rewards and that this policy remains consistent 

policy across various scenarios. The results in Figure.25 explore this in terms of the 

interacting influence of human factors, and this is further supported by the following 

experiments, which demonstrate the convergence of multiple potential network 

configurations over a wide variety of constraints and interactions, further demonstrating the 

general resilience of the intelligent agent to variations in its goals and the constraints imposed 

by the specific task. This is perhaps best supported by Figure.26, which provides a deliberate 

stress test in the form of increased production demand and highlights the networks ability to 

learn a policy which represents a balance of the demands placed on it.   

The results also allow additional conclusions to be drawn concerning the network 

structure, which demonstrably has a significant impact on the training and accuracy of both 

the analytical and decision-making networks. Throughout the experimental phase of the 
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research, an effort was made where appropriate, to compare existing optimal network 

structures in new scenarios, to establish the generalisability of individual network structures. 

This was inspired by the aforementioned work on embodiment (Young et al., 2011; Hoffman, 

2012), which suggests that unique behavioural policies may emerge from identical learning 

processes, given different cumulative experiences. Generally speaking, the findings presented 

support this theory to the extent that whilst some network structures are able to find a 

solution in multiple domains (namely, the 5 hidden-node, 1 hidden-layer configuration), there 

is almost always a bespoke combination of hidden nodes and layers which results in the best 

performance.  It is also interesting that the best generally performing network architecture 

was, by contemporary standards, a simple model, containing only a single hidden layer. This 

may indicate that the network is overfitting to the training data, however, performance in 

previously unseen environments is generally good, and the resultant policies lead to an 

observable improvement in the key metrics, suggesting this is not the case. Regardless, this 

represents an opportunity moving forward, to expand the scope of the work and capabilities 

of the intelligent agent by incorporating more advanced network architectures.   

Further work on more advanced network architectures should enable increasingly 

accurate and capable models to be developed, in line with more demanding learning tasks 

(Gu et al., 2018; Kusiak, 2019; Chen, Ying and Laird, 2016). This includes investigations to 

explore the strengths of different network architectures designed to provide higher-level 

analytical processing, including convolutional networks, to enable information to be 

extracted from visual systems, and recurrent networks, which enable a short term memory, 

enabling the network to more accurately determine temporal patterns, with particular 

relevance to sequential processes, typical of manufacturing. Consequently, as proposed by 

many of the established cognitive architectures (Laird, 2012; Isla et al., 2001; Modha et al., 

2011), and given the evidence presented in this work in Section 7.3.2, such an approach is 
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well suited to implementation in a modular fashion. It is further hypothesised that future 

approaches may build on the principles of combining multiple networks established in this 

work, to account for, and enable other intelligent functions, such as analytical thinking, 

memory, and perception, by leveraging these novel network architectures, in the decision-

making process. 

Generally, increasing the depth of the neural network in most applications resulted in 

no appreciable gain in either training performance or predictive accuracy, and in many cases 

resulted in a decreasing in the stability of training, and increased computational cost. These 

findings support the applicability of the approach, in terms of being computationally 

efficient, which represents a key consideration in distributed computing and control. 

Together, this evidence suggests that the network structure is the crucial factor in enabling 

intelligent data processing and that for most applications, bespoke development of learning 

models will be required, dependent on the process modelling, and the available dataset, its 

contents and structure.  

As such, it can be concluded that the developed networks have an inherent degree of 

robustness and generalisability in terms of variation in the application, and the constraints of 

individual applications and scenarios. This research adds to the existing body of work in the 

area from the perspective of applying neural networks to real-world problems, and similarly 

proposes a novel solution to an unaddressed issue within intelligent manufacturing, by 

utilising a demonstrably capable method from other domains.  

The application-specific nature of developing optimal solutions for a machine learning 

problem necessitates a certain level of iterative development to identify network structures 

capable of accurate and reliable prediction. This process has been well documented in this 

case, and whilst the presented neural networks can be producing accurate predictions and 

learn appropriate action policies, there remain sources of inaccuracy and instability 
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throughout the application of these methods. Such inaccuracies are likely to be exacerbated 

by the challenges and factors associated with the application to real-world processes, and the 

processing of real-world data, with all of the noise, missing values, and additional 

randomness associated with human beings to account for.  

The parameterisation of real human performance and the use of simulation models 

incorporating this parameterisation method to model human performance provide an 

exploration of the impact that the increased variation and noise introduced by real data has on 

the training process and the neural network's predictive ability. The results presented for this 

case in Figure.30 suggest that whilst there is a moderate decrease in training stability between 

iterations, the agent is still able to resolve to an optimal behavioural solution, which again 

lends evidence to the robustness of the approach in terms of overcoming these challenges, 

and consequently, its validity in terms of applying intelligent processing to a real-world 

application.  

To answer the identified questions, the findings of this work suggest that neural 

networks have considerable scope for application to decentralised robotic control systems, 

intending to provide them with adaptable behaviour. They represent a robust solution, and 

whilst a certain degree of bespoke development and optimisation is required, the work 

presents an effective and robust approach to applying these methods to existing systems and 

realising these benefits.  

 

 Human-Robot-Interaction 

This section discusses the findings of this work with respect to the first of the identified 

research questions, regarding the understanding of the interactions between robots and their 

human counterparts from the perspective of manufacturing. The body of this work has been 

focused on the application of intelligent methods to facilitate these interactions and have 
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primarily developed additional insight that is useful and relevant to this field, but the work 

also has implications for the wider field on understanding these interactions as they exist 

within this context. Primarily, the work presents a case which contrasts the existing 

prevailing applications within the documented examples, where the focus typically exists in 

terms of direct interactions (see section 2.4), and the leveraging intelligence to provide 

physically collaborative actions, such a coordinating with, and aiding or learning from human 

motion, either in terms of supporting human labour, or capturing the fidelity and flexibility of 

movement. The presented approach proposes a novel application in terms of facilitating 

interactions which occur between humans and robots, on the passive level. This solution can 

leverage knowledge of its collaborators' performance to inform behaviour in robotic 

operators within the manufacturing context. The ability to respond to changes in the 

behaviour of others is a key ability in terms of enabling collaborative behaviours in 

interactions with others, and extension of this ability to make use of contextual information 

furthers the scope of work in this area. Specifically, the adaptability is used in this 

application, to reduce the disparity in performance between robots and their human 

collaborators, that arises from the variation in between both individuals and as a result of 

various factors which influence human performance. 

