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Abstract

This work is aimed at the understanding and application of several emerging technologies as
they relate to improving the interactions which occur between robotic operators and their
human colleagues across a range of manufacturing processes. These interactions are
problematic, as variation in performance of human beings remains one of the largest sources
of disturbances within such systems, with potentially significant implications for productivity
if it continues unmitigated. The problem remains for the most part unaddressed, despite these
interactions becoming increasingly prevalent as the rate of adoption of automation
technologies increases.

By reconciling multiple areas encompassed by the wider domain of intelligent
manufacturing, the presented work identifies a methodology and a set of software tools which
leverage the strengths of neural-network-based reinforcement learning to develop intelligent
software agents capable of adaptable behaviour in response to observed environmental
changes. The methodology further focuses on developing representative simulation models
for these interactions following a pattern of generalisation, to effectively represent both
human and robotic elements, and facilitate implementation. By learning through their
interaction with the simulated manufacturing environment, these agents can determine an
appropriate policy, by which to autonomously adjust their operating parameters, as a
response to changes in their human colleagues. This adaptability is demonstrated to enable
the intelligent agents to determine an action policy which results in less observed idle time,
along with improved leanness and overall productivity, over multiple scenarios.

The findings of the work suggest that software agents that make use of a reinforcement-
based learning approach are well suited to the task of enabling robotic adaptability in such a
way, and the developed methodology provides a platform for further development and

exploration, along with numerous insights into the effective development of these agents.
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1. Introduction

1.1. Background
While the word ‘robot’ conjures images of 1950s sci-fi, it originates in Czech writer Karel
Capek’s 1920 play, Rossumovi Univerzalni Roboti (Rossum’s Universal Robots) as a term
for ‘forced labour’. Perhaps ironically, it is as labourers, that robots have found their niche,
and the increase in the prevalence of robotics and automation within the manufacturing sector
in the wake of what has come to be referred to as the third industrial revolution has continued
to the point where they have become ubiquitous (Moniz and Krings, 2016). Despite this,
there remain a number of manufacturing tasks which require either a level of dexterity or
adaptability that only humans are able to achieve. The result of this is a transitional period, in
which a growing number of manufacturing processes feature tasks where robotic operators
must interact with human operators as colleagues and collaborators (Teiwes ef al., 2016).
The investment in and adoption of automation technologies stems from the socio-
economic pressures to continually increase the productivity of many European nations
(manufacturing accounts for 25% of the German GDP and represents a considerable portion
of the GDP of several other European Countries (Heinisch and Scheufele, 2017)). This is due
to the need to remain competitive in the face of challenges including increased
industrialisation and growth in the manufacturing sectors in the east (Goldstone, 2015); and
an ageing population in many of these same European countries with developed economies.
Investment has also been required to meet the massively increased demand within these
developed nations for high quality, bespoke products (Tao et al., 2011), developed using
sustainable and efficient methodologies (Rusinko, 2007). As a consequence, the key to
competitiveness in the modern age is resilience to, and capability to adapt in response to

change. Therefore, existing approaches to manufacturing are rapidly becoming obsolete due




to their inability to efficiently provide the current requirements imposed by manufacturing
systems (Leitdo, 2009).

Concurrent to the developments in automation, and driven by the massive increase in
data generation over the past several decades, advances in the field of computer science have
resulted in modern software implementations capable of learning from vast reserves of data
in addition to their own experiences to intelligently analyse new data to enable predictions,
and decision-making (Witten et al., 2016; Marsland, 2015). The application of these systems
within manufacturing provides the capacity to overcome the challenges facing developed
manufacturing industries, and exploration into the implementation of intelligent systems for
high-level data analytics, data mining and machine learning within industrial manufacturing
processes has already begun to be undertaken by many companies with large manufacturing
requirements (Auschitzky, Hammer and Rajagopaul, 2014).

This application of intelligence has given rise to various related fields, referred to
collectively as Intelligent Manufacturing (Zhou, Liu and Zhou, 2015). Work in these areas
often relates to the development of Cyber-Physical Systems (CPS’s), which, as described by
(Lee, 2008b), combine computational and physical processes such that the embedded
computers can autonomously control, monitor and predict the physical processes on an
automated level. The realisation of CPS’s promise to deliver several benefits to
manufacturing processes, through the combination of advanced digitalisation, simulation, and
data analysis techniques, which enable manufacturing control systems to operate with greater
fidelity and accuracy, and for advanced capabilities to be realised in the intelligent behaviour
of autonomous systems, in terms of adaptability (Monostori et al., 2016). These novel
behaviours play an important role in facilitating the interaction between autonomous robotic
operators and their human counterparts and have significant implications for manufacturing

processes as a result.




1.2. Main Challenges

The role of the human operator is far from obsolete, particularly within heavily governed
industries, such as logistics, food, pharmaceutical/chemical, and medical, due to stringent
quality and accountability controls. Human beings are, however, subject to the influence of
many factors which can dynamically and unpredictably affect their task performance, and its
consistency, and consequently, they are a source of disturbance in such systems. The
disturbances that arise as a result of the natural variation between human beings remain a
significant obstacle to improving the productivity of these processes, and human components
of such systems are often ineffectively modelled, leading to inefficiencies in the design and
control of such processes. The study of these Human Factors is a field in its own right and is
more comprehensively explored in section 2.5.

The impact of human performance variation is particularly pronounced in the case of
manufacturing processes, where individual elements are highly dependent on one another,
and ideal operation is typically realised as a perfect one-piece-flow of product through such
systems, based on lean principles (Herron and Braiden, 2007; Adams et al., 2001). Variation
in human-beings, combined with ineffective modelling in the design of these processes, can
often lead to a disparity between human task performance, and the repeatable performance of
their robotic counterparts, with a negative effect on the overall system productivity. The
factors which influence human performance are well understood from the perspective of
human resources and management, However, limited work exists on how to how to apply this
knowledge to the study of Human-Robot-Interaction (HRI), or how it may be leveraged to
alleviate the effects of these interactions on manufacturing processes.

Within the manufacturing domain, work has demonstrated that the application of
learning and intelligent data analysis to robotic operators within manufacturing processes

may leverage novel capabilities to enable adaptable behaviour in robotic operators, as in the
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case of the aforementioned CPS’s. The ever-increasing application of intelligence to these
systems has in itself developed into a new field, which studies how interactions between
these robotic entities and their collaborating agents occur, known as collaborative robotics
(Khalid et al., 2016; Brown and Woods, 2017). Work in the field has resulted in insight and
implementations of robotic operators that are able to coordinate actions and adapt behaviours
to the state and actions of other operators, to achieve automation of more complex tasks, and
further optimise existing ones in real-time, and in cases where modelling is difficult as a
result of unpredictability. However, much of the research in this field has however neglected
the importance of Human-Robot-Interaction, and its relevance to collaboration, particularly
in the manufacturing setting. Consequently, it seems logical to extend this adaptability to the
problem of mitigating the effects of the variation in the performance of human beings, and
the resultant disparity.

This increased adaptability of robotic operators within a CPS enables changes in
behaviour in response to the actions of others, potentially facilitating collaboration with
human colleagues. Consideration of the impact caused by human factors can be used to
model the consequent variations in performance, and a machine learning approach can be
leveraged to enable the robotic agents to intelligently analyse the observed data, model the
relationships between observed human performances, adapt its behaviour, and eliminate the
variation in performance between operations, enabling processes to achieve a more optimal
and agile one-piece-flow, in line with the modern application of lean-manufacturing methods
(Monostori, 2014; Lee, Bagheri and Kao, 2015).

The theoretical aspect of this application is backed by this existing work, however,
there are many substantial challenges involved in realising such a system. In addition to the
existing questions surrounding the effective modelling of human beings within these

scenarios, the technical implementation of the necessary data processing systems is
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undefined, in both a practical and theoretical sense. Extension of machine learning techniques
to enable adaptable behaviour in this context is currently poorly explored, as there is little
knowledge on how learning models may account for human behaviour, evidenced by a lack
of referenceable work in the area. Furthermore, there is a substantial challenge in developing
an effective control system based on this modelling and analysis to effectively provide
adaptability in these systems, as almost all of the elements and constraints of such a system
remain unknown. What is clear, is that if the challenges associated with the development and
implementation of such systems are met, there are potentially significant benefits to be

realised in manufacturing processes, at both the human and system levels.

1.3. Identified Research Questions

Many of the emerging techniques that the field of intelligent manufacturing promise to enable
the capabilities required to achieve this level of understanding and adaptability to be realised,
from the digitisation of processes for modelling to the integration of full Cyber-Physical-
Systems. Realising CPS applications has the potential to improve the collaboration between
robotic operators and their human equivalents, across a variety of domains and applications,
and with tangible benefits to manufacturing systems. Work in the domain of computer
science, namely machine learning, has demonstrated that such systems may be realised
through algorithms which are capable of learning from experience to determine individual
behavioural policies to enable adaptable behaviours. Realising such a system requires a
combination of methods, techniques, and approaches, but overcoming the associated
challenges suggests such adaptability and the resultant benefits, may be attainable. From this,

the following research questions have been proposed:
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Question 1: How can the typical interactions between human operators and their
robotic counterparts within manufacturing be modelled; and what implications does this have

for the productivity of these processes?

This question is posed to develop understanding of how humans and robots work within
manufacturing operations, as they occur in production line processes. As discussed, certain
tasks remain that require levels of dexterity in control, and environmental analysis, that
prevent their effective automation. Within production line processes, efficient systems are
often determined by their leanness, and how close they operate to a one-piece-flow. The
disparity in performance between individuals and across contexts is an unpredictable factor in
the design, monitoring and analysis of these systems, and leads, often to sub-optimal process

performance.

Question 2: Which methods can enable intelligence be implemented into the robotic
operators in such a manufacturing system to enhance their understanding and adaptability

with respect to the behaviours of their human counterparts?

Intelligent manufacturing is one of the fundamental areas under the Industry 4.0 initiative.
Whilst not exclusively so, many of the key ideas are realised under the Cyber-Physical-
Systems methodology, which combines physical process with computational elements to
enable autonomous adaptable behaviours. Machine learning seems well placed to enable
these capabilities, with reinforcement techniques having been demonstrated to allow
intelligent agents to act in an autonomous and adaptable manner (Monostori ef al., 2016). To
realise these systems, there remains a large volume of work to be completed, in terms of how

to apply computational techniques, and model real-world processes, to provide the necessary
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capability to extract knowledge for observations of the environment and others. This question
aims to identify the appropriate use of intelligence to fully realise the potential of such
systems, concerning improving the interactions between robotic elements with production

line systems and improving the processes as a whole.

Question 3: Is it possible to leverage the benefits of an intelligent-agent-based control
system for the robotic operators within manufacturing systems, to improve their adaptability

and to realise benefits in interacting with human beings, and at the system level?

This question aims to explore novel concepts under the intelligent manufacturing umbrella,
which seek to embed a degree of contextual and social awareness in robotic systems (social,
in the context of this work, referring to the interactions and collective action of different
individuals), to improve their interactions with humans, and provide improvements to these
production processes. Enabling adaptive behaviours in robotic elements of manufacturing
process has been hypothesised and demonstrated to provide tangible benefits in terms of
optimisation (Lee, Bagheri and Kao, 2015; Scholze and Barata, 2016), but there is an
identified lack of work on extending this adaptability, to enable robotic operators to adapt
their behaviour based on the variation of human operators to reduce the impact of this

disturbance on the overall process.

The research aims, that seek to be resolved through these questions, are well identified.
Existing control systems for manufacturing processes are limited by the complexity required
to enable the numerous benefits of mass data-collection; advanced computational
intelligence; and advanced automation. Digitalisation of processes through data collection,

decentralisation of control through both hardware and software, and the use of intelligent data
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analysis, enable the development of control systems that are autonomous, adaptive and
capable of autonomous response to change (Wang, Torngren and Onori, 2015). These
capabilities are crucial to facilitating collaboration between elements of these processes
which has been demonstrated to allow real-time optimisation of these processes, through
adaptable behaviours.

Despite the promise of these systems to provide real-time optimisation and reduce the
impact of disturbances on these processes, there has been limited consideration the human
impact on manufacturing processes; an inherently unpredictable variable and a source of
disturbance. As such, control systems must be developed, which have a contextual
understanding of the factors that influence human performance, and which can act and adapt
in a manner suited to working alongside their human counterparts, if the industry 4.0 vision is

to be fully realised.