This approach extends work in the field of social cognition, and through the developed 

cognitive architecture, provides a novel method for implementing knowledge of a 

collaborator in the form of the intelligent agent. In addition to providing an implementation 

of a collaborative system, the findings of this work provide higher level knowledge on how to 

facilitate social cognition within robotics, at the larger level, and across applications. The 

demonstrated success of the approach supports the use of cognitive architectures, and the 

proposed framework and methodology, as discussed, building on many of the established 

concepts within enabling social behaviours (Wiltshire, Barber and Fiore, 2013; Wiltshire et 
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al., 2016; Lemaignan et al., 2017). The approach reinforces the use of modularisation as a 

general tool to discretise different areas of cognition and enable them to interact effectively. 

This is best demonstrated in the work, from the results presented in Figure.31, which 

documents the training of the intelligent agent using a separate network to make predictions 

about human performance. This importantly leads to equivalent performance as in the case of 

making direct observations and has implications from an implantation perspective, including 

data-monitoring, which will be covered later, but also explores the efficacy of isolating 

individual neural networks to perform different aspects of cognition.  

Further to this, the work provides evidence that supports the links between many 

concepts of cognitive processing and distributed control. Notably, the similarity in modelling 

between human agents from a cognitive perspective, and learning agents acting within an 

environment. There are key parallels between the Theory of Mind (Goldman, 2012; Baker 

and Tenenbaum, 2014) which determines how humans perceive and act in response to an 

environment, and how agents perform a Markov Decision Process, and the constituent data 

processing steps involved. These similarities were initially hypothesised to facilitate a 

distributed approach in terms of enabling social cognition, due to these similarities in 

information processing, and the findings of this work support this hypothesis.  

Relating specifically to the key findings and contributions concerning human robot-

interaction as it occurs within manufacturing processes, there is clear evidence that enabling 

robotic operators to intelligently process and respond to observations can improve robotic 

adaptability. This adaptability can be extended to improve the fluency of the interaction 

between robots and their human counterparts in the manufacturing case, through a reduction 

in the disparity in task performance, resultantly minimising the impact of human performance 

variation at the system level. As such, the application of intelligence to human-machine 

interaction in this way contributes to knowledge that is vital in the current manufacturing 
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contexts, as robotic elements become more intelligent and capable; and the potential number 

of opportunities for them to interact with humans continues to grow (Hoffman, 2013; Wang, 

Törngren and Onori, 2015). 

Methodologies such as that presented are further required to effectively model and 

processing information in these interactions, are essential to develop, in addition to the 

technological capability to do so. With respect to the human element of these process, this 

work extends the current field in terms of developing a novel approach to modelling the 

human elements of these systems, in such a way as to account for various human factors 

which are often overlooked from a process engineering perspective (see section 2.5). 

Furthermore, the approach also considers the capture of profiles of performance of real 

operators, in such a way as to enable more representative modelling, which has significant 

implications for cases where full digitalisation is not possible, alongside the larger questions 

of data privacy as a whole.  

In terms of efficacy and the potential for implementation, the presented approach can 

be seen to effectively reduce this performance disparity between a robotic operator and its 

human colleagues; and this capability is repeatable over a varied set of scenarios and 

constraints. The improved fluency of these interactions provides benefits from a process 

engineering perspective, alongside softer benefits from a human management perspective for 

the human operators, including reduced levels of stress and a greater degree of trust with their 

robotic collaborators (Romero et al., 2016; Hancock et al., 2011; Hoffman, 2013; Lohani et 

al., 2016).  

The presented results (specifically in the case of using profiled operator behaviours) 

demonstrate general robustness of the approach in terms of handling real human variation, 

and the approach has good generalisability in terms of developing a solution. Further to this, 

the developed agents achieve consistent performance across both these data-driven cases and 
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the others, supporting the assumptions made in the simulation model and improving the 

validity of the approach. These factors suggest the approach may go some way towards 

overcoming the challenges associated with robotic systems interacting with humans in the 

real world. However, the dynamics of human behaviour can still be seen to cause issues for 

the developed agents, especially when the task extends to multiple collaborators. The two-

human configuration shows considerably less convergence to a solution to any of the other 

simulated interactions. This is potentially the result of the increased complexity, in terms of 

both the observation space of the agent, and the increased number of potential penalties, but it 

may also again be the result of the interaction itself. The disparity between humans and their 

robotic counterparts is the focus of the intelligent agent, but the disparity between the two 

human operators may be of a range large enough that an optimal solution does not exist to 

average this disparity and reduce the observed idle times. (i.e. disparity is large enough that 

changes to suit one human immediately results in penalties from the other, and vice versa. In 

such a scenario, the convergence of the network is unlikely).  

As the individual operator is unable to affect the human task performance, the disparity 

between the two collaborators is out of its control. However, human beings do have a natural 

instinct for reducing performance disparity, which is not factored into the modelling within 

this application. This is an ability that has not yet been formally studied but is best thought of 

in terms of trying to pass many items between yourself and another. It does not take long for 

a natural rhythm to form between two human individuals.  With a greater understanding of 

this phenomenon, agent behaviour may be further improved in terms of minimising 

performance disparity, with multiple human collaborators.  

The results support the author's hypothesis that such adaptability, leads to reduced 

performance disparity between operators within manufacturing scenarios, can be said to 

improve the fluency of these interactions. The findings provide significant contributions in 
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terms of the design of intelligent systems capable of social intelligence, demonstrating a level 

of adaptability to variation in the behaviour of others. Although the results are promising, the 

reliance of many of these techniques on continuous data collection poses unique issues where 

these systems extend to human-machine interaction 

 

9.3.1. Ethical Use of Human Data 

This section deals with perhaps, what is in my opinion, perhaps the most insightful 

contribution of this work. The work presented so far presents a novel solution to a problem, 

in such a way that may enable the realisation of tangible benefits, however, in its completion, 

it has posed a question that extends far beyond the scope and ambition of this work. This 

question is asked in light of questions and events in the economic and geopolitical climate of 

the last few years, surrounding the privacy and ethical use of collected data, and how it 

relates to human beings. These questions highlight larger issues, and their consequent 

application within the scope of this work, in terms of the responsibility and rights that lie with 

companies, and which with the individuals, when dealing with human data should be 

addressed. This section is not intended to be overlong, but it is important to establish the 

appropriate considerations so far external to the scope of this work and appropriately 

contextualise the issue, as to how it relates to the findings presented thus far. 

It is perhaps most appropriate, to frame this in the context of a pop culture reference: 

“Your scientists were too busy wondering whether they could to stop and think about whether 

they should” (Spielberg, 1993), succinctly, whilst this work has presented a method by which 

to leverage benefit from the monitoring of human performance, it has simultaneously raised 

questions regarding the nature of these technologies in general, in terms of their relationships 

with humans, and the consequences of this fact. The discussion that follows aims to highlight 

the potential issues that the collection and analysis of data on such a scale and at this level of 



 139 

fidelity creates, and ultimately, to encourage discussion of these points before these systems 

become commonplace. 

The information age has led to collection and analysis of data becoming essential to the 

function of modern society, and yet the social, political, and economic effects and 

opportunities for exploitation of national and international systems of mass surveillance 

remain poorly understood. These opportunities for wealth creation stem from the realisation 

that personal data exists as a product, which can be bought, sold, and manipulated to create 

revenue in such a way that draw enables parallels to be drawn with traditional capitalist 

models. This has resulted in a new economic logic based on behavioural prediction and 

modification,  termed Surveillance Capitalism, and described in the words of its architect, as: 

"A new economic order that claims human experience as free-market raw materials for 

hidden commercial practice of extradition, prediction, and sales." (Zuboff, 2015; Zuboff, 

2019). The work ultimately suggests that these practices present as great a threat to human 

nature itself, as industrial capitalism does to the environment. 

The use of human-data as a resource has been leveraged to a huge extent not only 

within the context of manufacturing (where it proves useful in the refinement of existing 

processes, and the creation of entirely new, innovative revenue streams (Srnicek, 2017)) but 

across a wide variety of different domains. Until recently, it was easy to dismiss the more 

existential threats of this paradigm, as the development of these technologies and the 

emergence of systems built on data have improved individual lives in many ways, including 

real-time traffic data and logistics information extracted from mobile phone locations (Shaw, 

Tsou and Ye, 2016; Guido et al., 2017), and personalised shopping and media 

recommendations based on an individual’s previous purchase, behaviours, and more recently, 

modelled preferences (Hallinan and Striphas, 2016). 
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The issue is that industry and consumer behaviour is now governed by these paradigms, 

with impacts that extend to the societal and cultural levels, with firms able to adopt these new 

practises becoming household names (Netflix, Amazon, etc.) at the expense of their 

competitors, further propagating these practices. The pervasive nature of these service has, 

however, reached a tipping point where it feels noticeably uncomfortable to many. There is 

much discussion, both published (Nichols, 2018; Kleinman, 2016), and anecdotally, 

concerning the practice of analysing audio data collected by the microphone inside mobile 

phones. This data enables key words and information to be extracted, through the use of 

Natural-Language-Processing (NLP), which is either used directly or sold to third parties for 

the purposes of advertising.  

These concerns are further exacerbated, by the political and societal debates occurring 

on a global scale surrounding the fair and ethical use of data, and the rights of individuals to 

privacy. It is a controversial topic at the heart of several recent news scandals, involving 

significant geopolitical events. One of the more notable examples is the Cambridge Analytica 

scandal (Cadwalladr and Graham-Harrison, 2018; Isaak and Hanna, 2018), which brought 

into the public consciousness, and awareness of how pervasive the monitoring and profiling 

of individuals for commercial use has become, and importantly how targeting individuals 

based on the knowledge extracted from their personal data enables human behaviours to be 

manipulated at scale.  The activities of Cambridge Analytica were a stark demonstration of 

how personal data can be used to manipulate behaviour at scale comes with potentially long-

lasting very serious implications, including high profile political events, including the 2016 

Presidential elections, and the highly controversial Brexit Referendum the same year, the 

effects of which are to be felt on a global scale at all levels for decades to come.  

This example is more of an exception than a rule, but it sets a precedent for the 

appropriate use of human data in other areas (especially within a few certain domains), where 
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issues can already be seen to be emerging concerning how employers monitor and make 

decisions based on the behaviour of their employees. 

 A notable example of this can be seen within the US trucking industry, where the 

move to the use of Electronic Logging Devices (ELD’s) in place of conventional analogue 

methods to monitor the work schedule and task completion. The case raises some interesting 

points regarding the efficacy of monitoring and data-based enforcement, specifically where it 

restricts their autonomy. The use of ELD's has the potential to cause issues as tight working 

regulations exist regarding the time spend driving versus sleeping. Such regulations exist 

within logistics industries on an almost global scale, but such issues are particularly acute in 

the US, where distances are vast, and shifts often last several days. American truckers often 

live within the confines of their vehicles, travelling with family and pets, and as a 

consequence, are affected to a far greater degree by workplace surveillance than most 

employees.   

Drivers argue that the use of external devices to monitor and determine the behaviours, 

overriding and restrict their autonomy, and often introduces inefficiencies into their working 

patterns, which leave all parties involved are worse off. Drivers may find themselves a mile 

from their destination and have their vehicle remotely shut down and a rest period enforced 

even when their assessment of the safety of the situation suggests they are fit to drive the 

remaining mile. The consequences of this scenario being a decrease in the overall 

productivity of logistics systems, as a result of delivery delays, liability for overtime 

payments, and decreased quality of life for the drivers. This case is not alone, but perfectly 

illustrates one of the key issues in terms of misapplication of surveillance in terms of 

removing autonomy from individuals, and making decisions based on poor, or incomplete 

models, which fail to account for the situational context (Vox, 2017; Levy, 2015) 
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This discussion covers a small number of examples but stands to make the point that 

the collision between the competing ideologies of the human for advancement through 

technology, and the human desire for privacy which exists in the information age is becoming 

increasingly relevant. This is an eminently human dilemma, that arises from a societal shift 

away from humanist ideals, whereby human experience ascribes meaning and value to 

objects and events, to ideals based on the concept of dataism, which reduces the development 

of human consciousness to algorithmic processes, and indeed the nature of the universe to 

flows of information. These ideals propose, that algorithms are inherently more capable than 

human beings, and consequently, the valuable actions are those which contribute in the 

greatest terms, to these dataflows, and the knowledge and wisdom that can be drawn from 

them. How we reconcile these new ideals This can be argued either as a threat to humanity or 

simply the natural next stage of our evolution as a species. For an excellent discussion on the 

emergence of see (Harari, 2014).  

Strong arguments exist on both sides of this division, the degree to which employers 

have a right to monitor their employee’s vs the right employees have to privacy is an ongoing 

argument, as evidenced by an extensive body of literature on the topic (Martin and Freeman, 

2003; Ciocchetti, 2011). These issues are made more urgent, by the ongoing societal 

discussion of personal privacy, which is bringing attention to the ethical and legal 

responsibilities of corporations and governments with respect to the responsible handling of 

this data. From a legal perspective, in most major jurisdictions, the employer is entitled to 

collect and process whatever data they deem relevant to their business operations, and such 

protections are necessary, with benefits to both employers and employees, in terms of work 

being successfully completed. Indeed, the presented works aimed to leverage machine 

learning in the monitoring and analysis of variations in human task performance, with the 

intentions of using this information to provide tangible benefits to both the process and 
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human beings involved. The benefits, as discussed ad nauseam up to this point, that the 

capture and processing of this data enables are extensive, and it hard to deny from the 

perspective of the greater good, that restrictions should limit the application of these 

technologies within a business setting.  

These issues were particularly acute in terms of the application considered in this work. 