1.4. Thesis Structure

The following outlines the structure of this thesis, and the necessary elements considered to
answer the identified questions. This opening chapter forms an introduction to the problem
and wider fields and provides detail on the background and context which underpins this
work. This is followed by a comprehensive review of the relevant literature covering five
relevant topics: Intelligent Manufacturing & Industry 4.0, covering the wider field of
computational intelligence and its application to the manufacturing sector; Decentralisation
of Control, a topic within intelligent manufacturing concerned with improving the control of
complex systems; Machine Learning, covering the computational implementations to extract
knowledge from data; Human-Robot-Interaction, which explores the current state-of-the art
and theoretical background of this specialised area; and finally, Human Factors, focused on

the theoretical background of human management and behavioural analysis.
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The literature review is followed by a chapter which outlines the framework for
approaching this research problem, and the relevant methods and techniques utilised to do so.
This is followed by three chapters which constitute the main body of this research, which
cover the modelling of human beings and the simulated environment, the design and
development of the reinforcement learning agent, and the evaluation and validation processes
of the relevant constituent elements, and performance at the system level. As a part of the
identified process of validation, a case-study was completed, and the details of this are further
outlined in the chapter immediately following.

The results of the previously outlined experiments are then presented to form a
cohesive picture of the completed research and its consequences. These results are discussed
and interpreted fully in the chapter following, which is sub-divided relevant to the identified
research questions. These chapters are then followed by a final section of the work, which
outlines the key conclusions, research contributions, and personal reflections on the project

and its results. References and other information are then appended.
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2. Literature Review

This chapter presents a review of all existing literature in this area and is divided into five
main sections. These cover the scope of intelligent manufacturing, and its relationship to the
current state of the industry; the decentralisation of control, and how this is a key enabler of
collaborative systems; machine learning, and its application to enabling the intelligent aspects
of such systems; the current state of the art of HRI, again with a specific focus on the
relevance to manufacturing applications; and a final section covering human factors, and how

this relates to modelling and prediction of human behaviours and variation.

2.1. Intelligent Manufacturing & Industry 4.0

Originally conceived as a strategy for economic growth in the manufacturing sector by a
think-tank based in Germany, which consisted of engineers, business owners, politicians, and
academics. The Industry 4.0 Initiative has, since its introduction at the 2013 Hamburg world
fair (Zuehlke, 2010), emerged as one of the most widely discussed topics in the
manufacturing world. The term, coined by the German government to describe their ongoing
vision for manufacturing; illustrates the concept of ‘smart-factories’; manufacturing facilities
within which each of the processes is connected either centrally or modularly to every other
process and which makes use of computation and machine learning processes to
autonomously self-adjust and self-correct to problems.

Whilst Industry 4.0 was the first and most globally recognised, similar initiatives have
existed (the product of similar research founded on similar concerns) for years under the
direction of the American, UK and Japanese Governments. Despite arguments that advances
in the field of intelligent manufacturing, are simply a natural progression of technology, the
initiatives have nonetheless served as a catalyst, coordinating research efforts and

accelerating progress in recent years (Schonsleben, Fantana and Duchi, 2017).
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The term industry 4.0 has evolved beyond its original meaning, becoming, in many
aspects, simply a buzzword that refers to the underlying aims and objectives —In the author's
opinion- this devalues the term from an academic perspective, the 'simplification' that occurs
with frequent (and often incorrect) use provides a useful terminology by which to group
related research, and enables communication with the larger community.

Many of the advancements within Industry 4.0 have been driven by the emergence of
‘Big-Data’ (Hilbert, 2016). Developments in the field of big data have led to an
understanding of how to handle and effectively process large datasets where statistical
methods are no longer effective due to its complexity and volume. Despite advances in the
field, the capture, handling, storage, and processing of large datasets remains challenging
(Wuest, Irgens and Thoben, 2014; Babcock et al., 2002). An extensive view on the
challenges of practically managing this data can be found in (Jagadish et al., 2014).

The capacity and understanding of how to process and extract of knowledge from this
collected data has fuelled the emergence of a vast number of enabling technologies and fields
of study which form a larger body of research (Brettel et al., 2014), which is a cornerstone of
the Industry 4.0 initiative. Termed Intelligent Manufacturing, the collective focus is used to
describe the application and integration through a variety of disciplines to contemporary
manufacturing systems (Zhong et al., 2017; Li et al., 2017; EIMaraghy and ElMaraghy,
2016). The main research focuses include: novel automation control systems, with) a focus
on, decentralisation, virtualisation, reconfiguration, and adaptability (da Silva et al., 2015;
Mendes et al., 2009; Shafiq et al., 2016), the development and application of machine
learning and artificial intelligences (Spezzano and Vinci, 2015); and virtual and augmented
reality systems, which are being used to bridge gaps in geography, knowledge and skill level

(Pirvu, Zamfirescu and Gorecky, 2016).
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Whilst the area of Intelligent Manufacturing is itself a many-faceted problem, the
recurring element that underpins much of this revolution is the collection, utilisation and
understanding of data, or the study of ‘Informatics’, and all of the areas linked with the
intelligent manufacturing research area rely on the capture and analysis of data in some
capacity. To this end, the use of advanced data analytics and machine learning and the
associated algorithm development and Software Engineering (Vyatkin, 2013), alongside
embedded and distributed sensing technologies as in the case of Internet of Thing (IoT)
technologies (Atzori, Iera and Morabito, 2010) have all seen a great deal of interest in recent
years.

These areas build on ideas of big-data and connectivity, to enable digitalisation of
manufacturing processes, where digital representations of real-world processes may be used
for analysis, prediction, and control (Kritzinger et al., 2018; Ding et al., 2019).

The digitalisation of manufacturing processes is a key enabler of Cyber-Physical
Systems (CPS), which form a combination both physical and digital elements, and a system
of networked machines and sensors, which communicate and collaborate intending to enable
autonomous intelligent behaviour (Lee, 2008a; Lee, Bagheri and Kao, 2015). The utilisation
of data allows for these systems to construct detailed process models, and interpret perceived
data with respect to these models, enabling:

Self-Awareness & Prediction; through the construction of a digital representation or
Digital Twin of a system enables potential solutions and control structures to be virtually
implemented and validated; and for improving understanding (Schuh et al., 2014).

Self-Diagnosis; through data-driven modelling and intelligent analysis of real-time
observations, which enables preventative maintenance and fault diagnosis, and reduces

unpredictability and disturbances within the system (Chukwuekwe ef al., 2016).
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Self-configuration; through the complex and distributed nature of CPS’s, which
enables self-configuration, as system controls, parameters, resources, and operations can be
configured and reconfigured remotely, and in response to observed changes in the
environment (Gurgen et al., 2013).

Self-Optimisation; through adaptability and autonomy, which provide the tools

necessary to implement self-optimisation. Experience-based learning can ensure process

stability given changing contexts. This can be combined with digital representations to enable

learning systems to explore states other than those observed to find ever more optimal
solutions (Permin et al., 2016).

The use of digitalisation by Cyber-Physical-Systems may be leveraged to improve
manufacturing processes and products in various ways and provide them with many of the
capabilities required under the Industry 4.0 initiative (Bagheri ef al., 2015).

The combination of these capabilities enables the intelligence of these systems to be
quantified. The 5C’s architecture ((Lee, Bagheri and Kao, 2015) outlines 5 levels of
intelligence, and their associated technologies and capabilities. At the low end, the
Connection level describes the majority of current manufacturing environments, that have
adopted the principles of data collection, via connectivity, but whose systems are not
advanced enough to provide reliable analytics. The levels of autonomy increase with the
degree of intelligence -implying that these two factors have an inherent link with one
another- with systems that achieve the Configuration level capable of adaptability and
reconfiguration based on the perceived surroundings. This architecture is illustrated in
Figure.1.

Current CPS implementations based on intelligence and distributed control have
demonstrated adaptive scheduling, real-time modelling of processes, and Decision Support

Systems. These features have been used to refine processes and component design across a
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wide range of control disciplines, such as automation control for manufacturing, Electrical
Grid control (Pipattanasomporn, Feroze and Rahman, 2009); and Traffic Management/Air

Traffic Control systems (Wang, 2005).

* Self-configure for resilience
* Self-adjust for variation
Self-optimize for disturbance

* Integrated simulation and synthesis
* Remote visualization for human
* Collaborative diagnostics and decision making

* Twin model for components and machines

* Time machine for variation identification and
lll. Cyber Level e

.

Clustering for similarity in data mining

mwZOo--02Z2Cm
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Il. Data-to-Information * Component machine health
Conversion Level * Multi-dimensional data correlation
* Degradation and performance prediction
* Plug & Play
* Tether-free communication
1. Smart Connection Level

*Sensor network

Figure.1 - Illustration of the 5C's architecture used to quantify the capabilities and intelligence

of CPS's (Reproduced from: (Lee, Bagheri and Kao, 2015)).

The development of the necessary technologies has enabled easy experimentation with
these systems; however, as a result of a wide variance in their application, large scale
implementation and commercialisation is not without challenges. Standardisation is essential
for the implementation and facilitation of interconnectivity; a key component in enabling
CPS. Standardisation of electro-mechanical components, software, interfaces, communication
and interoperability protocols, data formats, and system intelligence are all critical (Leitao
and Strasser, 2016; Weyer et al., 2015). The other major challenge is security, as Cyber-
Physical Systems have multiple vulnerabilities both to external security threats; which can
exploit communication networks, and information security protocols, which can lead to
internal system failures and error. Consequently, both be addressed to ensure reliability,
protection and resilience against these threats (Pasqualetti, Dorfler and Bullo, 2013; Ali et al.,

2018).
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In addition to overcoming these challenges, several other areas remain in which more
work is needed to fully realise the potential of these systems (Wang, Torngren and Onori,
2015). Given the potentially unlimited number and variety of applications for CPS’s, robust,
developed architectures and methodologies for their implementation are lacking, and
development of the necessary guidelines and standards to facilitate implementation and
development of CPS’s is also a key challenge in their effective realisation. The increase in
both the number of computational elements and process elements also inherently provides a
major obstacle to realising Cyber-Physical-Systems, which rely on distributing the control of
individual elements to overcome increasing system complexity. Work on coordinating these
networked elements or agents is crucial for enabling flexibility and adaptability through self-
organisation and context-aware decision-making. The use of high-level analytics will enable
robust control, capable of dealing with errors and unfamiliarity, and adaptability, through an
awareness of contextual factors inherent in the decision-making process. Intelligent agents
have been utilised in practical applications and demonstrated as capable of performing a
multitude of self-organisational and autonomous tasks for use in the manufacturing industry

(Zhang et al., 2016; Musil et al., 2017).

2.2. Decentralised Control

Many of the existing manufacturing control systems were developed at the beginning of the
digital age, with the emergence of robotic and computational manufacturing systems. These
systems are frequently centralised and use a hierarchical control structure, which, due to its
intrinsic capacity for optimisation, led to significant increases in productivity over traditional
methods that were in use at the time. However, as the representations of production processes
become increasingly detailed and complex, top-down control faces significant challenges

when faced with enabling autonomous adaptable behaviour (Cao et al., 2013; Leitdo and
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Restivo, 2006). Traditional automation techniques have been made obsolete by the rise of the
data-driven processes, and the consequently increased complexity required of intelligent
systems.

To overcome these challenges, manufacturing control systems must become distributed
in terms of both hardware and software; and intelligent, through the application of machine
learning and artificial intelligence techniques. This will enable said systems to respond
dynamically to change in response to observations of the environment, flexibility,
reconfigurability, adaptability, and autonomy, to increase productivity in line with the aims of
intelligent manufacturing (Leitdo, Matik and Vrba, 2013; Brettel et al., 2016).

The concept of distributed control and the mechanics of distributed interaction have
been studied and utilised since the introduction of planning agents in the 1970s (Wooldridge
and Jennings, 1995). Contemporary applications explore intelligent agents, often form
combinations of hardware and software (these combined elements form a logical unit within
the system, defined as a Holon, within the Holonic Manufacturing System) (Van Brussel et
al., 1998). Each agent is autonomous with its own sensory inputs, objectives, knowledge, and
internal intelligent functions. The strength of distributed control when faced with complexity,
is that it enables a complex problem to be divided into several small problems, each of which
is distributed to a network of multiple intelligent agents. These agents interact as governed by
the rules of the Multi-Agent-System (MAS). And the global control decisions are determined
by the collaborative efforts of the agents through their interaction, as no single agent has a
global view of the system (Leitao and Colombo, 2006). Each of the agents solves their own
localised problem, aiming to facilitate those around them, to provide a global solution to the
original global problem.