A significant part of enabling the use of intelligent agents in such a way involved capturing a 

dataset upon which a variety of learning algorithms could be trained, to identify changes in 

performance and appropriate actions to interact in a socially cognitive manner. The collection 

and compilation of the human task performance data, necessitated in this case, highlights the 

other side of this argument, and these issues are further amplified in cases such as these, 

where the data collection may enable identification of individuals, as opposed to monitoring 

average process outputs and statistics.  

 Data that identifies individuals introduces significant culpability for sub-optimal 

performance, as individuals are now minutely for their actions where the actual responsibility 

may lay elsewhere, and potentially retroactively in light of changing rules or context. 

Furthermore, it introduces the potential for biases and incomplete or incorrect knowledge to 

be incorporated autonomously into decision-making processes which may unfairly (and 

unintentionally) penalise specific individuals. This may be the case when minimal efforts are 

made understand the dynamics and variations of these processes, whether this is between 

individuals or conditions, and how this is reflected in the collected data, to avoid this data 

being used partially, or out of context.  

This has considerable implications in terms of the implementation of intelligent 

manufacturing, in particular Cyber-Physical-Systems based approaches, as many are reliant 

on collecting, storing, and processing data at high and frequency and fidelity, to achieve the 

necessary accuracy of prediction and decision-making. These processes, in turn, generate 
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profiles of employee performance which may be continuous profiles of uncontextualised data 

for each individual describing their performance, where these systems contain human 

elements. Whilst there is a valid argument to be made that this is necessary to realise the 

benefits of learning-based and digital modelling-based approaches, this is an issue for the 

aforementioned reasons, as this data may be misinterpreted either maliciously or 

unintentionally, without the relevant context, making it difficult to determine the causality of 

any effects which may be observed. The presented work makes steps towards addressing 

some of the issues highlighted in this section, in terms of developing a method capture 

variation in human performance at the individual level and enable effective simulation 

models and intelligent agents which are non-reliant on constant monitoring and resulting in 

no lasting profile.  

The argument, in essence, is one of Utilitarianism vs Kantianism. In terms of how one 

should behave, if the issue is considered from the perspective of the former, then the 

employer should maximise their utility by using the data that they have available if it will 

lead to improved productivity, the counterargument holds that intervention is not justified by 

the means if it comes at the expense of the rights of another individual.  This discussion is not 

intended to reduce this argument to a debate on the level of Philosophy (Although, for an 

excellent example of the comparison of these two philosophies, in terms of how they 

influence decision-making in terms of morality, see (Sachdev, 2017), or Ethics (Likewise, for 

an interesting study concerning the nature of accountability in terms of the behaviour of 

autonomous cars, where the consequences can quite literally be life or death, see 

moralmachine.mit.edu, (MIT Media Lab, 2020) for some interesting social and technical 

research in the area). 

To surmise, the modern data-driven economy promises many technologies once 

relegated to the realms of science fiction, alongside pragmatic improvements to everyday life, 
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including more efficient and sustainable processes, seamless interactions with machines and 

intelligent systems, improved infrastructure, transport, and medical care, greater choice and 

customisation, and entirely new products and experiences. The cost of many of these 

technologies, however, is the mass collection analysis of personal data, and the demand for 

and development of datasets of an increasingly high fidelity invites numerous questions about 

the fair and ethical use of this data; and the extent to which it will be tolerated before it 

becomes an invasion of privacy at the societal scale.  

In more recent days, this question has been brought even further to attention, with the 

rise of the threat of Deepfakes, made using technologies very similar to those leveraged in 

this work, to reconstruct the frames of video footage based on existing personal image and 

audio data, to replace elements, such as an individual’s face and voice. Such technology has 

the potential to disrupt the notion of identity itself, whereby convincing footage can be 

produced by remote and unknown individuals based on data representations of their voice 

and likeness. This footage can present any individual doing and saying anything, anywhere, 

which is a scenario with potentially devastating consequences, if leveraged by the wrong 

individual for the wrong reasons (Güera and Delp, 2018; Meskimen, 2019). This raises 

significant issues from the perspective of personal data privacy, as it additionally poses 

questions as to whether individuals own the rights to their personal features. This issue is 

perhaps most acute as in the case of the example provided, whereby some of the individuals 

represented are unfortunately deceased. In these cases, individuals have no way to give 

permissions for their likeness to be used, and no recourse if it is, for potentially disagreeable 

purposes.  

These questions are beginning to emerge into the collective awareness, although the 

issue remains one of a conflict of two ideals, which is likely to affect and influence people in 

unpredictable and yet quintessentially human ways. This remains uncharted territory, and 
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there is no procedure or process to design or validate such systems or to be sure that they are 

making evaluations based on models based on appropriate information, assumptions, and 

goals. At a personal level, the significant discovery on completion of this work, is the 

realisation that significant and thorough reflections are necessary as a culture, to establish the 

limits and responsibilities of these technologies. It is hoped that this work will encourage this 

reflection and further insight in the near future.   
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10.  Contributions, Conclusions & Reflections 

The final chapter of this work outlines the key findings and contributions of the research, 

along with the main conclusions drawn and some personal reflections on the project as a 

whole. Each of the sections aims to reconcile the multiple points presented and provide 

context of the research in order to appropriately evaluate the contributions of the work, and to 

draw conclusions from the results and the process of obtaining them. This research has been 

motivated at large, by a scenario which whilst still in its infancy, and becoming increasingly 

prevalent, whereby robots and humans coexist and interact with one another at the individual 

level. This is especially relevant in the case of manufacturing, which has long been an early 

adopter of automation, as the industry is frequently exposed to issues experienced by early 

adopters of new technologies. 

 

 Contributions 

This section outlines the key contributions of this work with respect to the research questions 

and their motivations at the start of this project. Primarily, the fundamental contribution of 

this work is formed by the development, testing, and validation of the methodology to 

discretise, and representatively simulate a human-robot-interaction, both in terms of human 

task performance modelling and the design of the systems dynamics, to enable the 

application of a reinforcement learning approach to implement behavioural adaptability. The 

work presents one of the first comprehensive methodologies to realise intelligent agents 

capable of enabling robotic systems to behave in a way that is autonomously adaptable, and 

to leverage this adaptability under the principles outlined by concepts such as CPS’s and 

Industry 4.0 to improve manufacturing processes. The method developed to do so, is 

supported by a codebase, which extend the capabilities of a deep learning library, to provide 

the relevant software agents and elements necessary for them to be implemented, both in a 
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simulated environment for experimentation and analysis, and with the development of 

suitable data input/output API’s, in practice. The work does not provide a one-size-fits-all 

solution, as the potential scope for application presents almost limitless variation. However, 

the presented case-study application of the methodology to a representative real-world task 

demonstrates the potential for application and how it may be used to realise tangible benefits 

within these processes.  

The central findings of this work firstly provide insight into how to effectively capture 

and model the performance variation of human beings, and how to suitability generalise 

manufacturing processes in such a way as to enable effective simulation of these interactions; 

concurrent with a robust method for doing so in such a way as to facilitate the use of 

intelligent software agents. This is crucial in enabling the use of these technologies, by 

providing an appropriate platform for the work to explore the application and development of 

the relevant neural networks, which the findings demonstrate to be capable of achieving 

accurate predictions in terms of variable performance and state values. The extension to the 

consideration of human factors which influence performance within modelled processes also 

represents an alternative and more detailed approach than contemporary work. As such, a 

reinforcement learning approach has been demonstrated to enable intelligent software agents, 

to evaluate their observed environments and develop action policies to achieve their aims. 

Furthermore, work provides a number of theoretical insights into other areas, with the 

approach validating several assumptions from existing work, including concepts from 

cognitive processing, such as the benefits of modularisation in terms of isolating elements of 

processing, and the efficacy of embodiment in terms of improving the versatility of 

intelligent agents. The approach also provides an important application in terms of enabling 

social intelligence, by demonstrating that intelligent agents can facilitate the coordination of 

actions with others at a behavioural level. Whilst not necessarily conclusive, the results 
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further support the idea that leveraging the similarity between neural networks and the way 

they process and learn from representations and human thought processes is a factor in their 

success in this application.  

 

 Conclusions 

This section outlines the key findings of the work with respect to the identified research 

questions. Despite the intense focus on leveraging intelligent technologies within the 

manufacturing field, this work covers a niche problem, that has been somewhat overlooked 

by the existing fields of process engineering and the novel field emerging under the concept 

of intelligent manufacturing. The work aimed to reconcile many different approaches to 

develop understanding in terms of how interactions occur between humans and the robotic 

colleagues in these scenarios and to develop an application of these technologies. This was to 

facilitate collaborative and intelligent behaviours in these robots, through adaptations to their 

existing routines. This posed questions in terms of understanding how to effectively capture 

and model human performance variation, and contextual information to enable these 

behaviours, along with the how improving these interactions may improve manufacturing 

processes; the applicability and development of a neural network-based approach to 

analysing this data, with respect to how to structure these networks to generate the required 

knowledge and perform to an appropriate level of accuracy; and the effective implementation 

of these leaning techniques, making use of decentralised control, to develop a policy for 

determining appropriate adaptable behaviours through reinforcement learning to achieve a 

goal. Together, these questions extend the domain of human-robot-interaction and 

collaborative robotics to encompass a new range of interactions. 

Whilst, in this case, these goals were focused on reducing performance disparity, the 

design of the approach was intended to enable generalisation to networks structured to 
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analyse whichever data points are relevant to the application at hand. The general versatility 

of the approach illustrated in the results of this work support this approach with respect to 

this generalisability and robustness.  

The consequences of this are considerable, as the presented solution suggests that even 

simplistic implementations of intelligence following the approach of decentralisation can 

make appropriate predictions and decisions in real-time, to provide tangible benefits to 

manufacturing systems. This has importance in terms of realising benefits in terms of 

efficiency and productivity in manufacturing but also suggests that the approach has the 

potential to be greatly expanded into numerous applications, and further enhanced in terms of 

accuracy and capability.   

In addition to providing insight into the application of reinforcement learning and the 

development process for these algorithms concerning discretisable problems such as the one 

presented, the findings have a significant application in a more tangible and immediate sense, 

in terms of realisable benefits to the manufacturing industry. The use of intelligent agents in 

the proposed way can be seen across many of the evaluations, to lead to behavioural policies 

that reduced the observed idle time of both operators. The benefits of this are obvious in 

terms of cost and time savings to the company and provide a method for enabling more lean 

process operation. Additionally, however, the use of socially intelligent robots has significant 

benefits for their human counterparts, both pragmatic, by improving working conditions in 

terms of through stability and personalisation; but also, soft benefits, as receptive behaviours 

are conducive to building trust between individuals. These benefits contribute to reducing 

stress and building acceptance of intelligent machines. 

The main limitation of the approach emerges from these evaluations, however, and it is 

the assumption that whilst appropriate care has been taken to build models that are 

representative, and inform their design and function with representative data, there is no 
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validation process for the approach, and the findings rely on many of the assumptions being 

correct. The demonstrable robustness of the approach offsets these concerns somewhat in 

terms of the approaches general validity and are somewhat further alleviated by considering 

another key insight of the work; whereby, optimal solutions for the structure and operations 

of these agents is likely to require application-specific development.  

As discussed previously, the field of computational intelligence has seen an astonishing 

rate of improvement, even throughout the duration of this research. In part, this is due to 

increased accessibility to the necessary hardware and software, required to develop these 

systems. This is likely to further facilitate the development and implementation of intelligent 

agents, and the work contributes further in this area, through the development of a 

methodology and software tools, to enable experimentation with intelligent agents, in a 

customisable simulation environment. The work addresses several of the numerous 

challenges that the implementation of such systems in real-world applications presents. These 

include the aforementioned issues with validating these systems, but also the challenges of 

dealing with human data, including the noise and true randomness that only events subject to 

the chaos of the real world can provide. The work takes steps towards this but falls short of 

utilising a fully data-driven approach, both in terms of the technical challenge, but the ethical 

one also.  

 

 Reflections 

This final section addresses some of the more personal reflections on this work as a whole, 

and the results and their implication. Foremost, the work has been completed during a period 

of time characterised by an unmatched rate of technological progress. At the outset, the 

technologies utilised within this work were still relatively primitive, and yet by the end, their 

capabilities, and importantly, the availability of access and understanding of these tools and 
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techniques, already far exceed the expectations and anticipated capabilities of this approach. 

As such, the current state of the art of these techniques at the point of finishing this work far 

exceed those exhibited within it, and the potential for intelligent agents to be leveraged in the 

context explored currently far exceeds what is covered. Such is the nature of applying 

contemporary computer science. That said, and in my opinion, the presented method is quite 

capable of enabling a level of collaboration between robotic operators, and their human 

counterparts, which has realisable benefits over existing monitoring and control systems, at 

the process and human level. One aspect worth discussing in terms of the experience gained 

during the completion of this work, is the skill of knowing where the relevant boundaries of 

the project lie. This was especially relevant in this case, with almost unlimited scope in terms 

of choice of learning methods, it was necessary to concentrate on developing a robust 

modelling methodology and software implementation, capable of providing foundations for 

expansion in terms of intelligence, as new methods and techniques continue to be realised.  