In the manufacturing context, a multi-agent-system typically consists of agents of two

types: Resource, represent hardware, such as machines and robotic operators; and Orders,
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which represent raw materials, tooling, components, etc. Software agents, which able to act
autonomously based on observation of the environment and communication with other
agents, are connected to the physical hardware of the robot forming a Resource Holon, which
enables actions to be taken based on computational decisions. These resource holons are
similar to the elements defined in Cyber-Physical Systems, which also form combinations of
hardware and software. The formation of these holonic systems enables physical hardware to
be controlled in a distributed and adaptive manner, as the software interacts and generates
commands as necessary to achieve a given state or goal. For a detailed breakdown of the
history, structure and capability of Intelligent agents and their applications see (Marik and
McFarlane, 2005).

The challenge of coordinating multiple agents effectively and implementing control
systems based on these methods, has resulted in the emergence of collaborative robotics as a
distinct discipline. Collaborative robotics is based on improving the interaction dynamics of
robots with others, by leveraging the capabilities of the intelligent agents to overcome the
former roadblocks to centralised approaches. This is, therefore, of particular relevance to the
development of distributed manufacturing control systems, which are heavily reliant on
robotic systems, and how they interact with one another, and human operators (Bochmann et
al., 2017; Kirgis, Katsos and Kohlmaier, 2016). Research in this area primarily focuses on
how to enable intelligent processing of sensory data in terms of coordinating robotic
behaviour with that of others. This requires consideration of the intelligent agent’s control
structure, and how different functionality may be used to enable an adaptable behaviour and
appropriate response to changes in the environment, or the actions of the collaborators
(Vorotnikov et al., 2018; Khalid et al., 2016; Brown and Woods, 2017).

The coordination with other agents in the system inherently requires the consideration

of the mechanisms of collaborative behaviours and the internal structure of learning and data
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analysis. Whilst of course teamwork is not unique to Homo Sapiens, collaboration is
commonly considered a very human trait, many studies on collaboration have sought to
understand cognitive processes as they occur in humans, and to replicate these cognitive
processes. The combination of these cognitive processes to enable an agent to behave
intelligently has led to the development of numerous cognitive architectures (Kotseruba,
Gonzalez and Tsotsos, 2016).

Many of these architectures exist to provide intelligent agents with cognition (Haykin et
al.,2012). Notable examples of these architectures include ACT (Anderson, 1996), SOAR
(Laird, Newell and Rosenbloom, 1987), and C4 (Isla et al., 2001) which was originally used
to provide Al for enemies in video games. These architectures contain many insights with
regards to the agent’s structure and how it interacts, despite being conceptualised for more
primitive computational systems and hardware. These insights may be drawn from both the
variance and similarities in their designs, with a common feature among many being a
modularised structure, with multiple elements which are responsible for different aspects of
cognition and interact to form the desired behaviours. The modules contained within each
architecture are often structured around a central module which acts as a controller for
internal processes and acts as the decision-maker. This control module is supported by others
which facilitate necessary behaviours; such as Perception, Learning, Decision-Making, and
Memory. The segregation of processes in this way facilitates the integration of low-level
perceptual and motor control with higher-level knowledge extraction and decision-making
processes (Salvucci, Boer and Liu, 2001) through a further reduction in the complexity of
control. Such an approach is therefore beneficial in terms of combining higher-level
processing elements with established control techniques without interference.

The final concept with an application to distributed control that comes from the study

of cognition is embodiment, a factor which is beneficial in terms of developing software

25



agents, and how they interact, for several reasons. Embodiment refers to the clear distinction
between internal and external processes and factors. This embodiment enables multiple
agents with identical internal structures, to behave based on their individual goals and
knowledge gained from their own cumulative experience, and its context (Hoffman, 2012).
This enables these agents to behave differently from one another, even when provided with
the same observation, due to the unique nature of each agent’s cumulative experience (Young
etal.,2011).

In a practical sense, the implementation of embodiment is well suited to the structure of
Object-Oriented programming languages (this has benefits with working with languages such
as C++ and Java, two of the most widespread programming languages, especially within the
manufacturing industry), which defines pieces of code as individual objects, with defined
internal and external access.

Despite a renewed interest in the application of distributed control, there remain many
problems to be resolved to enable the use of these methodologies. These include questions
surrounding practical issues, such as connectivity, and security (Ali et al., 2018; Bannour,
Souihi and Mellouk, 2018), but one of the key challenges facing implementations of
intelligent agents is a lack of standardisation, both in a real sense, but also in terms of agent
behaviour and design, due to the application-specific nature of many approaches. Some of the
most respected of numerous architectures and frameworks include ADACOR; developed by
(Leitao and Restivo, 2006), a holonic architecture which has gained traction and popularity
due to its applicability to manufacturing systems; And GRACE; or inteGration of pRocess
and quAlity Control using multi-agEnt technology, a Multi-Agent-System developed with the
purpose of utilising collaboration and distributed control for process and quality control

integration (Leitao ef al., 2015; Rodrigues, Pereira and Leitao, 2013).
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A manufacturing control system that satisfies the conditions and overcomes the
challenges of decentralisation has numerous advantages over traditional centralised control
systems. Multi-agent systems are a promising implementation of distributed control, through
embodiment of learning algorithms to provide intelligence, will contribute to increasing
capabilities and the realisation of CPS. Recent applications of intelligence to autonomous
agents have made considerable use of the strengths of a neural network-based approach to
automate each agent's analytical and decision-making processes, based on its cumulative

experience (Monostori, 2014; Monostori et al., 2016; Shi et al., 2020).

2.3. Machine Learning
It is important to consider the mechanisms which enable the capacity for intelligent
behaviour. Whilst Intelligent Manufacturing as a field of study is well defined in its scope
and incorporated areas, Intelligence is a subjective term, and the definition used within the
field is fluid. Typically, intelligence manifests itself through several behaviours: the ability to
observe a set of inputs and use this information to take appropriate action. Attempts to
quantify such behaviour goes back as far as the 1940s, and Alan Turing's now infamous
"Turing Test'; designed to establish whether a machine was capable of human-level
intelligence, through its decision-making abilities (Turing, 1950). Developments of both
hardware and software, have enabled machine learning techniques to become ever more
powerful, and increasingly feasible to implement on accessible hardware (Abadi ef al., 2016;
Team, 2018), and for Artificial Intelligences to be applied in a wide range of applications,
including Image Recognition; Language Translation; Finance; Logistics; and Gaming (Silver
et al., 2016; Firoiu, Whitney and Tenenbaum, 2017; Witten et al., 2016).

Machine learning as an approach is increasingly leveraged as an effective tool for the

generation of knowledge from data (Lee, Bagheri and Jin, 2016; Miskuf and Zolotova, 2016),
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and has been explored extensively within the manufacturing field (where reserves of
historical data are plentiful) to generate process insight; and more recently, to realise the
ideas presented by Intelligent Manufacturing (Sharp, Ak and Hedberg Jr, 2018; Qiu et al.,
2016).

Owing to their strengths in abstraction and pattern recognition; their ability to manage a
large number of data inputs; and their adaptability to a wide variety of applications, neural
networks have been successfully applied to learning and analytics tasks, within several fields
and applications and provide a non-deterministic method of matching a number of input
variables to singular or multilabel outputs, and for approximating relationships between
multidimensional data. Neural Networks and their applications are well established and are
documented in (Witten et al., 2016; Goodfellow, Bengio and Courville, 2016; Schmidhuber,
2015).

A neural network is a collection of nodes, each of which is connected to numerous
other nodes through weighted connections, analogous to human neurons. The structure and
interactions of the network can be used to exhibit a multitude of desired behaviours. These
Neurons are typically arranged into /ayers, forming representations, with the leftmost layer
Input Nodes, which convey information into the network, and the rightmost layer the Output
Nodes, where the resulting output is provided to the system. The observation signal is
propagated through the network, based on the activation function of each neuron, which
describes its behaviour in terms of whether it passes on the signal (Baldi and Hornik, 1989).

In a typical implementation of Supervised Learning, in which a set of Training data is
used with known input/output pairings. The weights are initially randomised and are altered
during training, usually via Gradient Descent backpropagation, which aims to maximise the

rate of correct output for a given input and minimise the total system error (Medsker and Jain,
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2001). Significant care must be taken when training Neural Networks, as gradient descent is
particularly vulnerable to local minima phenomena (Baldi and Hornik, 1989).

The network may also contain a vast number of intermediary layers or hidden layers,
which, as each forms a representation of the input based on the layers before it, may be
designed to provide layers of abstraction to an input example. Neural networks are defined in
terms of these layers, whereby increasing the number of layers, increases the depth of the
network. The addition of these intermediary hidden layers proved to be monumental in the
development and application of Neural Networks to advanced and Intelligent tasks.

Termed Deep Learning, the increase in intermediary layers enabled the development of
advanced techniques which have proved to surpass most other methods in the discovery of
intricate patterns in datasets large in volume and high in dimensionality(Goodfellow, Bengio
and Courville, 2016). NN’s utilise the multiple levels of layers to abstract data and form
representations of different features in the data. Convolutional Neural Networks, which use
hierarchal layers of tiled convolutional filters, to reduce high-dimensional data into
increasingly abstract representations. These networks are capable of identifying policies with
little prior knowledge and have been used successfully in the field of machine vision and
language processing (Mnih et al., 2015; Matsugu et al., 2003). Additionally, Recurrent neural
networks make use of deep architectures to incorporate elements of short term memory, and
can accurately track temporal changes from one state to the next, and improved pattern
recognition over time from time-series data; with demonstrated success in speech and written
word comprehension and generation (Medsker and Jain, 2001; Sak, Senior and Beaufays,
2014).

An important strength of neural networks is their capacity for Unsupervised Learning,
reducing the need for extensive examples required to train the network; and hand-designed

feature extraction and dataset manipulation (LeCun, Bengio and Hinton, 2015). This enables

29



an iterative approach to training to be used, to enable a neural network to make associations
between states and sets of actions, through the use of rewards and penalties provided whilst
the agent is training and exploring an environment. Within control theory, this is referred to
as Reinforcement learning, and as mentioned, is commonly utilised to dictate the behaviour
of autonomous agents within multi-agent-systems, through control of agent actions and
process parameters, in response to changes in the external environment as a result of action
(Permin et al., 2016). This learning is referred to as online if the learning is conducted
directly in the problem setting, using real-time data, and is used to autonomously control to
real-world agents; whereas offline learning makes use of simulation and is used for analytics,
and when the training may require millions of instances, impractical to implement on an
onboard controller; and allows control schemes to be evaluated in an isolated, and therefore
safe environment (van Otterlo and Wiering, 2012).

Application of neural networks are vast, however recent implementations have
demonstrated success at the combination of Markov Decision Processes (MDP’s) (Bellman,
1957) and Neural Network learning for Multi-Agent-Control (Lowe et al., 2017; Sutton and
Barto, 2018) in developing agents trained via Reinforcement. The interaction of devices in
the Cyber-Physical-System environment provides opportunities for decentralised control
systems. The MDP model, separates the system into a state, s, representing the condition of
the environment at different timesteps; and a set of actions, a, which the agent may perform,
before receiving a reward, r, and an updated state observation, s’. Actions are selected based
on a policy, , which aims to maximise the cumulative expected discounted sum of rewards.
In an MDP, the question becomes defining the policy to maximise the received reward. In Q-
Learning, this is achieved by assigning each action a value function Q(s, a), or 'Q-Score',
representative of the quality of an action in a specific state (van Otterlo and Wiering, 2012;

Watkins and Dayan, 1992). These scores are generated using the Bellman Equation.1:
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Q(s,a) = Z’"t‘*‘]"méiXQ(stﬂ:a) (1)

These scores may then be used to select the appropriate action for a given input. This
approach has proven exceptionally competent at learning complex and non-deterministic
systems, especially when leveraging Neural Networks to approximate the policy in an MDP,
by predicting rewards for actions given a state based on cumulative experience of interacting
with the environment; referred to as Deep Q-learning Network’s (DQN’s).