As mentioned previously, the presented methodology stops short of implementing a 

fully data-driven approach to modelling. In part, this is the result of one of the larger insights, 

in terms of how human data should be used, not just in the context of the manufacturing 

industry, but at all levels of society. How is personal data defined? What rights do individuals 

have to their personal data? How do these rights coexist, with the moral and economic 

counterview of industry? This work represents a small portion of a much larger and multi-

disciplinary field, focused on leveraging the benefits that data-driven systems can provide. 

The presented solution is one to an even smaller problem still, and yet it is one that I believe 

has significant implications.  
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APPENDICIES 

Appendix.1. Java code of the developed Software Agent 

package org.cardiffuniversity.c1225978; 
 
import au.com.bytecode.opencsv.CSVReader; 
import au.com.bytecode.opencsv.CSVWriter; 
import org.deeplearning4j.nn.api.OptimizationAlgorithm; 
import org.deeplearning4j.nn.conf.MultiLayerConfiguration; 
import org.deeplearning4j.nn.conf.NeuralNetConfiguration; 
import org.deeplearning4j.nn.conf.layers.DenseLayer; 
import org.deeplearning4j.nn.conf.layers.OutputLayer; 
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; 
import org.deeplearning4j.nn.weights.WeightInit; 
import org.deeplearning4j.optimize.listeners.ScoreIterationListener; 
import org.deeplearning4j.rl4j.learning.Learning; 
import org.deeplearning4j.util.ModelSerializer; 
import org.nd4j.linalg.activations.Activation; 
import org.nd4j.linalg.api.ndarray.INDArray; 
import org.nd4j.linalg.factory.Nd4j; 
import org.nd4j.linalg.learning.config.Adam; 
import org.nd4j.linalg.learning.config.RmsProp; 
import org.nd4j.linalg.lossfunctions.LossFunctions; 
import java.io.*; 
import java.util.ArrayList; 
import java.util.List; 
import java.util.concurrent.ThreadLocalRandom; 
 
 
//New instance of class loaded on Anylogic simulation start 
//(Possible multiple instances for multiple operators) 
//Default constructor generates new DQN 
//Param constructor loads previously serialized DQN 
public class SoftwareAgent{ 
 
    //VARIABLES 
    private INDArray Observation; //CurrentState 
    private INDArray Scores; 
    private String Action = "NONE"; //CurrentAction 
    private int action = 0; //placeholder int action 
    private double lastReward; 
    private double cumulativeReward = 0; 
    private double productCount = 0; 
    private double cumulativeIdle = 0; 
    private double OperatorNumber = 1; 
    private int iteration = 0; 
    private String filename = "newAgent"; //save directory 
    private File metadataFile; 
    private File outputFile; 
    private CSVWriter writer; 
    protected MultiLayerNetwork DQN; 
    protected MultiLayerNetwork DQN_TARGET; 
 
    private AnyLogicActionSpace actionSpace = new            
AnyLogicActionSpace("INCREASESPEED", "NEXT ACTION", "DECREASESPEED"); 
     private AnyLogicObservationSpace observationSpace = new 
AnyLogicObservationSpace( 
            "Current CT", 
            "Calculated Target CT", 
            "Collaborative Target CT", 
            "Speed Factor", 
            "Idle Time", 
            "Idle Time CT"); 
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    //Hyperparameters 
    private double gamma = 0.7; 
    private double epsilon = 1; 
    private double epsilon_min = 0.01; 
    private double epsilon_decay = 0.99; 
    boolean LRdecay = false; 
    double LRrate = 0.995; 
    private int memorySize = 10000; 
    private int batchsize = 100; 
    private int numHiddenNodes = 5; 
 
    ///Memory 
    //CircularFifoQueue<Transition<String>> memory = new 
CircularFifoQueue<Transition<String>>(2500); 
    protected ExpReplay memory = new ExpReplay(memorySize, batchsize, 
this.observationSpace.getSize()); 
 
    //Methods Declarations 
    //CONSTRUCTORS 
 
    //Default Constructor 
    public SoftwareAgent() { 
 
        boolean init = false; 
 
        //attempt to load memory 
        //Determines whether to generate new agent 
        try { 
            //Load Model 
            this.DQN = 
ModelSerializer.restoreMultiLayerNetwork(filename+".zip",true); 
            System.out.println("Model Loaded"); 
 
            //Load ExpReplay 
            FileInputStream fin= new FileInputStream (filename+".tmp"); 
            ObjectInputStream ois = new ObjectInputStream(fin); 
            this.memory = (ExpReplay) ois.readObject(); 
            fin.close(); 
            System.out.println("Memory Loaded"); 
            //Set Normalization 
            this.memory.Normalize = true; 
        } catch (IOException e) { 
            System.out.println("Load Error, Check Pathname"); 
            System.out.println(); 
            init = true; 
        } catch (ClassNotFoundException c){ 
            System.out.println("Memory Load Error"); 
            init = true; 
            System.out.println(); 
        } 
        if(init) { 
            //Define DQN Configuration 
            MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() 
               .seed(420) 
               .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) 
               .updater(new Adam(0.0025)) 
               .weightInit(WeightInit.XAVIER) 
               .list() 
               .layer(0, new DenseLayer.Builder() 
                       .nIn(observationSpace.getSize()) 
                       .nOut(numHiddenNodes) 
                       .activation(Activation.RELU) 
                       .build()) 
               .layer(1, new OutputLayer.Builder() 
                       .nIn(numHiddenNodes) 
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                       .nOut(actionSpace.getSize()) 
                       .activation(Activation.IDENTITY) 
                       .lossFunction(LossFunctions.LossFunction.MSE) 
                       .build()) 
               .build(); 
 
            //Define DQN from configuration 
            MultiLayerNetwork model = new MultiLayerNetwork(conf); 
            model.init(); 
            DQN = model.clone(); 
 
            //Set Target DQN 
            DQN_TARGET = model.clone(); 
 
            //Setup data Collection 
            this.iteration=1; 
            String dir = "D:/"+filename+"_data/"; 
            File directory = new File(dir); 
            boolean bool = directory.mkdirs(); 
            System.out.println(dir); 
            this.metadataFile = new File(dir+"metadata.csv"); 
            this.outputFile = new File(dir+String.valueOf(this.iteration)+".csv"); 
            try { 
                FileWriter metadatafile = new FileWriter(this.metadataFile); 
                CSVWriter metadatawriter = new CSVWriter(metadatafile); 
                System.out.println("Metadata File defined"); 
                //add header 
                String[] header =  {"Iteration", 
                        "Cumulative Reward", 
                        "Product Count", 
                        "Total Idle Time", 
                        "Productivity"}; 
                metadatawriter.writeNext(header); 
            } 
            catch(IOException e){ 
                System.out.println("Metatdata File creation failed..."); 
            } 
            //create data file for iteration 
            createDataFile(); 
 
        }else{ 
            //Setup data Collection 
            this.metadataFile = new File("D:/"+filename+"_data/metadata.csv"); 
            try { 
                FileReader inFile = new FileReader(this.metadataFile); 
                CSVReader csvinFile = new CSVReader(inFile); 
                List<String[]> list =csvinFile.readAll(); 
                String[] lastiter = list.get(list.size()-1); 
                this.iteration = Integer.parseInt(lastiter[0]); 
                this.iteration++; 
                inFile.close(); 
            }catch(IOException e) { 
                System.out.println("Metadata Update Failed..."); 
            } 
            //create data file for iteration 
            this.outputFile = new 
File("D:/"+filename+"_data/"+String.valueOf(iteration)+".csv"); 
            createDataFile(); 
 
            //Set Target DQN 
            this.DQN_TARGET = this.DQN.clone(); 
 
            //Implement Learning Rate Decay 
            if(LRdecay){ 
                double lr = DQN.getLearningRate(0); 
                this.DQN.setLearningRate(lr*this.LRrate); 
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            } 
 
            //Implement epsilon decay 
            if(this.epsilon>this.epsilon_min) { 
                for(int j=0;j<this.iteration;j++){ 
                    this.epsilon = this.epsilon*this.epsilon_decay; 
                } 
            } 
        } 
 
    } 
 
 
    //ACT 
    //Returns the action with highest expected reward 
    public int GetMaxAction(INDArray input) { 
        this.Observation = input; 
        double k = Math.random(); 
        if (k < this.epsilon){ 
            int action = this.actionSpace.randomAction(); 
 
            //Sets action and current State on exit. 
            this.Observation = input.dup(); 
            this.Scores = Nd4j.zeros(actionSpace.getSize()); 
            this.action = action; 
            this.Action = this.actionSpace.encode(action); 
            return action; 
        }else{ 
            //Option for normalized inputs: 
            if(this.memory.Normalize = true) { 
   INDArray ninput = (this.memory.NormalizeArray(input); 
                  INDArray output = this.DQN.output(ninput)); 
            } 
     else{ 
             INDArray output = this.DQN.output(input); 
     } 
            this.Scores = output.dup(); 
            int action = Learning.getMaxAction(output); 
 
            //Sets action and current State on exit. 
            this.Observation = input.dup(); 
            this.action = action; 
            this.Action = this.actionSpace.encode(action); 
            return action; 
        } 
    } 
 
 
    //REMEMBER 
    //Store transition into memory fifo queue 
    public void StepReply(INDArray newstate, double reward) { 
        if(this.Action.equals("NONE")){ 
            System.out.println("Invalid Action Pair"); 
            System.out.println("Action: "+ Action); 
        }else { 
            //Create New Transition and store values 
            Transition<String> trans = new Transition< >(); 
            trans.setObservation(Observation); 
            trans.setAction(Action); 
            trans.setReward(reward); 
            trans.setTerminal(false); 
            trans.setNextObservation(newstate); 
            this.memory.store(trans); 
            this.lastReward = reward; 
            this.cumulativeReward+=reward; 
            trainstep(trans); 
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        } 
    } 
 
    //REPLAY 
    //Training step on single transition 
    public void trainstep(Transition<String> step){ 
        //Get values from transition 
        INDArray obs = step.getObservation(); 
        String action = step.getAction(); 
        double rew = step.getReward(); 
        INDArray nextobs = step.getNextObservation(); 
 
        //System.out.println("obs: " + obs); 
        //System.out.println("nextobs:"+ nextobs); 
 
        //get future reward estimates as array from current state 
        //get rewards from next state 
        //next state reward for max action taken at state multiplied by gamma 
        //above value supplants prediction from state in array 
        //this INDArray used to train as label 
        INDArray target = this.DQN_TARGET.output(obs); 
        INDArray target_future = this.DQN_TARGET.output(nextobs); 
 
        //Get max reward at s+1 
        INDArray tempQIndex = target_future.argMax(); 
        int tempQ = tempQIndex.getInt(0, 0); 
        double q = target_future.getDouble(0, tempQ); 
 
        //Calculate sum of discounted sum of future rewards 
        rew += (gamma * q); 
 
        //Calculate index of max action at state 
        int tempIndex = this.actionSpace.decode(Action); 
         
        //Adjust value from observation 
        target.putScalar(tempIndex, rew); 
 
        //Network trained on state and rewards array 
        this.DQN.fit(obs, target); 
    } 
 
    //Trains network on batch of transitions 
    //gets batch from memory and iterates training step over batch 
    public void trainbatch() { 
        long timestamp = System.currentTimeMillis(); 
        if (this.memory.size() < batchsize) { 
            System.out.println("Not Enough Transitions"); 
            System.out.println(); 
        } else { 
            System.out.println("Training Step:"); 
            for (int j = 0; j < batchsize; j++) { 
                int k = 
ThreadLocalRandom.current().nextInt(0,this.memory.memorysize-1); 
                Transition<String> trans = this.memory.get(k); 
                trainstep(trans); 
            } 
        } 
        long t2 = System.currentTimeMillis()-timestamp; 
        System.out.println("Time to train batch: "+t2+"ms"); 
    } 
 
    //Update target DQN 
    public void UpdateTargets() { 
        this.DQN_TARGET = this.DQN.clone(); 
    } 
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    //Train network on whole episode at end. 
    public void trainEpisode(){ 
        //Get batch equal to memory size 
        ArrayList<Transition<String>> ShuffledMemory = 
memory.getNewestBatch(memorySize); 
 
        for (int j = 0; j < ShuffledMemory.size(); j++) { 
 
            INDArray obs = ShuffledMemory.get(j).getObservation(); 
            String action = ShuffledMemory.get(j).getAction(); 
            double rew = ShuffledMemory.get(j).getReward(); 
            INDArray nextobs = ShuffledMemory.get(j).getNextObservation(); 
 
            //get future reward estimates as array from current state 
            //get rewards from next state 
            //next state reward for max action taken at state multiplied by gamma 
            //above value supplants prediction from state in array 
            //this INDArray used to train as label 
            INDArray target = this.DQN_TARGET.output(obs); 
            INDArray target_future = this.DQN_TARGET.output(nextobs); 
 
            INDArray tempQIndex = target_future.argMax(); 
            int tempQ = tempQIndex.getInt(0, 0); 
            double q = 0; 
            q += target_future.getDouble(0, tempQ); 
            rew += (gamma * q); 
 
            //Calculate index of max action at state 
            int tempIndex = this.actionSpace.decode(action); 
            target.putScalar(tempIndex, rew); 
 
            //Network trained on state and rewards array 
            this.DQN.fit(obs, target); 
        } 
    } 
 
 
    //UTILITIES ---------------------------------------------------------- 
 
    //decode action from Int 
    public String decode(int action){ 
        String newAction = this.actionSpace.encode(action); 
        return newAction; 
    } 
 