The success of the application of DQN's to learning tasks is as a result of the ability of
neural networks to act as function approximators and to evaluate their performance based on
received feedback, which minimises the need for labelled data, and the need to fully define
the environment and its possible states (Hester et al., 2018; Chen, Ying and Laird, 2016;
LeCun, Bengio and Hinton, 2015). More recently, Google's Deepmind, have focused on
developing networks that outperformed existing examples and human performance across the
domain of multiple ATARI 2600 games, which has become a benchmark for learning
systems to learn from visual input, with performance over multiple games being used as a
good measure of a networks generalisability. This work is a natural extension of Google's
existing work in the field of image recognition and was one of the first applications to
utilising the strength of convolutional nets to extract abstract representations from an array of
on-screen pixels and their values in different colour channels which are used to form digital
images. This ability to create simple representations from high dimensional inputs further
highlights the strength on neural networks to effectively learn from complex state
information and has since been applied across varied domains, including manufacturing
(Kusiak, 2019).

These tasks extend the application in terms of how neural network predictions may be
used, by extracting state value functions from visual state representations. In addition, the

work by Deepmind has led to the establishment of multiple techniques exist to improve DQN
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performance during training. These include the use of training methodologies such as
advanced action-selection policy methods, including epsilon decay, which uses an additional
parameter, epsilon, to encourage initial exploration of the environment by selecting random
actions, which decays over time to give the agent progressively more control; Experience
Replay, where a buffer of recent transitions is collected and sampled for training, serving as a
form of memory; and the use of Fixed Targets, which involves using a separate target
network to make value predictions for the training of the action-selection network, which
enables the algorithm to converge to a stationary target. The Target Network is then updated
after a certain number of training steps (Mnih et al., 2013).

The application of DQN’s to a wide variety of applications is well documented in
recent work, however, there remain challenges in the effective utilisation and training of the
approach. As with other Neural Networks, DQN’s are similarly susceptible to converging on
a suboptimal learning policy, as a result of their relatively fast response to prediction errors
which results in a susceptibility to local-minima phenomena (Bernstein and Zilberstein,
2014), which may prevent the network finding an optimal solution. There are, however,
various novel techniques and methods for effective training in a reinforcement learning
environment. These methods typically apply to DQN’s and associated applications which can
leverage offline learning in a simulated setting, enabling the network to perform multiple
training iterations and converge to an optimal policy. The training of algorithms iteratively is
a time-intensive process however, with many image-based training regimes requiring
millions of iterations. Similarly, to defining neural network structures and training in a
supervised fashion, there are several additional parameters which must be defined a-priori to
the learning process. The digital nature (or increasing capacity for digitalisation of many
applications) of the problems DQN’s are tasked with solving does in itself enable several

novel techniques to further leverage simulation and offline learning to overcome many of
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these issues and provide more effective training processes. Notable examples include Actor-
Critic Architectures (Sutton, 1985; Sutton and Barto, 1998), which compare the performance
of multiple networks and propagate the most successful changes; and approaches using
principles of Natural Selection as inspiration, the most well documented of these approaches
being Generative Adversarial Networks (GAN’s) (Goodfellow et al., 2014). Other
evolutionary algorithms mutate the network topology randomly during their training, with
mutations that lead to a better performance being retained, and vice versa. This use of the
evolutionary process for training neural networks, has itself generated a new ‘spin-off” field
of computer science and algorithm design, with similarities to many biomorphic design
applications.

The popularity of Neural Networks, in addition to continual advances in hardware
speed and power under Moore’s Law, has resulted in the development of robust development
platforms and architectures for experimenting with and implementing Neural Networks.
Notable amongst these examples is Google’s Tensorflow; a Python software library focused
on the development of NN’s, with API’s for Java and C++. The platform has been used with
increasing success in the field of neural network development and is capable of many
specialised & large-scale intelligence tasks (Abadi ef al., 2016), M. et al. 2016). Numerous
other software packages and implementations exist for a variety of languages and with a
variety of different capabilities, DL4J is a robust, Java-Based package with an active support
community, along with more general machine learning packages including WEKA (Witten et
al., 2016), and KERAS (Chollet, 2015).

The development of robust, open-source software libraries has greatly accelerated the
rate of knowledge advancement in the area, although practical implementation is not without

challenges. The increased algorithm complexity has consequences for computation; in terms
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of both time and loading; and presents challenges in management and analysis of data
(Jagadish et al., 2014), in the interests of achieving real-time control

The strength of neural networks, especially in applications with complex and
unpredictable or random factors affecting their dynamics is the iterative or evolutionary
nature. The capacity to learn from previous experience and generalise this knowledge into
new areas has proved a crucial ability in developing many advanced robotics techniques.

This new approach to learning, using an unsupervised and iterative approach has made
real several biomorphic traits, which have important applications in robotics. The US
robotics company ‘Boston Dynamics’ is one of the pioneering robotics companies in the
world today; developing and consistently refining a range of advanced robots, which replicate
the musculoskeletal structure of biological creatures to overcome issues associated with
mobility, and crucially, have exploited the strengths of neural networks to provide control
over coordinated perception and motion (gait and balance etc.).

This has enabled a number of successful robots to be developed, including: ‘Big-Dog’,
a quadrupedal robot developed for the US military for traversing rough terrain, providing
transport for combat equipment as part of a unit of troops (Raibert et al., 2008). The
increased mobility and all-terrain capability and the versatility that the platform provided by
Big-Dog has more recently been miniaturised and modularised into SPOT (Boston
Dynamics, 2020b), a commercially available fully autonomous quadruped, aimed at industry.
Shipping in the first quarter of 2020, the company hopes that facilitating access to the design
will itself generate new ideas and areas of study.

The most prominent and well known of Boston Dynamics robots is, however, ATLAS
(Boston Dynamics, 2020a). ATLAS is anthropomorphic in structure, facilitating its
application to human-based tasks, and is designed to provide a general task versatility by

being constrained to a similar range of motion enhanced by increased strength and durability.
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The development of anthropomorphic systems like this provides many benefits, ATLAS can
lift and carry objects, manoeuvre over obstacles whilst doing so, and regain and correct its
balance if interfered with. Applications include replacing many manual, menial tasks, and
replacing human beings in situations too hostile for human beings to survive (Hsu and Peters,
2014); as evidenced by the ATLAS project’s funding from the Defence Advanced Research
Projects Agency (DARPA). Anthropomorphism does, however, present significant
challenges in the form of the Uncanny Valley phenomenon (Mori, 1970; Young et al., 2011),
which is often a significant factor in project failure.

Tangent into the benefits of biomorphic applications in robots aside, neural networks
themselves are an excellent demonstration of the strengths of biomorphism in design Neural
networks enable human-like traits and abilities by learning as we do (Fink, 2012). Indeed, the
fascination with anthropomorphism in robotic design dates back centuries to the intricate
clockwork Automatons, (designed and built to give the illusion of human behaviour), but as
demonstrated, has important implications for contemporary robotics, and the way in which
we interact with them. Robots that move, look, and think as we do are inherently easier to
predict, understand, and ultimately trust.

The autonomy and adaptability that machine learning enables can be argued to
increased intelligence, and the capacity to which it can be implemented within manufacturing
systems. The benefits that intelligent behaviours enabled by Neural Networks in a
reinforcement learning environment are proven by their frequent appearance in the literature
on learning tasks, and create new opportunities, as behavioural models that rely on learning
and experience to dictate their outcomes can be embodied by these techniques. Combined
with the principles of distributed control, it enables many of the capabilities envisioned under

Intelligent Manufacturing to be realised. It is, however, both appropriate and necessary to
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consider these capabilities, with respect to the human element of the systems that remains,
and how they may be leveraged to facilitate interactions between human and robotic entities.
Furthermore, the utilisation of neural networks as a learning model has significantly
expanded the field within computer science which specialises in understanding and
replicating human thought processes, known as cognitive computing. Intuitively, approaches
within cognitive computing make use of combinations of neural networks, to replicate
cognitive processes (Noor, 2015; Modha ef al., 2011), and to replicate human behaviours.
This has potential implications for the facilitation of collaborative behaviour and the
improvement of human-machine-interaction. With recent work on social cognition and social
intelligence suggests that providing intelligent robots with social understanding, and human-
like cognitive processes and structures, will better enable natural and intuitive behaviour
when interacting with humans (Vernon, 2014; Wiltshire, Barber and Fiore, 2013). This is

further explored in the following section.

2.4. Human-Robot-Interaction

The study of interaction mechanisms between humans and their robotic counterparts has seen
rapid growth, as a consequence of the increased capabilities of automation, resulting in an
increased prevalence of HRI's in the manufacturing setting. Furthermore, this interaction is of
increasing complexity, as intelligences become more capable. As discussed in the previous
section, enabling robots to behave in a way that is adaptable as a response to changes in
human behaviour has considerable significance and application to improving these
interactions. There is a growing interest in the field, but limited work into its applicability to
robotics under the intelligent manufacturing paradigm, in contrast to other areas of
investigation (Lemaignan et al., 2017). This section discusses this work in detail and

considers the current state of the application of intelligence to robotics where they interact
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with humans, in terms of both current approaches and interesting research opportunities that
should be exploited.

It is also important at the beginning of this section, to make clear the distinction in
terminology that surrounds this area, as many different phrases and nomenclature exist within
the literature. Broadly speaking, Human-Machine-Interaction (HMI) and Human-Robot-
Interaction (HRI), are used to refer to interaction at the abstract level, covering all forms.
However, the concept of interaction may be further divided into two types: Direct
Interaction; which are types of interaction that involve direct physical, communication or
manipulation. These types of interaction include: User-Interfaces (UI’s), both Physical (PUI)
and Graphic (GUI) User-Interfaces, and physical interactions involving robotics hardware,
and Passive Interaction; which are types of interactions that involve passive communication.
These types of interaction are concerned with more abstract behaviours associated with
inferring knowledge and understanding based on both social and contextual cues.

There are numerous contemporary implementations which exist to demonstrate and
leverage the benefits of intelligence (in terms of facilitating collaborative and assistive
behaviour in robotic operators) in Human-Robot-Interactions and provide entirely new
opportunities. Based mostly on advances in machine vision systems and improved image
processing, current implementations focus heavily on Direct Interaction, and typical
interactions include:

Multi-Robot Handling/Robot-Human coordination; where the end effector
coordination of multiple robots can be used to increase human strength, enabling handling of
large and unwieldy components, and reducing the manual aspect of human Labour (Djuric,
Urbanic and Rickli, 2016); Coordination with the motion of a human operator additionally
improves safety when sharing a common work area, and collision detection is implemented

in commercially available robotic operators manufactured by KUKA (AG, 2020) and ABB
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(ABB); enabling them to share a work environment with a human operator with increased
safety.

Direct-Teaching; where the use of collaboration enables proximity working, and
programming of advanced motion combines the flexibility and reconfigurability of humans
with the strength, accuracy and repeatability of robots. Applications enable autonomous
replication of advanced manufacturing processes, such as composite layup, oversise
component handling, and welding fabrication (Eckardt, Buchheim and Gerngross, 2016;
Agravante et al., 2014; Rozo et al., 2016; Wang and Zhang, 2017).

Augmented/Virtual Reality; used for visualisation based on virtual models, can be
used for remote instruction, training, and real-time information retrieval/delivery; for
example, technicians may be provided with instructions on procedures based on 3D CAD
data, which can be used to provide fully virtual training environments and simulations, or be
overlaid onto images of the real-world problem and used to instruct (Danielsson, 2016;
Paelke, 2014).

Perception; leveraging improved image and data processing technology, including the
use of machine learning, has enabled many modes of perception. Current research involves
voice recognition and natural language processing (NLP); facial recognition; gesture control;
and motion tracking (Mohammed, Schmidt and Wang, 2016; Matsas and Vosniakos, 2015).

However, it is the development and application of intelligence to robotic systems that
have elevated the role of the machine from a subservient entity to one with its own goals and
motives, and the ability to make independent decisions to achieve them. This has, in turn, led
to the current state of research, in which robotic entities interact on the social level, forming
cooperative and interdependent relationships with others (Warta ez al., 2016). As the
learning ability of intelligent agents improves and their decision-making becomes more

capable, the interactions and relationships that exist between humans and machines grow
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more complex and based more on the inference of information from contextual clues; a
behaviour more typical of passive interaction.

Therefore, to facilitate interactions between humans and robots at the social level
(where they can adapt their behaviour to be more cooperative or beneficial to their
collaborators) leads to an argument for robots to have the capacity to think in the way human
beings do, as the development of intelligence which is based on the ability to observe,
perceive, and communicate both leads inherently to social interaction, and is already similar
to the models found in human learning. Consequently, by developing behavioural models
based on our understanding of human cognitive processes, and how these relate to social
behaviour, it is anticipated that robotic systems that are able to mimic or exhibit human-like
behaviours; reactions; motivations; and tendencies will interact intuitively, through the
display of appropriate concurrent behaviours (Vernon, 2014), facilitating these interactions
with human beings. This has particular relevance in how agency is implemented in robotic
systems when interacting with human beings. (Wooldridge and Jennings, 1995) provide two
different concepts: The Weak and Strong notions of agency. The weak notion of agency
describes any system that exhibits the following behaviours: autonomy, social ability,
communication language, reactivity; and pro-activeness. The strong notion of agency
describes a system capable of weak agency, but that is designed or implemented in such a
way as to mimic anthropomorphic features or behaviours, to facilitate interaction.

The modelling of social cognition (or the cognitive processes which govern social
behaviour and the process of decision making based on observation of others) requires a
functional understanding of the mechanisms in the human context; fortunately, these have
been well studied in the field of Psychology. Within the literature, the concept is frequently
addressed by considering the social interactions of agents, an overlap occurring as a result of

their aforementioned suitability for dynamic interactions. In terms of how human beings
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perceive a situation and form an action based on it, models commonly embody perception
through the principle of rational belief, the assumption that the agent will hold sensible
beliefs, and that beliefs are formed based on these principles from observations of the

environment; and reaction through the principle of rational action, which assumes that the
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Figure.2 - Agent structure in relation to the principle of rational belief and the principle of

rational action. Reproduced from Baker & Tenenbaum (2014).

agent will take appropriate action in relation to how it’s observations match up to its beliefs
and desires (Baker and Tenenbaum, 2014). This concept is illustrated in Figure.2.

The structure of this model bears a remarkable similarity to the application of a DQN
and training under an MDP of an intelligent agent in the context of learning for distributed
control, lending further weight to this approach. The agent receives an observation that
describes the state, which forms a belief (Q-scores) when combined with the agent’s principle
of belief (Neural Network). This enables the agent to select an action based on the policy of
rational action (or the decision policy, pi, of the MDP). In addition to considering how
cognitive processes may perceive and act based on inferred information from the
environment to enable interaction, it is also useful to consider the internal processing of this

information. From the perspective again of modelling human cognition opinion is split
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between several main branches based on the distinction between two types of cognitive
processing; Type 1 and Type 2 (Evans and Stanovich, 2013).

Type 1 processes are typically dominant where rapid response time is required.
Influencing factors include a multitude of available clues, presented simultaneously; and a
degree of familiarity with the situation and the agents involved, including knowledge of
situational outcomes. Inversely, type 2 processes occur in situations where response time is
non-critical, and are typically more analytical in nature; focusing on specific relationships
between a relatively small number of cues, that may be provided dynamically or in a
specified sequence; The situations are typically unfamiliar to the agent and analytical
reasoning is employed to identify patterns and relationships, to form appropriate response
behaviours (Wiltshire et al., 2016; Wiltshire et al., 2014). Traditional automation control,
specifically its responsive and reactionary nature is analogous to instinctive Type 1
processing, whereas the recent application of intelligence to these systems has been achieved
through learning and analysis, which are more typical characteristics of Type 2 processing. It
seems likely, therefore, that applications of intelligent manufacturing will retain some level
of traditional automation control to govern type 1 cognitive processes, combined with an
additional cognitive process, based on analytics of the whole system, representative of type 2
processes. The manner in these two types of cognitive processes interact to produce an
accurate model of cognition is a source of debate, but there is significant confidence in Dual-
Process Theory, which considers both types of cognition to contribute to exhibited behaviour,
but to occur independently of one another, reducing computational load and reliance on large
working memory.(Evans and Stanovich, 2013). As a result of their fast processing, default
responses are governed by #ypel processes; unless superseded by higher-order reasoning
though processes, or type2 process. This work lends weight to the argument that traditional

autonomous control should be retained, and control mechanisms developed to supersede the
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instructions and control of these systems when necessary, based on higher-level, data-driven,
decision-making.

As a note on quantifying the soft benefits that facilitating robotic behaviours based on
observations of a collaborator, the following section describes the impact of human
perceptions of robots. (Young ef al., 2011) observes that human beings inherently apply
anthropomorphism to robotic entities, ascribing them personalities, and attributes such as
names and gender. This tendency to socialise with robotic entities can be seen to be prevalent
even when there are no specific design features to incite such a response (Forlizzi and
DiSalvo, 2006). This is due to several factors, which set robotic technology apart from other
technological artefacts; robots can work directly and in close proximity with human beings,
within the bounds of personal space, but more importantly, they can do so autonomously,
promoting the illusion of intentionality (Young et al., 2011; Dennett and Haugeland, 1987).
This intentionality helps people to build expectations and predictions of behaviour, with the
result of increasing familiarity and a sense of active agency, a term which describes the sense
that the robot is behaving and reacting as a living thing would, when provided with
interaction stimulus.

The development of this intentionality within the scope of manufacturing, particularly
in cases of direct interaction has given rise to the notable concept (recurrent in recent
literature) of frust between human operators and their robotic teammates. Defined by
(Sadrfaridpour et al., 2016), the concept of trust is described as a measure of familiarity and
security, based on the performance of both the human and robotic entities, and the rates of
successes and failures (Hoff and Bashir, 2015). The model can be time-series dependent, with
prior trust levels incorporated into the metric to provide a measure of relationships over time
or the concept of Building Trust. This is achieved through increased confidence that the

autonomous entity will behave as intended and be of genuine assistance (Heitmeyer and
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Leonard, 2015). Additionally, (Lohani ef al., 2016) find that inclusion of socioemotional
features in robotic teammates promotes the development and subsequent feeling of trust.

As will be expanded in the following section, the scope for variation in human
performance is large and is governed by multiple factors, with significant implications for
numerous manufacturing tasks. What is evident from the literature covered in this section, is
that whilst the potential capabilities that intelligent processing provides have been
successfully leveraged in terms of physical interactions, significant work remains to reconcile
areas of cognitive processing to enable these same capabilities to improve interactions more
passively; such as leveraging adaptability reduce the impact that performance variation has

on modelling and process control within the scope of manufacturing systems.

2.5. Human Factors

In the application focused on in this work, these interactions occur between robots and their
human colleagues, either directly or as sequential members of a production process. As
highlighted in the previous section, the extension and applications of decentralised control to
manufacturing processes with the aim on enabling intelligent behaviours necessitates the
consideration of the interactions of intelligent agents, both with each other, and their human
counterparts. At the system level, this influences the implementation of intelligence and how
this may be leveraged to provide collaborative behaviours in robotics, and how multiple
agents (human or robotic) may observe and adapt to one another to achieve a common goal,
is particularly applicable to dealing with the challenge of Human-Robot-Interaction. This is
due to the fact that humans possess their own agency, as well as significant variation in their
task performance, which is the result of numerous external human Factors, most notably

fatigue (Hart and Staveland, 1988; Lorist et al., 2000; Lorist et al., 2002). The performance

43



variation and ultimately disturbance to these manufacturing processes that these factors
induce, requiring a degree of adaptability to overcome.

The origins of the study of human factors and how they influence performance and
productivity in labour tasks stem from Frederick Taylor’s investigations into manufacturing
processes at the turn of the 20™ century. This work consisted of the analysis of a variety of
manual operations, through timings and empirical studies. This study, and the data captured
from it, ultimately enabled Taylor to formulate his theory of Scientific Management (Taylor,
1911; Taylor, 2004), which forms a collection of best principles to improve the productivity
of human workers. The principles of Scientific Management persist to this day (thanks to the
efforts of his wife in continuing Taylors work following his death) and have become
pervasive throughout manufacturing processes in terms of both design and management. In
many ways, it can be considered the work responsible for the introduction of process
monitoring, and abstraction of these processes into models and databases; which has
continually increased since. It is perhaps, therefore, no coincidence that a study focused on
human beings has paved the way for the emergence of many technologies, in particular,
Cyber-Physical-Systems (CPS's) based approaches to digitalisation, which are dependent
themselves on human data for modelling and monitoring of real-world systems, prediction,
and analysis.

There are several factors which exist that are known to influence human performance,
leading to decreased repeatability, accuracy, and other variations in performance ability.
These factors are the result of multiple different environmental and contextual conditions,
and the additional introduced variation means that in contrast to their robotic counterparts,
human operators are a source of disturbance to manufacturing systems. This disturbance
renders most optimisation techniques ineffective, due to lack of effective mathematical

modelling.
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In addition to the natural variation between different human individuals, the
aforementioned factors exacerbate these differences and have a greater or lesser degree of
influence on behaviour and consistency of performance depending on the individual. Many of
these factors themselves were identified by Taylors work, and from a business management
perspective, a large body of research exists covering the causes and effects of human factors.
This research has been instrumental in modelling the influence of these factors on human
operators in the manufacturing context.

The Type of Task and the combination of both mental and physical demands on the
individual is a significant source of human performance variability. The NASA developed
‘TLX’ framework (Hart and Staveland, 1988) identifies multiple types of task, each
characterised by different combinations of physical and mental demands, referred to as task
demand characteristics. These characteristics are used to categorise different tasks, in terms
of how these factors, such as the task duration, influence the perceived workload. Instances of
increased workload perception have been associated with correspondingly increased stress,
fatigue, and resultant decreased task performance. (Hart and Staveland, 1988; Hancock,
Williams and Manning, 1995; Driskell and Salas, 2013).

Of these tasks, assembly operations often require manual and dexterous manipulation
of components; in particular, those which remain prevalent within manufacturing. Due to the
combination of mental and physical demands, such tasks are very susceptible to the effects of
fatigue, which will, in turn, influence task performance. Fatigue is a complex, albeit well-
studied phenomenon, and is understood to exist in two distinct types. These are motor
fatigue, involving fatigue of the physical biology of the muscle; and cognitive fatigue, which
results in the deterioration of cognitive functions (Lorist et al., 2000). The two types also do
not occur independently of one another, with relationships understood to exist between the

level of motor fatigue and the level of cognitive loading, which results in poorer response
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times in decision-making tests, and a decrease in motor control and physical function (Lorist
et al., 2002). The relationship between the different types of fatigue supports the assumption
that dexterity is detrimentally affected by increased cognitive loading. In addition to the task
demands, the time-on-task is another factor which influences the rate of fatigue accumulation
and its effects. The cumulative nature of fatigue means that repetitive actions which require
physical or cognitive resources will have an increasingly greater effect on task performance
(Benedetti ef al., 2015). Additional factors, such as how periods of rest are structured and
their duration, will influence the fatiguing mechanism (Enoka and Duchateau, 2016).

The use of the term fatigue to describe this depletion of resources leads to the
discussion of the more traditional understanding of the term, whereby fatigue is used to
describe tiredness and the effects of sleep deprivation. Sleep is the primary mechanism by
which physical and cognitive resources may be replenished, reducing the accumulated fatigue
before rest. Consequently, it can be seen how a lack of sleep effects fatigue, and that both the
immediate and cumulative effects of sleep deprivation have a significant influence on
performance (Koslowsky and Babkoff, 1992; Dinges et al., 1997). Sleep itself, as a biological
phenomenon, is at best, poorly understood. What is known, is that Human sleep patterns are
governed by natural cycles known as circadian rhythms, which dictate in terms of
physiological activity, periods of activity linked with increased motivation and task
performance. These cycles are understood to be closely linked to the time of day (Blake,
1967), and the study of these circadian rhythms has identified several patterns. These patterns
are termed chronotypes and are often expressed through a preference for either morning
(larks) or night (owls) activity. This preference, as a result of differences in physiological
activity, corresponds to decreases in task performance at a non-preferential time of day
(Kerkhof, 1985). In addition to the time of day, there are several additional factors which

influence these periods of increased activity. These include the quality and intensity of

46



environmental light levels, with better illumination associated with improved task
performance (Campbell and Dawson, 1990) and by satiety, which is both susceptible to, and
determinant of, many of the bodies same physiological processes (Berthoud, 2007; Lowden
et al., 2010). Other studies have also led to the observation of a day-of-the-week effect, with
decreased performance on Mondays, rising through the week to optimal performance on
Thursdays (Testu and Clarisse, 1999), however, it is not known whether this phenomenon is
associated with fatigue or is social in nature.