    //Set Learning Rate 
    public void setLearningRate(double lr){ 
        this.DQN.setLearningRate(lr); 
        this.DQN_TARGET = this.DQN.clone(); 
    } 
 
    //Increases Product Count by 1 
    public void iterateProductCount(){ 
        this.productCount++; 
    } 
 
    //Takes a reward and accumuates with Cumulative Idle variable 
    public void iterateCumulativeIdle(double idlestep){ 
        this.cumulativeIdle+=idlestep; 
    } 
 
    //Store data Instance 
    public void storeData(){ 
        int i = 0; 
        String[] data = new 
String[this.observationSpace.getSize()+this.actionSpace.getSize()+3]; 
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        while(i<this.observationSpace.getSize()){ 
            data[i] = Double.toString(this.Observation.getDouble(i)); 
            i++; 
        } 
        for (int j=0; j<this.actionSpace.getSize(); j++) { 
            data[i] = Double.toString(this.Scores.getDouble(j)); 
            i++; 
        } 
        data[i] = this.Action; 
        i++; 
        data[i] = Double.toString(this.lastReward); 
        i++; 
        data[i] = Double.toString(this.OperatorNumber); 
        try { 
            //add data 
            this.writer.writeNext(data); 
        } 
        catch(Exception e){ 
            System.out.println("Data Write Failed..."); 
        } 
    } 
 
    //Store MetaData for Iteration 
    public void storeMetaData(){ 
        int i = 0; 
        String[] data = new String[5]; 
        data[i] = String.valueOf(this.iteration); 
        i++; 
        data[i] = String.valueOf(this.cumulativeReward); 
        i++; 
        data[i] = String.valueOf(this.productCount); 
        i++; 
        data[i] = String.valueOf(this.cumulativeIdle); 
        i++; 
        double productivty = ((this.cumulativeIdle)/this.productCount); 
        data[i] = String.valueOf(productivty); 
        try { 
            FileReader metadatafilein = new FileReader(this.metadataFile); 
            CSVReader metadatareader = new CSVReader(metadatafilein); 
            List<String[]> list = metadatareader.readAll(); 
            list.add(data); 
            FileWriter metadatafile = new FileWriter(this.metadataFile); 
            CSVWriter metadatawriter = new CSVWriter(metadatafile); 
            //add data 
            metadatawriter.writeAll(list); 
            metadatawriter.close(); 
            metadatafile.close(); 
            this.writer.close(); 
        } 
        catch(Exception e){ 
            System.out.println("Data Write Failed..."); 
        } 
    } 
 
    //Save Network 
    public void SaveNetwork(String filename, String memFilename) { 
        try { 
            //Save the model 
            File locationToSave = new File(filename);      //Where to save the 
network. Note: the file is in .zip format - can be opened externally 
            boolean saveUpdater = true;                                     
//Updater: i.e., the state for Momentum, RMSProp, Adagrad etc. 
            ModelSerializer.writeModel(this.DQN, locationToSave, saveUpdater); 
            System.out.println("Model Saved"); 
 
            //Save the Exp Replay 
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            FileOutputStream fout = new FileOutputStream (memFilename); 
            ObjectOutputStream oos = new ObjectOutputStream(fout); 
            oos.writeObject(this.memory); 
            fout.close(); 
            System.out.println("Memory Saved"); 
 
        } catch (IOException e) { 
            System.out.println("Network Save Error, Check Pathname"); 
            System.out.println(); 
        } 
    } 
    public void SaveNetwork() { 
        try { 
            //Save the model 
            File locationToSave = new File(filename+".zip");      //Save Location 
            boolean saveUpdater = true;                           //Save Updater 
            ModelSerializer.writeModel(this.DQN, locationToSave, saveUpdater); 
            System.out.println("Model Saved"); 
 
            //Save the Exp Replay 
            FileOutputStream fout = new FileOutputStream (filename+".tmp"); 
            ObjectOutputStream oos = new ObjectOutputStream(fout); 
            oos.writeObject(this.memory); 
            fout.close(); 
            System.out.println("Memory Saved"); 
 
        } catch (IOException e) { 
            System.out.println("Network Save Error, Check Pathname"); 
            System.out.println(); 
        } 
    } 
 
    //Destructor 
    public void destroyAgent(){ 
        //some actions to be taken on destruction of agent object 
        //close files. 
        storeMetaData(); 
    } 
 
    //Creates .csv file recording data for each iteration 
    private void createDataFile(){ 
        try { 
            FileWriter outputfileWriter = new FileWriter(this.outputFile); 
            this.writer = new CSVWriter(outputfileWriter); 
            //add header 
            String[] header =  { 
                    "Current CT", 
                    "Calculated Target CT", 
                    "Collaborative Target CT", 
                    "Speed Factor", 
                    "Idle Time", 
                    "Collaborative Idle", 
                    "Score 1", 
                    "Score 2", 
                    "Score 3", 
                    "Action Chosen", 
                    "Reward", 
                    "OperatorNumber"}; 
            this.writer.writeNext(header); 
        } 
        catch(IOException e){ 
            System.out.println("Iteration datafile creation failed..."); 
        } 
    } 
 
    //Reset Memory 



 171 

    public void resetMemory(){ 
        this.memory = new ExpReplay(memorySize,batchsize, 
this.observationSpace.getSize()); 
    } 
 
    //PrintMemory 
    public void printMemory(){ 
        System.out.println("Training Batch:"); 
        for(int i = 0; i<memory.size();i++){ 
            memory.get(i).print(); 
        } 
        System.out.println(); 
    } 
 
 
    //Getter for last action 
    public int getLastAction(){ 
        int ac = action; 
        return ac; 
    } 
 
    //Covert action to string 
    public String actionToString(int action){ 
        String Action = this.actionSpace.encode(action); 
        return Action; 
    } 
 
    //SETTERS 
    //Observation Setter 
    public void setObservation(INDArray obs){ 
        this.Observation = obs; 
    } 
    //Action Setter 
    public void setAction(int action){ 
        this.action = action; 
        this.Action = actionSpace.encode(action); 
    } 
 
    //ActionSpace setter 
    public void setActionSpace(AnyLogicActionSpace as){ 
        this.actionSpace = as; 
    } 
    //Epsilon Setter 
    public void setEpsilon(double value){ 
        this.epsilon = value; 
    } 
    public double getEpsilon(){ 
        return this.epsilon; 
    } 
    public int getIteration() { 
        return this.iteration; 
    } 
 
    public void setProductCount(double value){ 
        this.productCount = value; 
    } 
 
    //Operator Number Setter 
    public void setOperatorNumber(int on){ 
        this.OperatorNumber = on; 
    }; 
 
 //End of Class Def 
} 
 