The factors detailed in this section represent a selection of the most well understood
and most influential in terms of their effect on task performance. The truth of the matter is,
that the human machine is governed by complex interwoven processes, and the number of

potential sources of variation is unquantifiable.

2.6. Summary

The exploration of current literature identifies several trends. Under international initiatives,
such as Industry 4.0, development of numerous enabling technologies has been accelerated,
in particular, those relevant within in the context of intelligent manufacturing. As human
beings remain an integral part of many manufacturing operations, the increasing demand for
autonomous, reconfigurable, and adaptable robotic elements within these manufacturing
systems has led to interactions, and hence collaboration, between humans and robots
becoming increasingly prevalent in the manufacturing context. This presents issues in terms
of optimising these systems, and sets limits on potential productivity, due to the disturbance
introduced into these systems by variations in human performance, both as individuals and as
a result of other human factors. The unpredictable and inconsistent nature of this disturbance
has an impact on the processes ability to operate in a lean manner resulting in tangible

increases in observed idle times, costs associated with WIP, and overall productivity.
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The preceding section has explored a wide area of literature from various fields, which,
in line with the proposed research questions, suggests that there are opportunities for the
increase in the capacity of computers to act intelligently to improve the interactions between
robotic operators and their human collaborators; and reduce the impact of human task
perfromance variation on manufacturing processes. This section aims to quantify the existing
body of literature with respect to its relevance to the main research questions. This includes
identification of the areas in the existing research which are lacking, and the questions that
this poses in terms of advancing work in this area. Within the scope of this work, this relates
to how the techniques promised by intelligent manufacturing may be applied within the
manufacturing environment, so as to facilitate the interactions between human and robotic
operators and to understand and alleviate the consequences of the disruption introduced by
the presence of human beings.

With respect to the first of the main research questions, this involves work on the
variation and adaptability of human beings and the consequences this has for manufacturing
processes. This has been well studied in many direct domains and physical interactions, and
novel ways of leveraging new technologies and methods to eliminate the negative effects,
and leverage for the better, this variability, have been developed. There remains, however,
limited work into how these same traits influence more passive interactions, such as the
system-level dynamics of these processes, and the effects. There is also a lack of work
focusing on applying these new technologies based on principles of adaptability to working
with human beings in such a way.

Answering this question will build on existing research on social-intelligence and its
application to autonomous systems and how they interact with human beings. In terms of
furthering social intelligence, the act of collaboration requires effective perception and

communication of another, to coordinate action to achieve a goal; and the problems presented
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in terms of performance disparity provide the perfect case to explore the application of these
concepts. From a process management perspective, it will provide a solution to human
modelling, and address the application of social intelligence to adaptive control systems
allow real-time changes in behaviour, in response to human variations. This will be achieved
through enabling robotic operators to understand the variable behaviours of individual human
operators, and to take the appropriate actions, resulting in more adaptable behaviours and
decision making, at the social level.

The second of the identified research questions seeks to provide insight into how this
intelligence may be implemented and realised within these systems. From the existing
research, this intelligence is typically manifest as the product of analysis of observed data by
learning algorithms, which extract information from representations of the system or
environment they are trying to model. This information is then used to make predictions
about system variables or to determine appropriate actions through some selection policy.
What is clear from the existing literature, is that the scope of these algorithms is vast, and
there exists no definitive guide as to the applicability of different approaches. Neural
network-based techniques have emerged as a versatile methodology for abstracting the
relationships between data inputs and outputs and have been applied successfully in a variety
of analysis and control applications; and there are significant parallels between neural
network-based approaches and cognitive theory. As such, through a neural-network-based
approach to analysis, this work aims to provide insight into how these techniques may be
used within the context of facilitating human-robot-interactions, both in terms of
understanding the dynamics of the system and for analysis and decision-making. This
requires consideration of how to capture the relevant representation from the environment,
and how this is presented to these algorithms, to provide effective learning, development, and

evaluation; which is crucial to facilitating effective human modelling.
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The last of the research questions seek to reconcile the numerous relevant domains
within intelligent manufacturing, and the existing work further suggests that the realisation of
intelligent systems requires the identification and evaluation of methodologies for the
effective combination of numerous techniques within this domain. These techniques include:
digitalisation, to functionally, yet representatively model interactions and control processes,
distributed control, to enable appropriate processing of observed information; and machine
learning techniques, including the application of the identified reinforcement methods to
identify self-optimising behaviours within the modelled application; which must all work in
synergistically to achieve the resultant desired behaviours.

This is evidence by the advent of Multi-Agent-Systems, which address directly this
problem of coordinated and decentralised control. Combined with the capacity for intelligent
behaviour, these agents may be designed to coordinate their actions with observations of their
collaborators, to improve the interaction between them. This has been demonstrated already
in many applications that are reliant of physical interactions, but there is a lack of work on
exploiting these capabilities to improve these relationships at the passive level; and how it
may be applied in both theory and practice. It is unclear is how such opportunities can be
capitalised upon, and there exists no agreed-upon method for realising the theoretical benefits
of intelligent systems able to achieve a level of social cognition. This is due in part to the
relative infancy of the technologies and methods involved, but primarily the result of the
wide variety of applications. As a consequence, any developed systems should aim to
generalise these interactions whilst maintaining representative accuracy. Much of the existing
work is outdated, however, and the capability of modern systems far exceeds those for which
these frameworks were designed. Despite this many of the insights and methods on how
autonomy and adaptability can be replicated through the use of cognitive computing and

multi-agent-systems remain useful.
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Establishing these methods and realising a cohesive application of the identified and
developed techniques in such a way as to be applicable to a real-world process, is a key aim
of this work, and resolves many of the gaps in the existing research regarding how intelligent
methodologies may be applied to the problem of human variation. Similarly to the first case,
many of these technologies have been explored within similar applications, but the use of
these methods to improve the interaction dynamics in the care of human-robot-interaction has
yet to be explored, despite the very realisable benefits at the system level, in terms of
reductions in observed idle times, increased productivity, and optimisation of the process
through improvements to its lean operation.

The research suggests that the implementation of intelligent agents may leverage
several benefits of decentralised control and machine learning techniques, to enable robotic
operators to behave in an adaptive and crucially social manner concerning their human
counterparts. Adaptability within the robotic elements of manufacturing systems has begun to
improve human-robot-interactions in the physical domain, however, despite the ubiquity of
human workers and the obvious disruption that is associated with human performance from a
production management process at the system level, it is an area that remains to be addressed.

The benefits that adaptation can provide within the manufacturing setting are clear from
the existing work, and consequently, it is relevant to explore the application of these methods
to the problem of human performance variation and more passive interaction behaviours.
Enabling social behaviours, which are characterised by benefitting both agents involved, is
an example of how these passive interactions may be leveraged and necessitates the
development of agents capable of social cognition. The following section outlines the
research framework used to implement the necessary elements of cognition, and how these
relate to enabling robotic operators to adapt their behaviours as a response to their human

collaborators and facilitate these interactions, on both a human and process level.
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3. Research Framework & Methods

This section covers the developed research approach to enable the implementation of
intelligent agents within the context of manufacturing control. The research approach is
designed around answering the key research questions, and the key considerations were
therefore development of a suitable modelling approach to enable interaction between the
software and hardware components, and how the collection and processing of data relates to
the domain of manufacturing systems. The first chapter of this section covers the definition of
a framework, which is concerned with the handling of information within such systems and
highlights the necessary elements for consideration to realised desired behaviours. In addition
to the existing literature, the research framework is also informed by the processes and
systems in place in the manufacturing processes of the industrial partner for this work,
namely the separation required between the elements of data collection and robotic action
execution. This separation provides the opportunity for interstitial data processing, and
clearly separable external boundaries for the intelligent agent.

The second section in this chapter further discusses the key framework elements in
terms of the relevant technical and research methods to be used. These methods were again
defined to best answer the proposed research questions, name monitoring processes used by
the industrial partner also served to inform much of the approach towards the necessary
elements of processing, both in terms of how the data was captured formatted and stored, and
the necessary processing steps required to retrieve actionable information from it. This
includes elements like the ability for the agent to execute learning and complex analysis
separately from decision making to facilitate software embedding, to pre-process and
reformat incoming observations, and to execute output actions independently of the

application platform through the use of appropriate software APIs.
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3.1. Research Framework

As established from the literature, there is good evidence to support the notion that enabling
intelligence within manufacturing systems through the use of learning and decentralisation
can facilitate adaptable behaviour of robotic operators. The decentralisation of control
systems from the hierarchal level (where a central processor is used to monitor and control
the parameters and execution of the entire process) to individual robotic operators (through
the use of learning to enable an intelligent analysis of their observations), can improve
collaborative behaviour, through the appropriate selection of action based on the observed
state of the process and collaborators. This framework established the approach to this
problem from the perspective of facilitating this collaborative behaviour, intending to
minimise the impact of human task performance variation on the process.

There are two independent disciplines which can be seen in a contemporary automated
manufacturing process. These are the disciplines of Data collection, which in this context
broadly describes the generation, collection, transfer and storage of data. And the discipline
of Robotics, which is responsible for the hardware elements of automation, including the
robotic manipulators and controllers themselves, and the connection of these physical
elements to virtual systems.

Whilst these disciplines exist separately, as data-driven robotics systems become more
commonplace, the separation becomes less distinct, and there is an increasing need to
formalise the interaction between the generated data, its representations, and the physical
system elements. In these data-driven systems, (typically binary) signals from sensors in the
data collection domain, are communicated to a robotic controller (Such as a Programmable
Logic Controller PLC), in the robotics domain. This signal will trigger the appropriate
response logic and corresponding action. The flow of information in this respect can be seen

in the framework illustrated in Figure 3.
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Figure.3 - Existing information processing systems illustrated in terms of information flow

through the system.

The data generated within a sample of a manufacturing process can be defined as being
from one of two sources: Process data; which are the data points related directly related to
the elements and parameters of the process; and Environmental data; any supplementary data
providing contextual information, which may be analysed for additional insight. These
sources of data may also be supported by databases of historical data, in certain applications.

Whilst these signals can be centrally collected, processed, and more appropriate
commands sent back to these controllers, as discussed, problems with these hierarchal
systems become apparent when dealing complex systems (containing many individual
machines, each with potentially thousands of sensors). Consequently, to enable the
distributed intelligent processing of this data, the following framework is proposed, which
outlines the necessary constituent elements of processing required, and the interactions

between these elements; to enable adaptability and facilitate collaborative behaviours.
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The framework in Figure.4 illustrates the addition of an intermediary Cognitive Layer
which contains these modular elements to implement the necessary data processing steps.
This cognitive layer is software-based and can be implemented on-board a robotic operator to
enable an intelligent response to changes in the perceived environment, to provide agency in

the robotic systems, and facilitate interactions with their human counterparts.

-~+——— Data Collection > Cognitive Layer > - Robotics ————»-

PERCEPTION DATA ANALYSIS

Environmental & %
Process Data Information

Retrieval External
Sample/ \ Knowledge

Event —| Actuators

| Data

Collection Data » Learning

Preprocessing | = | Mechanism Motors

Historical Cognitive Controller 1/0 - Robot
Data Controller ~| Controller

| }

COGNITIVE CONTROL

Figure 4 - The proposed framework illustrated in terms of information flow through the system.

Divided into three functional layers.

As can be seen from Figure.4, there are three distinct areas of processing that are
defined to enable the necessary data processing and end behaviours in the intermediary the
proposed cognitive layer. The layer is based on the modular structure seen in existing
cognitive architectures reviewed in the literature, which is leveraged here as the isolation of
high-level cognitive processes facilitates integration with low-level control. Each of the three
modules combines is responsible for a different area of processing of the data and leverage
multiple combined functions to replicate different cognitive processes and enable appropriate
behaviour to be selected. The following section outlines each of these modules in more detail
and discusses the technical application of these processes, and the approach considered in this

work.
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3.2. Research Methods

Within the developed research framework, there are several distinct areas of processing, each
of which must be suitably approached from the perspectives of both development and
evaluation. The Perception module is responsible for providing the interface between the
software agent and the data collection system. This is in terms of both capturing and
appropriately and pre-processing relevant data in a manner that may be utilised by the other
modules. Perception is a more accurate term here than observation, as the observed data and
the information it contains is affected by the beliefs and aims of the observer in terms of how
this data is processed. This may be formatting, or the derivation of more useful data
instances, for example, establishing a cycle time by looking at the timestamp separation of
execution of two different sensor activations. Additionally, the methodology for data
collection is application-specific and dependent on the systems implemented. The framework
identifies the critical elements that the data collection system must be able to capture and
recall. Minimally, this is the capacity to gather, store and transfer multiple data instances,
both real-time and historical, in a format which may be parsed by the software agent.

The analytics module isolates the learning and analytical processing of the cognitive
layer and is responsible for higher-level, analytical processing, focused on extracting
information from contextual data. The analytics is done by utilising a neural network to build
a predictive model to approximate the relationship between observed data and the desired
output value. The module also provides storage to supplement the observed data with
additional information that is not observable by the agent. This may include additional
contextual information, such as shift patterns or production targets. Use of machine learning
techniques for knowledge discovery here include consideration of multiple factors, which as
mentioned are frequently application specific. Necessary consideration must be given to the

data and format, including relevant pre-processing steps and suitable evaluation metrics to
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asses learning and predictive performance. Consequently, specifics of the methods used for
the realisation of these functionalities are detailed as part of the development of the
intelligent agent.

The Perception and Analytics modules provide support to the Cognitive Controller,
which manages the information flow through the cognitive layer, and is responsible for
enacting the actions of the agent. The internal structure of the module and its relationship to

the previous two is detailed in Figure.5.
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Figure 5 - Architecture illustrating information flow through the Agent, and how it interacts

with the simulation environment.

The cognitive controller contains the functionality to implement Q-Learning, following
the process of an MDP. This enables the agent to optimise and select the operations and
parameters of the robot to exhibit the necessary functionality, based on the information
provided by the other modules. In addition to selecting the appropriate actions, the cognitive
controller is also responsible for issuing the relevant commands to the robotics hardware,
through the use of the relevant API’s, where they can be enacted using existing control
techniques. In many robotics applications, the instructions will be received by a
Programmable Logic Controller (PLC), is then responsible for generating the necessary

command signal for the motors and actuators to affect the relevant motion of the robot.




The overall design of this cognitive layer is designed to act as a software agent, capable
of leveraging Q-Learning through an MDP. Consequently, the design if based around
developing an observation which describes the environment; performing the algorithmic and
learning aspects of the process, resulting in an action, which influences the system, in turn,
recorded environmental and process data, forming a feedback loop of the next state
representation.

The clear distinction between the digital and physical domains of the system facilitates
the division of cognition as a whole into the constituent processes associated with higher-
level reasoning, reducing the computational load of the processing; whilst isolating the
processes responsible for control planning which ensures correct motion of the robotic end
effectors etc. (motor control being a separate area of cognition entirely (Lorist et al., 2002).
This preserves reactive action as control can still be triggered by sensors connected to the
robot controller located directly in the process (i.e. kill-switches and collision/fault-
detection). Using established automation techniques will also facilitate implementation and
compatibility in terms of realising such systems.

The architecture presented in this section illustrated the design and implementation of
an intermediary cognitive layer, to provide robotic operators with adaptive functionality,
based on the knowledge extracted from real-time contextual information observed from the
environment and collaborators. The following section outlines the methodology to develop
the necessary software elements, to enable the inclusion of knowledge of human factors and
utilise adaptable behaviours to account for the variation and uncertainty resulting in the
interactions with human beings and consequently these production processes. As discussed in
the literature review, the use of g-learning through a Markov process has a significant overlap

in compatibility with discrete event simulation (DES), providing distinct, discrete states, and
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actions to transition between them, as such, a DES approach to explore the application of
these machine learning techniques is a logical consideration.

The following three chapters present the methodology developed to identify and
overcome the demands and considerations required to create an adaptable control structure as
outlined in the previous section. This methodology consists of several individual sections,
each concerned with the development of a different aspect of the approach. These are
Human Factors Modelling & Simulation Design, which is concerned with the effective
modelling and parameterisation of human elements and human factors influence within the
simulation model, the capture of human performance data, and the development of a
simulation model in such a way that it is generalised to multiple real-world scenarios and
provides the necessary functionality to explore the areas of reinforcement learning and
human-robot-interaction; Agent Design, which covers the development of how the agent
interacts with the simulation environment, how the environment is captured and provided to
the agent, the actions necessary to achieve the relevant adaptable behaviours, and how the
reinforcement aspect is realised through rewards and software design; and Agent
Evaluation, which details the approach used to evaluate the performance of both the neural

networks and the combined intelligent software agent.
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4. Human Factors Modelling & Simulation

This chapter outlines the development of an effective methodology to model and simulate
interactions between robotic operators and their human counterparts, as they occur passively
in the scenario observed in a variety of manufacturing applications. The chapter covers two
main areas, the first relating to the dynamics of these interactions as they occur in these
processes, and the development and application of methods to effectively model and
consequently simulate these interactions is such a way that the interaction is generalisable to
any specific production process. The second key area relates to capturing and understanding
the influence of human performance variation on these interactions, and how this may also be
effectively captured, modelled and simulated, in such a way that is representative an as
generalisable to as many of these interactions as possible. Furthermore, this second section
also explores the developed methodology for the effective parameterisation and modelling of
human task performance, based on the monitoring of individuals over a sample period. This
has particular relevance in terms of both improving the general validity of the approach, but

longer-term consequences, which will be discussed as appropriate.

4.1. Simulation Design
The initial consideration is the appropriate digitalisation of the production process and
relevant interaction. A simulated version of a manufacturing process, that is suitably
representative, is crucial to enable the effective development of a software agent. This
scenario must be appropriately generalised in order to improve the validity and reliability of
using a Q-Learning approach in such a way.

A process consists of multiple operations, which -in an automated context- are
performed by several robotic operators which together constitute the production line. The

simplest production line model consists of a direction of motion, and the location of
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operators who perform manipulation of the product at some point along the path of the
product. These manufacturing cells are separated by conveyors for transportation and
frequently have a fixed capacity. Within these operations, there may be several cells where
tasks are completed by human operators. Despite good design and optimisation, this presence
of human operators remains a source of disturbance, due to their variation in their respective
cycle times, which introduces a performance disparity. This forms an interaction as

illustrated in Figure.6:

Robotic Operator Huaman Operator
Cell1 Cell 2
Task Task Task Task Task Task
1 n 1 n

From Stock/
Upstream Process

To Downstream
Process

Figure 6 - The model of interaction between human and robotic operators typically observed

in a manufacturing process, each cell has an associated Cycle Time.

To illustrate how this disparity has implications for the overall efficiency of these
interactions, assume there are no upstream constraints, to fulfil his goal (in the manufacturing
context, the simplest goal definition is to maximise the volume of production) with no
consideration for the downstream effect of his actions, the operator should logically attempt
to complete each cycle as fast as possible. However, even simple optimisations will often
reveal that working at capacity is not necessarily the most productive course of action. Where
there is a disparity in performance which is allowed to persist over time, there occurs either a

large surplus or deficit of products between the two operators, as the products completed by
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operator one builds up, or fail to be delivered in a timely enough manner. Eventually, this
process bottleneck leads to idle time being observed in the system, either in the upstream
operator, where the buffer zone becomes filled and they must wait for space to become
available and in the downstream operator, where they must wait for the next product to be
delivered. In the former case, the disparity also introduces an increase of workpieces in
production (WIP). Therefore, to improve these interactions that arise from the design of
production systems in this manner requires each operator to consider the conditions at other
locations and the actions of his collaborators. Considering the upstream operator, conclusions
about how to adapt behaviour in the social context become apparent. Given an awareness of
the downstream operator, the upstream operator should able to tailor their behaviour based on
these actions, to optimise their work, and consequently, the process as a whole. The
formulation of the interaction in this way bears similarity to fetch-and-deliver type
interactions where one agent must provide the other with an object for them to perform their
task. These have been studied in the field of human-machine interaction, often in terms of
anticipation, and are defined by their fluency, which is a term used to describe the disparity in
time between the need of the collaborator and the response of the agent. A lower disparity
equivalent to higher fluency, and better interaction (Hoffman, 2013).

To enable exploration, a simulated environment was developed using the AnyLogic
simulation platform (PWC, 2018), a Java-Based software package designed for Agent-based,
Discrete Event and System Dynamics simulation approaches. The software package provides
several advantages to the applications of this work, including functionality for different
modelling approaches, and the ease of extension and integration with external Java Libraries
and custom software objects. This simulation environment was designed to replicate the
identified model of interaction between a Robotic Operator (RO) and a Human Operator

(HO), performing product assembly tasks as part of a production line. As far as possible, the
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simulation is designed in a generalised manner, to provide a basis for exploration of how
different actions may be determined, selected, and enacted to improve the fluency of these
interactions. This is achieved within the simulation, by discretising specific sub-operations
into a reconfigurable set of logical elements, which enables the methodology to be applied to
a non-specific manufacturing operation. Within the model, combinations of these elements
form the human and robotic agents, which are able to be defined by the task duration or
Cycle Time (CT). Initially, the interaction dynamics are modelled in terms of an upstream
and downstream position, with the cells of each operator are separated by a conveyor
(doubling as a buffer zone). This follows the interaction typically seen in production
processes identified in Figure.6 previously, and the model itself at the top level is illustrated
in Figure.7.

celll cellla

source queue /’ Conveyor1 sink

Figure 7 - The model developed and the corresponding Anylogic simulation, each cell

contains a delay and data capture function.

Developing a machine learning model to of the relationships between the observed
information and the resulting performance, in terms of both prediction of the impact of
human factors, and in terms of reinforcement, is a key aim of this research. The literature has
identified the advantages of a neural network approach, in particular, due to their excellent
generalisability as function approximators. The robotic agent in the simulation model can be
said to represent the hardware aspect, within this agent, a software object is developed to
provide the neural network functionality. This development was done using the Java-based
DeepLearning4j (DL4J)(D14j, 2018) to facilitate integration with the Java-based simulation

platform; The Java classes which define the Neural Network behaviour are packaged using
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Maven to produce a Java Archive file (.jar), which is included in the AnyLogic model as a
Dependency enabling access to code developed using the DL4j library. The integration of the
neural networks in this way enables function calls to be made to the software agent during
simulation execution, enabling training and evaluation in a custom, reconfigurable, and
dynamic task environment. Two of these neural networks are defined, each within their own
modular code, to represent the different cognitive modules. The first is used in the analytics
module and performs the multidimensional regression to provide a prediction based on an
observed instance, of the collaborators' cycle time. This value can then be used to form the
state representation, enabling decisions to be made based on knowledge of collaborator
performance without direct observation, and at different points in time. The second neural
network forms the reinforcement learning system which governs decision-making with
respect to the state observation, to reduce the disparity in performances, resulting in a
reduction of the number of Workpiece-In-Progress (WIP), and the idle time observed for
either operator, consequently improving the fluency of the interaction.

In addition to evaluating the accuracy of the neural network during training, integration
of the learning element into the simulation environment is necessary to evaluate the validity
of the approach and performance of the intelligent agent in terms of a representative (albeit
generalised) task. This enables a more accurate assessment of the developed model in terms
of how well such an approach can be used for real-time adaptive control. Developing the
functionality to enable intelligent processing and adaptable behaviour is key to realising the
potential of intelligent manufacturing systems and realising an intelligent agent which can
provide accurate predictions based on observation will contribute to further understanding of
the suitability of the approach.

Furthermore, the presented method enables the development of a suitably

representative simulation environment to be built following the presented principles of

64



generalisation, if greater fidelity is needed, which may be used to provide a training and
evaluation platform for the development of these agents, in a customisable and application-
specific manner. Additionally, the use of the simulated environment enables this in a manner
which is non-invasive to the real-world process. These are both strengths of the approach,
facilitating the development of optimal solutions with minimal disruption, through ease of

iterative evaluation.

4.2. Human-Factors Modelling

A crucial element in designing the simulation environment is the modelling of human task
performance in such a way as to effectively model the influence of human factors, whilst
remaining representative. The simulation acts as a platform to evaluate on-task robotic
performance but is also used to generate data for training the learning algorithms. For both of
these reasons, appropriate care must be given to how this data is calculated and captured. To
achieve this, the components of the simulation representing human operators are
parameterised to replicate both the variation between different operators and the influence of
human factors on their performance. As discussed in the literature review, the majority of
human factors are expressed through or are directly related to the mechanisms governing
fatigue; which in turn has the most significant influence on human performance across almost
all types of task.

To achieve this, several variables were defined representing different aspects of fatigue,
which were then used to adjust the human task performance during the simulations. This was
achieved by modifying the nominal Cycle Time (calculated as the total time duration between
products leaving each cell) which is used to quantify task performance, as discussed in the
previous section. The cycle time is directly related to the value of a delay element within the

human agent, with a variable time value, which is manipulated through the use of these
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modifiers to represent their influence. The modifiers were selected, as mentioned, based on
factors influencing fatigue, which will influence individuals to a varying degree. As such the
values of each modifier can be defined to replicate a variety of influence and susceptibility
between individuals. Furthermore, the influence of several environmental effects including
Noise, vibration, and light-levels, were not considered in the model, as their impact on
performance is comparably negligible if they remain consistent.

Three different profiles are defined to provide a wide range of conditions and
combinations of susceptibility to the impact of the identified human factors. Operator 1 was
parameterised as an experienced operator, with a low initial cycle time, but susceptibility to
time-on-task fatigue; Operator 2 was designed to represent an average case, with a nominal
base CT equal to that of the designed cycle time for the system processes (or fakt time), and
no fatigue influence was included; Operator 3 was designed to represent a more novice
worker with a slower cycle time, but a pace which reduces the influence of fatiguing. The
effects of fatigue on task performance are modelled with the use of a fatigue modifier, which
assumes a linear evolution over the shift duration is calculated by scaling the maximum effect

over the elapsed shift duration, as per Equation.2.

Elapsed SD

%Increase)
Total SD

Fatigue Modifier = ( ) X (1+ Qoo (2)
The human elements are additionally parameterised to represent the influence of the
time of day, through a shift modifier. Operators 1 and 3 were considered Owls and receive a
penalty of a 10% increase in cycle time during morning shifts. Similarly, the day-of-the-week
effect is represented by a weekday modifier for Operators 2 and 3, representing their
particular susceptibility, and increasing the individual variation. This modifier was set to
decrease performance at the start of the week and shift this influence to a 10% performance

increase on the penultimate day, replicating observed patterns. This combination of the

modifiers enables the calculated cycle time for each human operator at a specific point in
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time (Monday, AM, in the illustrated example.) to be obtained via equation.3, where n is the
specific operator, and the values for each modifier for each defined operator is illustrated in
Table.1., where, WM, SM, and FM, are the corresponding weekday, shift and calculated
fatigue modifiers respectively.

Calculated CT,p,y, = CT,, - WM, - SM,, - FM,, 3)

Table 1 - Breakdown of the values used to modify the performance of each operator.

Operator Number 1 2 3

Base Cycle Time CT CT: CTs
Fatigue Modifier (End of shift) FM, FM» FM3
Shift Modifier AM SMami1 SMamz SMami1
Shift Modifier Midday SMwmp1 SMmp2 SMwmpb1
Shift Modifier PM SMpmi SMem2 SMpmi
Weekday Modifier Monday WM. WM.
Weekday Modifier Tuesday WMy WMy
Weekday Modifier Wednesday WM WM
Weekday Modifier Thursday WMy WM
Weekday Modifier Friday WMei WMe2

Parameterising the simulation model with these modifiers and through the outlined
equations, enables the generation of models of HO performance, to induce different
interaction dynamics and varied conditions. This is done by iterating the day of the week
(Monday-Friday), and the shift order of the operators each week, to vary the Time of Day.
Each simulation run represents one day of operation, and consists of three shifts, am, midday,
and pm, each performed by a different human operator. The operator assigned to each shift is
then varied week to week, to represent the performance of each operator across the full range
of working conditions (These orders are: 123, 231, 312). This was done for a total of fifteen

simulation runs, with every 5 simulation runs representing a working week. This has
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relevance for two reasons, Firstly, it enables the generation of training datasets which profile
the performance of different operators under the influence of varying combinations of these
factors. This enables the neural network to infer and predict, from these four contextual input
features, the Operator Number (ON), Shift Number (SN), Shift Duration (SD), and Weekday
(WD) values (and the corresponding cycle time (CT) as the label), the impact on task
performance of the HO, based on historical performance. Additionally, aggregating the
performance data for each operator into one singular dataset in this way facilitates the
discovery of patterns in performance that are independent of an individual HO or which exist
over different timescales. Combined, these values form the observation space of the
analytical network, and consequently must be included in the observations supplied to the
intelligent agent, which will be discussed in detail, in a subsequent section.

Additionally, where these values take a categorical type, i.e. in the case of the shift
number and weekday attributes, it is important to consider their presentation the agent in
terms of a one-hot-encoding. Representation of categorical data points in a one-hot encoding
dates back to the early days of computing, as a technique for efficient memory management,
but has significant applications in terms of improving the learning efficacy of neural network
approaches. It does this by separating the possible values into separate binary inputs,
removing the influence of scaling; as the magnitude of the value is not important in these
cases, only that it is distinct. To demonstrate, the weekday variable takes a single input value

of [4] on Thursday, which becomes [0,0,0,1,0], under a one-hot encoding.

4.2.1. Human Data Profiling
For use within the simulation model, it is also necessary to consider the randomness of
individual human beings, and how their lack of repeatability may influence the ability of the

agent to develop an appropriate policy. Consequently, a methodology must be developed to
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appropriately profile human individuals, to enable effective modelling of these individuals
within a typical manufacturing scenario, and without the requirement for constant
surveillance of other data-driven approaches. The methodology proposed aims to make use of
a period of initial monitoring, from which, a representative set of parameters can be
calculated, and used to represent the variable behaviour and task performance of individuals
within a simulated process. In this instance, the task performance is evaluated using the cycle
time, and this value will be used to build these profiles. In addition, the methodology aims to
capture the variation in this metric along several vectors of variation.

To parameterise variability, the initial monitoring period makes timings of a relevant
number of manufacturing cycles for each of the individual operators. These values can be
averaged and used to parameterise a probability distribution, which in turn sampled, and used
to affect the cycle times of the human operators modelled in the simulation environment. This
allows the behaviours of individuals to be more accurately modelled, and more accurate
predictions to be made and provide a data-driven approach without continuous monitoring. It
is additionally necessary to establish the appropriate distribution to describe the task
variation. An event such as this with a continuous range is often modelled using a normal
distribution, centred around a mean value, and parameterised by a standard deviation, G.
However, for an optimised manufacturing process, it is likely that the lower bound for
performance much harder than the upper bound, as the number of factors which may slow
down process far outweighs those which will speed it up. As such, it is there may exist a
skew in the probability distribution towards the faster end. (i.e. more observations will be
made of a well-optimised process working efficiently than will be made of events leading to
disturbances). As such, the distribution of task performance may be more appropriately
modelled as a skewed distribution, or a two-parameter distribution, such as a gamma

distribution, to incorporate a shape parameter, k, to define this effect appropriately. This has a
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potential consequence in terms of how performance for the operators is modelled and use of
an incorrect distribution may misrepresent the observed behaviours when simulated. As such,
establishing the appropriate distribution of cycle time variability is critical for effective
human modelling. To do this, the distribution of samples for each of the operators is
visualised and used to determine the nature of the observed variation in observed cycle times.
Once the appropriate distribution has been identified, the appropriate parameters can be
calculated for each operator from the collected data, and an appropriate distribution may be
built and sampled to provide estimates for human performance within the simulation
environment. The theoretical aggregation and parameterisation of this data for three

hypothetical individuals, X, ¥, and Z, for n samples, is illustrated in Table.2:

Table 2 - Theoretical values measured during observation to enable profiling of performance

for multiple human operators, over different conditions; assuming a Normal Distribution.

Observation (s Standard Deviation,
Operator  Condition . ® Mean, p (s)
1 n o (S)
CJ n
1 L 2
X C. Xeci Xe... Xen n 2 Xci Z(xa ‘uX)
Ck i=0 n—1
CJ n
1 L 2
Y C.. Vi V.. Vn — Zya. 2Vei — Hy)
Ck i=0 n—1
ci Ll -
A C.. zZi z. Zn — 2 Zgi 2(2ci — Uz)
Ck i=0 n—-1

In order to adequately capture variations in human performance over different
contextual conditions, monitoring must also be done over a variable set of timescales. This
will enable the adequate parameterisation of digital manufacturing models in terms of each of
the data’s dimensions to reflect the influence of different human factors. Either by using the
observations to validate the current models or by directly adjusting the distributions used

based on different aggregations of the data.
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S. Agent Design for Effective Reinforcement Learning

This chapter is concerned with the design of the software agent in terms of enabling
adaptability to balance the operational demands of the system with the demands of improving
the interaction with other operators, both robotic and human. The design of this agent covers
aspects of how the agent observes and interacts with its environment, from both the
perspective of the simulation and the agent itself. It also necessitates the delivery of rewards
to the agent and the development of appropriate policy for doing so. Each of the following
sections presents the methodology used to establish these design parameters, and how they

relate to implementing adaptable behaviour of the agent.

5.1. Agent Interaction

With the capabilities of the intelligent agent defined to enable the reinforcement network to
appropriately observe, respond, and affect the environment, the simulation model can be
designed appropriately. Using the Anylogic simulation package (Compamy, 2018), a discrete
event-based simulation can be combined with agent-based control to explore agent
performance. The package is Java-based, enabling easy integration with the Deep-Learning-
4-Java (DLA4J library) (Dl4j, 2018). The library facilitates the development of a Deep Q-
Learning Network, that can be integrated effectively with the simulated environment to
provide control decisions. The discrete event simulation model as described in section 4.1
contains a software agent which contains elements to represent several different operations of
the manufacturing task. Within a manufacturing operation, we can define a number of actions
which enable manipulation of products to complete a process. These are: Pick up and put
down products; Move products from one location to another; Capacity to scrap a product in
the event of error; and the ability to manipulate products by following pre-set

motions/routines.
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The elements within the simulation are consequently chosen to reflect the modelling of
these abilities and other elements within a manufacturing process and to suitably generalise
different variants of these operations based on their characteristics. Queue elements are used
to represent individual or groups of products at a given position, such as in a stock of parts, or
the products contained in an interstitial buffer; Delay elements are used to represent
operations with a definable cycle time (either static or variable) associated with them (i.e. a
fixing/glueing operation) and hold the product object for a duration equivalent to this value.
Also, a queue element with a capacity of one is used to represent the robotic gripper within
this agent, which is used to distribute products around the operations of the process, through
variable output gates. These abstracted elements can be combined to represent any number of
manufacturing tasks, through generalising different operations and enable the relevant
observation and action spaces to be defined for the Deep Q-learning model.

The actions selected by the agent enables a large variety of different commands to be
represented dependent on the application, as they are issued as commands to traditional
robotic controllers, to follow defined subroutines. Consideration must be given the output
actions, and how they influence the simulation environment to enable the desired control to
be realised. Within the simulation model, the robotic operator is controlled by a statechart,
which makes the appropriate function calls to the neural network and manipulates the
simulation through different states that the network selects, each representing the call to a
different action subroutine. This enables the control loop to effectively follow the MDP, as it
is designed in terms of the definition of a state and response to trigger an action. The
generalised format enables the definition of a set of actions for each task, facilitating the
application of the approach, and isolates the interaction of the software agent from the rest of

the simulated environment, whilst providing an efficient channel of communication, for
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structuring events as they occur within the MDP. The statechart takes the generic form

illustrated in Figure.8.

Figure 8 - Generic behavioural Statechart format to discretise robotic processes within
manufacturing simulation. Multiple similar states may be defined, and each state corresponds

to a chosen action.

The statechart is based around a central Decision-Making state. Initially, the state
triggers function calls which gather an observation of the environment and pass it to the
software agent, the internal logic of which produces a set of Q scores, with the highest-
scoring action being selected (Although any policy based on these scores can be used) and
returned to the statechart. This triggers the action within the simulated environment, the state
moves to that defined by the selected action, and the simulation is advanced accordingly,
before returning to the decision-making state. On return to this state, the simulation calculates
a reward based on the action just taken, makes another set of function calls to gather an
observation, and returns these to the neural network to complete the MDP transition,
whereupon it is stored in the software agent’s memory. The network is then trained on the
transition, and potentially a randomly sampled batch from its memory, and use of a target

network to make forward predictions in a double Deep-Q-Network approach.
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5.2. Defining the Action and Observation Spaces

To begin the development of an intelligent agent, consideration should be given to the
fundamental aspects of the learning process. These are the state representation, the available
actions, along with the r